WO2013161788A1 - Communication system, base station device, mobile station device, measurement method, and integrated circuit - Google Patents
Communication system, base station device, mobile station device, measurement method, and integrated circuit Download PDFInfo
- Publication number
- WO2013161788A1 WO2013161788A1 PCT/JP2013/061849 JP2013061849W WO2013161788A1 WO 2013161788 A1 WO2013161788 A1 WO 2013161788A1 JP 2013061849 W JP2013061849 W JP 2013061849W WO 2013161788 A1 WO2013161788 A1 WO 2013161788A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- station apparatus
- reference signal
- measurement
- base station
- cell
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0026—Transmission of channel quality indication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0027—Scheduling of signalling, e.g. occurrence thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present invention relates to a communication system, a base station apparatus, a mobile station apparatus, a measurement method, and an integrated circuit, and more particularly to a communication system that measures a received signal based on settings notified from the base station apparatus.
- LTE Long Term Evolution
- EUTRA Evolved Universal Terrestrial Radio Access
- 3GPP Third Generation Partnership Project
- LTE-A LTE-Advanced, or “Advanced EUTRA”
- LTE-A LTE-Advanced, or “Advanced EUTRA”
- Carrier aggregation is a method of receiving data of a transmitting device transmitted from a cell in a plurality of different frequency bands (also referred to as a carrier frequency or a component carrier) at a receiving device corresponding to the different frequency bands. This is a technique for improving the data rate.
- a base station apparatus allocates a plurality of carrier components (cells) to a mobile station apparatus by RRC (Radio Resource Control; RRC) layer signaling and configures a MAC (Medium Access Control; MAC) layer.
- RRC Radio Resource Control
- MAC Medium Access Control
- inter-cell cooperative Cooperative Multipoint
- different weighting signal processing precoding processing
- JP Joint Transmission
- JT Joint Transmission
- CS Coordinatd Scheduling
- CS Coordinated Scheduling
- a method of transmitting a signal to a station apparatus or a method of transmitting a signal using a predetermined resource only in one cell and not transmitting a signal in a resource overlapping with the resource in one cell (Blanking , Muting) etc. are being studied.
- each cell may be a cell managed by a different base station device, or may be a cell managed by the same base station device.
- each cell may be configured by a radio unit (Remote Radio Head; RRH, Remote Radio Unit; RRU) controlled by the control unit of the base station body.
- the wireless unit may be connected to the base station main body with a wire such as an optical fiber, or may be connected wirelessly like a relay station device.
- Non-Patent Document 1 the channel state information reference signal (hereinafter referred to as CSI reference signal) is defined such that resource information of one type of CSI reference signal is notified to the mobile station apparatus for quality measurement during MIMO transmission. ing. Further, the feedback of the channel state information using the CSI reference signal is controlled by the MAC layer and is fed back to the base station apparatus.
- CSI reference signal Channel State Information reference signal
- Non-Patent Document 1 a plurality of types of resource information of the CSI reference signal are notified to the mobile station device, and the mobile station device receives the reference signal received power (Reference Signal Received Power; RSRP) or reference signal of the plurality of types of resources.
- RSRP Reference Signal Received Power
- a cell for performing inter-cell cooperative communication can be selected by measuring each reception quality (Reference, Signal, Received Quality, RSRQ) and notifying the measurement result to a base station apparatus.
- the report of the reference signal reception power (or reference signal reception quality) is controlled by the RRC layer, and if it is not necessary to report the inactive cell, the report setting change is performed by RRC signaling from the base station apparatus. It is necessary to do.
- the present invention has been made in view of the above points, and an object thereof is to efficiently set the measurement / report of the reference signal reception power (or reception quality) for the activation / deactivation of the cell.
- Communication system base station apparatus, mobile station apparatus, measurement method, and integrated circuit.
- the communication system of the present application is a communication system in which a mobile station apparatus performs communication by simultaneously connecting to a base station apparatus using cells of one or more frequency bands, and the base station apparatus transmits a channel state information reference signal.
- Channel state information reference signal management measurement setting which is a setting for measuring the reception quality of the mobile station device, is notified to the mobile station device using RRC signaling, and the mobile station device is in the MAC layer of the mobile station device.
- the communication system of the present application is a communication system in which a mobile station apparatus performs communication by connecting to a base station apparatus using cells of one or more frequency bands at the same time, and the base station apparatus has a channel state Channel state information reference signal management measurement setting, which is a setting for measuring reception quality of information reference signal, and inactive state measurement required to specify whether or not to measure channel state information reference signal in inactive state cell Rejection information is notified to the mobile station device using RRC signaling, and the mobile station device is in an active / inactive state of a cell managed in the MAC layer of the mobile station device, and the inactive state. Whether or not to report the result of channel state information reference signal management measurement for the cell specified in the channel state information reference signal management measurement setting to the base station apparatus based on measurement necessity information Wherein the determining.
- the base station apparatus of the present application is a base station apparatus that performs communication using a mobile station apparatus and cells of one or more frequency bands at the same time, and the channel state of an inactive cell of the mobile station apparatus Whether to report information reference signal management measurement results, whether or not to perform channel state information reference signal management measurement in an inactive state cell, inactive state measurement necessity information to the mobile station apparatus It designates by notifying using RRC signaling.
- the mobile station apparatus of the present application is a mobile station apparatus that performs communication by connecting to a base station apparatus using cells of one or more frequency bands at the same time, and the mobile station apparatus includes the base station apparatus
- the channel state information reference signal management measurement result for the cell specified by the channel state information reference signal management measurement setting which is a setting for measuring the reception quality of the channel state information reference signal notified by RRC signaling. Whether to report to the base station apparatus is determined based on an active / inactive state of a cell managed in the MAC layer.
- the mobile station apparatus of the present application is a mobile station apparatus that performs communication by connecting to a base station apparatus using cells of one or more frequency bands at the same time.
- Channel state information reference signal management measurement setting which is a setting for measuring the reception quality of the signal, and inactive state measurement necessity information specifying whether or not to measure the channel state information reference signal in the inactive state cell Whether or not to report the result of channel state information reference signal management measurement for cells in the inactive state to the base station device based on the inactive state measurement necessity information It is characterized by judging.
- the measurement method of the present application is a measurement method of a mobile station apparatus that performs communication by connecting to a base station apparatus using cells of one or more frequency bands at the same time. And receiving a channel state information reference signal management measurement setting that is a setting for measuring the reception quality of the channel state information reference signal, and targeting a cell specified by the channel state information reference signal management measurement setting. And determining whether to report the result of channel state information reference signal management measurement to the base station apparatus based on the active / inactive state of the cell managed in the MAC layer. .
- the measurement method of the present application is a measurement method of a mobile station apparatus that performs communication by connecting to a base station apparatus using cells of one or more frequency bands at the same time, from the base station apparatus to RRC signaling.
- Receiving a channel state information reference signal management measurement setting that is a setting for measuring the reception quality of the channel state information reference signal using RRC signaling from the base station apparatus A step of receiving inactive state measurement necessity information specifying whether or not to perform measurement in the cell, and reporting a result of channel state information reference signal management measurement for cells in the inactive state to the base station apparatus And determining whether or not based on the inactive state measurement necessity information.
- the integrated circuit of the present application is an integrated circuit mounted on a mobile station apparatus that communicates by connecting to a base station apparatus using cells of one or more frequency bands at the same time, and from the base station apparatus, A function for receiving a channel state information reference signal management measurement setting which is a setting for measuring the reception quality of the channel state information reference signal using RRC signaling, and a cell specified by the channel state information reference signal management measurement setting And a function of determining whether to report a result of channel state information reference signal management measurement for the base station apparatus based on an active / inactive state of a cell managed in the MAC layer.
- a channel state information reference signal management measurement setting which is a setting for measuring the reception quality of the channel state information reference signal using RRC signaling
- a cell specified by the channel state information reference signal management measurement setting And a function of determining whether to report a result of channel state information reference signal management measurement for the base station apparatus based on an active / inactive state of a cell managed in the MAC layer.
- the integrated circuit of the present application is an integrated circuit mounted on a mobile station apparatus that communicates by connecting to a base station apparatus using cells of one or more frequency bands at the same time, from the base station apparatus , A function of receiving a channel state information reference signal management measurement setting, which is a setting for measuring the reception quality of a channel state information reference signal using RRC signaling, and an RRC signaling from the base station apparatus, A function of receiving inactive state measurement necessity information specifying whether or not to perform measurement in an active state cell, and the channel state information reference signal management measurement result for an inactive state cell as the base station device And whether to report whether or not to report based on the inactive state measurement necessity information.
- a channel state information reference signal management measurement setting which is a setting for measuring the reception quality of a channel state information reference signal using RRC signaling, and an RRC signaling from the base station apparatus
- a function of receiving inactive state measurement necessity information specifying whether or not to perform measurement in an active state cell, and the channel state information reference signal management measurement result for an inactive state cell
- a communication system a base station apparatus, a mobile station apparatus, and a base station apparatus, a mobile station apparatus, which can efficiently set measurement / report of reference signal received power (or reception quality) for cell activation / deactivation, A measurement method and an integrated circuit can be provided.
- a channel means a medium used for signal transmission
- a physical channel means a physical medium used for signal transmission.
- the physical channel may be added in the future in EUTRA and Advanced EUTRA, or the structure and format of the physical channel may be changed or added. It does not affect.
- Radio frames In EUTRA and Advanced EUTRA, physical channel scheduling is managed using radio frames.
- One radio frame is 10 ms, and one radio frame is composed of 10 subframes. Further, one subframe is composed of two slots (that is, one slot is 0.5 ms).
- resource blocks are used as a minimum scheduling unit in which physical channels are allocated.
- a resource block is defined by a constant frequency region composed of a set of a plurality of subcarriers (for example, 12 subcarriers) and a region composed of a constant transmission time interval (1 slot) on the frequency axis.
- the synchronization signal (Synchronization Signals) is composed of three types of primary synchronization signals and secondary synchronization signals composed of 31 types of codes arranged alternately in the frequency domain. 504 kinds of cell identifiers (physical cell ID (Physical Cell Identity; PCI)) for identifying the base station apparatus and frame timing for radio synchronization are shown by the combination.
- the mobile station device specifies the cell ID of the synchronization signal received by the cell search.
- a physical broadcast information channel (Physical Broadcast Channel; PBCH) is transmitted for the purpose of notifying control parameters (broadcast information and system information) commonly used by mobile station apparatuses in a cell. Broadcast information that is not notified on the physical broadcast information channel is transmitted as a layer 3 message (system information) on the physical downlink shared channel after the radio resource is notified on the physical downlink control channel.
- a cell global identifier (Cell ⁇ ⁇ Global Identifier; CGI) indicating a cell-specific identifier, a tracking area identifier (Tracking Area Identifier; TAI) for managing a standby area by paging, random access setting information (such as a transmission timing timer), Common radio resource setting information and the like are notified.
- Downlink reference signals are classified into multiple types according to their use.
- a cell-specific reference signal (CRS) is a pilot signal transmitted at a predetermined power for each cell, and is downlinked periodically in the frequency domain and the time domain based on a predetermined rule.
- Link reference signal The mobile station apparatus measures the reception quality for each cell by receiving the cell-specific reference signal.
- the mobile station apparatus also uses the downlink cell specific reference signal as a reference signal for demodulating the physical downlink control channel or the physical downlink shared channel transmitted simultaneously with the cell specific reference signal.
- the sequence used for the cell-specific reference signal is a sequence that can be identified for each cell.
- the downlink reference signal is also used for estimating downlink propagation path fluctuations.
- a downlink reference signal used for estimation of propagation path fluctuation is referred to as a channel state information reference signal (Channel State Reference Signals; CSI-RS).
- CSI-RS Channel State Reference Signals
- the downlink reference signal set individually for each mobile station apparatus is called UE specific Reference Signals (URS) or Dedicated RS (DRS), and is used to demodulate the physical downlink control channel or the physical downlink shared channel. Used.
- the physical downlink control channel (Physical Downlink Control Channel; PDCCH) is transmitted in some OFDM symbols from the beginning of each subframe, radio resource allocation information according to the scheduling of the base station device to the mobile station device, It is used for the purpose of instructing the adjustment amount of increase / decrease of transmission power.
- the mobile station apparatus monitors (monitors) a physical downlink control channel addressed to itself before transmitting / receiving a layer 3 message (paging, handover command, etc.) that is downlink data or downlink control data, and By receiving the physical downlink control channel, it is necessary to acquire radio resource allocation information called an uplink grant at the time of transmission and a downlink grant (downlink assignment) at the time of reception from the physical downlink control channel.
- the physical downlink control channel is configured to be transmitted in the area of the resource block that is individually assigned to the mobile station apparatus from the base station apparatus in addition to the above-described ODFM symbol. Is also possible.
- the physical uplink control channel (Physical Uplink Control Channel; PUCCH) is a data acknowledgment acknowledgment (Acknowledgement / Negative Acknowledgement; ACK / NACK) and downlink propagation path information (channel state information). ) Notification and an uplink radio resource allocation request (radio resource request), a scheduling request (Scheduling Request; SR) is used.
- CSI includes CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), PTI (Precoding Type Indicator), and RI (Rank Indicator). Each indicator may be expressed as “Indication”, but its use and meaning are the same.
- the physical downlink shared channel (Physical Downlink Shared Channel; PDSCH) is also used to notify the mobile station apparatus of broadcast information (system information) that is not notified in the paging or physical broadcast information channel as a layer 3 message. used.
- the radio resource allocation information of the physical downlink shared channel is indicated by the physical downlink control channel.
- the physical uplink shared channel (Physical Uplink Shared Channel; PUSCH) mainly transmits uplink data and uplink control data, and can also include control data such as downlink reception quality and ACK / NACK. In addition to uplink data, it is also used to notify the base station apparatus of uplink control information as a layer 3 message. Similarly to the downlink, the radio resource allocation information of the physical uplink shared channel is indicated by the physical downlink control channel.
- PUSCH Physical Uplink Shared Channel
- An uplink reference signal (Uplink Reference Signal) (also referred to as an uplink pilot signal or an uplink pilot channel) is used by the base station device to demodulate the physical uplink control channel PUCCH and / or the physical uplink shared channel PUSCH.
- a demodulation reference signal (Demodulation Reference Signal; DMRS) to be used and a sounding reference signal (Sound Reference Reference Signal; SRS) used mainly by the base station apparatus to estimate an uplink channel state are included.
- the sounding reference signal includes a periodic sounding reference signal (Periodic SRS) and an aperiodic sounding reference signal (Aperiodic SRS).
- the physical random access channel (Physical Random Access Channel; PRACH) is a channel used to notify a preamble sequence and has a guard time.
- the preamble sequence is configured so as to express 6-bit information by preparing 64 types of sequences.
- the physical random access channel is used as a means for accessing the base station apparatus of the mobile station apparatus.
- the mobile station device requests radio resources when the physical uplink control channel is not set, and transmission timing adjustment information (timing advance (Timing Advance; TA)) necessary to match the uplink transmission timing with the reception timing window of the base station device.
- the physical random access channel is used to request the base station apparatus.
- the mobile station apparatus transmits a preamble sequence using the radio resource for the physical random access channel set by the base station apparatus.
- the mobile station apparatus that has received the transmission timing adjustment information sets a transmission timing timer that measures the effective time of the transmission timing adjustment information that is commonly set by the broadcast information (or set individually by the layer 3 message),
- the uplink state is managed while the transmission timing timer is valid (during time measurement) during the transmission timing adjustment state, and outside the valid period (during stop), the transmission timing is not adjusted (transmission timing is not adjusted).
- the layer 3 message is a control plane (Control-plane) message exchanged between the mobile station apparatus and the base station apparatus in the RRC (Radio Resource Control) layer, and is used in the same meaning as the RRC signaling or RRC message. Since other physical channels are not related to each embodiment of the present invention, detailed description thereof is omitted.
- the carrier aggregation is a technique for aggregating (aggregating) frequencies (component carriers or frequency bands) of a plurality of different frequency bands (frequency bands) and treating them as one frequency (frequency band). For example, when five component carriers having a frequency bandwidth of 20 MHz are aggregated by carrier aggregation, the mobile station device having the capability of carrier aggregation considers these as one frequency bandwidth of 100 MHz and accesses them.
- the component carriers to be aggregated may be continuous frequencies, or may be frequencies at which all or part of them are discontinuous. For example, when the usable frequency band is 800 MHz band, 2.4 GHz band, and 3.4 GHz band, one component carrier is 800 MHz band, another component carrier is 2 GHz band, and another component carrier is 3.4 GHz band. It may be transmitted.
- the base station apparatus assigns uplink or downlink to the mobile station apparatus based on various factors such as the amount of data buffer that is staying, the reception quality of the cell reported from the mobile station apparatus, the load in the cell, and QoS.
- the number of component carriers can be increased or decreased. Note that the number of uplink component carriers that the base station apparatus assigns (sets or adds) to the mobile station apparatus is desirably the same as or less than the number of downlink component carriers.
- FIG. 10 is a diagram illustrating an example of a communication network configuration according to the embodiment of the present invention.
- the mobile station apparatus 2 can be wirelessly connected to the base station apparatus 1 by using frequency bands of a plurality of frequencies (component carriers, Band 1 to Band 4) simultaneously by carrier aggregation, there is a certain communication network configuration.
- One base station apparatus 1 includes transmitters 11 to 14 (and four receivers (not shown)) for each of a plurality of frequencies, and a configuration in which control of each frequency is performed by one base station apparatus 1 simplifies control. It is preferable from the viewpoint.
- the configuration of the base station apparatus 1 is not limited to FIG.
