[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013168542A1 - 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法 - Google Patents

無線通信システム、基地局装置、ユーザ端末、及び無線通信方法 Download PDF

Info

Publication number
WO2013168542A1
WO2013168542A1 PCT/JP2013/061639 JP2013061639W WO2013168542A1 WO 2013168542 A1 WO2013168542 A1 WO 2013168542A1 JP 2013061639 W JP2013061639 W JP 2013061639W WO 2013168542 A1 WO2013168542 A1 WO 2013168542A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
sequence
interference estimation
interference
base station
Prior art date
Application number
PCT/JP2013/061639
Other languages
English (en)
French (fr)
Inventor
聡 永田
祥久 岸山
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to EP13787458.2A priority Critical patent/EP2849513A4/en
Priority to US14/398,862 priority patent/US9419760B2/en
Publication of WO2013168542A1 publication Critical patent/WO2013168542A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0256Channel estimation using minimum mean square error criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present invention relates to a radio communication system, a base station apparatus, a user terminal, and a radio communication method in a next generation mobile communication system.
  • Non-patent Document 1 In the UMTS (Universal Mobile Telecommunications System) network, WSDPA (High Speed Downlink Packet Access) and HSUPA (High Speed Uplink Packet Access) are adopted for the purpose of improving frequency utilization efficiency and data rate.
  • the system features based on CDMA (Wideband Code Division Multiple Access) are maximally extracted.
  • LTE Long Term Evolution
  • Non-patent Document 1 Non-patent Document 1
  • the third generation system can achieve a maximum transmission rate of about 2 Mbps on the downlink using generally a fixed bandwidth of 5 MHz.
  • a transmission rate of about 300 Mbps at the maximum on the downlink and about 75 Mbps on the uplink can be realized using a variable band of 1.4 MHz to 20 MHz.
  • LTE-A LTE advanced or LTE enhancement
  • CRS Cell-specific Reference Signal
  • CQI Channel Quality Indicator
  • CSI-RS Channel State Information-Reference Signal
  • inter-cell orthogonalization is one promising technique for further improving the system performance over the LTE system.
  • orthogonalization within a cell is realized by orthogonal multi-access for both uplink and downlink. That is, in the downlink, orthogonalization is performed between user terminals UE (User Equipment) in the frequency domain.
  • UE User Equipment
  • W-CDMA Wideband Code Division Multiple Access
  • CoMP coordinated multi-point transmission / reception
  • the CSI-RS defined for measuring the signal component of the received signal has a system configuration in which the same cell ID is assigned to a plurality of transmission points. Can also separate CSI-RS.
  • the present invention has been made in view of such points, and an object thereof is to provide a radio communication system, a base station apparatus, a user terminal, and a radio communication method capable of performing interference measurement with high accuracy in a future system that does not depend on CRS. To do.
  • the wireless communication system of the present invention is connected to a plurality of base station apparatuses that transmit a desired signal measurement reference signal and an interference estimation reference signal for measuring a channel state, and the plurality of base station apparatuses via a radio link.
  • a base station apparatus that applies a scramble sequence and a determination unit that determines resources to which the reference signal for measurement of desired signal and the reference signal for interference estimation are respectively allocated.
  • a reference signal generation unit that generates an interference estimation reference signal, and at least the determination unit transmits the interference estimation reference signal from one or more other transmission points. Between multiple transmission points or transmission points where the interference estimation reference signal is assigned to the same resource. And controls so that the scramble sequence which is different among loop is applied.
  • the present invention it is possible to provide a radio communication system, a base station apparatus, a user terminal, and a radio communication method that can perform interference measurement with high accuracy in a future system that does not depend on CRS.
  • the CSI-RS that is one of the reference signals adopted in the LTE successor system (for example, Rel. 10 LTE) will be described.
  • CSI-RS is a reference signal used for CSI measurement such as CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), RI (Rank Indicator), etc. as a channel state.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indicator
  • CSI-RS is assigned at a predetermined period, for example, 10 subframe periods.
  • the CSI-RS is specified by parameters such as position, sequence, and transmission power.
  • the CSI-RS position includes a subframe offset, a period, and a subcarrier-symbol offset (index).
  • Non-zero power CSI-RS and zero power CSI-RS are defined as CSI-RS.
  • Non-zero power CSI-RS distributes transmission power to resources to which CSI-RS is allocated, and zero power CSI-RS does not distribute transmission power to allocated resources (CSI-RS is muted).
  • CSI-RS is a control signal such as PDCCH (Physical Downlink Control Channel), user data such as PDSCH (Physical Downlink Shared Channel), CRS (Cell-specific Reference Signal) and DM- in one subframe specified by LTE. Assigned so as not to overlap with other reference signals such as RS (Demodulation-Reference Signal).
  • One subframe is composed of 12 subcarriers continuous in the frequency direction and 14 symbols (one resource block (RB) pair) continuous in the time axis direction. Further, from the viewpoint of suppressing PAPR, two resource elements (RE: Resource Element) adjacent in the time axis direction are assigned as a set to the resources to which CSI-RS can be assigned.
  • RE Resource Element
  • interference power can be obtained from the residual of two CSI-RSs adjacent in the time axis direction.
  • the channel states at the mapping positions of the respective CSI-RSs are almost equal, and the residual of the two CSI-RSs.
  • the accuracy of interference measurement is important when CQI is calculated by CSI-RS.
  • CoMP transmission As a transmission form from a plurality of transmission points, for example, there is CoMP transmission.
  • Downlink CoMP transmission includes Coordinated Scheduling / Coordinated Beamforming and Joint processing.
  • Coordinated Scheduling / Coordinated Beamforming is a method for transmitting a shared data channel from only one cell to one user terminal UE, and in the frequency / space domain considering interference from other cells and interference to other cells. Assign radio resources.
  • Joint processing is a method for transmitting a shared data channel from a plurality of cells at the same time by applying precoding, and a joint transmission for transmitting a shared data channel from a plurality of cells to one user terminal UE, and an instantaneous process.
  • DPS Dynamic Point Selection
  • DBS Dynamic Point Blanking
  • DPB Dynamic Point Blanking
  • CSI-RS defined in LTE (Rel. 10 LTE) is one resource. Since the density in the block pair is low, it is difficult to measure interference from other transmission points (other cells) with high accuracy.
  • CSI-RS for desired signal measurement CSI used for interference signal power estimation.
  • -RS reference signal for interference estimation
  • FIG. 2A shows a case where transmission is performed from the transmission points TP # 1 and TP # 2 to the user terminal UE.
  • FIG. 2B shows an example of a CSI-RS pattern in which interference estimation reference signals are arranged in interference measurement resources.
  • the left subframe is a subframe transmitted from TP # 1
  • the right subframe is a subframe transmitted from TP # 2.
  • the interference estimation reference signals are arranged in the same resource between a plurality of transmission points (TP # 1, TP # 2). Specifically, in each subframe of TP # 1 and TP # 2, the interference estimation reference signal is provided to the fourth RE in the frequency axis direction and the ninth and tenth REs in the time axis direction. Each is arranged. By using these interference estimation reference signals, it is possible to estimate interference signals of cells outside TP # 1 and TP # 2.
  • desired signal measurement CSI-RS (existing) is assigned to the 0th RE in the frequency axis direction and the 9th and 10th REs in the time axis direction. If the CSI-RS) is arranged, the RE can estimate the desired signal of TP # 1. Also, as shown in FIG. 2, when CSI-RS for measuring a desired signal is arranged in the first RE in the frequency axis direction and the ninth and tenth REs in the time axis direction in the subframe of TP # 2. The RE can estimate the desired signal of TP # 2.
  • the base station apparatus signals information on the desired signal estimation method and the interference signal estimation method to the user terminal. That is, the base station apparatus provides information on RE (SMR: Signal Measurement Resource) used for estimating a desired signal, information on RE (IMR: Interference Measurement Resource) used for measuring an interference signal, and information on a combination of SMR and IMR. Signal to the terminal.
  • RE Signal Measurement Resource
  • IMR Interference Measurement Resource
  • Signal to the terminal.
  • Such information may be notified from the base station apparatus to the user terminal by higher layer signaling (for example, RRC signaling), or may be notified dynamically from the base station apparatus to the user terminal by downlink control information (DCI).
  • DCI downlink control information
  • FIG. 3 is a diagram in which the predetermined symbols (for example, 8th to 11th) in FIG. 2 are extracted by one resource block, and the CSI in which the interference estimation reference signals are arranged in the same resource between a plurality of transmission points.
  • An example of the RS pattern is shown.
  • other signals DMRS, PDSCH, etc.
  • the left subframe indicates a subframe transmitted from TP # 1
  • the right subframe indicates a subframe transmitted from TP # 2.
  • FIG. 3B shows an example of a CSI-RS pattern when CoMP is applied
  • FIG. 3C shows an example of a CSI-RS pattern when CoMP is not applied (during single cell transmission).
  • a received signal “y j ” in a predetermined (eg, j-th) RE (IMR) used for interference signal power estimation is a CSI-RS symbol of the j-th RE (IMR) transmitted from TP # i.
  • Is “X ij ” channel fading from the first antenna of TP # i to the user terminal is “hi”
  • the noise (AWGN) of the j-th RE (IMR) in the user terminal is “n j ”
  • y j h i X ij + n j
  • received signals (y 1 , y 2 ) in two REs (IMR) adjacent in the time axis direction are expressed by the following formula (1), respectively. Can be represented.
  • two REs (IMR) for estimating interference signals adjacent in the time axis direction are respectively The first and second IMRs are assumed in order along the time axis direction.
  • Equation (1) X 11 and X 12 are arranged in two interference measurement REs (IMR) adjacent in the time axis direction in subframes transmitted from TP # 1 and TP # 2, respectively.
  • This is a reference signal symbol for interference estimation (see FIG. 3B).
  • h 1 indicates channel fading from TP # 1 to UE
  • h 2 indicates channel fading from TP # 2 to UE.
  • n 1 and n 2 are noises in two interference measurement REs (IMRs) adjacent in the time axis direction, respectively.
  • the interference power (P 12 ) other than TP # 1 and TP # 2 (outside of TP # 1 and TP # 2) can be expressed by the following equation (2).
  • X * 11, X * 12 is the conjugate of the respective X 11, X 12.
  • the user terminal in the subframes transmitted from TP # 1 and TP # 2, the user terminal appropriately sets interference power other than TP # 1 and TP # 2 by arranging the interference estimation reference signal in the same resource. Can be calculated.
  • the reception signals (y 1 , y 2 ) of two RE (IMR) adjacent in the time axis direction are respectively It can be represented by the following formula (3).
  • X 11 and X 12 are for interference estimation arranged in two interference measurement REs (IMRs) adjacent to each other in the time axis direction in the subframe transmitted from TP # 1.
  • X 21 and X 22 are interference estimation reference signal symbols respectively arranged in two interference measurement REs (IMR) adjacent in the time axis direction in the subframe transmitted from TP # 2. That is, X 11 and X 21 are arranged in the same RE, and X 12 and X 22 are arranged in the same RE.
  • H 1 indicates channel fading from TP # 1 to the user terminal, and h 2 indicates channel fading from TP # 2 to the user terminal.
  • N 1 and n 2 are noises in two REs (IMRs) adjacent to each other in the time axis direction.
  • interference power other than TP # 1 (outside TP # 1) (interference power P 1 in TP # 1 ) can be expressed by the following equation (4).
  • the interference estimation reference signals in the same resource at a plurality of transmission points (TP # 1 and TP # 2), the interference signals of cells outside TP # 1 and TP # 2 can be estimated. It becomes possible. Also, at this time, signaling overhead can be reduced by transmitting the interference estimation reference signal at each transmission point through one antenna port.
  • the interference estimation accuracy in the user terminal is lowered.
  • the present inventors have made a reference for interference estimation only with a sequence of existing reference signals (for example, CSI-RS defined in LTE (Rel. 10)).
  • CSI-RS defined in LTE (Rel. 10)
  • the types of symbol sequences constituting the signal may be insufficient, and the interference estimation accuracy may be lowered, and the planning of the interference estimation reference signal may be complicated.
  • the inventors have invented an interference estimation method capable of easily securing a reference signal for interference estimation.
  • the interference estimation method performs interference estimation between transmission points (or between transmission point groups) using interference estimation reference signals to which different scramble sequences are applied.
  • the multiplexing position of the interference estimation reference signal may be multiplexed at different multiplexing positions between a plurality of transmission points (or between transmission point groups).
  • FIG. 4 is a diagram in which the predetermined symbols (for example, the eighth to eleventh) in FIG. 2 are extracted by one resource block, and a pattern in which reference signals for interference estimation are arranged in the same resource at a plurality of transmission points.
  • An example is shown. 4B and 4C, the left subframe is a subframe transmitted from TP # 1, and the right subframe is a subframe transmitted from TP # 2.
  • different scrambling sequences are applied to the interference estimation reference signal symbols at different transmission points (TP # 1, TP # 2).
  • the base station apparatus serving as TP # 1 controls the interference estimation reference signal symbol so that a scramble sequence different from that of the base station apparatus serving as TP # 2 is applied.
  • the base station apparatus serving as TP # 1 assigns the interference estimation reference signal to two resources (IMR # 1) adjacent in the time axis direction and also assigns the interference estimation reference signal to the two resources.
  • a scramble sequence different from that of the base station apparatus serving as TP # 2 is applied to the symbols.
  • the first scramble sequence is applied to two interference estimation reference signals (IMR # 1) that are continuous in the time axis direction in the subframe transmitted from TP # 1
  • TP A second scramble sequence different from the first scramble sequence is applied to two interference estimation reference signals (IMR # 2) continuous in the time axis direction in the subframe transmitted from # 2.
  • An interference reference signal is generated by multiplying a sequence of an existing reference signal (for example, CSI-RS) by a proposed scramble sequence.
  • an existing reference signal for example, CSI-RS
  • an existing CSI-RS sequence is generated as two interference estimation reference signals continuous in the time axis direction in a subframe transmitted from TP # 1, and this existing CSI-RS is generated.
  • the first scramble sequence is applied to the interference estimation reference signal consisting of the sequences.
  • an existing CSI-RS sequence is generated as two interference estimation reference signals continuous in the time axis direction in the subframe transmitted from TP # 2, and the interference estimation is made up of the existing CSI-RS sequence.
  • a second scramble sequence is applied to the reference signal.
  • the interference estimation reference signal may be generated by multiplying the orthogonal sequence or the non-orthogonal sequence by a scramble sequence.
  • An orthogonal sequence or a non-orthogonal sequence is used as a base sequence. For example, when combining an orthogonal sequence and a non-orthogonal sequence, it is conceivable to multiply the orthogonal sequence by a non-orthogonal sequence as a scrambled sequence.
  • a sequence obtained by rotating the phase of a reference signal symbol for interference measurement can also be used as the orthogonal sequence.
  • Different phase rotation amounts are assigned to the interference estimation reference signal symbols at different transmission points (TP # 1, TP # 2).
  • the latter interference estimation reference signal symbol (X 12 ) is ⁇ only 1 phase rotation.
  • the latter half of the interference estimation reference signal symbol (X 22 ) is phase-shifted by ⁇ 2 .
  • two RE (IMR) received signals (y 1 , y 2 ) used for interference signal estimation adjacent in the time axis direction can be expressed by the following formula (5), respectively.
  • phase rotation amount of the interference estimation reference signal symbol (X 11 ) transmitted from TP # 1 and the interference estimation reference signal symbol (X 21 ) transmitted from TP # 2 may be changed.
  • the interference estimation reference signal may be generated using different scramble sequences in the time / frequency domain. For example, for a certain user terminal UE, an interference estimation reference signal is generated using a different scramble sequence associated with a subframe number in the time domain. Thereby, an interference estimation reference signal to which a different scramble sequence is applied in the time domain is generated.
