WO2013175623A1 - Rotary machine and refrigeration cycle device - Google Patents
Rotary machine and refrigeration cycle device Download PDFInfo
- Publication number
- WO2013175623A1 WO2013175623A1 PCT/JP2012/063473 JP2012063473W WO2013175623A1 WO 2013175623 A1 WO2013175623 A1 WO 2013175623A1 JP 2012063473 W JP2012063473 W JP 2012063473W WO 2013175623 A1 WO2013175623 A1 WO 2013175623A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bearing
- bush
- crankshaft
- peripheral surface
- bearing part
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/12—Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
- F16C33/121—Use of special materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/02—Lubrication
- F04B39/0223—Lubrication characterised by the compressor type
- F04B39/023—Hermetic compressors
- F04B39/0238—Hermetic compressors with oil distribution channels
- F04B39/0246—Hermetic compressors with oil distribution channels in the rotating shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/0042—Driving elements, brakes, couplings, transmissions specially adapted for pumps
- F04C29/005—Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
- F04C29/0057—Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/24—Brasses; Bushes; Linings with different areas of the sliding surface consisting of different materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/04—Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0215—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/356—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/50—Bearings
- F04C2240/56—Bearing bushings or details thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/60—Shafts
- F04C2240/605—Shaft sleeves or details thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/008—Hermetic pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2251/00—Material properties
- F05C2251/04—Thermal properties
- F05C2251/042—Expansivity
- F05C2251/046—Expansivity dissimilar
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2251/00—Material properties
- F05C2251/14—Self lubricating materials; Solid lubricants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2202/00—Solid materials defined by their properties
- F16C2202/20—Thermal properties
- F16C2202/22—Coefficient of expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/42—Pumps with cylinders or pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/44—Centrifugal pumps
Definitions
- the present invention relates to a rotary machine and a refrigeration cycle apparatus, and more particularly, to a rotary machine including a sliding bearing portion that slides on an outer peripheral surface of a rotating shaft via a lubricating oil, and a refrigeration cycle apparatus.
- a scroll compressor as a rotating machine is a compressor that compresses a gas such as a refrigerant by relatively rotating two scroll members having a spiral tooth shape.
- the other movable orbiting scroll is configured to orbit with respect to the fixed scroll restrained by screw fastening or welding.
- the orbiting scroll is provided with an orbiting slide bearing that engages and slides with the eccentric part of the crankshaft. Then, while the eccentric portion of the crankshaft and the orbiting slide bearing slide through the lubricating oil, the swinging rotational motion of the eccentric portion of the crankshaft is transmitted to the orbiting scroll, and the orbiting scroll is caused to orbit.
- a crankshaft that is connected to the rotor of the electric motor and rotates is supported by sliding through a lubricant with respect to a journal slide bearing called a main bearing and a sub-bearing fixed in the scroll compressor.
- Patent Document 1 As a conventional technique for reducing the bearing loss, there is a technique described in Japanese Patent Laid-Open No. 2003-239876 (Patent Document 1). According to Patent Document 1, “a floating ring member 110 is held in an insertion groove 8 a of a hub 8 formed in a lower part of the orbiting scroll 5 so as to be capable of rotating and idling. The slide bush 10 fixed to the eccentric part 4a is inserted to constitute a friction loss reducing device of the scroll compressor "(see summary).
- Patent Document 1 In general, it is known that in a sliding part such as a bearing that slides on two surfaces via lubricating oil, bearing loss due to oil film shear increases as the sliding speed increases.
- the technique described in Patent Document 1 has a structure in which a self-rotating floating ring member is disposed in a space between a slide bush and a hub fixed to an eccentric portion of a rotating shaft filled with lubricating oil. .
- the sliding that occurs between the slide bush fixed to the eccentric portion of the rotating shaft and the hub, the sliding between the outer periphery of the slide bush and the inner periphery of the floating ring member, and the outer periphery of the floating ring member and the hub It is possible to disperse and slide between the circumferences. For this reason, the relative sliding speed in each sliding part becomes small, and the bearing loss by oil film shearing is reduced.
- Patent Document 2 states that “the bearing has a main bearing 6c that supports the main shaft portion 7a and a crank bearing 4c that supports the crank portion 7b.
- the main bearing 6c includes the crank side main bearing 6c1 and the crank side.
- the crank bearing 4c and the crank side main bearing 6c1 are constituted by carbon bearings in which pores of a carbonaceous base material containing graphite are impregnated with metal, which are adjacent to the main bearing.
- the bearing 6c2 is composed of a wound bush formed by winding a plate material "(see abstract).
- crank bearing and the crank side main bearing which are high load portions with high surface pressure, are constituted by carbon bearings, so that reliability such as wear resistance and seizure resistance in a boundary lubrication state is achieved. Is secured.
- Patent Document 3 “at least one of the slewing bearing, the main bearing, and the sub-bearing has an oil-impregnated porous body in a surface in sliding contact with the crankshaft. It is described as “a scroll compressor” characterized in that a surface other than the surface in sliding contact with the shaft is surrounded by a member that does not penetrate oil (see claim 1). Further, “at least one of the slewing bearing, the main bearing, and the sub-bearing is an elastic body in which both ends of the surface slidingly contacting the crankshaft do not permeate oil, and the surfaces other than the both ends are oil-containing porous. The surface of the oil-containing porous body other than the surface in sliding contact with the crankshaft is surrounded by the elastic body or a member that does not penetrate oil ”(see claim 6).
- the performance of the bearing is improved, and in an environment where the lubrication state is severe, such as when oil is out, a piece hit, a non-steady state such as refrigerant foaming, or when using alternative CFCs with poor lubricity.
- the odor can also ensure compression performance and reliability.
- Patent Document 3 promotes the inflow of lubricating oil from the oil-containing porous body into the gap between the shaft and the bearing when oil film formation becomes difficult, and prevents direct contact between the shaft and the bearing. This is effective in reducing bearing loss.
- the bearing loss is not reduced or very limited.
- the object of the present invention is to reduce the bearing loss during fluid lubrication and reduce the bearing loss during fluid lubrication by reducing the shear resistance of the oil film due to the lubricating oil existing between the outer peripheral surface of the rotating shaft and the sliding bearing. It is another object of the present invention to provide a rotating machine and a refrigeration cycle apparatus that can maintain reliability as a bearing.
- a rotating machine reflecting one aspect of the present invention includes a rotating shaft, a housing portion having a hole into which the shaft is inserted, and an axial direction of the housing portion in the hole.
- a sliding bearing having an intermediate bearing portion larger than two bearing portions and sliding with respect to the outer peripheral surface of the shaft via lubricating oil.
- a refrigeration cycle apparatus reflecting one aspect of the present invention is characterized in that the rotary machine is provided as a refrigerant compressor for refrigeration or air conditioning.
- the present invention by reducing the shear resistance of the oil film due to the lubricating oil existing between the outer peripheral surface of the rotating shaft and the slide bearing, it is possible to reduce bearing loss during fluid lubrication, It is possible to provide a rotating machine and a refrigeration cycle apparatus that can maintain reliability as a bearing even during a load operation.
- FIG. 2 is an enlarged cross-sectional view of the vicinity of a main bearing when the scroll compressor shown in FIG. 1 is operating at a high load. It is a graph which shows the relationship between the expansion ratio of the clearance gap between an intermediate
- FIG. 1 is a longitudinal sectional view showing a scroll compressor 100 according to the first embodiment of the present invention. That is, in this 1st Embodiment, the rotary machine of this invention is demonstrated using the example of the scroll compressor 100 which compresses refrigerant
- the scroll compressor 100 is a hermetic compressor used for refrigerating and air conditioning such as an air conditioner such as an air conditioner or a refrigerating apparatus.
- the scroll compressor 100 includes a sealed container 102 that forms a casing, and a fixed scroll 103 and a turning scroll 104 that orbits and engages with the fixed scroll 103 are provided in an upper portion of the sealed container 102. ing.
- the fixed scroll 103 and the orbiting scroll 104 each have a spiral tooth shape portion.
- an electric motor 105 as a rotational power source is provided in the sealed container 102, and a crankshaft (shaft) 106 is connected to the rotor of the electric motor 105.
- a crankshaft 106 that is connected to the electric motor 105 and rotates is provided by a main bearing (slide bearing) 108 provided on a frame 107 fixed in the sealed container 102 and a sub-bearing 110 provided on a lower frame 109. It is supported rotatably.
- An eccentric portion 106 a having an eccentricity with respect to the axial center of the portion supported by the main bearing 108 and the auxiliary bearing 110 of the crankshaft 106 is provided on the upper portion of the crankshaft 106.
- the eccentric portion 106a slides by engaging with the orbiting bearing 112 provided on the lower surface (rear surface) side of the end plate 104a of the orbiting scroll 104, so that the swinging rotational motion (eccentric motion) of the eccentric portion 106a is the orbiting scroll. 104.
- the rotation of the orbiting scroll 104 is restricted by the Oldham ring 113, and the orbiting scroll 104 orbits with respect to the fixed scroll 103.
- the Oldham ring 113 is attached to a groove formed on the lower surface (back surface) side of the end plate 104 a of the orbiting scroll 104 and a groove formed on the frame 107.
- an oil supply hole 116 penetrating from the lower end to the end face (upper end face) side of the eccentric portion 106a is provided along the axial direction.
- Lubricating oil 117 stored in the lower part of the sealed container 102 is supplied to the oil supply hole by a pressure difference described later using the discharge pressure of the refrigerant gas or by a pump (not shown) separately attached to the lower end of the crankshaft 106. It is configured to be pushed up through 116 and supplied to a gap between the inner peripheral surface of each bearing (main bearing 108, sub-bearing 110, slewing bearing 112) and the outer peripheral surface of the crankshaft 106.
- the inside of the sealed container 102 is at a discharge pressure
- an intermediate chamber (back pressure chamber) 118 formed on the lower surface side of the end plate 104a of the orbiting scroll 104 is an intermediate pressure between the discharge pressure and the suction pressure. It has become.
- the lubricating oil 117 stored in the lower portion of the sealed container 102 is supplied to the bearings 108, 110, 112, and the like through the oil supply holes 116 due to a pressure difference between the discharge pressure and the intermediate pressure.
- FIG. 2 is an enlarged cross-sectional view of the vicinity of the main bearing 208 in a scroll compressor as a comparative example.
- the main bearing 208 according to the comparative example includes two cylindrical sliding bearing bushes in a through hole 107 b formed inside a bearing housing 107 a provided in a part of the frame 107.
- the upper bush 120 and the lower bush 122 are arranged side by side in the axial direction.
- the upper bush 120 is disposed on the side closer to the eccentric part 106a
- the lower bush 122 is disposed on the side far from the eccentric part 106a.
- Lubricating oil is supplied to the gap between the outer peripheral surface of the crankshaft 106 and the inner peripheral surface of the main bearing 208 (the upper bush 120 and the lower bush 122) through the oil supply hole 116 and the oil supply port 119. And the inner peripheral surface of the main bearing 208 slide through an oil film. The lubricating oil that has formed the oil film then flows out of the bearing housing 107a through the end of the bearing housing 107a.
- FIG. 3 is an enlarged cross-sectional view of the vicinity of the main bearing 108 in the scroll compressor 100 according to the first embodiment of the present invention.
- the main bearing 108 according to the first embodiment includes a through hole (hole) 107b formed inside a bearing housing (housing portion) 107a provided in a part of a frame 107 made of cast iron, for example.
- the upper bush (first bearing portion) 120, the intermediate bush (intermediate bearing portion) 121, and the lower bush (second bearing portion) 122, which are three cylindrical plain bearing bushes, are arranged in the order from above. It has a structure arranged side by side.
- the upper bush 120 is disposed closest to one end (on the eccentric portion 106a side) in the axial direction in the through hole 107b, that is, on the side closest to the eccentric portion 106a.
- the lower bush 122 is disposed closest to the other end (on the opposite side to the eccentric portion 106a) in the axial direction in the through hole 107b, that is, on the side farthest from the eccentric portion 106a.
- the intermediate bush 121 is disposed between the upper bush 120 and the lower bush 122.
- the upper bush 120 and the lower bush 122 are made of, for example, a carbon bearing material in which a carbonaceous substrate containing graphite is impregnated with a metal.
- the intermediate bush 121 includes a carbon bearing material that forms the upper bush 120 and the lower bush 122 and a material that exhibits a higher linear expansion coefficient than the cast iron material that forms the bearing housing 107a, such as a resin. Consists of materials.
- the gap between the intermediate bush 121 and the outer peripheral surface of the crankshaft 106 is the gap between the upper bush 120 and the outer peripheral surface of the crankshaft 106, and the lower bush 122.
- the clearance between the outer peripheral surface of the crankshaft 106 is larger. That is, the difference between the inner diameter of the intermediate bush 121 and the outer diameter of the crankshaft 106 is larger than the difference between the inner diameter of the upper bush 120 and the outer diameter of the crankshaft 106, and the inner diameter of the lower bush 122 and the crankshaft 106. It is larger than the difference with the outer diameter.
- An oil supply hole 116 is formed in a gap (hereinafter also referred to as “bearing gap”) between the outer peripheral surface of the crankshaft 106 and the inner peripheral surface of the main bearing 108 (the upper bush 120, the intermediate bush 121, and the lower bush 122).
- the lubricating oil is supplied through the oil supply port 119, and the outer peripheral surface of the crankshaft 106 and the inner peripheral surface of the main bearing 108 slide through an oil film.
- the lubricating oil that has formed the oil film then flows out of the bearing housing 107a through the end of the bearing housing 107a.
- F is the oil film shear force
- ⁇ is the oil film shear stress
- ⁇ is the absolute viscosity
- V is the peripheral speed of the rotating shaft
- h is the radial gap (oil film thickness)
- A is the area of the inner circumference of the bearing related to the oil film shear. is there.
- the total area of the inner peripheral surfaces of all the sliding bearing bushes is equal, and the inner diameters of the upper bush 120 and the lower bush 122 are the same.
- the radial gap h is set to be larger than that of the comparative example in the intermediate bush 121 portion, the oil film shear force and consequently the bearing loss is reduced as compared with the comparative example.
- the material, thickness, and inner diameter of the upper bush 120, the intermediate bush 121, and the lower bush 122, which are sliding bearing bushes, and the bearing housing 107a are determined according to the operating conditions and operating temperature of the scroll compressor 100. By doing so, it is possible to secure a load (load capacity) that can be supported by the main bearing 108 at the time of high-load operation equivalent to the conventional one, and to maintain the reliability as the bearing.
- FIG. 4 is an enlarged cross-sectional view of the vicinity of the main bearing 108 when the scroll compressor 100 shown in FIG. 1 is operating at a high load.
- FIG. 4 shows a state where the crankshaft 106 is slightly inclined with respect to the main bearing 108 during high load operation (the same applies to FIGS. 9 and 10). The reason why the crankshaft 106 is inclined will be described later.
- the linear expansion coefficient of the intermediate bush 121 is particularly large, the clearance between the intermediate bush 121 and the crankshaft 106 is lower during high load operation (see FIG. 4). It becomes smaller than during operation (see FIG. 3). Therefore, in the state at the time of high load operation, the region in which a high oil film pressure can be maintained by the dynamic pressure is expanded compared to the state at the time of low load operation.
- the gas load 123 acts on the crankshaft 106 as an overhanging load at a position above the main bearing 108, so that the inclination of the crankshaft 106 with respect to the main bearing 108 is an operating load. It is easy to expand with the increase. For this reason, direct contact between the crankshaft 106 and the main bearing 108 tends to occur at the bearing end portions indicated by A and B in FIG. In the example shown in FIG. 3, since the upper bush 120 and the lower bush 122 are made of a hard and lubricating carbon bearing material, it is difficult to form an oil film, and the crankshaft 106 and the main bearing 108 are directly connected to each other. Even when it is in a state of sliding with contact, good wear resistance can be obtained.
- the bearing loss due to oil film shearing when the crankshaft 106 was slid through the lubricating oil was evaluated.
- the influence of the gap between the intermediate bush 121 and the crankshaft 106 on the bearing loss and the minimum oil film thickness in the bearing structure according to the first embodiment of the present invention was verified. The verification results are shown in FIGS.