- the base station apparatus 1 may be configured to transmit a plurality of frequencies with a single transmitter because the plurality of frequencies are continuous frequencies. Furthermore, a configuration in which transmission / reception timing differs for each frequency may be used. The number of transmitters and receivers and the frequency at which transmission and reception can be performed may be different. The communicable range of each frequency controlled by the transmitter of the base station apparatus 1 is regarded as a cell. At this time, the areas (cells) covered by each frequency may have different widths and different shapes. Moreover, the area to cover may differ for every frequency.
- the area covered by the frequency of the component carrier that the base station apparatus 1 constitutes will be referred to as a cell, which is the mobile station apparatus or base station in each embodiment of the present invention.
- a cell which is the mobile station apparatus or base station in each embodiment of the present invention.
- the definition of a cell in a communication system that actually operates the device may be different.
- some of the component carriers used by carrier aggregation may be defined simply as additional radio resources rather than cells.
- it may be defined as an extended cell different from the conventional cell.
- carrier aggregation is communication by a plurality of cells using a plurality of component carriers (frequency bands), and is also referred to as cell aggregation.
- the mobile station apparatus 2 may be wirelessly connected to the base station apparatus 1 via a relay station apparatus (or repeater) for each frequency. That is, the base station apparatus 1 of each embodiment of the present invention can be replaced with a relay station apparatus.
- the third generation base station apparatus 1 defined by 3GPP is called Node B (NodeB), and the base station apparatus in EUTRA and Advanced EUTRA is called eNodeB (eNodeB).
- NodeB Node B
- eNodeB the base station apparatus in EUTRA and Advanced EUTRA
- UE User Equipment
- the base station device 1 manages a cell that is an area where the mobile station device 2 can communicate, and the cell is also referred to as a macro cell, a femto cell, a pico cell, or a nano cell depending on the size of the area that can communicate with the mobile station device 2. .
- a cell used for communication with the mobile station device 2 among the cells of the base station device 1 is a serving cell (Serving cell).
- the other cells are referred to as neighboring cells. That is, when the mobile station apparatus 2 and the base station apparatus 1 communicate using a plurality of cells using carrier aggregation, there are a plurality of serving cells in the mobile station apparatus 2.
- a mobile station device and a base station device that support communication in which cells having a plurality of uplink transmission timings that differ depending on carrier aggregation are aggregated are supported. Show.
- FIG. 11 shows the correspondence between the downlink component carrier set by the base station device 1 for the mobile station device 2 and the uplink component carrier when the mobile station device 2 according to the embodiment of the present invention performs carrier aggregation. It is the figure which showed an example of the relationship.
- FIG. 11 shows the correspondence relationship between four downlink component carriers (downlink component carriers DL_CC1 to DL_CC4) and three uplink component carriers (uplink component carriers UL_CC1 to UL_CC3).
- the configuration is not limited to the configuration example of the component carrier shown in FIG.
- the downlink component carrier DL_CC1 and the uplink component carrier UL_CC1, the downlink component carrier DL_CC2 and the uplink component carrier UL_CC2, and the downlink component carrier DL_CC3 and the uplink component carrier UL_CC3 are cell-specific connected (Cell Specific Linkage). ing. Further, as in the downlink component carrier DL_CC4, it is also possible to configure a component carrier only for the downlink without uplink component carrier setting (no cell specific connection) for carrier aggregation.
- Cell-specific connection is the correspondence (linkage, link information) between uplink and downlink component carriers.
- a part of broadcast information System ⁇ ⁇ Information ⁇ Block Type2; SIB2
- the cell-specific connection is also referred to as SIB2 linkage.
- the configuration configuration
- the configuration is explicitly notified as part of the broadcast information or when a component carrier (cell) in carrier aggregation is added
- the RRC message layer (3 messages)
- the setting of the corresponding relationship is notified, or when not explicitly instructed, the setting is notified implicitly by using information on the corresponding relationship between the uplink and the downlink specified uniquely.
- the base station apparatus 1 may notify the mobile station apparatus 2 of cell-specific connection information different from the uplink component carrier indicated by the broadcast information of the downlink component carrier to be set.
- the base station apparatus 1 may individually set the correspondence relationship between the downlink component carrier and the uplink component carrier for each mobile station apparatus 2 separately from the cell-specific connection (individual connection: UE Specific Linkage). Is possible.
- cell-specific connection individual connection: UE Specific Linkage
- downlink component carrier DL_CC3 and uplink component carrier UL_CC2 are individually connected.
- the setting of the individual connection is indicated by an RRC message (layer 3 message).
- the base station apparatus 1 can also assign a plurality of settings (configurations) necessary for transmission of the physical random access channel for each uplink component carrier or each uplink frequency.
- the cell-specific connection is typically used to indicate a correspondence relationship between uplink and downlink frequencies used for communication with the base station device 1 when the mobile station device 2 is not carrier-aggregated. . Further, it is used to indicate a correspondence relationship between uplink and downlink component carriers to which radio resource allocation notified by the physical downlink control channel is applied during carrier aggregation.
- the individual connection is typically used to indicate which downlink component carrier the path loss used for the transmission power control of the uplink component carrier of the mobile station apparatus 2 is calculated. Further, the individual connection indicates which downlink component carrier transmits the physical downlink control channel PDCCH that notifies the radio resource allocation information for performing the scheduling (radio resource allocation) of the component carrier of the mobile station apparatus 2. Used for.
- a cell composed of an uplink component carrier in which an uplink control channel is set for a radio resource request and a downlink component carrier that is cell-specifically connected to the uplink component carrier is a primary cell (Primary Cell; PCell) It is called.
- a cell composed of component carriers other than the primary cell is referred to as a secondary cell (Secondary cell; SCell).
- the mobile station apparatus 2 receives a paging message in the primary cell, detects broadcast information update, performs random access for initial access procedures and scheduling requests, and does not perform these in the secondary cell.
- the primary cell is not subject to activation and deactivation control (that is, it is always considered activated), but the secondary cell is activated and deactivated.
- An inactive state (state) is provided, and these state changes are explicitly specified by the base station apparatus 1 and the state is changed based on a timer set in the mobile station apparatus 2 for each component carrier. .
- the primary cell and the secondary cell are collectively referred to as a serving cell.
- the mobile station device 2 and the base station device 1 allocate cell indexes to the primary cell and the secondary cell, and use the cell index to select a serving cell to be added, deleted, or changed. Identify.
- the cell index of the primary cell is always 0 (zero), and any one of 1 to 7 is allocated as the cell index of the secondary cell.
- activation or deactivation of component carriers is configured to be controlled by an L2 (Layer 2) message that can be interpreted by a Layer 2 configuration task. . That is, activation or deactivation is controlled by a control command recognized by layer 2 after being decoded by the physical layer (layer 1). Note that the L2 message in EUTRA and Advanced EUTRA is notified by a control command (MAC control element; MAC Control Element) interpreted in the MAC layer.
- MAC control element MAC Control Element
- the mobile station apparatus 2 may stop monitoring the uplink grant and downlink grant (downlink assignment) used for scheduling the deactivated component carrier (secondary cell). That is, monitoring of the physical downlink control channel may be stopped. Moreover, the mobile station apparatus 2 may stop transmission of the periodic sounding reference signal (Periodic SRS) which is an uplink reference signal regarding the uplink of the deactivated component carrier (secondary cell). Moreover, the mobile station apparatus 2 may stop transmission of a physical uplink control channel regarding the uplink of the deactivated component carrier (secondary cell). Further, the mobile station apparatus 2 may perform measurement at a sampling rate lower than that in the activated state with respect to the downlink of the deactivated component carrier (secondary cell).
- Period SRS periodic sounding reference signal
- the mobile station apparatus 2 may perform measurement at a sampling rate lower than that in the activated state with respect to the downlink of the deactivated component carrier (secondary cell).
- FIG. 12 is a sequence chart for explaining an RRM (radio resource management) measurement setting management method of the mobile station apparatus 2 and the base station apparatus 1 in EUTRA.
- RRM radio resource management
- the base station apparatus 1 can use two different frequencies, F1 and F2, as frequencies operated by the own station, and the mobile station apparatus 2 and the base station apparatus 1 are wirelessly connected at the frequency F1. Is established (radio resource control connection state (Radio Resource Control Connected: RRC_Connected)).
- the base station apparatus 1 transmits a measurement setting message to cause the mobile station apparatus 2 to measure the reception quality of the cell in communication (located cell) and other cells (neighboring cells) (step S111).
- the measurement setting message includes at least one measurement setting information for each frequency (frequency F1 and frequency F2) to be measured.
- the measurement setting information includes a measurement ID, a measurement target frequency (measurement object), a measurement target frequency ID corresponding to the measurement target frequency, a report setting including a measurement event, and a report setting ID corresponding to the report setting. Is done.
- a plurality of report setting IDs may be linked to one measurement target frequency ID.
- one report setting ID may be linked to a plurality of measurement target frequency IDs.
- a measurement event is, for example, when the reception quality of a cell-specific reference signal of a serving cell falls below or exceeds a predetermined threshold, or when the reception quality of a cell-specific reference signal of a neighboring cell falls below the serving cell.
- This is information composed of a condition such as when the reception quality of a neighboring cell exceeds a predetermined threshold, and a parameter used to determine the condition.
- Information such as a threshold value, an offset value, and a time required for establishment of a measurement event is set in the parameter.
- the mobile station device 2 stores the measurement setting information set from the base station device 1 as internal information, and then starts the measurement process. Specifically, the mobile station apparatus 2 manages the measurement ID, the measurement target frequency ID, and the report setting ID so as to be linked together, and starts measurement based on the measurement information corresponding to each ID. . If these three IDs are linked to one, it is considered valid and the associated measurement is started. If these three IDs are not linked to one (one of the IDs is not set) ), The relevant measurement is not started as invalid. If the measurement setting information can be set without error, the mobile station apparatus 2 transmits a measurement setting completion message to the base station apparatus 1 in step S113.
- the mobile station device 2 transmits a measurement report message to the base station device 1 assuming that the measurement event is triggered. (Step S114).
- the measurement report message at least the measurement ID linked to the report setting ID of the triggered measurement event and, if necessary, the measurement result of the associated cell are set. Since the base station apparatus 1 knows to which measurement event report setting ID the measurement ID is linked, the mobile station apparatus 2 does not need to notify the report setting ID in the measurement report message.
- FIG. 1 is a block diagram showing an example of a base station apparatus 1 according to an embodiment of the present invention.
- the base station apparatus 1 includes a reception unit 101, a demodulation unit 102, a decoding unit 103, a control unit 104, a coding unit 105, a modulation unit 106, a transmission unit 107, a network signal transmission / reception unit 108, and an upper layer 109.
- the higher layer 109 outputs downlink traffic data and downlink control data to the encoding unit 105.
- the encoding unit 105 encodes each input data and outputs the encoded data to the modulation unit 106.
- Modulation section 106 modulates the signal input from encoding section 105. Further, the signal modulated in the modulation unit 106 is multiplexed with a downlink reference signal and mapped as a frequency domain signal.
- Transmitter 107 converts the signal input from modulator 106 into a time-domain signal, places the converted signal on a carrier having a predetermined frequency, performs power amplification, and transmits the signal.
- the downlink data channel in which the downlink control data is arranged typically constitutes a layer 3 message (RRC (Radio Resource Control) message).
- RRC Radio Resource Control
- the receiving unit 101 converts a received signal from the mobile station device 2 (see FIG. 2) into a baseband digital signal.
- the digital signal converted by the reception unit 101 is input to the demodulation unit 102 and demodulated.
- the signal demodulated by the demodulator 102 is then input to the decoder 103 and decoded.
- Decoding section 103 appropriately separates the received signal into uplink traffic data and uplink control data, and outputs the separated signals to higher layer 109, respectively.
- Base station apparatus control information necessary for controlling each of these blocks is input from the upper layer 109 to the control unit 104, and from the control unit 104, base station apparatus control information related to transmission is transmitted as transmission control information.
- the base station apparatus control information related to reception is appropriately input to each block of the reception unit 101, demodulation unit 102, and decoding unit 103 as reception control information in each block of the modulation unit 106 and transmission unit 107.
- the network signal transmitting / receiving unit 108 transmits or receives a control message between a plurality of base station apparatuses 1 (or control station apparatus (MME), gateway apparatus (Gateway), MCE) and the base station apparatus 1. .
- Control messages are transmitted and received via a network line. Control messages are exchanged on logical interfaces called S1 interface, X2 interface, M1 interface, and M2 interface.
- S1 interface control station apparatus
- X2 interface gateway apparatus
- M1 interface Mobility Management Entity
- FIG. 2 is a block diagram showing an example of the mobile station apparatus 2 according to the embodiment of the present invention.
- the mobile station apparatus 2 includes a reception unit 201, a demodulation unit 202, a decoding unit 203, a component carrier management unit 204, a control unit 205, a random access processing unit 206, a coding unit 207, a modulation unit 208, a transmission unit 209, and an upper layer 210.
- the measuring unit 211 is configured.
- the upper layer 210 Prior to reception, the upper layer 210 outputs the mobile station apparatus control information to the control unit 205.
- the control unit 205 appropriately outputs the mobile station apparatus control information related to reception to the reception unit 201, the demodulation unit 202, the decoding unit 203, and the measurement unit 211 as reception control information.
- the reception control information includes information such as demodulation information, decoding information, reception frequency band information, reception timing for each channel, multiplexing method, and radio resource arrangement information as reception schedule information.
- the receiving unit 201 receives a signal from the base station apparatus 1 to be described later through one or more receivers (not shown) in the frequency band notified by the reception control information, and converts the received signal into a baseband digital signal.
- the reception unit 201 outputs the received reference signal to the measurement unit 211.
- Demodulation section 202 demodulates the received signal and outputs it to decoding section 203.
- the decoding unit 203 correctly decodes the demodulated signal based on the reception control information, appropriately separates it into downlink traffic data and downlink control data, and outputs them to the upper layer 210, respectively.
- the measurement unit 211 measures RSRP, RSRQ, CSI, and the like of the received reference signal and outputs the measurement result to the upper layer 210.
- the upper layer 210 activates / deactivates information such as addition, modification, or release of a component carrier to downlink control data, and an allocated component carrier (or a cell that combines uplink and downlink component carriers).
- the component carrier management unit 204 is notified of the information. Based on the notified content, the component carrier management unit 204 corrects or releases the parameter of the component carrier (cell) of the secondary cell number already assigned to the own station, or the component carrier (cell of a new secondary cell number). ) And the active / inactive state of each secondary cell. Further, when a plurality of assigned secondary cells have different transmission / reception timings, information on a cell group constituted by one or more cells having the same transmission / reception timing is stored.
- the information on the cell group includes information such as transmission / reception timing for each cell group, transmission timing timer timing status, and the like.
- the activation / deactivation information of the component carrier may be notified from the decoding unit 203 to the component carrier management unit 204 without passing through the upper layer 210.
- the upper layer 210 outputs mobile station apparatus control information to the control unit 205.
- the control unit 205 appropriately outputs the mobile station apparatus control information related to transmission to the random access processing unit 206, the encoding unit 207, the modulation unit 208, and the transmission unit 209 as transmission control information.
- the transmission control information includes information such as encoding information, modulation information, transmission frequency band information, transmission timing for each channel, multiplexing method, and radio resource arrangement information as uplink scheduling information of the transmission signal.
- the upper layer 210 appropriately outputs the uplink traffic data and the uplink control data to the encoding unit 207 according to the uplink channel.
- the encoding unit 207 appropriately encodes each data according to the transmission control information and outputs the data to the modulation unit 208.
- Modulating section 208 modulates the signal encoded by encoding section 207. Also, the modulation unit 208 multiplexes the downlink reference signal with the modulated signal and maps it to the frequency band.
- the transmission unit 209 converts the frequency band signal output from the modulation unit 208 into a time-domain signal, places the converted signal on a carrier having a predetermined frequency, performs power amplification, and at least one transmitter (not shown) Send from.
- the signal decoded by the decoding unit 203 includes information indicating a cell group to which the transmission timing before the handover is applied even after the handover, the information is transmitted through the upper layer 210 (or directly from the decoding unit 203).
- the carrier management unit 204 and the random access processing unit 206 are notified.
- the random access processing unit 206 determines whether or not the random access procedure after the handover is necessary based on the notified information and each component carrier information acquired from the component carrier management unit 204.
- the component carrier management unit 204 performs a process of bringing the cell group to which the transmission timing before the handover is applied into an active state.
- the transmission timing timer is counting.
- the timing of the transmission timing timer may be continued while inactive after handover.
- the demodulating unit 203 demodulates the signal instructing activation of the cell group from the base station apparatus 1, the corresponding cell is activated, and the cell that has become active Performs uplink transmission without performing a random access procedure. Only one transmission timing timer may be prepared for each mobile station apparatus or may be prepared for each cell group.
- FIG. 2 other components of the mobile station apparatus 2 are omitted because they are not related to the present embodiment.
- FIG. 3 is a block diagram showing a radio protocol structure (radio protocol) of a user plane (user plane).
- FIG. 4 is a block diagram showing a radio protocol structure of a control plane (control plane; C plane).
- the user plane is a protocol stack for user data transmission / reception
- the control plane is a protocol stack for control signal transmission / reception.
- the physical layer which is the first layer (layer 1), uses the above-described physical channel between different physical layers, that is, between the physical layer on the transmission side and the reception side. Communication takes place.
- the physical layer is connected to the upper medium access control (Medium Access Control; MAC) layer via a transport channel (Transport channel), through which the physical layer transfers information to the MAC layer. Perform (information transfer) service).
- Medium Access Control Medium Access Control
- Transport channel Transport channel
- the MAC layer In the MAC layer of the second layer (layer 2), mapping between logical channels (logical channels) and transport channels, error correction by HARQ (Hybrid Automatic Automatic Repeats reQuest), transfer processing based on priority between logical channels, etc. It is carried out.