  • the scramble sequence may be scrambled using a long scramble sequence length extending over a plurality of RBs, or may be scrambled using a scramble sequence length closed within 1 RB.
  • the interference estimation reference signal (IMR) per 1 RB is composed of 2 symbols
  • a scramble sequence length of 6 symbols is applied.
  • the scramble sequence length of 2 symbols is set to 1 RB interference estimation reference signal symbols (2 symbols).
  • a base sequence a Walsh-Hadamard sequence, an orthogonal M sequence, and a phase rotation sequence can be used as an orthogonal sequence
  • a CAZAC code Zadoff-Chu sequence, Frank
  • Series PN code (M series, Gold series), Truncated PN code, Golay code, and the like.
  • the scramble sequence either the above-described orthogonal sequence or non-orthogonal sequence may be used.
  • the multiplex position of the proposed reference signal for interference estimation may belong to a multiplex pattern or a part of the multiplex pattern of an existing reference signal (for example, CSI-RS), or may be randomly assigned to a data region that is a resource for PDSCH. It may be a multiple pattern arranged in the.
  • the multiplexing position of the interference estimation reference signal may be multiplexed at different multiplexing positions between one or more other transmission points (or between transmission point groups), or between a plurality of transmission points (or transmissions). It may be multiplexed at the same multiple position (between point groups).
  • the reference signal for interference estimation between a plurality of transmission points (or between transmission point groups) multiplexed at the same multiplexing position is used. Apply different scramble sequences.
  • the existing CSI-RS specified in LTE-A (Rel. 10) is supported, but the proposed In downlink communication with a user terminal that does not support the interference estimation reference signal (hereinafter referred to as existing terminal (Rel.10)), the multiplexing position of the interference estimation reference signal is reported as zero power CSI-RS.
  • the existing terminal (Rel. 10) recognizes an unsupported interference estimation reference signal as a zero power CSI-RS and can perform data demodulation without the interference estimation reference signal. It becomes possible to prevent deterioration of demodulation accuracy.
  • the transmission points TP # 1 and TP # 2 arrange the interference estimation reference signal in a resource that does not overlap with the existing CSI-RS in one resource block. Since the interference estimation reference signal is not used for channel state measurement like the existing CSI-RS, it can be freely arranged in a resource that does not overlap with the existing CSI-RS. When the interference estimation reference signal is used only for interference measurement, it may be referred to as interference measurement dedicated CSI-RS.
  • the interference estimation reference signal is arranged in the same resource between the transmission point TP # 1 and the transmission point TP # 2. If a sequence of interference estimation reference signals to which different scramble sequences are applied to different transmission points or user terminals is generated, even if interference estimation reference signals from a plurality of transmission points TP # 1 and TP # 2 are combined.
  • the user terminal can perform code separation.
  • the interference estimation reference signal resource may be shifted in the frequency axis direction between transmission points so as not to overlap. In this case, it is possible to prevent the interference estimation reference signal patterns from overlapping between adjacent transmission points by changing the number of shifts (number of resource elements) of the interference estimation reference signal.
  • Higher layer signaling is performed with respect to the existing terminal (Rel.10) as a reference signal resource for interference estimation as zero power CSI-RS.
  • the base station apparatus (TP # 1) constituting the transmission point # 1 refers to the interference estimation reference shown in FIG. 5 for the support terminals that support the interference estimation reference signal among the user terminals connected to the TP # 1.
  • Signal resource information is notified by higher layer signaling, existing CSI-RS resource information is notified to existing terminals (Rel. 10) by higher layer signaling, and reference signal resources for interference estimation are zero-power CSI-RS. As higher layer signaling.
  • the support terminal receives the notification of the interference estimation reference signal, identifies and receives the interference estimation reference signal resource, performs interference measurement using both the interference estimation reference signal and the existing CSI-RS, and performs the existing CSI- Channel state is measured using RS.
  • the interference measurement using the existing CSI-RS the CSI-RS transmitted from the connection destination transmission point TP # 1 and the CSI-RS from other transmission points (transmission points other than TP # 2 in FIG. 5). Are measured separately.
  • the existing terminal (Rel. 10) is notified of the resource of the interference estimation reference signal as zero power CSI-RS.
  • the resource in which the interference estimation reference signal is arranged is recognized as zero power CSI-RS, and the interference estimation reference signal resource is excluded from data demodulation.
  • the reference signal for interference estimation (hereinafter referred to as random CSI-RS) in units of resource elements is randomly arranged (hopped) in an area where the existing CSI-RS can be arranged.
  • the number of patterns that can be used for interference estimation can be increased, and the random CSI-RS is a non-zero power CSI-RS.
  • the number of reference signals can be increased, and the number of reference signals for channel state measurement for CSI can be increased.
  • the base station apparatus (TP # 1) constituting the transmission point # 1 transmits the random CSI-RS shown in FIG. 6 to the support terminal that supports the random CSI-RS among the user terminals connected to the TP # 1.
  • the configuration information is notified by higher layer signaling, the existing CSI-RS configuration information is notified to the existing terminal (Rel. 10) by higher layer signaling, and the random CSI-RS is set to zero power CSI-RS by higher layer signaling. Notice.
  • the support terminal is notified of random CSI-RS using, for example, RRC signaling. Interference is measured using the notified random CSI-RS and the existing CSI-RS, and the channel state is measured using the existing CSI-RS.
  • the existing terminal (Rel. 10) is notified of the resources allocated to the random CSI-RS as zero power CSI-RS.
  • the existing terminal demodulates the data excluding the random CSI-RS.
  • the same random CSI-RS pattern for interference measurement is used between transmission points.
  • the random CSI-RS for interference measurement is assigned to two resource elements having the same frequency and consisting of two consecutive symbols, but one interference measurement is performed for one resource element of two resource elements for one transmission point.
  • a random CSI-RS is assigned, and a zero power CSI-RS is assigned to the other resource element.
  • one interference measurement random CSI-RS is assigned to the other resource element of the two resource elements, and zero power CSI-RS is assigned to the other resource element for the other transmission point.
  • a set of resource elements (two resource elements) SET1, SET2,..., To which interference measurement random CSI-RSs are allocated, is notified to the existing terminal (Rel. 10) as zero power CSI-RS.
  • the random CSI-RS for interference measurement can be notified to the existing terminal (Rel. 10) using the existing pattern, and the deterioration of the data demodulation accuracy can be prevented.
  • the interference measurement random CSI-RS is arranged in the resource element sets SET1 and SET2 in one resource block, and the right element is designated as the interference measurement random CSI-RS in the resource element set SET1.
  • the left side element of the resource element set SET2 is designated as interference measurement random CSI-RS.
  • the transmission point TP # 2 has a random CSI-RS for interference measurement arranged in the same pattern as the transmission point TP # 1. However, the positions of the random holes are orthogonal between the transmission points (arranged left and right are reversed). That is, in one resource block, the interference measurement random CSI-RS is arranged in the resource element sets SET1 and SET2, and the left element in the resource element set SET1 is designated as the interference measurement random CSI-RS, and the resource element set SET2 The right element is designated as a random CSI-RS for interference measurement.
  • the base station apparatus constituting the transmission point TP # 1 performs higher layer signaling of the interference measurement random CSI-RS pattern shown in FIG. 7 to the support terminal connected to the own station.
  • the base station apparatus may further notify the position of the interference measurement random CSI-RS (left and right positions in the resource element set SET) by higher layer signaling, or may perform interference measurement random CSI-RS by higher layer signaling. Only the position (right and left positions in the resource element set SET) may be notified.
  • the interference measurement random CSI-RS pattern information and the position information of the interference measurement random CSI-RS are notified.
  • not only the arrangement pattern of the interference measurement random CSI-RS but also a new pattern specified up to the position of the interference measurement random CSI-RS may be defined.
  • the base station apparatus notifies the existing terminal (Rel. 10) of the existing CSI-RS setting information through higher layer signaling, and also notifies the interference measurement random CSI-RS as zero power CSI-RS through higher layer signaling. To do.
  • the random CSI-RS for interference measurement is based on the CSI-RS pattern (4 ports) defined in LTE-A (Rel. 10), which is also used for zero power CSI-RS signaling.
  • the base station apparatus has a function of notifying a user terminal of information related to a scramble sequence (or a combination of a base sequence and a scramble sequence) to be multiplied with a base sequence in order to generate an interference estimation reference signal.
  • the user terminal stores information on a scramble sequence (or a combination of a base sequence and a scramble sequence) notified from the base station device in a memory, and scrambles a sequence (or a base sequence and a scramble) transmitted from each transmission point.
  • a sequence specifying unit for specifying a sequence The sequence identification unit can accurately detect the sequence of the interference estimation reference signal.
  • the base station apparatus notifies the user terminal of information on a scramble sequence (or a combination of a base sequence and a scramble sequence) by higher layer signaling (for example, RRC signaling) or a broadcast signal.
  • the base station apparatus may apply a table in which a scramble sequence (or a combination of a base sequence and a scramble sequence) is associated with a bit value, or a scramble sequence (or a base sequence and a scramble sequence). Information) may be signaled.
  • the user terminal specifies a sequence of interference estimation reference signals transmitted from each transmission point from information notified by RRC signaling or a broadcast signal. can do.
  • FIG. 8 shows a configuration example of a table in which a scramble sequence and a bit value are associated with each other.
  • bit data (00), (01), and (10) are mapped to correspond to each of three types of scramble sequences as an example.
  • bit data (00) is signaled as information on the scramble sequence 1.
  • the scramble sequence defined by the table is not limited to the three types of scramble sequences, and a table indicating any plurality of types of scramble sequences (or combinations of base sequences and scramble sequences) may be used.
  • a different scramble sequence may be notified to the user terminal for each device.
  • a scramble sequence or a combination of a base sequence and a scramble sequence set to be a different scramble sequence (or a combination of a base sequence and a scramble sequence) for each group of a plurality of base station apparatuses You may make it notify to a terminal.
  • the transmission parameters position, sequence (scramble sequence (or combination of base sequence and scramble sequence)) and transmission power for identifying the reference signal are transmitted.
  • Etc. CSI-RS-Config
  • RRC signaling higher layer signaling
  • the base station apparatus associates (binds) the scramble sequence (or the combination of the base sequence and the scramble sequence) with the information specific to each transmission point (or a plurality of transmission point groups), and sets the reference signal for interference estimation. It is also possible to control a scramble sequence (or a combination of a base sequence and a scramble sequence).
  • a scramble sequence (or a combination of a base sequence and a scramble sequence) and a cell ID of each transmission point (or (Virtual cell ID) can be defined in association with each other.
  • the virtual cell ID is a user-specific parameter (for example, CSI-RS) that is notified by higher layer signaling (RRC signaling) in initialization pseudo-random sequence generation of a reference signal (for example, CSI-RS or DM-RS). It may be a value generated from an RS initialization pseudo-random sequence generation formula (user-specific parameter A in the following formula (6)).
  • CSI-RS user-specific parameter
  • RRC signaling higher layer signaling
  • the user terminal can specify the scramble sequence of the interference estimation reference signal transmitted from each transmission point based on the cell ID.
  • CoMP set identification information or the like information unique to a CoMP set
  • a scramble sequence or a combination of a base sequence and a scramble sequence
  • the CoMP set includes a combination of a plurality of cells that perform joint transmission of CoMP.
  • the base station apparatus can also control the CSI-RS pattern and the scramble sequence (or the combination of the base sequence and the scramble sequence) in association with each other.
  • the mapping position of the interference estimation reference signal and a predetermined scramble sequence are associated with (attached to) the interference estimation reference signal transmitted from each transmission point. )be able to.
  • the base station apparatus can also control the user terminal ID (UEID) and a scramble sequence (or a combination of a base sequence and a scramble sequence) in association with each other.
  • UEID user terminal ID
  • the base station apparatus scrambles the scramble sequence (or base sequence and base sequence) of the interference estimation reference signal using an expression in which the scramble sequence (or a combination of the base sequence and the scramble sequence) is associated with the UEID. (Combination of series) can be determined.
  • the interference estimation reference signal can be transmitted from the first antenna port (Tx # 1), and the second antenna port (Tx # 2) can be muted.
  • a method for estimating a desired signal there is a method of performing channel estimation based only on RE (SMR) for measuring a desired signal.
  • SMR RE
  • MMSE minimum mean square error
  • SMR RE
  • channel estimation can be performed by the following equation (7).
  • the CSI-RS is transmitted from the first antenna port (Tx # 1) to the RE (IMR) for interference measurement in the odd resource block (RB), Muting the second antenna port (Tx # 2). Then, the CSI-RS can be transmitted from the second antenna port (Tx # 2) to the interference signal RE (IMR) in even-numbered RBs, and the first antenna port (Tx # 1) can be muted.
  • the RE (IMR) for measuring the interference is also taken into account (the RE (SMR) for measuring the desired signal and the RE (SMR) for measuring the interference).
  • Channel estimation with minimum mean square error (MMSE) can be performed. For example, channel estimation can be performed by the following equation (8).
  • the user terminal can perform CQI measurement and PMI selection based on the result of channel estimation based on RE (SMR) for measuring a desired signal and RE (IMR) for interference measurement. it can. In this way, by performing channel estimation in consideration of RE for interference measurement, it is possible to improve CQI measurement accuracy in the user terminal.
  • the user terminal can apply the first aspect and the second aspect in combination.
  • FIG. 10 is an explanatory diagram of the system configuration of the wireless communication system according to the present embodiment.
  • the radio communication system shown in FIG. 10 is a system including, for example, an LTE system or SUPER 3G.
  • carrier aggregation in which a plurality of fundamental frequency blocks with the system band of the LTE system as a unit is integrated is used.
  • this wireless communication system may be called IMT-Advanced or 4G.
  • the wireless communication system 1 includes base station apparatuses 20A and 20B at each transmission point, and user terminals 10 that communicate with the base station apparatuses 20A and 20B via wireless links.
  • the base station devices 20 ⁇ / b> A and 20 ⁇ / b> B are connected to the higher station device 30, and the higher station device 30 is connected to the core network 40.
  • the base station apparatuses 20A and 20B are connected to each other via a backhaul link by wired connection or wireless connection.
  • the user terminal 10 can communicate with the base station apparatuses 20A and 20B that are a plurality of transmission points.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • the user terminal 10 includes an existing terminal (Rel.10LTE) and a support terminal (for example, Rel.11LTE).
  • a support terminal for example, Rel.11LTE.
  • the user terminal 10 will be described as a user terminal unless otherwise specified. For convenience of explanation, it is assumed that the user terminal 10 performs wireless communication with the base station apparatuses 20A and 20B.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the wireless access method is not limited to this.
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single carrier transmission method that reduces interference between terminals by dividing a system band into bands each consisting of one or continuous resource blocks for each terminal, and a plurality of terminals using different bands. .
