[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013168305A1 - 携帯電話向け情報埋込コード生成方法、情報埋込方法、及びその読取方法 - Google Patents

携帯電話向け情報埋込コード生成方法、情報埋込方法、及びその読取方法 Download PDF

Info

Publication number
WO2013168305A1
WO2013168305A1 PCT/JP2012/076555 JP2012076555W WO2013168305A1 WO 2013168305 A1 WO2013168305 A1 WO 2013168305A1 JP 2012076555 W JP2012076555 W JP 2012076555W WO 2013168305 A1 WO2013168305 A1 WO 2013168305A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
dot
code
ink
dots
Prior art date
Application number
PCT/JP2012/076555
Other languages
English (en)
French (fr)
Inventor
ザァツァン グ
郁子 岸上
Original Assignee
株式会社アポロジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アポロジャパン filed Critical 株式会社アポロジャパン
Priority to EP12876213.5A priority Critical patent/EP2887268A4/en
Priority to US14/399,447 priority patent/US20150108220A1/en
Priority to JP2014514348A priority patent/JP5685677B2/ja
Publication of WO2013168305A1 publication Critical patent/WO2013168305A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06037Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking multi-dimensional coding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K1/00Methods or arrangements for marking the record carrier in digital fashion
    • G06K1/12Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching
    • G06K1/121Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching by printing code marks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • G06K7/1404Methods for optical code recognition
    • G06K7/1439Methods for optical code recognition including a method step for retrieval of the optical code
    • G06K7/1447Methods for optical code recognition including a method step for retrieval of the optical code extracting optical codes from image or text carrying said optical code