- the MAC layer is connected to a radio link control (Radio Link Control; RLC) layer, which is an upper layer, via a logical channel.
- RLC Radio Link Control
- the RLC layer in the second layer supports data transfer reliability.
- TM Transparent Mode
- UM Non-acknowledged Mode
- AM Acknowledged Mode
- AM error correction by ARQ, protocol error detection, and the like are performed.
- the PDCP (Packet Data Convergence Protocol) layer in the second layer performs header compression to reduce the IP packet header size, data encryption, and decryption.
- PDCP Packet Data Convergence Protocol
- the radio resource control (Radio Resource Control; RRC) layer of the third layer (layer 3) is defined only in the control plane.
- the RRC layer broadcasts NAS (non-access stratum) and AS (access stratum) related information, manages RRC connection (Establishment / maintenance / release), configures radio bearer (Radio Bearer; RB), re- It performs re-configuration and release, mobility (handover), measurement management and reporting, QoS management, and the like.
- the NAS layer located above the RRC layer performs session management and mobility management.
- the MAC layer and the RRC layer of the base station device 1 exist as part of the upper layer 109.
- the MAC layer of the mobile station apparatus 2 exists as a part of the component carrier management unit 204, the random access processing unit 206, and a part of the upper layer 209, and the RRC layer of the mobile station apparatus 2 includes the component carrier management unit 204. And a part of the upper layer 209.
- the measurement unit 211 includes an RRC layer reference signal measurement unit 51 and a PHY layer reference signal measurement unit 52.
- the PHY layer reference signal measurement unit 52 measures the RSRP, RSRQ, channel state, and the like of the reference signal input from the reception unit 201 and notifies the RRC layer reference signal measurement unit 51 of the measurement.
- the RRC layer reference signal measurement unit 51 needs individual measurement results notified from the PHY layer reference signal measurement unit 52 in the measurement target cell set by the CSI reference signal management measurement setting notified from the upper layer 210. If it is averaged, it is determined whether or not it matches the report setting, and the measurement result is notified to the upper layer 210.
- the RRC layer reference signal measurement unit 51 receives from the component carrier management unit 204 the active / inactive state information of the component carrier managed in the MAC layer.
- the RRC layer reference signal measurement unit 51 can stop the measurement of the reference signal of the component carrier in the inactive state based on the input active / inactive state information of the component carrier.
- the conventional CSI reference signal setting is notified by using the information element (CSI-RS-Config-r10) included in PhysicalConfigDedicatedSphyl-r10 and PhysicalConfigDedicatedScell-r10, which are information elements (Information element; IE) of the RRC message.
- Information element Information element
- the CSI reference signal setting in the present embodiment will be described as being notified using the information elements of PhysicalConfigDedicatedSted and PhysicalConfigDedicatedSCell-r10 as before, but is not limited to this, and is not limited to this.
- This information element may be newly defined and notified, or may be included in a CSI reference signal management measurement setting described later and notified.
- the base station apparatus 1 notifies the mobile station apparatus 2 of one or more CSI reference signal settings using an RRC message (step S61).
- the CSI reference signal setting notified here includes information uniquely indicating the signal sequence of the CSI reference signal, resource information indicating the arrangement of the CSI reference signal, and an index (first number) for identifying a plurality of CSI reference signal settings. 1 identifier). For example, when this index is defined as a sequential number from 0, it may be a sequential number from 0 in each cell (PCell and each SCell), or a sequential number from 0 for all settings of all cells. It is good. Alternatively, when the signal sequence of the CSI reference signal is different for each setting in each cell, information uniquely indicating this signal sequence can be used as an index substitute.
- the CSI reference signal setting may be a method of notifying a complete setting list every time there is a change, or by adding, correcting, or deleting information elements so that individual settings can be added, corrected, or deleted. It is also possible to do it.
- the base station apparatus 1 notifies the mobile station apparatus 2 of the CSI reference signal management measurement setting (also referred to as CoMP Resource Management set) using the RRC message (step S62).
- the CSI reference signal management measurement means measuring the reception quality (RSRP or RSRQ) of the CSI reference signal set in the CSI reference signal setting in order to select the CSI reference signal used in CoMP communication.
- the CSI reference signal management measurement setting is uniquely associated with a combination of a setting (second identifier) that uniquely indicates a cell to be measured, such as a cell index, a report setting, and the two settings. Measurement ID (third identifier).
- the report setting includes information such as whether to report periodically (Periodic) or when an event occurs, whether to report RSRP or RSRQ (or both).
- the measurement event is, for example, when the reception quality of an arbitrary CSI reference signal in a measurement target cell is lower than or exceeds a predetermined threshold value, and the reception quality of an arbitrary CSI reference signal is reception of a specific CSI reference signal. It is information composed of conditions such as when quality is below / above and parameters used to determine the conditions.
- the parameter is set with a threshold, an offset value, a time required for establishment of a measurement event, and the like.
- the information elements for addition / change / deletion may be provided for each of the two settings and the measurement ID so that the addition / change / deletion can be performed individually. For example, a case where two measurement target cells and three report settings are notified and three measurement IDs are set for the combination of the cell and the report setting will be described with reference to FIG.
- the base station apparatus 1 assigns identifiers 0 and 1 to the cell with the cell index # 1 and the cell with the cell index # 2 as measurement target cells, and notifies the mobile station apparatus 2 of them. Further, the base station apparatus 1 assigns identifiers 0, 1, and 2 to report setting 1, report setting 2, and report setting 3, respectively, as measurement settings, and notifies the mobile station apparatus 2 of them. Furthermore, the base station apparatus 1 notifies the mobile station apparatus 2 of the measurement ID associated with the combination of the measurement cell identifier and the report setting identifier.
- a combination of the measurement target cell with identifier 0 and the report setting with identifier 0 is designated as measurement ID # 0.
- the combination of the measurement target cell of identifier 0 and the report setting of identifier 1 is designated as measurement ID # 1
- the combination of the measurement target cell of identifier 1 and the report setting of identifier 2 is designated as measurement ID # 2.
- the measurement target cell is uniquely set.
- the setting shown (for example, cell index) may be used as a substitute for the measurement ID.
- the mobile station apparatus 2 notified of the CSI reference signal management measurement setting in step S62 stores the notified measurement setting as internal information (step S63). Specifically, the mobile station apparatus 2 performs measurement by associating and managing the measurement ID, the measurement target cell identifier, and the report setting identifier. When the measurement target cell identifier and report setting identifier associated with the measurement ID exist, the measurement is performed on the measurement target cell associated with the setting as valid, and the measurement target associated with the measurement ID When either or both of the cell identifier and the report setting identifier do not exist, the setting is regarded as invalid and the measurement related to the measurement ID is not performed. If the measurement setting information can be set without error, the mobile station apparatus 2 notifies the base station apparatus 1 of CSI reference signal management measurement setting completion (step S64), and the RRC layer reference signal measurement unit 51 performs the reference signal. Start measuring.
- the RRC layer reference signal measurement unit 51 acquires the active / inactive state information of the measurement target cell (component carrier) from the component carrier management unit 204, the measurement target cell is in the active state, and the report setting condition When satisfy
- the CSI reference signal management measurement report preferably includes the measurement ID and the index set by the CSI reference signal setting notification. When only one report setting is set for one measurement target cell and CSI reference signal management measurement report is performed for each cell, the measurement ID may not be required.
- the RRC layer reference signal measurement unit 51 acquires the active / inactive state information of the measurement target cell (component carrier) from the component carrier management unit 204, and when the measurement target cell is in an inactive state, In step S65, control is performed so that the CSI reference signal management measurement report in step S66 is not performed.
- the RRC layer reference signal measurement unit 51 may discard the measurement result notified from the PHY layer reference signal measurement unit 52 so as not to determine whether or not the reporting condition is satisfied.
- the management unit 204 may notify the PHY layer reference signal measurement unit 52 of the active / inactive state information, and when the measurement target cell is in an inactive state, the reference signal measurement in the PHY layer may be stopped.
- the base station apparatus 1 notifies the mobile station apparatus 2 of the CSI reference signal setting and the CSI reference signal management measurement setting, and the mobile station apparatus 2 measures the measurement target cell specified by the CSI reference signal management measurement setting (CSI reference signal for measuring the reception quality of the CSI reference signal set in the CSI reference signal set in the cell when the active / inactive state of the cell set in the MAC layer is the active state in the measurement object) Perform management measurements. Further, the mobile station apparatus 2 transmits a CSI reference signal management measurement report obtained by the CSI reference signal management measurement to the base station apparatus 1 using an RRC message.
- the CSI reference signal management measurement setting CSI reference signal for measuring the reception quality of the CSI reference signal set in the CSI reference signal set in the cell when the active / inactive state of the cell set in the MAC layer is the active state in the measurement object
- the base station apparatus 1 can control a cell that requires measurement based on signaling in the MAC layer, so it is not necessary to reconfigure a cell that requires measurement with an RRC message,
- the measurement target cell can be controlled efficiently and at high speed.
- step S63 addition / correction / deletion of the measurement target cell and the report setting is performed at an arbitrary timing, and the validity / invalidity of the setting in step S63 is determined at the time of update.
- the measurement unit 211 includes an RRC layer reference signal measurement unit 91 and a PHY layer reference signal measurement unit 92.
- the PHY layer reference signal measurement unit 92 measures the RSRP, RSRQ, channel state, and the like of the reference signal input from the reception unit 201 and notifies the RRC layer reference signal measurement unit 91 of it.
- the RRC layer reference signal measurement unit 91 needs individual measurement results notified from the PHY layer reference signal measurement unit 92 in the measurement target cell set by the CSI reference signal management measurement setting notified from the upper layer 210. If it is averaged, it is determined whether or not it matches the report setting, and the measurement result is notified to the upper layer 210.
- the RRC layer reference signal measurement unit 91 receives from the component carrier management unit 204 the active / inactive state information of the component carrier managed in the MAC layer, and receives the inactive state cell (component Carrier) measurement necessity information is input. The RRC layer reference signal measurement unit 91 determines whether or not to stop the measurement of the reference signal of the component carrier in the inactive state based on the input active / inactive state information of the component carrier and the measurement necessity information.
- the base station apparatus 1 notifies the mobile station apparatus 2 of one or more CSI reference signal settings using an RRC message (step S81).
- the CSI reference signal setting notified here includes information uniquely indicating the signal sequence of the CSI reference signal, resource information indicating the arrangement of the CSI reference signal, and an index (first number) for identifying a plurality of CSI reference signal settings. 1 identifier). For example, when this index is defined as a sequential number from 0, it may be a sequential number from 0 in each cell (PCell and each SCell), or a sequential number from 0 for all settings of all cells. It is good. Alternatively, when the signal sequence of the CSI reference signal is different for each setting in each cell, information uniquely indicating this signal sequence can be used as an index substitute.
- the CSI reference signal setting may be a method of notifying a complete setting list every time there is a change, or by adding, correcting, or deleting information elements so that individual settings can be added, corrected, or deleted. It is also possible to do it.
- the base station apparatus 1 notifies the mobile station apparatus 2 of the CSI reference signal management measurement setting and the inactive state measurement necessity indicator using the RRC message (step S82).
- the CSI reference signal management measurement means measuring the reception quality (RSRP or RSRQ) of the CSI reference signal set in the CSI reference signal setting in order to select the CSI reference signal used in CoMP communication.
- the inactive state measurement necessity indicator is information indicating whether or not a measurement report is performed when a cell to be measured is in an inactive state.
- the CSI reference signal management measurement setting is uniquely associated with a combination of a setting (second identifier) that uniquely indicates a cell to be measured, such as a cell index, a report setting, and the two settings. Measurement ID (third identifier).
- the report setting includes information such as whether to report periodically (Periodic) or when an event occurs, whether to report RSRP or RSRQ (or both).
- the measurement event is, for example, when the reception quality of an arbitrary CSI reference signal in a measurement target cell is lower than or exceeds a predetermined threshold value, and the reception quality of an arbitrary CSI reference signal is reception of a specific CSI reference signal. It is information composed of conditions such as when quality is below / above and parameters used to determine the conditions.
- the parameter is set with a threshold, an offset value, a time required for establishment of a measurement event, and the like.
- the information elements for addition / change / deletion may be provided for each of the two settings and the measurement ID so that the addition / change / deletion can be performed individually. For example, a case where two measurement target cells and three report settings are notified and three measurement IDs are set for the combination of the cell and the report setting will be described with reference to FIG.
- the base station apparatus 1 assigns identifiers 0 and 1 to the cell with the cell index # 1 and the cell with the cell index # 2 as measurement target cells, and notifies the mobile station apparatus 2 of them. Further, the base station apparatus 1 assigns identifiers 0, 1, and 2 to report setting 1, report setting 2, and report setting 3, respectively, as measurement settings, and notifies the mobile station apparatus 2 of them. Furthermore, the base station apparatus 1 notifies the mobile station apparatus 2 of the measurement ID associated with the combination of the measurement cell identifier and the report setting identifier.
- a combination of the measurement target cell with identifier 0 and the report setting with identifier 0 is designated as measurement ID # 0.
- the combination of the measurement target cell of identifier 0 and the report setting of identifier 1 is designated as measurement ID # 1
- the combination of the measurement target cell of identifier 1 and the report setting of identifier 2 is designated as measurement ID # 2.
- the measurement target cell is uniquely set.
- the setting shown (for example, cell index) may be used as a substitute for the measurement ID.
- the inactive state measurement necessity indicator may be included in the measurement setting. In this case, it is possible to set whether or not to perform measurement in an inactive cell for each measurement setting.
- the inactive state measurement necessity indicator may be notified to be set for each of the measurement IDs (third identifiers). In this case, it is possible to set whether or not to perform measurement in the inactive cell for each third identifier. Further, the inactive state measurement necessity indicator may be notified to the mobile station apparatus 2 so that only one type is set. In this case, it is possible to set whether or not to perform measurement in all inactive cells assigned to the mobile station apparatus 2.
- the mobile station apparatus 2 that has been notified of the CSI reference signal management measurement setting and the inactive state measurement necessity indicator in step S82 is informed of the measurement setting and the necessity of measurement in the inactive state cell.
- Information is stored as internal information (step S83). Specifically, the mobile station apparatus 2 performs measurement by associating and managing the measurement ID, the measurement target cell identifier, and the report setting identifier. When the measurement target cell identifier and report setting identifier associated with the measurement ID exist, the measurement is performed on the measurement target cell associated with the setting as valid, and the measurement target associated with the measurement ID When either or both of the cell identifier and the report setting identifier do not exist, the setting is regarded as invalid and the measurement related to the measurement ID is not performed. If the measurement setting information can be set without error, the mobile station apparatus 2 notifies the base station apparatus 1 of CSI reference signal management measurement setting completion (step S84), and the RRC layer reference signal measurement unit 51 performs the reference signal. Start measuring.
- the RRC layer reference signal measurement unit 91 acquires the active / inactive state information of the measurement target cell (component carrier) from the component carrier management unit 204, and measures the inactive state cell from the upper layer 210. Get necessity information.
- the RRC layer reference signal measurement unit 91 measures the inactive state when the measurement target cell is in the active state and the report setting condition is satisfied, or when the measurement target cell is in the inactive state but the measurement necessity information is used.
- the CSI reference signal management measurement report is transmitted to the base station apparatus 1 using the RRC message (steps S85 and S86).
- the CSI reference signal management measurement report preferably includes a measurement ID and an index set by the CSI reference signal setting notification.
- step S85 control is performed so as not to perform the CSI reference signal management measurement report in step S86.
- the RRC layer reference signal measurement unit 91 may discard the measurement result notified from the PHY layer reference signal measurement unit 92 so as not to determine whether or not the reporting condition is satisfied.
- the active / inactive state information is notified from the component carrier management unit 204 to the PHY layer reference signal measuring unit 92, the measurement necessity information of the inactive state cell is notified from the upper layer 210, and the measurement target cell is notified.
- the inactive state when it is specified by the measurement necessity information that the measurement of the inactive cell is not performed, the reference signal measurement in the PHY layer may be stopped.
- the base station apparatus 1 notifies the mobile station apparatus 2 of CSI reference signal setting, CSI reference signal management measurement setting, and inactive state measurement necessity information (inactive state measurement necessity indicator).
- the station device 2 determines that the active / inactive state of the cell managed by the MAC layer is an inactive state.
- the CSI reference signal management measurement for measuring the reception quality of the CSI reference signal set in the CSI reference signal set in the cell and the CSI reference signal management measurement are reported in accordance with the inactive state measurement necessity information set in step (1). Determine whether or not.
- the base station apparatus 1 allows the cell that needs to be measured in the MAC layer even when the CSI reference signal management measurement of the inactive cell is required for reasons such as mobility management. Therefore, it is not necessary to reset a cell that needs to be measured with the RRC message, and the measurement target cell can be controlled efficiently and at high speed.
- step S63 addition / correction / deletion of the measurement target cell and the report setting is performed at an arbitrary timing, and the validity / invalidity of the setting in step S63 is determined at the time of update.
- the measurement necessity information of inactive cells may be set as common information for all cells (frequency), or set for each cell (frequency). May be.
- measurement necessity information that is common to all cells may be reported as broadcast information (system information), or may be notified by individual RRC signaling for each mobile station apparatus. Further, in order to set the measurement necessity information for each cell (frequency), the measurement necessity information may be notified so that the cell (frequency) information is included, or the measurement target of the CSI reference signal management measurement setting You may comprise and notify so that the information which shows the measurement necessity in the said cell (component carrier) may be contained in the setting of a cell (frequency) and the setting of a component carrier.
- the reception quality of the CSI reference signal in the first and second embodiments described above is not limited to RSRP or RSRQ, but instead uses path loss, other measured values (SIR, SINR, RSSI, BLER), and the like. It is also possible to use a combination of a plurality of these measured values.
