[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013170782A1 - 配置信道测量和进行上行信道测量的方法、系统及设备 - Google Patents

配置信道测量和进行上行信道测量的方法、系统及设备 Download PDF

Info

Publication number
WO2013170782A1
WO2013170782A1 PCT/CN2013/075821 CN2013075821W WO2013170782A1 WO 2013170782 A1 WO2013170782 A1 WO 2013170782A1 CN 2013075821 W CN2013075821 W CN 2013075821W WO 2013170782 A1 WO2013170782 A1 WO 2013170782A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
uplink subframe
subframe
group
user equipment
Prior art date
Application number
PCT/CN2013/075821
Other languages
English (en)
French (fr)
Inventor
潘学明
沈祖康
徐婧
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2013170782A1 publication Critical patent/WO2013170782A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • a time division duplex (TDD) mode refers to that the uplink and downlink use the same working frequency band to transmit uplink and downlink signals at different time intervals.
  • GP guard interval
  • the FDD (Frequency Division Duplex) mode refers to the use of different working bands on the uplink and downlink. It can be performed on different frequency carriers at the same time.
  • the uplink and downlink signals are transmitted with a guard bandwidth (GB) between the uplink and the downlink.
  • GB guard bandwidth
  • a radio frame has a length of 10 ms and contains 10 sub-frames, including a special sub-frame and a regular sub-frame. Each sub-frame is Lms.
  • the special subframe is divided into three subframes: DwPTS (Downlink Pilot Time Slot); GP is used for guard interval between downlink and uplink); UpPTS (Uplink Pilot Time Slot).
  • the regular subframe includes an uplink subframe and a downlink subframe, and is used for transmitting an uplink/downlink control channel and service data.
  • two special subframes can be configured (in subframes 1 and 6), or a special subframe (in subframe 1) can be configured.
  • Subframe 0 and subframe 5 and DwPTS subframes in special subframes are always used for downlink transmission.
  • Subframe 2 and UpPTS subframes in special subframes are always used for uplink transmission.
  • Other subframes can be configured as needed. For uplink transmission or downlink transmission.
  • the uplink and downlink transmissions use the same frequency resource, and the uplink/downlink signals are transmitted on different subframes.
  • the division of uplink and downlink subframes is static or semi-static, and the usual practice is in the network.
  • the uplink and downlink subframe ratios are determined and remain unchanged according to the cell type and the approximate service ratio. This is a relatively simple approach in the context of large coverage of macro cells, and is also more effective.
  • more and more low-power base stations such as Pico cells and Home NodeBs are deployed to provide local small coverage. In such cells, the number of users is small, and The user service demand changes greatly, so the dynamic demand ratio of the uplink and downlink services of the community is dynamic. Change the situation.
  • Type 1 neighbor cell interference In the subframe in which the neighboring cells perform downlink transmission, the downlink UE of the local area receives the interference of the downlink signal of the neighboring base station;
  • Type 2 neighbor cell interference In the subframe where the neighboring cells perform uplink transmission, the base station receiving the UE uplink signal will be interfered by the uplink signal of the neighboring cell.
  • cross-slot interference as shown in FIG. 3 may occur.
  • the macro cell is used for uplink signal reception on the time slot in which the downlink signal is transmitted, and two types of interference occur between the two cells.
  • each variable subframe since there are subframes with a fixed transmission direction and a variable transmission direction, in each variable subframe, since the transmission direction of the neighboring cells is flexible, and there may be more than one strong in the region. Thousands of neighbors, so the type of interference received by this area may also be different. In the extreme case, in each variable subframe, the neighboring area received by this area for downlink transmission is different. In the different uplink subframes of the dynamic TDD system, the actual channel conditions are significantly different due to the different interferences in the neighboring cells.
  • the SRS Sounding Reference Signal
  • the SRS Sounding Reference Signal
  • the channel condition measured on a fixed uplink subframe is not applicable to a variable uplink subframe, and the channel condition measured on a variable uplink subframe is not applicable to other variable uplink subframes.
  • the configuration channel measurement and uplink channel measurement currently used in LTE Rel-8/9/10 are not applicable to the dynamic TDD system.
  • Embodiments of the present invention provide a method and a device for configuring channel measurement, which are used to implement channel measurement in a dynamic TDD system.
  • Embodiments of the present invention provide a method, system, and device for performing uplink channel measurement, which are used to perform uplink channel measurement in a dynamic TDD system.
  • the network side device divides the uplink subframe into multiple uplink subframe groups according to the interference condition on the uplink subframe.
  • the network side device notifies the user equipment of at least one channel measurement configuration information corresponding to the uplink subframe group.
  • the user equipment receives at least one channel measurement configuration information corresponding to the uplink subframe group from the network side device, where the uplink subframe group is obtained by the network side device according to the interference condition on the uplink subframe;
  • the user equipment performs uplink channel measurement according to channel measurement configuration information.
  • the dividing module is configured to divide the uplink subframe into multiple uplink subframe groups according to the interference condition on the uplink subframe.
  • the first processing module is configured to notify the user equipment of at least one channel measurement configuration information corresponding to the uplink subframe group.
  • a user equipment for performing uplink channel measurement according to an embodiment of the present invention includes:
  • a receiving module configured to receive, by the network side device, at least one channel measurement configuration information corresponding to the uplink subframe group, where the uplink subframe group is obtained by the network side device according to the interference condition on the uplink subframe;
  • the second processing module is configured to perform uplink channel measurement according to the channel measurement configuration information.
  • the network side device is configured to divide the uplink subframe into multiple uplink subframe groups according to the interference condition on the uplink subframe, and notify the user equipment of at least one channel measurement configuration information corresponding to the uplink subframe group;
  • a user equipment configured to receive at least one channel measurement configuration information corresponding to the uplink subframe group from the network side device; and perform uplink channel measurement according to the channel measurement configuration information.
  • the network side device notifies the user equipment of the channel measurement configuration information corresponding to the plurality of uplink subframe groups divided according to the interference condition on the uplink subframe, thereby implementing channel measurement in the dynamic TDD system.
  • FIG. 1 is a schematic diagram of a frame structure of a TD-LTE system
  • 2A is a schematic diagram of a neighboring cell interference of the first TDD in the same time slot configuration
  • 2B is a schematic diagram of a neighboring cell interference of the second TDD in the same time slot configuration
  • 3 is a schematic diagram of the interference of the TDD cross-slot neighboring cell
  • FIG. 4A is a schematic structural diagram of a first seed frame according to an embodiment of the present invention.
  • 4B is a schematic structural diagram of a second seed frame according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a system for performing uplink channel measurement according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a network side device in a system for performing uplink channel measurement according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of user equipment in a system for performing uplink channel measurement according to an embodiment of the present invention
  • FIG. 8 is a schematic flowchart of a method for configuring channel measurement according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a method for performing uplink channel measurement according to an embodiment of the present invention.
  • the network side device divides the uplink subframe into multiple uplink subframe groups according to the interference condition in the uplink subframe, and notifies the user equipment of the channel measurement configuration information corresponding to the uplink subframe group.
  • the network side device notifies the user equipment of the channel measurement configuration information corresponding to the plurality of uplink subframe groups divided according to the interference condition on the uplink subframe, thereby implementing channel measurement in the dynamic TDD system.
  • the user equipment receives the channel measurement configuration information corresponding to the uplink subframe group from the network side device, and performs uplink channel measurement according to the channel measurement configuration information.
  • the user equipment performs the uplink channel measurement according to the channel measurement configuration information, thereby implementing the uplink channel measurement in the dynamic TDD system; further enabling the network side device to accurately obtain the channel condition of the uplink subframe with different interference conditions, and according to the
  • the channel condition is used for scheduling uplink subframes with similar interference conditions, which solves the problem of uplink channel condition measurement under the condition that the interference condition of different subframes in the dynamic TDD system changes significantly, and improves system performance.
  • the radio frame in the uplink configuration of the embodiment of the present invention includes: a variable subframe, a downlink fixed subframe, an uplink fixed subframe, and a special subframe, where the downlink fixed subframe is a downlink direction and is transmitted. a subframe with a fixed direction and a downlink pilot slot in a special subframe, where the uplink fixed subframe is a subframe in which the transmission direction is the uplink direction and the transmission direction is fixed, and the variable subframe is a variable transmission direction.
  • variable subframe further includes an uplink variable subframe and a downlink variable subframe, wherein the uplink variable subframe is a variable subframe determined to be used for uplink transmission, and the downlink variable subframe is determined to be used as Variable subframe for downlink transmission.
  • the uplink pilot time slot in the special subframe of the embodiment of the present invention has the same function as the uplink pilot time slot in the special subframe in the background art, and the description is not repeated.
  • the embodiments of the present invention can be applied to a TDD system (such as a TD-LTE system), and can also be applied to other systems that need to dynamically adjust uplink and downlink configurations of a subframe, such as a TD-SCDMA system and its subsequent evolution system, WiMAX (Worldwide Interoperability). For Microwave Access, 4 wave access global interoperability) systems and their subsequent evolution systems.
  • subframe 2 is set as an uplink fixed subframe
  • subframe 0 and subframe 5 are downlink fixed subframes
  • subframes are used.
  • 1 is a special subframe
  • subframe 6 is a special subframe or a downlink subframe (a subframe whose transmission direction is a downlink), and the remaining subframes are variable subframes;
  • the subframe 6 is a special subframe, as shown in FIG. 4A.
  • Wireless frame structure
  • the subframe 6 is a downlink subframe (that is, a variable subframe in which the transmission direction is downlink, that is, a downlink variable subframe)
  • the subframe 6 is a downlink subframe (that is, a subframe in which the transmission direction is downlink).
  • a radio frame structure as shown in FIG. 4B.
  • a ratio of a maximum downlink (DL) subframe to an uplink (UL) subframe that can be supported is 9:1, thereby enabling resources in the dynamic TDD system. Adapt to a larger dynamic range and better match business changes.
  • the network side device when the network side device divides the uplink subframe into multiple uplink subframe groups according to the interference condition in the uplink subframe, the subframe transmission direction that needs to be scheduled and the strong interference adjacent to the target cell may be The subframe configuration information of the cell divides the subframe in one radio frame into multiple uplink subframe groups.
  • the network side device can determine whether the cell adjacent to the target cell is a strong interference cell according to one of the following manners:
  • the network side device determines, according to the detected signal strength of the cell adjacent to the target cell, whether the cell adjacent to the target cell is a strong interference cell, for example, comparing the signal strength with a threshold, if it is greater than the threshold, The cell is a strong interference zone;
  • the network side device determines, according to the cell identifier corresponding to the strong interference cell reported by the user equipment that belongs to the target cell, whether the cell adjacent to the target cell is a strong interference cell, for example, the user equipment pair may be specified to be in the target cell.
  • the signal strength of the neighboring cell is detected. If the signal strength is greater than the threshold, the cell identifier of the cell is received, and the corresponding network side device uses the corresponding cell as the strong interference cell after receiving the cell identifier;
  • the network side device After receiving the notification information sent by the cell adjacent to the target cell, the network side device determines that the cell is a strong interference cell adjacent to the target cell, where the notification information is that the cell adjacent to the target cell is received.
  • the signal strength sent by the target cell is determined to be transmitted by the strong interference cell of the target cell.
  • the neighboring cell can measure the signal of the victim cell. If the path loss is small, it considers itself to be a strong interference of the cell. The cell then passes through the signaling of the network interface to the cell.
  • embodiments of the present invention are not limited to the foregoing three modes, and other embodiments capable of determining whether a cell adjacent to the target cell is a strong interference cell are also applicable to the embodiment of the present invention.
  • the network side device may obtain the subframe configuration information of the strong interference cell adjacent to the target cell by using the interface signaling, or may independently detect the subframe configuration information of the strong interference cell adjacent to the target cell. Certainly, the manner in which the sub-frame configuration information can be obtained is also applicable to the embodiment of the present invention, for example, after the user equipment obtains the network side device.
  • the network side device may divide the fixed subframe in the cell whose transmission direction is uplink or contains an uplink pilot time slot into one uplink subframe group, and the variable subframe in which the transmission direction is uplink in the target cell. Divided into at least one uplink subframe group.
  • all the uplink subframes in one radio frame are divided into two types, one is a subframe in which the neighboring area is fixed in a fixed direction, and the other is a direction in which the neighboring area may be changed.
  • the neighboring area is configured with a fixed subframe, for example, subframes 0, 1, 2, 5, and 6 in each radio frame, where subframes 0, 1, 5, and 6 are fixed as downlink subframes (or contain downlink guides).
  • Subframe 2 of the frequency slot subframe 2 is fixed as an uplink subframe.
  • the neighboring interference is the uplink interference from the base station, it can be considered that the interference received by the base station in these subframes is substantially equal, so
  • the uplink subframe 2 constitutes an uplink subframe group; then it will be transmitted in the target cell.
  • variable subframe in which the uplink direction is the uplink is divided into at least one uplink subframe group, for example, the subframes 3, 4, 7, 8, 9 in each radio frame are variable subframes, and the subframes 3, 4,
  • the number of uplink subframe groups divided by 7, 8, and 9 is not greater than the number of uplink subframes in subframes 3, 4, 7, 8, and 9.
  • the network side device may further divide the variable subframe into two types of variable subframes, where the first type of variable subframe is a variable subframe in which the transmission direction is uplink in the strong interference cell, and the second A class-variable subframe is a variable subframe in which a transmission direction is uplink in a partially strong-interference cell.
  • first type of variable subframe is a variable subframe in which the transmission direction is uplink in the strong interference cell
  • second A class-variable subframe is a variable subframe in which a transmission direction is uplink in a partially strong-interference cell.
  • the network side device divides the first type of variable subframe into one uplink subframe group; and divides the second type of variable subframe into at least one uplink subframe group, where each divided uplink subframe
  • the second type of variable subframes in the group have the same transmission direction in each strong-interference cell.
  • the subframe and the subframe 2 may be classified into the same uplink subframe group;
  • the target cell is configured as a subframe 6; there are two strong interference neighbors, and the time slot configurations are configuration 1 and configuration 2, respectively. As shown in Table 1:
  • Subframe 2 is a fixed subframe in which the transmission direction is uplink in the target cell
  • the subframes 3, 4, 7, and 8 are variable subframes whose transmission direction is uplink in the target cell, and the transmission direction of the subframe 7 in both the cell 1 and the cell 2 is uplink, so the subframe 7 is the first type of variable.