- crankshaft 106 had a diameter of 14 to 18 mm in the scroll compressor 100 for an air conditioner. Further, the upper bush 120, the intermediate bush 121, and the lower bush 122 have the same axial length and the same diameter as the crankshaft 106. The clearances between the upper bush 120 and the lower bush 122 and the crankshaft 106 were equally 0.15% of the diameter of the crankshaft 106. The inclination angle of the crankshaft 106 with respect to the main bearing 108 was set to 0.01 ° in the acting load direction.
- FIG. 5 is a graph showing the result of evaluating the bearing loss by changing the enlargement ratio of the gap between the intermediate bush 121 and the crankshaft 106 in various ways. That is, FIG. 5 shows the relationship between the expansion ratio of the gap between the intermediate bush and the crankshaft and the relative bearing loss.
- the horizontal axis indicates an increase in the gap between the intermediate bush 121 and the crankshaft 106 when the gap between the upper bush 120 and the lower bush 122 and the crankshaft 106 is set as a reference (0%). Indicates the rate.
- the vertical axis shows the relative value when the bearing loss is 100% when the gaps between the upper bush 120, the intermediate bush 121, and the lower bush 122 and the crankshaft 106 are all equal. Yes.
- the bearing loss tended to decrease by increasing the gap between the intermediate bush 121 and the crankshaft 106.
- FIG. 6 is a graph showing the result of evaluating the minimum oil film thickness by variously changing the enlargement ratio of the gap between the intermediate bush 121 and the crankshaft 106. That is, FIG. 6 shows the relationship between the expansion ratio of the gap between the intermediate bush and the crankshaft and the relative minimum oil film thickness.
- the horizontal axis indicates an increase in the gap between the intermediate bush 121 and the crankshaft 106 when the gap between the upper bush 120 and the lower bush 122 and the crankshaft 106 is set as a reference (0%). Indicates the rate.
- the vertical axis represents the relative value when the minimum oil film thickness is 100% when the gaps between the upper bush 120, the intermediate bush 121, and the lower bush 122 are all equal to the crankshaft 106. Show.
- the minimum oil film thickness is the minimum oil film thickness when the same load is supported. As shown in the verification result of FIG. 6, the minimum oil film thickness tended to increase by reducing the gap between the intermediate bush 121 and the crankshaft 106.
- the scroll compressor 100 includes the crankshaft 106 that rotates and the bearing housing 107a having the through-hole 107b into which the crankshaft 106 is inserted, and the through-hole of the bearing housing 107a. And a main bearing 108 that is disposed in the hole 107b and slides on the outer peripheral surface of the crankshaft 106 via lubricating oil.
- the main bearing 108 has an upper bush 120 disposed closest to one end in the axial direction in the through hole 107b of the bearing housing 107a, a lower bush 122 disposed closest to the other end, and the upper bush 120. And an intermediate bush 121 disposed between the lower bush 122 and the lower bush 122.
- the intermediate bush 121 has a linear expansion coefficient larger than that of the bearing housing 107a, the upper bush 120, and the lower bush 122, and at least a gap between the outer periphery of the crankshaft 106 before the crankshaft 106 starts rotating. Is larger than the upper bush 120 and the lower bush 122.
- the intermediate bush 121 arranged at the center is provided at both ends. It is made of a material having a linear expansion coefficient larger than that of the upper bush 120 and the lower bush 122, and at least between the crankshaft 106 and the upper bush 120 and the lower bush 122 before the crankshaft 106 starts rotating. The gap between is large. This gap relationship is maintained in the same way even during high-temperature operation (where the bearing temperature is high) and during low-temperature operation where the rotational speed and working load of the crankshaft 106 are small (the bearing temperature is low). Be drunk. Then, the inner diameter dimensional change rate (reduction rate) of the intermediate bush 121 due to the temperature change becomes larger than the inner diameter dimensional change rate (reduction rate) of the upper bush 120 and the lower bush 122.
- the gap between the intermediate bush 121 and the crankshaft 106 is large, so that friction loss is reduced and bearing loss is reduced. To do. Further, since the gaps at the upper bush 120 and the lower bush 122, which are the outflow paths of the lubricating oil, are small, the increase in the flow rate of the lubricating oil hardly occurs, and an increase in loss due to this is prevented.
- the bearing by reducing the shear resistance of the oil film caused by the lubricating oil existing between the outer peripheral surface of the rotating crankshaft 106 and the main bearing 108, the bearing at the time of fluid lubrication. Loss can be reduced, and reliability as a bearing can be maintained even during high load operation.
- a carbon-based, metal-based, or ceramic-based material having a linear expansion coefficient smaller than that of the intermediate bush 121 can be used.
- a carbon bearing material in which a metal is impregnated with a carbonaceous base material containing graphite is used with emphasis on ensuring wear resistance at the time of one-piece contact and direct contact friction due to oil film breakage.
- materials of the upper bush 120 and the lower bush 122 for example, cast iron, carbon steel, copper alloy, brass, tin alloy, aluminum alloy according to the wear resistance and environment resistance required for the rotating machine to be applied. Zirconia, alumina, silicon carbide, silicon nitride, etc. may be used.
- the material of the intermediate bush 121 As the material of the intermediate bush 121, a resin material having a larger linear expansion rate than the material of the upper bush 120 and the lower bush 122 can be used. However, as the material of the intermediate bush 121, polytetrafluoroethylene, polyether ether ketone, polyphenylene sulfide, nylon, polyimide, polyamideimide, polyethylene, depending on the temperature conditions of the rotating machine to be applied and the expected change in bearing clearance Ultra high molecular weight polyethylene and the like, and composite materials of these resins and sintered metals, particles, fiber materials, and the like may be used.
- FIG. 7 is an enlarged cross-sectional view of the vicinity of the main bearing 108a according to the first modification of the first embodiment.
- the detailed description of the configuration and operation similar to those of the first embodiment shown in FIGS. 1 to 6 will be omitted as they are incorporated in the first modification, and different points will be described (further described below). The same applies to the modified example).
- the first modification of the first embodiment is different from the first embodiment in that the lower bush 122a of the main bearing 108a is formed integrally with the bearing housing 107a.
- the upper bushing may be formed integrally with the bearing housing 107a instead of the lower bushing 122a. That is, instead of installing the upper bush 120 and the lower bush 122 as separate members in the bearing housing 107a as in the first embodiment, the lower bush 122a (or the upper bush) is integrated with the bearing housing 107a.
- FIG. 8 is an enlarged cross-sectional view of the vicinity of the main bearing 108b according to the second modification of the first embodiment.
- the outer diameter of the crankshaft 106 is smaller than the other portions in the portion of the main bearing 108b that faces the intermediate bush 121a. That is, the method of enlarging the bearing gap at the center of the main bearing 108b is to increase the outer diameter of the crankshaft 106 at the portion facing the intermediate bush 121a instead of increasing the inner diameter of the intermediate bush 121 as in the first embodiment. It is also possible to make it smaller.
- the coaxiality of the inner peripheral surfaces of the upper bush 120, the intermediate bush 121, and the lower bush 122, which are three plain bearing bushes, is obtained with high accuracy.
- the three slide bearing bushes are inserted into the bearing housing 107a and heated to the temperature during the high load operation of the scroll compressor 100. It is necessary to devise a processing process such as processing the inner diameter of each plain bearing bush to the same diameter.
- the inner diameters of the upper bush 120, the intermediate bush 121a, and the lower bush 122, which are three plain bearing bushes are set to be equal at room temperature. The same diameter can be processed by one axial feed. According to such a second modification of the first embodiment, it is possible to reduce the manufacturing cost in addition to the same effects as the first embodiment described above.
- FIG. 9 is an enlarged cross-sectional view of the vicinity of the main bearing 108c according to a third modification of the first embodiment.
- the third modification of the first embodiment at least one groove 124 that divides the inner peripheral surface in the circumferential direction is formed on the inner peripheral surface of the intermediate bush 121b.
- the intermediate bush 121b in addition to being able to achieve the same operational effects as those of the first embodiment described above, by providing the groove 124, the intermediate bush 121b can be In addition to relieving the internal stress in the circumferential direction and reducing variations in the inner diameter change due to temperature rise, the sliding area is reduced by the amount of the groove 124, so that the bearing loss can be further reduced.
- FIG. 10 is an enlarged cross-sectional view of the vicinity of the main bearing 108d according to a fourth modification of the first embodiment.
- a groove 124a that divides the inner peripheral surface in the circumferential direction is formed on the inner peripheral surface of the intermediate bush 121c.
- the intermediate bush 121c has a V-shape extending from both end portions in the axial direction toward the central portion so as to incline in the rotational direction of the crankshaft 106.
- the lubricating oil passes through the groove 124a and is drawn from both ends in the axial direction of the intermediate bush 121c to the central portion, and the pressure near the central portion increases. For this reason, it is possible to increase the minimum oil film thickness by improving the dynamic pressure especially at high load.
- FIG. 11 is a longitudinal sectional view showing a rotary compressor 130 according to the second embodiment of the present invention. That is, in this 2nd Embodiment, the rotary machine of this invention is demonstrated using the example of the rotary compressor 130 which compresses refrigerant gas.
- the rotary compressor 130 functionally includes a vertical cylindrical sealed container 138, a compression mechanism 139 that compresses refrigerant gas in the sealed container 138, and an electric motor that drives the compression mechanism 139. 131 and an oil sump 144 for storing lubricating oil to be supplied to the sliding surfaces of the components and members constituting the compression mechanism 139.
- an electric motor 131, a compression mechanism 139, and an oil sump 144 are arranged in order from the top.
- a rotating shaft (shaft) 132 extending downward is connected to the rotor of the electric motor 131.
- the compression mechanism 139 includes an eccentric shaft portion 132a formed near the lower tip portion of the rotary shaft 132, and a cylindrical roller 133 that is eccentrically rotated by the eccentric shaft portion 132a when the eccentric shaft portion 132a is engaged inside.
- a cylinder 134 that houses the eccentric shaft portion 132a and the roller 133, an upper bearing member 135 that serves as an upper lid of the cylinder 134 and supports the rotating shaft 132, and a lower lid of the cylinder 134 and supports the lower end portion of the rotating shaft 132.
- a vane (not shown) that slides on the outer peripheral surface of the roller 133 and separates the low pressure side and the high pressure side of the compression chamber 137 from each other.
- the upper bearing member 135 has a bearing housing (housing portion) 135 a provided in a part of the upper bearing member 135.
- a through hole (hole) 135b into which the rotary shaft 132 is inserted is formed in the bearing housing 135a, and an upper bearing (slide bearing) 143 is disposed in the through hole 135b.
- the upper bearing 143 includes an upper bush (first bearing portion) 140 and an intermediate bush (intermediate bearing portion) 141 that are three cylindrical slide bearing bushes in a through hole 135b formed inside the bearing housing 135a.
- the lower bush (second bearing portion) 142 is arranged in the axial direction in order from above.
- the upper bushing 140 is disposed closest to one end (the side opposite to the eccentric shaft portion 132a) in the axial direction in the through hole 135b, that is, on the side farthest from the eccentric shaft portion 132a.
- the lower bush 142 is disposed closest to the other end (on the eccentric shaft portion 132a side) in the axial direction in the through hole 135b, that is, on the side closest to the eccentric shaft portion 132a.
- the intermediate bush 141 is disposed between the upper bush 140 and the lower bush 142.
- the material of the upper bush 140 and the lower bush 142 is, for example, cast iron.
- the lower bushing 142 (including the sliding surface that is the inner peripheral surface thereof) is formed integrally with the bearing housing 135a of the upper bearing member 135.
- the intermediate bush 141 is made of a material whose linear expansion coefficient is larger than the linear expansion coefficients of the upper bush 140 and the lower bush 142 and larger than the linear expansion coefficient of the bearing housing 135a, for example, a material containing resin. Has been.
- the gap between the intermediate bush 141 and the outer peripheral surface of the rotary shaft 132 is the gap between the upper bush 140 and the outer peripheral surface of the rotary shaft 132 and the lower bush 142.
- the clearance between the outer peripheral surface of the rotary shaft 132 and the outer peripheral surface of the rotary shaft 132 is larger.
- the outer diameter of the rotating shaft 132 is smaller in the portion facing the intermediate bush 141 of the upper bearing 143 than in the other portions.
- the difference between the inner diameter of the intermediate bush 141 and the outer diameter of the rotating shaft 132 at the portion facing the intermediate bush 141 is larger than the difference between the inner diameter of the upper bush 140 and the outer diameter of the rotating shaft 132, and It is larger than the difference between the inner diameter of the bush 142 and the outer diameter of the rotating shaft 132.
- a lower bearing 145 (including a sliding surface that is an inner peripheral surface) that is a slide bearing that supports the lower end portion of the rotating shaft 132 is formed integrally with a lower bearing member 136 made of cast iron.
- Lubricating oil 117 in an oil sump 144 provided at the lower portion of the rotary compressor 130 passes through an oil supply hole 146 formed along the axial center of the rotary shaft 132 through a branch hole in the radial direction, and the upper bearing 143 and the lower bearing.
- 145, and a sliding portion of each of the bearings 143 and 145 is formed with an oil film by lubricating oil to ensure smooth lubrication.
- the gap between the intermediate bush 141 and the rotary shaft 132 is large. Is reduced and bearing loss is reduced. Further, since the gap in the upper bush 140 and the lower bush 142, which is the lubricating oil outflow path, is small, the flow rate of the lubricating oil hardly increases and an increase in loss due to this is prevented.
- the bearing at the time of fluid lubrication Loss can be reduced, and reliability as a bearing can be maintained even during high load operation.
- the bearings 143 and 145 are provided at positions close to the compression chamber 137.
- the lower bush 142 and the lower bearing 145 located at the end of the upper bearing member 135 on the roller 133 side function as sliding bearing bushes, and the sliding surfaces that are the inner peripheral surfaces thereof are bearing members 135 and 136. And are integrally formed. This eliminates fluid movement in portions other than the bearing gap, such as the inside of the material of the sliding bearing bush, as in the case where the sliding bearing bush is configured separately from the bearing members 135 and 136. Therefore, it is easy to control the inflow / outflow relationship of gas and lubricating oil between the bearings 143 and 145 and the compression chamber 137, and the design becomes easy.
- the upper bush, the intermediate bush, and the lower bush which are three plain bearing bushes, are arranged in the axial direction in order from above in a through hole formed inside the bearing housing. It has a structure.
- the present invention is not limited to this, and can be applied to a structure in which four or more plain bearing bushes are arranged side by side in the axial direction.
- the sliding bearing bushes at both ends in the axial direction correspond to the upper bushing and the lower bushing in the embodiment, and at least of the plurality of sliding bearing bushes disposed between the sliding bearing bushes at both axial ends.
- One corresponds to the intermediate bush in the embodiment.
- a method of reducing the outer diameter of the crankshaft 106 at a portion facing the intermediate bush 121a is adopted as a method of expanding the bearing gap at the center portion of the main bearing 108b.
- the present invention is not limited to this.
- the inner diameter of the intermediate bush 121 may be enlarged, and the outer diameter of the crankshaft 106 at the portion facing the intermediate bush 121a may be reduced.
- segments the said internal peripheral surface into the circumferential direction was formed in the internal peripheral surface of the intermediate bush 121b
- this invention is based on this. It is not limited. The present invention is also applicable to the case where the depth of the groove 124 reaches the outer peripheral surface of the intermediate bush 121b, for example.
- the intermediate bush 121b may be configured to be divided into a plurality of portions in the circumferential direction by a dividing surface along the axial direction, and to include a plurality of portions forming a part of a cylindrical shape.
- the present invention is not limited to these and can be applied to other types of compressors. is there.
- the said embodiment demonstrated the vertical compressor with which the axis
- the present invention can also be applied to a horizontal compressor arranged along.
- the present invention can also be applied to various types of rotating machines that include a sliding bearing portion that slides on the outer peripheral surface of a rotating shaft via a lubricating oil.
- the present invention can be configured as a refrigeration cycle device including the rotating machine according to the present invention as a refrigerant compressor for refrigeration or air conditioning.