Definitions

  • the present invention belongs to the field of information processing, and in particular, is a method for generating an information embedding code for reading of a mobile phone, an information embedding method, and a reading method thereof.
  • color bit barcode Another special two-dimensional code is called “color bit barcode”, which was also announced by the Japanese inventor.
  • Optical recognition code, recognition apparatus and method The code is similar to a one-dimensional barcode and all symbols can be realized in color. Since color symbols are introduced, the size of the symbol can be increased for the same amount of information as that of a normal barcode, so that a large number of codes can be read simultaneously with a high-precision camera. In particular, when a plurality of products enter the warehouse, the codes of all commodities can be read into the computer at one time. However, many problems remain for a wider range of applications.
  • Grid The founder of Grid believes his invention to be a very progressive and wonderful invention, and the company's name is called Grid (Grid), but the reality is that so many reference dots are In this patent application claim, if one reference dot is reduced, a virtual center cannot be formed, which can be said to be a completely different technology, so it can be a defense patent, It is not a patent that can attack other companies' patents, and it is influenced by the way of expressing virtual intersections of Sweden's Anoto, and there are actually many virtual grids and virtual grid lines that do not exist many times in subsequent patent applications.
  • the screen code patent proposed a modulation method with different halftone dots, or a method of embedding multibit information through phase modulation of halftone dots on the premise that the gradation of halftone dots is not changed.
  • Specific applications of information security countermeasure products for copiers include a text-lifting function that can distinguish between documents copied from the same background pattern and original documents, a function that prohibits copying confidential documents, and files from which computers were created.
  • a multi-function copy-forgery-inhibited pattern corresponding to an automatic reading function that embeds digital data of the contents to be printed in the copy-forgery-inhibited pattern and can automatically read the printed document can be configured by a screen code. .
  • the two-dimensional codes described above have all been automatically taken using a mobile phone under natural light and automatically connected to the net, and the two-dimensional codes that have been taken have no anti-counterfeit function. Particularly in the field of counterfeiting, it is a difficult problem that must be solved urgently to realize the unification of general consumer identification methods and expert identification methods using mobile phone recognition.
  • “Optically readable two-dimensional bar code reader” Japanese Patent Application Laid-Open No. 2005-243047)
  • a patent called “sound code” was published in Japan, and “two-dimensional code, two-dimensional code reading method, program, and computer-readable recording medium” (Japanese Patent Laid-Open No. 2011-198371).
  • the first object of the present invention is for a mobile phone having a forgery prevention code that can authenticate authenticity by automatically connecting a network when taking an image in which information is embedded with natural light using an ordinary mobile phone camera. Submit information embedding code structure. Furthermore, it is to solve the problem of fusing anti-counterfeiting codes and product marks.
  • the second object of the present invention is to provide a method for constructing an information embedding code for an invisible mobile phone that can describe information more efficiently.
  • a third object of the present invention is to provide an anti-counterfeiting system capable of determining authenticity by attaching a special lens to an ordinary mobile phone camera and taking an image in which information is embedded with natural light, or a multi-printing system. Submit the media system.
  • the content of the invention according to claim 1 is: A method for generating an information embedding code for a mobile phone, characterized by The information embedding code for mobile phones should be composed of dot patterns that can describe multi-bit information based on the geometrical arrangement or physical arrangement of information dots with respect to a predetermined reference dot.
  • the above-mentioned information embedding codes for mobile phones include thermal ink, sunlight discoloration ink, OVI (Optically Variable) ink, phosphorescent ink, ink that changes color due to moisture, infrared fluorescent ink, ultraviolet fluorescent ink, visible fluorescent ink, background
  • OVI Optically Variable
  • phosphorescent ink ink that changes color due to moisture
  • infrared fluorescent ink ultraviolet fluorescent ink
  • visible fluorescent ink background
  • the RGB color space of the scanned image is directly measured by at least one scanner that contains ink with different absorption wavelengths for the image, ink with different reflection wavelengths for the background image, and ink with different reflection angles for the background image.
  • the information embedding code for a mobile phone is characterized in that an electronic file of an image for printing is composed of one type of an image format or a font format.
  • the content of the invention according to claim 2 is: A method for generating an information embedding code for mobile phones with a single vertical and horizontal reference dot, characterized by Since the dot pattern records multi-bit information, it includes one result including a combination of dots that minimizes the print area for different positions, different phase modulation arrangements, or ordinary two-dimensional codes.
  • the virtual reference line is unified in the vertical and horizontal directions, and the reference dots are arranged at regular intervals with respect to the virtual reference line;
  • the content of the invention according to claim 3 is: An information embedding method for an information embedding code for a mobile phone using a laser marker device, the features of which are:
  • the background of the information embedding code for mobile phones by the laser marker device is black ink, temperature-sensitive ink, sunlight discoloration ink, OVI (Optically Variable) ink, phosphorescent ink, ink that changes color due to moisture, infrared fluorescence ink, ultraviolet light
  • the background layer is formed by fluorescent light emitting ink, visible light fluorescent light emitting ink, infrared absorbing ink, infrared transmitting ink, ink having an absorption wavelength different from the background image, ink having a reflection wavelength different from the background image, and ink having a reflection angle different from the background image.
  • the information embedding code for a mobile phone is characterized in that an electronic file of an image for the laser marker device is configured in one of an image format or a font format.
  • the content of the invention according to claim 4 is: A method of reading an information embedding code for a mobile phone, characterized by Add an additional lens in front of the camera lens of the mobile phone; Reading an image embedded with information embedded code for mobile phones through an additional lens; The code value of the information embedding code for the mobile phone based on the rule of composition of the dot pattern describing the multi-bit information by the geometrical arrangement or the physical arrangement of the information dot with respect to the predetermined reference dot A method of reading an embedded information code for mobile phones, characterized by
  • the presence or absence of information dots, different positions of information dots, different directions of information dots, different shapes of information dots, different numbers of information dots, different sizes of information dots Describe information by having at least one geometric characteristic, including the distribution of information dots, the distribution of information dots, or the distribution of information dots composed of combinations of two-dimensional codes. This is a dot pattern configuration that enables
  • the information dot can describe multi-bit information by geometrical arrangement, and has a feature that can describe a relatively large amount of information with a small number of dots.
  • phase modulation results of information dots
  • modulation AM / FM
  • propagation directions of information dots different information dots
  • This is a dot pattern configuration that can describe information by including at least one kind of physical characteristic including different vectors of dynamic vectors and information dots.
  • information dots can describe multi-bit information by physical arrangement, and a small amount of information can be described by a small number of dots. Since the dot code value can be calculated, the number of reference dots can be reduced.
  • the advantages and positive effects of the present invention are: Using the method for generating an information embedding code for a mobile phone submitted by the present invention, the characteristics of the information embedding code for a mobile phone generated under natural light, using a mobile phone held by a general consumer, It has a feature that can determine the authenticity of a product, and can solve the problem of combining authenticity identification for general consumers with authenticity identification of experts.
  • the method for generating the information embedding code for mobile phones with the vertical and horizontal unified reference dots proposed by the present invention is based on the arrangement of reference dots in a single reference direction. According to the arrangement of the phase modulation results, a new dot pattern that records multi-bit information is presented. It has a feature that can improve the efficiency of information recording.
  • the present invention has proposed an information embedding method for an information embedding code for a mobile phone using a laser marker device.
  • the feature of the present invention is that a forgery prevention code can be constructed even if a conventional laser marker device is used.
  • the method for reading an information embedding code for a mobile phone proposed by the present invention can read an information embedding code for a mobile phone that is inexpensive and invisible. With this technology, it is possible to disseminate printing multimedia, and general consumers can also determine the authenticity of a product. [Specific implementation method]
  • FIG. 1 is a flowchart of a method for generating a mobile phone information embedded code.
  • the method for generating information embedding codes for mobile phones consists of three steps. First, in the data reading step of the information embedding code for mobile phones, an anti-counterfeit code composed of information such as encrypted computer random forgery prevention code and information such as product attributes, production date, production place, authorized sales place, etc. read.
  • an anti-counterfeit code composed of information such as encrypted computer random forgery prevention code and information such as product attributes, production date, production place, authorized sales place, etc. read.
  • the read mobile phone information embedded code is converted into a dot pattern arranged in a geometric form or a physical form.
  • the dot pattern arranged according to the geometric form described above is the information dot arrangement with or without information dots, different positions of information dots, different directions of information dots, different shapes of information dots, Includes at least one geometric type, including different numbers of information dots, different sizes of information dots, information dot concentration or distribution of information dots, and arrangement of information dots composed of a combination of two-dimensional codes
  • This is a dot pattern configuration that allows information to be described by having unique characteristics.
  • the dot pattern arranged according to the physics form described above is the information dot arrangement with different phase modulation (PM) results of information dots, different modulation (AM / FM) results of information dots, information dots It has a dot pattern configuration that allows information to be described by having at least one physical property, including different propagation directions, different dynamic vectors of information dots, and different frequencies of information dots. is there.
  • the dot pattern of the information embedding code for a mobile phone described above includes a normal QR two-dimensional code, a DM two-dimensional code, a PDF417 two-dimensional code, and a normal two-dimensional code dot arrangement based on a predetermined purpose.
  • a two-dimensional code generated by a dot pattern configured by selecting a partial combination result among all combinations is included.
  • a GM two-dimensional code, a two-dimensional code for voice pens such as OID1, and the like all belong to a dot pattern configured by a combination of two-dimensional codes.
  • the arrangement of different positions constituting the information dot of the information embedding code for mobile phone described above is basically a different position with respect to the reference dot. There are various methods for determining the reference tot, and all information belongs to the present invention if information is described by different positions of information dots.
  • the information embedding code for mobile phones described above includes dots formed in one format, including different directions, different distances, and different positions of information dots based on a virtual intersection formed by a virtual crosshair.
  • a pattern which includes different directions, different distances, and different positions of information dots based on a virtual center formed from a virtual reference line formed by connecting four so-called “lattice points” at four vertices of a rectangle,
  • Information formed using dot patterns formed by different forms, different directions, different distances, and different positions of information dots based on virtual reference dots or virtual reference dots. Includes all embedded code.
  • the printing process of the information embedding code for mobile phones is ordinary offset printing machine, ordinary letterpress printing machine, ordinary intaglio printing machine, ordinary screen printing Printing is realized using a printer, an ordinary digital printer, and an ordinary printer.
  • the method of providing an information embedding code for a mobile phone online using a product packaging line can be performed using an ink jet system or a laser marker.
  • Information embedding codes for mobile phones include thermal ink, sunlight discoloration ink, OVI (Optically Variable) ink, phosphorescent ink, ink that changes color by moisture, infrared fluorescent ink, ultraviolet fluorescent ink, visible fluorescent ink, background image RGB color space formed by scanning with at least one type of scanner that contains ink with an absorption wavelength different from the above, ink with a reflection wavelength different from that of the background image, and ink with a reflection angle different from that of the background image cannot be directly converted to a color in the CMYK color space.
  • OVI Optically Variable ink
  • the information embedding code for mobile phones is generated with a laser marker, thermal ink, sunlight-changing ink, OVI (Optically Variable) ink, phosphorescent ink, ink that changes color due to moisture, infrared At least one scanner, including fluorescent light-emitting ink, ultraviolet fluorescent light-emitting ink, visible light fluorescent light-emitting ink, ink having an absorption wavelength different from the background image, ink having a reflection wavelength different from the background image, and ink having a reflection angle different from the background image Using a special ink whose RGB color space of the scanned image cannot be directly converted to a color in the CMYK color space, print it as a background color layer first, and then add white ink or the special ink described above.
  • fluorescent light-emitting ink including fluorescent light-emitting ink, ultraviolet fluorescent light-emitting ink, visible light fluorescent light-emitting ink, ink having an absorption wavelength different from the background image, ink having a reflection wavelength different
  • the carver layer is printed using an ink that has different properties from the color.
  • the carver layer When irradiated with a strong laser, the carver layer is peeled off and a background color printed with a special ink appears to form an information embedding code for mobile phones.
  • FIG. 2 is a flowchart of a method for reading an information embedded code for a mobile phone. As shown in FIG. 2, the method for reading the information-embedded code for mobile phones on the Internet consists of three steps.
  • an additional lens is attached in front of the lens of the mobile phone camera. Read the image embedded with the information embedding code for mobile phone through the additional lens, and add the additional lens in front of the lens of the mobile phone camera; The image embedded in the information embedding code for mobile phones is read through the additional lens.
  • For lighting conditions for reading mobile phones select one lighting method including natural light illumination, infrared light illumination, and ultraviolet light illumination based on the method for generating information embedding codes for mobile phones.
  • the code value of the information embedding code for mobile phones is recognized according to different rules of geometry or physics form arrangement of information embedding codes for mobile phones.
  • the code value of the information embedded code for the mobile phone is read by mobile phone shooting or touch reading, connected to the mobile phone network, and the forgery prevention information corresponding to this code value from the server It is possible to perform various social activities by taking out the multimedia content data and displaying it on the screen of the mobile phone or by using the code value information.
  • this online operation is conducted through online product monitoring through online connection, online shopping through online connection, online search through online connection, product price search through online connection, product authenticity search through online connection, online sales of products through online connection. Including prevention of phenomena.
  • FIG. 3 is an explanatory diagram of a few stacked two-dimensional codes that are currently in international fashion.
  • the world's first stacked two-dimensional code, Code 49 was invented in 1987 by Intermec, USA.
  • the structure of this type of code is an extension of a one-dimensional bar code and has few special technical features. However, because of its novelty at that time, it has become an international standard and has been applied to date.
  • FIG. 4 is a diagram showing a matrix type two-dimensional code which is currently popular in the world.
  • VeriCode the world's first matrix type two-dimensional code called VeriCode was invented in 1982 by Veritec. Since it has higher technical value than the above-mentioned two-dimensional code, it has become an international standard and is widely applied all over the world.
  • FIG. 5 is a diagram showing two types of two-dimensional codes recently published in China.
  • the “GM 2D code” which has become the standard of the Chinese 2D code industry, divides the dots of an ordinary 2D code into several “macroblocks” and connects adjacent macroblocks. However, a black or white border is set up.
  • Such a design method makes the identification of information relatively convenient, and the appearance of the code is cleaner than the conventional two-dimensional code.
  • the information description is not efficient.
  • since such a two-dimensional code does not have a reference dot, when the symbol size is reduced, there remains a problem that a recognition error is likely to occur particularly when the accuracy of the printing press is low.
  • the common problem of the two-dimensional code provided by FIGS. 3 to 5 is that there is no anti-counterfeit characteristic. It can be copied as an ordinary copying machine.
  • the present invention proposes that a two-dimensional code having anti-counterfeit characteristics can be obtained by performing a forgery prevention process on a conventional two-dimensional barcode.
  • a new two-dimensional code generated by performing anti-counterfeiting processing on all conventional two-dimensional codes belongs to the information embedding code for mobile phones.
  • FIG. 6 is a diagram illustrating the description of multi-bit information in different directions.
  • 601 is one halftone dot of the information embedding code for mobile phones
  • 602 and 603 are information dots.
  • Multi-bit information can be described by different directions of information dots 602 and 603.
  • the dot pattern in FIG. 6A is set to information 0
  • the dot pattern in FIG. 6B is set to information 1
  • the dot pattern in FIG. 6C is set to information 2
  • the dot pattern in FIG. Information 3 is assumed.
  • the halftone dots a, b, c, and d of the information embedding code for mobile phones can realize multi-bit information description based on the results of vectors with clearly different directions, different electromagnetic wave propagation directions and different dynamics.
  • FIG. 7 is a diagram illustrating recording of multi-bit information in different forms.
  • the dot pattern of the figure (a) is information 0
  • the dot pattern of FIG. (B) is information 1
  • the dot pattern of FIG. (C) is information 2
  • the dot pattern of FIG. Information 3 is assumed.
  • the halftone dots of the printed image can describe one piece of information on the printed matter by changing the shape of the halftone dots without changing the gradation of the halftone dots. Then, since it is usually necessary to use standard separation software, the halftone dot returns to the halftone dot form of the standard separation software, and the embedded information is lost. Using this feature, it becomes possible to construct a forgery prevention system.
  • FIG. 8 is a diagram showing the description of information by the concentrated halftone dots and the distributed halftone dots.
  • a concentrated halftone dot a having a halftone dot as a dot and a distributed halftone dot b having a plurality of dots at least as halftone dots are used.
  • the concentrated halftone dot a is set to the information bit value “1”, and the distributed halftone dot b is set to “0”.
  • the concentrated halftone dot a can be set to the information bit value “0” and the distributed halftone dot b can be set to “1”.
  • the concentrated halftone dot a is the amplitude modulation method (that is, AM screen), and the distributed halftone dot b is the frequency modulation method (that is, FM screen). That is, information can be recorded by dot patterns with different modulation methods.
  • the amplitude modulation AM screen and the frequency modulation PM screen can be expressed by the following formula.
  • Frequency modulation FM screen (halftone dot b): [Formula 2] Among them, ⁇ (m, n) and ⁇ (m, n) are adjusted within the range (x 0 , y 0 ) (that is, within the halftone dot range). By changing ⁇ (m, n) and ⁇ (m, n), the density and position of the impulses are changed, whereby frequency modulation can be performed.
  • the concentrated halftone dot a can be a low frequency halftone dot and the distributed halftone dot b can be a high frequency halftone dot
  • the concentrated halftone dot a and the distributed halftone dot b can record information with components of different frequencies. It can be said that the concentrated halftone dot a and the distributed halftone dot b can describe information by the number of dots of different halftone dots.
  • the concentrated halftone dot a and the dispersed halftone dot b are different gradations of one point. Information can also be described by value.
  • the concentrated halftone dot a and the dispersed halftone dot b record information with dots of different sizes. You can also.
  • the description of information through the concentrated halftone dots and the distributed halftone dots shown in FIG. 8 has a special meaning for application in the field of forgery prevention as well as the dot pattern for describing information in the different forms described above.
  • the halftone dots of the printed image can describe one piece of information in the printed matter through the concentration and dispersion of the halftone dots without changing the gradation of the halftone dots. This printed matter is forged. Then, since it is usually necessary to use standard separation software, the halftone dot returns to the shape of the halftone dot of the standard separation software, and the embedded information is lost. It is also possible to construct a forgery prevention system using this feature.
  • FIG. 9 is a diagram illustrating the description of multi-bit information with different position and phase modulation.
  • the dot pattern of FIG. (A) is set to information 0
  • the dot pattern of FIG. (B) is set to information 1
  • the dot pattern of FIG. (C) is set to information 2
  • FIG. ) Dot pattern of 3 can be used as the reference dots and direction key dots of the information embedding code for mobile phones.
  • the halftone dots that can describe multi-bit information by different positions and phase modulation shown in FIG. 9 are divided into rectangular areas of 3 * 3 smaller big cells. It is also possible to install 5 * 5 smaller big cells or 7 * 7 smaller big cells. Then, if necessary, more rectangular areas of smaller big cells can be installed.
  • one coordinate system must be introduced by geometric theory, that is, different positions of isolated information dots in the geometric form space. I can't ask for it.
  • a two-dimensional code is provided with one virtual horizontal reference line constituted by horizontal reference dots and one virtual vertical reference line constituted by vertical reference dots in a dot matrix.
  • the present invention provides only one vertical and horizontal unified virtual reference line constituted by a small number of reference dots at the 45 degree corner of the dot matrix. Propose.
  • FIG. 10 is a diagram showing the information module of the virtual reference line that is unified in the vertical and horizontal directions.
  • one 4 * 4 dot matrix information module can be constructed according to the principle that four different positions of one information dot describe 2-bit information.
  • S 11 , S 22 , S 33, and S 44 are reference dot arrangements arranged on a 45-degree virtual reference line
  • S 00 is a key dot that represents the direction of an information embedding code for mobile phones.
  • S 12 , S 13 , S 14 , S 21 , S 23 , S 24 , S 31 , S 32 , S 34 , S 41 , S 42 and S 43 are information dot matrices, up to 24 bits Information can be recorded.
  • 6-bit information is increased as compared with an information module in which two virtual reference lines are installed horizontally and vertically. Since the virtual reference line of the information module shown in FIG. 10 is set at 45 degrees, the printing position error in the horizontal and vertical directions of the printing machine is still reflected in the reference dots arranged on the virtual reference line of 45 degrees. Error correction can still be made.
  • the position movement of one dot in the two-dimensional space is always based on the theory that there is a linear relationship with two arbitrary reference dots. Even if one virtual reference line is omitted, the position of the information dot matrix is identified. Does not affect accuracy. As described above, when the direction of the halftone dot is 0, the virtual reference line is 45 degrees. Further, when the halftone dot direction is 45 degrees, the virtual reference line is set to 0 degrees.
  • the dot pattern for recording multi-bit information obtains the maximum amount of information with the minimum number of dots from another viewpoint. That is.
  • the print background pattern composed of such dots and dot patterns embeds information, the result of overlapping the print image is minimally affected by the print image.
  • the dot patterns shown in FIG. 9 and FIG. 10 still need to consider the characteristics of the printing screen.
  • the characteristics of the printing screen must mainly consider three directions.
  • One is the “gradation characteristics of screen halftones”, that is, the characteristics of uniforming the gradations of screen halftone dots, and the number of dots printed on the screen halftone is the same characteristic. This is a characteristic for minimizing the gradation of halftone dots.
  • Two are “screen halftone dot size characteristics”, that is, a characteristic that minimizes the number of dots printed on the screen halftone dot, and a characteristic that minimizes the size of the screen halftone dot.
  • the third is the “screen dot spacing property”, which is a property in which the screen dots are arranged by a constant spacing, and the screen dot spacing is larger than the screen dot size. It is.
  • FIG. 11 is a diagram showing information description by phase modulation (PM) in a physical form.
  • the halftone dot 1101 of the information embedding code for one mobile phone in FIG. 9 is formed by phase propagation (PM) signal propagation of different physical forms of the information dots 1102, a, b, c and d are examples of the results of four different phase modulations.
  • phase modulation method is: horizontal and vertical directions in a two-dimensional space, [Formula 3] It can be carried out.
  • the feature of the dot pattern that describes the multi-bit information realized by the phase modulation theory is that when the code value is identified based on the traditional signal analysis theory, if there is an initial value of the signal, the phase value of each dot Since it can be calculated, the number of reference dots can be further reduced.
  • FIG. 12 is a diagram showing a dot pattern realization method that maximizes the printing area.
  • the mobile phone information embedding code having the dot pattern shown in FIGS. 9 and 10 has a print area minimized, that is, a print image in which the actual tone value of the dot pattern is minimized. It is. If the image of the dot pattern in FIGS. 9 and 10 is reversed in black and white, as shown in FIG. 12, an information embedding code for a mobile phone that maximizes another printing area can be configured.
  • (1201) is a dot that is not printed
  • (1202) is a dot that is printed.
  • a set of dots to be printed constitutes a printing area.
  • FIG. 13 is a diagram showing an application example of an information embedding code for mobile phones that maximizes the printing area.
  • an information embedding code for a mobile phone can be configured as a combination of codes that maximizes the printing area.
  • various signs and designs can be printed on the above-described printing area.
  • an image embedded with an information embedding code can be read using a mobile phone.
  • 1301 is an information dot
  • (1302) and (1303) are reference dots.
  • the white dot of the information embedding code for mobile phones in FIG. 13 is reserved, and the black portion represents a design such as a trademark, an image, or a figure.