  • the combinations of transmission directions of cell 1 and cell 2 corresponding to subframes 3, 4, and 8 are: (U, D), (D, D), (U, D). Since subframe 3 and subframe 8 are combined in the transmission direction of cell 1 and cell 2 (U, D), subframe 3 and subframe 8 are divided into one uplink subframe group, and subframe 4 is divided into one uplink. In the subframe group.
  • the embodiment of the present invention may also use each downlink subframe as an uplink subframe group.
  • the fixed subframes may also be grouped into one group, and the variable subframes may be grouped into one group.
  • the embodiment of the present invention is not limited to the foregoing division manner, and other embodiments capable of dividing an uplink subframe group according to the interference condition in the downlink subframe are applicable to the embodiment of the present invention.
  • the system for performing uplink channel measurement in the embodiment of the present invention includes: a network side device 10 and a user equipment 20.
  • the network side device 10 is configured to divide the uplink subframe into multiple uplink subframe groups according to the interference condition on the uplink subframe, and notify the user equipment 20 of at least one channel measurement configuration information corresponding to the uplink subframe group;
  • the user equipment 20 is configured to receive at least one channel measurement configuration information corresponding to the uplink subframe group from the network side device 10, and perform uplink channel measurement according to the channel measurement configuration information.
  • the channel measurement configuration information of the uplink subframe group divided by the network side device 10 is not necessarily notified to the same user equipment 20, and the network side device 10 may select which uplink subframe group channel measurement configuration information is notified according to the requirement.
  • User equipment 20 For example, if there are uplink subframe groups 1, 2, 3, 4, 5, the channel measurement configuration information of the uplink subframe groups 1 and 2 can be notified to the user equipment a, and the channel measurement configuration information of the uplink subframe group 3 can be notified to The user equipment b notifies the user equipment 0 of the channel measurement configuration information of the uplink subframe groups 4 and 5. For the user equipment, only the channel measurement configuration information needs to be measured and fed back. It is not necessary to know how many groups are shared.
  • the embodiments of the present invention provide two schemes for performing uplink channel measurement, that is, periodic and aperiodic, which are respectively introduced below.
  • the network side device 10 notifies the user equipment 20 of the uplink subframe included in the uplink subframe group; correspondingly, the user equipment 20 receives the notification of the uplink subframe included in the uplink subframe group from the network side device.
  • the network side device 10 informs the user equipment 20 of the included downlink subframes in each group through high layer signaling.
  • the network side device 10 determines an SRS (Sounding Reference Signal) parameter group corresponding to the uplink subframe group, and determines the determined SRS parameter group corresponding to the uplink subframe group as the uplink subframe group.
  • SRS Sounding Reference Signal
  • the user equipment 20 periodically measures and transmits the SRS corresponding to the uplink subframe group according to the configured SRS parameter group.
  • the parameters included in the SRS parameter group can be seen in Table 2.
  • SRS Transmission comb that is, subcarriers transmitted by SRS
  • the SRS parameter group configured by the network side device 10 for different uplink subframe groups is independent of each other.
  • the SRS transmission subframes determined according to the SRS parameter group corresponding to any two uplink subframe groups are different.
  • the relative position of the subframe is a relative position of the SRS transmission subframe in one SRS transmission period.
  • the network side device 10 and the user equipment 20 can determine the SRS transmission subframe according to the SRS transmission period and the relative position of the subframe.
  • the user equipment 20 For an uplink subframe group, the user equipment 20 performs uplink channel measurement according to the SRS parameter group corresponding to the uplink subframe group, and sends the SRS on the SRS transmission subframe determined according to the corresponding SRS parameter group.
  • the SRS transmission subframes in the SRS parameter group corresponding to different uplink subframe groups may be different. Therefore, it is possible that the SRS transmission subframes corresponding to different uplink subframe groups are the same subframe. For example, if an SRS transmission period is 5 ms and an SRS transmission period is 10 ms, it may happen that the SRS transmission subframes corresponding to different uplink subframe groups are the same subframe.
  • the SRS corresponding to one uplink subframe group in different uplink subframe groups is used.
  • the parameter group sends an SRS. That is, when the SRS transmission subframe positions corresponding to different uplink subframe groups are located in the same subframe, the SRS is sent according to the SRS parameter group of one of the uplink subframe groups.
  • the network side device 10 notifies the user equipment 20 of the uplink subframe included in the uplink subframe group; correspondingly, the user equipment 20 receives the notification of the uplink subframe included in the uplink subframe group from the network side device.
  • the network side device 10 informs the user equipment 20 of the included downlink subframes in each group through high layer signaling.
  • the network side device 10 determines an SRS parameter group corresponding to the uplink subframe group, and determines the determined uplink subframe.
  • the SRS parameter group corresponding to the group is used as the channel measurement configuration information corresponding to the uplink subframe group;
  • the user equipment 20 periodically measures the SRS corresponding to the uplink subframe group according to the configured SRS parameter group.
  • the parameters included in the SRS parameter group can be found in Table 2.
  • the SRS parameter group configured by the network side device 10 for different uplink subframe groups is independent of each other.
  • the SRS transmission subframes determined according to the SRS parameter group corresponding to any two uplink subframe groups are different.
  • the relative position of the subframe is a relative position of the SRS transmission subframe in one SRS transmission period.
  • the network side device 10 and the user equipment 20 can determine the SRS transmission subframe according to the SRS transmission period and the relative position of the subframe.
  • the SRS transmission subframes in the SRS parameter group corresponding to different uplink subframe groups may be different. Therefore, it is possible that the SRS transmission subframes corresponding to different uplink subframe groups are the same subframe. For example, if an SRS transmission period is 5 ms and an SRS transmission period is 10 ms, it may happen that the SRS transmission subframes corresponding to different uplink subframe groups are the same subframe.
  • the user equipment 20 For an uplink subframe group, the user equipment 20 performs uplink channel measurement according to the SRS parameter group corresponding to the uplink subframe group, and sends the SRS on the SRS transmission subframe determined according to the corresponding SRS parameter group.
  • the SRS corresponding to one uplink subframe group in different uplink subframe groups is used.
  • the parameter group sends an SRS. That is, when the transmission subframe positions corresponding to different uplink subframe groups are located in the same subframe, the SRS is sent according to the SRS parameter group of one of the uplink subframe groups.
  • the user equipment 20 After the network side device 10 configures the channel measurement configuration information for the user equipment 20, the user equipment 20 is also required to trigger the user equipment 20 to send the SRS corresponding to the at least one uplink subframe group; correspondingly, the user equipment 20 is receiving After the triggering of the network-side device 10, determining, according to the SRS parameter group corresponding to the uplink subframe group, one SRS transmission subframe of the uplink subframe group, and transmitting, corresponding to the uplink subframe group, the SRS transmission subframe SRS.
  • the network side device 10 can trigger the user equipment to send the SRS corresponding to the at least one uplink subframe group by using the SRS request (Request) information in the PDCCH (Physical Downlink Control Channel); correspondingly, the user equipment According to the SRS request information in the PDCCH received from the network side device 10, after determining that the SRS needs to be sent, determining an SRS transmission subframe that is closest to the uplink subframe group according to the SRS parameter group corresponding to the uplink subframe group, And transmitting an SRS corresponding to the uplink subframe group on the SRS transmission subframe.
  • SRS request Request
  • PDCCH Physical Downlink Control Channel
  • the SRS request information is carried by a DL grant (downlink scheduling) or a UL grant (uplink scheduling) of the PDCCH.
  • Trigger mode 1 The SRS request information is 1 bit, and the bit indicates whether the feedback is triggered.
  • the user equipment 20 transmits the SRS on the subframe n+k; wherein k > m, m is The user equipment processing time in units of subframes, and the subframe n+k is the SRS transmission subframe closest to the subframe n.
  • the processing time of the user equipment includes the receiving and processing control signaling of the user equipment, the CSI measurement, the preparation time of the uplink sending, and the like (the processing time of the subsequent user equipment is the same as here, and the description is not repeated).
  • the processing time of a general user equipment is 4 subframes, that is, 4 ms.
  • the SRS request information is 1 bit.
  • the bit is 1, the feedback is triggered.
  • the bit is 0, the feedback is not triggered.
  • the SRS request information received in the subframe n when the SRS bit is 1, an aperiodic SRS is transmitted in the subframe n+k, where k > 4 and n+k is the most aperiodic transmission sub-subframe n frame.
  • the SRS is sent according to the SRS parameter of the subframe group 1; when the subframe n+ When k is the SRS transmission subframe corresponding to the uplink subframe group 2, the SRS is transmitted according to the SRS parameter of the subframe group 2.
  • the bit in the SRS request message is 0, the SRS is not transmitted.
  • Trigger mode 2 The SRS request information is multi-bit, and the multiple-bit combination of the SRS request information indicates which SRS of the uplink subframe is fed back by the user equipment.
  • the network side device 10 determines, according to the correspondence between the uplink subframe group and the bit value, the bit value corresponding to the uplink subframe group that needs to send the SRS, determines the SRS request information according to the determined bit value, and determines the determined SRS request information. Notifying the user device 20;
  • the user equipment 20 determines an uplink subframe group corresponding to the bit value of the SRS request information according to the correspondence between the uplink subframe group and the bit value, and determines the latest SRS according to the SRS parameter group corresponding to the determined uplink subframe group. Transmitting a location of the subframe, and transmitting an SRS corresponding to the uplink subframe group on the SRS transmission subframe.
  • the user equipment 20 determines one SRS transmission subframe according to the SRS parameter group corresponding to the uplink subframe group a, and sends and uplinks on the SRS transmission subframe.
  • the SRS corresponding to the subframe group a is the SRS corresponding to the subframe group a.
  • the user equipment 20 transmits the SRS on the subframe n+ki; where ki > m, m is The user equipment processing time in units of subframes, and the subframe n+ki is an SRS transmission subframe corresponding to the i-th uplink subframe group closest to the subframe n, where i is a positive integer less than or equal to N, and i is The number of uplink subframe groups that need to send SRS triggered by the SRS request information, where N is the number of uplink subframe groups.
  • the SRS is transmitted in the subframes n+k1 and/or n+k2, where kl > 4, k2 > 4, and the subframe n+kl is the SRS transmission subframe of the corresponding subframe group 1 closest to the subframe n, and the subframe n+k2 is the closest correspondence to the subframe n
  • the SRS transmission subframe of subframe group 2 is.
  • the respective SRS parameters are used when transmitting the SRS signals of subframe group 1 or 2.
  • the SRS is transmitted using only one set of parameters.
  • the SRS request information is multi-bit. When there are a large number of uplink subframe groups, the uplink subframe group is further divided into a set, and one set includes more than one uplink subframe group. The multiple bit combinations of the SRS request information are used to indicate which SRS of the uplink subframe group within the set is fed back by the user equipment.
  • the network side device 10 determines, according to the correspondence between the uplink subframe set and the bit value, the bit value corresponding to the uplink subframe set that needs to send the SRS, determines the SRS request information according to the determined bit value, and determines the determined SRS request information. Notifying the user equipment 20; wherein, an uplink subframe set includes at least one uplink subframe group; correspondingly, the user equipment 20 determines an uplink subframe corresponding to the bit value of the SRS request information according to the correspondence between the uplink subframe set and the bit value.
  • the SRS corresponding to the uplink subframe group is sent in the sending subframe, and the at least one uplink subframe group is included in one downlink subframe set.
  • the user equipment 20 determines that the SRS corresponding to the uplink subframe group in the uplink subframe set a needs to be fed back, wherein the uplink subframe set a includes the uplink subframe groups 1 and 2, and the user equipment 20 corresponds to the uplink subframe group 1
  • the SRS parameter group determines one SRS to send the subframe A, and sends the SRS corresponding to the uplink subframe group 1 on the SRS transmission subframe, and one SRS transmission after determining according to the SRS parameter group corresponding to the uplink subframe group 2 Subframe B, and transmits an SRS corresponding to the uplink subframe group 2 on the SRS transmission subframe.
  • the user equipment 20 transmits the SRS on the subframe n+ki;
  • ki > m
  • m is the processing time of the user equipment in units of subframes
  • the subframe n+ki is the SRS transmission subframe corresponding to the i-th uplink subframe group closest to the subframe n
  • i is less than or equal to A positive integer of N
  • i is an uplink subframe group number that needs to be sent by the SRS request information
  • N is the number of uplink subframe groups.
  • the uplink subframe group 1, 2 is formed into the uplink subframe set 1
  • the uplink subframe group 3, 4 is formed into the uplink subframe set 2 , as shown in Table 4.
  • the user equipment 20 receives the DL grant or UL grant carrying the SRS request in the subframe n, and then sends the SRS in the subframe n+ki, where ki > 4, and the subframe n+ki is the SRS transmission subframe corresponding to the subframe group i included in the triggered subframe set closest to the subframe n, and i is the subframe group number.
  • the respective SRS parameter sets are used when transmitting the SRS signals of each subframe group.
  • the network side device 10 obtains the uplink channel condition corresponding to the uplink subframe group by receiving the SRS of the user equipment 20.
  • the network side device in the embodiment of the present invention may be a station (such as a macro base station, a home base station, etc.), an RN (relay) device, or other network side devices.
  • a station such as a macro base station, a home base station, etc.
  • RN relay
  • the network side device in the system for performing uplink channel measurement includes: a dividing module 600 and a first processing module 610.
  • the dividing module 600 is configured to divide the uplink subframe into multiple uplink subframe groups according to the interference condition on the uplink subframe.
  • the first processing module 610 is configured to notify the user equipment of at least one channel measurement configuration corresponding to the uplink subframe group. information.
  • the first processing module 610 notifies the user equipment of the uplink subframe included in the uplink subframe group.
  • the first processing module 610 determines an SRS parameter group corresponding to the uplink subframe group; and determines the determined SRS parameter group corresponding to the uplink subframe group as the channel measurement configuration information corresponding to the uplink subframe group.
  • the SRS transmission subframes determined according to the SRS parameter group corresponding to any two uplink subframe groups are different.
  • the user equipment is triggered to send the SRS corresponding to the at least one uplink subframe group.
  • the first processing module 610 triggers the user equipment to send the SRS corresponding to at least one uplink subframe group by using the SRS request information in the PDCCH.
  • the bit indicates whether the feedback is triggered.
  • the SRS request information is a plurality of bits.
  • the first processing module 610 determines a bit value corresponding to the uplink subframe group that needs to transmit the SRS according to the correspondence between the uplink subframe group and the bit value, and determines the SRS according to the determined bit value.
  • the request information, and the determined SRS request information is notified to the user equipment; or according to the correspondence between the uplink subframe set and the bit value, determining a bit value corresponding to the uplink subframe set that needs to send the SRS, and determining according to the determined bit value.
  • the SRS request information is used to notify the user equipment of the determined SRS request information.
  • the uplink subframe group includes at least one uplink subframe group.
  • the user equipment in the system for performing uplink channel measurement according to the embodiment of the present invention includes: a receiving module 700 and a second processing module 710.