  • the downlink communication channel includes a PDSCH (Physical Downlink Shared Channel) as a downlink data channel shared by the user terminals 10 and a downlink L1 / L2 control channel (PDCCH, PCFICH, PHICH). Transmission data and higher control information are transmitted by the PDSCH.
  • PDSCH and PUSCH scheduling information and the like are transmitted by PDCCH (Physical Downlink Control Channel).
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH (Physical Control Format Indicator Channel).
  • the HARQ ACK / NACK for PUSCH is transmitted by PHICH (Physical Hybrid-ARQ Indicator Channel).
  • the uplink communication channel has PUSCH (Physical Uplink Shared Channel) as an uplink data channel shared by each user terminal and PUCCH (Physical Uplink Control Channel) as an uplink control channel. Transmission data and higher control information are transmitted by this PUSCH. Also, downlink channel state information (CSI (including CQI and the like)), ACK / NACK, and the like are transmitted by PUCCH.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • Transmission data and higher control information are transmitted by this PUSCH.
  • CSI including CQI and the like
  • ACK / NACK are transmitted by PUCCH.
  • the base station apparatus 20 includes a transmission / reception antenna 201, an amplifier unit 202, a transmission / reception unit (notification unit) 203, a baseband signal processing unit 204, a call processing unit 205, and a transmission path interface 206.
  • Transmission data transmitted from the base station apparatus 20 to the user terminal via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 204 via the transmission path interface 206.
  • the downlink data channel signal is transmitted from the RCP layer, such as PDCP layer processing, transmission data division / combination, RLC (Radio Link Control) retransmission control transmission processing, and MAC (Medium Access).
  • RCP layer such as PDCP layer processing, transmission data division / combination, RLC (Radio Link Control) retransmission control transmission processing, and MAC (Medium Access).
  • Control Retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, and precoding processing are performed.
  • transmission processing such as channel coding and inverse fast Fourier transform is performed on the signal of the physical downlink control channel, which is the downlink control channel.
  • the baseband signal processing unit 204 notifies the control information for each user terminal 10 to wirelessly communicate with the base station apparatus 20 to the user terminals 10 connected to the same transmission point through the broadcast channel.
  • Information for communication at the transmission point includes, for example, system bandwidth in the uplink or downlink, and root sequence identification information for generating a random access preamble signal in PRACH (Physical Random Access Channel) (Root Sequence Index) etc. are included.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band.
  • the amplifier unit 202 amplifies the radio frequency signal subjected to frequency conversion and outputs the amplified signal to the transmission / reception antenna 201.
  • a radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202 and frequency-converted by the transmission / reception unit 203 to be a baseband signal. And is input to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs FFT processing, IDFT processing, error correction decoding, MAC retransmission control reception processing, RLC layer, PDCP layer reception processing on transmission data included in the baseband signal received in the uplink I do.
  • the decoded signal is transferred to the higher station apparatus 30 via the transmission path interface 206.
  • the call processing unit 205 performs call processing such as communication channel setting and release, state management of the base station apparatus 20, and management of radio resources.
  • the user terminal 10 includes a transmission / reception antenna 101, an amplifier unit 102, a transmission / reception unit (reception unit) 103, a baseband signal processing unit 104, and an application unit 105.
  • a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102, frequency-converted by the transmission / reception unit 103, and converted into a baseband signal.
  • the baseband signal is subjected to FFT processing, error correction decoding, retransmission control reception processing, and the like by the baseband signal processing unit 104.
  • downlink transmission data is transferred to the application unit 105.
  • the application unit 105 performs processing related to layers higher than the physical layer and the MAC layer. Also, the broadcast information in the downlink data is also transferred to the application unit 105.
  • uplink transmission data is input from the application unit 105 to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs mapping processing, retransmission control (HARQ) transmission processing, channel coding, DFT processing, and IFFT processing.
  • the transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 into a radio frequency band. Thereafter, the amplifier unit 102 amplifies the frequency-converted radio frequency signal and transmits it from the transmission / reception antenna 101.
  • HARQ retransmission control
  • each functional block in FIG. 13 mainly relates to the baseband processing unit shown in FIG. Further, the functional block diagram of FIG. 13 is simplified for explaining the present invention, and is assumed to have a configuration normally provided in the baseband processing unit.
  • the base station apparatus 20 includes a measurement RE determination unit 401, a higher control information generation unit 402, a downlink transmission data generation unit 403, a downlink control information generation unit 404, a reference signal generation unit 405, and downlink transmission data.
  • the encoder / modulator 406, the downlink control information encoder / modulator 407, and the sequence controller 411 are provided.
  • the base station apparatus 20 includes a downlink channel multiplexing unit 408, an IFFT unit 409, and a CP adding unit 410.
  • the measurement RE determination unit 401 includes a resource (SMR) to which a CSI-RS for desired signal measurement, which becomes a reference signal (existing CSI-RS) for measuring a desired signal, and a reference for interference estimation as a reference signal for interference measurement.
  • the resource (IMR) to which the signal is allocated is determined. Further, the measurement RE determining unit 401 determines a combination of a resource (measurement RE) to which a reference signal for measuring a desired signal is allocated and a resource (measurement RE) for estimating an interference signal.
  • the measurement RE determining unit 401 sets resources (IMR # 1, IMR # 2) to which the interference estimation reference signals respectively transmitted from a plurality of transmission points are assigned at the same position. Also, the resource (SMR) to which the desired signal measurement CSI-RS transmitted from each transmission point is assigned is set so that it does not overlap between the transmission points.
  • the higher layer signaling for example, RRC signaling
  • the downlink control information generation unit 404 information regarding this assignment is sent to the downlink control information generation unit 404 for inclusion in the downlink control information.
  • the information regarding this allocation is sent to the reference signal generation unit 405 to generate the CSI-RS, and is also sent to the downlink transmission data generation unit 403 to make the downlink transmission data zero power (muting).
  • the higher control information generating section 402 generates higher control information transmitted by higher layer signaling (for example, RRC signaling), and outputs the generated higher control information to the downlink transmission data encoding / modulating section 406.
  • the higher control information generation unit 402 generates higher control information (information on transmission parameters of CSI-RS) including information output from the measurement RE determination unit 401.
  • higher control information generation section 402 generates higher control information including information related to the scramble sequence applied to the interference estimation reference signal determined by sequence control section 411. In this case, bit information corresponding to the scramble sequence to be applied can be generated with reference to the table shown in FIG.
  • Downlink transmission data generation section 403 generates downlink transmission data and outputs the downlink transmission data to downlink transmission data encoding / modulation section 406.
  • the downlink transmission data generating section 403 arranges (mutes) the zero power CSI-RS according to the allocation information output from the measurement RE determining section 401.
  • the downlink control information generation unit 404 generates downlink control information (any DCI format) and outputs the downlink control information to the downlink control information encoding / modulation unit 407.
  • Downlink transmission data coding / modulation section 406 performs channel coding and data modulation on the downlink transmission data and higher control information, and outputs the result to downlink channel multiplexing section 408.
  • the downlink control information coding / modulation section 407 performs channel coding and data modulation on the downlink control information and outputs the result to the downlink channel multiplexing section 408.
  • the sequence control unit 411 controls the scramble sequence applied to the interference estimation reference signal and outputs it to the reference signal generation unit 405.
  • Sequence control section 411 when at least measurement RE determination section 401 assigns an interference estimation reference signal to the same resource as the interference estimation reference signal transmitted from one or more other transmission points, refers to the interference estimation reference to the same resource Control is performed so that different scramble sequences are applied between a plurality of transmission points or transmission point groups to which signals are assigned. Further, as described above, sequence control section 411 can determine the type of scramble sequence based on the unique information (for example, cell ID or virtual cell ID) of the base station apparatus. In addition, the scramble sequence can be determined based on the desired signal measurement CSI-RS assignment pattern.
  • sequence control section 411 outputs information on the determined scramble sequence to reference signal generation section 405.
  • reference signal generation section 405 When notifying the user terminal of the determined scramble sequence (or a combination of a base sequence and a scramble sequence), information on the determined scramble sequence (or a combination of a base sequence and a scramble sequence) The information is output to the control information generation unit 402.
  • the reference signal generation unit 405 generates a desired signal measurement CSI-RS and an interference estimation reference signal according to the allocation information determined by the measurement RE determination unit 401, and outputs these CSI-RSs to the downlink channel multiplexing unit 408. To do. Further, the reference signal generation unit 405 multiplies the generated interference estimation reference signal by the scramble sequence based on the type of scramble sequence output from the sequence control unit 411. The reference signal generation unit 405 multiplies the scramble sequence controlled by the sequence control unit 411 with, for example, an existing CSI-RS sequence, so that a reference signal for interference estimation is assigned to the same resource between transmission points or Different scramble sequences are applied between transmission point groups.
  • the downlink channel multiplexing unit 408 combines the downlink control information, CSI-RS, higher control information, and downlink transmission data to generate a transmission signal.
  • the downlink channel multiplexing unit 408 outputs the generated transmission signal to the IFFT unit 409.
  • the IFFT unit 409 performs an inverse fast Fourier transform on the transmission signal, and converts the frequency domain signal into a time domain signal.
  • the transmission signal after IFFT is output to CP adding section 410.
  • CP adding section 410 adds a CP (Cyclic Prefix) to the transmission signal after IFFT, and outputs the transmission signal after CP addition to amplifier section 202 shown in FIG.
  • Each functional block in FIG. 14 mainly relates to the baseband processing unit 104 shown in FIG. Further, the functional blocks shown in FIG. 12 are simplified for the purpose of explaining the present invention, and the configuration normally provided in the baseband processing unit is provided.
  • the user terminal 10 includes a CP removing unit 301, an FFT unit 302, a downlink channel separating unit 303, a downlink control information receiving unit 304, a downlink transmission data receiving unit 305, an interference signal estimating unit 306, A channel estimation unit 307, a CQI measurement unit 308, and a sequence identification unit 309 are provided.
  • the transmission signal transmitted from the base station apparatus 20 is received by the transmission / reception antenna 101 shown in FIG.
  • CP removing section 301 removes the CP from the received signal and outputs it to FFT section 302.
  • the FFT unit 302 performs fast Fourier transform (FFT) on the signal after CP removal, and converts the signal in the time domain into a signal in the frequency domain.
  • FFT section 302 outputs the signal converted into the frequency domain signal to downlink channel separation section 303.
  • the downlink channel separation unit 303 separates the downlink channel signal into downlink control information, downlink transmission data, and CSI-RS.
  • the downlink channel separation unit 303 outputs downlink control information to the downlink control information reception unit 304, outputs downlink transmission data and higher-level control information to the downlink transmission data reception unit 305, and sets an interference estimation reference signal as an interference signal estimation unit 306.
  • the desired signal measurement CSI-RS is output to the channel estimation unit 307.
  • the downlink control information receiving unit 304 demodulates the downlink control information and outputs the demodulated downlink control information to the downlink transmission data receiving unit 305.
  • the downlink transmission data reception unit 305 demodulates downlink transmission data using the demodulated downlink control information.
  • the downlink transmission data receiving section 305 specifies the desired signal measurement RE (SMR) and the interference measurement RE (IMR) based on the resource information included in the higher control information.
  • SMR desired signal measurement RE
  • IMR interference measurement RE
  • Downlink transmission data receiving section 305 demodulates user data except for desired signal measurement RE and interference measurement RE.
  • downlink transmission data reception section 305 outputs higher control information included in the downlink transmission data to sequence identification section 309, interference signal estimation section 306, and channel estimation section 307.
  • the sequence identification unit 309 identifies the scramble sequence applied to the interference estimation reference signal in the base station apparatus. As described above, when the scramble sequence is associated with the cell ID or the CSI-RS pattern position, the sequence identification unit 309 can determine the scramble sequence based on these pieces of information. In addition, when information on a scramble sequence (or a combination of a base sequence and a scramble sequence) is defined by bit information, the scramble sequence can be specified with reference to the table shown in FIG. .
  • the interference signal estimation unit 306 includes information such as a transmission parameter included in the scramble sequence (or a combination of a base sequence and a scramble sequence) identified by the sequence identification unit 309 and higher control information (or downlink control information). Based on this, an interference signal is estimated by the interference measurement RE.
  • the interference signal estimation unit 306 can estimate the interference signal and average the measurement results in all resource blocks.
  • the CQI measurement unit 308 is notified of the averaged interference signal estimation result.
  • the channel estimation unit 307 specifies a desired signal measurement RE (CSI-RS resource) based on information such as transmission parameters included in the higher control information (or downlink control information), and the desired signal is measured by the desired signal measurement RE. Is estimated. Note that the channel estimation unit 307 can also perform channel estimation using the interference measurement RE (IMR) in addition to the desired signal measurement RE (SMR) as shown in FIG. 9B.
  • IMR interference measurement RE
  • SMR desired signal measurement RE
  • the channel estimation unit 307 notifies the CQI measurement unit 308 of the channel estimation value.
  • the CQI measurement unit 308 calculates a channel state (CQI) based on the interference estimation result notified from the interference signal estimation unit 306, the channel estimation result notified from the channel estimation unit 307, and the feedback mode. Note that any of Wideband CQI, Subband CQI, and best-M average may be set as the feedback mode.
  • the CQI calculated by the CQI measurement unit 308 is notified to the base station apparatus 20 as feedback information.
  • the present invention is not limited to the above embodiment, and can be implemented with various modifications.
  • the setting position of CSI-RS, the setting position of muting (zero power), the number of processing units, the processing procedure, the number of CSI-RS, the number of mutings in the above description The number of transmission points can be changed as appropriate.
  • the transmission points may be antennas. Other modifications can be made without departing from the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 CRSに依存しない将来のシステムにおいて高精度に干渉測定すること。基地局装置において、希望信号測定用参照信号(CSI-RS)及び干渉推定用参照信号をそれぞれ割当てるリソースを決定する決定部(401)と、スクランブル系列を適用して干渉推定用参照信号を生成する参照信号生成部(405)と、を有し、前記干渉推定用参照信号に対して、複数の送信ポイント間又は送信ポイントグループ間で異なるスクランブル系列が適用されるように制御する。