  • the gradation value of the white dot portion is set to a gradation value that is smaller than the minimum gradation value of the corresponding pixel of the image, such as a trademark, image, figure, etc. .
  • FIG. 14 shows an example in which a normal two-dimensional code is used as an information embedding code.
  • both the code structure shown in FIGS. 6 to 11 and various ordinary two-dimensional code structures are stored in a two-dimensional matrix in which symbols of 1-bit information can be described for the smallest cell.
  • One combination result Regarding the amount of information that can be recorded on one unit area, an ordinary two-dimensional code is probably slightly higher than the information-embedded code for mobile phones.
  • the target information embedding code is several times higher than an ordinary two-dimensional code.
  • the information-embedded code for mobile phones is an information-embedded code, so it has the advantage of not occupying space, and the area where information can be recorded is several times that of ordinary bar codes. A large amount of information can be described in the target information embedded code.
  • an information embedding code can be constructed by using a combination result of a part of an ordinary two-dimensional code.
  • thermal ink when the code is generated, thermal ink, sunlight-changing ink, OVI (Optically Variable) ink, phosphorescent ink, ink that changes color due to moisture , Infrared fluorescent light-emitting ink, ultraviolet fluorescent light-emitting ink, visible light fluorescent light-emitting ink, ink having an absorption wavelength different from the background image, ink having a reflection wavelength different from the background image, and ink having a reflection angle different from the background image
  • a forgery prevention mechanism can be configured by printing using special ink in which the RGB color space of the image read by the scanner cannot be directly converted to a color in the CMYK color space.
  • the information embedding codes for mobile phones shown in FIGS. 6 to 10 and FIGS. 12 to 13 are the thermal ink, the sunlight discoloration ink, the OVI (Optically Variable) ink, the phosphorescent ink, and the moisture.
  • discoloration ink infrared fluorescent light-emitting ink, ultraviolet fluorescent light-emitting ink, visible light fluorescent light-emitting ink, ink having an absorption wavelength different from the background image, ink having a reflection wavelength different from the background image, and ink having a reflection angle different from the background image
  • Forgery can be prevented by printing using a special ink in which the RGB color space of an image read by one type of scanner cannot be directly converted into a color in the CMYK color space.
  • FIG. 15 is a diagram showing high-precision scan prevention colors. As is well known, the accuracy of current printing presses is much lower than that of scanners. An illegal person creates a counterfeit through printing again after scanning a genuine merchandise mark with a high-precision scanner as a means for counterfeiting the merchandise mark. As shown in FIG. 15, all colors of the electronic image read by the scanner always belong to the RGB color space, and actually the colors of the print image always belong to the CMYK color space. Since there are colors that belong to the RGB color space that cannot partially convert colors that belong to the CMYK color space, if these colors are used and effectively combined with the above-described code structure, forgery prevention that should not be copied is prevented. The effect can be realized.
  • FIG. 16 is a diagram showing the principle of digital counterfeit prevention.
  • one forgery prevention dot 1603 is added in the halftone dot (1601) as shown in FIG.
  • information dots (1602) capable of describing information are dots printed with a predetermined type of ink that can be read by a reader, and anti-counterfeit dots (1603) are inks having the same color and different properties as the information dots 1602 The dots are printed in a similar shape.
  • the information dot (1602) is a dot printed with ink with carbon.
  • the forgery prevention dot 1603 is a dot printed with carbonless ink having the same color as the information dot (1602).
  • the information dot (1602) is a dot printed with ultraviolet fluorescent ink.
  • the anti-counterfeit dot (1603) is a dot printed with normal ink having the same color as the information dot (1602).
  • FIG. 17 is an example in which information embedding is performed with different printing density of convex dots.
  • a round convex dot or a micro lens can be printed using a transparent ink etc. through printing means, such as screen printing and intaglio printing.
  • Information embedding can be performed by strictly controlling the state of optical reflection and the state of different round convex dots or optical moire of a micro lens.
  • (d) is a part of a sectional view of an information embedding code for a mobile phone
  • (b) is a part of an overhead view of the information embedding code for a mobile phone.
  • (1) of (a) is an information embedding code for one mobile phone
  • (1701) is a print medium
  • (1702) is a dot matrix
  • (1703) is a background of the code.
  • the dot matrix (1702) of the anti-counterfeit code is composed of several small convex dots
  • the background (1703) of the information embedding code for mobile phones is composed of several large convex dots. It is composed.
  • the dot matrix (1702) may be composed of sand dots that absorb light
  • the background (1703) of the information embedding code for mobile phones may be composed of dots that reflect light. That is, the information embedding code for mobile phones can be composed of two types of different optical effects, the dot matrix (1702) and the code background (1703).
  • FIG. 18 is an example in which information embedding is performed at another different printing density of convex dots.
  • 18A is a part of a cross-sectional view of an information embedding code for a mobile phone
  • FIG. 18B is a part of an overhead view of the information embedding code for a mobile phone.
  • (1) of (a) is an information embedding code for one mobile phone
  • (1801) is a print medium
  • (1802) is a dot matrix of the information embedding code for mobile phone
  • (1803) Is the background of the code.
  • the dot matrix (1802) is a large convex dot
  • the background (1803) of the information embedding code for mobile phones is a small convex dot.
  • the dot matrix (1802) is provided with a round convex dot or a micro lens at a predetermined position, and controls the optical diffusion direction, the optical reflection direction, and the optical moire, thereby enabling information for mobile phones. It is also possible to construct an embedded code.
  • the feature of the information embedding code for mobile phones configured by the printing method as shown in FIG. 17 or FIG. 18 is that the dot matrix is configured by a 3D microlens, so it can be forged using a normal scanner. Since it is impossible, it has the effect of preventing forgery. Because of the above-described features, forgery prevention is possible even if the symbol size of the information embedding code for mobile phones, that is, the size of the dots is large, so that the mobile phone can be directly read with natural light. Prepare. A general consumer can use a mobile phone to determine the authenticity of a product.
  • the related code formats of FIGS. 17 and 18 are not limited to the new codes of FIGS. 6 to 10, FIGS. 12 to 15, and FIGS. 22 to 28, but also FIGS. 3 to 5. It can be applied to both ordinary two-dimensional codes and codes composed of all two-dimensional images.
  • FIG. 19 shows an example of an information embedding code generation method using a laser marker.
  • (1900) is an information embedding code for mobile phones
  • (1901) is a code embedding medium
  • (1902) is an identification color layer
  • (1903) is a background layer
  • (1904) Is a dot pattern position
  • (1905) is a racer.
  • an ink with carbon a thermal ink, a sunlight discoloration ink, an OVI (Optically Variable) ink, and a phosphorescent are previously placed on the code embedding medium (1901).
  • Ink ink that changes color due to moisture, infrared fluorescent light-emitting ink, ultraviolet fluorescent light-emitting ink, visible light fluorescent light-emitting ink, ink having an absorption wavelength different from the background layer (1903), ink having a reflection wavelength different from the background layer (1903), background layer
  • the identification color layer is printed by printing using special ink in which the RGB color space of the image read by at least one type of scanner including the ink having a reflection angle different from (1903) cannot be directly converted into the color of the CMYK color space. (1902) is configured. Again, on the identification color layer (1902), a single layer of white ink or ink having the background layer structure described above is printed to form the background layer.
  • the ink constituting the background layer is an ink having an absorption wavelength different from that of the background layer (1903), an ink having a reflection wavelength different from that of the background layer (1903), and an ink having a reflection angle different from that of the background layer (1903). It is.
  • the laser (1905) hits the position of the dot pattern 1904, and the background layer (1903) appears by local evaporation, so that the lower identification color layer 1902 appears to form one dot.
  • the generation of can be completed.
  • the codes related to FIG. 19 are not limited to the new codes shown in FIGS. 6 to 10, FIGS. 12 to 14, and FIGS. 23 to 24. It can be applied to codes consisting of all two-dimensional images such as the two-dimensional code.
  • FIG. 20 is an example of forming a random variable information code naturally.
  • the present invention has a plurality of small fibers, resin particles, and small when processing paper as shown in FIG.
  • An optically readable material containing bubbles can be mixed with ordinary ink and applied to a printing medium, and if a reference dot is also printed, a random dot pattern that can describe one information can be formed. . Based on a predetermined recognition rule, the code value of the randomly arranged dot pattern can be identified.
  • FIG. 10 is an example of forming a random variable information code naturally.
  • halftone dots S 11 , S 22 , S 33 and S 44 are used as reference dots
  • halftone dots S 12 , S 13 , S 14 , S 21 , S 23 , S 24 , S 31 , S 32 , S 34 , S41 , S42 and S43 are information dots.
  • the w 0 and microcells, the substance read optically a f 0, and the rules of a given recognition described above first, the size of the optical reading substance f 0 and microcell w 0 is less than That is, w 0 > f 0 .
  • the optically readable substance f 0 is always arranged in the micro cell w 0 . Otherwise, treat the optically readable material as not present in the microcell.
  • a plurality of optically readable materials can be arranged in one halftone dot, and the code value is calculated based on the arrangement of the plurality of optically readable materials.
  • FIG. 21 is an example of calculating the code value of the arrangement of a plurality of optically readable materials.
  • the code value of the optically readable substance arranged at the halftone dot (b) is “2”
  • the code value of the optically readable substance arranged at the halftone dot (c) is “3”
  • the code value of the optically readable substance arranged at the halftone dot (d) is “4”
  • the code value of the optically readable substance arranged at the halftone dot (e) is “5”
  • the halftone dot The code value of the optically readable substance arranged in (f) is “6”
  • the code value of the optically readable substance arranged in the halftone dot (g) is “7”
  • the code value of the optically readable substance placed in () is “8”
  • the code value of the optically readable substance placed in the halftone dot (i) is “9”
  • the halftone dot (j) is
  • the code value of the optically readable substance arranged at the halftone dot (l) is “12”
  • the code value of the optically readable substance arranged at the halftone dot (m) is “13”
  • the code value of the optically readable substance arranged at the point (n) is “14”
  • the code value of the optically readable substance arranged at the halftone dot (o) is “15”
  • the halftone dot is set to “0”.
  • the above-mentioned optically readable substance is an ordinary black pigment, a thermal pigment, a sunlight-changing pigment, an OVI (Optically Variable) pigment, a phosphorescent pigment, a pigment that changes color due to moisture, an infrared fluorescent pigment, UV fluorescent pigment, visible fluorescent pigment, infrared absorbing pigment, infrared transmitting pigment, pigment with absorption wavelength different from background image, pigment with reflection wavelength different from background image, pigment with transmission wavelength different from background image, different from background image It is an optically readable material having the necessary optical properties by processing with one of the pigments of reflection angle.
  • the random variable information code shown in FIG. 21 is generated by mixing the optically readable material as described above in paper pulp, mixing it in ink, and then applying it on paper.
  • a random dot pattern can be formed by printing on a print medium.
  • a reference dot is generated on the random dot pattern by using one of a coating method, an offset printing method, a relief printing method, an intaglio printing method, a digital printing method, or a laser marker.
  • PM phase modulation
  • AM / FM modulation
  • Variable information is composed of physical forms including vectors of different dynamics.
  • an optically readable substance including small fibers, resin particles, small bubbles, etc., used as information dots has different optical characteristics.
  • the effect of preventing forgery is further improved.
  • various methods for increasing the level of anti-counterfeiting and all are within the scope of the present invention if they are similar to the above-described configuration.
  • Each variable information code can be sent to the printing facility in an image format including JPG, TIFF, BMP, PDF, etc., and variable information can be printed, but a large amount of variable information codes can be printed, for example, 1 million or more variable information codes
  • a pattern of information embedding code for mobile phones is created with several fonts, and the information embedding code for mobile phones is configured by combining a plurality of fonts. Printing can be realized.
  • FIG. 22 shows three examples of a method for constructing an information embedding code for mobile phones using a plurality of fonts.
  • FIG. 22 (22-1) shows a dot pattern configuration method having horizontal and vertical reference dots depending on the font.
  • (2200) is a font of information embedding code for mobile phones having one horizontal and vertical reference dot
  • (2401) is an information embedding code for mobile phones.
  • One dot is used
  • (2402) is an information dot.
  • the halftone dots s 11 , s 12 , s 21 , s 22 , s ′ 11 , s ′ 12 , s ′ 21, and s ′ 22 are information dots, and the information dots of all the halftone dots are at the four grid positions of the halftone dots. By arranging, four data, that is, two bits of information can be described.
  • the halftone dots s 31 , s 32 , s ′ 31 and s ′ 32 are vertical reference dots, and s 13 , s 23 , s ′ 13 and s ′ 23 are horizontal reference dots.
  • (22-2) in FIG. 22 is a method of constructing a font for an information embedding code for mobile phones having only one 45 degree reference dot.
  • (2200 ′) is a font of an information embedding code for mobile phones having only one 45 degree reference dot
  • (2201 ′) is information embedding for mobile phones.
  • One halftone dot of the code is used, and (2202 ′) is an information dot.
  • the halftone dots s 12 , s 13 , s 21 , s 23 , s 31 , s 32 , s ′ 12 , s ′ 13 , s ′ 21 , s ′ 23 , s ′ 31 and s ′ 32 are information dots, and similarly By arranging information dots of all halftone dots at the four grid positions of the halftone dots, four data, that is, two bits of information can be described.
  • the halftone dots s 11 , s 22 , s 33 , s ′ 11 , s ′ 22, and s ′ 33 are set as the vertical and horizontal unified reference dots.
  • (22-2) (a) is an ordinary font, and the feature is that s 11 , s 22 and s 33 are all in the center of the halftone dot.
  • (22-2) (b) is the end font, and the feature is that s 00 and s ′ 33 are key dots. Since the distance between the two dots is very close, the position of the reference dot is found at high speed.
  • the key dots s 00 and s ′ 33 can represent not only the direction information of the information embedding code for mobile phones but also the start and end information of the entire information embedding code for mobile phones.
  • FIG. 22 (22-3) in FIG. 22 is a method of constructing a font of a code called GRID.
  • the center surrounded by four grid dots is used as a virtual reference point, and information is defined by arranging information dots at the represented end points using a direction vector as a starting point.
  • the present invention proposes to construct such a dot pattern into a font format.
  • the feature is that such codes are configured in the form of vector data, so that the speed of conversion from data to dot matrix can be increased, and the speed of printing variable information can be increased. cut back.
  • s 11 , s 12 , s 31 , and s 32 are four grid dots, and the information halftone dot s 21 is surrounded by the four grid dots.
  • Multi-bit information can be recorded at different distances, different directions, and different positions with respect to the virtual reference point.
  • lattice dots s 12 , s 13 , s 32 , and s 3 correspond to information halftone dot s 22
  • the information halftone dots can be arranged at four corners to record 2-bit information. Since the font shown in (a) of (22-3) in FIG. 22 has four information halftone dots, 8-bit information can be recorded. This font is the main font.
  • the lattice dots s 61 and s 81 are combined with the lattice dots of the left font to form four lattice dots.
  • the information dot s 71 is the four grid dots for the four grid dots formed by combining the grid dots s 61 and s 81 of the right font with the grid dots s 13 and s 33 of the left font.
  • Multi-bit information can be recorded at different distances, different directions, and different positions with reference to a virtual reference point surrounded by.
  • the grid dots s 61 , s 62 , s 81 , and s 82 correspond to the information halftone dot s 72
  • the grid dots s 81 and s 101 and the grid dot s 33 and s 53 of the left font are the information halftone dot s 91.
  • And lattice dots s 81 , s 82 , s 101 , and s 102 correspond to the information halftone dot s 92 .
  • the information halftone dots can be arranged at four corners to record 2-bit information.
  • the font shown in (b) of (22-3) in FIG. 22 has four information halftone dots, 8-bit information can be described.
  • the font shown in (b) of (22-3) in FIG. 22 is referred to as a font that expands in the upper right direction. That is, in order to increase the capacity for describing the code information, it can be expanded in the upper right direction without any limit.
  • s 121 and s 122 and the grid dots s 51 and s 52 of the upper font correspond to the information halftone dot s 111.
  • Grid dots s 122 and s 123 and the upper font grid dots s 52 and s 53 correspond to information dot s 112
  • grid dots s 121 , s 122 , s 141 , and s 142 correspond to information dot s 131 .
  • lattice dots s 122 , s 123 , s 142 , and s 143 correspond to the information halftone dot s 132 .
  • the font shown in (c) of (22-3) in FIG. 22 is referred to as a font that expands in the lower left direction. That is, in order to increase the capacity for recording the code information, it can be expanded to the lower left without limitation.
  • the grid dots s 161 and s 181 corresponding to the halftone dot s 152 and the grid dots s 123 and s 143 in the lower left font correspond to the information halftone dot s 171 and the grid dots s 161 , s 162 , s 181 and s 182. Corresponds to information dot s 172 .
  • the font shown in (d) of (22-3) in FIG. 22 is referred to as a font that expands in the lower right direction. That is, in order to increase the capacity for recording the code information, it can be expanded to the lower right without limitation.
  • FIG. 23 shows an example of an information embedding code for a variable-length mobile phone composed of 3 * 3 fonts shown in FIG. 22 (22-1).
  • (2300) represents a 9 * 9 dot pattern information embedding code for a variable-length mobile phone constructed using 3 * 3 fonts
  • (2301) is for a variable-length mobile phone Represents the key dot of the start font of the information embedding code.
  • (2302) The key dot of the end font of the information embedding code for the variable-length mobile phone.
  • FIG. 24 is an example of a set of information embedding codes for a variable-length mobile phone composed of 3 * 3 fonts shown in FIG. 22 (22-2).
  • (2400) represents a 9 * 9 dot pattern information embedding code for variable-length mobile phones composed of one 3 * 3 font
  • (2401) represents information for variable-length mobile phones.
  • (2402) represents the key dot of the end font of the information embedded code for the variable-length mobile phone. Therefore, an information embedding code for variable length telephones of n * n dots can be configured.
  • FIG. 25 shows an example of an information embedding code for a variable-length mobile phone composed of 2 * 2 fonts shown in FIG. 22 (22-3).
  • (2500) represents an information embedding code for a variable-length mobile phone composed of one 2 * 2 font
  • (2501) is a start font for the information embedding code for a variable-length mobile phone
  • (2502) represents an end font key dot of an information embedding code for variable-length mobile phones.
  • an information embedding code for n * n dots for variable-length telephones can be configured.
  • All the key dots as described above belong to the present invention with respect to a method in which the direction of the code, the structure of the code, and the like can be specified at high speed by being positioned or appearing a plurality of dots. All methods of performing vectorization using character fonts for dot patterns that can describe multi-bit information at different positions based on the reference dot belong to the present invention.
  • FIG. 26 shows an example of a code configuration method provided for another forgery prevention function.
  • (2601) in FIG. 26 uses a single polarization effect to make a logo constituting an image of an information embedding code for mobile phones
  • (2602) in FIG. 2601) and the polarization felter (2602) is placed on a logo (2901) having a polarizing effect, the original image of the information embedding code for mobile phones appears, and the mobile phone (2603) It is possible to identify information embedded code values for mobile phones, connect to the Internet, and download related product information.
  • (2601) is a product logo or product packaging image
  • (2602) is based on the shape of the dot pattern, the light diffusion direction, the light reflection direction, the light
  • the formed microlens matrix is obtained by strictly controlling the interference direction. If the microlens matrix (2602) is generated on a product logo or a package image (2601) of the product and is aligned in a predetermined direction using the mobile phone (2603), the information embedded code for the mobile phone is used. Can be read. Since the scanner cannot read the dot pattern from the front, it has the effect of preventing forgery.
  • the lens matrix 2602 is generated by a screen printer.
  • (2601) is an information embedded code interference pattern for mobile phones
  • (2602) is an optical interference plate related to the phase of the interference pattern (2601).
  • an image of the original dot pattern of the information embedding code for mobile phones can be displayed.
  • the cellular phone (2603) can read the dot pattern image, identify the code value, connect to the Internet, and download related product information.
  • the code format related to FIG. 26 is not limited to the information embedding codes for mobile phones shown in FIGS. 6 to 10, FIGS. 12 to 14, and FIGS. 23 to 25. Further, FIGS. It can also be applied to conventional two-dimensional codes. That is, all codes consisting of two-dimensional images can be applied.
  • Fig. 27 shows an example of information description of a large-capacity dot pattern.
  • (2700) is a halftone dot capable of recording multi-bit information
  • (2700) is one information dot for a halftone dot composed of 2 * 2 microcells.
  • the state where the information dot is arranged at the halftone dot (a) is information “0”
  • the state where the information dot is arranged at the halftone dot (b) is information “1”
  • the information dot is the halftone dot (c ) Is the information “2”
  • the information dot is the information “3”.
  • a required area of one symbol is a microcell, and as shown in FIG. 27, 2-bit information can be recorded.
  • the capacity for recording information is halved, but the area where information dots are required is only 1 ⁇ 4 that of an ordinary two-dimensional code. That is, 3/4 area It is unified and suitable as an information embedding code.
  • FIG. 28 shows another dot pattern of an information embedding code for mobile phones.
  • (2800) is an information module composed of one 9 * 9 dot pattern
  • (2801) is an information dot
  • (2802) is a reference dot
  • (2803) is a key dot
  • the role of the dot is to indicate the direction of the information module, the start and end positions of the information module, respectively, and to identify the reference dot at high speed.
  • the information module shown in FIG. 28 is composed of 7 * 7 dots, and in order to form a 45-degree virtual reference line among the 49 dots, 9 reference dots are necessary, and the remaining 40 information dots There is. Since 2-bit information can be described for each information dot, 80-bit information can be described using 40 information dots. Compared to the capacity to record 160-bit information of ordinary two-dimensional code, it is only half, but the number of microcells that require information dots is only 1/4 of ordinary two-dimensional code. The region can be used for the target image to be embedded.
  • the embedded code shown in FIGS. 27 and 28 records information at different positions of information dots as compared with a normal two-dimensional code, the identification accuracy is improved by the diffusion of printing. Is less affected. Moreover, it is also effective for identifying long distances. This code can also be used to identify multiple codes at the same time. When transporting a large number of packaging boxes on a cart, the codes printed on all the packaging boxes at the same time when passing through the warehouse entrance. It also has a feature of reading in and registering in a computer.
  • FIG. 29 shows a lens-equipped mobile phone.
  • (2900) is a mobile phone
  • (2901) is a lens of a mobile phone camera image sensor
  • (2902) is an additional lens
  • (2903) is an information embedding code for mobile phones
  • 2904) is a code embedding medium.
  • an additional lens (2901) is installed in front of the lens of the mobile phone camera image sensor
  • the information embedded code for mobile phone provided on the code embedding medium (2904) is the mobile phone camera image sensor.
  • a dot pattern which is read by a mobile phone through an additional lens (2901) in front of the lens and describes multi-bit information by a geometrical arrangement or physical arrangement of information dots with respect to a predetermined reference dot.
  • the code value of the mobile phone information embedded code can be recognized, and based on the code value, forgery prevention information and multimedia content can be called from the network.
  • FIG. 1 is a flowchart of a method for generating a mobile phone information embedded code
  • FIG. 2 is a flowchart of a method for reading an information embedded code for a mobile phone
  • Fig. 3 Explanatory drawing of several stacked two-dimensional codes that are not currently in international fashion
  • Figure 4 Diagrams of several matrix-based two-dimensional codes that are not currently in fashion
  • Fig. 5 An illustration of two types of two-dimensional codes recently published in China
  • FIG. 6 shows a description of multi-bit information description in different directions
  • FIG. 7 shows the recording of multi-bit information in different forms
  • Fig. 8 Diagram of description of information by concentrated halftone dots and distributed halftone dots
  • FIG. 9 shows a description of the description of multi-bit information with different position and phase modulations
  • FIG. 1 is a flowchart of a method for generating a mobile phone information embedded code
  • FIG. 2 is a flowchart of a method for reading an information embedded code for a mobile phone
  • Fig. 3 Explanatory
  • FIG. 10 is a diagram showing an information module of integrated reference dots in vertical and horizontal directions;
  • FIG. 11 is a diagram showing an information description by phase modulation (PM) in physical form;
  • FIG. 12 is a diagram showing a dot pattern realization method that maximizes the printing area;
  • FIG. 13 is a diagram showing an application example of an information embedding code for mobile phones that maximizes the print area;
  • Fig. 14 Example of normal two-dimensional code as information embedding code;
  • FIG. 15 shows the color of high-precision scan prevention;
  • Fig. 16 Diagram showing the principle of digital counterfeit prevention;
  • Fig. 17 Example of information embedding with different printing density of convex dots;
  • Fig. 18 Example of information embedding by another different printing density of convex dots;
  • FIG. 17 Example of information embedding with different printing density of convex dots;
  • Fig. 18 Example of information embedding by another different printing density of convex dots;
  • FIG. 17 Example of information embedding with different printing density
  • FIG. 19 shows an example of a method for generating an information embedding code using a laser marker
  • Fig. 20 Example of natural random variable information code formation
  • FIG. 21 Example of calculating code values for arrangement of multiple optically readable materials
  • 22-1-3 Three examples of a method for constructing information embedding codes for mobile phones using a plurality of fonts
  • FIG. 23 3 * 3 Information for variable-length mobile phones configured with the font shown in FIG. 22 (22-1)
  • Example of embedded code Example of embedded code
  • FIG. 25 2 * 2 Example of an information embedding code for a variable-length mobile phone composed of the font shown in FIG. 22 (22-3);
  • FIG. 22 Example of natural random variable information code formation
  • FIG. 21 Example of calculating code values for arrangement of multiple optically readable materials
  • 22-1-3 Three examples of a method for constructing information embedding codes for mobile phones using
  • FIG. 26 shows an example of a code configuration method for another forgery prevention function
  • Fig. 27 Example of information description of large-capacity dot pattern
  • Fig. 28 Dot pattern of another information embedding code for mobile phones
  • FIG. 29 shows a lens-equipped mobile phone.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Editing Of Facsimile Originals (AREA)
  • Image Processing (AREA)
  • Credit Cards Or The Like (AREA)
  • Printing Methods (AREA)