  • the receiving module 700 is configured to receive, by the network side device, at least one channel measurement configuration information corresponding to the uplink subframe group, where the uplink subframe group is obtained by the network side device according to the interference condition on the uplink subframe;
  • the second processing module 710 is configured to perform uplink channel measurement according to the channel measurement configuration information.
  • the receiving module 700 receives the notification of the uplink subframe included in the uplink subframe group from the network side device.
  • the channel measurement configuration information includes an SRS parameter group.
  • the SRS transmission subframes determined according to the SRS parameter group corresponding to any two uplink subframe groups are different.
  • the second processing module 710 sends the SRS corresponding to the uplink subframe group according to the configured SRS parameter group.
  • the second processing module 710 determines, according to the SRS parameter group corresponding to the uplink subframe group, an SRS transmission subframe that is closest to the uplink subframe group, and is in the SRS transmitter.
  • the SRS corresponding to the uplink subframe group is transmitted on the frame.
  • the second processing module 710 determines, according to the received SRS request information in the PDCCH from the network side device, that the uplink subframe group is the closest according to the SRS parameter group corresponding to the uplink subframe group after determining that the SRS needs to be sent.
  • One SRS transmits a subframe, and transmits an SRS corresponding to the uplink subframe group on the SRS transmission subframe.
  • the bit indicates whether the SRS transmission is triggered.
  • the second processing module 710 transmits the SRS on the subframe n+k; where k > m, m
  • the time is processed for the user equipment in units of subframes, and the subframe n+k is the SRS transmission subframe closest to the subframe n.
  • the SRS request information is a plurality of bits.
  • the second processing module 710 determines an uplink subframe group corresponding to the bit value of the SRS request information according to the correspondence between the uplink subframe group and the bit value, and according to the determined uplink subframe.
  • the SRS parameter group corresponding to the group determines the location of the most recent SRS transmission subframe, and sends the SRS corresponding to the uplink subframe group on the SRS transmission subframe; or determines according to the correspondence between the uplink subframe set and the bit value.
  • An uplink subframe set corresponding to the bit value of the SRS request information and determining, according to the SRS parameter group corresponding to each uplink subframe group in the uplink subframe set, a recent one of the SRS transmission subframes corresponding to the uplink subframe group And transmitting, in each of the determined SRS transmission subframes, an SRS corresponding to the uplink subframe group, where one downlink subframe set includes at least one uplink subframe group.
  • the second processing module 710 sends the SRS on the subframe n+ki; where ki > m, m
  • the processing time is the user equipment in the subframe
  • the subframe n+ki is the SRS transmission subframe corresponding to the i-th uplink subframe group closest to the subframe n, where i is a positive integer less than or equal to N, and i The number of the uplink subframe group to which the SRS needs to be sent, which is triggered by the SRS request information, where N is the number of uplink subframe groups.
  • the SRS transmission corresponding to different uplink subframe groups is determined.
  • the subframe is the same subframe, and the second processing module 710 is configured according to one uplink subframe group in different uplink subframe groups.
  • the SRS parameter group sends an SRS.
  • the embodiment of the present invention further provides a method for performing uplink channel measurement and a method for configuring channel measurement. Since the principle of solving the problem is similar to the system for performing uplink channel measurement in the embodiment of the present invention, these The implementation of the method can be seen in the implementation of the system, and the repetition will not be repeated.
  • the method for configuring channel measurement according to an embodiment of the present invention includes the following steps:
  • Step 801 The network side device divides the uplink subframe into multiple uplink subframe groups according to the interference condition in the uplink subframe.
  • Step 802 The network side device notifies the user equipment of at least one channel measurement configuration information corresponding to the uplink subframe group.
  • the embodiments of the present invention provide two schemes for performing uplink channel measurement, that is, periodic and aperiodic, which are respectively introduced below.
  • the network side device notifies the user equipment of the uplink subframe included in the uplink subframe group in addition to notifying the channel measurement configuration information.
  • the network side device determines the SRS parameter group corresponding to the uplink subframe group, and uses the determined SRS parameter group corresponding to the uplink subframe group as the channel measurement configuration information corresponding to the uplink subframe group.
  • the parameters included in the SRS parameter group can be found in Table 2.
  • the user equipment can periodically perform uplink channel measurement (including reporting) according to the SRS parameter group.
  • the SRS parameter group configured by the network side device to different uplink subframe groups is independent of each other.
  • the SRS transmission subframes determined according to the SRS parameter group corresponding to any two uplink subframe groups are different.
  • the relative position of the subframe is a relative position of the SRS transmission subframe in one SRS transmission period.
  • the network side device and the user equipment can determine the SRS transmission subframe according to the SRS transmission period and the relative position of the subframe.
  • the network side device notifies the user equipment of the uplink subframe included in the uplink subframe group in addition to notifying the channel measurement configuration information.
  • the network side device determines the SRS parameter group corresponding to the uplink subframe group, and uses the determined SRS parameter group corresponding to the uplink subframe group as the channel measurement configuration information corresponding to the uplink subframe group;
  • the user equipment periodically measures the SRS corresponding to the uplink subframe group according to the configured SRS parameter group.
  • the parameters included in the SRS parameter group can be found in Table 2.
  • the SRS parameter group configured by the network side device to different uplink subframe groups is independent of each other.
  • the SRS transmission subframes determined according to the SRS parameter group corresponding to any two uplink subframe groups are different.
  • the relative position of the subframe is a relative position of the SRS transmission subframe in one SRS transmission period.
  • the network side device and the user equipment can determine the SRS transmission subframe according to the SRS transmission period and the relative position of the subframe.
  • the network device After the network side device configures the channel measurement configuration information for the user equipment, the network device needs to trigger the user equipment to trigger the user equipment to send the SRS corresponding to the at least one uplink subframe group. That is to say, not every SRS transmission subframe needs to send an SRS, and it is determined according to the trigger of the network side device 10, which SRS transmission subframe is sent.
  • the network side device may trigger the user equipment to send the SRS corresponding to the at least one uplink subframe group by using the SRS request information in the PDCCH.
  • the SRS request information is carried by the DL grant or UL grant of the PDCCH.
  • the SRS request information is 1 bit, and the bit indicates whether the feedback is triggered.
  • Trigger mode 2 The SRS request information is multi-bit, and the multiple-bit combination of the SRS request information indicates which SRS of the uplink subframe is fed back by the user equipment.
  • the network side device determines, according to the correspondence between the uplink subframe group and the bit value, the bit value corresponding to the uplink subframe group that needs to send the SRS, determines the SRS request information according to the determined bit value, and notifies the determined SRS request information.
  • User equipment determines, according to the correspondence between the uplink subframe group and the bit value, the bit value corresponding to the uplink subframe group that needs to send the SRS, determines the SRS request information according to the determined bit value, and notifies the determined SRS request information.
  • the SRS request information is multi-bit. When there are a large number of uplink subframe groups, the uplink subframe group is further divided into a set, and one set includes more than one uplink subframe group. The multiple bit combinations of the SRS request information are used to indicate which SRS of the uplink subframe group within the set is fed back by the user equipment.
  • the network side device determines, according to the correspondence between the uplink subframe set and the bit value, the bit value corresponding to the uplink subframe set that needs to send the SRS, determines the SRS request information according to the determined bit value, and notifies the determined SRS request information.
  • User equipment wherein, one uplink subframe set includes at least one uplink subframe group.
  • the network side device obtains an uplink channel situation corresponding to the uplink subframe group by receiving the SRS of the user equipment.
  • the method for performing uplink channel measurement includes the following steps:
  • Step 901 The user equipment receives, by the network side device, at least one channel measurement configuration information corresponding to the uplink subframe group, where the uplink subframe group is obtained by the network side device according to the interference condition on the uplink subframe.
  • Step 902 The user equipment performs uplink channel measurement according to the channel measurement configuration information.
  • the embodiments of the present invention provide two schemes for performing uplink channel measurement, that is, periodic and aperiodic, which are respectively introduced below.
  • the user equipment receives the channel measurement configuration information corresponding to the uplink subframe group from the network side device.
  • the notification of the uplink subframe included in the uplink subframe group from the network side device is also received.
  • the network user equipment periodically measures and sends the SRS corresponding to the uplink subframe group according to the configured SRS parameter group.
  • the parameters included in the SRS parameter group can be found in Table 2.
  • the user equipment is different according to the SRS transmission subframe determined by the SRS parameter group corresponding to any two uplink subframe groups.
  • the user equipment For an uplink subframe group, the user equipment performs uplink channel measurement according to the SRS parameter group corresponding to the uplink subframe group, and sends an SRS on the SRS transmission subframe determined according to the corresponding SRS parameter group.
  • the SRS transmission subframes in the SRS parameter group corresponding to different uplink subframe groups may be different. Therefore, it is possible that the SRS transmission subframes corresponding to different uplink subframe groups are the same subframe. For example, if an SRS transmission period is 5 ms and an SRS transmission period is 10 ms, it may happen that the SRS transmission subframes corresponding to different uplink subframe groups are the same subframe.
  • the user equipment determines that the SRS transmission subframes of the different uplink subframe groups are the same feedback subframe according to the SRS parameter group corresponding to the uplink subframe group, the SRS parameters corresponding to one uplink subframe group in different uplink subframe groups.
  • the group sends the SRS. That is, when the SRS transmission subframe positions corresponding to different uplink subframe groups are located in the same subframe, the SRS is sent according to the SRS parameter group of one of the uplink subframe groups.
  • the user equipment receives the channel measurement configuration information corresponding to the uplink subframe group from the network side device, and receives the notification of the uplink subframe included in the uplink subframe group from the network side device.
  • the user equipment periodically measures the SRS corresponding to the uplink subframe group according to the configured SRS parameter group.
  • the parameters included in the SRS parameter group can be found in Table 2.
  • the user equipment is different according to the SRS transmission subframe determined by the SRS parameter group corresponding to any two uplink subframe groups.
  • the SRS transmission subframes in the SRS parameter group corresponding to different uplink subframe groups may be different. Therefore, it is possible that the SRS transmission subframes corresponding to different uplink subframe groups are the same subframe. For example, if an SRS transmission period is 5 ms and an SRS transmission period is 10 ms, it may happen that the SRS transmission subframes corresponding to different uplink subframe groups are the same subframe.
  • the user equipment For an uplink subframe group, the user equipment performs uplink channel measurement according to the SRS parameter group corresponding to the uplink subframe group, and sends the SRS on the SRS transmission subframe determined according to the corresponding SRS parameter group. If the user equipment determines that the SRS transmission subframes of the different uplink subframe groups are the same feedback subframe according to the SRS parameter group corresponding to the uplink subframe group, the SRS parameters corresponding to one uplink subframe group in different uplink subframe groups. The group sends the SRS. That is, when the transmission subframe positions corresponding to different uplink subframe groups are located in the same subframe, the SRS is sent according to the SRS parameter group of one of the uplink subframe groups.
  • the user equipment needs to determine, according to the SRS parameter group corresponding to the uplink subframe group, a SRS transmission subframe of the uplink subframe group after receiving the trigger of the network side device, and The SRS corresponding to the uplink subframe group is transmitted on the SRS transmission subframe.
  • the user equipment determines, according to the received SRS request information in the PDCCH from the network side device 10, the latest one of the uplink subframe group according to the SRS parameter group corresponding to the uplink subframe group after determining that the SRS needs to be sent.
  • the SRS transmits a subframe, and transmits an SRS corresponding to the uplink subframe group on the SRS transmission subframe.
  • the SRS request information is 1 bit, and the bit indicates whether the feedback is triggered.
  • the user equipment sends the SRS on the subframe n+k; where k > m, m is a sub The user equipment processing time in units of frames, and the subframe n+k is the SRS transmission subframe closest to the subframe n.
  • Trigger mode 2 The SRS request information is multi-bit, and the multiple-bit combination of the SRS request information indicates which SRS of the uplink subframe is fed back by the user equipment.
  • the user equipment determines an uplink subframe group corresponding to the bit value of the SRS request information according to the correspondence between the uplink subframe group and the bit value, and determines the latest SRS transmission according to the SRS parameter group corresponding to the determined uplink subframe group.
  • the position of the subframe, and the SRS corresponding to the uplink subframe group is transmitted on the SRS transmission subframe.
  • the user equipment 20 transmits the SRS on the subframe n+ki; where ki > m, m is The user equipment processing time in units of subframes, and the subframe n+ki is an SRS transmission subframe corresponding to the i-th uplink subframe group closest to the subframe n, where i is a positive integer less than or equal to N, and i is The number of uplink subframe groups that need to send SRS triggered by the SRS request information, where N is the number of uplink subframe groups.
  • the SRS request information is multi-bit. When there are a large number of uplink subframe groups, the uplink subframe group is further divided into a set, and one set includes more than one uplink subframe group. The multiple bit combinations of the SRS request information are used to indicate which SRS of the uplink subframe group within the set is fed back by the user equipment.
  • the specific user equipment determines, according to the correspondence between the uplink subframe set and the bit value, the uplink subframe set corresponding to the bit value of the SRS request information, and respectively according to the SRS parameter group corresponding to each uplink subframe group in the uplink subframe set. Determining the location of the most recent SRS transmission subframe corresponding to the uplink subframe group, and respectively determining each SRS The SRS corresponding to the uplink subframe group is sent in the sending subframe, and the at least one uplink subframe group is included in one downlink subframe set.
  • the user equipment sends the SRS on the subframe n+ki;
  • ki > m
  • m is the processing time of the user equipment in units of subframes
  • the subframe n+ki is the SRS transmission subframe corresponding to the i-th uplink subframe group closest to the subframe n
  • i is less than or equal to A positive integer of N
  • i is an uplink subframe group number that needs to be sent by the SRS request information
  • N is the number of uplink subframe groups.
  • FIG. 8 and FIG. 9 can synthesize a process to form a method for performing uplink channel measurement, that is, first performing step 801 and step 802, and then performing step 901 and step 902.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention can be embodied in the form of a computer program product embodied on one or more computer-usable storage interfaces (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • computer-usable storage interfaces including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例涉及无线通信技术领域,特别涉及一种配置信道测量和进行上行信道测量的方法、系统及设备,用以实现在动态TDD系统中配置信道测量和进行上行信道测量。本发明实施例配置信道测量的方法包括:网络侧设备根据上行子帧上的干扰情况将上行子帧分成多个上行子帧组;所述网络侧设备通知用户设备与上行子帧组对应的信道测量配置信息。由于网络侧设备通知用户设备根据上行子帧上的干扰情况划分的多个上行子帧组对应的信道测量配置信息,从而实现了在动态TDD系统中配置信道测量。