- the names of the parameters shown in the embodiment according to the present invention are referred to for convenience of explanation, and even if the parameter names actually applied and the parameter names of the present invention are different, It does not affect the gist of the claimed invention.
- each embodiment may be performed by recording a program for recording on a computer-readable recording medium, causing the computer system to read and execute the program recorded on the recording medium.
- the “computer system” includes an OS and hardware such as peripheral devices.
- the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Further, the “computer-readable recording medium” dynamically holds a program for a short time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, it is also assumed that a server that holds a program for a certain time, such as a volatile memory inside a computer system that serves as a server or client.
- the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
- each functional block used in each of the above embodiments may be realized as an LSI that is typically an integrated circuit.
- Each functional block may be individually formed into chips, or a part or all of them may be integrated into a chip.
- the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
- an integrated circuit based on the technology can also be used.
Landscapes
- Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
In the present invention, a base station device notifies a mobile station device of a management and measurement setting for a channel state information reference signal, which is a setting for measuring the reception quality of a channel state information reference signal, using RRC signaling, and the mobile station device determines whether to report management and measurement results for a channel state information reference signal targeted at a designated cell to the base station device, on the basis of the active/inactive state of a cell managed in a MAC layer of the mobile station.
Description
本発明は、通信システム、基地局装置、移動局装置、測定方法、および集積回路に関し、特に移動局装置が基地局装置から通知される設定に基づき受信信号の測定を行う通信システムに関する。
The present invention relates to a communication system, a base station apparatus, a mobile station apparatus, a measurement method, and an integrated circuit, and more particularly to a communication system that measures a received signal based on settings notified from the base station apparatus.
セルラー移動通信の無線アクセス方式および無線ネットワークの進化(以下、「Long Term Evolution (LTE)」、または、「Evolved Universal Terrestrial Radio Access (EUTRA)」と称す。)が、第三世代パートナーシッププロジェクト(3rd Generation Partnership Project;3GPP)において検討されており、さらにLTEを発展させて新たな技術を適用するLTE-A(LTE-Advanced、または、「Advanced EUTRA)」とも称す。)も検討されている。
The wireless access method and wireless network evolution of cellular mobile communications (hereinafter referred to as “Long Term Evolution (LTE)” or “Evolved Universal Terrestrial Radio Access (EUTRA)”) is the third generation partnership project (3rd Generation). Partnership Project (3GPP), which is also referred to as LTE-A (LTE-Advanced, or “Advanced EUTRA”), which develops LTE and applies new technologies. ) Is also being considered.
Advanced EUTRAでは、EUTRAとの互換性を維持しつつ、より高速なデータ伝送が可能な技術として、キャリア・アグリゲーション(Carrier Aggregation)と称させる技術が提案されている。キャリア・アグリゲーションとは、複数の異なる周波数帯域(キャリア周波数、コンポーネントキャリア(Component Carrier)とも称する)のセルからそれぞれ送信された送信装置のデータを、異なる周波数帯域に対応する受信装置において受信することで、データレートを向上させる技術である。キャリア・アグリゲーションでは、RRC(Radio Resource Control; RRC)層のシグナリングによって基地局装置が複数のキャリアコンポーネント(セル)を移動局装置に割り当てて(Configulationして)、MAC(Medium Access Control; MAC)層のシグナリングによって動的に各セルを活性化/不活性化(Activation/Deactivation)させることにより実際に通信をおこなうセルを選択する仕組みがある。
Advanced EUTRA has proposed a technique called carrier aggregation as a technique that enables higher-speed data transmission while maintaining compatibility with EUTRA. Carrier aggregation is a method of receiving data of a transmitting device transmitted from a cell in a plurality of different frequency bands (also referred to as a carrier frequency or a component carrier) at a receiving device corresponding to the different frequency bands. This is a technique for improving the data rate. In carrier aggregation, a base station apparatus allocates a plurality of carrier components (cells) to a mobile station apparatus by RRC (Radio Resource Control; RRC) layer signaling and configures a MAC (Medium Access Control; MAC) layer. There is a mechanism for selecting a cell for actual communication by dynamically activating / deactivating (Activating / Deactivating) each cell by signaling.
また、Advanced EUTRAでは、移動局装置に対する干渉を軽減または抑圧するために、または受信信号電力を増大させるために、隣接セル間で互いに協調して通信を行なうセル間協調(Cooperative Multipoint; CoMP)通信が検討されている。例えば、セル間協調通信として、複数のセルで異なる重み付け信号処理(プリコーディング処理)が信号に適用され、複数の基地局装置がその信号を協調して同一の移動局装置に送信する方法(Joint Processing; JP、Joint Transmission; JTとも称す)や、複数のセルで協調して移動局装置に対するスケジューリングを行う方法(Coordinated Scheduling; CS)や、複数のセルで協調してビームフォーミングを適用して移動局装置に信号を送信する方法(Coordinated beamforming; CB)や、一方のセルでのみ所定のリソースを用いて信号を送信し、一方のセルでは前記リソースと重複するリソースでは信号を送信しない方法(Blanking, Muting)などが検討されている。
Further, in Advanced EUTRA, in order to reduce or suppress interference with a mobile station apparatus or increase received signal power, inter-cell cooperative (Cooperative Multipoint; CoMP) communication in which neighboring cells perform communication in cooperation with each other. Is being considered. For example, as inter-cell cooperative communication, different weighting signal processing (precoding processing) is applied to a signal in a plurality of cells, and a plurality of base station devices cooperates to transmit the signal to the same mobile station device (Joint Processing; JP, Joint Transmission; also called JT), a method for scheduling mobile stations in cooperation with multiple cells (Coordinated Scheduling; CS), and cooperatively moving with multiple cells to apply beamforming A method of transmitting a signal to a station apparatus (Coordinated beamforming; CB) or a method of transmitting a signal using a predetermined resource only in one cell and not transmitting a signal in a resource overlapping with the resource in one cell (Blanking , Muting) etc. are being studied.
なお、セル間協調通信に用いられる複数のセルに関して、各セルは異なる基地局装置によって管理されるセルであってもよいし、同じ基地局装置によって管理されるセルであってもよい。また、各セルは基地局本体の制御部で制御される無線部(Remote Radio Head; RRH、Remote Radio Unit; RRUとも称す)で構成されてもよい。前記無線部は前記基地局本体と光ファイバのような有線で接続されてもよいし、リレー局装置のように無線によって接続されてもよい。
In addition, regarding a plurality of cells used for inter-cell cooperative communication, each cell may be a cell managed by a different base station device, or may be a cell managed by the same base station device. In addition, each cell may be configured by a radio unit (Remote Radio Head; RRH, Remote Radio Unit; RRU) controlled by the control unit of the base station body. The wireless unit may be connected to the base station main body with a wire such as an optical fiber, or may be connected wirelessly like a relay station device.
3GPPでは、Advanced EUTRAの議論において、セル間協調通信を行うセルを最適化するために、チャネル状態情報基準信号(Channel State Information Reference Symbol; CSI-RS)を用いた測定を行うことが検討されている(非特許文献1)。現状ではチャネル状態情報基準信号(以降、CSI基準信号と称する)は、MIMO伝送時の品質測定などのために1種類のCSI基準信号のリソース情報が移動局装置に対して通知されるよう定義されている。また、このCSI基準信号を用いたチャネル状態情報のフィードバックはMAC層で制御され、基地局装置へフィードバックする仕組みになっている。
In 3GPP, in the discussion of Advanced EUTRA, in order to optimize the cell that performs inter-cell cooperative communication, it is considered to perform measurement using a channel state information reference signal (Channel Information Reference Symbol CSI-RS). (Non-Patent Document 1). At present, the channel state information reference signal (hereinafter referred to as CSI reference signal) is defined such that resource information of one type of CSI reference signal is notified to the mobile station apparatus for quality measurement during MIMO transmission. ing. Further, the feedback of the channel state information using the CSI reference signal is controlled by the MAC layer and is fed back to the base station apparatus.
非特許文献1では、このCSI基準信号のリソース情報を移動局装置に複数種類通知するようにし、移動局装置で前記複数種類のリソースの基準信号受信電力(Reference Signal Received Power; RSRP)あるいは基準信号受信品質(Reference Signal Received Quality; RSRQ)をそれぞれ測定し、測定結果を基地局装置へ通知することにより、セル間協調通信を行うセルを選択できるようにすることが提案されている。
In Non-Patent Document 1, a plurality of types of resource information of the CSI reference signal are notified to the mobile station device, and the mobile station device receives the reference signal received power (Reference Signal Received Power; RSRP) or reference signal of the plurality of types of resources. It has been proposed that a cell for performing inter-cell cooperative communication can be selected by measuring each reception quality (Reference, Signal, Received Quality, RSRQ) and notifying the measurement result to a base station apparatus.
しかしながら、上記の基準信号受信電力(あるいは基準信号受信品質)の報告はRRC層で制御されており、不活性状態セルの報告が不要である場合、基地局装置からのRRCシグナリングにより報告設定変更をおこなう必要がある。
However, the report of the reference signal reception power (or reference signal reception quality) is controlled by the RRC layer, and if it is not necessary to report the inactive cell, the report setting change is performed by RRC signaling from the base station apparatus. It is necessary to do.
本発明は上記の点に鑑みてなされたものであり、その目的は、セルの活性化/不活性化に対して効率的に基準信号受信電力(あるいは受信品質)の測定・報告を設定することができる通信システム、基地局装置、移動局装置、測定方法、および集積回路を提供することである。
The present invention has been made in view of the above points, and an object thereof is to efficiently set the measurement / report of the reference signal reception power (or reception quality) for the activation / deactivation of the cell. Communication system, base station apparatus, mobile station apparatus, measurement method, and integrated circuit.
(1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本願の通信システムは、移動局装置が1以上の周波数帯域のセルを同時に用いて基地局装置と接続して通信を行なう通信システムであって、前記基地局装置は、チャネル状態情報基準信号の受信品質を測定するための設定であるチャネル状態情報基準信号管理測定設定を、前記移動局装置に対してRRCシグナリングを用いて通知し、前記移動局装置は、前記移動局装置のMAC層で管理されるセルの活性/不活性状態に基づき、前記チャネル状態情報基準信号管理測定設定で指定されたセルを対象とするチャネル状態情報基準信号管理測定の結果を前記基地局装置へ報告するか否かを判断することを特徴とする。
(1) In order to achieve the above object, the present invention has taken the following measures. That is, the communication system of the present application is a communication system in which a mobile station apparatus performs communication by simultaneously connecting to a base station apparatus using cells of one or more frequency bands, and the base station apparatus transmits a channel state information reference signal. Channel state information reference signal management measurement setting, which is a setting for measuring the reception quality of the mobile station device, is notified to the mobile station device using RRC signaling, and the mobile station device is in the MAC layer of the mobile station device. Whether to report the result of channel state information reference signal management measurement for the cell specified in the channel state information reference signal management measurement setting to the base station apparatus based on the active / inactive state of the managed cell It is characterized by judging.
(2)また、本願の通信システムは、移動局装置が1以上の周波数帯域のセルを同時に用いて基地局装置と接続して通信を行なう通信システムであって、前記基地局装置は、チャネル状態情報基準信号の受信品質を測定するための設定であるチャネル状態情報基準信号管理測定設定と、不活性状態セルでのチャネル状態情報基準信号の測定を行うか否かを指定する不活性状態測定要否情報とを、前記移動局装置に対してRRCシグナリングを用いて通知し、前記移動局装置は、前記移動局装置のMAC層で管理されるセルの活性/不活性状態と、前記不活性状態測定要否情報とに基づき、前記チャネル状態情報基準信号管理測定設定で指定されたセルを対象とするチャネル状態情報基準信号管理測定の結果を前記基地局装置へ報告するか否かを判断することを特徴とする。
(2) Further, the communication system of the present application is a communication system in which a mobile station apparatus performs communication by connecting to a base station apparatus using cells of one or more frequency bands at the same time, and the base station apparatus has a channel state Channel state information reference signal management measurement setting, which is a setting for measuring reception quality of information reference signal, and inactive state measurement required to specify whether or not to measure channel state information reference signal in inactive state cell Rejection information is notified to the mobile station device using RRC signaling, and the mobile station device is in an active / inactive state of a cell managed in the MAC layer of the mobile station device, and the inactive state. Whether or not to report the result of channel state information reference signal management measurement for the cell specified in the channel state information reference signal management measurement setting to the base station apparatus based on measurement necessity information Wherein the determining.
(3)また、本願の基地局装置は、移動局装置と1以上の周波数帯域のセルを同時に用いて通信を行なう基地局装置であって、前記移動局装置の不活性状態のセルのチャネル状態情報基準信号管理測定結果を報告させるか否かを、不活性状態セルでのチャネル状態情報基準信号管理測定を行うか否かを指定する不活性状態測定要否情報を前記移動局装置に対してRRCシグナリングを用いて通知することによって指定することを特徴とする。
(3) Further, the base station apparatus of the present application is a base station apparatus that performs communication using a mobile station apparatus and cells of one or more frequency bands at the same time, and the channel state of an inactive cell of the mobile station apparatus Whether to report information reference signal management measurement results, whether or not to perform channel state information reference signal management measurement in an inactive state cell, inactive state measurement necessity information to the mobile station apparatus It designates by notifying using RRC signaling.
(4)また、本願の移動局装置は、1以上の周波数帯域のセルを同時に用いて基地局装置と接続して通信を行なう移動局装置であって、前記移動局装置は、前記基地局装置によってRRCシグナリングによって通知されるチャネル状態情報基準信号の受信品質を測定するための設定であるチャネル状態情報基準信号管理測定設定で指定されるセルを対象とするチャネル状態情報基準信号管理測定の結果を前記基地局装置へ報告するか否かを、MAC層で管理されるセルの活性/不活性状態に基づき判断することを特徴とする。
(4) The mobile station apparatus of the present application is a mobile station apparatus that performs communication by connecting to a base station apparatus using cells of one or more frequency bands at the same time, and the mobile station apparatus includes the base station apparatus The channel state information reference signal management measurement result for the cell specified by the channel state information reference signal management measurement setting, which is a setting for measuring the reception quality of the channel state information reference signal notified by RRC signaling. Whether to report to the base station apparatus is determined based on an active / inactive state of a cell managed in the MAC layer.
(5)また、本願の移動局装置は、1以上の周波数帯域のセルを同時に用いて基地局装置と接続して通信を行なう移動局装置であって、前記移動局装置は、チャネル状態情報基準信号の受信品質を測定するための設定であるチャネル状態情報基準信号管理測定設定と、不活性状態セルでのチャネル状態情報基準信号の測定を行うか否かを指定する不活性状態測定要否情報とを、前記基地局装置から受信し、前記不活性状態測定要否情報に基づき、不活性状態のセルを対象とするチャネル状態情報基準信号管理測定の結果を前記基地局装置へ報告するか否かを判断することを特徴とする。
(5) The mobile station apparatus of the present application is a mobile station apparatus that performs communication by connecting to a base station apparatus using cells of one or more frequency bands at the same time. Channel state information reference signal management measurement setting, which is a setting for measuring the reception quality of the signal, and inactive state measurement necessity information specifying whether or not to measure the channel state information reference signal in the inactive state cell Whether or not to report the result of channel state information reference signal management measurement for cells in the inactive state to the base station device based on the inactive state measurement necessity information It is characterized by judging.
(6)また、本願の測定方法は、1以上の周波数帯域のセルを同時に用いて基地局装置と接続して通信を行なう移動局装置の測定方法であって、前記基地局装置から、RRCシグナリングを用いて、チャネル状態情報基準信号の受信品質を測定するための設定であるチャネル状態情報基準信号管理測定設定を受信するステップと、前記チャネル状態情報基準信号管理測定設定で指定されるセルを対象とするチャネル状態情報基準信号管理測定の結果を前記基地局装置へ報告するか否かを、MAC層で管理されるセルの活性/不活性状態に基づき判断するステップとを含むことを特徴とする。
(6) In addition, the measurement method of the present application is a measurement method of a mobile station apparatus that performs communication by connecting to a base station apparatus using cells of one or more frequency bands at the same time. And receiving a channel state information reference signal management measurement setting that is a setting for measuring the reception quality of the channel state information reference signal, and targeting a cell specified by the channel state information reference signal management measurement setting. And determining whether to report the result of channel state information reference signal management measurement to the base station apparatus based on the active / inactive state of the cell managed in the MAC layer. .
(7)また、本願の測定方法は、1以上の周波数帯域のセルを同時に用いて基地局装置と接続して通信を行なう移動局装置の測定方法であって、前記基地局装置から、RRCシグナリングを用いて、チャネル状態情報基準信号の受信品質を測定するための設定であるチャネル状態情報基準信号管理測定設定を受信するステップと、前記基地局装置から、RRCシグナリングを用いて、不活性状態セルでの測定を行うか否かを指定する不活性状態測定要否情報を受信するステップと、不活性状態のセルを対象とするチャネル状態情報基準信号管理測定の結果を前記基地局装置へ報告するか否かを、前記不活性状態測定要否情報に基づき判断するステップとを含むことを特徴とする。
(7) Further, the measurement method of the present application is a measurement method of a mobile station apparatus that performs communication by connecting to a base station apparatus using cells of one or more frequency bands at the same time, from the base station apparatus to RRC signaling. Receiving a channel state information reference signal management measurement setting that is a setting for measuring the reception quality of the channel state information reference signal using RRC signaling from the base station apparatus, A step of receiving inactive state measurement necessity information specifying whether or not to perform measurement in the cell, and reporting a result of channel state information reference signal management measurement for cells in the inactive state to the base station apparatus And determining whether or not based on the inactive state measurement necessity information.