Abstract

 本発明は情報処理の分野における携帯電話向け情報埋込コードの生成方法、情報埋込方法、及びその読取方法に関連する。自然光の下で、普通の携帯電話を用いて、商品の真偽が判別できる特徴あり、一般消費者向きの真偽識別と専門家の真偽識別を統一する問題を解決することである。 携帯電話向け情報埋込コードは所定基準ドットに対して、情報ドッ卜の幾何学的な配置、或物理学的な配置に基づいて、マルチビットとした情報を記述する可能なドットパターンから構成することである。また、サーマルインク、日光変色インク、OVI (Optically Variable)インクなどを含む少なくとも1種のスキャンしてはいけない情報記述可能なドットパターンを構成することである。 また、本発明が提出した新型の縦横の一本化とした仮想基準線に基づいて、情報ドットマトリックスの異なる位置分布、或は位相変調結果の分布によって、多ビット情報を記録する可能な新型ドットマトリックスパターンは、最大限に多ビット情報を記録し、コード情報記録の効率を高めることができる。

Description

[規則26に基づく補充 20.02.2013] 携帯電話向け情報埋込コード生成方法、情報埋込方法、及びその読取方法
 本発明は情報処理分野に属し、特に、携帯電話の読取向け情報埋込コードの生成方法、情報埋込方法、及びその読取方法である。
 コンピュータ情報ネットワーク技術の急激な進歩によって、二次元コード、携帯電話認識及びネットワークを中心とするモノのインターネット技術は日進月歩で発展している。
 日本には最新の二次元バーコードとして、直接に大量な音声データを記録するため、微細なドットのマトリックス配置によって構成された複数な2次元矩形のドットコードを際限なく結合することができるドットコードと称される特許の発表がされた。「光学的に可読性二次元バーコード読取装置」(特開2005−243047)。このようなコードを用いて、直接に音声をコードに記録することを実現したが、音のデータの容量が大きいため、その大容量な情報を記述するドットコードの面積が比較的に大きいので、当時設計された読取装置はコードの上でスライドしてスキャンすることを通じて、コードのデータを全体的に読み取ることが実現された。操作性は悪かった。当時、この特許の発明者はこの技術を広げるために巨額の資金を投じたが、予想した効果を得なかった。
 また、二次元コードにより直接に大容量な音データを記録することができ、「音声コード」と言う特許は日本で発表され、「二次元コード、二次元コードの読取方法、プログラム及びコンピュータが読取可能の記録メディア」(特開2011−198371)。この二次元コードは1つの矩形の中に微細なドットを用いて、情報を記録する。読取リーダは接触式で、直接に非常に微細なドット・マトリックスシンボルを読み取ることができる。このようなコードは主に病院や公共場所に視覚障害者に対する案内する活用が可能であるが、このようなコードは情報記録手段の面では飛躍的な進歩がなく、依然として専用の空間の必要があり、ほぼ従来的なコードと変わらない。
 二次元コードの情報を記録する容量を高めるため、日本の発明者は「カラー二
Figure JPOXMLDOC01-appb-I000001
した。カラーバーコード記号を通じてバーコードの情報を記録する容量を高めることができた。しかし、依然としてコードのための専用空間が必要であり、コード面積の大きさの制限を受けている。特にコードの実用領域で必要な高速印字、或は低精度、低コストの白黒プリンターの対応が困難である。
 もう1種の特殊な二次元コードは「カラービットバーコード」と称され、それも日本の発明者が発表したものである。「光学式認識コード、認識装置及び方法
Figure JPOXMLDOC01-appb-I000002
コードは1次元バーコードと似ていて、すべての記号はカラーで実現できる。カラーシンボルは導入されているから、普通のバーコードと同じ情報量には、シンボルのサイズを大きくすることができるため、高精度のカメラで同時に多数のコードを読み取ることができる。特に複数の製品が倉庫に入る時に、一回ですべての商品のコードをコンピュータに読み込むことができるから、製品の入庫管理に対して非常に適する。ただし更に広い範囲での応用に対して、多くの課題を残している。
 携帯電話で二次元コード読取に適応するため、もっと美観性のある二次元コード或は商品属性がある二次元コードが必要となる。そこで、装飾性がある二次元
Figure JPOXMLDOC01-appb-I000003
とテーマする特許が出願された。このコードは普通の二次元コードが一部の領域が破壊されたとしても、誤り訂正が使われたため、正常読取に影響しない特徴を利用し、普通の二次元コードの上で商品の特徴的なマークを印刷した。この発明は確かに一定の応用価値があるのが、一つの新しいコードの発明ではなく、ただ1つの二次元コードの応用例としての発明しか言えない。
 従来的なコードとして、「角度コード」と称するコードもある。「読取装置を通じて読み取ることができる二次元コードの画像モデルを読取、地図の表すメディ
Figure JPOXMLDOC01-appb-I000004
表された。この手法では、極座標の形式でドット・マトリックス配置を行うコードであり、このようなコード形式では、ただ二次元コードの他の表す方法の一つだけと言え、技術と実用の面には飛躍的な進歩になっていない。今二次元コードの普及と高標準化を、かなり進んでいる時代に対して、二次元コードに対して、飛躍的に成れなければ、発明の価値がない。
 2000年以来、コード技術は大幅に発展した。その最も重要な特徴として、一番目は従来的な二次元コードが専用の空間の必要に対して、空間を占めない情報埋込コードに発展した。二番目は、従来の二次元バーコードが1つのシンボルは1ビット情報しかを記述できないことに対して、マルチビット情報を記述することができる新しいコードへ進化しました。この時代の代表的な有名なコード技術特許は下記の通り、いくつかあった。
 スウェーデンAnoto社により出願した「光学読み取ることができるデジタル化の紙」(PCT/SE00/01895)という国際特許があった。この特許は1つの仮想の十字線の中心を基準にして、情報ドットがその周囲の4つの位置で配置することによって、4つの数字、つまり2ビットの情報を記述することができる。この特許によって紙にドット・マトリックスをいっぱいに印刷することを通じて座標情報を紙に埋め込むことができ、ペン式の光学リーダでこのような紙に書いたら、書かれた文字などの情報は直接コンピュータに入力する事が可能である。たいへん残念なことは、このコードの発明者が考慮した基準は仮想であるため、座標情報を埋める時に、座標の近傍の2つの座標位置は1つの一定な数字であるため、リーダを移動する時に座標の位置が読み取れるが、ただ一度のタッチだけでは、普通の二次元コードのように直接コードを読み取ることができない。
 日本Grid社の創業者は直ちにスウェーデンAnoto社の特許の欠陥を発見し、迅速に「ドット・マトリックスモデルを使って情報の入出力を実現する方法」(PCT/JP2003/012364)と言う国際特許を出願した。基準ドットのないスウェーデンAnoto社の特許の欠陥に対して、是正が行き過ぎて、矩形の4つの頂点に4つの基準ドットを配置し、この4つの格子ドットと呼ばれるドットを結びことによって格子線を構成し、格子線同士の交差を基準に、その周囲の8つの位置に配置することができるため、8つの数字つまり3ビットの情報を記述することができると提出した。Grid社の創業者は自らの発明をかなり進歩的なすばらしい発明であると信じ、会社の名前をグリッド(四つの角の意味(Grid)と命名した。しかし実情は、まったくこんなに多くの基準ドットは不必要である。この特許出願の請求項に対し、1つの基準ドットを減らせば、仮想の中心が形成できなくなって、全く別な技術と言えるので、防衛のための特許にはなり得るが、他社特許を攻撃できるような特許ではない。また、スウェーデンAnoto社の仮想交点の表現仕方の影響を受け、その以後の特許出願の中でも何度も大量の仮想格子、仮想格子線等実際に存在しない曖昧な主張しかができなかった。このような極端な特許権利の請求、その結果は、たとえ特許権利は侵害されたとしても、有利な証拠を挙げられないため、攻撃ができるような特許に成れない。その他に、この特許は1つの情報ドットが8ビットの情報を記述することができると主張したが、実際にサンプリング理論に基づいて、情報ドットのそれぞれの位置の間に応じて一定的な間隔が空けるべき、この理論を反すれば、誤って認識されやすい問題が生じる。だから、2ビットの情報を記録することができるのは合理的である。もしあくまでこのようにするなら、情報ドットのサイズを拡大しなければならないため、かえって情報の記録効率が低くなり、地紋の階調は増えさせられて、画像の画質への影響を与えてしまう。
 上記の2つの特許はペン式タッチリーダつまりタッチ式読取りペンでマルチメディア応用する分野の発展状況を代表している。実は国際上に印刷画像に対して情報を埋め込む主要な戦場は複写機業界である。国際的な複写機の大手は、紙媒体の情報を流出する深刻な社会問題を解決するため、印刷画像に大量な情報を埋め込む技術について峻烈な特許競争を繰り広げている。
 世界最大な複写機製造メーカーはこの領域を独占したことがあった、「画像の形成装置」(特開平9−172537)という特許出願をした。この特許には幾何学形態の異なる位置、異なる大きさ、異なる方向、異なる形によって1ビットの情報を記述する手法が提出された。このような広い範囲で特許権利を主張した特許を獲得したことは、さすがに世界的有名企業である。しかし、比較的に早めに特許を獲得したが、実際に使用してみたら、印刷網点が非常に小さくて、またノイズも多いため、いつ製品になれるのが確認できなかった。
 2000年に日本のもう一つのプリンター会社が「Val−Code」と称されるコードを提出し、そして「デジタル電子透かし装置、デジタル電子透かしの識別装置、デジタル電子透かしの埋込み方法、デジタル電子透かしの識別方法」(特開2003−20967)という特許を出願した。この特許には物理学形態の異なる伝搬方向のドット・マトリックス順列を取り入れて1ビットの情報埋込を行い、大変雑音がある印刷のドット・マトリックス中で正確に情報ドット・マトリックスの伝搬方向を抽出することができる。これは間違いなく大変ハイレベルな発明だと思う。しかし、物理学形態の異なる伝播方向のドット・マトリックスを使うと、その周囲で大量の情報記録と関係ないドット・マトリックスを並べなければならなくて、情報の記録効率の低い問題が残られる。
 印刷物の画像に情報埋込として、上述の従来的な方法はすべて印刷スクリーンの特性を考慮していなかった。特に複写機領域の応用に対して、すべて1種の地紋の中で多目的な情報埋込を実現することを考慮していなかった、すべて印刷画像に直接情報を埋め込むことを提出していなかった、すべて情報埋込みの効率および情報量の最大化の問題を考慮していなかった。
 2000年以来、印刷画像に情報埋込に対する国際代表的な発明は「紙に大量にデータを保存できるスクリーンコードの埋込み方法」(特許第3829143)、および「情報埋込コード、情報埋込コードの生成方法、および情報埋込コードの生成装置」(特許第4054339)などのスクリーンコードについての特許があった。この特許はまず印刷物の画像に直接に情報を埋め込む観点からして、画像の品質を落とさないままで、大容量な情報を埋め込むことを可能とするため、印刷の網点の階調を変えない前提にして、網点の異なる位置、異なる形、異なる方向、異なる個数などの幾何学形態の変化を通じて、マルチビット情報の埋込を実現する。
 更にスクリーンコードの特許は網点の階調を変えない前提に網点の異なる変調方式、或は網点の位相変調を通じてマルチビット情報の埋込の方法をと提案した。
 具体的にタッチ式読取りペン製品の応用中、K版印刷に用いる再生内容のインデックス情報を記述することができる地紋を形成するため、1つの同じドットの大きさ、同じトットの間隔の地紋の画像に対して、それぞれの網点の階調を変えないままで、網点の異なる位置によって、2ビットの情報埋込を実現する。ここに設けられた1組のインデックス情報を記録するデータは6*6ドット・マトリックスによって50ビットの情報の埋込を実現することが可能である。
 複写機の情報セキュリティ対策機能製品の具体的な応用には、同一地紋の中で複写した書類とオリジナル書類を区別できる文字浮きあげ機能、機密書類の複写禁止機能、ファイルはどのパソコンから作成されたのか等の追跡機能、印刷する内容のデジタルデータを地紋に埋込、印刷した書類に対して、自動的に読取ることができる自動読取機能等に該当される多機能地紋が、スクリーンコードによって構成できる。
 今まで上述した二次元コードはすべて自然光の下で携帯電話を用いて自動的に写真を撮って自動的にネットに繋ぐ、しかも撮られた二次元コードは偽造防止機能を備えなかった。特に偽造防止分野に対して、携帯電話認識を用いて、一般消費者の識別方法と専門家の識別方法の統一を実現できるのは早急に解決しなければならない難題である。
「光学的に可読性二次元バーコード読取装置」(特開2005−243047) 「音のコード」と言う特許は日本で発表され、「二次元コード、二次元コードの読取方法、プログラム及びコンピュータが読取可能の記録メディア」(特開2011−198371) 「カラー二次元コード」(特開2006−178692) 「カラー二次元コードの作成方法及び解読方法」(特開2011−186613) 「光学式認識コード、認識装置及び方法とプログラム」(特開2008−287414) 「マークづきの二次元コード」(特開2009−104451) 「光学読み取ることができるデジタル化の紙」(PCT/SE00/01895) 「ドット・マトリックスモデルを使って情報の入出力を実現する方法」(PCT/JP2003/012364) 「画像の形成装置」(特開平9−172537) 「デジタル電子すかし装置、デジタル電子すかしの識別装置、デジタル電子すかしの埋込み方法、デジタル電子すかしの識別方法」(特開2003−20967) 「紙に大量にデータを保存できるスクリーンコードの埋込み方法」(特許第3829143) 「情報埋込コード、情報埋込コードの生成方法、および情報埋込コードの生成装置」(特許第4054339)
 本発明の第1の目的は普通の携帯電話のカメラを用いて、自然光で、情報を埋め込んだ画像を撮ると、自動的にネットワークを繋ぐことによって真贋判定ができる偽造防止コードとした携帯電話向け情報埋込コードの構造を提出する。さらに、偽造防止コードと商品マークを融合する課題を解決することである。
 本発明の第2の目的はもっと効率いいに情報を記述できる見えない携帯電話向け情報埋込コードの構成方法を提出する。
 本発明の第3の目的は普通の携帯電話のカメラに対して、特殊なレンズを付け、自然光で、情報を埋め込んだ画像を撮ることによって、真贋判定ができる偽造防止システム、または、印刷のマルチメディアシステムを提出する。
 前記課題を解決するために、請求1に係る発明の内容は、
 携帯電話向け情報埋込コードの生成方法であって、その特徴は、
 携帯電話向け情報埋込コードは所定基準ドットに対して、情報ドットの幾何学的な配置、或物理学的な配置に基づいて、マルチビットとした情報を記述する可能なドットパターンから構成すること;
 前記、携帯電話向け情報埋込コードはサーマルインキ、日光変色インキ、OVI(Optically Variable)インキ、蓄光インキ、水分により変色するインキ、赤外線蛍光発光インキ、紫外線蛍光発光インキ、可視光蛍光発光インキ、背景画像に対し、吸収波長の異なるインキ、背景画像に対し、反射波長の異なるインキ、背景画像に対し、反射角の異なるインキを含む少なくとも1種のスキャナーで、読み取った画像のRGB色の空間が直接にCMYK色の空間へ変換できない特殊なインキによって、印刷或は塗布をされた情報記述可能なドットパターン;
 もしくは、異なる密度の凸或は凹点配置によって印刷された情報記述可能なドットパターン;
 もしくは、光の拡散方向、光の反射方向、光の屈折方向の中で一種形式に対し、厳密にコントロールによって構成された情報記述可能なドットパターン;
 もしくは、レーザーマーカにより構成された情報記述可能なドットパターン;
 もしくは、ホログラフにより構成された情報記述可能なドットパターン;
 もしくは、読取の対象になった画像に対し、前に1つの偏光板、マイクロレンズ、光干渉板等を含め、少なくとも1種専用ビューワーをかざすと、スキャンしてはいけない情報記述可能なドットパターンを構成することであり;
 前記、携帯電話向け情報埋込コードは、その印刷用の画像の電子ファイルが画像形式、或はフォント形式の1種により構成されたものを特徴とする。
 前記課題を解決するために、請求2に係る発明の内容は、
 縦横の一本化基準ドットの携帯電話向け情報埋込コードの生成方法であって、その特徴は、
 ドットパターンはマルチビット情報を記録するため、異なる位置の配置、異なる位相変調の配置、または普通の二次元コードに対して、印刷面積を最小化とするドットの組み合わせをさせる結果を含め、一つのドットマトリックスを構成すること;
 前記ドットパターンのマトリックス配置の中で、仮想基準線を縦横の一本化とし、仮想基準線に対し一定間隔で基準ドットを配置する;
 前記ドットパターンの中で、情報ドットの配置可能なマイクロセルを、中心マイクロセルを囲まれた各々マイクロセルとすることを特徴とする縦横の一本化基準ドットの携帯電話向け情報埋込コードの生成方法。
 前記課題を解決するために、請求3に係る発明の内容は、
 レーザーマーカ装置により携帯電話向け情報埋込コードの情報埋込方法であって、その特徴は:
 レーザーマーカ装置により携帯電話向け情報埋込コードの構成する背景は、ブラックインキ、感温インキ、日光変色インキ、OVI(Optically Variable)インキ、蓄光インキ、水分により変色するインキ、赤外線蛍光発光インキ、紫外線蛍光発光インキ、可視光蛍光発光インキ、赤外線吸収インキ、赤外線透過インキ、背景画像と異なる吸収波長のインキ、背景画像と異なる反射波長のインキ、背景画像と異なる反射角のインキにより背景層を形成することであり、また、ホログラフ、金属、ガラス、紙または樹脂の表面であり;
 前記、レーザーマーカ装置により携帯電話向け情報埋込コードの構成する背景に対し、所定基準ドットに対して、情報ドットの幾何学的な配置、或物理学的な配置に基づいて、マルチビットとした情報を記述する可能なドットパターンから構成すること;
 前記、携帯電話向け情報埋込コードは、そのレーザーマーカ装置用の画像の電子ファイルが画像形式、或はフォント形式の1種により構成されたものを特徴とする。
 前記課題を解決するために、請求4に係る発明の内容は、
 携帯電話向け情報埋込コードの読み取る方法であって、その特徴は、
 携帯電話のカメラのレンズの前に、付加レンズを付け;
 付加レンズを通じて、携帯電話向け情報埋込コードにより情報埋込された画像を読取り;
 所定基準ドットに対して、情報ドットの幾何学的な配置、或物理学的な配置により、マルチビット情報を記述するドッパターンの構成規則に基づいて、前記携帯電話向け情報埋込コードのコード値を認識することを特徴とする携帯電話向け情報埋込コードの読み取る方法。
 請求項5に係る発明として、情報ドットの配置に対して、情報ドットの有無、情報ドットの異なる位置、情報ドットの異なる方向、情報ドットの異なる形、情報ドットの異なる数、情報ドットの異なる大きさ、情報ドットの情報ドットの集中或分散の分布、及び二次元コードの組み合わせによって構成した情報ドットの配置を含み、少なくでも1種の幾何学的な特性を有することによって、情報を記述することが可能になるドットパターンの構成である。
 このような構成とすることで、情報ドットが幾何的配置によってマルチビットの情報を記述することができ、少ないドットにより、割合大きな情報を記述することができる特徴を備える。
 請求項6に係る発明として、情報ドットの配置に対して、情報ドットの異なる位相変調(PM)結果、情報ドットの異なる変調(AM/FM)結果、情報ドットの異なる伝播方向、情報ドットの異なる力学のベクトル、情報ドットの異なる周波数を含み、少なくでも1種の物理学的な特性を有することによって、情報を記述することが可能になるドットパターンの構成である。
 このような構成とすることで、情報ドットが物理的配置によってマルチビットの情報を記述することができ、少ないドットにより、割合大きな情報を記述することができる、また、初期情報があれば、情報ドットのコード値を算出することができるので、基準ドットの数が減らせる特徴を備える。
 本発明のメリットと積極的な効果は:
 本発明が提出した携帯電話向け情報埋込コードの生成方法を用いて、生成された携帯電話向け情報埋込コードの特徴は、自然光の下で、一般消費者の手持ちの携帯電話を用いて、商品の真偽を判別することができる特徴があり、一般消費者向きの真偽識別と専門家の真偽識別を融合する問題を解決することができる。
 また、本発明により提案した縦横の一本化基準ドットの携帯電話向け情報埋込コードの生成方法は、単一基準方向の基準ドットの配置を基準に、情報ドットの異なる位置の配置、或は位相変調結果の配置によって、マルチビット情報を記録する一つの新しいドットパターンを提出した。情報記録の効率をアップすることができる特徴を備える。
 また、本発明はレーザーマーカ装置により携帯電話向け情報埋込コードの情報埋込方法を提案した、その特徴は従来のレーザーマーカ装置を用いても、偽造防止コードを構成することができる。
 さらに、本発明により提案した携帯電話向け情報埋込コードの読み取る方法は、安価で見えない携帯電話向け情報埋込コードを読み取ることができる。この技術により、印刷のマルチメディアを普及することが可能し、一般消費者が商品の真偽判定を行うこともできる。
[具体的な実施方法]
 以下が図を用いて本発明の実施例に対して詳しく説明する、ただし本発明が述べた実施例は説明的で、限定的ではない。
 図1は携帯電話向け情報埋込コードの生成方法のフローチャートである。
 図1に示すように:携帯電話向け情報埋込コードの生成方法は3つのステップから構成する。
 まず、携帯電話向け情報埋込コードのデータ読取ステップで、暗号化されたコンピュータのランダム偽造防止コードや、商品の属性、生産日付、生産地、販売許可地等情報によって構成された偽造防止コードを読み取る。
 次、携帯電話向け情報埋込コードのコード変換ステップ2で、上述の読み込んだ携帯電話向け情報埋込コードを幾何学形態或は物理学形態によって配置されたドットパターンに変換する。
 上述に記載された幾何学形態によって配置されたドットパターンとは、情報ドットの配置に対して、情報ドットの有りまたない、情報ドットの異なる位置、情報ドットの異なる方向、情報ドットの異なる形、情報ドットへの異なる数、情報ドットの異なる大きさ、情報ドットの情報ドットの集中或分散の分布、及び二次元コードの組み合わせによって構成した情報ドットの配置を含み、少なくでも1種の幾何学的な特性を有することによって、情報を記述することが可能になるドットパターンの構成である。
 上述に記載された物理学形態によって配置されたドットパターンとは、情報ドットの配置に対して、情報ドットの異なる位相変調(PM)結果、情報ドットの異なる変調(AM/FM)結果、情報ドットの異なる伝播方向、情報ドットの異なる力学のベクトル、情報ドットの異なる周波数を含み、少なくでも1種の物理学的な特性を有することによって、情報を記述することが可能になるドットパターンの構成である。
 上述に記載された携帯電話向け情報埋込コードのドットパターンは、普通のQR二次元コード、DM二次元コード、PDF417二次元コード、および所定目的に基づいて、普通の二次元コードのドットの配置に対して全組み合わせの中で、一部分の組合せ結果を選んで構成されたドットパターンにより生成された二次元コードを含む。例えばGM二次元コード、OID1という音声ペン向け二次元コードなどはすべて二次元コードの組み合わせによって構成したドットパターンに属する。
 上述に記載された携帯電話向け情報埋込コードの情報ドットを構成している異なる位置の配置を、基本的に基準ドットに対した異なる位置とする。基準トットの決める方法がいろいろあるが、情報ドットが異なる位置によって情報を記述することがなると、全部本発明に属する。