Description

配置信道测量和进行上行信道测量的方法、 系统及设备 本申请要求在 2012年 05月 18日提交中国专利局、 申请号为 201210156751.3、发明名称为
"配置信道测量和进行上行信道测量的方法、 系统及设备"的中国专利申请的优先权, 其全部内 容通过引用结合在本申请中。 技术领域 本发明涉及无线通信技术领域, 特别涉及一种配置信道测量和进行上行信道测量的方 法、 系统及设备。 背景技术 对于蜂窝系统釆用的基本的双工方式, TDD ( Time division duplex, 时分双工)模式 是指上下行链路使用同一个工作频带, 在不同的时间间隔上进行上下行信号的传输, 上下 行之间有保护间隔 ( Guard Period, GP ); FDD ( Frequency division duplex, 频分双工)模 式则指上下行链路使用不同的工作频带, 可以在同一个时刻在不同的频率载波上进行上下 行信号的传输, 上下行之间有保护带宽 (Guard Band, GB )。
LTE ( Long Term Evolution, 长期演进) TDD系统的帧结构稍复杂一些, 如图 1所示, 一个无线帧长度为 10ms, 包含特殊子帧和常规子帧两类共 10个子帧, 每个子帧为 lms。 特殊子帧分为 3个子帧: DwPTS ( Downlink Pilot Time Slot, 下行导频子帧); GP用于下 行和上行之间的保护间隔); UpPTS ( Uplink Pilot Time Slot, 上行导频子帧)。 常规子帧包 括上行子帧和下行子帧,用于传输上行 /下行控制信道和业务数据等。其中在一个无线帧中, 可以配置两个特殊子帧 (;位于子帧 1和 6), 也可以配置一个特殊子帧 (位于子帧 1)。 子帧 0 和子帧 5 以及特殊子帧中的 DwPTS 子帧总是用作下行传输, 子帧 2 以及特殊子帧中的 UpPTS 子帧总是用于上行传输, 其他子帧可以依据需要配置为用作上行传输或者下行传 输。
TDD 系统中上行和下行传输使用相同的频率资源, 在不同的子帧上传输上行 /下行信 号。 在常见的 TDD系统中, 包括 3G的 TD-SCDMA (时分同步码分多址) 系统和 4G的 TD-LTE 系统, 上行和下行子帧的划分是静态或半静态的, 通常的做法是在网络规划过程 中根据小区类型和大致的业务比例确定上下行子帧比例划分并保持不变。 这在宏小区大覆 盖的背景下是较为筒单的做法,并且也较为有效。而随着技术发展,越来越多的微小区( Pico cell ), 家庭基站( Home NodeB )等低功率基站被部署用于提供局部的小覆盖, 在这类小区 中, 用户数量较少, 且用户业务需求变化较大, 因此小区的上下行业务比例需求存在动态 改变的情况。
在多小区组网情况下, 传统的 TDD 网络中不同小区釆用相同的上下行配置, 因此在 上行子帧上或者下行子帧上, 基站或 UE受到如图 2A或图 2B所示的邻小区千扰:
Type 1邻小区千扰: 在相邻小区都进行下行传输的子帧上, 本区 UE下行接收受到邻 区基站下行信号的千扰;
Type 2邻小区千扰: 在相邻小区都进行上行传输的子帧上, 本区基站接收 UE上行信 号会受到邻区 UE上行信号的千扰。
同时, 在多小区组网中, 如果相邻的小区配置了不同的上下行比例, 则可能出现如图 3所示的交叉时隙千扰。在图 3中, 宏小区在发送下行信号的时隙上, Pico cell用于上行信 号接收, 则两小区之间出现两种类型的千扰。
在动态 TDD 系统中, 由于存在固定传输方向和可变传输方向的子帧, 在每一个可变 子帧上, 由于邻区的传输方向是灵活可变的, 并且本区可能存在一个以上的强千扰邻区, 因此本区受到的千扰类型也可能互不相同。 极端情况下, 每个可变子帧上, 本区用于下行 传输中受到的邻区千扰都不相同。 在动态 TDD 系统的不同上行子帧上, 由于邻区千扰的 不同, 导致实际的信道情况有显著的差别, 在某一上行子帧上测量到的 SRS ( Sounding Reference Signal,探测用参考信号)并不适用于其他具有不同邻区千扰情况的下行子帧上。 例如在固定上行子帧上测量的信道情况并不适用于可变的上行子帧, 在某一可变上行子帧 上测量到的信道情况并不适用于其他的可变上行子帧。 基于上述原因, 目前在 LTE Rel-8/9/lO中釆用的配置信道测量和上行信道测量并不适用动态 TDD系统。
综上所述, 目前动态 TDD系统中还没有一种配置信道测量和进行上行信道测量方法。 发明内容 本发明实施例提供一种配置信道测量的方法及设备, 用以实现在动态 TDD 系统中配 置信道测量。
本发明实施例提供一种进行上行信道测量的方法、 系统及设备, 用以实现在动态 TDD 系统中进行上行信道测量。
本发明实施例提供的一种配置信道测量的方法, 包括:
网络侧设备根据上行子帧上的千扰情况将上行子帧分成多个上行子帧组;
所述网络侧设备通知用户设备至少一个与上行子帧组对应的信道测量配置信息。
本发明实施例提供的一种进行上行信道测量的方法, 包括:
用户设备接收来自网络侧设备的至少一个与上行子帧组对应的信道测量配置信息, 其 中上行子帧组是网络侧设备根据上行子帧上的千扰情况划分得到的; 所述用户设备根据信道测量配置信息进行上行信道测量。
本发明实施例提供的一种配置信道测量的网络侧设备, 包括:
划分模块, 用于根据上行子帧上的千扰情况将上行子帧分成多个上行子帧组; 第一处理模块, 用于通知用户设备至少一个与上行子帧组对应的信道测量配置信息。 本发明实施例提供的一种进行上行信道测量的用户设备, 包括:
接收模块, 用于接收来自网络侧设备的至少一个与上行子帧组对应的信道测量配置信 息, 其中上行子帧组是网络侧设备根据上行子帧上的千扰情况划分得到的;
第二处理模块, 用于根据信道测量配置信息进行上行信道测量。
本发明实施例提供的一种进行上行信道测量的系统, 包括:
网络侧设备, 用于根据上行子帧上的千扰情况将上行子帧分成多个上行子帧组; 通知 用户设备至少一个与上行子帧组对应的信道测量配置信息;
用户设备, 用于接收来自网络侧设备的至少一个与上行子帧组对应的信道测量配置信 息; 根据信道测量配置信息进行上行信道测量。
由于网络侧设备通知用户设备根据上行子帧上的千扰情况划分的多个上行子帧组对 应的信道测量配置信息, 从而实现了在动态 TDD系统中配置信道测量。
由于用户设备根据信道测量配置信息进行上行信道测量, 从而实现了在动态 TDD 系 统中进行上行信道测量。 附图说明 图 1为 TD-LTE系统帧结构示意图;
图 2A为第一种 TDD相同时隙配置的邻小区千扰示意图;
图 2B为第二种 TDD相同时隙配置的邻小区千扰示意图;
图 3为 TDD交叉时隙邻小区千扰示意图;
图 4A为本发明实施例第一种子帧结构示意图;
图 4B为本发明实施例第二种子帧结构示意图;
图 5为本发明实施例进行上行信道测量的系统结构示意图;
图 6为本发明实施例进行上行信道测量的系统中的网络侧设备结构示意图; 图 7为本发明实施例进行上行信道测量的系统中的用户设备结构示意图;
图 8为本发明实施例配置信道测量的方法流程示意图;
图 9为本发明实施例进行上行信道测量的方法流程示意图。 具体实施方式 本发明实施例网络侧设备根据上行子帧上的千扰情况将上行子帧分成多个上行子帧 组, 并通知用户设备与上行子帧组对应的信道测量配置信息。 由于网络侧设备通知用户设 备根据上行子帧上的千扰情况划分的多个上行子帧组对应的信道测量配置信息, 从而实现 了在动态 TDD系统中配置信道测量。
本发明实施例用户设备接收来自网络侧设备的与上行子帧组对应的信道测量配置信 息, 根据信道测量配置信息进行上行信道测量。 由于用户设备根据信道测量配置信息进行 上行信道测量, 从而实现了在动态 TDD 系统中进行上行信道测量; 进一步使得网络侧设 备能够准确获得具有不同千扰情况的上行子帧的信道情况, 并依据该信道情况进行千扰情 况相似的上行子帧的调度, 解决了在动态 TDD 系统中不同子帧邻区千扰情况显著变化情 况下的上行信道情况测量的问题, 提升了系统性能。
其中, 本发明实施例涉及的上行型配置中的无线帧包括: 可变子帧、 下行固定子帧、 上行固定子帧和特殊子帧, 其中, 下行固定子帧是传输方向为下行方向且传输方向固定不 变的子帧, 以及特殊子帧中的下行导频时隙, 上行固定子帧是传输方向为上行方向且传输 方向固定不变的子帧, 可变子帧是传输方向可变的子帧, 可变子帧还进一步包括上行可变 子帧和下行可变子帧, 上行可变子帧为确定为用作上行传输的可变子帧, 下行可变子帧为 确定为用作下行传输的可变子帧。
本发明实施例特殊子帧中的上行导频时隙与背景技术中的特殊子帧中的上行导频时 隙的功能相同, 不再重复说明。
本发明实施例能够应用于 TDD系统中 (比如 TD-LTE系统), 也可以应用于其他需要 动态调整子帧上下行配置的系统中, 例如 TD-SCDMA 系统及其后续演进系统, WiMAX ( Worldwide Interoperability for Microwave Access , 4 波存取全球互通 ) 系统及其后续演进 系统等。
为了支持使用更多的下行子帧, 在一个无线帧内可以仅设置一个固定的上行子帧, 即 设置子帧 2为上行固定子帧, 子帧 0和子帧 5为下行固定子帧, 子帧 1为特殊子帧, 子帧 6为特殊子帧或下行子帧 (传输方向为下行的子帧), 其余子帧为可变子帧;
其中, 当子帧 7为上行子帧 (即子帧 7为传输方向为上行的可变子帧, 即上行可变子 帧) 时, 则子帧 6为特殊子帧, 如图 4A所示的无线帧结构;
当子帧 7为下行子帧(即子帧 7为传输方向为下行的可变子帧, 即下行可变子帧)时, 子帧 6为下行子帧(即传输方向为下行的子帧), 如图 4B所示的无线帧结构; 在该帧结构 下, 可以支持的最大的下行(DL )子帧与上行(UL )子帧的比例为 9: 1 , 从而使动态 TDD 系统中资源自适应的动态范围更大, 更好的匹配业务的变化。 其中, 本发明实施例网络侧设备根据上行子帧上的千扰情况将上行子帧分成多个上行 子帧组时, 可以根据需要调度的子帧传输方向和与目标小区相邻的强千扰小区的子帧配置 信息, 将一个无线帧中的子帧分成多个上行子帧组。
较佳地, 网络侧设备可以根据下列方式中的一种判断与目标小区相邻的小区是否是强 千扰小区:
( 1 ) 网络侧设备根据检测到的与目标小区相邻的小区的信号强度, 判断与目标小区 相邻的小区是否是强千扰小区, 比如将信号强度与阈值进行比较, 如果大于阈值, 认为该 小区是强千扰小区;
( 2 ) 网络侧设备根据属于目标小区的用户设备上报的产生强千扰小区对应的小区标 识, 判断与目标小区相邻的小区是否是强千扰小区, 比如可以规定用户设备对与目标小区 相邻的小区的信号强度进行检测, 如果信号强度大于阈值, 则上 4艮该小区的小区标识, 相 应的网络侧设备在收到小区标识后将对应的小区作为强千扰小区;
( 3 ) 网络侧设备在收到与目标小区相邻的小区发送的通知信息后, 确定该小区是与 目标小区相邻的强千扰小区, 其中通知信息是与目标小区相邻的小区根据收到的目标小区 发送的信号强度确定自身是目标小区的强千扰小区后发送的, 比如邻区可以测量被千扰小 区的信号, 如果路损较小, 则认为自己是该小区的强千扰小区, 然后通过网络接口的信令 通^该小区。
需要说明的是, 本发明实施例并不局限于上述 3种方式, 其他能够判断与目标小区相 邻的小区是否是强千扰小区的方式同样适用本发明实施例。
较佳地, 网络侧设备可以通过接口信令通知获得与目标小区相邻的强千扰小区的子帧 配置信息, 也可以自主检测获得与目标小区相邻的强千扰小区的子帧配置信息。 当然, 其 他能够获得子帧配置信息的方式也适用本发明实施例, 比如由用户设备获得后通知网络侧 设备。
在实施中, 网络侧设备可以将小区中传输方向是上行或含有上行导频时隙的固定子帧 划分在一个上行子帧组中, 以及将在目标小区中传输方向是上行的可变子帧划分到至少一 个上行子帧组中。
比如在 TDD 7种子帧配置中, 将一个无线帧中的所有上行子帧划分为两类,一类是邻 区配置方向固定不变的子帧, 另一类是邻区配置方向可能发生变化的子帧 (这里子帧编号 为一个无线帧内的子帧编号, 即 N = {0, 1,2, ...9}):
邻区配置方向固定不变的子帧, 例如每个无线帧中的子帧 0, 1,2,5,6, 其中子帧 0, 1,5,6 固定为下行子帧(或含有下行导频时隙的子帧),子帧 2固定为上行子帧。对于在子帧 0, 1,5,6 这 4个下行子帧, 由于邻区千扰都是来自基站的上行千扰, 可以认为基站在这几个子帧所 受到的千扰基本相等, 所以将上行子帧 2组成一个上行子帧组; 然后再将在目标小区中传 输方向是上行的可变子帧划分到至少一个上行子帧组, 例如每个无线帧中的子帧 3,4,7,8,9 是可变子帧, 则将子帧 3,4,7,8,9划分的上行子帧组的数量不大于子帧 3,4,7,8,9中为上行子 帧的个数。
较佳地, 网络侧设备还可以将可变子帧分为两类可变子帧, 第一类可变子帧是在强千 扰小区中传输方向都是上行的可变子帧, 第二类可变子帧是在部分强千扰小区中传输方向 是上行的可变子帧。
然后, 网络侧设备将第一类可变子帧划分到一个上行子帧组中; 以及将第二类可变子 帧划分到至少一个上行子帧组中, 其中划分后的每个上行子帧组中的第二类可变子帧在每 个强千扰小区中传输方向都相同。
具体的, 如果所有邻区在当前子帧的方向都与目标小区相同, 即都为上行,则可以将该 子帧与子帧 2归为同一个上行子帧组;
如果有一个或多个邻区在当前子帧方向与目标小区不同, 则可以得出多种千扰方向组 合, 将具有相同千扰方向组合的子帧放在同一个上行子帧组中。
假设目标小区为子帧配置 6; 存在 2个强千扰邻区, 时隙配置分别为配置 1和配置 2。 如表 1所示:
Figure imgf000007_0001
表 1
子帧 2是在目标小区中传输方向是上行的固定子帧;
子帧 3,4,7,8是在目标小区中传输方向是上行的可变子帧,子帧 7在小区 1和小区 2中 传输方向都是上行, 所以子帧 7是第一类可变子帧, 将子帧 7放到上行子帧组中, 则上行 子帧组包括子帧 2,7。
子帧 3,4,8对应的在小区 1和小区 2的传输方向组合分别为: (U,D), (D,D), (U,D)。 由于子帧 3和子帧 8在小区 1和小区 2的传输方向组合都是 (U,D),所以将子帧 3和子 帧 8划分到一个上行子帧组中, 将子帧 4划分到一个上行子帧组中。
除了上面的方式, 本发明实施例还可以将每个下行子帧分别作为一个上行子帧组; 还 可以固定子帧分为一组, 可变子帧分为一组。 需要说明的是, 本发明实施例并不局限于上述划分方式, 其他能够根据下行子帧上的 千扰情况划分上行子帧组的方式都适用本发明实施例。
下面结合说明书附图对本发明实施例作进一步详细描述。
在下面的说明过程中, 先从网络侧和用户设备侧的配合实施进行说明, 最后分别从网 络侧与用户设备侧的实施进行说明, 但这并不意味着二者必须配合实施, 实际上, 当网络 侧与用户设备侧分开实施时, 也解决了分别在网络侧、 用户设备侧所存在的问题, 只是二 者结合使用时, 会获得更好的技术效果。