(8)また、本願の集積回路は1以上の周波数帯域のセルを同時に用いて基地局装置と接続して通信を行なう移動局装置に搭載される集積回路であって、前記基地局装置から、RRCシグナリングを用いて、チャネル状態情報基準信号の受信品質を測定するための設定であるチャネル状態情報基準信号管理測定設定を受信する機能と、前記チャネル状態情報基準信号管理測定設定で指定されるセルを対象とするチャネル状態情報基準信号管理測定の結果を前記基地局装置へ報告するか否かを、MAC層で管理されるセルの活性/不活性状態に基づき判断する機能とを含むことを特徴とする。
(8) Further, the integrated circuit of the present application is an integrated circuit mounted on a mobile station apparatus that communicates by connecting to a base station apparatus using cells of one or more frequency bands at the same time, and from the base station apparatus, A function for receiving a channel state information reference signal management measurement setting which is a setting for measuring the reception quality of the channel state information reference signal using RRC signaling, and a cell specified by the channel state information reference signal management measurement setting And a function of determining whether to report a result of channel state information reference signal management measurement for the base station apparatus based on an active / inactive state of a cell managed in the MAC layer. And
(9)また、本願の集積回路は、1以上の周波数帯域のセルを同時に用いて基地局装置と接続して通信を行なう移動局装置に搭載される集積回路であって、前記基地局装置から、RRCシグナリングを用いて、チャネル状態情報基準信号の受信品質を測定するための設定であるチャネル状態情報基準信号管理測定設定を受信する機能と、前記基地局装置から、RRCシグナリングを用いて、不活性状態セルでの測定を行うか否かを指定する不活性状態測定要否情報を受信する機能と、不活性状態のセルを対象とする前記チャネル状態情報基準信号管理測定結果を前記基地局装置へ報告するか否かを、前記不活性状態測定要否情報に基づき判断する機能とを含むことを特徴とする。
(9) Further, the integrated circuit of the present application is an integrated circuit mounted on a mobile station apparatus that communicates by connecting to a base station apparatus using cells of one or more frequency bands at the same time, from the base station apparatus , A function of receiving a channel state information reference signal management measurement setting, which is a setting for measuring the reception quality of a channel state information reference signal using RRC signaling, and an RRC signaling from the base station apparatus, A function of receiving inactive state measurement necessity information specifying whether or not to perform measurement in an active state cell, and the channel state information reference signal management measurement result for an inactive state cell as the base station device And whether to report whether or not to report based on the inactive state measurement necessity information.
本発明によれば、セルの活性化/不活性化に対して効率的に基準信号受信電力(あるいは受信品質)の測定・報告を設定することができる通信システム、基地局装置、移動局装置、測定方法、および集積回路を提供できる。
According to the present invention, a communication system, a base station apparatus, a mobile station apparatus, and a base station apparatus, a mobile station apparatus, which can efficiently set measurement / report of reference signal received power (or reception quality) for cell activation / deactivation, A measurement method and an integrated circuit can be provided.
本発明の各実施形態を説明する前に、本発明の各実施形態に関わる技術について以下に簡単に説明する。
DETAILED DESCRIPTION Before describing each embodiment of the present invention, a technique related to each embodiment of the present invention will be briefly described below.
[物理チャネル]
EUTRAおよびAdvanced EUTRAで使用される主な物理チャネル(または物理シグナル)について説明を行なう。チャネルとは信号の送信に用いられる媒体を意味し、物理チャネルとは信号の送信に用いられる物理的な媒体を意味する。物理チャネルは、EUTRA、およびAdvanced EUTRAにおいて、今後追加、または、その構造やフォーマット形式が変更または追加される可能性もあるが、変更または追加された場合でも本発明の各実施形態の説明には影響しない。 [Physical channel]
The main physical channels (or physical signals) used in EUTRA and Advanced EUTRA will be described. A channel means a medium used for signal transmission, and a physical channel means a physical medium used for signal transmission. The physical channel may be added in the future in EUTRA and Advanced EUTRA, or the structure and format of the physical channel may be changed or added. It does not affect.
EUTRAおよびAdvanced EUTRAで使用される主な物理チャネル(または物理シグナル)について説明を行なう。チャネルとは信号の送信に用いられる媒体を意味し、物理チャネルとは信号の送信に用いられる物理的な媒体を意味する。物理チャネルは、EUTRA、およびAdvanced EUTRAにおいて、今後追加、または、その構造やフォーマット形式が変更または追加される可能性もあるが、変更または追加された場合でも本発明の各実施形態の説明には影響しない。 [Physical channel]
The main physical channels (or physical signals) used in EUTRA and Advanced EUTRA will be described. A channel means a medium used for signal transmission, and a physical channel means a physical medium used for signal transmission. The physical channel may be added in the future in EUTRA and Advanced EUTRA, or the structure and format of the physical channel may be changed or added. It does not affect.
EUTRAおよびAdvanced EUTRAでは、物理チャネルのスケジューリングについて無線フレームを用いて管理している。1無線フレームは10msであり、1無線フレームは10サブフレームで構成される。さらに、1サブフレームは2スロットで構成される(すなわち、1スロットは0.5msである)。また、物理チャネルが配置されるスケジューリングの最小単位としてリソースブロックを用いて管理している。リソースブロックとは、周波数軸を複数サブキャリア(例えば12サブキャリア)の集合で構成される一定の周波数領域と、一定の送信時間間隔(1スロット)で構成される領域で定義される。
In EUTRA and Advanced EUTRA, physical channel scheduling is managed using radio frames. One radio frame is 10 ms, and one radio frame is composed of 10 subframes. Further, one subframe is composed of two slots (that is, one slot is 0.5 ms). Also, resource blocks are used as a minimum scheduling unit in which physical channels are allocated. A resource block is defined by a constant frequency region composed of a set of a plurality of subcarriers (for example, 12 subcarriers) and a region composed of a constant transmission time interval (1 slot) on the frequency axis.
同期シグナル(Synchronization Signals)は、3種類のプライマリ同期シグナルと、周波数領域で互い違いに配置される31種類の符号から構成されるセカンダリ同期シグナルとで構成され、プライマリ同期シグナルとセカンダリ同期シグナルの信号の組み合わせによって、基地局装置を識別する504通りのセル識別子(物理セルID(Physical Cell Identity; PCI))と、無線同期のためのフレームタイミングが示される。移動局装置は、セルサーチによって受信した同期シグナルのセルIDを特定する。
The synchronization signal (Synchronization Signals) is composed of three types of primary synchronization signals and secondary synchronization signals composed of 31 types of codes arranged alternately in the frequency domain. 504 kinds of cell identifiers (physical cell ID (Physical Cell Identity; PCI)) for identifying the base station apparatus and frame timing for radio synchronization are shown by the combination. The mobile station device specifies the cell ID of the synchronization signal received by the cell search.
物理報知情報チャネル(Physical Broadcast Channel; PBCH)は、セル内の移動局装置で共通に用いられる制御パラメータ(報知情報やシステム情報)を通知する目的で送信される。物理報知情報チャネルで通知されない報知情報は、物理下りリンク制御チャネルで無線リソースが通知され、物理下りリンク共用チャネルによってレイヤ3メッセージ(システムインフォメーション)で送信される。報知情報として、セル個別の識別子を示すセルグローバル識別子(Cell Global Identifier; CGI)、ページングによる待ち受けエリアを管理するトラッキングエリア識別子(Tracking Area Identifier; TAI)、ランダムアクセス設定情報(送信タイミングタイマーなど)、共通無線リソース設定情報などが通知される。
A physical broadcast information channel (Physical Broadcast Channel; PBCH) is transmitted for the purpose of notifying control parameters (broadcast information and system information) commonly used by mobile station apparatuses in a cell. Broadcast information that is not notified on the physical broadcast information channel is transmitted as a layer 3 message (system information) on the physical downlink shared channel after the radio resource is notified on the physical downlink control channel. As broadcast information, a cell global identifier (Cell 識別 子 Global Identifier; CGI) indicating a cell-specific identifier, a tracking area identifier (Tracking Area Identifier; TAI) for managing a standby area by paging, random access setting information (such as a transmission timing timer), Common radio resource setting information and the like are notified.
下りリンク基準信号は、その用途によって複数のタイプに分類される。例えば、セル固有基準信号(Cell-specific reference signals; CRS)は、セル毎に所定の電力で送信されるパイロット信号であり、所定の規則に基づいて周波数領域および時間領域で周期的に繰り返される下りリンク基準信号である。移動局装置は、セル固有基準信号を受信することでセル毎の受信品質を測定する。また、移動局装置は、セル固有基準信号と同時に送信される物理下りリンク制御チャネル、または物理下りリンク共用チャネルの復調のための参照信号としても下りセル固有基準信号を使用する。セル固有基準信号に使用される系列は、セル毎に識別可能な系列が用いられる。
Downlink reference signals are classified into multiple types according to their use. For example, a cell-specific reference signal (CRS) is a pilot signal transmitted at a predetermined power for each cell, and is downlinked periodically in the frequency domain and the time domain based on a predetermined rule. Link reference signal. The mobile station apparatus measures the reception quality for each cell by receiving the cell-specific reference signal. The mobile station apparatus also uses the downlink cell specific reference signal as a reference signal for demodulating the physical downlink control channel or the physical downlink shared channel transmitted simultaneously with the cell specific reference signal. The sequence used for the cell-specific reference signal is a sequence that can be identified for each cell.
また、下りリンク基準信号は下りリンクの伝搬路変動の推定にも用いられる。伝搬路変動の推定に用いられる下りリンク基準信号のことをチャネル状態情報基準信号(Channel State Information Reference Signals; CSI-RS)と称する。また、移動局装置毎に個別に設定される下りリンク基準信号は、UE specific Reference Signals(URS)またはDedicated RS(DRS)と称され、物理下りリンク制御チャネル、または物理下りリンク共用チャネルの復調に用いられる。
The downlink reference signal is also used for estimating downlink propagation path fluctuations. A downlink reference signal used for estimation of propagation path fluctuation is referred to as a channel state information reference signal (Channel State Reference Signals; CSI-RS). Also, the downlink reference signal set individually for each mobile station apparatus is called UE specific Reference Signals (URS) or Dedicated RS (DRS), and is used to demodulate the physical downlink control channel or the physical downlink shared channel. Used.
物理下りリンク制御チャネル(Physical Downlink Control Channel; PDCCH)は、各サブフレームの先頭からいくつかのOFDMシンボルで送信され、移動局装置に対して基地局装置のスケジューリングに従った無線リソース割り当て情報や、送信電力の増減の調整量を指示する目的で使用される。移動局装置は、下りリンクデータや下りリンク制御データであるレイヤ3メッセージ(ページング、ハンドオーバーコマンドなど)を送受信する前に自局宛の物理下りリンク制御チャネルを監視(モニタ)し、自局宛の物理下りリンク制御チャネルを受信することで、送信時には上りリンクグラント、受信時には下りリンクグラント(下りリンクアサインメント)と呼ばれる無線リソース割り当て情報を物理下りリンク制御チャネルから取得する必要がある。なお、物理下りリンク制御チャネルは、上述したODFMシンボルで送信される以外に、基地局装置から移動局装置に対して個別(dedicated)に割り当てられるリソースブロックの領域で送信されるように構成することも可能である。
The physical downlink control channel (Physical Downlink Control Channel; PDCCH) is transmitted in some OFDM symbols from the beginning of each subframe, radio resource allocation information according to the scheduling of the base station device to the mobile station device, It is used for the purpose of instructing the adjustment amount of increase / decrease of transmission power. The mobile station apparatus monitors (monitors) a physical downlink control channel addressed to itself before transmitting / receiving a layer 3 message (paging, handover command, etc.) that is downlink data or downlink control data, and By receiving the physical downlink control channel, it is necessary to acquire radio resource allocation information called an uplink grant at the time of transmission and a downlink grant (downlink assignment) at the time of reception from the physical downlink control channel. The physical downlink control channel is configured to be transmitted in the area of the resource block that is individually assigned to the mobile station apparatus from the base station apparatus in addition to the above-described ODFM symbol. Is also possible.
物理上りリンク制御チャネル(Physical Uplink Control Channel; PUCCH)は、物理下りリンク共用チャネルで送信されたデータの受信確認応答(Acknowledgement/Negative Acknowledgement; ACK/NACK)や下りリンクの伝搬路情報(チャネル状態情報)の通知、上りリンクの無線リソース割り当て要求(無線リソース要求)であるスケジューリングリクエスト(Scheduling Request; SR)を行なうために使用される。CSIは、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)、PTI(Precoding Type Indicator)、RI(Rank Indicator)を含む。各Indicatorは、Indicationと表記される場合もあるが、その用途と意味は同じである。
The physical uplink control channel (Physical Uplink Control Channel; PUCCH) is a data acknowledgment acknowledgment (Acknowledgement / Negative Acknowledgement; ACK / NACK) and downlink propagation path information (channel state information). ) Notification and an uplink radio resource allocation request (radio resource request), a scheduling request (Scheduling Request; SR) is used. CSI includes CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), PTI (Precoding Type Indicator), and RI (Rank Indicator). Each indicator may be expressed as “Indication”, but its use and meaning are the same.
物理下りリンク共用チャネル(Physical Downlink Shared Channel; PDSCH)は、下りリンクデータのほか、ページングや物理報知情報チャネルで通知されない報知情報(システムインフォメーション)をレイヤ3メッセージとして移動局装置に通知するためにも使用される。物理下りリンク共用チャネルの無線リソース割り当て情報は、物理下りリンク制御チャネルで示される。
In addition to downlink data, the physical downlink shared channel (Physical Downlink Shared Channel; PDSCH) is also used to notify the mobile station apparatus of broadcast information (system information) that is not notified in the paging or physical broadcast information channel as a layer 3 message. used. The radio resource allocation information of the physical downlink shared channel is indicated by the physical downlink control channel.
物理上りリンク共用チャネル(Physical Uplink Shared Channel; PUSCH)は、主に上りリンクデータと上りリンク制御データを送信し、下りリンクの受信品質やACK/NACKなどの制御データを含めることも可能である。また、上りリンクデータの他、上りリンク制御情報をレイヤ3メッセージとして基地局装置に通知するためにも使用される。また、下りリンクと同様に物理上りリンク共用チャネルの無線リソース割り当て情報は、物理下りリンク制御チャネルで示される。
The physical uplink shared channel (Physical Uplink Shared Channel; PUSCH) mainly transmits uplink data and uplink control data, and can also include control data such as downlink reception quality and ACK / NACK. In addition to uplink data, it is also used to notify the base station apparatus of uplink control information as a layer 3 message. Similarly to the downlink, the radio resource allocation information of the physical uplink shared channel is indicated by the physical downlink control channel.
上りリンク基準信号(Uplink Reference Signal)(上りリンクパイロット信号、上りリンクパイロットチャネルとも呼称する)は、基地局装置が、物理上りリンク制御チャネルPUCCHおよび/または物理上りリンク共用チャネルPUSCHを復調するために使用する復調基準信号(Demodulation Reference Signal; DMRS)と、基地局装置が、主に、上りリンクのチャネル状態を推定するために使用するサウンディング基準信号(Sounding Reference Signal; SRS)が含まれる。また、サウンディング基準信号には、周期的サウンディング基準信号(Periodic SRS)と非周期的サウンディング基準信号(Aperiodic SRS)とがある。
An uplink reference signal (Uplink Reference Signal) (also referred to as an uplink pilot signal or an uplink pilot channel) is used by the base station device to demodulate the physical uplink control channel PUCCH and / or the physical uplink shared channel PUSCH. A demodulation reference signal (Demodulation Reference Signal; DMRS) to be used and a sounding reference signal (Sound Reference Reference Signal; SRS) used mainly by the base station apparatus to estimate an uplink channel state are included. The sounding reference signal includes a periodic sounding reference signal (Periodic SRS) and an aperiodic sounding reference signal (Aperiodic SRS).
物理ランダムアクセスチャネル(Physical Random Access Channel; PRACH)は、プリアンブル系列を通知するために使用されるチャネルであり、ガードタイムを有する。プリアンブル系列は、64種類のシーケンスを用意して6ビットの情報を表現するように構成されている。物理ランダムアクセスチャネルは、移動局装置の基地局装置へのアクセス手段として用いられる。移動局装置は、物理上りリンク制御チャネル未設定時の無線リソース要求や、上りリンク送信タイミングを基地局装置の受信タイミングウィンドウに合わせるために必要な送信タイミング調整情報(タイミングアドバンス(Timing Advance; TA)とも呼ばれる)を基地局装置に要求するために物理ランダムアクセスチャネルを用いる。
The physical random access channel (Physical Random Access Channel; PRACH) is a channel used to notify a preamble sequence and has a guard time. The preamble sequence is configured so as to express 6-bit information by preparing 64 types of sequences. The physical random access channel is used as a means for accessing the base station apparatus of the mobile station apparatus. The mobile station device requests radio resources when the physical uplink control channel is not set, and transmission timing adjustment information (timing advance (Timing Advance; TA)) necessary to match the uplink transmission timing with the reception timing window of the base station device. The physical random access channel is used to request the base station apparatus.