 上述に記載された携帯電話向け情報埋込コードは、仮想の十字線が構成した仮想の交点を基準にする情報ドットの異なる方向、異なる距離、異なる位置を含み、一つの形式によって形成されたドットパターン、矩形の4つの頂点で4つのいわゆる“格子点”がつながって形成した仮想の基準線から形成した仮想の中心を基準にする情報ドットの異なる方向、異なる距離、異なる位置を含み、一つの形式によって形成されたドットパターン、または、色んな実に存在する基準ドット、或は仮想の基準ドットを基準にする情報ドットの異なる方向、異なる距離、異なる位置によって形成したドットパターンを用いて構成された情報埋込コードを全部含まれている。
 最後、携帯電話向け情報埋込コードの情報埋込出力ステップで、携帯電話向け情報埋込コードの印刷工程は普通のオフセット印刷機、普通の凸版印刷機、普通の凹版印刷機、普通のスクリーン印刷機、普通のデジタル印刷機、普通のプリンタを用いて印刷を実現する。
 携帯電話向け情報埋込コードを商品の包装ラインによりオンラインで与える方法は、インキジェットシステム、或いはレーザーマーカーを用いて行うことができる。
 携帯電話向け情報埋込コードは、サーマルインキ、日光変色インキ、OVI(Optically Variable)インキ、蓄光インキ、水分により変色するインキ、赤外線蛍光発光インキ、紫外線蛍光発光インキ、可視光蛍光発光インキ、背景画像と異なる吸収波長のインキ、背景画像と異なる反射波長のインキ、背景画像と異なる反射角のインキを含む少なくとも1種のスキャナーのスキャンで形成したRGB色空間が直接CMYK色空間の色に変換できない特殊なインキで、印刷することにより生成され;
もしくは、異なる密度の凸点或は凹点の配置の印刷により生成され;
もしくは、異なる密度の凸点或は凹点の配置のデジタル彫刻により形成され;
もしくは、光の拡散方向、光の反射方向の中で一種形式に対し、厳密にコントロールによって生成され;
もしくは、レーザーマーカにより生成され;
もしくは、ホログラフにより生成され;
もしくは、読取の対象になった画像に対し、前に1つの偏光板、マイクロレンズ、光干渉板等を含め、少なくとも1種専用ビューワーをかざすと、生成されることである。
 携帯電話向け情報埋込コードは、レーザーマーカーで生成する場合に、事前に生成したい領域に対して、サーマルインキ、日光変色インキ、OVI(Optically Variable)インキ、蓄光インキ、水分により変色するインキ、赤外線蛍光発光インキ、紫外線蛍光発光インキ、可視光蛍光発光インキ、背景画像と異なる吸収波長のインキ、背景画像と異なる反射波長のインキ、背景画像と異なる反射角のインキを含めて少なくとも1種のスキャナーで読み取った画像のRGB色空間が直接CMYK色空間の色に変換できない特殊なインキを用いて、先に一つの背景色層として印刷し、さらにその上に、白いインキ或は上述した特殊なインキの色と相違する性質を持っているインキを使ってカーバー層を印刷する。強いレーザーに照射されたら、カーバー層は剥離され、特殊なインキで印刷された背景色が現れ、携帯電話向け情報埋込コードを形成することができる。
 図2は携帯電話向け情報埋込コードの読取方法のフローチャートである。
 図2に示すように、インターネット上の携帯電話向け情報埋込コードの読取方法は三つのステップで構成されている。
 まず、携帯電話画像読取ステップで、携帯電話に搭載されたCCD、CMOSなどの画像センサーを通じて偽造防止ラベル、納税証書、或は印刷マルチメディア印刷物などの印刷媒質に印刷された携帯電話向け情報埋込コードの画像を読み取る。
 ここで、微細なドットパターンを読取るために、携帯電話のカメラのレンズの前に、もう一個の付加レンズを付け、
 付加レンズを通じて、携帯電話向け情報埋込コードにより情報埋込された画像を読取り、携帯電話のカメラのレンズの前に、付加レンズを付け;
 付加レンズを通じて、携帯電話向け情報埋込コードに情報埋込された画像を読取り。
 携帯電話の読取りの照明条件は、携帯電話向け情報埋込コードの生成方法に基づいて、自然光照明、赤外線照明、紫外線照明を含め、一つの照明方法を選ぶ。
 次、携帯電話向け情報埋込コード認識ステップで、携帯電話向け情報埋込コードの幾何学或は物理学形態配置の異なる規則によって、携帯電話向け情報埋込コードのコード値を認識する。
 最後に、ネットワーク接続のステップで、携帯電話撮影或はタッチ読みで携帯電話向け情報埋込コードのコード値を読み取って、携帯電話のネットワークに接続し、サーバーからこのコード値が対応する偽造防止情報やマルチメディアコンテンツデータを取り出して、携帯電話の画面上に表示されて、或はコード値情報によって、いろいろソーシャル活動を行うことが可能である。また、このネット操作はネット接続による商品追跡、ネット接続によるネットショッピング、ネット接続によるネット検索、ネット接続による商品価格検索、ネット接続による商品真偽検索、ネット接続による商品販売のオンライン監察で物横流れ現象が防げる等を含む。
 図3は現在国際流行ないつかの積み上げ式の二次元コードの説明図である。
 図3に示すように、世界最初の積み上げ式の二次元コード即ちCode49は1987年に米国のIntermec社により発明された。このタイプのコードの構造は一次元バーコードの延長線で、特別な技術の特徴はあまりない。しかし、当時にとっては新規性があるため、国際標準になって、現在まで応用されている。
 図4は現在国際で流行されているマトリックス式の二次元コードの示す図である。
 図4に示すように、VeriCodeという世界初のマトリックス式の二次元コードは1982年にVeritec社により発明された。上述の積みの二次元コードより技術価値が高いので、国際標準になったし、世界中で広く応用されている。
 図5は近年、中国で発表された2種類の二次元コードの示す図である。
 図5に示すように、中国の二次元コード業界の標準となった「GM二次元コード」は、普通の二次元コードのドットをいくつの「マクロブロック」に分けて、隣接のマクロブロックの隣接ところは、黒、または白の境界を設置している。このような設計方法は情報の識別が比較的に便利になっているし、コードの外観は従来的な二次元コードより綺麗になった。しかし、沢山な境界の必要があるので、情報記述の効率が悪い。特にこのような二次元コードは基準ドットを設置していないので、シンボルのサイズが小さくなると、特に印刷機の精度が低い場合に、認識のエラーを発生しやすい問題を残している。
 中国の国家コード委員会により提出した「漢信コード」、その外観は非常にQRバーコードと似ている。国家機関により提案したものであるので、ある分野で応用する価値があると考えられる。
 図3から図5までが提供した二次元コードの共通問題は偽造防止の特性がない。普通の複写機としても複写することが可能である。本発明は従来の二次元バーコードに対して偽造防止処理を実施することによって、偽造防止の特性を持つ二次元コードになることを提案する。
 即ち、従来のすべて二次元コードに対して、偽造防止処理をされることによって、生成された新しい二次元コードが携帯電話向け情報埋込コードに属する。
 図6は異なる方向によってマルチビット情報の記述を示す図である。
 図6に示すように、601を携帯電話向け情報埋込コードの1網点とし、602および603を情報ドットとする。情報ドット602と603の異なる方向によってマルチビット情報を記述することができる。
 図6の中で、図(a)のドットバターンを情報0とし、図(b)のドットバターンを情報1とし、図(c)のドットバターンを情報2とし、図(d)のドットバターンを情報3とする。携帯電話向け情報埋込コードの網点a、b,c,dは、明らかに異なる方向、異なる電磁波の伝播方向と異なる力学のベクトルの結果によってマルチビット情報の記述を実現することができる。
 図7は異なる形によってマルチビット情報の記録の示す図である。
 図7の中で、図形(a)のドットバターンを情報0とし、図(b)のドットバターンを情報1とし、図(c)のドットバターンを情報2とし、図(d)のドットバターンを情報3とする。
 異なる形を通じてマルチビット情報を記録することは、偽造防止分野で応用することに対して、特別な意味がある。上述のように、印刷画像の網点は、網点の階調を変えないままで、網点の形を変えることを通じて、印刷物に一つの情報を記述することができる、もしこの印刷物は複写されると、通常標準的な分版ソフトウェアを使用した必要ため、その網点は標準の分版ソフトウェアの網点の形に戻ってしまう、埋め込んだ情報を失ってしまう。この特徴を利用して、偽造防止システムを構築する可能になる。
 図8は集中網点と分散網点によって情報の記述の示す図である。
 図8の示すように、1つの網点の中で、構成した網点の点を1つのドットとする集中網点aと、少なくとも網点の点を複数なドットとする分散網点bを用いて、情報を記述することできる。集中網点aを情報ビット値“1”とし、分散網点bを“0”とする。相反して、集中網点aを情報ビット値“0”とし、分散網点bを“1”とすることもできる。
 図8に示すように、集中網点aを振幅変調方式(即ちAMスクリーン)とし、分散網点bを周波数変調方式(即ちFMスクリーン)とする。即ち、変調方法の異なるドットパターンによって情報を記録することができる。
 x,yを、それぞれ網点の幅と高さとする、Tを網点の間の間隔とすると、次の通りの公式で振幅変調AMスクリーンと周波数変調PMスクリーンを表すことができる。
 振幅変調AMスクリーン(網点a):
 [公式1]
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
を行うことができる。
 周波数変調FMスクリーン(網点b):
 [公式2]
Figure JPOXMLDOC01-appb-I000007
 その中のε(m,n)とη(m,n)は(x,y)範囲の中で(つまり網点範囲内)調整する。
 ε(m,n)とη(m,n)を変えることによって、インパルスの密度と位置を変える、それによって、周波数変調を行うことができる。
 それに、集中網点aを低周波数網点と、分散網点bを高周波数網点とすることができるため、集中網点aと分散網点bは異なる周波数の成分によって情報を記録することも言える、或は集中網点aと分散網点bは異なる網点のドットの数によって情報を記述することもできる。
 さらに、集中網点aのドットの階調値は高い、また、分散網点bの一つのドットの階調値は低いので、集中網点aと分散網点bは一つの点の異なる階調値によって情報を記述することもできる。
 換言すれば、集中網点aのドットのサイズが大きい、分散網点bの一つのドットのサイズが小さいので、集中網点aおよび分散網点bは大きさの異なるドットによって情報を記録することもできる。
 以上の内容に関して、更に多くの言い方があるが、もし以上のドット・パターンと同様にならば、すべて本発明の範囲に属する。
 図8が示めす集中網点と分散網点を通じて情報を記述するのは、上述の異なる形によって情報記述するドットパターンと同様に、偽造防止分野で応用することに対して、特別な意味もある。上述のように、印刷画像の網点は、網点の階調を変えないままで、網点の集中と分散を通じて、印刷物に一つの情報を記述することができる、もしこの印刷物は偽造されると、通常標準的な分版ソフトウェアを使用する必要ため、その網点は標準の分版ソフトウェアの網点の形に戻ってしまう、埋め込んだ情報を失ってしまう。この特徴を利用して、偽造防止システムを構築することも可能である。
 図9は異なる位置及び位相変調によってマルチビット情報の記述の示す図である。図9に示すように:図(a)のドットパターンを情報の0とし、図(b)のドットパターンを情報の1とし、図(c)のドットパターンを情報の2とし、そして図(d)のドットパターンを情報の3とすることができる。図(e)と図(f)を、携帯電話向け情報埋込コードの基準ドットと方向キードットとすることができる。
 図9に示した異なる位置及び位相変調によってマルチビット情報を記述することができる網点の点は3*3個小さいビックセルの矩形の領域に区分されて配置している。また5*5個小さいビックセル、或は7*7個小さいビックセルの配置を設置することもできる。そして、更に必要に応じて、もっと多くの小さいビックセルの矩形の領域を設置することができる。
 異なる位置及び位相変調によってマルチビット情報を記述するのは、幾何学の理論によって必ず1つの座標系を導入しなければならない、つまり孤立している情報ドットの異なる位置を幾何学形態の空間の中で求めることができない。普通二次元コードは、ドット・マトリックスの中で、必ず水平基準ドットによって構成された1つの仮想水平基準線、及び垂直基準ドットによって構成された1つの仮想垂直基準線を設置される。
 本発明は、できるだけ基準ドットの数を減らすため、また幾何学の線形変換理論によって、ドット・マトリックスの45度の角で、少ない基準ドットによって構成するただ1つの縦横の一本化の仮想基準線を提案する。
 図10は縦横の一本化の仮想基準線の情報モジュールの示す図である。
 図10に示すように、1つの情報ドットの4つの異なる位置が2ビットの情報を記述する原理によって、1つの4*4ドット・マトリックスの情報モジュールを構成することができる。図10には、S11、S22、S33とS44は45度仮想基準線に配置している基準ドットの配置であり、S00は携帯電話向け情報埋込コードの方向を表すキードットであり、S12、S13、S14、S21、S23、S24、S31、S32、S34、S41、S42とS43は情報ドット・マトリックスである、最高24ビットの情報の記録ができる。
 従来、水平と垂直に2つの仮想基準線を設置された情報モジュールと比べると、6ビットの情報が増えた。そして、図10に示した情報モジュールの仮想基準線が45度に設置したため、印刷機の水平と垂直方向上の印刷の位置誤差は依然として45度の仮想基準線に配置された基準ドットに反映することができる、依然として誤差の修正を行うことができる。そして、2次元空間上の一つのドットの位置移動は、必ず任意な二つの基準ドットとの線性関係がある理論によって、一本の仮想基準線を省略しても情報ドット・マトリックスの位置の識別精度に影響しない。上記のように、網点の方向を0とする場合に仮想基準線を45度とする。また、網点の方向を45度とする場合に仮想基準線を0度とする。
 図9と図10により提案した情報ドットの異なる位置の配置に基づいて、マルチビット情報を記録するドットパターンは、もう一つの観点から見ると、最少のドットの数で、最大の情報量を得ることである。その結果、このようなドット・ドットパターンからなる印刷地紋は情報の埋め込むために、印刷画像と重なり合った結果は、印刷画像にとって最小の影響を受ける。
 ここで、図9と図10に示したドットパターンはまだ印刷のスクリーンの特性を考慮しなければならない、印刷スクリーンの特性とは、主に3つの方面を考慮しなければならない。一つは「スクリーンの網点の階調特性」、つまりスクリーンの網点の階調の均一化の特性であり、スクリーンの網点の印刷ドット数は同じ構成を持たせる特性であり、及びスクリーンの網点の階調を最小化とする特性である。二つは「スクリーンの網点の大きさの特性」、つまりスクリーンの網点の印刷ドットの数を最少化とする特性であり、及びスクリーンの網点のサイズを最小化とする特性である。三つは「スクリーンの網点の間隔特性」、これはスクリーンの網点は一定的な間隔によって配列する特性であり、およびスクリーンの網点の間隔をスクリーンの網点のサイズより大きいとする特性である。
 図11は物理学形態の位相変調(PM)によって情報記述の示す図である。
 図11に示すように、図9の1つの携帯電話向け情報埋込コードの網点1101は、情報ドット1102の異なる物理学形態の位相変調(PM)の信号伝搬によって、構成したa、b、cとd、4種類の異なる位相変調の結果の例である。
 ここで、位相変調方式とは:2次元空間の中での水平と垂直の方向で、同じ間
Figure JPOXMLDOC01-appb-I000008
[公式3]
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
行うことができる。
 位相変調理論によって実現したマルチビット情報を記述するドットパターンの特徴は、伝統的な信号分析理論に基づいて、コード値の識別を行う時に、信号の初期値があれば、それぞれドットの位相値を計算することができるので、更に基準ドットの数を減らすことが可能になる。
 図12は印刷面積を最大化とするドットパターンの実現方法の示す図である。
 図9と図10に示したドットパターンが構成された携帯電話向け情報埋込コードは、印刷面積を最小化になっている、即ちドットパターンの実際な階調値が最小化になった印刷画像である。もし図9と図10のドットパターンの画像を白黒反転すると、図12に示すように、もう一つの印刷面積を最大化とする携帯電話向け情報埋込コードを構成することができる。図12では、(1201)を印刷しないドットとし、(1202)を印刷するドットとする。印刷するドットの集合は印刷面積を構成する。
 図13は印刷面積を最大化とする携帯電話向け情報埋込コードの応用例の示す図である。
 図13に示すように、印刷面積を最大化にするコードの組み合わせに、携帯電話向け情報埋込コードが構成できる。ここで、上述の印刷面積のところに対して、各種の標識と図案を印刷することができる、このような構成によって、携帯電話を用いて、情報埋込コードにより埋め込んだ画像を読取ることができる。
 図13では、1301を情報ドットとし、(1302)と(1303)を基準ドットとする。図13の携帯電話向け情報埋込コードの白いドットを保留して、黒い部分を商標、画像或は図形などの図案を表す。
 さらに綺麗な商標、画像或は図形等を表示させるため、白いドットの部分の階調値を、商標、画像或は図形などの画像の該当画素の最小階調値より小さくする階調値とする。
 図14は普通二次元コードを情報埋込コードとする例である。実は、図6から図11までのコードの構成とも、及び普通な各種の二次元コードの構成とも、もともと最小セルに対して、1ビットの情報記述可能なシンボルの並べて成った2次元マトリックスの中で一つの組合せ結果である。
 1単位面積上に記録可能な情報量について、普通の二次元コードは恐らく携帯電話向け情報埋込コードよりやや高いはずであるが、1つのシンボルの情報記述可能な情報量に対して、携帯電話向け情報埋込コードは普通の二次元コードより数倍に高い。特に、携帯電話向け情報埋込コードは情報埋込コードであるので、スペースを占めない利点がある、情報記録できる面積は普通のバーコードに比べて数倍が多いので、トータル見ると、携帯電話向け情報埋込コードの方が大量な情報記述が可能である。
 図14に示すように、普通の二次元コードを一部分の組み合わせ結果を利用して、情報埋込コードを構成することが可能になる。
 上述の図3から図5まで、及び図14が示した普通の二次元コードでも、コードの生成する時に、サーマルインキ、日光変色インキ、OVI(Optically Variable)インキ、蓄光インキ、水分により変色するインキ、赤外線蛍光発光インキ、紫外線蛍光発光インキ、可視光蛍光発光インキ、背景画像と異なる吸収波長のインキ、背景画像と異なる反射波長のインキ、背景画像と異なる反射角のインキを含めて少なくとも1種のスキャナーで読み取った画像のRGB色空間が直接CMYK色空間の色に変換できない特殊なインキを用いて、印刷することによって、偽造防止の仕組みを構成することができる。
 同様に、上述の図6から図10まで、及び図12から図13までが示した携帯電話向け情報埋込コードは、サーマルインキ、日光変色インキ、OVI(Optically Variable)インキ、蓄光インキ、水分により変色するインキ、赤外線蛍光発光インキ、紫外線蛍光発光インキ、可視光蛍光発光インキ、背景画像と異なる吸収波長のインキ、背景画像と異なる反射波長のインキ、背景画像と異なる反射角のインキを含めて少なくとも1種のスキャナーで読み取った画像のRGB色空間が直接CMYK色空間の色に変換できない特殊なインキを用いて、印刷されることによって、偽造防止することができる。
 図15は高精度なスキャン防止の色の示す図である。周知のように、現在印刷機の精度がスキャナーの精度よりずっと低い。不法者は、商品マークを偽造する手段が高精度のスキャナーで本物の商品マークをスキャンしてから再び印刷を通じて偽物を作成する。図15に示すように、スキャナーにより読取った電子画像のすべての色は必ずRGBの色空間に属する、実際に印刷画像の色は必ずCMYKの色空間に属する。CMYKの色空間に属する色を一部分変換できないRGBの色空間に属する色を存在するので、このような色を利用して上述のコードの構造と有効に結合すると、複写してはいけない偽造防止の効果を実現することができる。
 CMYK色の空間の色を直接にRGB色の空間の色へ変換できない色は、いろいろあるが、それ以外、ノーカーボン黒色インクー、カーボン有り薄い色員キー、サーマルインキ、日光変色インキ、OVI(Optically Variable)インキ、蓄光インキ、水分により変色するインキ、赤外線蛍光発光インキ、紫外線蛍光発光インキ、可視光蛍光発光インキ、背景画像と異なる吸収波長のインキ、背景画像と異なる反射波長のインキ、背景画像と異なる反射角のインキ等を使用して印刷された色も含む。
 図16はデジタル偽造防止の原理の示す図である。図9に示したマルチビット情報を記述できるドットパターン(a)~(d)の中で、図16に示すように、網点(1601)の中で1つの偽造防止ドット1603を付加する。ここで、情報記述ができる情報ドット(1602)を読取器により読める所定1種のインキで印刷されたドットとする、偽造防止ドット(1603)を情報ドット1602との同様な色、異なる性質なインキで同様な形として印刷されたドットとする。例は、読取器が赤外線で読取る場合に、情報ドット(1602)をカーボン有りインキで印刷するドットとする。偽造防止ドット1603を情報ドット(1602)との同様な色のノーカーボンインキで印刷するドットとする。もう一例は、読取器が紫外線で読取る場合に、情報ドット(1602)を紫外線蛍光インキで印刷するドットとする。偽造防止ドット(1603)を情報ドット(1602)との同様な色の普通インキで印刷するドットとする。このような構成によって、高精度スキャンを用いても偽造すると、情報ドット(1602)と偽造防止ドット(1603)を同様な色になってしまうので、偽造防止機能を備える。
 さらに、情報ドット(1602)と偽造防止ドット(1603)との位置関係を暗号化によって決めるので、人間的に介入による画像の切り抜き、偽造することができない、完全に偽造防止が可能である。
 図17は異なる凸ドットの印刷密度によって情報埋込を行う例である。図17に示すように、スクリーン印刷や凹版印刷などの印刷手段を通じて透明なインキなどを用いて、丸い凸ドット或はマイクルレンズを印刷することができる。ここで、異なる丸い凸ドット或はマイクルレンズの密度、異なる丸い凸ドット或はマイクルレンズの大きさの配列、異なる丸い凸ドット或はマイクルレンズの光学拡散の状況、異なる丸い凸ドット或はマイクルレンズの光学反射の状況、異なる丸い凸ドット或はマイクルレンズの光学モアレの状況を、厳密にコントロールすることによって、情報埋込を行うことができる。
 図17には、(d)は携帯電話向け情報埋込コードの断面図の一部分で、(b)は携帯電話向け情報埋込コードの俯瞰図の一部分である。(a)の(1700)は一つの携帯電話向け情報埋込コードであり、(1701)は印刷媒体であり、(1702)はドット・マトリックスであり、(1703)はコードの背景である。
 図17に示すように、偽造防止コードのドット・マトリックス(1702)はいくつかの小さい凸ドットから構成している、携帯電話向け情報埋込コードの背景(1703)はいくつかの大きい凸ドットから構成している。
さらに、ドット・マトリックス(1702)は光を吸収する砂ドットから構成することもでき、携帯電話向け情報埋込コードの背景(1703)は光が反射するドットから構成することもできる。即ち携帯電話向け情報埋込コードをドット・マトリックス(1702)とコードの背景(1703)は2種類の異なる光学の効果から構成することが可能である。
 図18はもう一つの異なる凸ドットの印刷密度によって情報埋込を行う例である。図18には、(a)は携帯電話向け情報埋込コードの断面図の一部分で、(b)は携帯電話向け情報埋込コードの俯瞰図の一部分である。(a)の(1800)は一つの携帯電話向け情報埋込コードであり、(1801)は印刷媒体であり、(1802)は携帯電話向け情報埋込コードのドット・マトリックスであり、(1803)はコードの背景である。図18に示すように、ドット・マトリックス(1802)0大きい凸ドットとし、携帯電話向け情報埋込コードの背景(1803)を小さい凸ドットとする。