如图 5所示, 本发明实施例进行上行信道测量的系统包括: 网络侧设备 10和用户设 备 20。
网络侧设备 10, 用于根据上行子帧上的千扰情况将上行子帧分成多个上行子帧组, 通 知用户设备 20至少一个与上行子帧组对应的信道测量配置信息;
用户设备 20, 用于接收来自网络侧设备 10的至少一个与上行子帧组对应的信道测量 配置信息, 根据信道测量配置信息进行上行信道测量。
在实施中, 网络侧设备 10 划分的上行子帧组的信道测量配置信息并非都要通知给同 一个用户设备 20, 根据需要网络侧设备 10可以选择将哪个上行子帧组的信道测量配置信 息通知给用户设备 20。 比如有上行子帧组 1、 2、 3、 4、 5 , 则可以将上行子帧组 1和 2的 信道测量配置信息通知给用户设备 a, 将上行子帧组 3的信道测量配置信息通知给用户设 备 b, 将上行子帧组 4和 5的信道测量配置信息通知给用户设备0。对于用户设备, 只需要 根据信道测量配置信息进行相应测量和反馈, 不需要知道一共有多少组。
其中, 本发明实施例提供了两种进行上行信道测量的方案, 即周期性和非周期性, 下 面分别进行介绍。
一、 周期性进行上行信道测量。
具体的, 网络侧设备 10通知用户设备 20上行子帧组中包括的上行子帧; 相应的, 用 户设备 20接收到来自网络侧设备的上行子帧组中包括的上行子帧的通知。
比如, 网络侧设备 10通过高层信令告知用户设备 20每一组内的包含的下行子帧。 较佳地, 网络侧设备 10确定与上行子帧组对应的 SRS ( Sounding Reference Signal, 探 测用参考信号)参数组, 将确定的与上行子帧组对应的 SRS参数组作为该上行子帧组对应 的信道测量配置信息;
相应的, 用户设备 20根据配置的 SRS参数组, 周期测量并发送与上行子帧组对应的 SRS。 SRS参数组包括的参数可以参见表 2。
SRS Transmission comb (即 SRS传输的子载波
编号)
SRS传输频域起始位置
SRS传输持续时间(一次传输,多次传输)
SRS传输周期和子帧相对位置
SRS传输带宽
SRS跳频带宽
SRS传输序列循环移位
SRS传输的天线端口
表 2
需要说明的是, 本发明实施例并不局限于表 2中的内容, 其他与信道测量配置有关的 参数同样可以作为 SRS参数组中的参数。
在实施中, 网络侧设备 10对不同的上行子帧组配置的 SRS参数组是相互独立的。 较佳地, 根据任意两个上行子帧组对应的 SRS参数组确定的 SRS发送子帧不同。 具体的, 子帧相对位置是 SRS发送子帧在一个 SRS传输周期中的相对位置。 网络侧 设备 10和用户设备 20根据 SRS传输周期和子帧相对位置, 就可以确定 SRS传输子帧。
针对一个上行子帧组, 用户设备 20根据该上行子帧组对应的 SRS参数组进行上行信 道测量, 并在根据对应的 SRS参数组确定的 SRS传输子帧上发送 SRS。
由于不同上行子帧组对应的 SRS参数组中的 SRS传输周期有可能不同, 所以有可能 出现不同上行子帧组对应的 SRS发送子帧是同一个子帧。 比如一个 SRS传输周期是 5ms, 一个 SRS传输周期是 10ms, 则有可能出现不同上行子帧组对应的 SRS发送子帧是同一个 子帧。
若用户设备 20根据上行子帧组对应的 SRS参数组确定不同上行子帧组对应的 SRS发 送子帧是同一个反馈子帧时,根据不同上行子帧组中的一个上行子帧组对应的 SRS参数组 发送 SRS。 也就是说, 当不同上行子帧组对应的 SRS传输子帧位置位于同一个子帧时, 按 照其中一个上行子帧组的 SRS参数组发送 SRS。
二、 非周期性进行上行信道测量。
具体的, 网络侧设备 10通知用户设备 20上行子帧组中包括的上行子帧; 相应的, 用 户设备 20接收到来自网络侧设备的上行子帧组中包括的上行子帧的通知。
比如, 网络侧设备 10通过高层信令告知用户设备 20每一组内的包含的下行子帧。 较佳地, 网络侧设备 10确定与上行子帧组对应的 SRS参数组, 将确定的与上行子帧 组对应的 SRS参数组作为该上行子帧组对应的信道测量配置信息;
相应的, 用户设备 20根据配置的 SRS参数组, 周期测量与上行子帧组对应的 SRS。 SRS参数组包括的参数可以参见表 2。
需要说明的是, 本发明实施例并不局限于表 2中的内容, 其他与信道测量配置有关的 参数同样可以作为 SRS参数组中的参数。
在实施中, 网络侧设备 10对不同的上行子帧组配置的 SRS参数组是相互独立的。 较佳地, 根据任意两个上行子帧组对应的述 SRS参数组确定的 SRS发送子帧不同。 具体的, 子帧相对位置是 SRS发送子帧在一个 SRS传输周期中的相对位置。 网络侧 设备 10和用户设备 20根据 SRS传输周期和子帧相对位置, 就可以确定 SRS传输子帧。
由于不同上行子帧组对应的 SRS参数组中的 SRS传输周期有可能不同, 所以有可能 出现不同上行子帧组对应的 SRS发送子帧是同一个子帧。 比如一个 SRS传输周期是 5ms, 一个 SRS传输周期是 10ms, 则有可能出现不同上行子帧组对应的 SRS发送子帧是同一个 子帧。
针对一个上行子帧组, 用户设备 20根据该上行子帧组对应的 SRS参数组进行上行信 道测量, 并在根据对应的 SRS参数组确定的 SRS传输子帧上发送 SRS。
若用户设备 20根据上行子帧组对应的 SRS参数组确定不同上行子帧组对应的 SRS发 送子帧是同一个反馈子帧时,根据不同上行子帧组中的一个上行子帧组对应的 SRS参数组 发送 SRS。 也就是说, 当不同上行子帧组对应的传输子帧位置位于同一个子帧时, 按照其 中一个上行子帧组的 SRS参数组发送 SRS。
由于是非周期反馈, 网络侧设备 10为用户设备 20配置信道测量配置信息之后, 还需 要触发用户设备 20触发户设备 20发送与至少一个上行子帧组对应的 SRS; 相应的, 用户 设备 20在收到网络侧设备 10的触发后,根据与上行子帧组对应的 SRS参数组确定该上行 子帧组最近的一个 SRS发送子帧, 并在该 SRS发送子帧上发送与上行子帧组对应的 SRS。
也就是说, 并非每个 SRS发送子帧都需要发送 SRS , 需要根据网络侧设备 10的触发 确定在哪个 SRS发送子帧上发送 SRS。
较佳地, 网络侧设备 10可以通过 PDCCH ( Physical Downlink Control Channel, 物理 下行控制信道) 中的 SRS request (请求)信息触发用户设备发送与至少一个上行子帧组对 应的 SRS;相应的,用户设备 20根据收到的来自网络侧设备 10的 PDCCH中的 SRS request 信息, 在确定需要发送 SRS后, 根据与上行子帧组对应的 SRS参数组确定该上行子帧组 最近的一个 SRS发送子帧, 并在该 SRS发送子帧上发送与上行子帧组对应的 SRS。
比如通过 PDCCH的 DL grant (下行链路调度)或 UL grant (上行链路调度)携带 SRS request信息。
其中, 通过 SRS request信息触发的方式有很多种, 下面列举几种。 触发方式一、 SRS request信息为 1比特, 则比特位表示是否触发反馈。
较佳地,若在子帧 n中接收到包含 SRS request信息的 PDCCH,且 SRS request信息指 示需要发送 SRS, 用户设备 20在子帧 n+k上发送 SRS; 其中, k > m, m为以子帧为单位 的用户设备处理时间, 且子帧 n+k为距离子帧 n最近的 SRS发送子帧。
其中, 用户设备的处理时间包括用户设备接收和处理控制信令、 进行 CSI测量, 上行 发送的准备时间等 (后续出现的用户设备的处理时间与这里相同, 不再重复介绍)。 比如 一般用户设备的处理时间是 4个子帧的长度, 即 4ms。
例如 SRS request信息为 1比特,比特为 1时触发反馈, 比特为 0时不触发反馈。 根据 子帧 n中接收到的 SRS request信息, 当 SRS比特为 1时, 在子帧 n+k中发送非周期 SRS, 其中 k > 4且 n+k为距离子帧 n最近的非周期传输子帧。
假设有上行子帧组 1和 2两个组,当子帧 n+k为上行子帧组 1对应的 SRS发送子帧时, 则按照子帧组 1的 SRS参数发送 SRS; 当子帧 n+k为上行子帧组 2对应的 SRS发送子帧 时, 则按照子帧组 2的 SRS参数发送 SRS。 当 SRS request信息中的比特为 0时, 不发送 SRS。
触发方式二、 SRS request信息为多比特, 通过 SRS request信息的多种比特组合指示 用户设备反馈哪一组上行子帧对应的 SRS。
具体的, 网络侧设备 10根据上行子帧组和比特值的对应关系, 确定需要发送 SRS的 上行子帧组对应的比特值, 根据确定的比特值确定 SRS request信息, 并将确定的 SRS request信息通知用户设备 20;
相应的, 用户设备 20根据上行子帧组和比特值的对应关系, 确定 SRS request信息的 比特值对应的上行子帧组, 并根据确定的上行子帧组对应的 SRS 参数组确定最近的一个 SRS发送子帧的位置, 并在该 SRS发送子帧上发送与该上行子帧组对应的 SRS。
比如用户设备 20确定需要反馈上行子帧组 a的 SRS , 则用户设备 20根据上行子帧组 a对应的 SRS参数组确定之后的一个 SRS发送子帧, 并在该 SRS发送子帧上发送与上行 子帧组 a对应的 SRS。
较佳地,若在子帧 n中接收到包含 SRS request信息的 PDCCH,且 SRS request信息指 示需要发送 SRS, 用户设备 20在子帧 n+ki上发送 SRS; 其中, ki > m, m为以子帧为单 位的用户设备处理时间, 且子帧 n+ki为距离子帧 n最近的第 i个上行子帧组对应的 SRS 发送子帧, i为小于等于 N的正整数, 且 i为由 SRS request信息触发的需要发送 SRS的上 行子帧组序号, N为上行子帧组的数目
以 2比特为例,如表 3所示,用户设备 20在子帧 n接收到携带 SRS request信息的 DL grant或 UL grant, 则在子帧 n+kl和 /或 n+k2发送 SRS, 其中 kl > 4,k2 > 4, 且子帧 n+kl 为距离子帧 n最近的对应子帧组 1的 SRS发送子帧, 子帧 n+k2为距离子帧 n最近的对应 子帧组 2的 SRS发送子帧。 传输子帧组 1或 2的 SRS信号时使用各自的 SRS参数。 当由 如上规则确定的子帧 kl=k2时, 仅使用一组参数发送 SRS。
Figure imgf000012_0001
表 3
触发方式三、 SRS request信息为多比特。 当上行子帧组较多时, 进一步将上行子帧组 划分成集合,一个集合内包含一个以上的上行子帧组。并使用 SRS request信息的多种比特 组合指示用户设备反馈哪一个集合内的上行子帧组的 SRS。
具体的, 网络侧设备 10根据上行子帧集合和比特值的对应关系, 确定需要发送 SRS 的上行子帧集合对应的比特值,根据确定的比特值确定 SRS request信息,并将确定的 SRS request信息通知用户设备 20; 其中, 一个上行子帧集合中包括至少一个上行子帧组; 相应的, 用户设备 20根据上行子帧集合和比特值的对应关系, 确定 SRS request信息 的比特值对应的上行子帧集合, 并分别根据上行子帧集合中的每个上行子帧组对应的 SRS 参数组确定最近的一个与该上行子帧组对应的 SRS发送子帧的位置,并分别在确定的每个 SRS发送子帧中发送与该上行子帧组对应的 SRS, 其中一个下行子帧集合中包括至少一个 上行子帧组。
比如用户设备 20确定需要反馈上行子帧集合 a中的上行子帧组对应的 SRS ,其中上行 子帧集合 a中包括上行子帧组 1和 2,则用户设备 20根据上行子帧组 1对应的 SRS参数组 确定之后的一个 SRS发送子帧 A,并在该 SRS发送子帧上发送与上行子帧组 1对应的 SRS, 以及根据上行子帧组 2对应的 SRS参数组确定之后的一个 SRS发送子帧 B, 并在该 SRS 发送子帧上发送与上行子帧组 2对应的 SRS。
较佳地, 若用户设备 20在子帧 n中接收到包含 SRS request信息的 PDCCH, 且 SRS request信息指示需要发送 SRS时, 用户设备 20在子帧 n+ki上发送 SRS;
其中, ki > m, m为以子帧为单位的用户设备处理时间, 且子帧 n+ki为距离子帧 n最 近的第 i个上行子帧组对应的 SRS发送子帧, i为小于等于 N的正整数,且 i为由 SRS request 信息触发的需要发送 SRS的上行子帧组序号, N为上行子帧组的数目。
以 SRS request为 2比特为例, 并且划分了 4个上行子帧组为例, 将上行子帧组 1,2组 成上行子帧集合 1 , 将上行子帧组 3 ,4组成上行子帧集合 2 , 如表 4所示。 用户设备 20在 子帧 n接收到携带 SRS request的 DL grant或 UL grant, 则在子帧 n+ki发送 SRS, 其中 ki > 4, 且子帧 n+ki为距离子帧 n最近的包含在被触发的子帧集合中的子帧组 i对应的 SRS 发送子帧, i为子帧组编号。 传输每个子帧组的 SRS信号时使用各自的 SRS参数组。
Figure imgf000013_0001
表 4
基于如上的方法, 网络侧设备 10通过接收用户设备 20的 SRS获得上行子帧组对应的 上行信道情况。
其中, 本发明实施例的网络侧设备可以^ &站(比如宏基站、 家庭基站等), 也可以 是 RN (中继)设备, 还可以是其它网络侧设备。
如图 6所示, 本发明实施例进行上行信道测量的系统中的网络侧设备包括: 划分模块 600和第一处理模块 610。
划分模块 600, 用于根据上行子帧上的千扰情况将上行子帧分成多个上行子帧组; 第一处理模块 610, 用于通知用户设备至少一个与上行子帧组对应的信道测量配置信 息。
较佳地, 第一处理模块 610通知用户设备上行子帧组中包括的上行子帧。
较佳地, 第一处理模块 610确定与上行子帧组对应的 SRS参数组; 将确定的与上行子 帧组对应的 SRS参数组作为该上行子帧组对应的信道测量配置信息。
较佳地, 根据任意两个上行子帧组对应的 SRS参数组确定的 SRS发送子帧不同。 较佳地,第一处理模块 610通知用户设备与上行子帧组对应的信道测量配置信息之后, 触发用户设备发送与至少一个上行子帧组对应的 SRS。
较佳地,第一处理模块 610通过 PDCCH中的 SRS request信息触发用户设备发送与至 少一个上行子帧组对应的 SRS。
较佳地, SRS request信息为 1比特时, 比特位表示是否触发反馈。