- This refrigeration cycle equipment includes a refrigerant compressor as a rotating machine according to the present invention, a condenser that dissipates heat from refrigerant gas that has been compressed by the refrigerant compressor into a high temperature and high pressure, and decompresses the high-pressure refrigerant from the condenser. And a evaporator for evaporating the liquid refrigerant from the pressure reducing device.
- a refrigeration cycle apparatus can be used for a refrigeration apparatus, an air conditioner, a heat pump type hot water heater, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Sliding-Contact Bearings (AREA)
- Compressor (AREA)
- Rotary Pumps (AREA)
Abstract
A rotary machine is provided with: a crankshaft (106); a bearing housing (107a) which has a through-hole (107b); and a main bearing (108) which is disposed within the through-hole (107b) and which slides relative to the outer peripheral surface of the crankshaft (106) with lubricating oil therebetween. The main bearing (108) has an upper bush (120), a lower bush (122), and an intermediate bush (121) which is disposed between the upper bush (120) and the lower bush (122). The intermediate bush (121) has a higher linear expansion coefficient than the bearing housing (107a), the upper bush (120), and the lower bush (122), and before the start of rotation of at least the crankshaft (106), the gap between the intermediate bush (121) and the outer peripheral surface of the crankshaft (106) is greater than the gap between the intermediate bush (121) and the upper bush (120) and the gap between the intermediate bush (121) and the lower bush (122). As a result of this configuration, bearing loss during fluid lubrication can be reduced and the reliability as the bearing can be maintained even during high-load operation.
Description
本発明は、回転機械および冷凍サイクル機器に関し、特に、回転運動する軸の外周面に対して潤滑油を介して摺動するすべり軸受部を備える回転機械、および冷凍サイクル機器に関する。
The present invention relates to a rotary machine and a refrigeration cycle apparatus, and more particularly, to a rotary machine including a sliding bearing portion that slides on an outer peripheral surface of a rotating shaft via a lubricating oil, and a refrigeration cycle apparatus.
回転機械としてのスクロール圧縮機は、渦巻き状の歯型形状を有する2つのスクロール部材を相対的に旋回運動させることにより、冷媒等の気体の圧縮を行う圧縮機である。スクロール圧縮機では、一般に、ネジ締結や溶接等で拘束された固定スクロールに対して、もう一方の可動な旋回スクロールが旋回運動するように構成されている。
A scroll compressor as a rotating machine is a compressor that compresses a gas such as a refrigerant by relatively rotating two scroll members having a spiral tooth shape. In the scroll compressor, generally, the other movable orbiting scroll is configured to orbit with respect to the fixed scroll restrained by screw fastening or welding.
旋回スクロールには、クランク軸の偏心部と係合して摺動する旋回すべり軸受が設けられている。そして、クランク軸の偏心部と旋回すべり軸受とが潤滑油を介して摺動しながら、クランク軸の偏心部の振れ回り回転運動が旋回スクロールに伝達されて該旋回スクロールが旋回運動させられる。電動機のロータに接続されて回転運動するクランク軸は、スクロール圧縮機内に固定された主軸受および副軸受と呼ばれるジャーナルすべり軸受に対して潤滑油を介して摺動することにより支持される。
The orbiting scroll is provided with an orbiting slide bearing that engages and slides with the eccentric part of the crankshaft. Then, while the eccentric portion of the crankshaft and the orbiting slide bearing slide through the lubricating oil, the swinging rotational motion of the eccentric portion of the crankshaft is transmitted to the orbiting scroll, and the orbiting scroll is caused to orbit. A crankshaft that is connected to the rotor of the electric motor and rotates is supported by sliding through a lubricant with respect to a journal slide bearing called a main bearing and a sub-bearing fixed in the scroll compressor.
例えばエアコンに搭載される冷媒圧縮用のスクロール圧縮機においては、一般に、低回転速度かつ低負荷な運転条件における損失低減が、エアコンの年間を通じた消費電力削減に対して特に効果が大きいことが知られている。近年、この低回転速度かつ低負荷な運転条件において、クランク軸とすべり軸受との摺動により生じる軸受損失の低減が課題となっている。
For example, in scroll compressors for refrigerant compression installed in air conditioners, it is generally known that reducing losses under low rotational speed and low load operating conditions is particularly effective for reducing power consumption throughout the air conditioner year. It has been. In recent years, reduction of bearing loss caused by sliding between a crankshaft and a slide bearing has been an issue under the low rotational speed and low load operating conditions.
軸受損失の低減を図るようにした従来技術としては、特開2003-239876号公報(特許文献1)に記載のものがある。この特許文献1には、「旋回スクロール5の下部に形成されたハブ8の挿入溝8aにフローティングリング部材110が自転と空転自在に保持され、フローティングリング部材110の中心には、回転軸4の偏心部4aに固定されたスライドブッシュ10が挿入されてスクロール圧縮機の摩擦損失低減装置を構成する」と記載されている(要約参照)。
As a conventional technique for reducing the bearing loss, there is a technique described in Japanese Patent Laid-Open No. 2003-239876 (Patent Document 1). According to Patent Document 1, “a floating ring member 110 is held in an insertion groove 8 a of a hub 8 formed in a lower part of the orbiting scroll 5 so as to be capable of rotating and idling. The slide bush 10 fixed to the eccentric part 4a is inserted to constitute a friction loss reducing device of the scroll compressor "(see summary).
一般に、2つの面が潤滑油を介してすべり摺動する軸受等の摺動部においては、すべり速度の増加に伴い、油膜せん断による軸受損失が増加することが知られている。前記特許文献1に記載の技術では、潤滑油で満たされた回転軸の偏心部に固定されたスライドブッシュとハブとの間の空間に、自転可能なフローティングリング部材を配置した構造となっている。これにより、回転軸の偏心部に固定されたスライドブッシュとハブとの間で生ずる摺動を、スライドブッシュ外周とフローティングリング部材内周との間での摺動と、フローティングリング部材外周とハブ内周との間での摺動とに分散させることができる。このため、各摺動部位における相対すべり速度が小さくなり、油膜せん断による軸受損失が低減される。
In general, it is known that in a sliding part such as a bearing that slides on two surfaces via lubricating oil, bearing loss due to oil film shear increases as the sliding speed increases. The technique described in Patent Document 1 has a structure in which a self-rotating floating ring member is disposed in a space between a slide bush and a hub fixed to an eccentric portion of a rotating shaft filled with lubricating oil. . As a result, the sliding that occurs between the slide bush fixed to the eccentric portion of the rotating shaft and the hub, the sliding between the outer periphery of the slide bush and the inner periphery of the floating ring member, and the outer periphery of the floating ring member and the hub It is possible to disperse and slide between the circumferences. For this reason, the relative sliding speed in each sliding part becomes small, and the bearing loss by oil film shearing is reduced.
他の従来技術としては、特開2008-101538号公報(特許文献2)に記載のものがある。この特許文献2には、「軸受は、主軸部7aを軸支する主軸受6cと、クランク部7bを軸支するクランク軸受4cとを有する。主軸受6cはクランク側主軸受6c1とこのクランク側主軸受に隣接した電動機側主軸受6c2とで構成される。クランク軸受4c及びクランク側主軸受6c1は黒鉛を含む炭素質基材の気孔に金属を含浸したカーボン軸受で構成される。電動機側主軸受6c2は板材を巻いて形成した巻きブッシュで構成される。」と記載されている(要約参照)。
As another conventional technique, there is one disclosed in Japanese Patent Laid-Open No. 2008-101538 (Patent Document 2). This Patent Document 2 states that “the bearing has a main bearing 6c that supports the main shaft portion 7a and a crank bearing 4c that supports the crank portion 7b. The main bearing 6c includes the crank side main bearing 6c1 and the crank side. The crank bearing 4c and the crank side main bearing 6c1 are constituted by carbon bearings in which pores of a carbonaceous base material containing graphite are impregnated with metal, which are adjacent to the main bearing. The bearing 6c2 is composed of a wound bush formed by winding a plate material "(see abstract).
前記特許文献2に記載の技術では、面圧の高い高負荷部となるクランク軸受及びクランク側主軸受をカーボン軸受で構成することにより、境界潤滑状態における耐摩耗性や耐焼付き性などの信頼性を確保している。
In the technique described in Patent Document 2, the crank bearing and the crank side main bearing, which are high load portions with high surface pressure, are constituted by carbon bearings, so that reliability such as wear resistance and seizure resistance in a boundary lubrication state is achieved. Is secured.
さらに他の従来技術として、特開平9-250465号公報(特許文献3)に記載のものがある。この特許文献3には、「前記旋回軸受、前記主軸受、前記副軸受のうち少なくとも1つの軸受は、前記クランク軸と摺接する面が含油多孔質体であり、この含油多孔質体の前記クランク軸と摺接する面以外の面が油を浸透しない部材で囲まれていることを特徴とするスクロール圧縮機」と記載されている(請求項1参照)。また、「前記旋回軸受、前記主軸受、前記副軸受のうち少なくとも1つの軸受は前記クランク軸と摺接する面の両端が油を浸透しない弾性体であって、前記両端以外の面が含油多孔質体で構成され、この含油多孔質体の前記クランク軸と摺接する面以外の面が前記弾性体または油を浸透しない部材で囲まれている」と記載されている(請求項6参照)。
Still another conventional technique is described in Japanese Patent Laid-Open No. 9-250465 (Patent Document 3). In Patent Document 3, “at least one of the slewing bearing, the main bearing, and the sub-bearing has an oil-impregnated porous body in a surface in sliding contact with the crankshaft. It is described as “a scroll compressor” characterized in that a surface other than the surface in sliding contact with the shaft is surrounded by a member that does not penetrate oil (see claim 1). Further, “at least one of the slewing bearing, the main bearing, and the sub-bearing is an elastic body in which both ends of the surface slidingly contacting the crankshaft do not permeate oil, and the surfaces other than the both ends are oil-containing porous. The surface of the oil-containing porous body other than the surface in sliding contact with the crankshaft is surrounded by the elastic body or a member that does not penetrate oil ”(see claim 6).
前記特許文献3に記載の技術によると、軸受の性能向上を図り、油切れ、片当り、冷媒の発泡等の非定常状態時や潤滑性が悪い代替フロン使用時など、潤滑状態が厳しい環境下においも、圧縮性能及び信頼性を確保できる。
According to the technology described in Patent Document 3, the performance of the bearing is improved, and in an environment where the lubrication state is severe, such as when oil is out, a piece hit, a non-steady state such as refrigerant foaming, or when using alternative CFCs with poor lubricity. The odor can also ensure compression performance and reliability.
しかしながら、前記特許文献1に記載の技術では、回転軸の回転速度が低下するにつれ、一般的なすべり軸受よりも油膜が形成しにくくなり、フローティングリング部材との間で直接接触が起きやすくなるという課題がある。
However, in the technique described in Patent Document 1, as the rotational speed of the rotary shaft decreases, it becomes more difficult to form an oil film than a general slide bearing, and direct contact with the floating ring member is likely to occur. There are challenges.
また、前記特許文献2に記載の技術では、潤滑性を有するカーボン軸受を使用することにより、油膜形成が困難な状態においてクランク軸と軸受とが直接接触を伴う摺動をする際の接触摩擦による軸受損失は低減され得る。しかし、通常の油膜形成時においては、油膜のせん断抵抗を低減する効果は殆ど無く、したがって、軸受損失の低減は、なされないか、極めて限定的であった。
Further, in the technique described in Patent Document 2, by using a carbon bearing having lubricity, it is caused by contact friction when the crankshaft and the bearing slide with direct contact in a state where oil film formation is difficult. Bearing losses can be reduced. However, at the time of normal oil film formation, there is almost no effect of reducing the shear resistance of the oil film, and therefore the bearing loss is not reduced or very limited.
また、前記特許文献3に記載の技術は、油膜形成が困難となった際に含油多孔質体から軸と軸受との隙間への潤滑油の流入を促し、軸と軸受との直接接触を防止する点で軸受損失の低減に有効である。しかし、通常の油膜形成時においては、油膜のせん断抵抗を低減する効果は殆ど無く、したがって、軸受損失の低減は、なされないか、極めて限定的であった。
Further, the technique described in Patent Document 3 promotes the inflow of lubricating oil from the oil-containing porous body into the gap between the shaft and the bearing when oil film formation becomes difficult, and prevents direct contact between the shaft and the bearing. This is effective in reducing bearing loss. However, at the time of normal oil film formation, there is almost no effect of reducing the shear resistance of the oil film, and therefore the bearing loss is not reduced or very limited.
本発明の目的は、回転運動する軸の外周面とすべり軸受との間に存在する潤滑油による油膜のせん断抵抗を低減することにより、流体潤滑時の軸受損失を低減すると共に、高負荷運転時においても軸受としての信頼性を維持できる回転機械、および冷凍サイクル機器を提供することにある。
The object of the present invention is to reduce the bearing loss during fluid lubrication and reduce the bearing loss during fluid lubrication by reducing the shear resistance of the oil film due to the lubricating oil existing between the outer peripheral surface of the rotating shaft and the sliding bearing. It is another object of the present invention to provide a rotating machine and a refrigeration cycle apparatus that can maintain reliability as a bearing.
前記した目的を達成するために、本発明の一側面を反映する回転機械は、回転運動する軸と、前記軸が挿入される穴を有するハウジング部と、前記ハウジング部の前記穴内の軸方向における一方の端に最も近く配置される第1軸受部、他方の端に最も近く配置される第2軸受部、並びに前記第1軸受部と前記第2軸受部との間に配置され、線膨脹係数が前記ハウジング部、前記第1軸受部、および前記第2軸受部よりも大きく、かつ、少なくとも前記軸の回転起動前において前記軸の外周面との間の隙間が前記第1軸受部および前記第2軸受部よりも大きい中間軸受部を有し、前記軸の外周面に対して潤滑油を介して摺動するすべり軸受と、を備えることを特徴とする。
In order to achieve the above-described object, a rotating machine reflecting one aspect of the present invention includes a rotating shaft, a housing portion having a hole into which the shaft is inserted, and an axial direction of the housing portion in the hole. A first bearing portion disposed closest to one end, a second bearing portion disposed closest to the other end, and a linear expansion coefficient disposed between the first bearing portion and the second bearing portion; Is larger than the housing portion, the first bearing portion, and the second bearing portion, and at least a gap between the shaft and the outer peripheral surface before the shaft starts to rotate is the first bearing portion and the first bearing portion. A sliding bearing having an intermediate bearing portion larger than two bearing portions and sliding with respect to the outer peripheral surface of the shaft via lubricating oil.
また、本発明の一側面を反映する冷凍サイクル機器は、前記回転機械を冷凍または空調用の冷媒圧縮機として備えることを特徴とする。
Further, a refrigeration cycle apparatus reflecting one aspect of the present invention is characterized in that the rotary machine is provided as a refrigerant compressor for refrigeration or air conditioning.
本発明によれば、回転運動する軸の外周面とすべり軸受との間に存在する潤滑油による油膜のせん断抵抗を低減することにより、流体潤滑時の軸受損失を低減することができると共に、高負荷運転時においても軸受としての信頼性を維持することができる回転機械、および冷凍サイクル機器を提供できる。
According to the present invention, by reducing the shear resistance of the oil film due to the lubricating oil existing between the outer peripheral surface of the rotating shaft and the slide bearing, it is possible to reduce bearing loss during fluid lubrication, It is possible to provide a rotating machine and a refrigeration cycle apparatus that can maintain reliability as a bearing even during a load operation.
次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
≪第1実施形態≫
まず、図1~図6を参照しながら本発明の第1実施形態について説明する。
図1は、本発明の第1実施形態に係るスクロール圧縮機100を示す縦断面図である。すなわち、この第1実施形態では、本発明の回転機械について、冷媒ガスの圧縮を行うスクロール圧縮機100の例を用いて説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
<< First Embodiment >>
First, a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a longitudinal sectional view showing ascroll compressor 100 according to the first embodiment of the present invention. That is, in this 1st Embodiment, the rotary machine of this invention is demonstrated using the example of the scroll compressor 100 which compresses refrigerant | coolant gas.