Description

無線通信システム、基地局装置、ユーザ端末、及び無線通信方法
 本発明は、次世代移動通信システムにおける無線通信システム、基地局装置、ユーザ端末、及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいては、周波数利用効率の向上、データレートの向上を目的として、HSDPA(High Speed Downlink Packet Access)やHSUPA(High Speed Uplink Packet Access)を採用することにより、W-CDMA(Wideband Code Division Multiple Access)をベースとしたシステムの特徴を最大限に引き出すことが行われている。このUMTSネットワークについては、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が検討されている(非特許文献1)。
 第3世代のシステムは、概して5MHzの固定帯域を用いて、下り回線で最大2Mbps程度の伝送レートを実現できる。一方、LTEシステムでは、1.4MHz~20MHzの可変帯域を用いて、下り回線で最大300Mbps及び上り回線で75Mbps程度の伝送レートを実現できる。また、UMTSネットワークにおいては、更なる広帯域化及び高速化を目的として、LTEシステムの後継のシステムも検討されている(例えば、LTEアドバンスト又はLTEエンハンスメントと呼ぶこともある(以下、「LTE-A」という))。
 LTEシステム(例えば、Rel.8LTE)の下りリンクにおいて、セルIDに関連づけられたCRS(Cell-specific Reference Signal)が定められている。このCRSは、ユーザデータの復調に用いられる他、スケジューリングや適応制御のための下りリンクのチャネル品質(CQI:Channel Quality Indicator)測定等に用いられる。一方、LTEの後継システム(例えば、Rel.10LTE)の下りリンクにおいては、CSI(Channel State Information)測定専用にCSI-RS(Channel State Information-Reference Signal)が検討されている。
3GPP, TR25.912 (V7.1.0), "Feasibility study for Evolved UTRA and UTRAN", Sept. 2006
 ところで、LTEシステムに対してさらにシステム性能を向上させるための有望な技術の1つとして、セル間直交化がある。例えば、LTE-Aシステムでは、上下リンクとも直交マルチアクセスによりセル内の直交化が実現されている。すなわち、下りリンクでは、周波数領域においてユーザ端末UE(User Equipment)間で直交化されている。一方、セル間はW-CDMAと同様、1セル周波数繰り返しによる干渉ランダム化が基本である。
 そこで、3GPP(3rd Generation Partnership Project)では、セル間直交化を実現するための技術として、協調マルチポイント送受信(CoMP:Coordinated Multi-Point transmission/reception)技術が検討されている。このCoMP送受信では、1つあるいは複数のユーザ端末UEに対して複数のセルが協調して送受信の信号処理を行う。これらのCoMP送受信技術の適用により、特にセル端に位置するユーザ端末UEのスループット特性の改善が期待される。
 このように、LTE-Aシステムにおいては、一つの送信ポイントからユーザ端末に送信する送信形態に加え、複数の送信ポイントからユーザ端末に送信する送信形態がある。そのため、ユーザ端末において複数の送信ポイント間の干渉等を考慮してチャネル品質情報を決定することが重要となる。
 上記したように、LTEシステムでは、セルIDに括りつけられたCRSを用いて干渉測定されるが、複数の送信ポイントに対し同一セルIDが付与されるシステム構成の場合、同一セルIDが付与された複数の送信ポイントから同時送信されたCRSをユーザ端末において分離できない不都合が存在する。一方で、LTE-A(Rel.10)において、受信信号(希望波)の信号成分測定用に規定されたCSI-RSは複数の送信ポイントに対し同一セルIDが付与されるシステム構成であってもCSI-RSを分離できる。しかしながら、CSI-RSを用いて干渉測定する場合には、CSI-RSの密度が低いため、高精度に干渉測定することが難しい。
 本発明はかかる点に鑑みてなされたものであり、CRSに依存しない将来のシステムにおいて高精度に干渉測定できる無線通信システム、基地局装置、ユーザ端末、及び無線通信方法を提供することを目的とする。
 本発明の無線通信システムは、チャネル状態を測定するための希望信号測定用参照信号及び干渉推定用参照信号を送信する複数の基地局装置と、前記複数の基地局装置と無線リンクを介して接続するユーザ端末とを備えた無線通信システムであって、前記各基地局装置は、前記希望信号測定用参照信号及び前記干渉推定用参照信号をそれぞれ割当てるリソースを決定する決定部と、スクランブル系列を適用して干渉推定用参照信号を生成する参照信号生成部と、を有し、前記参照信号生成部は、少なくとも前記決定部が前記干渉推定用参照信号を他の1又は複数の送信ポイントから送信される干渉推定用参照信号と同じリソースに割当てる場合、同じリソースに干渉推定用参照信号が割り当てられる複数の送信ポイント間又は送信ポイントグループ間で異なる前記スクランブル系列が適用されるように制御することを特徴とする。
 本発明によれば、CRSに依存しない将来のシステムにおいて高精度に干渉測定できる無線通信システム、基地局装置、ユーザ端末、及び無線通信方法を提供できる。
干渉推定用参照信号を含んだCSI-RSパターンの一例を示す図である。 複数の送信ポイントから送信される干渉推定用参照信号を含んだCSI-RSのパターンの一例を示す図である。 複数の送信ポイントから送信される干渉推定用参照信号を含んだCSI-RSのパターンの一例を示す図である。 複数の送信ポイント間で異なるスクランブル系列を適用した干渉推定用参照信号を含んだCSI-RSのパターンの一例を示す図である。 干渉推定用参照信号を含んだCSI-RSパターンを示す図である。 ランダムCSI-RSを含んだCSI-RSパターンを示す図である。 送信ポイント間で同一のランダムCSI-RSを含んだCSI-RSパターンを示す図である。 干渉推定用参照信号に適用するスクランブル系列の種類とビット値とを組み合わせたテーブルを示す図である。 干渉推定用参照信号を含んだCSI-RSパターンの一例を示す図である。 無線通信システムのシステム構成の説明図である。 基地局装置の全体構成の説明図である。 ユーザ端末の全体構成の説明図である。 基地局装置の機能ブロック図である。 ユーザ端末の機能ブロック図である。
 まず、LTEの後継システム(例えば、Rel.10LTE)で採用される参照信号の1つであるCSI-RSについて説明する。
 CSI-RSは、チャネル状態としてのCQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)、RI(Rank Indicator)等のCSI測定に用いられる参照信号である。CSI-RSは、全てのサブフレームに割り当てられるCRSと異なり、所定の周期、例えば10サブフレーム周期で割り当てられる。また、CSI-RSは、位置、系列および送信電力というパラメータで特定される。CSI-RSの位置には、サブフレームオフセット、周期、サブキャリア-シンボルオフセット(インデックス)が含まれる。
 なお、CSI-RSとしては、ノンゼロパワーCSI-RSとゼロパワーCSI-RSとが定義されている。ノンゼロパワーCSI-RSは、CSI-RSが割り当てられるリソースに送信パワーを分配し、ゼロパワーCSI-RSは、割り当てられるリソースに送信パワーが分配されない(CSI-RSがミュートされる)。
 CSI-RSは、LTEで規定される1サブフレームにおいて、PDCCH(Physical Downlink Control Channel)等の制御信号、PDSCH(Physical Downlink Shared Channel)等のユーザデータ、CRS(Cell-specific Reference Signal)やDM-RS(Demodulation-Reference Signal)等の他の参照信号と重ならないように割り当てられる。1サブフレームは、周波数方向に連続する12サブキャリアと、時間軸方向に連続する14シンボル(1リソースブロック(RB:Resource Block)ペア)とで構成される。また、PAPRを抑制する観点から、CSI-RSを割当て可能なリソースは、時間軸方向に隣接する2つのリソースエレメント(RE:Resource Element)がセットで割り当てられる。
 CSI-RSを用いて干渉を推定する場合、時間軸方向に隣接する2つのCSI-RSの残差から干渉電力を求めることができる。CSI-RSを、時間軸方向に隣接する2つのリソース(RE)にペアとしてマッピングすることにより、それぞれのCSI-RSのマッピング位置でのチャネル状態がほぼ等しくなり、2つのCSI-RSの残差から干渉電力を推定したときに、高精度で干渉を推定することができる。
 また、LTE-Aシステムにおいては、複数の送信ポイントからユーザ端末に送信する送信形態があるため、CSI-RSによってCQIを算出する場合、干渉測定の精度が重要となる。
 複数の送信ポイントからの送信形態としては、例えば、CoMP送信がある。下りリンクのCoMP送信としては、Coordinated Scheduling/Coordinated Beamformingと、Joint processingとがある。Coordinated Scheduling/Coordinated Beamformingは、1つのユーザ端末UEに対して1つのセルからのみ共有データチャネルを送信する方法であり、他セルからの干渉や他セルへの干渉を考慮して周波数/空間領域における無線リソースの割り当てを行う。一方、Joint processingは、プリコーディングを適用して複数のセルから同時に共有データチャネルを送信する方法であり、1つのユーザ端末UEに対して複数のセルから共有データチャネルを送信するJoint transmissionと、瞬時に1つのセルを選択し共有データチャネルを送信するDynamic Point Selection(DPS)とがある。また、干渉となる送信ポイントに対して一定領域のデータ送信を停止するDynamic Point Blanking(DPB)という送信形態もある。
 このように、CoMP等を行う際に複数の送信ポイントからのCSI-RSを適用して干渉測定を行うことは有効であるが、LTE(Rel.10LTE)で規定されたCSI-RSは1リソースブロックペアにおける密度が低いので、他の送信ポイント(他セル)からの干渉を高精度に測定することは困難となる。
 そこで本出願人は、図1に示すように、希望信号電力推定に使用するCSI-RS(以下、「希望信号測定用CSI-RS」と記す)に加えて、干渉信号電力推定に使用するCSI-RS(以下、「干渉推定用参照信号」と記す)を追加し、複数の送信ポイント間で干渉推定用参照信号のリソースを制御することを提案した。これにより、希望信号測定用CSI-RS(既存CSI-RS)と干渉推定用参照信号の双方を用いて干渉測定できるため、干渉測定精度を改善できる。
 ここで、干渉推定用参照信号を用いた干渉推定法の一例について説明する。なお、以下の説明では、2つの基地局装置が送信ポイント(TP#1、TP#2)となるシステム構成を例に説明するが、送信ポイント(TP)の数は2つに限定されない。
 図2Aは、送信ポイントTP#1、TP#2からユーザ端末UEに送信を行う場合を示している。また、図2Bは、干渉測定リソースに干渉推定用参照信号が配置されたCSI-RSパターンの一例を示している。図2Bにおいて、左側のサブフレームは、TP#1から送信されるサブフレームであり、右側のサブフレームは、TP#2から送信されるサブフレームである。
 また、図2Bでは、複数の送信ポイント(TP#1、TP#2)間で、干渉推定用参照信号を同一リソースに配置する場合を示している。具体的には、TP#1、TP#2のそれぞれのサブフレームにおいて、周波数軸方向における第4のREであって、時間軸方向における第9、第10のREに、干渉推定用参照信号をそれぞれ配置している。これらの干渉推定用参照信号を用いることにより、TP#1及びTP#2の外側のセルの干渉信号の推定が可能となる。
 また、図2に示すように、TP#1のサブフレームにおいて、周波数軸方向における第0のREであって時間軸方向における第9、第10のREに希望信号測定用CSI-RS(既存のCSI-RS)を配置すると、当該REではTP#1の希望信号の推定が可能となる。また、図2に示すように、TP#2のサブフレームにおいて、周波数軸方向における第1のREであって時間軸方向における第9、第10のREに希望信号測定用CSI-RSを配置すると、当該REではTP#2の希望信号の推定が可能となる。
 この場合、基地局装置からユーザ端末に対して、希望信号の推定方法及び干渉信号の推定方法に関する情報をシグナリングする。すなわち、希望信号の推定に用いるRE(SMR:Signal Measurement Resource)の情報、干渉信号の測定に用いるRE(IMR:Interference Measurement Resource)の情報、SMRとIMRの組合せの情報を、基地局装置がユーザ端末にシグナリングする。これらの情報は、上位レイヤシグナリング(例えば、RRCシグナリング)で基地局装置からユーザ端末に通知しても良く、下り制御情報(DCI)でダイナミックに基地局装置からユーザ端末に通知しても良い。
 以下に、送信形態に応じた干渉電力の算出方法について説明する。
 図3は、図2における所定シンボル(例えば、第8~第11)を1リソースブロック分だけ抜き出したものであり、複数の送信ポイント間で干渉推定用参照信号が同一のリソースに配置されたCSI-RSパターンの一例を示している。なお、以下の説明においては説明の都合上、他の信号(DMRS、PDSCH等)は省略している。
 また、図3B、図3Cにおいて、左側のサブフレームは、TP#1から送信されるサブフレームを示し、右側のサブフレームは、TP#2から送信されるサブフレームを示している。また、図3BはCoMP適用時、図3CはCoMP非適用時(シングルセル送信時)におけるCSI-RSパターンの一例を示している。
 ユーザ端末において、干渉信号電力推定に用いる所定(例えば、j番目)のRE(IMR)における受信信号「y」は、TP#iから送信されるj番目のRE(IMR)のCSI-RSシンボルを「Xij」、TP#iの第1のアンテナからユーザ端末までのチャネルフェージングを「hi」、ユーザ端末におけるj番目のRE(IMR)のノイズ(AWGN)を「n」とすると、y=hij+nで表すことができる。
 TP#1とTP#2でCoMPを適用する場合(図3B参照)、時間軸方向に隣接する2つのRE(IMR)における受信信号(y、y)はそれぞれ以下の式(1)で表すことができる。なお、以下の説明では、TP#1(接続セル)及びTP#2(協調セル)から送信されるサブフレームにおいて、時間軸方向に隣接する干渉信号推定用の2つのRE(IMR)を、それぞれ時間軸方向に沿って順に1番目、2番目のIMRと仮定している。
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)において、X11、X12は、それぞれTP#1及びTP#2から送信されるサブフレームにおいて、時間軸方向に隣接する2つの干渉測定用のRE(IMR)に配置される干渉推定用参照信号シンボルである(図3B参照)。また、hは、TP#1からUEまでのチャネルフェージングを示し、hは、TP#2からUEまでのチャネルフェージングを示している。また、n、nは、それぞれ時間軸方向に隣接する2つの干渉測定用のRE(IMR)におけるノイズである。