较佳地, SRS request信息为多个比特; 第一处理模块 610根据上行子帧组和比特值 的对应关系, 确定需要发送 SRS的上行子帧组对应的比特值,根据确定的比特值确定 SRS request信息, 并将确定的 SRS request信息通知用户设备; 或根据上行子帧集合和比特值 的对应关系, 确定需要发送 SRS 的上行子帧集合对应的比特值, 根据确定的比特值确定
SRS request信息, 并将确定的 SRS request信息通知用户设备; 其中, 一个上行子帧集合 中包括至少一个上行子帧组。 如图 7所示,本发明实施例进行上行信道测量的系统中的用户设备包括:接收模块 700 和第二处理模块 710。
接收模块 700, 用于接收来自网络侧设备的至少一个与上行子帧组对应的信道测量配 置信息, 其中上行子帧组是网络侧设备根据上行子帧上的千扰情况划分得到的;
第二处理模块 710, 用于根据信道测量配置信息进行上行信道测量。
较佳地 ,接收模块 700接收到来自网络侧设备的上行子帧组中包括的上行子帧的通知。 较佳地, 信道测量配置信息包括 SRS参数组。
较佳地, 根据任意两个上行子帧组对应的 SRS参数组确定的 SRS发送子帧不同。 较佳地, 第二处理模块 710根据配置的 SRS参数组发送与上行子帧组对应的 SRS。 较佳地,第二处理模块 710在收到网络侧设备的触发后,根据与上行子帧组对应的 SRS 参数组确定该上行子帧组最近的一个 SRS发送子帧, 并在该 SRS发送子帧上发送与上行 子帧组对应的 SRS。
较佳地, 第二处理模块 710根据收到的来自网络侧设备的 PDCCH中的 SRS request 信息, 在确定需要发送 SRS后, 根据与上行子帧组对应的 SRS参数组确定该上行子帧组 最近的一个 SRS发送子帧, 并在该 SRS发送子帧上发送与上行子帧组对应的 SRS。
较佳地, SRS request信息为 1比特时, 比特位表示是否触发 SRS发送。
较佳地,若在子帧 n中接收到包含 SRS request信息的 PDCCH,且 SRS request信息指 示需要发送 SRS, 第二处理模块 710在子帧 n+k上发送 SRS; 其中, k > m, m为以子帧为 单位的用户设备处理时间, 且子帧 n+k为距离子帧 n最近的 SRS发送子帧。
较佳地, SRS request信息为多个比特; 第二处理模块 710根据上行子帧组和比特值 的对应关系,确定 SRS request信息的比特值对应的上行子帧组, 并根据确定的上行子帧组 对应的 SRS参数组确定最近的一个 SRS发送子帧的位置, 并在该 SRS发送子帧上发送与 该上行子帧组对应的 SRS; 或根据上行子帧集合和比特值的对应关系, 确定 SRS request 信息的比特值对应的上行子帧集合, 并分别根据上行子帧集合中的每个上行子帧组对应的 SRS参数组确定最近的一个与该上行子帧组对应的 SRS发送子帧的位置,并分别在确定的 每个 SRS发送子帧中发送与该上行子帧组对应的 SRS,其中一个下行子帧集合中包括至少 一个上行子帧组。
较佳地,若在子帧 n中接收到包含 SRS request信息的 PDCCH,且 SRS request信息指 示需要发送 SRS, 第二处理模块 710在子帧 n+ki上发送 SRS; 其中, ki > m, m为以子帧 为单位的用户设备处理时间,且子帧 n+ki为距离子帧 n最近的第 i个上行子帧组对应的 SRS 发送子帧, i为小于等于 N的正整数, 且 i为由 SRS request信息触发的需要发送 SRS的上 行子帧组序号, N为上行子帧组的数目。
较佳地, 若根据上行子帧组对应的 SRS参数组确定不同上行子帧组对应的 SRS发送 子帧是同一个子帧, 第二处理模块 710根据不同上行子帧组中的一个上行子帧组对应的
SRS参数组发送 SRS。
基于同一发明构思, 本发明实施例中还提供了一种进行上行信道测量的方法和配置信 道测量的方法, 由于这些方法解决问题的原理与本发明实施例进行上行信道测量的系统相 似, 因此这些方法的实施可以参见系统的实施, 重复之处不再赘述。
如图 8所示, 本发明实施例配置信道测量的方法包括下列步骤:
步骤 801、 网络侧设备根据上行子帧上的千扰情况将上行子帧分成多个上行子帧组; 步骤 802、网络侧设备通知用户设备至少一个与上行子帧组对应的信道测量配置信息。 其中, 本发明实施例提供了两种进行上行信道测量的方案, 即周期性和非周期性, 下 面分别进行介绍。
一、 周期性进行上行信道测量。
具体的, 网络侧设备除了通知信道测量配置信息, 还通知用户设备上行子帧组中包括 的上行子帧。
较佳地, 网络侧设备确定与上行子帧组对应的 SRS参数组, 将确定的与上行子帧组对 应的 SRS参数组作为该上行子帧组对应的信道测量配置信息。
SRS参数组包括的参数可以参见表 2。
需要说明的是, 本发明实施例并不局限于表 2中的内容, 其他与信道测量配置有关的 参数同样可以作为 SRS参数组中的参数。
用户设备根据 SRS参数组就可以周期性进行上行信道测量(包括上报)。
在实施中, 网络侧设备对不同的上行子帧组配置的 SRS参数组是相互独立的。
较佳地, 根据任意两个上行子帧组对应的 SRS参数组确定的 SRS发送子帧不同。 具体的, 子帧相对位置是 SRS发送子帧在一个 SRS传输周期中的相对位置。 网络侧 设备和用户设备根据 SRS传输周期和子帧相对位置, 就可以确定 SRS传输子帧。
二、 非周期性进行上行信道测量。
具体的, 网络侧设备除了通知信道测量配置信息, 还通知用户设备上行子帧组中包括 的上行子帧。
较佳地, 网络侧设备确定与上行子帧组对应的 SRS参数组, 将确定的与上行子帧组对 应的 SRS参数组作为该上行子帧组对应的信道测量配置信息;
相应的, 用户设备根据配置的 SRS参数组, 周期测量与上行子帧组对应的 SRS。 SRS参数组包括的参数可以参见表 2。
需要说明的是, 本发明实施例并不局限于表 2中的内容, 其他与信道测量配置有关的 参数同样可以作为 SRS参数组中的参数。
在实施中, 网络侧设备对不同的上行子帧组配置的 SRS参数组是相互独立的。 较佳地, 根据任意两个上行子帧组对应的述 SRS参数组确定的 SRS发送子帧不同。 具体的, 子帧相对位置是 SRS发送子帧在一个 SRS传输周期中的相对位置。 网络侧 设备和用户设备根据 SRS传输周期和子帧相对位置, 就可以确定 SRS传输子帧。
由于是非周期反馈, 网络侧设备为用户设备配置信道测量配置信息之后, 还需要触发 用户设备触发户设备发送与至少一个上行子帧组对应的 SRS。 也就是说, 并非每个 SRS发 送子帧都需要发送 SRS , 需要根据网络侧设备 10的触发确定在哪个 SRS发送子帧上发送
SRS。
较佳地, 网络侧设备可以通过 PDCCH中的 SRS request信息触发用户设备发送与至少 一个上行子帧组对应的 SRS。
比如通过 PDCCH的 DL grant或 UL grant携带 SRS request信息。
其中, 通过 SRS request信息触发的方式有很多种, 下面列举几种。
触发方式一、 SRS request信息为 1比特, 则比特位表示是否触发反馈。
触发方式二、 SRS request信息为多比特, 通过 SRS request信息的多种比特组合指示 用户设备反馈哪一组上行子帧对应的 SRS。
具体的, 网络侧设备根据上行子帧组和比特值的对应关系, 确定需要发送 SRS的上行 子帧组对应的比特值, 根据确定的比特值确定 SRS request信息, 并将确定的 SRS request 信息通知用户设备。
触发方式三、 SRS request信息为多比特。 当上行子帧组较多时, 进一步将上行子帧组 划分成集合,一个集合内包含一个以上的上行子帧组。并使用 SRS request信息的多种比特 组合指示用户设备反馈哪一个集合内的上行子帧组的 SRS。
具体的, 网络侧设备根据上行子帧集合和比特值的对应关系, 确定需要发送 SRS的上 行子帧集合对应的比特值, 根据确定的比特值确定 SRS request信息, 并将确定的 SRS request信息通知用户设备; 其中, 一个上行子帧集合中包括至少一个上行子帧组。
基于如上的方法, 网络侧设备通过接收用户设备的 SRS获得上行子帧组对应的上行信 道情况。
如图 9所示, 本发明实施例进行上行信道测量的方法包括下列步骤:
步骤 901、 用户设备接收来自网络侧设备的至少一个与上行子帧组对应的信道测量配 置信息, 其中上行子帧组是网络侧设备根据上行子帧上的千扰情况划分得到的;
步骤 902、 用户设备根据信道测量配置信息进行上行信道测量。
其中, 本发明实施例提供了两种进行上行信道测量的方案, 即周期性和非周期性, 下 面分别进行介绍。
一、 周期性进行上行信道测量。
具体的, 用户设备除了接收来自网络侧设备的与上行子帧组对应的信道测量配置信 息, 还接收到来自网络侧设备的上行子帧组中包括的上行子帧的通知。
较佳地, 网用户设备根据配置的 SRS 参数组, 周期测量并发送与上行子帧组对应的 SRS。
SRS参数组包括的参数可以参见表 2。
需要说明的是, 本发明实施例并不局限于表 2中的内容, 其他与信道测量配置有关的 参数同样可以作为 SRS参数组中的参数。
较佳地, 用户设备根据任意两个上行子帧组对应的 SRS参数组确定的 SRS发送子帧 不同。
针对一个上行子帧组,用户设备根据该上行子帧组对应的 SRS参数组进行上行信道测 量, 并在根据对应的 SRS参数组确定的 SRS传输子帧上发送 SRS。
由于不同上行子帧组对应的 SRS参数组中的 SRS传输周期有可能不同, 所以有可能 出现不同上行子帧组对应的 SRS发送子帧是同一个子帧。 比如一个 SRS传输周期是 5ms, 一个 SRS传输周期是 10ms, 则有可能出现不同上行子帧组对应的 SRS发送子帧是同一个 子帧。
若用户设备根据上行子帧组对应的 SRS参数组确定不同上行子帧组对应的 SRS发送 子帧是同一个反馈子帧时,根据不同上行子帧组中的一个上行子帧组对应的 SRS参数组发 送 SRS。 也就是说, 当不同上行子帧组对应的 SRS传输子帧位置位于同一个子帧时, 按照 其中一个上行子帧组的 SRS参数组发送 SRS。
二、 非周期性进行上行信道测量。
具体的, 用户设备除了接收来自网络侧设备的与上行子帧组对应的信道测量配置信 息, 还接收到来自网络侧设备的上行子帧组中包括的上行子帧的通知。
较佳地, 用户设备根据配置的 SRS参数组, 周期测量与上行子帧组对应的 SRS。 SRS参数组包括的参数可以参见表 2。
需要说明的是, 本发明实施例并不局限于表 2中的内容, 其他与信道测量配置有关的 参数同样可以作为 SRS参数组中的参数。
较佳地, 用户设备根据任意两个上行子帧组对应的述 SRS参数组确定的 SRS发送子 帧不同。
由于不同上行子帧组对应的 SRS参数组中的 SRS传输周期有可能不同, 所以有可能 出现不同上行子帧组对应的 SRS发送子帧是同一个子帧。 比如一个 SRS传输周期是 5ms, 一个 SRS传输周期是 10ms, 则有可能出现不同上行子帧组对应的 SRS发送子帧是同一个 子帧。
针对一个上行子帧组,用户设备根据该上行子帧组对应的 SRS参数组进行上行信道测 量, 并在根据对应的 SRS参数组确定的 SRS传输子帧上发送 SRS。 若用户设备根据上行子帧组对应的 SRS参数组确定不同上行子帧组对应的 SRS发送 子帧是同一个反馈子帧时,根据不同上行子帧组中的一个上行子帧组对应的 SRS参数组发 送 SRS。 也就是说, 当不同上行子帧组对应的传输子帧位置位于同一个子帧时, 按照其中 一个上行子帧组的 SRS参数组发送 SRS。
由于是非周期反馈, 步骤 902中, 用户设备需要在收到网络侧设备的触发后, 根据与 上行子帧组对应的 SRS参数组确定该上行子帧组最近的一个 SRS发送子帧, 并在该 SRS 发送子帧上发送与上行子帧组对应的 SRS。
也就是说, 并非每个 SRS发送子帧都需要发送 SRS, 需要根据网络侧设备 10的触发 确定在哪个 SRS发送子帧上发送 SRS。
较佳地, 用户设备根据收到的来自网络侧设备 10的 PDCCH中的 SRS request信息, 在确定需要发送 SRS后, 根据与上行子帧组对应的 SRS参数组确定该上行子帧组最近的 一个 SRS发送子帧, 并在该 SRS发送子帧上发送与上行子帧组对应的 SRS。
其中, 通过 SRS request信息触发的方式有很多种, 下面列举几种。
触发方式一、 SRS request信息为 1比特, 则比特位表示是否触发反馈。
较佳地,若在子帧 n中接收到包含 SRS request信息的 PDCCH,且 SRS request信息指 示需要发送 SRS, 用户设备在子帧 n+k上发送 SRS; 其中, k > m, m为以子帧为单位的用 户设备处理时间, 且子帧 n+k为距离子帧 n最近的 SRS发送子帧。
触发方式二、 SRS request信息为多比特, 通过 SRS request信息的多种比特组合指示 用户设备反馈哪一组上行子帧对应的 SRS。
具体的,用户设备根据上行子帧组和比特值的对应关系,确定 SRS request信息的比特 值对应的上行子帧组, 并根据确定的上行子帧组对应的 SRS 参数组确定最近的一个 SRS 发送子帧的位置, 并在该 SRS发送子帧上发送与该上行子帧组对应的 SRS。
较佳地,若在子帧 n中接收到包含 SRS request信息的 PDCCH,且 SRS request信息指 示需要发送 SRS, 用户设备 20在子帧 n+ki上发送 SRS; 其中, ki > m, m为以子帧为单 位的用户设备处理时间, 且子帧 n+ki为距离子帧 n最近的第 i个上行子帧组对应的 SRS 发送子帧, i为小于等于 N的正整数, 且 i为由 SRS request信息触发的需要发送 SRS的上 行子帧组序号, N为上行子帧组的数目
触发方式三、 SRS request信息为多比特。 当上行子帧组较多时, 进一步将上行子帧组 划分成集合,一个集合内包含一个以上的上行子帧组。并使用 SRS request信息的多种比特 组合指示用户设备反馈哪一个集合内的上行子帧组的 SRS。
具体的用户设备根据上行子帧集合和比特值的对应关系,确定 SRS request信息的比特 值对应的上行子帧集合,并分别根据上行子帧集合中的每个上行子帧组对应的 SRS参数组 确定最近的一个与该上行子帧组对应的 SRS发送子帧的位置, 并分别在确定的每个 SRS 发送子帧中发送与该上行子帧组对应的 SRS, 其中一个下行子帧集合中包括至少一个上行 子帧组。
较佳地,若用户设备在子帧 n中接收到包含 SRS request信息的 PDCCH,且 SRS request 信息指示需要发送 SRS时, 用户设备在子帧 n+ki上发送 SRS;
其中, ki > m, m为以子帧为单位的用户设备处理时间, 且子帧 n+ki为距离子帧 n最 近的第 i个上行子帧组对应的 SRS发送子帧, i为小于等于 N的正整数,且 i为由 SRS request 信息触发的需要发送 SRS的上行子帧组序号, N为上行子帧组的数目。