≪第1実施形態≫
まず、図1~図6を参照しながら本発明の第1実施形態について説明する。
図1は、本発明の第1実施形態に係るスクロール圧縮機100を示す縦断面図である。すなわち、この第1実施形態では、本発明の回転機械について、冷媒ガスの圧縮を行うスクロール圧縮機100の例を用いて説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
<< First Embodiment >>
First, a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a longitudinal sectional view showing a
図1に示すように、スクロール圧縮機100は、エアコンなどの空調装置や冷凍装置などの冷凍空調用に使用される密閉形の圧縮機である。スクロール圧縮機100は、筐体を成す密閉容器102を有しており、密閉容器102内の上部には、固定スクロール103と、この固定スクロール103と噛み合って旋回運動する旋回スクロール104とが設けられている。固定スクロール103および旋回スクロール104は、それぞれ渦巻き状の歯型形状部を有している。
As shown in FIG. 1, the scroll compressor 100 is a hermetic compressor used for refrigerating and air conditioning such as an air conditioner such as an air conditioner or a refrigerating apparatus. The scroll compressor 100 includes a sealed container 102 that forms a casing, and a fixed scroll 103 and a turning scroll 104 that orbits and engages with the fixed scroll 103 are provided in an upper portion of the sealed container 102. ing. The fixed scroll 103 and the orbiting scroll 104 each have a spiral tooth shape portion.
また、密閉容器102内には、回転動力源としての電動機105が設けられており、この電動機105のロータにはクランク軸(軸)106が接続されている。電動機105に接続されて回転運動するクランク軸106は、密閉容器102内に固設されたフレーム107に設けられた主軸受(すべり軸受)108、及び下フレーム109に設けられた副軸受110により、回転自在に支持されている。
Also, an electric motor 105 as a rotational power source is provided in the sealed container 102, and a crankshaft (shaft) 106 is connected to the rotor of the electric motor 105. A crankshaft 106 that is connected to the electric motor 105 and rotates is provided by a main bearing (slide bearing) 108 provided on a frame 107 fixed in the sealed container 102 and a sub-bearing 110 provided on a lower frame 109. It is supported rotatably.
クランク軸106の上部には、クランク軸106の主軸受108および副軸受110により支持される部分の軸心に対して偏心した軸心を有する偏心部106aが設けられている。この偏心部106aは、旋回スクロール104の端板104aの下面(背面)側に設けられた旋回軸受112と係合して摺動し、偏心部106aの振れ回り回転運動(偏心運動)が旋回スクロール104に伝達される。
An eccentric portion 106 a having an eccentricity with respect to the axial center of the portion supported by the main bearing 108 and the auxiliary bearing 110 of the crankshaft 106 is provided on the upper portion of the crankshaft 106. The eccentric portion 106a slides by engaging with the orbiting bearing 112 provided on the lower surface (rear surface) side of the end plate 104a of the orbiting scroll 104, so that the swinging rotational motion (eccentric motion) of the eccentric portion 106a is the orbiting scroll. 104.
旋回スクロール104は、オルダムリング113により自転が規制されており、固定スクロール103に対して旋回運動をする。オルダムリング113は、旋回スクロール104の端板104aの下面(背面)側に形成された溝とフレーム107に形成された溝とに装着されている。電動機105により回転駆動されるクランク軸106を介して旋回スクロール104が旋回運動すると、吸入口114から低圧の冷媒ガスが吸い込まれて、旋回スクロール104および固定スクロール103により形成される圧縮室に導かれる。ここで冷媒ガスは、スクロール103,104の中心方向に移動するに従い容積を縮小し圧縮された後、吐出口115を介して外部へ吐出される。
The rotation of the orbiting scroll 104 is restricted by the Oldham ring 113, and the orbiting scroll 104 orbits with respect to the fixed scroll 103. The Oldham ring 113 is attached to a groove formed on the lower surface (back surface) side of the end plate 104 a of the orbiting scroll 104 and a groove formed on the frame 107. When the orbiting scroll 104 orbits through the crankshaft 106 driven to rotate by the electric motor 105, a low-pressure refrigerant gas is sucked from the suction port 114 and led to a compression chamber formed by the orbiting scroll 104 and the fixed scroll 103. . Here, the refrigerant gas is reduced in volume and compressed as it moves in the center direction of the scrolls 103 and 104, and then discharged to the outside through the discharge port 115.
クランク軸106の内部には、その軸方向に沿って下端から偏心部106aの端面(上端面)側まで貫通する給油孔116が設けられている。密閉容器102の下部に溜められた潤滑油117が、冷媒ガスの吐出圧力を利用した後記する圧力差により、或いはクランク軸106の下端部に別途取り付けられたポンプ(図示せず)により、給油孔116を通じて押し上げられ、各軸受(主軸受108、副軸受110、旋回軸受112)の内周面とクランク軸106外周面との間の隙間に供給されるように構成されている。
In the crankshaft 106, an oil supply hole 116 penetrating from the lower end to the end face (upper end face) side of the eccentric portion 106a is provided along the axial direction. Lubricating oil 117 stored in the lower part of the sealed container 102 is supplied to the oil supply hole by a pressure difference described later using the discharge pressure of the refrigerant gas or by a pump (not shown) separately attached to the lower end of the crankshaft 106. It is configured to be pushed up through 116 and supplied to a gap between the inner peripheral surface of each bearing (main bearing 108, sub-bearing 110, slewing bearing 112) and the outer peripheral surface of the crankshaft 106.
ここでは、密閉容器102内は吐出圧力となっており、また、旋回スクロール104の端板104aの下面側に形成される中間室(背圧室)118は吐出圧力と吸込圧力との中間の圧力となっている。このため、密閉容器102下部に溜められている潤滑油117は、吐出圧力と前記中間圧力との圧力差により、給油孔116を介して各軸受108,110,112などに供給される。
Here, the inside of the sealed container 102 is at a discharge pressure, and an intermediate chamber (back pressure chamber) 118 formed on the lower surface side of the end plate 104a of the orbiting scroll 104 is an intermediate pressure between the discharge pressure and the suction pressure. It has become. For this reason, the lubricating oil 117 stored in the lower portion of the sealed container 102 is supplied to the bearings 108, 110, 112, and the like through the oil supply holes 116 due to a pressure difference between the discharge pressure and the intermediate pressure.
図2は、比較例としてのスクロール圧縮機における主軸受208付近の拡大断面図である。なお、図2では、クランク軸106の軸心と偏心部106aの軸心とに直交する直線の延長方向から見た断面図であるため、両者の軸心が重なって見えている(他の拡大断面図も同様)。図2に示すように、比較例に係る主軸受208は、フレーム107の一部に設けられた軸受ハウジング107aの内側に形成された貫通孔107bの内部に、2個の円筒状のすべり軸受ブッシュである上側ブッシュ120および下側ブッシュ122が軸方向に並んで配置された構造となっている。
FIG. 2 is an enlarged cross-sectional view of the vicinity of the main bearing 208 in a scroll compressor as a comparative example. In addition, in FIG. 2, since it is sectional drawing seen from the extension direction of the straight line orthogonal to the axial center of the crankshaft 106 and the axial center of the eccentric part 106a, both axial centers are seen overlapping (other expansion) The same applies to the sectional view). As shown in FIG. 2, the main bearing 208 according to the comparative example includes two cylindrical sliding bearing bushes in a through hole 107 b formed inside a bearing housing 107 a provided in a part of the frame 107. The upper bush 120 and the lower bush 122 are arranged side by side in the axial direction.
具体的には、偏心部106aに近い側に上側ブッシュ120、偏心部106aから遠い側に下側ブッシュ122が配置されている。クランク軸106の外周面と主軸受208(上側ブッシュ120および下側ブッシュ122)の内周面との間の隙間には、給油孔116と給油口119とを通じて潤滑油が供給され、クランク軸106の外周面と主軸受208の内周面とは油膜を介して摺動する。油膜を形成した潤滑油はその後、軸受ハウジング107aの端部を通じて軸受ハウジング107aの外部へと流出する。
Specifically, the upper bush 120 is disposed on the side closer to the eccentric part 106a, and the lower bush 122 is disposed on the side far from the eccentric part 106a. Lubricating oil is supplied to the gap between the outer peripheral surface of the crankshaft 106 and the inner peripheral surface of the main bearing 208 (the upper bush 120 and the lower bush 122) through the oil supply hole 116 and the oil supply port 119. And the inner peripheral surface of the main bearing 208 slide through an oil film. The lubricating oil that has formed the oil film then flows out of the bearing housing 107a through the end of the bearing housing 107a.
図3は、本発明の第1実施形態に係るスクロール圧縮機100における主軸受108付近の拡大断面図である。図3に示すように、第1実施形態に係る主軸受108は、例えば鋳鉄製のフレーム107の一部に設けられた軸受ハウジング(ハウジング部)107aの内側に形成された貫通孔(穴)107bの内部に、3個の円筒状のすべり軸受ブッシュである上側ブッシュ(第1軸受部)120、中間ブッシュ(中間軸受部)121、および下側ブッシュ(第2軸受部)122が上方から順に軸方向に並んで配置された構造となっている。
FIG. 3 is an enlarged cross-sectional view of the vicinity of the main bearing 108 in the scroll compressor 100 according to the first embodiment of the present invention. As shown in FIG. 3, the main bearing 108 according to the first embodiment includes a through hole (hole) 107b formed inside a bearing housing (housing portion) 107a provided in a part of a frame 107 made of cast iron, for example. The upper bush (first bearing portion) 120, the intermediate bush (intermediate bearing portion) 121, and the lower bush (second bearing portion) 122, which are three cylindrical plain bearing bushes, are arranged in the order from above. It has a structure arranged side by side.
具体的には、上側ブッシュ120は、貫通孔107b内の軸方向における一方(偏心部106a側)の端に最も近く、つまり偏心部106aに最も近い側に、配置されている。また、下側ブッシュ122は、貫通孔107b内の軸方向における他方(偏心部106aと反対側)の端に最も近く、つまり偏心部106aから最も遠い側に配置されている。また、中間ブッシュ121は、上側ブッシュ120と下側ブッシュ122との間に配置されている。
Specifically, the upper bush 120 is disposed closest to one end (on the eccentric portion 106a side) in the axial direction in the through hole 107b, that is, on the side closest to the eccentric portion 106a. Further, the lower bush 122 is disposed closest to the other end (on the opposite side to the eccentric portion 106a) in the axial direction in the through hole 107b, that is, on the side farthest from the eccentric portion 106a. The intermediate bush 121 is disposed between the upper bush 120 and the lower bush 122.
上側ブッシュ120と下側ブッシュ122とは、例えば黒鉛を含む炭素質基材に金属を含浸したカーボン軸受材料で構成されている。一方、中間ブッシュ121は、上側ブッシュ120と下側ブッシュ122とを構成するカーボン軸受材料、および軸受ハウジング107aを構成する鋳鉄材料と比較して、より大きい線膨脹係数を示す材料、例えば樹脂を含む材料で構成されている。
The upper bush 120 and the lower bush 122 are made of, for example, a carbon bearing material in which a carbonaceous substrate containing graphite is impregnated with a metal. On the other hand, the intermediate bush 121 includes a carbon bearing material that forms the upper bush 120 and the lower bush 122 and a material that exhibits a higher linear expansion coefficient than the cast iron material that forms the bearing housing 107a, such as a resin. Consists of materials.
また、少なくともクランク軸106の回転起動前において、中間ブッシュ121とクランク軸106の外周面との間の隙間は、上側ブッシュ120とクランク軸106の外周面との間の隙間、および下側ブッシュ122とクランク軸106の外周面との間の隙間よりも大きい。すなわち、中間ブッシュ121の内径とクランク軸106の外径との差は、上側ブッシュ120の内径とクランク軸106の外径との差よりも大きく、かつ、下側ブッシュ122の内径とクランク軸106の外径との差よりも大きい。
Further, at least before the rotation of the crankshaft 106 is started, the gap between the intermediate bush 121 and the outer peripheral surface of the crankshaft 106 is the gap between the upper bush 120 and the outer peripheral surface of the crankshaft 106, and the lower bush 122. And the clearance between the outer peripheral surface of the crankshaft 106 is larger. That is, the difference between the inner diameter of the intermediate bush 121 and the outer diameter of the crankshaft 106 is larger than the difference between the inner diameter of the upper bush 120 and the outer diameter of the crankshaft 106, and the inner diameter of the lower bush 122 and the crankshaft 106. It is larger than the difference with the outer diameter.
クランク軸106の外周面と主軸受108(上側ブッシュ120、中間ブッシュ121、および下側ブッシュ122)の内周面との間の隙間(以下、「軸受隙間」ともいう)には、給油孔116と給油口119とを通じて潤滑油が供給され、クランク軸106の外周面と主軸受108の内周面とは油膜を介して摺動する。油膜を形成した潤滑油はその後、軸受ハウジング107aの端部を通じて軸受ハウジング107aの外部へと流出する。
An oil supply hole 116 is formed in a gap (hereinafter also referred to as “bearing gap”) between the outer peripheral surface of the crankshaft 106 and the inner peripheral surface of the main bearing 108 (the upper bush 120, the intermediate bush 121, and the lower bush 122). The lubricating oil is supplied through the oil supply port 119, and the outer peripheral surface of the crankshaft 106 and the inner peripheral surface of the main bearing 108 slide through an oil film. The lubricating oil that has formed the oil film then flows out of the bearing housing 107a through the end of the bearing housing 107a.
次に、前記のように構成された第1実施形態の作用について説明する。
油膜を介して摺動する回転軸(例えばクランク軸106)と円筒状の軸受(例えば主軸受108)との界面で生じる油膜せん断力は、一般にペトロフの式と呼称される式(1)の関係を有することが知られている。
F=τA=η(V/h)A ・・・(1)
ここで、Fは油膜せん断力、τは油膜せん断応力、ηは絶対粘度、Vは回転軸の周速、hは半径隙間(油膜厚さ)、Aは油膜せん断に関わる軸受内周の面積である。 Next, the operation of the first embodiment configured as described above will be described.
The oil film shear force generated at the interface between the rotating shaft (for example, the crankshaft 106) that slides through the oil film and the cylindrical bearing (for example, the main bearing 108) is a relation of the equation (1) generally called Petrov's equation. It is known to have
F = τA = η (V / h) A (1)
Here, F is the oil film shear force, τ is the oil film shear stress, η is the absolute viscosity, V is the peripheral speed of the rotating shaft, h is the radial gap (oil film thickness), and A is the area of the inner circumference of the bearing related to the oil film shear. is there.
油膜を介して摺動する回転軸(例えばクランク軸106)と円筒状の軸受(例えば主軸受108)との界面で生じる油膜せん断力は、一般にペトロフの式と呼称される式(1)の関係を有することが知られている。
F=τA=η(V/h)A ・・・(1)
ここで、Fは油膜せん断力、τは油膜せん断応力、ηは絶対粘度、Vは回転軸の周速、hは半径隙間(油膜厚さ)、Aは油膜せん断に関わる軸受内周の面積である。 Next, the operation of the first embodiment configured as described above will be described.
The oil film shear force generated at the interface between the rotating shaft (for example, the crankshaft 106) that slides through the oil film and the cylindrical bearing (for example, the main bearing 108) is a relation of the equation (1) generally called Petrov's equation. It is known to have
F = τA = η (V / h) A (1)
Here, F is the oil film shear force, τ is the oil film shear stress, η is the absolute viscosity, V is the peripheral speed of the rotating shaft, h is the radial gap (oil film thickness), and A is the area of the inner circumference of the bearing related to the oil film shear. is there.
図3に示した本発明の第1実施形態と図2に示した比較例とにおいて、全すべり軸受ブッシュの内周面の面積の合計が等しく、かつ、上側ブッシュ120および下側ブッシュ122の内径が等しい場合、本発明の第1実施形態は、中間ブッシュ121の部分において半径隙間hが比較例よりも大きく設定されているため、比較例よりも油膜せん断力、ひいては軸受損失が減少する。
In the first embodiment of the present invention shown in FIG. 3 and the comparative example shown in FIG. 2, the total area of the inner peripheral surfaces of all the sliding bearing bushes is equal, and the inner diameters of the upper bush 120 and the lower bush 122 are the same. In the first embodiment of the present invention, since the radial gap h is set to be larger than that of the comparative example in the intermediate bush 121 portion, the oil film shear force and consequently the bearing loss is reduced as compared with the comparative example.