 また、TP#1及びTP#2以外(TP#1とTP#2の外側)の干渉電力(P12)は、下記式(2)で表すことができる。
Figure JPOXMLDOC01-appb-M000002
 式(2)において、X* 11、X* 12は、それぞれX11、X12の共役である。yにX* 11を乗算することにより、yからX11の影響を除去して自セル以外の干渉を適切に測定することができる。
 このように、TP#1及びTP#2から送信されるサブフレームにおいて、干渉推定用参照信号を同一リソースに配置することにより、ユーザ端末はTP#1及びTP#2以外の干渉電力を適切に算出することができる。
 一方、TP#1とTP#2でCoMPを適用しない(シングルセル送信)場合(図3C参照)、時間軸方向に隣接する2つのRE(IMR)の受信信号(y、y)はそれぞれ以下の式(3)で表すことができる。
Figure JPOXMLDOC01-appb-M000003
 なお、式(3)において、X11、X12は、TP#1から送信されるサブフレームにおいて、それぞれ時間軸方向に隣接する2つの干渉測定用のRE(IMR)に配置される干渉推定用参照信号シンボルである。X21、X22は、TP#2から送信されるサブフレームにおいて、それぞれ時間軸方向に隣接する2つの干渉測定用のRE(IMR)にそれぞれ配置される干渉推定用参照信号シンボルである。つまり、X11とX21が同じREに配置され、X12とX22が同じREに配置される。また、hは、TP#1からユーザ端末までのチャネルフェージングを示し、hは、TP#2からユーザ端末までのチャネルフェージングを示している。また、n、nは、それぞれ時間軸方向に隣接する2つのRE(IMR)におけるノイズである。
 また、TP#1以外(TP#1の外側)の干渉電力(TP#1における干渉電力P)は、下記式(4)で表すことができる。
Figure JPOXMLDOC01-appb-M000004
 このように、複数の送信ポイント(TP#1とTP#2)において、同一リソースに干渉推定用参照信号を配置することにより、TP#1及びTP#2の外側のセルの干渉信号の推定が可能となる。また、この際、各送信ポイントにおいて干渉推定用参照信号を1アンテナポートで送信することにより、シグナリングのオーバヘッドを低減することができる。
 ところで、干渉推定用参照信号を構成するシンボル系列が、複数の送信ポイント(TP#1とTP#2)間、または送信ポイントグループ間で同一であると、ユーザ端末における干渉推定精度が低下する。
 本発明者等は、Heterogeneous環境のような送信ポイント数の多い環境においては、既存の参照信号(例えば、LTE(Rel.10)で規定されるCSI-RS)の系列だけでは、干渉推定用参照信号を構成するシンボル系列の種類が不足するおそれがあり、干渉推定精度が低下する可能性があると共に、干渉推定用参照信号のプランニングが煩雑になる可能性があることを見出し、多くの種類の干渉推定用参照信号を容易に確保できる干渉推定方法を発明するに至った。
 本発明に係る干渉推定方法は、送信ポイント間(又は送信ポイントグループ間)で、異なるスクランブル系列を適用した干渉推定用参照信号を用いて干渉推定を行う。複数のスクランブル系列を用いることにより、多くの種類の干渉推定用参照信号を生成することが可能となり、Heterogeneous環境のような送信ポイント数の多い環境において干渉推定用参照信号のプランニングエフォートを低減することが可能となる。なお、本発明が適用される通信システムにおいて、干渉推定用参照信号の多重位置は、複数の送信ポイント間(又は送信ポイントグループ間)で異なる多重位置に多重されていてもよい。複数の送信ポイント間(又は送信ポイントグループ間)で干渉推定用参照信号が同一の多重位置(リソース)に多重されている場合に、送信ポイント間(又は送信ポイントグループ間)で異なるスクランブル系列を適用できればよい。
 以下に、本実施の形態の詳細について図面を参照して説明する。
 図4は、図2における所定シンボル(例えば、第8~第11)を1リソースブロック分だけ抜き出したものであり、複数の送信ポイントにおいて干渉推定用参照信号が同一のリソースに配置されたパターンの一例を示している。図4B,Cにおいて、左側のサブフレームは、TP#1から送信されるサブフレームであり、右側のサブフレームは、TP#2から送信されるサブフレームである。
 本実施の形態では、異なる送信ポイント(TP#1、TP#2)における干渉推定用参照信号シンボルに対して、それぞれ異なるスクランブル系列を適用する。例えば、TP#1となる基地局装置は、干渉推定用参照信号シンボルをTP#2となる基地局装置と異なるスクランブル系列が適用されるように制御する。
 具体的には、TP#1となる基地局装置は、干渉推定用参照信号を時間軸方向に隣接する2つのリソース(IMR#1)に割当てると共に、2つのリソースに割当てられる干渉推定用参照信号のシンボルに対して、TP#2となる基地局装置と異なるスクランブル系列を適用する。例えば、図4Bに示すように、TP#1から送信されるサブフレームにおいて時間軸方向に連続する2つの干渉推定用参照信号(IMR#1)に対して第1のスクランブル系列を適用し、TP#2から送信されるサブフレームにおいて時間軸方向に連続する2つの干渉推定用参照信号(IMR#2)に対して第1のスクランブル系列とは異なる第2のスクランブル系列を適用する。
 ここで、スクランブル系列を適用した干渉推定用参照信号の生成プロセスについて具体的に説明する。
 (既存の参照信号+スクランブル系列)
 既存の参照信号(例えば、CSI-RS)の系列に対して、提案するスクランブル系列を乗算することにより、干渉推定用参照信号を生成する。既存の参照信号の系列に対して、送信ポイント間(又は送信ポイントグループ間)で異なるスクランブル系列を乗算することにより、送信ポイント間(又は送信ポイントグループ間)で種類の異なる干渉推定用参照信号を生成できる。
 例えば、図4Bに示すように、TP#1から送信されるサブフレームにおいて時間軸方向に連続する2つの干渉推定用参照信号として既存のCSI-RSの系列が生成され、この既存のCSI-RSの系列からなる干渉推定用参照信号に対して第1のスクランブル系列を適用する。また、TP#2から送信されるサブフレームにおいて時間軸方向に連続する2つの干渉推定用参照信号として既存のCSI-RSの系列が生成され、この既存のCSI-RSの系列からなる干渉推定用参照信号に対して第2のスクランブル系列を適用する。この結果、TP#1とTP#2との間で異なるスクランブル系列を適用した干渉推定用参照信号を生成できる。
 (直交系列+非直交系列)
 また、直交系列または非直交系列に対して、スクランブル系列を乗算することにより、干渉推定用参照信号を生成してもよい。直交系列または非直交系列をベースとなる系列として用いる。例えば、直交系列と非直交系列を組み合わせる場合には、直交系列に対して非直交系列をスクランブル系列として乗算することが考えられる。
 直交系列として、干渉測定用参照信号シンボルを位相回転した系列を用いることもできる。異なる送信ポイント(TP#1、TP#2)における干渉推定用参照信号シンボルに対して、それぞれ異なる位相回転量(位相シフト量、位相回転角)を付与する。例えば、図4Cに示すように、TP#1から送信されるサブフレームにおいて時間軸方向に連続する2つの干渉推定用参照信号シンボルのうち、後半の干渉推定用参照信号シンボル(X12)をθだけ位相回転する。また、TP#2から送信されるサブフレームにおいて時間軸方向に連続する2つの干渉推定用参照信号シンボルのうち、後半の干渉推定用参照信号シンボル(X22)をθだけ位相回転する。
 この場合、ユーザ端末において、時間軸方向に隣接する干渉信号推定に用いる2つのRE(IMR)の受信信号(y、y)はそれぞれ以下の式(5)で表すことができる。
Figure JPOXMLDOC01-appb-M000005
 また、TP#1から送信される干渉推定用参照信号シンボル(X11)と、TP#2から送信される干渉推定用参照信号シンボル(X21)の位相回転量を変化させても良い。
 (時間/周波数領域で異なるスクランブル系列)
 また、時間/周波数領域で異なるスクランブル系列を用いて干渉推定用参照信号を生成してもよい。例えば、あるユーザ端末UEに対して、時間領域でサブフレーム番号に紐付けられた異なるスクランブル系列を用いて干渉推定用参照信号を生成する。これにより、時間領域で異なるスクランブル系列が適用された干渉推定用参照信号が生成される。
 (スクランブル系列長のバリエーション)
 スクランブル系列は、複数のRBにまたがる長いスクランブル系列長を用いてスクランブルしてもよいし、1RB内に閉じたスクランブル系列長を用いてスクランブルしてもよい。例えば、図4Cに示すように、1RB当たりの干渉推定用参照信号(IMR)が2シンボルで構成される場合に、3つのRBにまたがる干渉推定用参照信号シンボル(2×3=6シンボル)に対して6シンボル長のスクランブル系列長を適用する。または、図4Cに示すように、1RB当たりの干渉推定用参照信号が2シンボルで構成される場合に、1RBの干渉推定用参照信号シンボル(2シンボル)に対して2シンボル長のスクランブル系列長を適用する。
 ここで、ベースとなる系列としては、直交系列として、ウォルシュアダマール(Walsh-Hadamard)系列、直交M系列、位相回転系列を用いることができ、非直交系列として、CAZAC符号(Zadoff-Chu系列、Frank系列等)、PN符号(M系列、Gold系列)、Truncated PN符号、Golay符号などを用いることができる。また、スクランブル系列としては、上記直交系列または非直交系列のいずれかを用いるようにしてもよい。
 (干渉推定用参照信号の多重位置)
 次に、送信ポイント間(又は送信ポイントグループ間)で異なるスクランブル系列が適用される干渉推定用参照信号の多重位置について説明する。
 提案する干渉推定用参照信号の多重位置は、既存の参照信号(例えば、CSI-RS)の多重パターンまたは多重パターンの一部に属していてもよいし、PDSCH用のリソースであるデータ領域にランダムに配置された多重パターンであってもよい。
 また、干渉推定用参照信号の多重位置は、他の1つ又は複数の送信ポイント間(又は送信ポイントグループ間)で異なる多重位置に多重されていてもよいし、複数の送信ポイント間(又は送信ポイントグループ間)で同一の多重位置に多重されていてもよい。この場合、送信ポイント間(又は送信ポイントグループ間)で異なるスクランブル系列を適用するには、同一の多重位置で多重された複数送信ポイント間(又は送信ポイントグループ間)の干渉推定用参照信号に対して異なるスクランブル系列を適用する。
 例えば、既存のCSI-RSの多重パターンに属した領域に提案する干渉推定用参照信号を多重する場合、LTE-A(Rel.10)で規定されている既存CSI-RSはサポートするが、提案する干渉推定用参照信号はサポートしていないユーザ端末(以下、既存端末(Rel.10)という)との下りリンクの通信では、干渉推定用参照信号の多重位置を、ゼロパワーCSI-RSとして通知することにより、既存端末(Rel.10)が、サポートしていない干渉推定用参照信号をゼロパワーCSI-RSとして認識し、干渉推定用参照信号を除外したデータ復調が可能となることで、データ復調精度の劣化を防ぐことが可能となる。
 以下に干渉推定用参照信号の多重位置のバリエーションについて具体的に説明する。
 図5に示す例では、送信ポイントTP#1、TP#2は、干渉推定用参照信号を、1リソースブロック内において、既存CSI-RSと重ならないリソースに配置する。干渉推定用参照信号は、既存CSI-RSのようなチャネル状態測定に用いないので、既存CSI-RSと重ならないリソースに自由に配置できる。干渉推定用参照信号を干渉測定のみに利用する場合は干渉測定専用CSI-RSと呼んでもよい。
 図5に示す例では、送信ポイントTP#1と送信ポイントTP#2との間で、同一リソースに干渉推定用参照信号が配置されている。異なる送信ポイント又はユーザ端末に対して異なるスクランブル系列を適用した干渉推定用参照信号の系列を生成すれば、複数送信ポイントTP#1,TP#2からの干渉推定用参照信号が合成されていても、ユーザ端末はコード分離することが可能である。また、送信ポイント間で干渉推定用参照信号のリソースが重ならないように周波数軸方向にシフトさせるようにしてもよい。この場合、干渉推定用参照信号のシフト数(リソースエレメント数)を変化させることで、隣接送信ポイント間で干渉推定用参照信号のパターンが重なることを防ぐことができる。
 既存端末(Rel.10)に対して、干渉推定用参照信号リソースをゼロパワーCSI-RSとしてハイヤレイヤシグナリングする。
 送信ポイント#1を構成する基地局装置(TP#1)は、TP#1に接続するユーザ端末のうち、干渉推定用参照信号をサポートするサポート端末に対して、図5に示す干渉推定用参照信号のリソース情報をハイヤレイヤシグナリングで通知し、既存端末(Rel.10)に対して既存CSI-RSのリソース情報をハイヤレイヤシグナリングで通知すると共に干渉推定用参照信号のリソースをゼロパワーCSI-RSとしてハイヤレイヤシグナリングする。
 サポート端末は、干渉推定用参照信号の通知を受けて、干渉推定用参照信号リソースを特定して受信し、干渉推定用参照信号及び既存CSI-RSの双方を用いて干渉測定し、既存CSI-RSを用いてチャネル状態測定する。既存CSI-RSを用いた干渉測定では、接続先の送信ポイントTP#1から送信されたCSI-RSと他の送信ポイント(図5ではTP#2以外の他の送信ポイント)からのCSI-RSとを分離して干渉測定する。
 既存端末(Rel.10)は、干渉推定用参照信号のリソースがゼロパワーCSI-RSとして通知される。その結果、干渉推定用参照信号が配置されたリソースについてはゼロパワーCSI-RSとして認識し、干渉推定用参照信号リソースをデータ復調から排除する。
 図6に示す例では、既存CSI-RSを配置可能な領域において、リソースエレメント単位の干渉推定用参照信号(以下、ランダムCSI-RSという)を、ランダムに配置(ホッピング)するようにした。
 このように、ランダムCSI-RSベースの干渉測定法を適用した場合も、干渉推定に利用可能なパターン数を増加できると共に、ランダムCSI-RSは、ノンゼロパワーCSI-RSであるので、干渉推定用の参照信号数を増加でき、CSIのためのチャネル状態測定用の参照信号数を増加できる。
 送信ポイント#1を構成する基地局装置(TP#1)は、TP#1に接続するユーザ端末のうち、ランダムCSI-RSをサポートするサポート端末に対して、図6に示すランダムCSI-RSの設定情報をハイヤレイヤシグナリングで通知し、既存端末(Rel.10)に対して既存CSI-RSの設定情報をハイヤレイヤシグナリングで通知すると共にランダムCSI-RSをゼロパワーCSI-RSとしてハイヤレイヤシグナリングで通知する。
 サポート端末は、例えばRRCシグナリングを利用してランダムCSI-RSが通知される。通知されたランダムCSI-RS及び既存CSI-RSを用いて干渉測定し、既存CSI-RSを用いてチャネル状態を測定する。
 既存端末(Rel.10)は、ランダムCSI-RSに割り当てられたリソースがゼロパワーCSI-RSとして通知される。既存端末(Rel.10)は、ランダムCSI-RSを除外してデータ復調する。