具体的には、移動局装置は、基地局装置より設定された物理ランダムアクセスチャネル用の無線リソースを用いてプリアンブル系列を送信する。送信タイミング調整情報を受信した移動局装置は、報知情報によって共通的に設定される(またはレイヤ3メッセージで個別に設定される)送信タイミング調整情報の有効時間を計時する送信タイミングタイマーを設定し、送信タイミングタイマーの有効時間中(計時中)は送信タイミング調整状態、有効期間外(停止中)は送信タイミング非調整状態(送信タイミング未調整状態)として上りリンクの状態を管理する。レイヤ3メッセージは、移動局装置と基地局装置のRRC(無線リソース制御)層でやり取りされる制御平面(Control-plane)のメッセージであり、RRCシグナリングまたはRRCメッセージと同義の意味で使用される。なお、それ以外の物理チャネルは、本発明の各実施形態に関わらないため詳細な説明は省略する。
Specifically, the mobile station apparatus transmits a preamble sequence using the radio resource for the physical random access channel set by the base station apparatus. The mobile station apparatus that has received the transmission timing adjustment information sets a transmission timing timer that measures the effective time of the transmission timing adjustment information that is commonly set by the broadcast information (or set individually by the layer 3 message), The uplink state is managed while the transmission timing timer is valid (during time measurement) during the transmission timing adjustment state, and outside the valid period (during stop), the transmission timing is not adjusted (transmission timing is not adjusted). The layer 3 message is a control plane (Control-plane) message exchanged between the mobile station apparatus and the base station apparatus in the RRC (Radio Resource Control) layer, and is used in the same meaning as the RRC signaling or RRC message. Since other physical channels are not related to each embodiment of the present invention, detailed description thereof is omitted.
[キャリア・アグリゲーション]
キャリア・アグリゲーションとは、複数の異なる周波数バンド(周波数帯)の周波数(コンポーネントキャリア、または周波数帯域)を集約(アグリゲート、aggregate)して一つの周波数(周波数帯域)のように扱う技術である。例えば、キャリア・アグリゲーションによって周波数帯域幅が20MHzのコンポーネントキャリアを5つ集約した場合、キャリア・アグリゲーション可能な能力を持つ移動局装置はこれらを一つの100MHzの周波数帯域幅とみなしてアクセスする。なお、集約するコンポーネントキャリアは連続した周波数であっても、全てまたは一部が不連続となる周波数であってもよい。例えば、使用可能な周波数バンドが800MHz帯、2.4GHz帯、3.4GHz帯である場合、あるコンポーネントキャリアが800MHz帯、別のコンポーネントキャリアが2GHz帯、さらに別のコンポーネントキャリアが3.4GHz帯で送信されていてもよい。 [Career aggregation]
The carrier aggregation is a technique for aggregating (aggregating) frequencies (component carriers or frequency bands) of a plurality of different frequency bands (frequency bands) and treating them as one frequency (frequency band). For example, when five component carriers having a frequency bandwidth of 20 MHz are aggregated by carrier aggregation, the mobile station device having the capability of carrier aggregation considers these as one frequency bandwidth of 100 MHz and accesses them. The component carriers to be aggregated may be continuous frequencies, or may be frequencies at which all or part of them are discontinuous. For example, when the usable frequency band is 800 MHz band, 2.4 GHz band, and 3.4 GHz band, one component carrier is 800 MHz band, another component carrier is 2 GHz band, and another component carrier is 3.4 GHz band. It may be transmitted.
キャリア・アグリゲーションとは、複数の異なる周波数バンド(周波数帯)の周波数(コンポーネントキャリア、または周波数帯域)を集約(アグリゲート、aggregate)して一つの周波数(周波数帯域)のように扱う技術である。例えば、キャリア・アグリゲーションによって周波数帯域幅が20MHzのコンポーネントキャリアを5つ集約した場合、キャリア・アグリゲーション可能な能力を持つ移動局装置はこれらを一つの100MHzの周波数帯域幅とみなしてアクセスする。なお、集約するコンポーネントキャリアは連続した周波数であっても、全てまたは一部が不連続となる周波数であってもよい。例えば、使用可能な周波数バンドが800MHz帯、2.4GHz帯、3.4GHz帯である場合、あるコンポーネントキャリアが800MHz帯、別のコンポーネントキャリアが2GHz帯、さらに別のコンポーネントキャリアが3.4GHz帯で送信されていてもよい。 [Career aggregation]
The carrier aggregation is a technique for aggregating (aggregating) frequencies (component carriers or frequency bands) of a plurality of different frequency bands (frequency bands) and treating them as one frequency (frequency band). For example, when five component carriers having a frequency bandwidth of 20 MHz are aggregated by carrier aggregation, the mobile station device having the capability of carrier aggregation considers these as one frequency bandwidth of 100 MHz and accesses them. The component carriers to be aggregated may be continuous frequencies, or may be frequencies at which all or part of them are discontinuous. For example, when the usable frequency band is 800 MHz band, 2.4 GHz band, and 3.4 GHz band, one component carrier is 800 MHz band, another component carrier is 2 GHz band, and another component carrier is 3.4 GHz band. It may be transmitted.
また、同一周波数帯、例えば2.4GHz帯内の連続または不連続の複数のコンポーネントキャリアを集約することも可能である。各コンポーネントキャリアの周波数帯域幅は20MHzより狭い周波数帯域幅であっても良く、各々周波数帯域幅が異なっていても良い。周波数帯域幅は、後方互換性を考慮して従来のセルの周波数帯域幅のいずれかと等しいことが望ましい。基地局装置は、滞留しているデータバッファ量や移動局装置から報告されるセルの受信品質、セル内の負荷やQoSなどの種々の要因に基づいて、移動局装置に割り当てる上りリンクまたは下りリンクのコンポーネントキャリアの数を増減することができる。なお、基地局装置が移動局装置に割り当てる(設定する、追加する)上りリンクコンポーネントキャリアの数は、下りリンクコンポーネントキャリアの数と同じか少ないことが望ましい。
Also, it is possible to aggregate a plurality of continuous or discontinuous component carriers in the same frequency band, for example, the 2.4 GHz band. The frequency bandwidth of each component carrier may be a frequency bandwidth narrower than 20 MHz, and the frequency bandwidth may be different from each other. The frequency bandwidth is preferably equal to one of the conventional cell frequency bandwidths in consideration of backward compatibility. The base station apparatus assigns uplink or downlink to the mobile station apparatus based on various factors such as the amount of data buffer that is staying, the reception quality of the cell reported from the mobile station apparatus, the load in the cell, and QoS. The number of component carriers can be increased or decreased. Note that the number of uplink component carriers that the base station apparatus assigns (sets or adds) to the mobile station apparatus is desirably the same as or less than the number of downlink component carriers.
[通信ネットワーク構成]
図10は、本発明の実施形態に係る通信ネットワーク構成の一例を示す図である。移動局装置2は、キャリア・アグリゲーションによって複数の周波数(コンポーネントキャリア、Band1~Band4)の周波数帯域を同時に用いて基地局装置1と無線接続することが可能な場合、通信ネットワーク構成としては、ある一つの基地局装置1が複数の周波数毎に送信機11~14(および図示しない4つの受信機)を備えており、各周波数の制御を一つの基地局装置1で行なう構成が制御の簡略化の観点から好適である。基地局装置1の構成は図10に限定されない。 [Communication network configuration]
FIG. 10 is a diagram illustrating an example of a communication network configuration according to the embodiment of the present invention. When themobile station apparatus 2 can be wirelessly connected to the base station apparatus 1 by using frequency bands of a plurality of frequencies (component carriers, Band 1 to Band 4) simultaneously by carrier aggregation, there is a certain communication network configuration. One base station apparatus 1 includes transmitters 11 to 14 (and four receivers (not shown)) for each of a plurality of frequencies, and a configuration in which control of each frequency is performed by one base station apparatus 1 simplifies control. It is preferable from the viewpoint. The configuration of the base station apparatus 1 is not limited to FIG.
図10は、本発明の実施形態に係る通信ネットワーク構成の一例を示す図である。移動局装置2は、キャリア・アグリゲーションによって複数の周波数(コンポーネントキャリア、Band1~Band4)の周波数帯域を同時に用いて基地局装置1と無線接続することが可能な場合、通信ネットワーク構成としては、ある一つの基地局装置1が複数の周波数毎に送信機11~14(および図示しない4つの受信機)を備えており、各周波数の制御を一つの基地局装置1で行なう構成が制御の簡略化の観点から好適である。基地局装置1の構成は図10に限定されない。 [Communication network configuration]
FIG. 10 is a diagram illustrating an example of a communication network configuration according to the embodiment of the present invention. When the
ただし、複数の周波数が連続する周波数であるなどの理由で、基地局装置1が一つの送信機で複数の周波数の送信を行なう構成であっても構わない。さらには、周波数毎に送受信のタイミングが異なるような構成であっても良い。送信機と受信機の数や送受信可能な周波数が異なっていてもよい。基地局装置1の送信機によって制御される各周波数の通信可能範囲はセルとしてみなされる。このとき、各周波数がカバーするエリア(セル)はそれぞれ異なる広さ、異なる形状であっても良い。また、カバーするエリアが周波数毎に異なっていてもよい。
However, the base station apparatus 1 may be configured to transmit a plurality of frequencies with a single transmitter because the plurality of frequencies are continuous frequencies. Furthermore, a configuration in which transmission / reception timing differs for each frequency may be used. The number of transmitters and receivers and the frequency at which transmission and reception can be performed may be different. The communicable range of each frequency controlled by the transmitter of the base station apparatus 1 is regarded as a cell. At this time, the areas (cells) covered by each frequency may have different widths and different shapes. Moreover, the area to cover may differ for every frequency.
ただし、後述する記載において、基地局装置1が構成するコンポーネントキャリアの周波数でカバーされるエリアのことをそれぞれセルと称して説明するが、これは本発明の各実施形態における移動局装置や基地局装置を実際に運用する通信システムにおけるセルの定義とは異なる可能性があることに注意する。例えば、ある通信システムでは、キャリア・アグリゲーションによって用いられるコンポーネントキャリアの一部のことを、セルではなく単なる追加の無線リソースと定義するかもしれない。また、従来のセルとは異なる拡張セルとして定義するかもしれない。本発明の各実施形態でコンポーネントキャリアをセルと称することで、実際に運用される通信システムにおけるセルの定義と異なる場合が発生したとしても、本発明の各実施形態の主旨には影響しない。
However, in the description to be described later, the area covered by the frequency of the component carrier that the base station apparatus 1 constitutes will be referred to as a cell, which is the mobile station apparatus or base station in each embodiment of the present invention. Note that the definition of a cell in a communication system that actually operates the device may be different. For example, in some communication systems, some of the component carriers used by carrier aggregation may be defined simply as additional radio resources rather than cells. Moreover, it may be defined as an extended cell different from the conventional cell. By referring to a component carrier as a cell in each embodiment of the present invention, even if a case that differs from the definition of a cell in an actually operated communication system occurs, the gist of each embodiment of the present invention is not affected.
なお、キャリア・アグリゲーションは、複数のコンポーネントキャリア(周波数帯域)を用いた複数のセルによる通信であり、セル・アグリゲーションとも称される。なお、移動局装置2は、周波数毎にリレー局装置(またはリピーター)を介して基地局装置1と無線接続されても良い。すなわち、本発明の各実施形態の基地局装置1は、リレー局装置に置き換えることができる。
Note that carrier aggregation is communication by a plurality of cells using a plurality of component carriers (frequency bands), and is also referred to as cell aggregation. Note that the mobile station apparatus 2 may be wirelessly connected to the base station apparatus 1 via a relay station apparatus (or repeater) for each frequency. That is, the base station apparatus 1 of each embodiment of the present invention can be replaced with a relay station apparatus.
3GPPが規定する第3世代の基地局装置1はノードB(NodeB)と称され、EUTRAおよびAdvanced EUTRAにおける基地局装置はイーノードB(eNodeB)と称される。なお、3GPPが規定する第3世代の移動局装置2はユーイー(User Equipment; UE)と称される。基地局装置1は移動局装置2が通信可能なエリアであるセルを管理し、セルは移動局装置2と通信可能なエリアの大きさに応じてマクロセルやフェムトセルやピコセル、ナノセルとも称される。また、移動局装置2がある基地局装置1と通信可能であるとき、その基地局装置1のセルのうち、移動局装置2との通信に使用しているセルは在圏セル(Serving cell)であり、その他のセルは周辺セル(Neighboring cell)と称される。つまり、キャリア・アグリゲーションを用いて移動局装置2と基地局装置1が複数のセルを用いて通信している場合、移動局装置2における在圏セルは複数存在することになる。
The third generation base station apparatus 1 defined by 3GPP is called Node B (NodeB), and the base station apparatus in EUTRA and Advanced EUTRA is called eNodeB (eNodeB). Note that the third generation mobile station apparatus 2 defined by 3GPP is referred to as “User Equipment (UE)”. The base station device 1 manages a cell that is an area where the mobile station device 2 can communicate, and the cell is also referred to as a macro cell, a femto cell, a pico cell, or a nano cell depending on the size of the area that can communicate with the mobile station device 2. . When the mobile station device 2 can communicate with a certain base station device 1, a cell used for communication with the mobile station device 2 among the cells of the base station device 1 is a serving cell (Serving cell). The other cells are referred to as neighboring cells. That is, when the mobile station apparatus 2 and the base station apparatus 1 communicate using a plurality of cells using carrier aggregation, there are a plurality of serving cells in the mobile station apparatus 2.
また、各実施形態において単に移動局装置または基地局装置と称した場合、キャリア・アグリゲーションによって異なる複数の上りリンク送信タイミングを持つセルを集約した通信をサポートする移動局装置および基地局装置のことを示す。
Further, in each embodiment, when simply referred to as a mobile station device or a base station device, a mobile station device and a base station device that support communication in which cells having a plurality of uplink transmission timings that differ depending on carrier aggregation are aggregated are supported. Show.
[コンポーネントキャリア設定]
図11は、本発明の実施形態に係る移動局装置2がキャリア・アグリゲーションを行なう場合に、基地局装置1が移動局装置2に対して設定する下りリンクコンポーネントキャリアと、上りリンクコンポーネントキャリアの対応関係の一例を示した図である。図11では、4個の下りリンクコンポーネントキャリア(下りリンクコンポーネントキャリアDL_CC1~DL_CC4)と3個の上りリンクコンポーネントキャリア(上りリンクコンポーネントキャリアUL_CC1~UL_CC3)の対応関係について示すが、本発明の実施形態が図11に示すコンポーネントキャリアの設定例の構成のみに限定されるということではない。 [Component carrier setting]
FIG. 11 shows the correspondence between the downlink component carrier set by thebase station device 1 for the mobile station device 2 and the uplink component carrier when the mobile station device 2 according to the embodiment of the present invention performs carrier aggregation. It is the figure which showed an example of the relationship. FIG. 11 shows the correspondence relationship between four downlink component carriers (downlink component carriers DL_CC1 to DL_CC4) and three uplink component carriers (uplink component carriers UL_CC1 to UL_CC3). The configuration is not limited to the configuration example of the component carrier shown in FIG.
図11は、本発明の実施形態に係る移動局装置2がキャリア・アグリゲーションを行なう場合に、基地局装置1が移動局装置2に対して設定する下りリンクコンポーネントキャリアと、上りリンクコンポーネントキャリアの対応関係の一例を示した図である。図11では、4個の下りリンクコンポーネントキャリア(下りリンクコンポーネントキャリアDL_CC1~DL_CC4)と3個の上りリンクコンポーネントキャリア(上りリンクコンポーネントキャリアUL_CC1~UL_CC3)の対応関係について示すが、本発明の実施形態が図11に示すコンポーネントキャリアの設定例の構成のみに限定されるということではない。 [Component carrier setting]
FIG. 11 shows the correspondence between the downlink component carrier set by the
図11中の下りリンクコンポーネントキャリアDL_CC1と上りリンクコンポーネントキャリアUL_CC1、下りリンクコンポーネントキャリアDL_CC2と上りリンクコンポーネントキャリアUL_CC2、および下りリンクコンポーネントキャリアDL_CC3と上りリンクコンポーネントキャリアUL_CC3はセル固有接続(Cell Specific Linkage)している。また、下りリンクコンポーネントキャリアDL_CC4のように、上りリンクコンポーネントキャリアの設定のない(セル固有接続のない)、下りリンクのみのコンポーネントキャリアをキャリア・アグリゲーションのために構成することも可能である。
In FIG. 11, the downlink component carrier DL_CC1 and the uplink component carrier UL_CC1, the downlink component carrier DL_CC2 and the uplink component carrier UL_CC2, and the downlink component carrier DL_CC3 and the uplink component carrier UL_CC3 are cell-specific connected (Cell Specific Linkage). ing. Further, as in the downlink component carrier DL_CC4, it is also possible to configure a component carrier only for the downlink without uplink component carrier setting (no cell specific connection) for carrier aggregation.
セル固有接続とは、上りリンクと下りリンクのコンポーネントキャリアの対応関係(連携関係、リンク情報)であり、典型的には報知情報の一部(System Information Block Type2; SIB2)でその対応関係が示される。セル固有接続は、SIB2 linkageとも称され、報知情報の一部として設定(コンフィギュレーション)が明示的に通知されるか、キャリア・アグリゲーションにおけるコンポーネントキャリア(セル)を追加する場合に、RRCメッセージ(レイヤ3メッセージ)で対応関係の設定が通知されるか、または明示的に指示されない場合に一意に決められる上りリンクと下りリンクの規定の対応関係の情報を用いるなどして暗黙的に設定が通知される。RRCメッセージを用いる場合、基地局装置1は、設定する当該下りリンクコンポーネントキャリアの報知情報で示される上りリンクコンポーネントキャリアと異なるセル固有接続の情報を移動局装置2に通知してもよい。
Cell-specific connection is the correspondence (linkage, link information) between uplink and downlink component carriers. Typically, a part of broadcast information (System 示 さ Information 一部 Block Type2; SIB2) indicates the correspondence. It is. The cell-specific connection is also referred to as SIB2 linkage. When the configuration (configuration) is explicitly notified as part of the broadcast information or when a component carrier (cell) in carrier aggregation is added, the RRC message (layer (3 messages), the setting of the corresponding relationship is notified, or when not explicitly instructed, the setting is notified implicitly by using information on the corresponding relationship between the uplink and the downlink specified uniquely. The When using the RRC message, the base station apparatus 1 may notify the mobile station apparatus 2 of cell-specific connection information different from the uplink component carrier indicated by the broadcast information of the downlink component carrier to be set.