仮に図2に示した比較例の構造において油膜せん断力を小さくするためにクランク軸106と主軸受208との間の隙間を拡大しようとすると、当該隙間を通じた潤滑油の流量が増加し、それに起因したスクロール圧縮機の損失増加が懸念される。しかし、図3に示した本発明の第1実施形態の構造においては、潤滑油の流出経路である上側ブッシュ120および下側ブッシュ122の部分における隙間が、中間ブッシュ121の部分における隙間よりも小さいため、中間ブッシュ121の部分の隙間を拡大しても、クランク軸106と主軸受108との間の隙間を通じた潤滑油流量の増加は殆ど生じず、それによる損失増加も防止される。
If an attempt is made to enlarge the gap between the crankshaft 106 and the main bearing 208 in order to reduce the oil film shear force in the structure of the comparative example shown in FIG. 2, the flow rate of the lubricating oil through the gap increases, There is concern about the increase in the loss of the scroll compressor. However, in the structure of the first embodiment of the present invention shown in FIG. 3, the gap in the upper bush 120 and the lower bush 122 that are the outflow path of the lubricating oil is smaller than the gap in the intermediate bush 121 part. Therefore, even if the gap at the intermediate bush 121 is enlarged, the flow rate of the lubricating oil through the gap between the crankshaft 106 and the main bearing 108 hardly increases, and an increase in loss due to this is prevented.
また、スクロール圧縮機100の運転条件および運転温度に応じて、すべり軸受ブッシュである上側ブッシュ120、中間ブッシュ121、および下側ブッシュ122と、軸受ハウジング107aとの材料、厚さ、並びに内径を決定することにより、高負荷運転時に主軸受108が支持可能な荷重(負荷容量)を従来と同等に確保し、軸受としての信頼性を維持することが可能である。
Further, the material, thickness, and inner diameter of the upper bush 120, the intermediate bush 121, and the lower bush 122, which are sliding bearing bushes, and the bearing housing 107a are determined according to the operating conditions and operating temperature of the scroll compressor 100. By doing so, it is possible to secure a load (load capacity) that can be supported by the main bearing 108 at the time of high-load operation equivalent to the conventional one, and to maintain the reliability as the bearing.
図4は、図1に示すスクロール圧縮機100が高負荷運転している際の主軸受108付近の拡大断面図である。なお、図4は、高負荷運転時にクランク軸106が主軸受108に対して少し傾斜した状態を示している(図9、図10も同様)。なお、クランク軸106が傾斜する理由については後記する。
FIG. 4 is an enlarged cross-sectional view of the vicinity of the main bearing 108 when the scroll compressor 100 shown in FIG. 1 is operating at a high load. FIG. 4 shows a state where the crankshaft 106 is slightly inclined with respect to the main bearing 108 during high load operation (the same applies to FIGS. 9 and 10). The reason why the crankshaft 106 is inclined will be described later.
図4に示すように、クランク軸106の回転速度およびクランク軸106に対して冷媒ガスにより作用するガス荷重123が大きい高負荷運転中には、クランク軸106の周速Vの増加および偏心による部分的な半径隙間hの減少により、油膜せん断力Fが増加する(式(1)参照)。これに伴う油膜せん断発熱の増加、およびスクロール圧縮機100内のガス温度の増加により、主軸受108の温度(以下、「軸受温度」ともいう)が上昇する。この温度上昇に応じてクランク軸106、軸受ハウジング107a、並びにすべり軸受ブッシュである上側ブッシュ120、中間ブッシュ121、および下側ブッシュ122は、それぞれ熱膨張を生じる。
As shown in FIG. 4, during high load operation in which the rotational speed of the crankshaft 106 and the gas load 123 acting on the crankshaft 106 by the refrigerant gas are large, the portion due to the increase in the peripheral speed V and eccentricity of the crankshaft 106 The oil film shear force F increases due to a decrease in the radial gap h (see formula (1)). The temperature of the main bearing 108 (hereinafter also referred to as “bearing temperature”) rises due to the increase in oil film shear heat generation and the increase in gas temperature in the scroll compressor 100 accompanying this. In response to this temperature rise, the crankshaft 106, the bearing housing 107a, and the upper bush 120, the intermediate bush 121, and the lower bush 122, which are sliding bearing bushes, each cause thermal expansion.
本発明の第1実施形態では、中間ブッシュ121の線膨脹係数が特に大きいことにより、中間ブッシュ121とクランク軸106との間の隙間は、高負荷運転時(図4参照)の方が低負荷運転時(図3参照)よりも小さくなる。よって、高負荷運転時の状態においては、低負荷運転時の状態よりも、動圧によって高い油膜圧力を保持できる領域が拡大し、これにより、軸受の負荷容量が増加する。
In the first embodiment of the present invention, since the linear expansion coefficient of the intermediate bush 121 is particularly large, the clearance between the intermediate bush 121 and the crankshaft 106 is lower during high load operation (see FIG. 4). It becomes smaller than during operation (see FIG. 3). Therefore, in the state at the time of high load operation, the region in which a high oil film pressure can be maintained by the dynamic pressure is expanded compared to the state at the time of low load operation.
図4に示したように、ガス荷重123は、クランク軸106に対して、主軸受108よりも上方の部位にオーバーハング荷重として作用するため、クランク軸106の主軸受108に対する傾斜は、運転負荷の増大に伴って拡大しやすい。このため、図4にAおよびBで示す軸受端部において、片当り状態でのクランク軸106と主軸受108との直接接触が生じやすい。図3に示した例においては、上側ブッシュ120と下側ブッシュ122とが硬質で潤滑性を有するカーボン軸受材料で構成されているため、油膜形成が困難でクランク軸106と主軸受108とが直接接触を伴う摺動をする状態となった場合であっても、良好な耐摩耗性を得ることができる。
As shown in FIG. 4, the gas load 123 acts on the crankshaft 106 as an overhanging load at a position above the main bearing 108, so that the inclination of the crankshaft 106 with respect to the main bearing 108 is an operating load. It is easy to expand with the increase. For this reason, direct contact between the crankshaft 106 and the main bearing 108 tends to occur at the bearing end portions indicated by A and B in FIG. In the example shown in FIG. 3, since the upper bush 120 and the lower bush 122 are made of a hard and lubricating carbon bearing material, it is difficult to form an oil film, and the crankshaft 106 and the main bearing 108 are directly connected to each other. Even when it is in a state of sliding with contact, good wear resistance can be obtained.
次に、油膜せん断による軸受損失に関する評価について説明する。
図3に示したような3個のすべり軸受ブッシュである上側ブッシュ120、中間ブッシュ121、および下側ブッシュ122を有する主軸受108を軸受ハウジング107aの貫通孔107b内に配置し、この主軸受108に対してクランク軸106が潤滑油を介して摺動した場合の油膜せん断による軸受損失の評価を行った。そして、本発明の第1実施形態に係る軸受構造における中間ブッシュ121とクランク軸106との間の隙間が軸受損失および最小油膜厚さに及ぼす影響を検証した。その検証結果を、図5および図6に示す。 Next, evaluation regarding bearing loss due to oil film shear will be described.
Amain bearing 108 having an upper bush 120, an intermediate bush 121, and a lower bush 122, which are three plain bearing bushes as shown in FIG. 3, is disposed in the through hole 107b of the bearing housing 107a. In contrast, the bearing loss due to oil film shearing when the crankshaft 106 was slid through the lubricating oil was evaluated. Then, the influence of the gap between the intermediate bush 121 and the crankshaft 106 on the bearing loss and the minimum oil film thickness in the bearing structure according to the first embodiment of the present invention was verified. The verification results are shown in FIGS.
図3に示したような3個のすべり軸受ブッシュである上側ブッシュ120、中間ブッシュ121、および下側ブッシュ122を有する主軸受108を軸受ハウジング107aの貫通孔107b内に配置し、この主軸受108に対してクランク軸106が潤滑油を介して摺動した場合の油膜せん断による軸受損失の評価を行った。そして、本発明の第1実施形態に係る軸受構造における中間ブッシュ121とクランク軸106との間の隙間が軸受損失および最小油膜厚さに及ぼす影響を検証した。その検証結果を、図5および図6に示す。 Next, evaluation regarding bearing loss due to oil film shear will be described.
A
なお、この検証にあたっては、エアコン用のスクロール圧縮機100において、クランク軸106の直径が14~18mmのものを想定した。また、上側ブッシュ120、中間ブッシュ121、下側ブッシュ122とも軸方向長さは同一でクランク軸106の直径と等しくした。上側ブッシュ120および下側ブッシュ122とクランク軸106との間の隙間は、等しくクランク軸106の直径の0.15%とした。また、主軸受108に対するクランク軸106の傾斜角度は、作用する荷重方向に0.01゜とした。
In this verification, it was assumed that the crankshaft 106 had a diameter of 14 to 18 mm in the scroll compressor 100 for an air conditioner. Further, the upper bush 120, the intermediate bush 121, and the lower bush 122 have the same axial length and the same diameter as the crankshaft 106. The clearances between the upper bush 120 and the lower bush 122 and the crankshaft 106 were equally 0.15% of the diameter of the crankshaft 106. The inclination angle of the crankshaft 106 with respect to the main bearing 108 was set to 0.01 ° in the acting load direction.
図5は、中間ブッシュ121とクランク軸106との間の隙間の拡大率を種々に変えて軸受損失の評価を行った結果を示すグラフである。すなわち、図5は、中間ブッシュとクランク軸との間の隙間の拡大率と、相対軸受損失との関係を示している。図5において、横軸は、上側ブッシュ120および下側ブッシュ122とクランク軸106との間の隙間を基準(0%)とした場合の、中間ブッシュ121とクランク軸106との間の隙間の拡大率を示す。縦軸は、上側ブッシュ120、中間ブッシュ121、および下側ブッシュ122の各々とクランク軸106との間の隙間が全て等しい場合の軸受損失を100%とした場合の、これに対する相対値を示している。図5の検証結果に示すように、軸受損失は、中間ブッシュ121とクランク軸106との間の隙間を拡大することにより、減少する傾向を示した。
FIG. 5 is a graph showing the result of evaluating the bearing loss by changing the enlargement ratio of the gap between the intermediate bush 121 and the crankshaft 106 in various ways. That is, FIG. 5 shows the relationship between the expansion ratio of the gap between the intermediate bush and the crankshaft and the relative bearing loss. In FIG. 5, the horizontal axis indicates an increase in the gap between the intermediate bush 121 and the crankshaft 106 when the gap between the upper bush 120 and the lower bush 122 and the crankshaft 106 is set as a reference (0%). Indicates the rate. The vertical axis shows the relative value when the bearing loss is 100% when the gaps between the upper bush 120, the intermediate bush 121, and the lower bush 122 and the crankshaft 106 are all equal. Yes. As shown in the verification results of FIG. 5, the bearing loss tended to decrease by increasing the gap between the intermediate bush 121 and the crankshaft 106.
図6は、中間ブッシュ121とクランク軸106との間の隙間の拡大率を種々に変えて最小油膜厚さの評価を行った結果を示すグラフである。すなわち、図6は、中間ブッシュとクランク軸との間の隙間の拡大率と、相対最小油膜厚さとの関係を示している。図6において、横軸は、上側ブッシュ120および下側ブッシュ122とクランク軸106との間の隙間を基準(0%)とした場合の、中間ブッシュ121とクランク軸106との間の隙間の拡大率を示す。縦軸は、上側ブッシュ120、中間ブッシュ121、および下側ブッシュ122の各々とクランク軸106との間の隙間が全て等しい場合の最小油膜厚さを100%とした場合の、これに対する相対値を示している。なお、ここでの最小油膜厚さは、同じ荷重を支持する場合における最小油膜厚さである。図6の検証結果に示すように、最小油膜厚さは、中間ブッシュ121とクランク軸106との間の隙間を縮小することにより、増加する傾向を示した。
FIG. 6 is a graph showing the result of evaluating the minimum oil film thickness by variously changing the enlargement ratio of the gap between the intermediate bush 121 and the crankshaft 106. That is, FIG. 6 shows the relationship between the expansion ratio of the gap between the intermediate bush and the crankshaft and the relative minimum oil film thickness. In FIG. 6, the horizontal axis indicates an increase in the gap between the intermediate bush 121 and the crankshaft 106 when the gap between the upper bush 120 and the lower bush 122 and the crankshaft 106 is set as a reference (0%). Indicates the rate. The vertical axis represents the relative value when the minimum oil film thickness is 100% when the gaps between the upper bush 120, the intermediate bush 121, and the lower bush 122 are all equal to the crankshaft 106. Show. Here, the minimum oil film thickness is the minimum oil film thickness when the same load is supported. As shown in the verification result of FIG. 6, the minimum oil film thickness tended to increase by reducing the gap between the intermediate bush 121 and the crankshaft 106.
前記したように、本発明の第1実施形態に係るスクロール圧縮機100は、回転運動するクランク軸106と、クランク軸106が挿入される貫通孔107bを有する軸受ハウジング107aと、軸受ハウジング107aの貫通孔107b内に配置され、クランク軸106の外周面に対して潤滑油を介して摺動する主軸受108と、を備えている。また、主軸受108は、軸受ハウジング107aの貫通孔107b内の軸方向における一方の端に最も近く配置される上側ブッシュ120、他方の端に最も近く配置される下側ブッシュ122、および上側ブッシュ120と下側ブッシュ122との間に配置される中間ブッシュ121を有している。そして、中間ブッシュ121は、線膨脹係数が軸受ハウジング107a、上側ブッシュ120、および下側ブッシュ122よりも大きく、かつ、少なくともクランク軸106の回転起動前においてクランク軸106の外周面との間の隙間が上側ブッシュ120および下側ブッシュ122よりも大きくなっている。
As described above, the scroll compressor 100 according to the first embodiment of the present invention includes the crankshaft 106 that rotates and the bearing housing 107a having the through-hole 107b into which the crankshaft 106 is inserted, and the through-hole of the bearing housing 107a. And a main bearing 108 that is disposed in the hole 107b and slides on the outer peripheral surface of the crankshaft 106 via lubricating oil. The main bearing 108 has an upper bush 120 disposed closest to one end in the axial direction in the through hole 107b of the bearing housing 107a, a lower bush 122 disposed closest to the other end, and the upper bush 120. And an intermediate bush 121 disposed between the lower bush 122 and the lower bush 122. The intermediate bush 121 has a linear expansion coefficient larger than that of the bearing housing 107a, the upper bush 120, and the lower bush 122, and at least a gap between the outer periphery of the crankshaft 106 before the crankshaft 106 starts rotating. Is larger than the upper bush 120 and the lower bush 122.
すなわち、本発明の第1実施形態では、潤滑油の油膜せん断を生じながらクランク軸106の回転を支持する主軸受108の構成要素のうち、中央部に配置される中間ブッシュ121は、両端部に配置される上側ブッシュ120および下側ブッシュ122よりも線膨脹係数の大きい材料で構成され、かつ、少なくともクランク軸106の回転起動前において上側ブッシュ120および下側ブッシュ122よりもクランク軸106との間の隙間が大きくなっている。この隙間の大小関係は、高負荷運転時(軸受温度が高い)を除き、常温停止中およびクランク軸106の回転速度および作用荷重の小さい低負荷運転時(軸受温度が低い)においても同様に保たれる。そして、温度変化による中間ブッシュ121の内径寸法変化率(縮小率)は、上側ブッシュ120および下側ブッシュ122の内径寸法変化率(縮小率)よりも大きくなる。
That is, in the first embodiment of the present invention, among the components of the main bearing 108 that supports the rotation of the crankshaft 106 while causing oil film shearing of the lubricating oil, the intermediate bush 121 arranged at the center is provided at both ends. It is made of a material having a linear expansion coefficient larger than that of the upper bush 120 and the lower bush 122, and at least between the crankshaft 106 and the upper bush 120 and the lower bush 122 before the crankshaft 106 starts rotating. The gap between is large. This gap relationship is maintained in the same way even during high-temperature operation (where the bearing temperature is high) and during low-temperature operation where the rotational speed and working load of the crankshaft 106 are small (the bearing temperature is low). Be drunk. Then, the inner diameter dimensional change rate (reduction rate) of the intermediate bush 121 due to the temperature change becomes larger than the inner diameter dimensional change rate (reduction rate) of the upper bush 120 and the lower bush 122.