 図7に示す例では、送信ポイント間で互いに同一の干渉測定用ランダムCSI-RSパターンを用いる。干渉測定用ランダムCSI-RSは同一周波数であって連続する2シンボルで構成される2リソースエレメントに割り当てられるが、一方の送信ポイントに対して2リソースエレメントの一方のリソースエレメントに1つの干渉測定用ランダムCSI-RSを割当て、もう一方のリソースエレメントにゼロパワーCSI-RSを割り当てる。また、他方の送信ポイントに対して2リソースエレメントの他方のリソースエレメントに1つの干渉測定用ランダムCSI-RSを割当て、もう一方のリソースエレメントにゼロパワーCSI-RSを割り当てる。既存端末(Rel.10)に対しては干渉測定用ランダムCSI-RSが割り当てられたリソースエレメントのセット(2リソースエレメント)SET1、SET2…をゼロパワーCSI-RSとして通知する。
 これにより、既存端末(Rel.10)に対して既存パターンを利用して干渉測定用ランダムCSI-RSを通知でき、データ復調精度の劣化を防ぐことができる。
 送信ポイントTP#1は、1リソースブロック内において、リソースエレメントセットSET1,SET2に干渉測定用ランダムCSI-RSが配置され、かつリソースエレメントセットSET1では右側エレメントが干渉測定用ランダムCSI-RSに指定され、リソースエレメントセットSET2は左側エレメントが干渉測定用ランダムCSI-RSに指定されている。
 送信ポイントTP#2は、送信ポイントTP#1と同一パターンで干渉測定用ランダムCSI-RSが配置されている。しかし、ランダムホールの位置は送信ポイント間で直交(左右が逆の配置)させている。すなわち、1リソースブロック内において、リソースエレメントセットSET1、SET2に干渉測定用ランダムCSI-RSが配置され、かつリソースエレメントセットSET1では左側エレメントが干渉測定用ランダムCSI-RSに指定され、リソースエレメントセットSET2では右側エレメントが干渉測定用ランダムCSI-RSに指定されている。
 送信ポイントTP#1を構成する基地局装置は、自局に接続されるサポート端末に対して、図7に示す干渉測定用ランダムCSI-RSパターンをハイヤレイヤシグナリングする。基地局装置は、さらにハイヤレイヤシグナリングによって干渉測定用ランダムCSI-RSの位置(リソースエレメントセットSET内での左右の位置)を通知しても良いし、ハイヤレイヤシグナリングによって干渉測定用ランダムCSI-RSの位置(リソースエレメントセットSET内での左右の位置)のみを通知しても良い。本例では、干渉測定用ランダムCSI-RSパターン情報と干渉測定用ランダムCSI-RSの位置情報とを通知する。又は、干渉測定用ランダムCSI-RSの配置パターンだけでなく、干渉測定用ランダムCSI-RSの位置まで特定される新たなパターンを定義しても良い。基地局装置は、既存端末(Rel.10)に対して既存CSI-RSの設定情報をハイヤレイヤシグナリングで通知すると共に、干渉測定用ランダムCSI-RSをゼロパワーCSI-RSとしてハイヤレイヤシグナリングで通知する。干渉測定用ランダムCSI-RSは、ゼロパワーCSI-RSのシグナリングにも使用される、LTE-A(Rel.10)に規定されたCSI-RSパターン(4ポート)に基づいている。
 これにより、既存端末(Rel.10)は、リソースエレメント単位の干渉測定用ランダムCSI-RSが設定されたとしても、正しく復調できない可能性のある危険リソースが、サポートしているシグナリング法によって通知されるので、データ復調精度の劣化を防止できる。
 (スクランブル系列の通知)
 基地局装置は、干渉推定用参照信号を生成するためにベースとなる系列に対して乗算されるスクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ)に関する情報を、ユーザ端末に通知する機能を有する。
 ユーザ端末は、基地局装置から通知されるスクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ)の情報をメモリに記憶し、各送信ポイントから送信されるスクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ)の系列を特定する系列特定部を有する。系列特定部により、干渉推定用参照信号の系列検出を正確に行うことができる。
 例えば、基地局装置は、上位レイヤシグナリング(例えば、RRCシグナリング)又は報知信号等により、スクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ)の情報をユーザ端末に通知する。この場合、基地局装置は、スクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ)とビット値とを対応させたテーブルを適用してもよいし、スクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ)の情報をシグナリングするようにしてもよい。
 基地局装置とユーザ端末が同じ内容のテーブルを具備する場合には、ユーザ端末はRRCシグナリングや報知信号等で通知された情報から、各送信ポイントから送信される干渉推定用参照信号の系列を特定することができる。
 図8にスクランブル系列とビット値とを対応させたテーブルの構成例を示す。同図に示すテーブルは、例として3種類のスクランブル系列のそれぞれに対応させてビットデータ(00)(01)(10)がマッピングされている。例えば、ベースとなる系列にスクランブル系列1を乗算して干渉推定用信号を生成した場合、スクランブル系列1に関する情報としてビットデータ(00)をシグナリングする。テーブルで規定されるスクランブル系列は3種類のスクランブル系列に限らず、任意の複数種類のスクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ)を示すテーブルを用いてもよい。
 また、基地局装置から上位レイヤシグナリング(例えば、RRCシグナリング)や報知信号等を用いてスクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ)に関する情報をユーザ端末に通知する場合には、基地局装置毎に異なるスクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ)をユーザ端末に通知するようにしてもよい。または、複数の基地局装置からなるグループ毎に異なるスクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ)となるように設定されたスクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ)をユーザ端末に通知するようにしてもよい。
 また、基地局装置は、干渉推定用参照信号を送信する場合、当該参照信号を特定するための送信パラメータ(位置、系列(スクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ))及び送信電力等)を示す情報(CSI-RS-Config)を、上位レイヤシグナリング(RRCシグナリング)でユーザ端末に通知するようにしてもよい。
 (スクランブル系列の制御)
 基地局装置は、スクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ)と各送信ポイント(又は複数の送信ポイントグループ)固有の情報を対応づけて(括りつけて)、干渉推定用参照信号のスクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ)を制御することも可能である。
 例えば、複数の送信ポイントのセルID(又は、仮想セルID(virtual cell ID))がそれぞれ異なる場合、スクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ)と各送信ポイントのセルID(又は、仮想セルID)を対応づけて定義することができる。
 ここで、仮想セルIDとは、参照信号(例えば、CSI-RSやDM-RS)の初期化擬似ランダム系列生成において、ハイヤレイヤシグナリング(RRCシグナリング)で通知されるユーザ固有パラメータ(例えば、CSI-RSの初期化擬似ランダム系列生成式(下記式(6))におけるユーザ固有パラメータA)から生成される値でもよい。
Figure JPOXMLDOC01-appb-M000006
 例えば、TP#1、2、3のセルIDがそれぞれ1、2、3であったとすると、セルID=1の基地局装置はスクランブル系列#1を、セルID=2の基地局装置はスクランブル系列#2、セルID=3の基地局装置はスクランブル系列#3に制御する。この場合、ユーザ端末は、セルIDに基づいて、各送信ポイントから送信される干渉推定用参照信号のスクランブル系列を特定することができる。
 また、CoMPを適用する場合には、CoMPセットに固有な情報(CoMPセットの識別情報等)とスクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ)とを対応づけて定義することができる。CoMPセットは、CoMPのジョイント送信する複数のセルの組み合わせで構成される。
 他にも、基地局装置は、CSI-RSのパターンと、スクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ)とを対応づけて(括りつけて)制御することも可能である。例えば、各送信ポイントから送信される干渉推定用参照信号に対して、干渉推定用参照信号のマッピング位置と所定のスクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ)とを対応づける(括り付ける)ことができる。
 他にも、基地局装置は、ユーザ端末のID(UEID)と、スクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ)とを対応づけて(括りつけて)制御することも可能である。この場合、基地局装置は、スクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ)とUEIDが対応づけられた式を用いて、干渉推定用参照信号のスクランブル系列(またはベースとなる系列とスクランブル系列の組み合わせ)を決定することができる。
 ここで、希望信号測定用CSI-RSに加えて干渉推定用参照信号を配置する際の、ユーザ端末におけるチャネル推定方法について説明する。
 図9Aに示すように、所定のサブフレームにおいて、希望信号測定用のRE(SMR)と干渉測定用のRE(IMR)を設ける場合、干渉信号用のRE(IMR)に一つのアンテナポート(例えば、第1アンテナポート(Tx#1))から干渉推定用参照信号を送信し、第2アンテナポート(Tx#2)をミューティングすることができる。
 この場合、希望信号の推定としては、希望信号測定用のRE(SMR)のみに基づいて、チャネル推定を行う方法がある。例えば、希望信号測定用のRE(SMR)のみに基づいて、平均2乗誤差最小(MMSE:Minimum Mean Squared Error)によるチャネル推定を行うことができる。例えば、下記式(7)により、チャネル推定を行うことができる。
Figure JPOXMLDOC01-appb-M000007
 また、本実施の形態では、図9Bに示すように、奇数のリソースブロック(RB)における干渉測定用のRE(IMR)に、第1アンテナポート(Tx#1)からCSI-RSを送信し、第2アンテナポート(Tx#2)をミューティングする。そして、偶数のRBにおける干渉信号用のRE(IMR)に、第2アンテナポート(Tx#2)からCSI-RSを送信し、第1アンテナポート(Tx#1)をミューティングすることができる。
 この場合、希望信号の推定において、希望信号測定用のRE(SMR)に加えて干渉測定用のRE(IMR)も考慮して(希望信号測定用のRE(SMR)と干渉測定用のRE(MIR)に基づいて)、平均2乗誤差最小(MMSE)によるチャネル推定を行うことができる。例えば、下記式(8)により、チャネル推定を行うことができる。
Figure JPOXMLDOC01-appb-M000008
 このように、ユーザ端末は、希望信号測定用のRE(SMR)と干渉測定用のRE(IMR)に基づいてチャネル推定を行った結果に基づいて、CQIの測定、PMIの選択を行うことができる。このように、干渉測定用のREも考慮してチャネル推定を行うことにより、ユーザ端末におけるCQIの測定精度を向上することが可能となる。なお、ユーザ端末は、上記第1の態様と第2の態様を組み合わせて適用することができる。
(無線通信システム)
 ここで、本実施の形態に係る無線通信システムについて詳細に説明する。図10は、本実の形態に係る無線通信システムのシステム構成の説明図である。なお、図10に示す無線通信システムは、例えば、LTEシステム或いは、SUPER 3Gが包含されるシステムである。この無線通信システムでは、LTEシステムのシステム帯域を一単位とする複数の基本周波数ブロックを一体としたキャリアアグリゲーションが用いられている。また、この無線通信システムは、IMT-Advancedと呼ばれても良いし、4Gと呼ばれても良い。
 図10に示すように、無線通信システム1は、各送信ポイントの基地局装置20A、20Bと、この基地局装置20A、20Bと無線リンクを介して通信するユーザ端末10とを含んで構成されている。基地局装置20A、20Bは、上位局装置30と接続され、この上位局装置30は、コアネットワーク40と接続される。また、基地局装置20A、20Bは、有線接続又は無線接続によりバックホールリンクを介して相互に接続されている。ユーザ端末10は、複数の送信ポイントである基地局装置20A、20Bと通信を行うことができる。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。
 ユーザ端末10は、既存端末(Rel.10LTE)及びサポート端末(例えば、Rel.11LTE)を含むが、以下においては、特段の断りがない限りユーザ端末として説明を進める。また、説明の便宜上、基地局装置20A、20Bと無線通信するのはユーザ端末10であるものとして説明する。
 無線通信システム1においては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が、上りリンクについてはSC-FDMA(シングルキャリア-周波数分割多元接続)が適用されるが、上りリンクの無線アクセス方式はこれに限定されない。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。
 ここで、通信チャネルについて説明する。下りリンクの通信チャネルは、ユーザ端末10で共有される下りデータチャネルとしてのPDSCH(Physical Downlink Shared Channel)と、下りL1/L2制御チャネル(PDCCH、PCFICH、PHICH)とを有する。PDSCHにより、送信データ及び上位制御情報が伝送される。PDCCH(Physical Downlink Control Channel)により、PDSCHおよびPUSCHのスケジューリング情報などが伝送される。PCFICH(Physical Control Format Indicator Channel)により、PDCCHに用いるOFDMシンボル数が伝送される。PHICH(Physical Hybrid-ARQ Indicator Channel)により、PUSCHに対するHARQのACK/NACKが伝送される。
 上りリンクの通信チャネルは、各ユーザ端末で共有される上りデータチャネルとしてのPUSCH(Physical Uplink Shared Channel)と、上りリンクの制御チャネルであるPUCCH(Physical Uplink Control Channel)とを有する。このPUSCHにより、送信データや上位制御情報が伝送される。また、PUCCHにより、下りリンクのチャネル状態情報(CSI(CQIなどを含む))、ACK/NACKなどが伝送される。