其中, 图 8和图 9可以合成一个流程, 形成一个进行上行信道测量的方法, 即先执行 步骤 801和步骤 802, 再执行步骤 901和步骤 902。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介盾 (包括但不限于磁盘存储器、 CD-ROM、 光学存储器等)上实施的计算机程 序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创造性概 念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为包括优选 实施例以及落入本发明范围的所有变更和修改。
显然, 本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实 施例的精神和范围。 这样, 倘若本发明实施例的这些修改和变型属于本发明权利要求及其 等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种配置信道测量的方法, 其特征在于, 该方法包括:
网络侧设备根据上行子帧上的千扰情况将上行子帧分成多个上行子帧组;
所述网络侧设备通知用户设备至少一个与上行子帧组对应的信道测量配置信息。
2、 如权利要求 1 所述的方法, 其特征在于, 所述网络侧设备通知用户设备与上行子 帧组对应的信道测量配置信息之前, 还包括:
所述网络侧设备通知用户设备上行子帧组中包括的上行子帧。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述网络侧设备通知用户设备与上 行子帧组对应的信道测量配置信息之前, 还包括:
所述网络侧设备确定与上行子帧组对应的探测用参考信号 SRS参数组;
所述网络侧设备将确定的与上行子帧组对应的 SRS 参数组作为该上行子帧组对应的 信道测量配置信息。
4、 如权利要求 3 所述的方法, 其特征在于, 其中, 根据任意两个上行子帧组对应的 所述 SRS参数组确定的 SRS发送子帧不同。
5、 如权利要求 4 所述的方法, 其特征在于, 所述网络侧设备通知用户设备与上行子 帧组对应的信道测量配置信息之后 , 还包括:
所述网络侧设备触发所述用户设备发送与至少一个上行子帧组对应的 SRS。
6、 如权利要求 5 所述的方法, 其特征在于, 所述网络侧设备触发所述用户设备发送 与至少一个上行子帧组对应的 SRS , 包括:
所述网络侧设备通过物理下行控制信道 PDCCH中的 SRS请求 request信息触发所述 用户设备发送与至少一个上行子帧组对应的 SRS。
7、 如权利要求 6所述的方法, 其特征在于, 所述 SRS request信息为 1比特时, 比特 位表示是否触发反馈。
8、 如权利要求 6所述的方法, 其特征在于, 所述 SRS request信息为多个比特; 所述网络侧设备通过 PDCCH中的 SRS request信息触发所述用户设备发送与至少一个 上行子帧组对应的 SRS , 包括:
所述网络侧设备根据上行子帧组和比特值的对应关系,确定需要发送 SRS的上行子帧 组对应的比特值, 根据确定的比特值确定 SRS request信息, 并将确定的 SRS request信息 通知用户设备; 或
所述网络侧设备根据上行子帧集合和比特值的对应关系,确定需要发送 SRS的上行子 帧集合对应的比特值, 根据确定的比特值确定 SRS request信息, 并将确定的 SRS request 信息通知用户设备; 其中, 一个上行子帧集合中包括至少一个上行子帧组。
9、 一种进行上行信道测量的方法, 其特征在于, 该方法包括:
用户设备接收来自网络侧设备的至少一个与上行子帧组对应的信道测量配置信息, 其 中上行子帧组是网络侧设备根据上行子帧上的千扰情况划分得到的;
所述用户设备根据信道测量配置信息进行上行信道测量。
10、 如权利要求 9所述的方法, 其特征在于, 所述用户设备接收来自网络侧设备的与 上行子帧组对应的信道测量配置信息之前, 还包括:
所述用户设备接收到来自网络侧设备的上行子帧组中包括的上行子帧的通知。
11、如权利要求 10所述的方法, 其特征在于, 所述信道测量配置信息包括探测用参考 信号 SRS参数组。
12、 如权利要求 11所述的方法, 其特征在于, 其中, 根据任意两个上行子帧组对应的 所述 SRS参数组确定的 SRS发送子帧不同。
13、 如权利要求 9所述的方法, 其特征在于, 所述用户设备根据信道测量配置信息进 行上行信道测量, 包括:
所述用户设备根据配置的 SRS参数组发送与上行子帧组对应的 SRS。
14、 如权利要求 13 所述的方法, 其特征在于, 所述用户设备发送与上行子帧组对应 的 SRS , 包括:
所述用户设备在收到所述网络侧设备的触发后,根据所述与上行子帧组对应的 SRS参 数组确定该上行子帧组最近的一个 SRS发送子帧, 并在该 SRS发送子帧上发送与上行子 帧组对应的 SRS。
15、 如权利要求 14所述的方法, 其特征在于, 所述发送与上行子帧组对应的 SRS , 包括:
所述用户设备根据收到的来自所述网络侧设备的物理下行控制信道 PDCCH中的 SRS 请求 request信息, 在确定需要发送 SRS后, 根据所述与上行子帧组对应的 SRS参数组确 定该上行子帧组最近的一个 SRS发送子帧, 并在该 SRS发送子帧上发送与上行子帧组对 应的 SRS。
16、 如权利要求 15所述的方法, 其特征在于, 所述 SRS request信息为 1比特时, 比 特位表示是否触发 SRS发送。
17、 如权利要求 16所述的方法, 其特征在于, 所述用户设备发送 SRS , 包括: 若所述用户设备在子帧 n中接收到包含 SRS request信息的 PDCCH, 且 SRS request 信息指示需要发送 SRS时, 所述用户设备在子帧 n+k上发送 SRS;
其中, k > m, m为以子帧为单位的用户设备处理时间, 且子帧 n+k为距离子帧 n最近 的 SRS发送子帧。
18、 如权利要求 15所述的方法, 其特征在于, 所述 SRS request信息为多个比特; 所述用户设备发送 SRS , 包括:
所述用户设备根据上行子帧组和比特值的对应关系,确定 SRS request信息的比特值对 应的上行子帧组, 并根据确定的上行子帧组对应的所述 SRS 参数组确定最近的一个 SRS 发送子帧的位置, 并在该 SRS发送子帧上发送与该上行子帧组对应的 SRS; 或
所述用户设备根据上行子帧集合和比特值的对应关系,确定 SRS request信息的比特值 对应的上行子帧集合,并分别根据上行子帧集合中的每个上行子帧组对应的所述 SRS参数 组确定最近的一个与该上行子帧组对应的 SRS发送子帧的位置,并分别在确定的每个 SRS 发送子帧中发送与该上行子帧组对应的 SRS , 其中一个下行子帧集合中包括至少一个上行 子帧组。
19、 如权利要求 18所述的方法, 其特征在于, 所述用户设备发送 SRS , 包括: 若在子帧 n中接收到包含 SRS request信息的 PDCCH,且 SRS request信息指示需要发 送 SRS , 所述用户设备在子帧 n+ki上发送 SRS;
其中, ki > m, m为以子帧为单位的用户设备处理时间, 且子帧 n+ki为距离子帧 n最 近的第 i个上行子帧组对应的 SRS发送子帧, i为小于等于 N的正整数,且 i为由 SRS request 信息触发的需要发送 SRS的上行子帧组序号, N为上行子帧组的数目。
20、 如权利要求 9~19任一所述的方法, 其特征在于, 所述用户设备根据信道测量配 置信息发送 SRS , 包括:
若所述用户设备根据上行子帧组对应的 SRS 参数组确定不同上行子帧组对应的 SRS 发送子帧是同一个子帧,根据不同上行子帧组中的一个上行子帧组对应的所述 SRS参数组 发送 SRS。
21、 一种配置信道测量的网络侧设备, 其特征在于, 该网络侧设备包括:
划分模块, 用于根据上行子帧上的千扰情况将上行子帧分成多个上行子帧组; 第一处理模块, 用于通知用户设备至少一个与上行子帧组对应的信道测量配置信息。
22、 如权利要求 21所述的网络侧设备, 其特征在于, 所述第一处理模块还用于: 通知用户设备上行子帧组中包括的上行子帧。
23、如权利要求 21或 22所述的网络侧设备, 其特征在于, 所述第一处理模块还用于: 确定与上行子帧组对应的探测用参考信号 SRS参数组;将确定的与上行子帧组对应的
SRS参数组作为该上行子帧组对应的信道测量配置信息。
24、 如权利要求 23 所述的网络侧设备, 其特征在于, 其中, 根据任意两个上行子帧 组对应的所述 SRS参数组确定的 SRS发送子帧不同。
25、 如权利要求 24所述的网络侧设备, 其特征在于, 所述第一处理模块还用于: 通知用户设备与上行子帧组对应的信道测量配置信息之后 , 触发所述用户设备发送与 至少一个上行子帧组对应的 SRS。
26、 如权利要求 25所述的网络侧设备, 其特征在于, 所述第一处理模块具体用于: 通过物理下行控制信道 PDCCH中的 SRS请求 request信息触发所述用户设备发送与 至少一个上行子帧组对应的 SRS。
27、 如权利要求 26所述的网络侧设备, 其特征在于, 所述 SRS request信息为 1比特 时, 比特位表示是否触发反馈。
28、 如权利要求 26所述的网络侧设备, 其特征在于, 所述 SRS request信息为多个比 特;
所述第一处理模块具体用于:
根据上行子帧组和比特值的对应关系, 确定需要发送 SRS 的上行子帧组对应的比特 值,根据确定的比特值确定 SRS request信息, 并将确定的 SRS request信息通知用户设备; 或根据上行子帧集合和比特值的对应关系,确定需要发送 SRS的上行子帧集合对应的比特 值,根据确定的比特值确定 SRS request信息, 并将确定的 SRS request信息通知用户设备; 其中, 一个上行子帧集合中包括至少一个上行子帧组。
29、 一种进行上行信道测量的用户设备, 其特征在于, 该用户设备包括:
接收模块, 用于接收来自网络侧设备的至少一个与上行子帧组对应的信道测量配置信 息, 其中上行子帧组是网络侧设备根据上行子帧上的千扰情况划分得到的;
第二处理模块, 用于根据信道测量配置信息进行上行信道测量。
30、 如权利要求 29所述的用户设备, 其特征在于, 所述接收模块还用于:
接收到来自网络侧设备的上行子帧组中包括的上行子帧的通知。
31、 如权利要求 30 所述的用户设备, 其特征在于, 所述信道测量配置信息包括探测 用参考信号 SRS参数组。
32、 如权利要求 31 所述的用户设备, 其特征在于, 其中, 根据任意两个上行子帧组 对应的所述 SRS参数组确定的 SRS发送子帧不同。
33、 如权利要求 29所述的用户设备, 其特征在于, 所述第二处理模块具体用于: 根据配置的 SRS参数组发送与上行子帧组对应的 SRS。
34、 如权利要求 33所述的用户设备, 其特征在于, 所述第二处理模块具体用于: 在收到所述网络侧设备的触发后,根据所述与上行子帧组对应的 SRS参数组确定该上 行子帧组最近的一个 SRS发送子帧,并在该 SRS发送子帧上发送与上行子帧组对应的 SRS。
35、 如权利要求 34所述的用户设备, 其特征在于, 所述第二处理模块具体用于: 根据收到的来自所述网络侧设备的物理下行控制信道 PDCCH中的 SRS 请求 request 信息, 在确定需要发送 SRS后, 根据所述与上行子帧组对应的 SRS参数组确定该上行子 帧组最近的一个 SRS发送子帧, 并在该 SRS发送子帧上发送与上行子帧组对应的 SRS。
36、 如权利要求 35所述的用户设备, 其特征在于, 所述 SRS request信息为 1比特时, 比特位表示是否触发 SRS发送。
37、 如权利要求 36所述的用户设备, 其特征在于, 所述第二处理模块具体用于: 若在子帧 n中接收到包含 SRS request信息的 PDCCH,且 SRS request信息指示需要发 送 SRS, 在子帧 n+k上发送 SRS;
其中, k > m, m为以子帧为单位的用户设备处理时间, 且子帧 n+k为距离子帧 n最近 的 SRS发送子帧。
38、 如权利要求 35所述的用户设备, 其特征在于, 所述 SRS request信息为多个比特; 所述第二处理模块具体用于:
根据上行子帧组和比特值的对应关系,确定 SRS request信息的比特值对应的上行子帧 组, 并根据确定的上行子帧组对应的所述 SRS参数组确定最近的一个 SRS发送子帧的位 置, 并在该 SRS发送子帧上发送与该上行子帧组对应的 SRS; 或根据上行子帧集合和比特 值的对应关系,确定 SRS request信息的比特值对应的上行子帧集合, 并分别根据上行子帧 集合中的每个上行子帧组对应的所述 SRS 参数组确定最近的一个与该上行子帧组对应的 SRS发送子帧的位置, 并分别在确定的每个 SRS发送子帧中发送与该上行子帧组对应的 SRS, 其中一个下行子帧集合中包括至少一个上行子帧组。
39、 如权利要求 38所述的用户设备, 其特征在于, 所述第二处理模块具体用于: 若在子帧 n中接收到包含 SRS request信息的 PDCCH,且 SRS request信息指示需要发 送 SRS, 在子帧 n+ki上发送 SRS; 其中, ki > m, m为以子帧为单位的用户设备处理时间, 且子帧 n+ki为距离子帧 n最近的第 i个上行子帧组对应的 SRS发送子帧, i为小于等于 N 的正整数,且 i为由 SRS request信息触发的需要发送 SRS的上行子帧组序号, N为上行子 帧组的数目。
40、 如权利要求 29~39任一所述的用户设备, 其特征在于, 所述第二处理模块具体用 于:
若根据上行子帧组对应的 SRS参数组确定不同上行子帧组对应的 SRS发送子帧是同 一个子帧, 根据不同上行子帧组中的一个上行子帧组对应的所述 SRS参数组发送 SRS。
41、 一种进行上行信道测量的系统, 其特征在于, 该系统包括:
网络侧设备, 用于根据上行子帧上的千扰情况将上行子帧分成多个上行子帧组; 通知 用户设备至少一个与上行子帧组对应的信道测量配置信息;
用户设备, 用于接收来自网络侧设备的至少一个与上行子帧组对应的信道测量配置信 息; 根据信道测量配置信息进行上行信道测量。
PCT/CN2013/075821 2012-05-18 2013-05-17 配置信道测量和进行上行信道测量的方法、系统及设备 WO2013170782A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210156751.3A CN103428717B (zh) 2012-05-18 2012-05-18 配置信道测量和进行上行信道测量的方法、系统及设备
CN201210156751.3 2012-05-18