したがって、クランク軸106の回転速度およびクランク軸106に作用する荷重が小さい低負荷運転時には、中間ブッシュ121の部分においてクランク軸106との隙間が大きいため、摩擦損失が低減されて、軸受損失が減少する。また、潤滑油の流出経路である上側ブッシュ120および下側ブッシュ122の部分における隙間が小さいため、潤滑油流量の増加は殆ど生じず、それによる損失増加も防止される。一方、クランク軸106の回転速度およびクランク軸106に作用する荷重が大きい高負荷運転時には、中間ブッシュ121の部分においてクランク軸106との隙間が温度変化によって縮小し、動圧によるこの部位の油膜圧力が増加するため、最小油膜厚さ、および軸受の負荷容量(荷重支持能力)が増加する。
Accordingly, during low load operation where the rotational speed of the crankshaft 106 and the load acting on the crankshaft 106 are small, the gap between the intermediate bush 121 and the crankshaft 106 is large, so that friction loss is reduced and bearing loss is reduced. To do. Further, since the gaps at the upper bush 120 and the lower bush 122, which are the outflow paths of the lubricating oil, are small, the increase in the flow rate of the lubricating oil hardly occurs, and an increase in loss due to this is prevented. On the other hand, at the time of high load operation in which the rotational speed of the crankshaft 106 and the load acting on the crankshaft 106 are large, the gap between the intermediate bush 121 and the crankshaft 106 is reduced due to temperature change, and the oil film pressure at this portion due to dynamic pressure is reduced. Therefore, the minimum oil film thickness and the load capacity (load support capacity) of the bearing increase.
すなわち、本発明の第1実施形態によれば、回転運動するクランク軸106の外周面と主軸受108との間に存在する潤滑油による油膜のせん断抵抗を低減することにより、流体潤滑時の軸受損失を低減することができると共に、高負荷運転時においても軸受としての信頼性を維持することができる。
That is, according to the first embodiment of the present invention, by reducing the shear resistance of the oil film caused by the lubricating oil existing between the outer peripheral surface of the rotating crankshaft 106 and the main bearing 108, the bearing at the time of fluid lubrication. Loss can be reduced, and reliability as a bearing can be maintained even during high load operation.
(上側ブッシュおよび下側ブッシュの材質)
上側ブッシュ120および下側ブッシュ122の材質として、中間ブッシュ121の材質よりも線膨脹率が小さいカーボン系、金属系、セラミクス系の材料が使用され得る。図3に示した例では、片当り時および油膜破断による直接接触摩擦時の耐摩耗性確保を重視し、黒鉛を含む炭素質基材に金属を含浸したカーボン軸受材料が使用されている。但し、上側ブッシュ120および下側ブッシュ122の材質として、適用する回転機械に要求される耐摩耗性や耐環境性等に合わせ、例えば、鋳鉄、炭素鋼、銅合金、黄銅、すず合金、アルミニウム合金、ジルコニア、アルミナ、炭化珪素、窒化珪素等が使用されてもよい。 (Material of upper bush and lower bush)
As the material of theupper bush 120 and the lower bush 122, a carbon-based, metal-based, or ceramic-based material having a linear expansion coefficient smaller than that of the intermediate bush 121 can be used. In the example shown in FIG. 3, a carbon bearing material in which a metal is impregnated with a carbonaceous base material containing graphite is used with emphasis on ensuring wear resistance at the time of one-piece contact and direct contact friction due to oil film breakage. However, as materials of the upper bush 120 and the lower bush 122, for example, cast iron, carbon steel, copper alloy, brass, tin alloy, aluminum alloy according to the wear resistance and environment resistance required for the rotating machine to be applied. Zirconia, alumina, silicon carbide, silicon nitride, etc. may be used.
上側ブッシュ120および下側ブッシュ122の材質として、中間ブッシュ121の材質よりも線膨脹率が小さいカーボン系、金属系、セラミクス系の材料が使用され得る。図3に示した例では、片当り時および油膜破断による直接接触摩擦時の耐摩耗性確保を重視し、黒鉛を含む炭素質基材に金属を含浸したカーボン軸受材料が使用されている。但し、上側ブッシュ120および下側ブッシュ122の材質として、適用する回転機械に要求される耐摩耗性や耐環境性等に合わせ、例えば、鋳鉄、炭素鋼、銅合金、黄銅、すず合金、アルミニウム合金、ジルコニア、アルミナ、炭化珪素、窒化珪素等が使用されてもよい。 (Material of upper bush and lower bush)
As the material of the
(中間ブッシュの材質)
中間ブッシュ121の材質として、上側ブッシュ120および下側ブッシュ122の材質よりも線膨脹率が大きい樹脂材料が使用され得る。但し、中間ブッシュ121の材質として、適用する回転機械の温度条件や期待する軸受隙間の変化量等に応じて、ポリテトラフルオロエチレン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ナイロン、ポリイミド、ポリアミドイミド、ポリエチレン、超高分子量ポリエチレン等、およびこれらの樹脂と焼結金属、粒子、繊維材料等による複合材が使用されてもよい。 (Material of intermediate bush)
As the material of theintermediate bush 121, a resin material having a larger linear expansion rate than the material of the upper bush 120 and the lower bush 122 can be used. However, as the material of the intermediate bush 121, polytetrafluoroethylene, polyether ether ketone, polyphenylene sulfide, nylon, polyimide, polyamideimide, polyethylene, depending on the temperature conditions of the rotating machine to be applied and the expected change in bearing clearance Ultra high molecular weight polyethylene and the like, and composite materials of these resins and sintered metals, particles, fiber materials, and the like may be used.
中間ブッシュ121の材質として、上側ブッシュ120および下側ブッシュ122の材質よりも線膨脹率が大きい樹脂材料が使用され得る。但し、中間ブッシュ121の材質として、適用する回転機械の温度条件や期待する軸受隙間の変化量等に応じて、ポリテトラフルオロエチレン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ナイロン、ポリイミド、ポリアミドイミド、ポリエチレン、超高分子量ポリエチレン等、およびこれらの樹脂と焼結金属、粒子、繊維材料等による複合材が使用されてもよい。 (Material of intermediate bush)
As the material of the
(第1変形例)
図7は、第1実施形態の第1変形例に係る主軸受108a付近の拡大断面図である。図1~図6に示した第1実施形態と同様の構成及び作用は、この第1変形例に取り込まれるものとして詳細な説明を省略し、相違する点について説明する(以降に説明するさらに別の変形例でも同様)。 (First modification)
FIG. 7 is an enlarged cross-sectional view of the vicinity of themain bearing 108a according to the first modification of the first embodiment. The detailed description of the configuration and operation similar to those of the first embodiment shown in FIGS. 1 to 6 will be omitted as they are incorporated in the first modification, and different points will be described (further described below). The same applies to the modified example).
図7は、第1実施形態の第1変形例に係る主軸受108a付近の拡大断面図である。図1~図6に示した第1実施形態と同様の構成及び作用は、この第1変形例に取り込まれるものとして詳細な説明を省略し、相違する点について説明する(以降に説明するさらに別の変形例でも同様)。 (First modification)
FIG. 7 is an enlarged cross-sectional view of the vicinity of the
図7に示すように、第1実施形態の第1変形例は、主軸受108aの下側ブッシュ122aが軸受ハウジング107aと一体に形成されている点で、第1実施形態と相違している。なお、下側ブッシュ122aではなく上側ブッシュが軸受ハウジング107aと一体に形成されてもよい。すなわち、第1実施形態のように上側ブッシュ120および下側ブッシュ122を別部材として軸受ハウジング107aに設置する代わりに、下側ブッシュ122a(あるいは上側ブッシュ)が軸受ハウジング107aと一体化されている。このような第1実施形態の第1変形例によれば、前記した第1実施形態と同様の作用効果を奏することができることに加えて、部品点数の減少により組立コストを低減することが可能となる。
As shown in FIG. 7, the first modification of the first embodiment is different from the first embodiment in that the lower bush 122a of the main bearing 108a is formed integrally with the bearing housing 107a. Note that the upper bushing may be formed integrally with the bearing housing 107a instead of the lower bushing 122a. That is, instead of installing the upper bush 120 and the lower bush 122 as separate members in the bearing housing 107a as in the first embodiment, the lower bush 122a (or the upper bush) is integrated with the bearing housing 107a. According to such a first modification of the first embodiment, in addition to being able to achieve the same operational effects as those of the first embodiment described above, it is possible to reduce the assembly cost by reducing the number of parts. Become.
(第2変形例)
図8は、第1実施形態の第2変形例に係る主軸受108b付近の拡大断面図である。
図8に示すように、第1実施形態の第2変形例では、クランク軸106の外径は、主軸受108bの中間ブッシュ121aに対向する部分において他の部分よりも小さくなっている。すなわち、主軸受108bの中央部における軸受隙間を拡大する方法は、第1実施形態のように中間ブッシュ121の内径を拡大する代わりに、中間ブッシュ121aに対向する部分のクランク軸106の外径を小さくすることによっても可能である。 (Second modification)
FIG. 8 is an enlarged cross-sectional view of the vicinity of themain bearing 108b according to the second modification of the first embodiment.
As shown in FIG. 8, in the second modification of the first embodiment, the outer diameter of thecrankshaft 106 is smaller than the other portions in the portion of the main bearing 108b that faces the intermediate bush 121a. That is, the method of enlarging the bearing gap at the center of the main bearing 108b is to increase the outer diameter of the crankshaft 106 at the portion facing the intermediate bush 121a instead of increasing the inner diameter of the intermediate bush 121 as in the first embodiment. It is also possible to make it smaller.
図8は、第1実施形態の第2変形例に係る主軸受108b付近の拡大断面図である。
図8に示すように、第1実施形態の第2変形例では、クランク軸106の外径は、主軸受108bの中間ブッシュ121aに対向する部分において他の部分よりも小さくなっている。すなわち、主軸受108bの中央部における軸受隙間を拡大する方法は、第1実施形態のように中間ブッシュ121の内径を拡大する代わりに、中間ブッシュ121aに対向する部分のクランク軸106の外径を小さくすることによっても可能である。 (Second modification)
FIG. 8 is an enlarged cross-sectional view of the vicinity of the
As shown in FIG. 8, in the second modification of the first embodiment, the outer diameter of the
図3に示す第1実施形態に係る構造において、3個のすべり軸受ブッシュである上側ブッシュ120、中間ブッシュ121、および下側ブッシュ122の各内周面の同軸度を高い精度で得ると共に、一回の軸方向送りで効率良く内径加工するためには、軸受ハウジング107aに3個のすべり軸受ブッシュを挿入した状態でスクロール圧縮機100の高負荷運転時における温度に加温し、その状態で3個のすべり軸受ブッシュの内径を同一径に加工する等の加工プロセスの工夫が必要となる。これに対し、図8に示す第1実施形態の第2変形例に係る構造では、室温において、3個のすべり軸受ブッシュである上側ブッシュ120、中間ブッシュ121a、および下側ブッシュ122の内径を一回の軸方向送りで同一径に加工することができる。このような第1実施形態の第2変形例によれば、前記した第1実施形態と同様の作用効果を奏することができることに加えて、製造コストを低減することが可能となる。
In the structure according to the first embodiment shown in FIG. 3, the coaxiality of the inner peripheral surfaces of the upper bush 120, the intermediate bush 121, and the lower bush 122, which are three plain bearing bushes, is obtained with high accuracy. In order to efficiently machine the inner diameter by one axial feed, the three slide bearing bushes are inserted into the bearing housing 107a and heated to the temperature during the high load operation of the scroll compressor 100. It is necessary to devise a processing process such as processing the inner diameter of each plain bearing bush to the same diameter. On the other hand, in the structure according to the second modification example of the first embodiment shown in FIG. 8, the inner diameters of the upper bush 120, the intermediate bush 121a, and the lower bush 122, which are three plain bearing bushes, are set to be equal at room temperature. The same diameter can be processed by one axial feed. According to such a second modification of the first embodiment, it is possible to reduce the manufacturing cost in addition to the same effects as the first embodiment described above.
(第3変形例)
図9は、第1実施形態の第3変形例に係る主軸受108c付近の拡大断面図である。
図9に示すように、第1実施形態の第3変形例では、中間ブッシュ121bの内周面に、当該内周面を周方向に分割する溝124が少なくとも一箇所形成されている。このような第1実施形態の第3変形例によれば、前記した第1実施形態と同様の作用効果を奏することができることに加えて、溝124を設けることにより、熱膨張時に中間ブッシュ121bにおける周方向の内部応力を緩和し、温度上昇に対する内径変化のばらつきを低減できるほか、溝124を設けた分だけ摺動面積が小さくなるので、軸受損失の更なる低減が可能となる。 (Third Modification)
FIG. 9 is an enlarged cross-sectional view of the vicinity of themain bearing 108c according to a third modification of the first embodiment.
As shown in FIG. 9, in the third modification of the first embodiment, at least onegroove 124 that divides the inner peripheral surface in the circumferential direction is formed on the inner peripheral surface of the intermediate bush 121b. According to the third modification of the first embodiment, in addition to being able to achieve the same operational effects as those of the first embodiment described above, by providing the groove 124, the intermediate bush 121b can be In addition to relieving the internal stress in the circumferential direction and reducing variations in the inner diameter change due to temperature rise, the sliding area is reduced by the amount of the groove 124, so that the bearing loss can be further reduced.
図9は、第1実施形態の第3変形例に係る主軸受108c付近の拡大断面図である。
図9に示すように、第1実施形態の第3変形例では、中間ブッシュ121bの内周面に、当該内周面を周方向に分割する溝124が少なくとも一箇所形成されている。このような第1実施形態の第3変形例によれば、前記した第1実施形態と同様の作用効果を奏することができることに加えて、溝124を設けることにより、熱膨張時に中間ブッシュ121bにおける周方向の内部応力を緩和し、温度上昇に対する内径変化のばらつきを低減できるほか、溝124を設けた分だけ摺動面積が小さくなるので、軸受損失の更なる低減が可能となる。 (Third Modification)
FIG. 9 is an enlarged cross-sectional view of the vicinity of the
As shown in FIG. 9, in the third modification of the first embodiment, at least one
(第4変形例)
図10は、第1実施形態の第4変形例に係る主軸受108d付近の拡大断面図である。
図10に示すように、第1実施形態の第4変形例では、中間ブッシュ121cの内周面には、当該内周面を周方向に分割する溝124aが形成されており、溝124aは、中間ブッシュ121cの軸方向における両端部から中央部に向けてクランク軸106の回転方向に傾斜して延びるV字状を呈している。このような第1実施形態の第4変形例によれば、前記した第1実施形態の第3変形例と同様の作用効果を奏することができることに加えて、更に次のような作用効果を奏する。すなわち、潤滑油が溝124aを通って中間ブッシュ121cの軸方向における両端部から中央部に寄せられて中央部付近の圧力が高まる。このため、特に高負荷時において動圧を向上させて、最小油膜厚さを増加させることが可能となる。 (Fourth modification)
FIG. 10 is an enlarged cross-sectional view of the vicinity of themain bearing 108d according to a fourth modification of the first embodiment.
As shown in FIG. 10, in the fourth modification of the first embodiment, agroove 124a that divides the inner peripheral surface in the circumferential direction is formed on the inner peripheral surface of the intermediate bush 121c. The intermediate bush 121c has a V-shape extending from both end portions in the axial direction toward the central portion so as to incline in the rotational direction of the crankshaft 106. According to such a fourth modification of the first embodiment, in addition to the same operational effects as the third modification of the first embodiment described above, the following operational effects are further exhibited. . In other words, the lubricating oil passes through the groove 124a and is drawn from both ends in the axial direction of the intermediate bush 121c to the central portion, and the pressure near the central portion increases. For this reason, it is possible to increase the minimum oil film thickness by improving the dynamic pressure especially at high load.