 図11を参照しながら、本実施の形態に係る基地局装置の全体構成について説明する。なお、基地局装置20A、20Bは、同様な構成であるため、基地局装置20として説明する。基地局装置20は、送受信アンテナ201と、アンプ部202と、送受信部(通知部)203と、ベースバンド信号処理部204と、呼処理部205と、伝送路インターフェース206とを備えている。下りリンクにより基地局装置20からユーザ端末に送信される送信データは、上位局装置30から伝送路インターフェース206を介してベースバンド信号処理部204に入力される。
 ベースバンド信号処理部204において、下りデータチャネルの信号は、PDCPレイヤの処理、送信データの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御、例えば、HARQの送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理が行われる。また、下りリンク制御チャネルである物理下りリンク制御チャネルの信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われる。
 また、ベースバンド信号処理部204は、報知チャネルにより、同一送信ポイントに接続するユーザ端末10に対して、各ユーザ端末10が基地局装置20との無線通信するための制御情報を通知する。当該送信ポイントにおける通信のための情報には、例えば、上りリンク又は下りリンクにおけるシステム帯域幅や、PRACH(Physical Random Access Channel)におけるランダムアクセスプリアンブルの信号を生成するためのルート系列の識別情報(Root Sequence Index)などが含まれる。
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換する。アンプ部202は周波数変換された無線周波数信号を増幅して送受信アンテナ201へ出力する。
 一方、上りリンクによりユーザ端末10から基地局装置20に送信される信号については、送受信アンテナ201で受信された無線周波数信号がアンプ部202で増幅され、送受信部203で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部204に入力される。
 ベースバンド信号処理部204は、上りリンクで受信したベースバンド信号に含まれる送信データに対して、FFT処理、IDFT処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理を行う。復号された信号は伝送路インターフェース206を介して上位局装置30に転送される。
 呼処理部205は、通信チャネルの設定や解放などの呼処理や、基地局装置20の状態管理や、無線リソースの管理を行う。
 次に、図12を参照しながら、本実施の形態に係るユーザ端末の全体構成について説明する。ユーザ端末10は、送受信アンテナ101と、アンプ部102と、送受信部(受信部)103と、ベースバンド信号処理部104と、アプリケーション部105とを備えている。
 下りリンクのデータについては、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅され、送受信部103で周波数変換されてベースバンド信号に変換される。このベースバンド信号は、ベースバンド信号処理部104でFFT処理や、誤り訂正復号、再送制御の受信処理などがなされる。この下りリンクのデータの内、下りリンクの送信データは、アプリケーション部105に転送される。アプリケーション部105は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータの内、報知情報も、アプリケーション部105に転送される。
 一方、上りリンクの送信データは、アプリケーション部105からベースバンド信号処理部104に入力される。ベースバンド信号処理部104においては、マッピング処理、再送制御(HARQ)の送信処理や、チャネル符号化、DFT処理、IFFT処理を行う。送受信部103は、ベースバンド信号処理部104から出力されたベースバンド信号を無線周波数帯に変換する。その後、アンプ部102は、周波数変換された無線周波数信号を増幅して送受信アンテナ101より送信する。
 図13を参照して、スクランブル系列の適用に関連する基地局装置の機能ブロックについて説明する。なお、図13の各機能ブロックは、主に図11に示すベースバンド処理部に関するものである。また、図13の機能ブロック図は、本発明を説明するために簡略化したものであり、ベースバンド処理部において通常備える構成を備えるものとする。
 基地局装置20は、送信側において、測定RE決定部401、上位制御情報生成部402と、下り送信データ生成部403と、下り制御情報生成部404と、参照信号生成部405と、下り送信データ符号化・変調部406と、下り制御情報符号化・変調部407と、系列制御部411とを備えている。また、基地局装置20は、下りチャネル多重部408と、IFFT部409と、CP付加部410とを備えている。
 測定RE決定部401は、希望信号測定のための参照信号(既存CSI-RS)となる希望信号測定用CSI-RSを割り当てるリソース(SMR)及び干渉測定のための参照信号としての干渉推定用参照信号を割当てるリソース(IMR)を決定する。また、測定RE決定部401は、希望信号測定のための参照信号を割り当てるリソース(測定RE)及び干渉信号推定のためのリソース(測定RE)の組合せを決定する。
 例えば、測定RE決定部401は、図4Bに示すように、複数の送信ポイントからそれぞれ送信される干渉推定用参照信号が割当てられるリソース(IMR#1、IMR#2)を同じ位置に設定する。また、各送信ポイントから送信される希望信号測定用CSI-RSが割当てられるリソース(SMR)が送信ポイント間で重ならないように設定する。
 干渉推定用参照信号、希望信号測定用CSI-RSの割当てに関する情報(CSI-RSパターン情報)は、ユーザ端末に準静的にシグナリングする場合には、ハイヤレイヤシグナリング(例えばRRCシグナリング)するために上位制御情報生成部402に送られる。また、この割当てに関する情報は、ユーザ端末に動的にシグナリングする場合には、下り制御情報に含めるために下り制御情報生成部404に送られる。また、この割当てに関する情報は、CSI-RSを生成するために参照信号生成部405に送られると共に、下り送信データをゼロパワー(ミューティング)にするために下り送信データ生成部403に送られる。
 上位制御情報生成部402は、上位レイヤシグナリング(例えば、RRCシグナリング)により送信される上位制御情報を生成し、生成した上位制御情報を下り送信データ符号化・変調部406に出力する。例えば、上位制御情報生成部402は、測定RE決定部401から出力された情報を含む上位制御情報(CSI-RSの送信パラメータに関する情報)を生成する。また、上位制御情報生成部402は、系列制御部411で決定された干渉推定用参照信号に適用されるスクランブル系列に関する情報を含む上位制御情報を生成する。この場合、上記図8で示したテーブルを参照して、適用するスクランブル系列に対応するビット情報を生成することができる。
 下り送信データ生成部403は、下りリンクの送信データを生成し、その下り送信データを下り送信データ符号化・変調部406に出力する。下り送信データ生成部403は、測定RE決定部401から出力された割当て情報にしたがって、ゼロパワーCSI-RSを配置する(ミューティングする)。
 下り制御情報生成部404は、下りリンク制御情報(いずれかのDCIフォーマット)を生成し、その下りリンク制御情報を下り制御情報符号化・変調部407に出力する。下り送信データ符号化・変調部406は、下り送信データ及び上位制御情報に対してチャネル符号化及びデータ変調を行い、下りチャネル多重部408に出力する。下り制御情報符号化・変調部407は、下り制御情報に対してチャネル符号化及びデータ変調を行い、下りチャネル多重部408に出力する。
 系列制御部411は、干渉推定用参照信号に適用するスクランブル系列を制御し、参照信号生成部405に出力する。系列制御部411は、少なくとも測定RE決定部401が干渉推定用参照信号を他の1又は複数の送信ポイントから送信される干渉推定用参照信号と同じリソースに割当てる場合、同じリソースに干渉推定用参照信号が割り当てられる複数の送信ポイント間又は送信ポイントグループ間で異なるスクランブル系列が適用されるように制御する。また、系列制御部411は、上述したように、当該基地局装置の固有の情報(例えば、セルID又は仮想セルID)に基づいてスクランブル系列の種類を決定することができる。他にも、希望信号測定用CSI-RSの割当てパターンに基づいてスクランブル系列を決定することができる。また、系列制御部411は、決定したスクランブル系列に関する情報を参照信号生成部405に出力する。また、決定したスクランブル系列(又はベースとなる系列とスクランブル系列との組み合わせ)をユーザ端末に通知する場合には、決定したスクランブル系列(又はベースとなる系列とスクランブル系列との組み合わせ)に関する情報を上位制御情報生成部402に出力する。
 参照信号生成部405は、測定RE決定部401によって決定された割当て情報にしたがって希望信号測定用CSI-RS、干渉推定用参照信号を生成し、これらのCSI-RSを下りチャネル多重部408に出力する。また、参照信号生成部405は、系列制御部411から出力されたスクランブル系列の種類に基づいて、生成した干渉推定用参照信号に対してスクランブル系列を乗算する。参照信号生成部405が、系列制御部411によって制御されるスクランブル系列を、たとえば既存のCSI-RSの系列に乗算することで、同じリソースに干渉推定用参照信号が割り当てられる複数の送信ポイント間又は送信ポイントグループ間で異なるスクランブル系列が適用されることになる。
 下りチャネル多重部408は、下り制御情報、CSI-RS、上位制御情報及び下り送信データを合成して送信信号を生成する。下りチャネル多重部408は、生成した送信信号をIFFT部409に出力する。IFFT部409は、送信信号を逆高速フーリエ変換(Inverse Fast Fourier Transform)し、周波数領域の信号から時間領域の信号に変換する。IFFT後の送信信号をCP付加部410に出力する。CP付加部410は、IFFT後の送信信号にCP(Cyclic Prefix)を付加して、CP付加後の送信信号を図11に示すアンプ部202に出力する。
 図14を参照して、本実施の形態に係るユーザ端末の機能ブロックについて説明する。なお、図14の各機能ブロックは、主に図12に示すベースバンド処理部104に関するものである。また、図12に示す機能ブロックは、本発明を説明するために簡略化したものであり、ベースバンド処理部において通常備える構成は備えるものとする。
 ユーザ端末10は、受信側において、CP除去部301と、FFT部302と、下りチャネル分離部303と、下り制御情報受信部304と、下り送信データ受信部305と、干渉信号推定部306と、チャネル推定部307と、CQI測定部308と、系列特定部309とを備えている。
 基地局装置20から送出された送信信号は、図12に示す送受信アンテナ101により受信され、CP除去部301に出力される。CP除去部301は、受信信号からCPを除去し、FFT部302に出力する。FFT部302は、CP除去後の信号を高速フーリエ変換(FFT:Fast Fourier Transform)し、時間領域の信号から周波数領域の信号に変換する。FFT部302は、周波数領域の信号に変換された信号を下りチャネル分離部303に出力する。
 下りチャネル分離部303は、下りチャネル信号を、下り制御情報、下り送信データ、CSI-RSに分離する。下りチャネル分離部303は、下り制御情報を下り制御情報受信部304に出力し、下り送信データ及び上位制御情報を下り送信データ受信部305に出力し、干渉推定用参照信号を干渉信号推定部306に出力し、希望信号測定用CSI-RSをチャネル推定部307に出力する。
 下り制御情報受信部304は、下りリンク制御情報を復調し、復調された下りリンク制御情報を下り送信データ受信部305に出力する。下り送信データ受信部305は、復調された下りリンク制御情報を用いて下り送信データを復調する。このとき、下り送信データ受信部305は、上位制御情報に含まれるリソース情報に基づいて希望信号測定用RE(SMR)及び干渉測定用RE(IMR)を特定する。下り送信データ受信部305は、希望信号測定RE及び干渉測定用REを除いて、ユーザデータを復調する。また、下り送信データ受信部305は、下り送信データに含まれる上位制御情報を系列特定部309、干渉信号推定部306、チャネル推定部307に出力する。
 系列特定部309は、基地局装置で干渉推定用参照信号に適用されたスクランブル系列を特定する。上述したように、スクランブル系列がセルIDやCSI-RSパターン位置に対応づけられている場合には、系列特定部309は、これらの情報に基づいてスクランブル系列を決定することができる。また、スクランブル系列(又はベースとなる系列とスクランブル系列との組み合わせ)の情報がビット情報で規定されている場合には、上記図8に示したテーブルを参照してスクランブル系列を特定することができる。
 干渉信号推定部306は、系列特定部309で特定されたスクランブル系列(又はベースとなる系列とスクランブル系列との組み合わせ)、上位制御情報(又は下りリンク制御情報)に含まれる送信パラメータ等の情報に基づいて、干渉測定用REで干渉信号を推定する。干渉信号推定部306は、干渉信号の推定を行い、全てのリソースブロックで測定結果を平均化することができる。平均化された干渉信号の推定結果は、CQI測定部308に通知される。
 チャネル推定部307は、上位制御情報(又は下りリンク制御情報)に含まれる送信パラメータ等の情報に基づいて希望信号測定用RE(CSI-RSリソース)を特定し、希望信号測定用REで希望信号を推定する。なお、チャネル推定部307は、上記図9Bで示したように、希望信号測定用RE(SMR)に加えて、干渉測定用RE(IMR)を用いてチャネル推定を行うことも可能である。
 チャネル推定部307は、チャネル推定値をCQI測定部308に通知する。CQI測定部308は、干渉信号推定部306から通知される干渉推定結果、及びチャネル推定部307から通知されるチャネル推定結果、フィードバックモードに基づいてチャネル状態(CQI)を算出する。なお、フィードバックモードは、Wideband CQI、Subband CQI、best-M averageのいずれが設定されてもよい。CQI測定部308で算出されたCQIは、フィードバック情報として基地局装置20に通知される。
 本発明は上記実施の形態に限定されず、様々変更して実施することが可能である。例えば、本発明の範囲を逸脱しない限りにおいて、上記説明におけるCSI-RSの設定位置、ミューティング(ゼロパワー)の設定位置、処理部の数、処理手順、CSI-RSの数、ミューティングの数、送信ポイント数については適宜変更して実施することが可能である。また、上記説明においては、複数の送信ポイントが複数の基地局装置である場合について説明しているが、送信ポイントはアンテナであっても良い。その他、本発明の範囲を逸脱しないで適宜変更して実施することが可能である。
 本出願は、2012年5月10日出願の特願2012-108743に基づく。この内容は、全てここに含めておく。