Publications (1)

Publication Number Publication Date
WO2013170782A1 true WO2013170782A1 (zh) 2013-11-21

Family

ID=49583157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075821 WO2013170782A1 (zh) 2012-05-18 2013-05-17 配置信道测量和进行上行信道测量的方法、系统及设备

Country Status (2)

Country Link
CN (1) CN103428717B (zh)
WO (1) WO2013170782A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015143672A1 (zh) * 2014-03-27 2015-10-01 华为技术有限公司 一种链路自适应调整的方法及装置
CN111769930B (zh) 2018-02-13 2022-10-18 Oppo广东移动通信有限公司 用于物理下行控制信道的盲检测的方法和终端设备
CN111092708B (zh) * 2019-11-08 2024-09-10 中兴通讯股份有限公司 传输方法、装置、第一通信节点、第二通信节点及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1965513A (zh) * 2004-05-01 2007-05-16 桥扬科技有限公司 用于以时分双工进行通信的方法和装置
KR20100056962A (ko) * 2008-11-20 2010-05-28 엘지전자 주식회사 무선 통신 시스템에서 하향링크 채널 측정을 위한 참조 신호 전송 방법
CN102006619A (zh) * 2009-08-28 2011-04-06 华为技术有限公司 高速分组接入专用测量方法和基站
CN102281638A (zh) * 2011-08-02 2011-12-14 电信科学技术研究院 一种调度子帧的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1965513A (zh) * 2004-05-01 2007-05-16 桥扬科技有限公司 用于以时分双工进行通信的方法和装置
KR20100056962A (ko) * 2008-11-20 2010-05-28 엘지전자 주식회사 무선 통신 시스템에서 하향링크 채널 측정을 위한 참조 신호 전송 방법
CN102006619A (zh) * 2009-08-28 2011-04-06 华为技术有限公司 高速分组接入专用测量方法和基站
CN102281638A (zh) * 2011-08-02 2011-12-14 电信科学技术研究院 一种调度子帧的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, TONG.: "Grouped Truncate PN Code Based Channel Estimation Method for SOFDM Symbols in Satellite Communication", CHINESE SPACE SCIENCE AND TECHNOLOGY, vol. 5, October 2008 (2008-10-01), pages 46 - 52 *

Also Published As

Publication number Publication date
CN103428717A (zh) 2013-12-04
CN103428717B (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
CN112567776B (zh) 用于与多天线面板装置进行通信的系统和方法
KR102542055B1 (ko) 무선 시스템에서의 동기 신호 블록 인덱스 및 타이밍 지시를 위한 방법 및 장치
KR102130953B1 (ko) Lte 셀의 타이밍 정렬 및 비허가된 스펙트럼 상의 오퍼레이터 간 공존을 위한 시스템 및 방법
RU2749350C2 (ru) Способ измерения помех и сопутствующее устройство
US11638289B2 (en) Techniques and apparatuses for nesting a new radio system and a long term evolution system
US20220116899A1 (en) Methods for controlling ue synchronization and cell identification in nr
WO2013170618A1 (zh) 配置信道测量和dl csi反馈的方法、系统及设备
CN112753245B (zh) 发送参数控制
CN111316610A (zh) 无线通信系统中rmsi coreset配置的方法和装置
CN111149402A (zh) 用于无线通信系统中的控制资源集配置的方法和装置
KR20190124312A (ko) 업링크 전력 제어를 위한 방법 및 장치
TW201922013A (zh) 用於可變的定時調整粒化的技術和裝置
WO2013017016A1 (zh) 一种调度子帧的方法和设备
CN115516965A (zh) 用于动态波束指示机制的方法和装置
CN115243361B (zh) 系统信息速率匹配
EP3145263A1 (en) Radio base station, user equipment, and radio communication method
CN113454932B (zh) 用于交叉链路干扰测量和报告的方法和装置
CN111742602B (zh) 免授权上行链路重复期间的授权处理
CN113748734B (zh) 用于物理上行链路控制信道资源配置的方法和装置
US11038727B2 (en) User equipment receiver processing for multi-transmit-receive-point communication
CN112005509B (zh) 上行链路控制信息有效载荷大小
CN114830573B (zh) 用于跨载波调度的harq反馈报告
CN110291747A (zh) 用户设备及无线通信方法
CN115462156A (zh) 无线通信系统中动态下行链路多波束操作的方法和装置
TW201832610A (zh) 追蹤參考信號配置設計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791424

Country of ref document: EP

Kind code of ref document: A1