 ここで、ドット・マトリックス(1802)は所定位置に対して、丸い凸ドット或はマイクルレンズを設置し、光学の拡散方向,光学の反射方向、光学のモアレをコントロールすることによって、携帯電話向け情報埋込コードを構成することも可能である。
 図17或は図18のような印刷方法で構成した携帯電話向け情報埋込コードの特徴は、ドット・マトリックスを3Dになったマイクロレンズによって構成されたので、普通スキャナーを用いて偽造することが不可能であるため、偽造防止の効果がある。
 上述の特徴によって、携帯電話向け情報埋込コードのシンボルのサイズ、即ちドットのサイズが大きくにも、偽造防止が可能であるので、携帯電話を用いて、自然光で直接に読取ることができる特徴も備える。一般消費者が携帯電話を用いて、商品の真贋判定することが可能になる。
 ここで、図17と図18の関連するコードの形式は図6から図10まで、図12から図15まで、及び図22から図28までの新型コードに限らず、更に図3から図5までの普通の二次元コードにも、すべての2次元画像からなるコードにも適用できる。
 図19はレーザーマーカーを用いて情報埋込コードの生成方法の例である。図19に示すように、(1900)を携帯電話向け情報埋込コードとし、(1901)をコード埋込媒体とし、(1902)を識別色層とし、(1903)を背景層とし、(1904)をドットパターンの位置とし、(1905)をレーサーとする。
 ここで、携帯電話向け情報埋込コード(1900)を生成する時に、コード埋込媒体(1901)の上に事前に、カーボン有りインキ、サーマルインキ、日光変色インキ、OVI(Optically Variable)インキ、蓄光インキ、水分により変色するインキ、赤外線蛍光発光インキ、紫外線蛍光発光インキ、可視光蛍光発光インキ、背景層(1903)と異なる吸収波長のインキ、背景層(1903)と異なる反射波長のインキ、背景層(1903)と異なる反射角のインキを含めて少なくとも1種のスキャナーで読み取った画像のRGB色空間が直接CMYK色空間の色に変換できない特殊なインキを用いて、印刷することによって、識別色層(1902)を構成する。再び、識別色層(1902)の上で一層の白いインキ或は上述のような背景層の構成になるインキを印刷し、背景層を構成する。
 背景層の構成になるインキとは、背景層(1903)と異なる吸収波長のインキ、背景層(1903)と異なる反射波長のインキ、背景層(1903)と異なる反射角のインキに該当されたインキである。
 レーザー(1905)はドットパターンの1904の位置に当たって、背景層(1903)は局部蒸発によって、下の識別色層1902が現れ、一つのドットを形成し、これ続けて、携帯電話向け情報埋込コードの生成が完成することができる。
 ここには、図19に関連するコードの形式は図6から図10まで、図12から図14まで、及び図23から図24までの新型コードに限らず、更に図3から図5までの普通の二次元コードなどのようなすべての2次元画像からなるコードには適用できる。
 図20は自然的にランダム可変情報コードの形成の例である。
 インクジェット印刷機で人為的に印刷した図10のような可変情報コードを形成することと比較すると、本発明は図20に示すように、紙を加工する時に、複数の小さい繊維、樹脂粒子、小さい泡を含む光学的読取可能な物質を普通なインキと混ぜて、印刷媒体に塗布し、また、基準ドットも印刷すれば、一つの情報記述の可能なランダム配置のドットパターンを構成することができる。所定認識のルールに基づいて、そのランダム配置のドットパターンのコード値を識別することができる。
 図20にて、網点S11,S22,S33及びS44を基準ドットとし、網点S12,S13,S14,S21,S23,S24,S31,S32,S34,S41,S42及びS43を情報ドットとする。
 ここで、wをマイクロセルとし、fを光学的読取可能な物質とする、上記の所定認識のルールとは、まず、光学読取可能な物質fのサイズをマイクロセルwより小さいとし、つまりw>f。また、光学読取可能な物質fを必ずマイクロセルwに配置することとする。なれないと、光学読取可能な物質をこのマイクロセルに存在していないとして処理する。または、一つの網点の中で複数な光学読取可能な物質を配することが可能、そして複数の光学読取可能な物質の配置に基づいてコード値を計算する。
 図21は複数の光学読取可能な物質の配置のコード値の計算する例である。
Figure JPOXMLDOC01-appb-I000011
とし、網点(b)に配置している光学読取可能な物質のコード値を“2”とし、網点(c)に配置している光学読取可能な物質のコード値を“3”とし、網点(d)に配置している光学読取可能な物質のコード値を“4”とし、網点(e)に配置している光学読取可能な物質のコード値を“5”とし、網点(f)に配置している光学読取可能な物質のコード値を“6”とし、網点(g)に配置している光学読取可能な物質のコード値を“7”とし、網点(h)に配置している光学読取可能な物質のコード値を“8”とし、網点(i)に配置している光学読取可能な物質のコード値を“9”とし、網点(j)に配置している光学読取可能な物質のコード値を“10”とし、網点(k)に配置している光学読取可能な物質のコード値を“11”とし、網点(l)に配置している光学読取可能な物質のコード値を“12”とし、網点(m)に配置している光学読取可能な物質のコード値を“13”とし、網点(n)に配置している光学読取可能な物質のコード値を“14”とし、網点(o)に配置している光学読取可能な物質のコード値を“15”とし、網点(p)に配置している光学読取可能な物質のコード値を“0”とする。
 上記の光学読取可能な物質とは、繊維等色媒体の物質を普通の黒い顔料、サーマル顔料、日光変色顔料、OVI(Optically Variable)顔料、蓄光顔料、水分により変色する顔料、赤外線蛍光発光顔料、紫外線蛍光発光顔料、可視光蛍光発光顔料、赤外線吸収顔料、赤外線透過顔料、背景画像と異なる吸収波長の顔料、背景画像と異なる反射波長の顔料、背景画像と異なる透過波長の顔料、背景画像と異なる反射角の顔料のうち一種を用いて加工することによって、必要な光学特性を備えた光学読取可能な物質である。
 図21に示したランダム的な可変情報コードの生成は、上記のような光学読取可能な物質を、紙パルプの中で混ぜたり、インキの中で混ぜてから、紙の上に塗布したり、あるいは印刷媒体に印刷したり、することによって、ランダムドットパターンを形成することができる。それから、ランダルドットパターンの上に、塗布、オフセット印刷、凸版印刷、凹版印刷、デジタル印刷、或はレーザーマーカーの内1種の方法を用いて、基準ドットを生成する。このように、光学読取可能な物質の異なる位置、異なる方向、異なる形、異なる距離を含む幾何学形態、或は異なる位相変調(PM)結果、異なる変調(AM/FM)方式、異なる伝播方向、異なる力学のベクトルを含む物理学形態によって、可変情報を構成する。
 同様な方法で、図16の偽造防止ドットパターンの構造を参考して、情報ドットとした小さい繊維、樹脂粒子、小さい泡等を含む光学読取可能な物質を、別々複数の異なる光学特性を持つことによって、偽造防止の効果を更に良くさせる。偽造防止のレベルを高める方法について、また、いろいろあるが、上述のような構成と類似すれば、すべて当発明の範囲に属する。
 各々可変情報コードをJPG、TIFF、BMP、PDFなどを含む画像形式で印刷設備に送信し、可変情報を印刷することができるが、大量な可変情報コードの印刷、例100万個以上可変情報コードを印刷する場合に、画像データの変換の時間がかかり、しかも、画像データのネット伝送も長い時間と大量なメモリー空間を掛かる。この問題を解決するため、携帯電話向け情報埋込コードのパターンをいくつかのフォントにより作成し、複数なフォントの組合せによって携帯電話向け情報埋込コードを構成することによって、大量な可変情報コードの印刷を実現することが可能になる。
 図22は複数なフォントにより携帯電話向け情報埋込コードの構成方法の三つの例である。
 図22(22−1)には、フォントにより水平と垂直の基準ドットがあるドットパターンの構成方法である。
 図22の(22−1)に示すように、(2200)を一つの水平と垂直の基準ドットがある携帯電話向け情報埋込コードのフォントとし、(2401)を携帯電話向け情報埋込コードの1つの網点とし、(2402)を情報ドットとする。網点s11、s12、s21、s22、s′11、s′12、s′21及びs′22を情報ドットとし、すべての網点の情報ドットを網点の4つの格子位置に配置することによって、4つのデータ、即ち2ビットの情報を記述することができる。網点s31、s32、s′31、s′32を垂直基準ドットとし、s13、s23、s′13、s′23を水平基準ドットとする。
 図22の(22−1)の中の(a)を普通のフォントとし、その特徴はs33網点のドットを左へずれていることによって、携帯電話向け情報埋込コードの方向を表すキードットとする。残りの垂直基準ドットと水平基準ドットはすべて中心に配置している。
 図22の(22−1)の中の(b)をスタートと終了フォントとし、その特徴はs′33網点のドットを右へずれているによって、携帯電話向け情報埋込コードの方向を表すキードットとする。同様に、残りの垂直基準ドットと水平基準ドットはすべて中心に配置している。
 図22の(22−2)はただ1つの45度の基準ドットがある携帯電話向け情報埋込コードのフォントの構成方法である。図22の(22−2)に示すように、(2200′)をただ1つの45度の基準ドットがある携帯電話向け情報埋込コードのフォントとし、(2201′)を携帯電話向け情報埋込コードの1つの網点とし、(2202′)を情報ドットとする。網点s12、s13、s21、s23、s31、s32、s′12、s′13、s′21、s′23、s′31及びs′32を情報ドットとし、同様に、すべての網点の情報ドットを網点の4つの格子位置に配置することによって、4つのデータ、即ち2ビットの情報を記述することができる。網点s11、s22、s33、s′11、s′22及びs′33を縦横の一本化基準ドットとする。
 図22の(22−2)の(a)を普通のフォントとし、その特徴はs11、s22及びs33がすべて網点の中心にあることである。図22の(22−2)の(b)を終了フォントとする、その特徴はs00とs’33をキードットをとする。この2つのドットの距離は非常に近いことで、高速に基準ドットの位置を見つける。キードットs00とs’33を携帯電話向け情報埋込コードの方向情報を表すことができるだけではなく、更に全体の携帯電話向け情報埋込コードのスタートと終了情報を表すことができる。
 図22の(22−3)はGRIDというコードのフォントの構成の方法である。
 GRIDコードの情報記述の仕組みは4点の格子ドットで囲まれた中心を仮想基準点にして、これを始点として、方向ベクトルにより、表現した終点に情報ドットを配置して情報を定義する。本発明はこのようなドットパターンをフォント形式に構成することを提案する。その特徴は、このようなコードはベクトルデータの形式で構成するので、データからドット・マトリックスへ変換するスピードを高めさせ、更に可変情報を印刷するスピードを高めることもできて、メモリの使用などを減らす。
 図22の(22−3)に示すように、このフォントには、s11、s12、s31、s32を4つの格子ドットとし、情報網点s21はこの4つの格子ドットを囲まれた仮想基準点に対して、異なる距離、異なる方向、異なる位置によって、マルチビット情報を記録することができる。従って、格子ドットs12、s13、s32、sは情報網点s22に対応し、格子ドットs31、s32、s51、s52は情報網点s41に対応し、格子ドットs32、s33、s52、s53は情報網点s42に対応する。同上、情報網点は四つの角に配置して、2ビット情報を記録することができる。
 図22の(22−3)の(a)に示すフォントには四つの情報網点があるので、8ビット情報を記録することができる。このフォントをメインフォントとする。
 図22の(22−3)の(b)に示すように、このフォントの中で、格子ドットs61、s81が左側のフォントの格子ドットと合わせて、4つの格子ドットを構成する。例えば右側のフォントの格子ドットs61、s81が左側のフォントの格子ドットs13、s33と合わせて、構成された4つの格子ドットに対して、情報網点s71はこの4つの格子ドットを囲まれた仮想の基準点を基準にして、異なる距離、異なる方向、異なる位置によって、マルチビット情報を記録することができる。
 従って、格子ドットs61、s62、s81、s82は情報網点s72に対応し、格子ドットs81、s101と左側のフォントの格子ドットs33、s53は情報網点s91に対応し、格子ドットs81、s82、s101、s102は情報網点s92に対応する。同上、情報網点は四つの角に配置して、2ビット情報を記録することができる。同様に、図22の(22−3)の(b)に示すフォントには四つの情報網点があるので、8ビット情報を記述することができる。図22の(22−3)の(b)に示すフォントは右上方向に拡大するフォントと称する。つまり、コードの情報を記述する容量を高めるため、限界なく、右上方向に広げることができる。
 図22の(22−3)の(c)に示すように、このフォントの中で、s121、s122と上のフォントの格子ドットs51、s52は、情報網点s111に対応し、格子ドットs122、s123と上のフォントの格子ドットs52、s53は情報網点s112に対応し、格子ドットs121、s122、s141、s142は情報網点s131に対応し、格子ドットs122、s123、s142、s143は情報網点s132に対応する。
 図22の(22−3)の(c)に示すフォントは左下方向に拡大するフォントと称する。つまり、コードの情報を記録する容量を高めるため、制限なく、左下に広げることができる。
 図22の(22−3)の(d)に示すように、このフォントの中で、s161、左下のフォント(c)の格子ドットs123と、左上のフォントの格子ドットs53と、右上のフォントの格子ドットs101と合わせて、構成された4つの格子ドットは、情報網点s151に対応し、格子ドットs161、s162と右上のフォントの格子ドットs101、s102は情報網点s152に対応し、格子ドットs161、s181と左下のフォントの格子ドットs123、s143は情報網点s171に対応し、格子ドットs161、s162、s181、s182は情報網点s172に対応する。
 図22の(22−3)の(d)に示すフォントは右下方向に拡大するフォントと称する。つまり、コードの情報を記録する容量を高めるため、制限なく、右下に広げることができる。
 上記はただドットパターンをフォント形式によってベクトル化の画像データに変換する例だけを説明した。上記の方法を参考して、更に様々なフォント形質を構成することがあるが、ドットパターンをフォント形式によってベクトル化の画像データに変換するすべて手法に対して、すべて本発明範囲以内に属する。
 図23は3*3個図22の(22−1)に示したフォントで構成した可変長携帯電話向け情報埋込コードの例である。図23に示すように、(2300は)3*3個のフォントを用いて、構成した9*9ドットパターンの可変長携帯電話向け情報埋込コードを表す、(2301)は可変長携帯電話向け情報埋込コードの開始フォントのキードットを表す、(2302)可変長携帯電話向け情報埋込コードの終了フォントのキードットを表す。こりによってn*n個ドットの可変長携帯電話向け情報埋込コードを構成することができる。
 図24は3*3個図22の(22−2)に示したフォントで構成した1組の可変長携帯電話向け情報埋込コードの例である。図24に示すように、(2400)は一つの3*3個のフォントで構成した9*9ドットパターンの可変長携帯電話向け情報埋込コードを表し、(2401)は可変長携帯電話向け情報埋込コードの開始フォントのキードットを表し、(2402)可変長携帯電話向け情報埋込コードの終了フォントのキードットを表す。従って、n*n個ドットの可変長電話向け情報埋込コードを構成することができる。
 図25は2*2個図22の(22−3)に示したフォントで構成した可変長携帯電話向け情報埋込コードの例である。図25に示すように、(2500)は一つの2*2個のフォントで構成した可変長携帯電話向け情報埋込コードを表し、(2501)は可変長携帯電話向け情報埋込コードの開始フォントのキードットを表し、(2502)可変長携帯電話向け情報埋込コードの終了フォントのキードットを表す。同様に従って、n*n個ドットの可変長電話向け情報埋込コードを構成することができる。
 上述のようなキードットは、位置すれたり、複数なドットを表れたりすることによって、コードの方向や、コードの構造などを高速で特定することができる手法に対して、すべて本発明に属する。
 基準ドットに基づいて、異なる位置によってマルチビット情報を記述できるドットパターンに対して、文字フォントを用いて、ベクドル化を行うすべての手法が本発明に属する。
 図26はもう一つの偽造防止機能に備えるコードの構成方法の例である。
 図26に示すように、図26の(2601)を一つの偏光効果を利用し、携帯電話向け情報埋込コードの画像を構成するロゴとし、図26の(2602)を偏光効果があるロゴ(2601)と関連する偏光フェルタとし、偏光フェルタ(2602)を偏光効果があるロゴ(2901)の上に置くと、携帯電話向け情報埋込コードの本来の画像が現れて、携帯電話(2603)を用いて、携帯電話向け情報埋込コード値を識別してから、ネットと接続し、関係する製品の情報をダウンロードすることができる。
 もう一例は、図26に示すように、(2601)を商品のロゴ、或は商品の包装画像とし、(2602)をドットパターンの形に基づいて、光の拡散方向、光の反射方向、光の干渉方向などを厳密にコントロールすることによって、形成されたマイクロレンズマトリックスとする。マイクロレンズマトリックス(2602)は商品のロゴ、或は商品の包装画像(2601)の上に生成させることによって、携帯電話(2603)を用いて、所定方向に合わせれば、携帯電話向け情報埋込コードを読取ることができる。スキャナーで、正面でドットパターンを読めないので、偽造防止の効果がある。
 ここで、レンズマトリックス2602をスクリーン印刷機で生成することとする。
 さらに、(2601)を、携帯電話向け情報埋込コード干渉地紋とし、(2602)を、干渉地紋(2601)の位相と関連する光干渉板とする。光干渉板(2602)を干渉地紋(2601)の上に置かれると、携帯電話向け情報埋込コードの本来のドットパターンの画像を現すことができる。携帯電話(2603)により、このドットパターンの画像を読取って、コード値を識別してから、ネットと接続し、関係する製品の情報をダウンロードすることができる。
 ここ、図26と関連するコードの形式は図6から図10まで、図12から図14まで、及び図23から図25までの携帯電話向け情報埋込コードに限らず、更に図3から図5までの普通の二次元コードにも応用することが可能である。即ち2次元画像からなるコードはすべて適用できる。
 図27は大容量ドットパターンの情報記述の例です。
 図27に示すように、(2700)をマルチビット情報を記録することができる網点とし、(2700)を2*2のマイクロセルにより構成された網点に対して、一つの情報ドットとする。ここで、情報ドットを網点(a)に配置された状態を情報″0″とし、情報ドットを網点(b)に配置された状態を情報″1″とし、情報ドットを網点(c)に配置された状態を情報″2″とし、情報ドットを網点(d)に配置された状態を情報″3″とする。
 ここで、1つのシンボルの必要な領域をマイクロセルとする、図27に示すように、四つのマイクロセルを用いて、2ビットの情報を記録することができる。普通の二次元コードに比べると、情報を記録する容量が半分になるが、情報ドットの必要な領域が普通の二次元コードの1/4だけである。すなわち3/4の領域
Figure JPOXMLDOC01-appb-I000012
一化になるし、情報埋込コードとして適する。
 図28はもう一つの携帯電話向け情報埋込コードのドットパターンである。
 図28に示すように、(2800)を一つの9*9ドットパターンで構成した情報モジュールとし、(2801)を情報ドットとし、(2802)を基準ドットとし、(2803)をキードットとし、キードットの役割は、それぞれ情報モジュールの方向、情報モジュールの開始と終了位置を表し、高速に基準ドットを特定することである。
 図28に示した情報モジュールを7*7個ドットによって構成し、その49個ドットの中で、45度仮想基準線を構成するために、9個基準ドットの必要があり、残り40個情報ドットがある。一つの情報ドットごとに2ビットの情報を記述することができるので、40個情報ドットを用いて80ビットの情報を記述することができる。普通の二次元コードの160ビットの情報を記録する容量に比べて、半分しかないが、情報ドットが必要なマイクロセルの数が普通の二次元コードの1/4だけである、3/4の領域が埋め込む対象画像に使用されることが可能であり。
 その他に、図27と図28の構成された埋込コードは普通の二次元コードと比較して、情報ドットの異なる位置によって情報を記録するため、識別精度に対して、印刷の拡散により識別精度が低下する影響は小さい。しかも、遠距離の識別にも効果的である。このコードは更に複数のコードが同時に識別を実現することができ、台車で多数の包装箱を運搬する場合に、倉庫の入り口を通す時、同時にすべての包装箱の上に印刷されたコードを一括で読取ってコンピュータに登録する特徴も備える。
 図29はレンズ付け携帯電話の示す図である。
 図29に示すように、(2900)を携帯電話とし、(2901)を携帯電話カメラ画像センサーのレンズとし、(2902)を付加レンズとし、(2903)を携帯電話向け情報埋込コードとし、(2904)をコード埋込媒体とする。
 ここで、携帯電話カメラ画像センサーのレンズの前に付加レンズ(2901)を設置して、コード埋込媒体(2904)の上に与えられた携帯電話向け情報埋込コードが、携帯電話カメラ画像センサーのレンズの前に付加レンズ(2901)を通じて、携帯電話に読取られ、所定基準ドットに対して、情報ドットの幾何学的な配置、或物理学的な配置により、マルチビット情報を記述するドッパターンの構成規則に基づいて、前記携帯電話向け情報埋込コードのコード値を認識し、コード値に基づいて、ネットワークから、偽造防止情報やマルチメディアコンテンツを呼び出すことができる。
図1 携帯電話向け情報埋込コードの生成方法のフローチャート;
図2 携帯電話向け情報埋込コードの読取方法のフローチャート;
図3 現在国際的流行していない、いくつかの積み上げ式の二次元コードの説明図;
図4 現在国際的流行していない、いくつかのマトリックス式の二次元コードの示す図;
図5 近年、中国で発表された2種類の二次元コードの説明図;
図6 異なる方向によってマルチビット情報の記述の示す図;
図7 異なる形によってマルチビット情報の記録の示す図;
図8 集中網点と分散網点によって情報の記述の示す図;
図9 異なる位置及び位相変調によってマルチビット情報の記述の示す図;
図10 縦横の一体化基準ドットの情報モジュールの示す図;
図11 物理学形態の位相変調(PM)によって情報記述の示す図;
図12 印刷面積を最大化とするドットパターンの実現方法の示す図;
図13 印刷面積を最大化とする携帯電話向け情報埋込コードの応用例の示す図;
図14 普通二次元コードを情報埋込コードとする例;
図15 高精度なスキャン防止の色の示す図;
図16 デジタル偽造防止の原理の示す図;
図17 異なる凸ドットの印刷密度によって情報埋込を行う例;
図18 もう一つの異なる凸ドットの印刷密度によって情報埋込を行う例;
図19 レーザーマーカーを用いて情報埋込コードの生成方法の例;
図20 自然的にランダム可変情報コードの形成の例;
図21 複数の光学読取可能な物質の配置のコード値の計算する例;
図22−1~3 複数なフォントにより携帯電話向け情報埋込コードの構成方法の3例
図23 3*3個図22の(22−1)に示したフォントで構成した可変長携帯電話向け情報埋込コードの例;
図24 3*3個図22の(22−2)に示したフォントで構成した1組の可変長携帯電話向け情報埋込コードの例;
図25 2*2個図22の(22−3)に示したフォントで構成した可変長携帯電話向け情報埋込コードの例;
図26 もう一つの偽造防止機能に備えるコードの構成方法の例;
図27 大容量ドットパターンの情報記述の例;
図28 もう一つの携帯電話向け情報埋込コードのドットパターン;
図29 レンズ付け携帯電話の示す図。