これに対し、基地局装置1は、下りリンクコンポーネントキャリアと上りリンクコンポーネントキャリアの対応関係を、セル固有接続とは別に移動局装置2毎に個別に設定(個別接続;UE Specific Linkage)することも可能である。図11では下りリンクコンポーネントキャリアDL_CC3と上りリンクコンポーネントキャリアUL_CC2が個別接続されている。このとき、個別接続の設定はRRCメッセージ(レイヤ3メッセージ)で示される。基地局装置1は、物理ランダムアクセスチャネルの送信に必要な設定(コンフィギュレーション)を上りリンクコンポーネントキャリア毎、または上りリンク周波数毎に複数割り当てることも可能である。
On the other hand, the base station apparatus 1 may individually set the correspondence relationship between the downlink component carrier and the uplink component carrier for each mobile station apparatus 2 separately from the cell-specific connection (individual connection: UE Specific Linkage). Is possible. In FIG. 11, downlink component carrier DL_CC3 and uplink component carrier UL_CC2 are individually connected. At this time, the setting of the individual connection is indicated by an RRC message (layer 3 message). The base station apparatus 1 can also assign a plurality of settings (configurations) necessary for transmission of the physical random access channel for each uplink component carrier or each uplink frequency.
セル固有接続は、典型的には、移動局装置2がキャリア・アグリゲーションしていない場合に、基地局装置1との通信に用いる上りリンクと下りリンクの周波数の対応関係を示すために使用される。また、キャリア・アグリゲーション時に物理下りリンク制御チャネルによって通知される無線リソース割り当てが適用される上りリンクと下りリンクのコンポーネントキャリアの対応関係を示すために使用される。
The cell-specific connection is typically used to indicate a correspondence relationship between uplink and downlink frequencies used for communication with the base station device 1 when the mobile station device 2 is not carrier-aggregated. . Further, it is used to indicate a correspondence relationship between uplink and downlink component carriers to which radio resource allocation notified by the physical downlink control channel is applied during carrier aggregation.
個別接続は、典型的には、移動局装置2の上りリンクコンポーネントキャリアの送信電力制御に用いるパスロスを、どの下りリンクコンポーネントキャリアの品質を基に算出するかを示すために使用される。また、個別接続は、移動局装置2のコンポーネントキャリアのスケジューリング(無線リソース割り当て)を行う無線リソース割り当て情報を通知する物理下りリンク制御チャネルPDCCHが、どの下りリンクコンポーネントキャリアで送信されるかを示すために使用される。
The individual connection is typically used to indicate which downlink component carrier the path loss used for the transmission power control of the uplink component carrier of the mobile station apparatus 2 is calculated. Further, the individual connection indicates which downlink component carrier transmits the physical downlink control channel PDCCH that notifies the radio resource allocation information for performing the scheduling (radio resource allocation) of the component carrier of the mobile station apparatus 2. Used for.
無線リソース要求のための上りリンク制御チャネル設定の行われる上りリンクコンポーネントキャリアと、当該上りリンクコンポーネントキャリアとセル固有接続される下りリンクコンポーネントキャリアから構成されるセルは、プライマリセル(Primary Cell; PCell)と称される。また、プライマリセル以外のコンポーネントキャリアから構成されるセルは、セカンダリセル(Secondary cell; SCell)と称される。
A cell composed of an uplink component carrier in which an uplink control channel is set for a radio resource request and a downlink component carrier that is cell-specifically connected to the uplink component carrier is a primary cell (Primary Cell; PCell) It is called. A cell composed of component carriers other than the primary cell is referred to as a secondary cell (Secondary cell; SCell).
移動局装置2は、プライマリセルでページングメッセージの受信、報知情報の更新の検出、初期アクセス手順およびスケジューリング要求のためのランダムアクセスなどを行う一方、セカンダリセルではこれらを行わない。プライマリセルは活性化(Activation)および不活性化(Deactivation)の制御の対象外であるが(つまり必ず活性化しているとみなされる)、セカンダリセルは活性化された活性状態および不活性化された不活性状態(state)を持ち、これらの状態の変更は、基地局装置1から明示的に指定されるほか、コンポーネントキャリア毎に移動局装置2に設定されるタイマーに基づいて状態が変更される。前述したように、プライマリセルとセカンダリセルとを合わせてサービングセル(在圏セル)と称する。
The mobile station apparatus 2 receives a paging message in the primary cell, detects broadcast information update, performs random access for initial access procedures and scheduling requests, and does not perform these in the secondary cell. The primary cell is not subject to activation and deactivation control (that is, it is always considered activated), but the secondary cell is activated and deactivated. An inactive state (state) is provided, and these state changes are explicitly specified by the base station apparatus 1 and the state is changed based on a timer set in the mobile station apparatus 2 for each component carrier. . As described above, the primary cell and the secondary cell are collectively referred to as a serving cell.
セカンダリセルを識別するため、移動局装置2と基地局装置1は、プライマリセルおよびセカンダリセルに対してセルインデックスを割り振り、セルインデックスを用いることで追加、削除、変更の対象となる在圏セルを識別する。プライマリセルのセルインデックスは常に0(ゼロ)であり、セカンダリセルのセルインデックスは1~7のいずれか一つが割り振られる。
In order to identify the secondary cell, the mobile station device 2 and the base station device 1 allocate cell indexes to the primary cell and the secondary cell, and use the cell index to select a serving cell to be added, deleted, or changed. Identify. The cell index of the primary cell is always 0 (zero), and any one of 1 to 7 is allocated as the cell index of the secondary cell.
ここで、コンポーネントキャリアの活性化または不活性化(すなわちセカンダリセルの活性化または不活性化)は、レイヤ2の構成タスクで解釈可能なL2(レイヤ2)メッセージによって制御されるように構成される。すなわち、物理層(レイヤ1)でデコードされた後にレイヤ2で認識される制御コマンドによって活性化または不活性化が制御される。なお、EUTRAならびにAdvanced EUTRAにおけるL2メッセージは、MAC層で解釈される制御コマンド(MAC制御要素;MAC Control Element)によって通知される。
Here, activation or deactivation of component carriers (ie, activation or deactivation of secondary cells) is configured to be controlled by an L2 (Layer 2) message that can be interpreted by a Layer 2 configuration task. . That is, activation or deactivation is controlled by a control command recognized by layer 2 after being decoded by the physical layer (layer 1). Note that the L2 message in EUTRA and Advanced EUTRA is notified by a control command (MAC control element; MAC Control Element) interpreted in the MAC layer.
移動局装置2は、不活性化されたコンポーネントキャリア(セカンダリセル)のスケジューリングに用いる上りリンクグラント、および下りリンクグラント(下りリンクアサインメント)のモニタを停止してよい。すなわち、物理下りリンク制御チャネルのモニタを停止してよい。また、移動局装置2は、不活性化されたコンポーネントキャリア(セカンダリセル)の上りリンクに関して、上りリンク基準信号である周期的サウンディング基準信号(Periodic SRS)の送信を停止してもよい。また、移動局装置2は、不活性化されたコンポーネントキャリア(セカンダリセル)の上りリンクに関して、物理上りリンク制御チャネルの送信を停止しても良い。また、移動局装置2は、不活性化されたコンポーネントキャリア(セカンダリセル)の下りリンクに関して、活性化した状態よりも低いサンプリングレートで測定を実施してもよい。
The mobile station apparatus 2 may stop monitoring the uplink grant and downlink grant (downlink assignment) used for scheduling the deactivated component carrier (secondary cell). That is, monitoring of the physical downlink control channel may be stopped. Moreover, the mobile station apparatus 2 may stop transmission of the periodic sounding reference signal (Periodic SRS) which is an uplink reference signal regarding the uplink of the deactivated component carrier (secondary cell). Moreover, the mobile station apparatus 2 may stop transmission of a physical uplink control channel regarding the uplink of the deactivated component carrier (secondary cell). Further, the mobile station apparatus 2 may perform measurement at a sampling rate lower than that in the activated state with respect to the downlink of the deactivated component carrier (secondary cell).
[測定]
図12は、EUTRAにおける、移動局装置2ならびに基地局装置1のRRM(radio resource management)測定設定管理方法について説明するためのシーケンスチャート図である。 [Measurement]
FIG. 12 is a sequence chart for explaining an RRM (radio resource management) measurement setting management method of themobile station apparatus 2 and the base station apparatus 1 in EUTRA.
図12は、EUTRAにおける、移動局装置2ならびに基地局装置1のRRM(radio resource management)測定設定管理方法について説明するためのシーケンスチャート図である。 [Measurement]
FIG. 12 is a sequence chart for explaining an RRM (radio resource management) measurement setting management method of the
図12の例において、基地局装置1は、自局が運用する周波数としてF1とF2という異なる2つの周波数を使用可能であるとし、移動局装置2と基地局装置1は、周波数F1において無線接続が確立された状態(無線リソース制御接続状態(Radio Resource Control Connected:RRC_Connected))である。ここで、基地局装置1は、移動局装置2に対して通信中のセル(在圏セル)並びにその他セル(周辺セル)の受信品質を測定させるために測定設定メッセージを送信する(ステップS111)。測定設定メッセージには、測定される周波数(周波数F1と周波数F2)毎に少なくとも一つの測定設定情報が含まれている。測定設定情報は、測定IDと、測定対象周波数(measurement object)と、測定対象周波数に対応する測定対象周波数IDと、測定イベントを含んだ報告設定と、報告設定に対応する報告設定IDとで構成される。一つの測定対象周波数IDに対し複数の報告設定IDがリンクされるように構成されていても良い。同様に、複数の測定対象周波数IDに対して一つの報告設定IDがリンクされるように構成されていても良い。
In the example of FIG. 12, it is assumed that the base station apparatus 1 can use two different frequencies, F1 and F2, as frequencies operated by the own station, and the mobile station apparatus 2 and the base station apparatus 1 are wirelessly connected at the frequency F1. Is established (radio resource control connection state (Radio Resource Control Connected: RRC_Connected)). Here, the base station apparatus 1 transmits a measurement setting message to cause the mobile station apparatus 2 to measure the reception quality of the cell in communication (located cell) and other cells (neighboring cells) (step S111). . The measurement setting message includes at least one measurement setting information for each frequency (frequency F1 and frequency F2) to be measured. The measurement setting information includes a measurement ID, a measurement target frequency (measurement object), a measurement target frequency ID corresponding to the measurement target frequency, a report setting including a measurement event, and a report setting ID corresponding to the report setting. Is done. A plurality of report setting IDs may be linked to one measurement target frequency ID. Similarly, one report setting ID may be linked to a plurality of measurement target frequency IDs.
測定イベントとは、例えば、在圏セルのセル固有基準信号の受信品質が所定の閾値よりも下回った/上回ったとき、周辺セルのセル固有基準信号の受信品質が在圏セルよりも下回ったとき、周辺セルの受信品質が所定の閾値よりも上回ったとき、などの条件と、当該条件を判定するために用いるパラメータから構成される情報である。パラメータには、閾値、オフセット値、測定イベントの成立に必要な時間などの情報が設定される。
A measurement event is, for example, when the reception quality of a cell-specific reference signal of a serving cell falls below or exceeds a predetermined threshold, or when the reception quality of a cell-specific reference signal of a neighboring cell falls below the serving cell This is information composed of a condition such as when the reception quality of a neighboring cell exceeds a predetermined threshold, and a parameter used to determine the condition. Information such as a threshold value, an offset value, and a time required for establishment of a measurement event is set in the parameter.
移動局装置2は、ステップS112において、基地局装置1から設定された測定設定情報を内部情報として保存してから測定処理を開始する。具体的には、移動局装置2は測定IDと測定対象周波数IDと報告設定IDとを一つにリンクされるよう対応付けて管理し、各IDに対応する測定情報を基に測定を開始する。これらの3つのIDが一つにリンクされている場合、有効とみなして関連する測定を開始し、これらの3つのIDが一つにリンクされていない場合(いずれかのIDが設定されていない場合)、無効とみなして関連する測定は開始されない。そして、誤り無く測定設定情報を設定できた場合、移動局装置2は、ステップS113において測定設定完了メッセージを基地局装置1へ送信する。
In step S112, the mobile station device 2 stores the measurement setting information set from the base station device 1 as internal information, and then starts the measurement process. Specifically, the mobile station apparatus 2 manages the measurement ID, the measurement target frequency ID, and the report setting ID so as to be linked together, and starts measurement based on the measurement information corresponding to each ID. . If these three IDs are linked to one, it is considered valid and the associated measurement is started. If these three IDs are not linked to one (one of the IDs is not set) ), The relevant measurement is not started as invalid. If the measurement setting information can be set without error, the mobile station apparatus 2 transmits a measurement setting completion message to the base station apparatus 1 in step S113.
そして、移動局装置2において、設定された測定イベントのいずれかがパラメータに従い条件を満たした場合、当該測定イベントがトリガ(trigger)されたとして、測定報告メッセージを基地局装置1に対して送信する(ステップS114)。測定報告メッセージには、少なくともトリガされた測定イベントの報告設定IDにリンクした測定IDと、必要であれば関連するセルの測定結果が設定される。基地局装置1は測定IDがどの測定イベントの報告設定IDにリンクしているかを把握しているため、移動局装置2は測定報告メッセージで報告設定IDを通知する必要はない。
When any of the set measurement events satisfies the condition according to the parameter, the mobile station device 2 transmits a measurement report message to the base station device 1 assuming that the measurement event is triggered. (Step S114). In the measurement report message, at least the measurement ID linked to the report setting ID of the triggered measurement event and, if necessary, the measurement result of the associated cell are set. Since the base station apparatus 1 knows to which measurement event report setting ID the measurement ID is linked, the mobile station apparatus 2 does not need to notify the report setting ID in the measurement report message.
以上の事項を考慮しつつ、以下、添付図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、本発明の実施形態の説明において、本発明の実施形態に関連した公知の機能や構成についての具体的な説明が、本発明の実施形態の要旨を不明瞭にすると判断される場合には、その詳細な説明を省略する。
In consideration of the above matters, preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In the description of the embodiment of the present invention, when it is determined that a specific description of known functions and configurations related to the embodiment of the present invention obscures the gist of the embodiment of the present invention. Detailed description thereof will be omitted.
[第1の実施形態]
本発明の第1の実施形態について以下に説明する。 [First Embodiment]
A first embodiment of the present invention will be described below.
本発明の第1の実施形態について以下に説明する。 [First Embodiment]
A first embodiment of the present invention will be described below.
図1は、本発明の実施形態による基地局装置1の一例を示すブロック図である。本基地局装置1は、受信部101、復調部102、復号部103、制御部104、符号部105、変調部106、送信部107、ネットワーク信号送受信部108、上位レイヤ109で構成される。
FIG. 1 is a block diagram showing an example of a base station apparatus 1 according to an embodiment of the present invention. The base station apparatus 1 includes a reception unit 101, a demodulation unit 102, a decoding unit 103, a control unit 104, a coding unit 105, a modulation unit 106, a transmission unit 107, a network signal transmission / reception unit 108, and an upper layer 109.
上位レイヤ109は、下りリンクトラフィックデータと下りリンク制御データを符号部105へ出力する。符号部105は、入力された各データを符号化し、変調部106へ出力する。変調部106は、符号部105から入力された信号の変調を行なう。また、変調部106において変調された信号は、下りリンク基準信号が多重され、周波数領域の信号としてマッピングされる。送信部107は、変調部106から入力された信号を時間領域の信号へ変換し、変換した信号を既定の周波数の搬送波にのせて電力増幅を行なうと共に送信する。下りリンク制御データが配置される下りリンクデータチャネルは、典型的にはレイヤ3メッセージ(RRC(Radio Resource Control)メッセージ)を構成する。
The higher layer 109 outputs downlink traffic data and downlink control data to the encoding unit 105. The encoding unit 105 encodes each input data and outputs the encoded data to the modulation unit 106. Modulation section 106 modulates the signal input from encoding section 105. Further, the signal modulated in the modulation unit 106 is multiplexed with a downlink reference signal and mapped as a frequency domain signal. Transmitter 107 converts the signal input from modulator 106 into a time-domain signal, places the converted signal on a carrier having a predetermined frequency, performs power amplification, and transmits the signal. The downlink data channel in which the downlink control data is arranged typically constitutes a layer 3 message (RRC (Radio Resource Control) message).
また、受信部101は、移動局装置2(図2参照)からの受信信号をベースバンドのデジタル信号に変換する。受信部101で変換されたデジタル信号は、復調部102へ入力されて復調される。復調部102で復調された信号は、続いて復号部103へ入力されて復号される。復号部103は、受信信号を上りリンクトラフィックデータと上りリンク制御データに適切に分離し、それぞれ上位レイヤ109へ出力する。
Also, the receiving unit 101 converts a received signal from the mobile station device 2 (see FIG. 2) into a baseband digital signal. The digital signal converted by the reception unit 101 is input to the demodulation unit 102 and demodulated. The signal demodulated by the demodulator 102 is then input to the decoder 103 and decoded. Decoding section 103 appropriately separates the received signal into uplink traffic data and uplink control data, and outputs the separated signals to higher layer 109, respectively.