図10は、第1実施形態の第4変形例に係る主軸受108d付近の拡大断面図である。
図10に示すように、第1実施形態の第4変形例では、中間ブッシュ121cの内周面には、当該内周面を周方向に分割する溝124aが形成されており、溝124aは、中間ブッシュ121cの軸方向における両端部から中央部に向けてクランク軸106の回転方向に傾斜して延びるV字状を呈している。このような第1実施形態の第4変形例によれば、前記した第1実施形態の第3変形例と同様の作用効果を奏することができることに加えて、更に次のような作用効果を奏する。すなわち、潤滑油が溝124aを通って中間ブッシュ121cの軸方向における両端部から中央部に寄せられて中央部付近の圧力が高まる。このため、特に高負荷時において動圧を向上させて、最小油膜厚さを増加させることが可能となる。 (Fourth modification)
FIG. 10 is an enlarged cross-sectional view of the vicinity of the
As shown in FIG. 10, in the fourth modification of the first embodiment, a
≪第2実施形態≫
次に、図11を参照しながら本発明の第2実施形態について説明する。
図11は、本発明の第2実施形態に係るロータリ圧縮機130を示す縦断面図である。すなわち、この第2実施形態では、本発明の回転機械について、冷媒ガスの圧縮を行うロータリ圧縮機130の例を用いて説明する。 << Second Embodiment >>
Next, a second embodiment of the present invention will be described with reference to FIG.
FIG. 11 is a longitudinal sectional view showing arotary compressor 130 according to the second embodiment of the present invention. That is, in this 2nd Embodiment, the rotary machine of this invention is demonstrated using the example of the rotary compressor 130 which compresses refrigerant gas.
次に、図11を参照しながら本発明の第2実施形態について説明する。
図11は、本発明の第2実施形態に係るロータリ圧縮機130を示す縦断面図である。すなわち、この第2実施形態では、本発明の回転機械について、冷媒ガスの圧縮を行うロータリ圧縮機130の例を用いて説明する。 << Second Embodiment >>
Next, a second embodiment of the present invention will be described with reference to FIG.
FIG. 11 is a longitudinal sectional view showing a
図11に示すように、ロータリ圧縮機130は、機能的には、縦型円筒状の密閉容器138と、密閉容器138内で冷媒ガスを圧縮する圧縮機構139と、圧縮機構139を駆動する電動機131と、圧縮機構139を構成する部品や部材の摺動面に供給する潤滑油を蓄える油溜め144とを備えている。密閉容器138内では、上から順に電動機131、圧縮機構139、油溜め144が配置されている。
As shown in FIG. 11, the rotary compressor 130 functionally includes a vertical cylindrical sealed container 138, a compression mechanism 139 that compresses refrigerant gas in the sealed container 138, and an electric motor that drives the compression mechanism 139. 131 and an oil sump 144 for storing lubricating oil to be supplied to the sliding surfaces of the components and members constituting the compression mechanism 139. In the sealed container 138, an electric motor 131, a compression mechanism 139, and an oil sump 144 are arranged in order from the top.
電動機131のロータには、下方に延びる回転シャフト(軸)132が接続されている。圧縮機構139は、回転シャフト132の下方先端部近くに形成された偏心軸部132aと、偏心軸部132aが内側に係合されて偏心軸部132aにより偏心回転が与えられる円筒形状のローラ133と、偏心軸部132a及びローラ133を収納するシリンダ134と、シリンダ134の上蓋となると共に回転シャフト132を支持する上軸受部材135と、シリンダ134の下蓋となると共に回転シャフト132の下端部を支持する下軸受部材136と、ローラ133の外周面と摺動して圧縮室137の低圧側と高圧側とを隔てるベーン(図示せず)と、を有している。
A rotating shaft (shaft) 132 extending downward is connected to the rotor of the electric motor 131. The compression mechanism 139 includes an eccentric shaft portion 132a formed near the lower tip portion of the rotary shaft 132, and a cylindrical roller 133 that is eccentrically rotated by the eccentric shaft portion 132a when the eccentric shaft portion 132a is engaged inside. , A cylinder 134 that houses the eccentric shaft portion 132a and the roller 133, an upper bearing member 135 that serves as an upper lid of the cylinder 134 and supports the rotating shaft 132, and a lower lid of the cylinder 134 and supports the lower end portion of the rotating shaft 132. And a vane (not shown) that slides on the outer peripheral surface of the roller 133 and separates the low pressure side and the high pressure side of the compression chamber 137 from each other.
上軸受部材135は、上軸受部材135の一部に設けられた軸受ハウジング(ハウジング部)135aを有している。軸受ハウジング135aには、回転シャフト132が挿入される貫通孔(穴)135bが形成されており、この貫通孔135b内に上軸受(すべり軸受)143が配置されている。上軸受143は、軸受ハウジング135aの内側に形成された貫通孔135bの内部に、3個の円筒状のすべり軸受ブッシュである上側ブッシュ(第1軸受部)140、中間ブッシュ(中間軸受部)141、および下側ブッシュ(第2軸受部)142が上方から順に軸方向に並んで配置された構造となっている。
The upper bearing member 135 has a bearing housing (housing portion) 135 a provided in a part of the upper bearing member 135. A through hole (hole) 135b into which the rotary shaft 132 is inserted is formed in the bearing housing 135a, and an upper bearing (slide bearing) 143 is disposed in the through hole 135b. The upper bearing 143 includes an upper bush (first bearing portion) 140 and an intermediate bush (intermediate bearing portion) 141 that are three cylindrical slide bearing bushes in a through hole 135b formed inside the bearing housing 135a. The lower bush (second bearing portion) 142 is arranged in the axial direction in order from above.
具体的には、上側ブッシュ140は、貫通孔135b内の軸方向における一方(偏心軸部132aと反対側)の端に最も近く、つまり偏心軸部132aから最も遠い側に、配置されている。また、下側ブッシュ142は、貫通孔135b内の軸方向における他方(偏心軸部132a側)の端に最も近く、つまり偏心軸部132aに最も近い側に配置されている。また、中間ブッシュ141は、上側ブッシュ140と下側ブッシュ142との間に配置されている。
Specifically, the upper bushing 140 is disposed closest to one end (the side opposite to the eccentric shaft portion 132a) in the axial direction in the through hole 135b, that is, on the side farthest from the eccentric shaft portion 132a. The lower bush 142 is disposed closest to the other end (on the eccentric shaft portion 132a side) in the axial direction in the through hole 135b, that is, on the side closest to the eccentric shaft portion 132a. The intermediate bush 141 is disposed between the upper bush 140 and the lower bush 142.
上側ブッシュ140と下側ブッシュ142の材質は、例えば鋳鉄である。下側ブッシュ142(その内周面である摺動面を含む)は、上軸受部材135の軸受ハウジング135aと一体に形成されている。一方、中間ブッシュ141は、その線膨脹係数が、上側ブッシュ140と下側ブッシュ142の線膨脹係数よりも大きく、かつ、軸受ハウジング135aの線膨脹係数よりも大きい材料、例えば樹脂を含む材料で構成されている。
The material of the upper bush 140 and the lower bush 142 is, for example, cast iron. The lower bushing 142 (including the sliding surface that is the inner peripheral surface thereof) is formed integrally with the bearing housing 135a of the upper bearing member 135. On the other hand, the intermediate bush 141 is made of a material whose linear expansion coefficient is larger than the linear expansion coefficients of the upper bush 140 and the lower bush 142 and larger than the linear expansion coefficient of the bearing housing 135a, for example, a material containing resin. Has been.
また、少なくとも回転シャフト132の回転起動前において、中間ブッシュ141と回転シャフト132の外周面との間の隙間は、上側ブッシュ140と回転シャフト132の外周面との間の隙間、および下側ブッシュ142と回転シャフト132の外周面との間の隙間よりも大きい。ここでは、回転シャフト132の外径は、上軸受143の中間ブッシュ141に対向する部分において他の部分よりも小さくなっている。すなわち、中間ブッシュ141の内径と中間ブッシュ141に対向する部分における回転シャフト132の外径との差は、上側ブッシュ140の内径と回転シャフト132の外径との差よりも大きく、かつ、下側ブッシュ142の内径と回転シャフト132の外径との差よりも大きい。
In addition, at least before the rotation of the rotary shaft 132 is started, the gap between the intermediate bush 141 and the outer peripheral surface of the rotary shaft 132 is the gap between the upper bush 140 and the outer peripheral surface of the rotary shaft 132 and the lower bush 142. And the clearance between the outer peripheral surface of the rotary shaft 132 and the outer peripheral surface of the rotary shaft 132 is larger. Here, the outer diameter of the rotating shaft 132 is smaller in the portion facing the intermediate bush 141 of the upper bearing 143 than in the other portions. That is, the difference between the inner diameter of the intermediate bush 141 and the outer diameter of the rotating shaft 132 at the portion facing the intermediate bush 141 is larger than the difference between the inner diameter of the upper bush 140 and the outer diameter of the rotating shaft 132, and It is larger than the difference between the inner diameter of the bush 142 and the outer diameter of the rotating shaft 132.
回転シャフト132の下端部を支持するすべり軸受である下軸受145(その内周面である摺動面を含む)は、鋳鉄製の下軸受部材136と一体に形成されている。ロータリ圧縮機130の下部に設けられた油溜め144内の潤滑油117は、回転シャフト132の軸心に沿って形成された給油孔146から径方向に分岐する分岐孔を通じて上軸受143、下軸受145に供給され、各軸受143,145の摺動部は、潤滑油によって油膜が作られ、円滑な潤滑が確保される。
A lower bearing 145 (including a sliding surface that is an inner peripheral surface) that is a slide bearing that supports the lower end portion of the rotating shaft 132 is formed integrally with a lower bearing member 136 made of cast iron. Lubricating oil 117 in an oil sump 144 provided at the lower portion of the rotary compressor 130 passes through an oil supply hole 146 formed along the axial center of the rotary shaft 132 through a branch hole in the radial direction, and the upper bearing 143 and the lower bearing. 145, and a sliding portion of each of the bearings 143 and 145 is formed with an oil film by lubricating oil to ensure smooth lubrication.
前記した本発明の第2実施形態では、回転シャフト132の回転速度および回転シャフト132に作用する荷重が小さい低負荷運転時には、中間ブッシュ141の部分において回転シャフト132との隙間が大きいため、摩擦損失が低減されて、軸受損失が減少する。また、潤滑油の流出経路である上側ブッシュ140および下側ブッシュ142の部分における隙間が小さいため、潤滑油流量の増加は殆ど生じず、それによる損失増加も防止される。一方、回転シャフト132の回転速度および回転シャフト132に作用する荷重が大きい高負荷運転時には、中間ブッシュ141の部分において回転シャフト132との隙間が温度変化によって縮小し、動圧によるこの部位の油膜圧力が増加するため、最小油膜厚さ、および軸受の負荷容量(荷重支持能力)が増加する。
In the above-described second embodiment of the present invention, during low load operation where the rotational speed of the rotary shaft 132 and the load acting on the rotary shaft 132 are small, the gap between the intermediate bush 141 and the rotary shaft 132 is large. Is reduced and bearing loss is reduced. Further, since the gap in the upper bush 140 and the lower bush 142, which is the lubricating oil outflow path, is small, the flow rate of the lubricating oil hardly increases and an increase in loss due to this is prevented. On the other hand, during a high load operation in which the rotational speed of the rotating shaft 132 and the load acting on the rotating shaft 132 are large, the gap between the intermediate bush 141 and the rotating shaft 132 is reduced due to temperature change, and the oil film pressure at this portion due to dynamic pressure is reduced. Therefore, the minimum oil film thickness and the load capacity (load support capacity) of the bearing increase.
すなわち、本発明の第2実施形態によれば、回転運動する回転シャフト132の外周面と上軸受143との間に存在する潤滑油による油膜のせん断抵抗を低減することにより、流体潤滑時の軸受損失を低減することができると共に、高負荷運転時においても軸受としての信頼性を維持することができる。
That is, according to the second embodiment of the present invention, by reducing the shear resistance of the oil film due to the lubricating oil existing between the outer peripheral surface of the rotating shaft 132 that rotates and the upper bearing 143, the bearing at the time of fluid lubrication Loss can be reduced, and reliability as a bearing can be maintained even during high load operation.
また、本発明の第2実施形態に係るロータリ圧縮機130では、各軸受143,145が圧縮室137に近い位置に設けられている。しかも、上軸受部材135におけるローラ133側の端部に位置する下側ブッシュ142と下軸受145とは、すべり軸受ブッシュとして機能すると共に、その内周面である摺動面が軸受部材135,136とそれぞれ一体に形成されている。これにより、すべり軸受ブッシュを軸受部材135,136とは別体に構成した場合のようなすべり軸受ブッシュの材料内部等の軸受隙間以外の部分における流体の移動が無くなる。したがって、各軸受143,145と圧縮室137との間でのガスや潤滑油の流入流出関係をコントロールしやすく、設計が容易となる。
Further, in the rotary compressor 130 according to the second embodiment of the present invention, the bearings 143 and 145 are provided at positions close to the compression chamber 137. In addition, the lower bush 142 and the lower bearing 145 located at the end of the upper bearing member 135 on the roller 133 side function as sliding bearing bushes, and the sliding surfaces that are the inner peripheral surfaces thereof are bearing members 135 and 136. And are integrally formed. This eliminates fluid movement in portions other than the bearing gap, such as the inside of the material of the sliding bearing bush, as in the case where the sliding bearing bush is configured separately from the bearing members 135 and 136. Therefore, it is easy to control the inflow / outflow relationship of gas and lubricating oil between the bearings 143 and 145 and the compression chamber 137, and the design becomes easy.
以上、本発明について実施形態に基づいて説明したが、本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to above-described embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
例えば、前記実施形態では、軸受ハウジングの内側に形成された貫通孔の内部に、3個のすべり軸受ブッシュである上側ブッシュ、中間ブッシュ、および下側ブッシュが上方から順に軸方向に並んで配置された構造となっている。但し、本発明はこれに限定されるものではなく、4個以上のすべり軸受ブッシュが軸方向に並んで配置された構造にも適用され得る。この場合、軸方向両端部のすべり軸受ブッシュが、前記実施形態における上側ブッシュおよび下側ブッシュに相当し、軸方向両端部のすべり軸受ブッシュの間に配置される複数のすべり軸受ブッシュのうちの少なくとも一つが前記実施形態における中間ブッシュに相当することになる。
For example, in the above-described embodiment, the upper bush, the intermediate bush, and the lower bush, which are three plain bearing bushes, are arranged in the axial direction in order from above in a through hole formed inside the bearing housing. It has a structure. However, the present invention is not limited to this, and can be applied to a structure in which four or more plain bearing bushes are arranged side by side in the axial direction. In this case, the sliding bearing bushes at both ends in the axial direction correspond to the upper bushing and the lower bushing in the embodiment, and at least of the plurality of sliding bearing bushes disposed between the sliding bearing bushes at both axial ends. One corresponds to the intermediate bush in the embodiment.
また、例えば第1実施形態の第2変形例では、主軸受108bの中央部における軸受隙間を拡大する方法として、中間ブッシュ121aに対向する部分のクランク軸106の外径を小さくする方法を採用したが、本発明はこれに限定されるものではない。例えば、中間ブッシュ121の内径を拡大し、かつ、中間ブッシュ121aに対向する部分のクランク軸106の外径を小さくしてもよい。
Further, for example, in the second modification of the first embodiment, a method of reducing the outer diameter of the crankshaft 106 at a portion facing the intermediate bush 121a is adopted as a method of expanding the bearing gap at the center portion of the main bearing 108b. However, the present invention is not limited to this. For example, the inner diameter of the intermediate bush 121 may be enlarged, and the outer diameter of the crankshaft 106 at the portion facing the intermediate bush 121a may be reduced.