Claims (8)

  1.  携帯電話向け情報埋込コードの生成方法であって、その特徴は、
     携帯電話向け情報埋込コードは所定基準ドットに対して、情報ドットの幾何学的な配置、或物理学的な配置に基づいて、マルチビットとした情報を記述する可能なドットパターンから構成すること;
     前記、携帯電話向け情報埋込コードはサーマルインク、日光変色インク、OVI(Optically Variable)インク、蓄光インク、水分により変色するインク、赤外線蛍光発光インク、紫外線蛍光発光インク、可視光蛍光発光インク、背景画像に対し、吸収波長の異なるインク、背景画像に対し、反射波長の異なるインク、背景画像に対し、反射角の異なるインクを含む少なくとも1種のスキャナーで、読み取った画像のRGB色の空間が直接にCMYK色の空間へ変換できない特殊なインクによって、印刷或は塗布をされた情報記述可能なドットパターン;
     もしくは、異なる密度の凸或は凹点分布によって印刷された情報記述可能なドットパターン;
     もしくは、光の拡散方向、光の反射方向、光の屈折方向の中で一種形式に対し、厳密にコントロールによって構成された情報記述可能なドットパターン;
     レーザーマーカにより構成された情報記述可能なドットパターン;
     ホログラフにより構成された情報記述可能なドットパターン;
     もしくは、読取の対象になった画像に対し、前に1つの偏光板、マイクロレンズ、光干渉板等を含め、少なくとも1種専用ビューワーをかざすと、スキャンしてはいけない情報記述可能なドットパターンを構成することであり;
     前記、携帯電話向け情報埋込コードは、その印刷用の画像の電子ファイルが画像形式、或はフォント形式の1種により構成されたものを特徴とする携帯電話向け情報埋込コードの生成方法。
  2.  縦横の一体化基準ドットの携帯電話向け情報埋込コードの生成方法であって、その特徴は、
     ドットパターンはマルチビット情報を記録するため、異なる位置の配置、異なる位相変調の配置、または普通の二次元コードに対して、印刷面積を最小化とするドットの組み合わせをさせる結果を含め、一つのドットマトリックスを構成すること;
     前記ドットパターンのマトリックス配置の中で、仮想基準線を縦横の一本化とし、仮想基準線に対し一定間隔で基準ドットを配置する;
     前記ドットパターンの中で、情報ドットの配置可能なマイクロセルを、中心マイクロセルを囲まれた各々マイクロセルとすることを特徴とする縦横の一体化基準ドットの携帯電話向け情報埋込コードの生成方法。
  3.  レーザーマーカ装置により携帯電話向け情報埋込コードの情報埋込方法であって、その特徴は:
     レーザーマーカ装置により携帯電話向け情報埋込コードの構成する背景は、ブラックインク、感温インク、日光変色インク、OVI(Optically Variable)インク、蓄光インク、水分により変色するインク、赤外線蛍光発光インク、紫外線蛍光発光インク、可視光蛍光発光インク、赤外線吸収インク、赤外線透過インク、背景画像と異なる吸収波長のインク、背景画像と異なる反射波長のインク、背景画像と異なる反射角のインクにより背景層を形成することであり、また、ホログラフ、金属、ガラス、紙または樹脂の表面であり;
     前記、レーザーマーカ装置により携帯電話向け情報埋込コードの構成する背景に対し、所定基準ドットに対して、情報ドットの幾何学的な配置、或物理学的な配置に基づいて、マルチビットとした情報を記述する可能なドットパターンから構成すること;
     前記、携帯電話向け情報埋込コードは、そのレーザーマーカ装置用の画像の電子ファイルが画像形式、或はフォント形式の1種により構成されたものを特徴とするレーザーマーカ装置により携帯電話向け情報埋込コードの生成方法。
  4.  携帯電話向け情報埋込コードの読み取る方法であって、その特徴は、
     携帯電話のカメラのレンズの前に、付加レンズを付け;
     付加レンズを通じて、携帯電話向け情報埋込コードにより情報埋込された画像を読取り;
     所定基準ドットに対して、情報ドットの幾何学的な配置、或物理学的な配置により、マルチビット情報を記述するドッパターンの構成規則に基づいて、前記携帯電話向け情報埋込コードのコード値を認識することを特徴とする携帯電話向け情報埋込コードの読み取る方法。
  5.  前記、特許請求1、3及び4に記載された幾何学的な配置は、
     情報ドットの配置に対して、情報ドットの有無、情報ドットの異なる位置、情報ドットの異なる方向、情報ドットの異なる形、情報ドットの異なる数、情報ドットの異なる大きさ、情報ドットの情報ドットの集中或分散の分布、及び二次元コードの組み合わせによって構成した情報ドットの配置を含み、少なくても1種の幾何学的な特性を有することによって、情報を記述することが可能になるドットパターンの構成である。
  6.  前記、特許請求1、 3及び4に記載された物理学的な配置は、
     情報ドットの配置に対して、情報ドットの異なる位相変調(PM)結果、情報ドットの異なる変調(AM/FM)結果、情報ドットの異なる伝播方向、情報ドットの異なる力学のベクトル、情報ドットの異なる周波数を含み、少なくでも1種の物理学的な特性を有することによって、情報を記述することが可能になるドットパターンの構成である。
  7.  前記、特許請求1、2に記載された携帯電話向け情報埋込コードは、マルチビット情報を記述できるドットパターンの中で、複数な偽造防止ドットを付加することによって、デジタル化偽造防止システムを構成することを特徴とする携帯電話向け情報埋込コードの生成方法。
  8.  前記、特許請求1、2に記載された携帯電話向け情報埋込コードは、紙を加工する時に、複数の小さい繊維、樹脂粒子、小さい泡を含む光学的読取可能な物質を普通なインキと混ぜて、印刷媒体に塗布し、また、基準ドットも印刷すれば、一つの情報記述の可能なランダム配置のドットパターンを構成することを特徴とする携帯電話向け情報埋込コードの生成方法。
PCT/JP2012/076555 2012-05-09 2012-10-03 携帯電話向け情報埋込コード生成方法、情報埋込方法、及びその読取方法 WO2013168305A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12876213.5A EP2887268A4 (en) 2012-05-09 2012-10-03 MOBILE TELEPHONE INFORMATION INCORPORATION CODE GENERATION METHOD, INFORMATION INCORPORATION METHOD, AND CORRESPONDING READING METHOD
US14/399,447 US20150108220A1 (en) 2012-05-09 2012-10-03 Method for generating information embedded code for mobile phone, method for embedding information code, and method for reading the same
JP2014514348A JP5685677B2 (ja) 2012-05-09 2012-10-03 携帯電話向け情報埋込コードの生成方法、情報埋込方法、及びその読取方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210140384.8A CN103390183B (zh) 2012-05-09 2012-05-09 一种适用于手机识别的防伪代码的生成方法
CN201210140384.8 2012-05-09