Claims (18)

  1.  チャネル状態を測定するための希望信号測定用参照信号及び干渉推定用参照信号を送信する複数の基地局装置と、前記複数の基地局装置と無線リンクを介して接続するユーザ端末とを備えた無線通信システムであって、
     前記各基地局装置は、前記希望信号測定用参照信号及び前記干渉推定用参照信号をそれぞれ割当てるリソースを決定する決定部と、スクランブル系列を適用して干渉推定用参照信号を生成する参照信号生成部と、を有し、
     前記参照信号生成部は、少なくとも前記決定部が前記干渉推定用参照信号を他の1又は複数の送信ポイントから送信される干渉推定用参照信号と同じリソースに割当てる場合、同じリソースに干渉推定用参照信号が割り当てられる複数の送信ポイント間又は送信ポイントグループ間で異なる前記スクランブル系列が適用されるように制御することを特徴とする無線通信システム。
  2.  前記参照信号生成部は、ベースとなる系列に対してスクランブル系列を乗算して干渉推定用参照信号を生成することを特徴とする請求項1記載の無線通信システム。
  3.  前記参照信号生成部は、ベースとなる系列として、直交系列又は非直交系列のいずれかを用いることを特徴とする請求項2記載の無線通信システム。
  4.  前記参照信号生成部は、時間領域又は周波数領域で異なるスクランブル系列を用いて干渉推定用参照信号を生成することを特徴とする請求項1記載の無線通信システム。
  5.  前記参照信号生成部は、複数のリソースブロックにまたがる系列長のスクランブル系列を用いて干渉推定用参照信号を生成することを特徴とする請求項1記載の無線通信システム。
  6.  前記参照信号生成部は、1リソースブロック内に閉じた系列長のスクランブル系列を用いて干渉推定用参照信号を生成することを特徴とする請求項1記載の無線通信システム。
  7.  前記決定部は、前記希望信号測定用参照信号の多重パターンまたは多重パターンの一部に属するように前記干渉推定用参照信号のリソースを決定することを特徴とする請求項1記載の無線通信システム。
  8.  前記決定部は、前記干渉推定用参照信号が下りデータチャネルの領域にランダムに配置されるようにリソースを決定することを特徴とする請求項1記載の無線通信システム。
  9.  前記各基地局装置は、スクランブル系列の情報、又はベースとなる系列とスクランブル系列との組み合わせの情報を、前記ユーザ端末へ通知することを特徴とする請求項1記載の無線通信システム。
  10.  前記各基地局装置は、上位レイヤシグナリング又は報知信号のいずれかによりスクランブル系列の情報、又はベースとなる系列とスクランブル系列との組み合わせの情報を、前記ユーザ端末へ通知することを特徴とする請求項9記載の無線通信システム。
  11.  前記各基地局装置は、前記干渉推定用参照信号が送信される場合に、当該干渉推定用参照信号を特定するための系列情報を含む送信パラメータを、上位レイヤシグナリングにより前記ユーザ端末へ通知することを特徴とする請求項1記載の無線通信システム。
  12.  前記参照信号生成部は、スクランブル系列、又はベースとなる系列とスクランブル系列との組み合わせが、前記各送信ポイントに固有の情報に括りつけられていて、送信ポイントに固有の情報に応じて適用するスクランブル系列を制御することを特徴とする請求項1記載の無線通信システム。
  13.  送信ポイントに固有の情報として、送信ポイントのセルID又は仮想セルIDが、スクランブル系列、又はベースとなる系列とスクランブル系列との組み合わせとを対応付けて定義されていることを特徴とする請求項12記載の無線通信システム。
  14.  前記参照信号生成部は、スクランブル系列、又はベースとなる系列とスクランブル系列との組み合わせが、前記希望信号測定用参照信号の多重パターンに対応付けて定義されていることを特徴とする請求項12記載の無線通信システム。
  15.  前記参照信号生成部は、スクランブル系列、又はベースとなる系列とスクランブル系列との組み合わせが、ユーザ端末のIDに対応付けて定義されていることを特徴とする請求項12記載の無線通信システム。
  16.  チャネル状態を測定するための希望信号測定用参照信号及び干渉推定用参照信号をユーザ端末に送信する基地局装置であって、
     前記希望信号測定用参照信号及び前記干渉推定用参照信号をそれぞれ割当てるリソースを決定する決定部と、
     スクランブル系列を適用して干渉推定用参照信号を生成する参照信号生成部と、
    を有し、
     前記参照信号生成部は、少なくとも前記決定部が前記干渉推定用参照信号を他の1又は複数の送信ポイントから送信される干渉推定用参照信号と同じリソースに割当てる場合、同じリソースに干渉推定用参照信号が割り当てられる複数の送信ポイント間又は送信ポイントグループ間で異なる前記スクランブル系列が適用されるように制御することを特徴とする基地局装置。
  17.  チャネル状態を測定するための希望信号測定用参照信号、及び複数の送信ポイント間又は送信ポイントグループ間で異なる前記スクランブル系列が適用された干渉推定用参照信号を受信する受信部と、
     各送信ポイントから送信された前記干渉推定用参照信号に適用されたスクランブル系列を特定する系列特定部と、
     前記希望信号測定用参照信号及び/又は干渉推定用参照信号に基づいて、チャネル推定及び干渉信号推定を行う推定部と、
     前記推定部の推定結果を用いてチャネル状態を測定する測定部と、を備えたことを特徴とするユーザ端末。
  18.  チャネル状態を測定するための希望信号測定用参照信号及び干渉推定用参照信号を送信する複数の基地局装置と、前記複数の基地局装置と無線リンクを介して接続するユーザ端末との無線通信方法であって、
     前記基地局装置において、前記希望信号測定用参照信号及び前記干渉推定用参照信号をそれぞれ割当てるリソースを決定するステップと、
     スクランブル系列を適用して干渉推定用参照信号を生成するステップと、を有し、
     少なくとも前記干渉推定用参照信号が他の1又は複数の送信ポイントから送信される干渉推定用参照信号と同じリソースに割当てられる場合、同じリソースに干渉推定用参照信号が割り当てられる複数の送信ポイント間又は送信ポイントグループ間で異なる前記スクランブル系列が適用されるように制御することを特徴とする無線通信方法。
PCT/JP2013/061639 2012-05-10 2013-04-19 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法 WO2013168542A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13787458.2A EP2849513A4 (en) 2012-05-10 2013-04-19 WIRELESS COMMUNICATION SYSTEM, BASISSTATION DEVICE, USER DEVICE AND WIRELESS COMMUNICATION PROCESS
US14/398,862 US9419760B2 (en) 2012-05-10 2013-04-19 Radio communication system, base station apparatus, user terminal, and radio communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-108743 2012-05-10
JP2012108743A JP6081080B2 (ja) 2012-05-10 2012-05-10 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2013168542A1 true WO2013168542A1 (ja) 2013-11-14

Family

ID=49550593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061639 WO2013168542A1 (ja) 2012-05-10 2013-04-19 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法

Country Status (4)

Country Link
US (1) US9419760B2 (ja)
EP (1) EP2849513A4 (ja)
JP (1) JP6081080B2 (ja)
WO (1) WO2013168542A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023697A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种资源指示方法、相关设备及系统

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8638742B2 (en) * 2011-01-12 2014-01-28 Telefonaktiebolaget L M Ericsson (Publ) Data resource mapping for frequency-coded symbols
CN104285396B (zh) * 2012-06-18 2019-03-26 富士通互联科技有限公司 反馈信道状态信息的方法、用户设备和系统
WO2015010082A1 (en) * 2013-07-18 2015-01-22 Marvell World Trade Ltd. Channel quality indication with filtered interference
EP3139658B1 (en) * 2014-04-28 2023-11-29 Sharp Kabushiki Kaisha Terminal device, base station device, and communication method
CA2966970C (en) 2014-11-06 2023-05-16 Nec Corporation Radio terminal, radio station, and method thereof
KR102381442B1 (ko) * 2015-01-23 2022-04-01 삼성전자주식회사 간섭 제거를 위한 전송모드 블라인드 검출 기법
CN106470096B (zh) 2015-08-14 2021-03-23 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法
JP6682898B2 (ja) * 2016-02-17 2020-04-15 富士通株式会社 基地局、無線通信システムおよび基地局の処理方法
US10608770B2 (en) * 2017-03-23 2020-03-31 Qualcomm Incorporated Techniques and apparatuses for channel processing backwards compatibility
EP3639452B1 (en) * 2017-06-14 2022-08-31 Ntt Docomo, Inc. Method of frequency resource allocation
CN109891819B (zh) 2017-08-11 2021-08-27 Lg电子株式会社 用于在无线通信系统中发送或接收参考信号的方法及装置
US20190149298A1 (en) * 2017-11-15 2019-05-16 Mediatek Inc. Reference Signals With Improved Cross-Correlation Properties In Wireless Communications
CN108111444A (zh) * 2017-11-17 2018-06-01 中兴通讯股份有限公司 信号加扰、解扰方法及装置
EP4002933A1 (en) * 2019-07-17 2022-05-25 Ntt Docomo, Inc. Terminal and wireless communication method
US11877306B2 (en) * 2020-01-22 2024-01-16 Qualcomm Incorporated Interference measurement configurations in wireless systems
CN114884711B (zh) * 2022-04-26 2023-12-26 邦彦技术股份有限公司 数据处理方法、装置、系统、设备、控制装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136462A1 (ja) * 2007-05-01 2008-11-13 Ntt Docomo, Inc. 基地局装置及び移動局装置並びに同期チャネル送信方法
JP2009171025A (ja) * 2008-01-11 2009-07-30 Panasonic Corp 移動局装置及び基地局装置、並びに無線通信システム
WO2011083794A1 (ja) * 2010-01-05 2011-07-14 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置、移動端末装置及び無線通信方法
JP2011142513A (ja) * 2010-01-07 2011-07-21 Sharp Corp 無線通信システム、送信装置、受信装置、通信方法および集積回路
WO2011115421A2 (en) * 2010-03-17 2011-09-22 Lg Electronics Inc. Method and apparatus for providing channel state information-reference signal (csi-rs) configuration information in a wireless communication system supporting multiple antennas
JP2012080423A (ja) * 2010-10-04 2012-04-19 Ntt Docomo Inc 基地局装置、移動端末装置及び通信制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100238984A1 (en) * 2009-03-19 2010-09-23 Motorola, Inc. Spatial Information Feedback in Wireless Communication Systems
WO2012020963A2 (en) * 2010-08-13 2012-02-16 Lg Electronics Inc. Method and base station for transmitting downlink signal and method and equipment for receiving downlink signal
CN102437987B (zh) * 2010-09-29 2015-09-16 中兴通讯股份有限公司 信道状态信息参考信号序列的生成和映射方法及装置
US9559820B2 (en) * 2011-02-18 2017-01-31 Qualcomm Incorporated Feedback reporting based on channel state information reference signal (CSI-RS) groups
US8537911B2 (en) * 2011-02-21 2013-09-17 Motorola Mobility Llc Method and apparatus for reference signal processing in an orthogonal frequency division multiplexing communication system
CN103718472B (zh) * 2011-08-08 2016-11-02 华为技术有限公司 用于多点协作传输的信道测量方法和设备
EP2779493A4 (en) * 2011-11-07 2015-08-26 Ntt Docomo Inc WIRELESS COMMUNICATION SYSTEM, BASE STATION, MOBILE DEVICE AND INTERFERENCE METHOD
US9712299B2 (en) * 2012-01-19 2017-07-18 Sun Patent Trust Method of scrambling reference signals, device and user equipment using the method
US9008585B2 (en) * 2012-01-30 2015-04-14 Futurewei Technologies, Inc. System and method for wireless communications measurements and CSI feedback
US9198071B2 (en) * 2012-03-19 2015-11-24 Qualcomm Incorporated Channel state information reference signal configuring and reporting for a coordinated multi-point transmission scheme

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136462A1 (ja) * 2007-05-01 2008-11-13 Ntt Docomo, Inc. 基地局装置及び移動局装置並びに同期チャネル送信方法
JP2009171025A (ja) * 2008-01-11 2009-07-30 Panasonic Corp 移動局装置及び基地局装置、並びに無線通信システム
WO2011083794A1 (ja) * 2010-01-05 2011-07-14 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置、移動端末装置及び無線通信方法
JP2011142513A (ja) * 2010-01-07 2011-07-21 Sharp Corp 無線通信システム、送信装置、受信装置、通信方法および集積回路
WO2011115421A2 (en) * 2010-03-17 2011-09-22 Lg Electronics Inc. Method and apparatus for providing channel state information-reference signal (csi-rs) configuration information in a wireless communication system supporting multiple antennas
JP2012080423A (ja) * 2010-10-04 2012-04-19 Ntt Docomo Inc 基地局装置、移動端末装置及び通信制御方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Feasibility Study for Evolved UTRA and UTRAN", 3GPP, TR 25.912 (V7.1.0, September 2006 (2006-09-01)
NTT DOCOMO: "Enhanced Interference Measurement Mechanism for Rel-11", 3GPP TSG RAN WG1 MEETING #68 R1-120405, 6 February 2012 (2012-02-06), XP050562898, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_68/Docs/R1-120405.zip> *
See also references of EP2849513A4
ZTE: "The issues on CSI-RS sequence in CoMP", 3GPP TSG-RAN WG1#68 R1-120306, 6 February 2012 (2012-02-06), XP050562837, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_68/Docs/R1-120306.zip> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023697A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种资源指示方法、相关设备及系统
CN108023697B (zh) * 2016-11-03 2024-01-09 华为技术有限公司 一种资源指示方法、相关设备及系统

Also Published As

Publication number Publication date
JP6081080B2 (ja) 2017-02-15
US9419760B2 (en) 2016-08-16
EP2849513A1 (en) 2015-03-18
EP2849513A4 (en) 2015-12-30
JP2013236330A (ja) 2013-11-21
US20150117351A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP6081080B2 (ja) 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法
JP6069216B2 (ja) 無線通信システム、基地局装置、移動端末装置、及び干渉測定方法
US9609641B2 (en) Radio communication method, radio communication system, radio base station and user terminal
JP5526165B2 (ja) 無線通信システム、基地局装置、ユーザ端末、及びチャネル状態情報測定方法
US9634808B2 (en) Radio communication system, radio communication method, user terminal and radio base station
US9337907B2 (en) Radio communication system, radio base station apparatus, user terminal and radio communication method
JP5437310B2 (ja) 無線基地局装置、移動端末装置、無線通信方法及び無線通信システム
JP6091816B2 (ja) 無線通信システム、基地局装置、移動端末装置、及び干渉測定方法
JP5893999B2 (ja) 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法
JP5959830B2 (ja) 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
JP2013197877A (ja) 無線基地局装置、ユーザ端末、無線通信システム及び無線通信方法
JP5970170B2 (ja) 無線通信システム、基地局装置、移動端末装置、及び干渉測定方法
WO2013051510A1 (ja) 無線通信システム、フィードバック方法、ユーザ端末、及び無線基地局装置
WO2014045755A1 (ja) 無線通信システム、ユーザ端末、無線基地局及び無線通信方法
JP2016106499A (ja) 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787458

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14398862

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013787458

Country of ref document: EP