また、例えば第1実施形態の第3変形例では、中間ブッシュ121bの内周面に、当該内周面を周方向に分割する溝124が形成される例について説明したが、本発明はこれに限定されるものではない。本発明は、例えば、溝124の深さが中間ブッシュ121bの外周面にまで達する場合にも適用可能である。つまり、中間ブッシュ121bは、軸方向に沿った分割面によって周方向において複数に分割され、円筒形状の一部を成す複数の部分を備えるように構成されてもよい。
For example, in the 3rd modification of 1st Embodiment, although the groove | channel 124 which divides | segments the said internal peripheral surface into the circumferential direction was formed in the internal peripheral surface of the intermediate bush 121b, this invention is based on this. It is not limited. The present invention is also applicable to the case where the depth of the groove 124 reaches the outer peripheral surface of the intermediate bush 121b, for example. In other words, the intermediate bush 121b may be configured to be divided into a plurality of portions in the circumferential direction by a dividing surface along the axial direction, and to include a plurality of portions forming a part of a cylindrical shape.
また、前記実施形態では、本発明がスクロール圧縮機、ロータリ圧縮機に適用される場合について説明したが、本発明はこれらに限定されるものではなく、他の形式の圧縮機にも適用可能である。また、前記実施形態では、回転運動する軸が鉛直方向に沿って配置される縦型の圧縮機について説明したが、本発明はこれに限定されるものではなく、回転運動する軸が水平方向に沿って配置される横型の圧縮機にも適用可能である。更に、本発明は、回転運動する軸の外周面に対して潤滑油を介して摺動するすべり軸受部を備える各種の回転機械にも適用可能である。
Moreover, although the case where the present invention is applied to a scroll compressor and a rotary compressor has been described in the above embodiment, the present invention is not limited to these and can be applied to other types of compressors. is there. Moreover, although the said embodiment demonstrated the vertical compressor with which the axis | shaft which rotationally moves is arrange | positioned along a perpendicular direction, this invention is not limited to this, The axis | shaft which rotationally moves is horizontal. The present invention can also be applied to a horizontal compressor arranged along. Furthermore, the present invention can also be applied to various types of rotating machines that include a sliding bearing portion that slides on the outer peripheral surface of a rotating shaft via a lubricating oil.
また、本発明は、本発明に係る回転機械を冷凍または空調用の冷媒圧縮機として備える冷凍サイクル機器として構成され得る。この冷凍サイクル機器は、本発明に係る回転機械としての冷媒圧縮機と、冷媒圧縮機で圧縮されて高温高圧になった冷媒ガスから熱を放熱する凝縮器と、凝縮器からの高圧冷媒を減圧する減圧装置と、減圧装置からの液冷媒を蒸発させる蒸発器とを備えている。このような冷凍サイクル機器は、冷凍装置、空調装置、ヒートポンプ式給湯機などに使用され得る。
Further, the present invention can be configured as a refrigeration cycle device including the rotating machine according to the present invention as a refrigerant compressor for refrigeration or air conditioning. This refrigeration cycle equipment includes a refrigerant compressor as a rotating machine according to the present invention, a condenser that dissipates heat from refrigerant gas that has been compressed by the refrigerant compressor into a high temperature and high pressure, and decompresses the high-pressure refrigerant from the condenser. And a evaporator for evaporating the liquid refrigerant from the pressure reducing device. Such a refrigeration cycle apparatus can be used for a refrigeration apparatus, an air conditioner, a heat pump type hot water heater, and the like.
100 スクロール圧縮機(回転機械)
106 クランク軸(軸)
107a 軸受ハウジング(ハウジング部)
107b 貫通孔(穴)
108,108a~108d 主軸受(すべり軸受)
117 潤滑油
120 上側ブッシュ(第1軸受部)
121,121a~121c 中間ブッシュ(中間軸受部)
122,122a 下側ブッシュ(第2軸受部)
124,124a 溝
130 ロータリ圧縮機(回転機械)
132 回転シャフト(軸)
135a 軸受ハウジング(ハウジング部)
135b 貫通孔(穴)
140 上側ブッシュ(第1軸受部)
141 中間ブッシュ(中間軸受部)
142 下側ブッシュ(第2軸受部)
143 上軸受(すべり軸受) 100 scroll compressor (rotary machine)
106 Crankshaft (shaft)
107a Bearing housing (housing part)
107b Through hole (hole)
108, 108a to 108d Main bearing (slide bearing)
117Lubricating oil 120 Upper bush (first bearing part)
121, 121a to 121c Intermediate bush (intermediate bearing)
122, 122a Lower bush (second bearing part)
124, 124a Groove 130 Rotary compressor (rotary machine)
132 Rotating shaft (axis)
135a Bearing housing (housing part)
135b Through hole (hole)
140 Upper bush (first bearing)
141 Intermediate bush (intermediate bearing)
142 Lower bushing (second bearing part)
143 Upper bearing (slide bearing)
106 クランク軸(軸)
107a 軸受ハウジング(ハウジング部)
107b 貫通孔(穴)
108,108a~108d 主軸受(すべり軸受)
117 潤滑油
120 上側ブッシュ(第1軸受部)
121,121a~121c 中間ブッシュ(中間軸受部)
122,122a 下側ブッシュ(第2軸受部)
124,124a 溝
130 ロータリ圧縮機(回転機械)
132 回転シャフト(軸)
135a 軸受ハウジング(ハウジング部)
135b 貫通孔(穴)
140 上側ブッシュ(第1軸受部)
141 中間ブッシュ(中間軸受部)
142 下側ブッシュ(第2軸受部)
143 上軸受(すべり軸受) 100 scroll compressor (rotary machine)
106 Crankshaft (shaft)
107a Bearing housing (housing part)
107b Through hole (hole)
108, 108a to 108d Main bearing (slide bearing)
117
121, 121a to 121c Intermediate bush (intermediate bearing)
122, 122a Lower bush (second bearing part)
124, 124a Groove 130 Rotary compressor (rotary machine)
132 Rotating shaft (axis)
135a Bearing housing (housing part)
135b Through hole (hole)
140 Upper bush (first bearing)
141 Intermediate bush (intermediate bearing)
142 Lower bushing (second bearing part)
143 Upper bearing (slide bearing)
Claims (10)
- 回転運動する軸と、
前記軸が挿入される穴を有するハウジング部と、
前記ハウジング部の前記穴内の軸方向における一方の端に最も近く配置される第1軸受部、他方の端に最も近く配置される第2軸受部、並びに前記第1軸受部と前記第2軸受部との間に配置され、線膨脹係数が前記ハウジング部、前記第1軸受部、および前記第2軸受部よりも大きく、かつ、少なくとも前記軸の回転起動前において前記軸の外周面との間の隙間が前記第1軸受部および前記第2軸受部よりも大きい中間軸受部を有し、前記軸の外周面に対して潤滑油を介して摺動するすべり軸受と、
を備えることを特徴とする回転機械。 A rotating shaft,
A housing part having a hole into which the shaft is inserted;
A first bearing portion disposed closest to one end in the axial direction in the hole of the housing portion, a second bearing portion disposed closest to the other end, and the first bearing portion and the second bearing portion The linear expansion coefficient is larger than that of the housing part, the first bearing part, and the second bearing part, and at least between the outer peripheral surface of the shaft before the rotation of the shaft is started. A slide bearing having an intermediate bearing portion with a gap larger than that of the first bearing portion and the second bearing portion, and sliding with respect to the outer peripheral surface of the shaft via lubricating oil;
A rotating machine comprising: - 前記軸の外径は、前記中間軸受部に対向する部分において他の部分よりも小さいことを特徴とする請求の範囲第1項に記載の回転機械。 2. The rotating machine according to claim 1, wherein an outer diameter of the shaft is smaller in a portion facing the intermediate bearing portion than in other portions.
- 前記中間軸受部の内周面には、当該内周面を周方向に分割する溝が形成されていることを特徴とする請求の範囲第1項に記載の回転機械。 The rotary machine according to claim 1, wherein a groove for dividing the inner peripheral surface in the circumferential direction is formed on the inner peripheral surface of the intermediate bearing portion.
- 前記中間軸受部の内周面には、当該内周面を周方向に分割する溝が形成されていることを特徴とする請求の範囲第2項に記載の回転機械。 The rotary machine according to claim 2, wherein a groove for dividing the inner peripheral surface in the circumferential direction is formed on the inner peripheral surface of the intermediate bearing portion.
- 前記第1軸受部および前記第2軸受部の材質は黒鉛を含む炭素質基材に金属を含浸したカーボン軸受材料であり、前記中間軸受部の材質は樹脂を含むことを特徴とする請求の範囲第1項に記載の回転機械。 The material of the first bearing part and the second bearing part is a carbon bearing material obtained by impregnating a carbonaceous base material containing graphite with a metal, and the material of the intermediate bearing part contains a resin. The rotating machine according to item 1.
- 前記第1軸受部および前記第2軸受部の材質は黒鉛を含む炭素質基材に金属を含浸したカーボン軸受材料であり、前記中間軸受部の材質は樹脂を含むことを特徴とする請求の範囲第2項に記載の回転機械。 The material of the first bearing part and the second bearing part is a carbon bearing material obtained by impregnating a carbonaceous base material containing graphite with a metal, and the material of the intermediate bearing part contains a resin. The rotating machine according to item 2.
- 前記第1軸受部および前記第2軸受部の材質は黒鉛を含む炭素質基材に金属を含浸したカーボン軸受材料であり、前記中間軸受部の材質は樹脂を含むことを特徴とする請求の範囲第3項に記載の回転機械。 The material of the first bearing part and the second bearing part is a carbon bearing material obtained by impregnating a carbonaceous base material containing graphite with a metal, and the material of the intermediate bearing part contains a resin. The rotating machine according to item 3.
- 前記第1軸受部および前記第2軸受部の材質は黒鉛を含む炭素質基材に金属を含浸したカーボン軸受材料であり、前記中間軸受部の材質は樹脂を含むことを特徴とする請求の範囲第4項に記載の回転機械。 The material of the first bearing part and the second bearing part is a carbon bearing material obtained by impregnating a carbonaceous base material containing graphite with a metal, and the material of the intermediate bearing part contains a resin. The rotating machine according to item 4.
- 前記回転機械は、スクロール圧縮機あるいはロータリ圧縮機であることを特徴とする請求の範囲第1項乃至第8項のいずれか一項に記載の回転機械。 The rotary machine according to any one of claims 1 to 8, wherein the rotary machine is a scroll compressor or a rotary compressor.
- 請求の範囲第1項乃至第8項のいずれか一項に記載の回転機械を冷凍または空調用の冷媒圧縮機として備えることを特徴とする冷凍サイクル機器。 A refrigeration cycle apparatus comprising the rotating machine according to any one of claims 1 to 8 as a refrigerant compressor for refrigeration or air conditioning.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014516599A JP5963854B2 (en) | 2012-05-25 | 2012-05-25 | Rotating machinery and refrigeration cycle equipment |
PCT/JP2012/063473 WO2013175623A1 (en) | 2012-05-25 | 2012-05-25 | Rotary machine and refrigeration cycle device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/063473 WO2013175623A1 (en) | 2012-05-25 | 2012-05-25 | Rotary machine and refrigeration cycle device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013175623A1 true WO2013175623A1 (en) | 2013-11-28 |
Family
ID=49623352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/063473 WO2013175623A1 (en) | 2012-05-25 | 2012-05-25 | Rotary machine and refrigeration cycle device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5963854B2 (en) |
WO (1) | WO2013175623A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104455000A (en) * | 2014-12-24 | 2015-03-25 | 赵长江 | Graphite dry powder lubricated bearing and processing technique thereof |
CN113236565A (en) * | 2021-05-06 | 2021-08-10 | 珠海格力节能环保制冷技术研究中心有限公司 | Shafting structure and scroll compressor |
CN115199530A (en) * | 2022-06-17 | 2022-10-18 | 安徽凯特泵业有限公司 | Pump body bush assembly of constant temperature delivery pump |
WO2022264792A1 (en) * | 2021-06-18 | 2022-12-22 | パナソニックIpマネジメント株式会社 | Scroll compressor |
US11655819B2 (en) * | 2018-08-13 | 2023-05-23 | Mitsubishi Heavy Industries Thermal Systems, Ltd. | Scroll compressor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0419421A (en) * | 1989-12-12 | 1992-01-23 | Nippon Seiko Kk | Bearing with dynamic pressure groove and its manufacture |
JPH04160224A (en) * | 1990-10-22 | 1992-06-03 | Nippon Seiko Kk | Slide bearing |
JPH0571540A (en) * | 1991-09-13 | 1993-03-23 | Nippon Seiko Kk | Slide bearing |
JPH08281748A (en) * | 1995-04-11 | 1996-10-29 | Japan Steel Works Ltd:The | Bearing unit of toggle mechanism for injection molding machine |
JP2003294028A (en) * | 2002-04-01 | 2003-10-15 | Torishima Pump Mfg Co Ltd | Underwater bearing |
-
2012
- 2012-05-25 WO PCT/JP2012/063473 patent/WO2013175623A1/en active Application Filing
- 2012-05-25 JP JP2014516599A patent/JP5963854B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0419421A (en) * | 1989-12-12 | 1992-01-23 | Nippon Seiko Kk | Bearing with dynamic pressure groove and its manufacture |
JPH04160224A (en) * | 1990-10-22 | 1992-06-03 | Nippon Seiko Kk | Slide bearing |
JPH0571540A (en) * | 1991-09-13 | 1993-03-23 | Nippon Seiko Kk | Slide bearing |
JPH08281748A (en) * | 1995-04-11 | 1996-10-29 | Japan Steel Works Ltd:The | Bearing unit of toggle mechanism for injection molding machine |
JP2003294028A (en) * | 2002-04-01 | 2003-10-15 | Torishima Pump Mfg Co Ltd | Underwater bearing |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104455000A (en) * | 2014-12-24 | 2015-03-25 | 赵长江 | Graphite dry powder lubricated bearing and processing technique thereof |
US11655819B2 (en) * | 2018-08-13 | 2023-05-23 | Mitsubishi Heavy Industries Thermal Systems, Ltd. | Scroll compressor |
CN113236565A (en) * | 2021-05-06 | 2021-08-10 | 珠海格力节能环保制冷技术研究中心有限公司 | Shafting structure and scroll compressor |
WO2022264792A1 (en) * | 2021-06-18 | 2022-12-22 | パナソニックIpマネジメント株式会社 | Scroll compressor |
CN115199530A (en) * | 2022-06-17 | 2022-10-18 | 安徽凯特泵业有限公司 | Pump body bush assembly of constant temperature delivery pump |
Also Published As
Publication number | Publication date |
---|---|
JP5963854B2 (en) | 2016-08-03 |
JPWO2013175623A1 (en) | 2016-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014064919A1 (en) | Rotary compressor | |
EP2700818B1 (en) | Scroll compressor | |
JP5963854B2 (en) | Rotating machinery and refrigeration cycle equipment | |
JP2005201140A (en) | Fluid machine | |
TW201447107A (en) | Refrigerant Compressor | |
WO2015025416A1 (en) | Rotary machine and refrigeration cycle device | |
JP2001065458A (en) | Compressor | |
US9115715B2 (en) | Compressor with pressure reduction groove formed in eccentric part | |
JP2001115959A (en) | Compressor | |
JP3823325B2 (en) | Compressor bearings for refrigerators and compressors for refrigerators | |
JP2015161209A (en) | Compressor and refrigeration cycle device | |
JP2002147354A (en) | Compressor | |
JP6618663B1 (en) | Slide bearing structure and scroll compressor | |
JP5640885B2 (en) | Scroll compressor | |
JP6184648B1 (en) | Bearing unit and compressor | |
JP5091019B2 (en) | Scroll expander | |
JP7010202B2 (en) | Fluid machine | |
WO2016143186A1 (en) | Compressor comprising slide bearing | |
JP6104396B2 (en) | Scroll compressor | |
JP4325611B2 (en) | Compressor bearings for refrigerators and compressors for refrigerators | |
JP5864883B2 (en) | Scroll compressor | |
JP2020193626A (en) | Bearing of compressor for freezing machine | |
JP2002147377A (en) | Scroll compressor and method of manufacturing journal bearing part | |
JP2005133586A (en) | Hermetic refrigerant compressor | |
JP2014047739A (en) | Scroll compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12877430 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014516599 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12877430 Country of ref document: EP Kind code of ref document: A1 |