Publications (1)

Publication Number Publication Date
WO2013168305A1 true WO2013168305A1 (ja) 2013-11-14

Family

ID=49534449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076555 WO2013168305A1 (ja) 2012-05-09 2012-10-03 携帯電話向け情報埋込コード生成方法、情報埋込方法、及びその読取方法

Country Status (5)

Country Link
US (1) US20150108220A1 (ja)
EP (1) EP2887268A4 (ja)
JP (1) JP5685677B2 (ja)
CN (1) CN103390183B (ja)
WO (1) WO2013168305A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013526A1 (ja) * 2021-08-03 2023-02-09 学校法人立命館 二次元コード、生成装置、及び、読取装置

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103793739A (zh) * 2014-02-18 2014-05-14 立德高科(北京)数码科技有限责任公司 对由不可见光材料制成的点阵图形进行信息定义的方法
CN103929564A (zh) * 2014-04-11 2014-07-16 立德高科(北京)数码科技有限责任公司 具有手写输入与无线传输功能的点读装置及操作方法
EP3035236A4 (en) * 2014-10-30 2016-11-30 Ming Cui FOUR-DIMENSIONAL CODES, IMAGE IDENTIFICATION SYSTEM AND IMAGE IDENTIFICATION METHODS BASED ON THE FOUR-DIMENSIONAL CODE, AND THE RECOVERY SYSTEM AND THE RECOVERY METHOD
DE102014116692A1 (de) * 2014-11-14 2016-05-19 Michael Ahrweiler Codieren/Decodieren von Informationen aus einer graphischen Informationseinheit
CN105701528A (zh) * 2014-11-25 2016-06-22 天津市阿波罗信息技术有限公司 一种在烟包上埋入防伪信息的处理方法
US20160243648A1 (en) * 2015-02-25 2016-08-25 Venair Inc. Tubular hose having an external layer provided with a code and a method for the manufacture thereof
CN106484606B (zh) * 2015-09-01 2019-07-26 阿里巴巴集团控股有限公司 一种代码提交方法和设备
CN105095822B (zh) * 2015-09-07 2018-07-06 福建联迪商用设备有限公司 一种汉信码特征图形检测方法及系统
CN106529633B (zh) 2015-09-10 2019-11-15 阿里巴巴集团控股有限公司 二维码的生成方法、解码方法以及装置
CN108351956B (zh) * 2015-09-28 2021-10-26 艾利丹尼森零售信息服务公司 用于印刷取证编码的2d条形码的方法和系统
DE102015219397A1 (de) * 2015-10-07 2017-04-13 Koenig & Bauer Ag Gegenstand mit einem zu seiner Identifikation angeordneten Identifikationsmerkmal
CN105426942A (zh) * 2015-10-23 2016-03-23 山东泰宝防伪制品有限公司 纳米微缩智慧码包装盒及其识别方法
BR112018008263A2 (pt) 2015-10-23 2018-10-23 Xivix Holdings Llc sistema e método para autenticação usando um dispositivo móvel
CN105809226B (zh) * 2016-03-14 2019-02-12 广东晟琪科技股份有限公司 一种可显示二维码信息的光栅及其制作方法
CN106123918A (zh) * 2016-06-15 2016-11-16 昆山穿山甲机器人有限公司 用于室内机器人导航定位的图文标志制作方法
EP3293680A1 (en) * 2016-09-12 2018-03-14 Authentic Vision GmbH Sheet-like product and method for authenticating a security tag
CN108229596B (zh) * 2016-12-09 2024-03-26 北京大码技术有限公司 组合二维码、电子证书载体、生成、识读装置及方法
CN106739602A (zh) * 2016-12-15 2017-05-31 豪门印刷(上海)有限公司 一种隐形码的制作工艺
US10223783B2 (en) * 2017-01-12 2019-03-05 International Business Machines Corporation Dot-matrix product information encoding for food traceability
JP6580091B2 (ja) * 2017-07-05 2019-09-25 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム
EP3428853A1 (de) * 2017-07-14 2019-01-16 A & R Carton GmbH Verfahren zum schützen eines produktes gegen fälschungen
CN107590839B (zh) * 2017-09-18 2021-08-24 臧戈平 一种基于高保真藏图的溯源防伪方法
JP6970589B2 (ja) * 2017-11-10 2021-11-24 キヤノン株式会社 通信装置及びその制御方法、並びにプログラム
KR102066391B1 (ko) * 2017-11-16 2020-01-15 상명대학교산학협력단 입체기반 다차원 심볼로지 시스템의 정보 삽입 장치 및 방법
CN108564875B (zh) * 2018-04-10 2020-09-04 李天军 防伪标签、防伪标签的验证方法及防伪标签的生成方法
JP7314532B2 (ja) * 2019-03-04 2023-07-26 株式会社デンソーウェーブ 情報コード読取システム
WO2021138725A1 (pt) * 2020-01-07 2021-07-15 Freijanes Rafael Dric code tecnologia para conversão, troca e processamento de conteúdo entre dispositivos autenticados, com a capacidade de atribuição de níveis de permissão, que fazem a leitura e reprodução (quick response) em imagem bidimensional criptografada
CN112668954B (zh) * 2020-09-03 2023-09-26 浙江万里学院 基于移动终端的物流寄收件信息的获取方法
CN114529627B (zh) * 2020-11-06 2024-10-11 北京优快优好科技有限责任公司 一种防伪图案的生成方法以及生成装置
CN112819121B (zh) * 2021-01-28 2022-06-28 丁松林 曲线码生成方法、识别方法、终端设备及可读存储介质
US11742877B2 (en) 2021-03-31 2023-08-29 DRIC Software, Inc. File compression system
CN113159254A (zh) * 2021-04-30 2021-07-23 中标防伪印务有限公司 一种光变防伪点阵图像的防伪方法
CN113762446B (zh) * 2021-08-13 2023-05-05 北京印刷学院 基于cmyk普通油墨的多色谱-多光谱复合防伪二维码
CN113610206B (zh) * 2021-08-19 2023-10-13 北京印刷学院 一种二维码及其加解密方法
US11710009B1 (en) 2022-10-04 2023-07-25 Raphael A. Rodriguez Methods and systems for determining the authenticity of an identity document
US11908221B1 (en) 2022-10-04 2024-02-20 Raphael A. Rodriguez Methods and systems for determining the authenticity of an identity document
CN115293312B (zh) * 2022-10-08 2023-01-24 深圳前海量子云码科技有限公司 一种防伪方法、装置、计算机设备及存储介质
US11755757B1 (en) 2022-10-24 2023-09-12 Raphael A. Rodriguez Methods and systems for determining the authenticity of an identity document

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09172537A (ja) 1995-12-20 1997-06-30 Fuji Xerox Co Ltd 画像形成装置
JP2003020967A (ja) 2001-07-03 2003-01-24 Aisan Ind Co Ltd エンジンの燃料供給制御装置
JP2005102264A (ja) * 2004-08-17 2005-04-14 Zecang Gu 紙上に大量データを保存できるスクリーンコードの埋め込み方法
JP2005243047A (ja) 1992-09-28 2005-09-08 Olympus Corp 二次元コードを光学的に読み取り可能な読取装置
JP2006178692A (ja) 2004-12-21 2006-07-06 Adoin Kenkyusho:Kk カラー二次元コード
JP2007206137A (ja) * 2006-01-31 2007-08-16 Marumi Koki Kk 携帯電話用カメラにおける交換レンズ並びにフィルターのマウント装置
JP4054339B2 (ja) 2005-05-12 2008-02-27 澤蒼 顧 情報埋込コード、情報埋込コードの生成方法、および情報埋込コードの生成装置
JP2008225732A (ja) 2007-03-12 2008-09-25 Kenwood Corp 読取装置で読取可能な二次元コードパターン、地図の表示媒体、読取システムおよび読取方法
JP2008287414A (ja) 2007-05-16 2008-11-27 B-Core Inc 光学式認識コード認識装置及び方法及びプログラム
WO2009005070A1 (ja) * 2007-07-02 2009-01-08 Zecang Gu 自動読取システム、情報埋め込み装置、情報埋め込みプログラム、情報認識装置、情報認識プログラム及び自動読取印刷物
JP2009104451A (ja) 2007-10-24 2009-05-14 A T Communications Co Ltd ロゴ付き二次元コード
WO2010018687A1 (ja) * 2008-08-12 2010-02-18 株式会社シンク・ラボラトリー 情報表示システム及びそれに用いられるドットパターン印刷シート
JP2011025503A (ja) * 2009-07-24 2011-02-10 Toppan Printing Co Ltd セキュリティ媒体及びこれの真贋判定方法
JP2011186613A (ja) 2010-03-05 2011-09-22 Colour Code Technologies Co Ltd 2次元カラーコードの作成方法および復号方法
JP2011198371A (ja) 2011-04-04 2011-10-06 Kosaido Co Ltd 二次元コード、二次元コードの読取方法、プログラムおよびコンピュータ読み取り可能な記録媒体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102248825B (zh) * 2004-10-15 2014-10-22 吉田健治 点图形的印刷方法、媒体面的印刷方法以及印刷物
CA2584397A1 (en) * 2004-10-15 2006-04-20 Kenji Yoshida Print structure, printing method and reading method for medium surface with print-formed dot pattern
WO2006070458A1 (ja) * 2004-12-28 2006-07-06 Kenji Yoshida ドットパターンを用いた情報入出力方法
JP3771252B1 (ja) * 2005-07-01 2006-04-26 健治 吉田 ドットパターン
CN201063641Y (zh) * 2007-01-30 2008-05-21 天津市阿波罗信息技术有限公司 含有人体信息的高度安全的加密解密装置
CN101840524A (zh) * 2009-03-18 2010-09-22 北京锐兴华盾科技有限公司 近红外吸收防伪方法
BR112012000798A2 (pt) * 2009-07-13 2016-02-23 Kenji Yoshida métodos para formar um padrão de pontos, e de entrada/saída de informação, e, padrão de pontos
CN101996519A (zh) * 2009-08-26 2011-03-30 郑阿奇 条形码埋藏计算机数据结构纹理、字符片的防伪方法
CN101730278B (zh) * 2009-11-20 2016-02-17 顾泽苍 一种用手机构成的印刷多媒体系统的处理方法
CN102381065B (zh) * 2010-08-31 2016-06-15 顾泽苍 一种用隐形二维条码字库实现可变信息印刷的方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243047A (ja) 1992-09-28 2005-09-08 Olympus Corp 二次元コードを光学的に読み取り可能な読取装置
JPH09172537A (ja) 1995-12-20 1997-06-30 Fuji Xerox Co Ltd 画像形成装置
JP2003020967A (ja) 2001-07-03 2003-01-24 Aisan Ind Co Ltd エンジンの燃料供給制御装置
JP2005102264A (ja) * 2004-08-17 2005-04-14 Zecang Gu 紙上に大量データを保存できるスクリーンコードの埋め込み方法
JP3829143B2 (ja) 2004-08-17 2006-10-04 澤蒼 顧 紙上に大量データを保存できるスクリーンコードの埋め込み方法
JP2006178692A (ja) 2004-12-21 2006-07-06 Adoin Kenkyusho:Kk カラー二次元コード
JP4054339B2 (ja) 2005-05-12 2008-02-27 澤蒼 顧 情報埋込コード、情報埋込コードの生成方法、および情報埋込コードの生成装置
JP2007206137A (ja) * 2006-01-31 2007-08-16 Marumi Koki Kk 携帯電話用カメラにおける交換レンズ並びにフィルターのマウント装置
JP2008225732A (ja) 2007-03-12 2008-09-25 Kenwood Corp 読取装置で読取可能な二次元コードパターン、地図の表示媒体、読取システムおよび読取方法
JP2008287414A (ja) 2007-05-16 2008-11-27 B-Core Inc 光学式認識コード認識装置及び方法及びプログラム
WO2009005070A1 (ja) * 2007-07-02 2009-01-08 Zecang Gu 自動読取システム、情報埋め込み装置、情報埋め込みプログラム、情報認識装置、情報認識プログラム及び自動読取印刷物
JP2009104451A (ja) 2007-10-24 2009-05-14 A T Communications Co Ltd ロゴ付き二次元コード
WO2010018687A1 (ja) * 2008-08-12 2010-02-18 株式会社シンク・ラボラトリー 情報表示システム及びそれに用いられるドットパターン印刷シート
JP2011025503A (ja) * 2009-07-24 2011-02-10 Toppan Printing Co Ltd セキュリティ媒体及びこれの真贋判定方法
JP2011186613A (ja) 2010-03-05 2011-09-22 Colour Code Technologies Co Ltd 2次元カラーコードの作成方法および復号方法
JP2011198371A (ja) 2011-04-04 2011-10-06 Kosaido Co Ltd 二次元コード、二次元コードの読取方法、プログラムおよびコンピュータ読み取り可能な記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2887268A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013526A1 (ja) * 2021-08-03 2023-02-09 学校法人立命館 二次元コード、生成装置、及び、読取装置
JP2023022772A (ja) * 2021-08-03 2023-02-15 学校法人立命館 二次元コード、生成装置、読取装置、及び、コンピュータプログラム
JP7253749B2 (ja) 2021-08-03 2023-04-07 学校法人立命館 二次元コード、生成装置、読取装置、及び、コンピュータプログラム

Also Published As

Publication number Publication date
CN103390183A (zh) 2013-11-13
US20150108220A1 (en) 2015-04-23
EP2887268A4 (en) 2016-10-26
CN103390183B (zh) 2019-07-19
JPWO2013168305A1 (ja) 2015-12-24
EP2887268A1 (en) 2015-06-24
JP5685677B2 (ja) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5685677B2 (ja) 携帯電話向け情報埋込コードの生成方法、情報埋込方法、及びその読取方法
CN103390146B (zh) 一种可记录多比特信息的点阵模式的生成方法
CN105706107B (zh) 二维条形码以及这种条形码的认证的方法
CN102887003B (zh) 一种新型二维条码的激光刻印方法
CN101537751B (zh) 一种防伪印刷的处理方法
CN105718981B (zh) 一种制备新型二维码图像全息防伪标签的处理方法
ES2791399T3 (es) Elemento de seguridad y método para inspeccionar la autenticidad de una impresión
KR101535534B1 (ko) 프린터 스테가노그래피 기법을 이용한 위조방지수단이 구비된 문서의 생성 방법 및 그 문서에 대한 위변조 확인 방법
JP2007505762A (ja) アーティクル認証システム及び方法
JP2010160794A (ja) 認証情報を格納するための、印刷文書上の二次元バーコードスタンプの作成と配置
CN106156821A (zh) 一种光学可读性条码防伪结构及实现方法
CN102890787A (zh) 一种新型二维条码的构成方法
CN103386829B (zh) 一种使用激光器进行防伪代码的赋码方法
US20100188710A1 (en) Font-input based recognition engine for pattern fonts
CN102381065B (zh) 一种用隐形二维条码字库实现可变信息印刷的方法
CN103955730A (zh) 一种防伪用光刻二维码标签的制作方法
CN102890788A (zh) 一种新型二维条码的门禁系统的构成方法
CN103577859A (zh) 一种新型手机识别代码系统的构成方法
JP4352168B2 (ja) 網点画像データの認証用プログラム、網点印刷物の認証システム及び網点画像データの認証システム
CN103390184A (zh) 适用于手机识别的防伪代码的图像信息埋入方法
CN101727606A (zh) 一种在电子文件中埋入信息的处理方法
KR101727585B1 (ko) 프린터 스테가노그래피 기법을 이용한 위조방지수단이 구비된 문서
JP2007194934A (ja) 画像形成装置、符号化データ埋め込みシステム、印刷装置、印刷物、画像形成プログラム、および記録媒体
CN102442096B (zh) 一种在文字字库中埋入信息的可变信息印刷方法
CN107590839B (zh) 一种基于高保真藏图的溯源防伪方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876213

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014514348

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14399447

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012876213

Country of ref document: EP