これら各ブロックの制御に必要な基地局装置制御情報は、上位レイヤ109より制御部104へ入力され、制御部104からは、送信に関連する基地局装置制御情報が送信制御情報として、符号部105、変調部106、送信部107の各ブロックに、受信に関連する基地局装置制御情報が受信制御情報として、受信部101、復調部102、復号部103の各ブロックに適切に入力される。
Base station apparatus control information necessary for controlling each of these blocks is input from the upper layer 109 to the control unit 104, and from the control unit 104, base station apparatus control information related to transmission is transmitted as transmission control information. The base station apparatus control information related to reception is appropriately input to each block of the reception unit 101, demodulation unit 102, and decoding unit 103 as reception control information in each block of the modulation unit 106 and transmission unit 107.
一方、ネットワーク信号送受信部108は、複数の基地局装置1間(または制御局装置(MME)、ゲートウェイ装置(Gateway)、MCE)と基地局装置1との間の制御メッセージの送信または受信を行なう。制御メッセージはネットワーク回線を経由して送受信される。制御メッセージは、S1インターフェースやX2インターフェースやM1インターフェースやM2インターフェースと呼ばれる論理インターフェース上でやり取りされる。図1において、その他の基地局装置1の構成要素は本実施形態に関係ないため省略する。
On the other hand, the network signal transmitting / receiving unit 108 transmits or receives a control message between a plurality of base station apparatuses 1 (or control station apparatus (MME), gateway apparatus (Gateway), MCE) and the base station apparatus 1. . Control messages are transmitted and received via a network line. Control messages are exchanged on logical interfaces called S1 interface, X2 interface, M1 interface, and M2 interface. In FIG. 1, the other components of the base station apparatus 1 are not related to the present embodiment, and are omitted.
図2は、本発明の実施形態に係る移動局装置2の一例を示すブロック図である。本移動局装置2は、受信部201、復調部202、復号部203、コンポーネントキャリア管理部204、制御部205、ランダムアクセス処理部206、符号部207、変調部208、送信部209、上位レイヤ210、測定部211で構成される。
FIG. 2 is a block diagram showing an example of the mobile station apparatus 2 according to the embodiment of the present invention. The mobile station apparatus 2 includes a reception unit 201, a demodulation unit 202, a decoding unit 203, a component carrier management unit 204, a control unit 205, a random access processing unit 206, a coding unit 207, a modulation unit 208, a transmission unit 209, and an upper layer 210. The measuring unit 211 is configured.
受信に先立ち、上位レイヤ210は、移動局装置制御情報を制御部205に出力する。制御部205は、受信に関する移動局装置制御情報を受信制御情報として、受信部201、復調部202、復号部203、測定部211へ適切に出力する。受信制御情報は、受信スケジュール情報として、復調情報、復号化情報、受信周波数帯域の情報、各チャネルに関する受信タイミング、多重方法、無線リソース配置情報などの情報が含まれている。
Prior to reception, the upper layer 210 outputs the mobile station apparatus control information to the control unit 205. The control unit 205 appropriately outputs the mobile station apparatus control information related to reception to the reception unit 201, the demodulation unit 202, the decoding unit 203, and the measurement unit 211 as reception control information. The reception control information includes information such as demodulation information, decoding information, reception frequency band information, reception timing for each channel, multiplexing method, and radio resource arrangement information as reception schedule information.
受信部201は、受信制御情報で通知された周波数帯域で、図示しない一つ以上の受信機を通じて、後述する基地局装置1から信号を受信し、受信した信号をベースバンドのデジタル信号に変換して、復調部202へ出力する。また、受信部201は受信した基準信号を測定部211へ出力する。復調部202は、受信信号を復調して復号部203へ出力する。復号部203は、受信制御情報に基づき復調された信号を正しく復号し、下りリンクトラフィックデータと下りリンク制御データに適切に分離し、それぞれ上位レイヤ210へ出力する。測定部211は、受信した基準信号のRSRPやRSRQやCSIなどを測定し、測定結果を上位レイヤ210へ出力する。
The receiving unit 201 receives a signal from the base station apparatus 1 to be described later through one or more receivers (not shown) in the frequency band notified by the reception control information, and converts the received signal into a baseband digital signal. To the demodulator 202. In addition, the reception unit 201 outputs the received reference signal to the measurement unit 211. Demodulation section 202 demodulates the received signal and outputs it to decoding section 203. The decoding unit 203 correctly decodes the demodulated signal based on the reception control information, appropriately separates it into downlink traffic data and downlink control data, and outputs them to the upper layer 210, respectively. The measurement unit 211 measures RSRP, RSRQ, CSI, and the like of the received reference signal and outputs the measurement result to the upper layer 210.
上位レイヤ210は、下りリンク制御データにコンポーネントキャリアの追加、修正または解放などの情報や、割り当てられたコンポーネントキャリア(あるいは上りリンクと下りリンクのコンポーネントキャリアを合わせたセル)の活性化/不活性化情報が含まれる場合はコンポーネントキャリア管理部204に当該情報を通知する。コンポーネントキャリア管理部204は、通知された内容に基づき、自局に既に割り当てられたセカンダリセル番号のコンポーネントキャリア(セル)のパラメータ修正や解放をおこなったり、あるいは新たなセカンダリセル番号のコンポーネントキャリア(セル)のパラメータを記憶したり、各セカンダリセルの活性/不活性状態の記憶をおこなったりする。また、割り当てられた複数のセカンダリセルが異なる送受信タイミングを持つ場合には、同一の送受信タイミングとなる1つ以上のセルによって構成されるセルグループの情報を記憶する。前記セルグループの情報には、セルグループ毎の送受信タイミング、送信タイミングタイマー計時状況などの情報が含まれる。なお、コンポーネントキャリアの活性化/不活性化情報は、上位レイヤ210を介さずに復号部203からコンポーネントキャリア管理部204に通知されてもよい。
The upper layer 210 activates / deactivates information such as addition, modification, or release of a component carrier to downlink control data, and an allocated component carrier (or a cell that combines uplink and downlink component carriers). When the information is included, the component carrier management unit 204 is notified of the information. Based on the notified content, the component carrier management unit 204 corrects or releases the parameter of the component carrier (cell) of the secondary cell number already assigned to the own station, or the component carrier (cell of a new secondary cell number). ) And the active / inactive state of each secondary cell. Further, when a plurality of assigned secondary cells have different transmission / reception timings, information on a cell group constituted by one or more cells having the same transmission / reception timing is stored. The information on the cell group includes information such as transmission / reception timing for each cell group, transmission timing timer timing status, and the like. The activation / deactivation information of the component carrier may be notified from the decoding unit 203 to the component carrier management unit 204 without passing through the upper layer 210.
また、送信に先立ち、上位レイヤ210は、制御部205へ移動局装置制御情報を出力する。制御部205は、送信に関する移動局装置制御情報を送信制御情報として、ランダムアクセス処理部206、符号部207、変調部208、送信部209へ適切に出力する。送信制御情報は、送信信号の上りリンクスケジューリング情報として、符号化情報、変調情報、送信周波数帯域の情報、各チャネルに関する送信タイミング、多重方法、無線リソース配置情報などの情報が含まれている。
Also, prior to transmission, the upper layer 210 outputs mobile station apparatus control information to the control unit 205. The control unit 205 appropriately outputs the mobile station apparatus control information related to transmission to the random access processing unit 206, the encoding unit 207, the modulation unit 208, and the transmission unit 209 as transmission control information. The transmission control information includes information such as encoding information, modulation information, transmission frequency band information, transmission timing for each channel, multiplexing method, and radio resource arrangement information as uplink scheduling information of the transmission signal.
上位レイヤ210は、符号部207へ上りリンクトラフィックデータと上りリンク制御データを上りリンクチャネルに応じて適切に出力する。符号部207は送信制御情報に従い、各データを適切に符号化し、変調部208に出力する。変調部208は、符号部207で符号化された信号の変調を行なう。また、変調部208は、変調された信号に対して下りリンクリファレンスシグナルを多重し、周波数バンドにマッピングする。
The upper layer 210 appropriately outputs the uplink traffic data and the uplink control data to the encoding unit 207 according to the uplink channel. The encoding unit 207 appropriately encodes each data according to the transmission control information and outputs the data to the modulation unit 208. Modulating section 208 modulates the signal encoded by encoding section 207. Also, the modulation unit 208 multiplexes the downlink reference signal with the modulated signal and maps it to the frequency band.
送信部209は、変調部208から出力された周波数バンドの信号を時間領域の信号へ変換し、変換した信号を既定の周波数の搬送波にのせて電力増幅を行なうと共に図示しない1つ以上の送信機から送信する。
The transmission unit 209 converts the frequency band signal output from the modulation unit 208 into a time-domain signal, places the converted signal on a carrier having a predetermined frequency, performs power amplification, and at least one transmitter (not shown) Send from.
また、復号部203で復号した信号に、ハンドオーバ前の送信タイミングをハンドオーバ後にも適用するセルグループを示す情報が含まれていた場合、前記情報は上位レイヤ210を通じて(あるいは復号部203から直接)コンポーネントキャリア管理部204およびランダムアクセス処理部206に通知される。ランダムアクセス処理部206は、通知された情報と、コンポーネントキャリア管理部204から取得した各コンポーネントキャリア情報に基づき、ハンドオーバ後のランダムアクセス手順の要否を判断する。
Further, when the signal decoded by the decoding unit 203 includes information indicating a cell group to which the transmission timing before the handover is applied even after the handover, the information is transmitted through the upper layer 210 (or directly from the decoding unit 203). The carrier management unit 204 and the random access processing unit 206 are notified. The random access processing unit 206 determines whether or not the random access procedure after the handover is necessary based on the notified information and each component carrier information acquired from the component carrier management unit 204.
また、ハンドオーバ後、コンポーネントキャリア管理部204は、ハンドオーバ前の送信タイミングを適用するセルグループに対して、活性状態とする処理を行う。また、前記セルグループに属するセルにおいては、送信タイミングタイマーが計時中であれば、ランダムアクセス手順を行わずに上りリンク送信を行うことが可能である。あるいは、ハンドオーバ後は不活性状態としつつ、送信タイミングタイマーの計時を継続してもよい。後者の場合、基地局装置1から前記セルグループの活性化を指示する信号を復調部203で復調した場合に、該当するセルを活性状態にする処理を行い、活性状態となったセルに対してはランダムアクセス手順を行わずに上りリンク送信を行う。前記送信タイミングタイマーは、移動局装置に対して1つのみが用意されていても、セルグループ毎に用意されていてもよい。
Further, after the handover, the component carrier management unit 204 performs a process of bringing the cell group to which the transmission timing before the handover is applied into an active state. In addition, in the cells belonging to the cell group, it is possible to perform uplink transmission without performing a random access procedure if the transmission timing timer is counting. Alternatively, the timing of the transmission timing timer may be continued while inactive after handover. In the latter case, when the demodulating unit 203 demodulates the signal instructing activation of the cell group from the base station apparatus 1, the corresponding cell is activated, and the cell that has become active Performs uplink transmission without performing a random access procedure. Only one transmission timing timer may be prepared for each mobile station apparatus or may be prepared for each cell group.
図2において、その他の移動局装置2の構成要素は本実施形態に関係ないため省略してある。
In FIG. 2, other components of the mobile station apparatus 2 are omitted because they are not related to the present embodiment.
次に、基地局装置と移動局装置との間の無線インターフェースプロトコルの構造を示す。図3はユーザ平面(user plane; U-plane)の無線プロトコル構造(radio protocol architecture)を示すブロック図である。また、図4は制御平面(control plane; C-plane)の無線プロトコル構造を示すブロック図である。ユーザ平面は、ユーザデータ送受信のためのプロトコルスタック(protocol stack)であり、制御平面は、制御信号送受信のためのプロトコルスタックである。
Next, the structure of the radio interface protocol between the base station apparatus and the mobile station apparatus is shown. FIG. 3 is a block diagram showing a radio protocol structure (radio protocol) of a user plane (user plane). FIG. 4 is a block diagram showing a radio protocol structure of a control plane (control plane; C plane). The user plane is a protocol stack for user data transmission / reception, and the control plane is a protocol stack for control signal transmission / reception.
図3及び図4において、第1の階層(レイヤ1)である物理層(Physical layer; PHY)では、異なる物理階層間、すなわち、送信側と受信側の物理層間で前述の物理チャネルを用いて通信がおこなわれる。物理層は、上位にある媒体アクセス制御(Medium Access Control; MAC)層にトランスポートチャネル(Transport channel)を介して連結されており、このトランスポートチャネルを介して物理層はMAC層に情報転送サービス(information transfer service)をおこなう。
3 and 4, the physical layer (Physical layer), which is the first layer (layer 1), uses the above-described physical channel between different physical layers, that is, between the physical layer on the transmission side and the reception side. Communication takes place. The physical layer is connected to the upper medium access control (Medium Access Control; MAC) layer via a transport channel (Transport channel), through which the physical layer transfers information to the MAC layer. Perform (information transfer) service).
第2の階層(レイヤ2)のMAC層では、論理チャネル(logical channel)とトランスポートチャネルのマッピング、HARQ(Hybrid Automatic Repeat reQuest)によるエラー訂正、論理チャネル間の優先度に基づいた転送処理などがおこなわれる。MAC層は、論理チャネルを介して上位階層である無線リンク制御(Radio Link Control; RLC)層と連結される。
In the MAC layer of the second layer (layer 2), mapping between logical channels (logical channels) and transport channels, error correction by HARQ (Hybrid Automatic Automatic Repeats reQuest), transfer processing based on priority between logical channels, etc. It is carried out. The MAC layer is connected to a radio link control (Radio Link Control; RLC) layer, which is an upper layer, via a logical channel.
第2の階層のRLC層は、データ転送の信頼性のサポートをおこなう。RLC層にはデータの送信方法に応じて透過モード(Transparent Mode; TM)、非応答モード(Unacknowledged Mode; UM)及び応答モード(Acknowledged Mode; AM)の3種類の動作モードが存在する。AMでは、ARQによるエラー訂正やプロトコルエラー検出などがおこなわれる。
The RLC layer in the second layer supports data transfer reliability. There are three types of operation modes in the RLC layer, depending on the data transmission method, transparent mode (Transparent Mode; TM), non-acknowledged mode (Unacknowledged Mode; UM), and response mode (Acknowledged Mode; AM). In AM, error correction by ARQ, protocol error detection, and the like are performed.
第2の階層のPDCP(Packet Data Convergence Protocol)層は、IPパケットヘッダサイズを減らすヘッダ圧縮(header compression)やデータの暗号化、暗号の復号化などをおこなう。
The PDCP (Packet Data Convergence Protocol) layer in the second layer performs header compression to reduce the IP packet header size, data encryption, and decryption.
第3階層(レイヤ3)の無線リソース制御(Radio Resource Control; RRC)層は、制御平面でのみ定義される。RRC層は、NAS(non-access stratum)やAS(access stratum)関連情報の報知や、RRC接続の管理(Establishment/maintenance/release)、無線ベアラ(Radio Bearer; RB)の設定(configuration)、再設定(re-configuration)及び解放(release)、モビリティ(ハンドオーバ)、測定の管理とレポート、QoS管理などをおこなう。
The radio resource control (Radio Resource Control; RRC) layer of the third layer (layer 3) is defined only in the control plane. The RRC layer broadcasts NAS (non-access stratum) and AS (access stratum) related information, manages RRC connection (Establishment / maintenance / release), configures radio bearer (Radio Bearer; RB), re- It performs re-configuration and release, mobility (handover), measurement management and reporting, QoS management, and the like.
RRC層の上位に位置するNAS層は、セッション管理やモビリティ管理などをおこなう。
The NAS layer located above the RRC layer performs session management and mobility management.
ここで、基地局装置1のMAC層およびRRC層は、上位レイヤ109の一部として存在する。また、移動局装置2のMAC層は、コンポーネントキャリア管理部204の一部、ランダムアクセス処理部206および上位レイヤ209の一部として存在し、移動局装置2のRRC層は、コンポーネントキャリア管理部204の一部および上位レイヤ209の一部として存在する。
Here, the MAC layer and the RRC layer of the base station device 1 exist as part of the upper layer 109. The MAC layer of the mobile station apparatus 2 exists as a part of the component carrier management unit 204, the random access processing unit 206, and a part of the upper layer 209, and the RRC layer of the mobile station apparatus 2 includes the component carrier management unit 204. And a part of the upper layer 209.
続いて、測定部211について、図5を用いて説明を行なう。
Subsequently, the measurement unit 211 will be described with reference to FIG.
測定部211はRRC層基準信号測定部51とPHY層基準信号測定部52とを含む。PHY層基準信号測定部52は、受信部201から入力される基準信号のRSRPやRSRQ、チャネル状態などを測定し、RRC層基準信号測定部51へ通知する。RRC層基準信号測定部51は、上位レイヤ210から通知されるCSI基準信号管理測定設定によって設定された測定対象セルにおいて、PHY層基準信号測定部52から通知された個々の測定結果を必要であれば平均化し、報告設定に合致するか否かの判断をおこない、測定結果を上位レイヤ210へ通知する。また、RRC層基準信号測定部51には、コンポーネントキャリア管理部204から、MAC層で管理されているコンポーネントキャリアの活性/不活性状態情報が入力される。RRC層基準信号測定部51は、入力されたコンポーネントキャリアの活性/不活性状態情報に基づき、不活性状態のコンポーネントキャリアの基準信号の測定を停止することができる。
The measurement unit 211 includes an RRC layer reference signal measurement unit 51 and a PHY layer reference signal measurement unit 52. The PHY layer reference signal measurement unit 52 measures the RSRP, RSRQ, channel state, and the like of the reference signal input from the reception unit 201 and notifies the RRC layer reference signal measurement unit 51 of the measurement. The RRC layer reference signal measurement unit 51 needs individual measurement results notified from the PHY layer reference signal measurement unit 52 in the measurement target cell set by the CSI reference signal management measurement setting notified from the upper layer 210. If it is averaged, it is determined whether or not it matches the report setting, and the measurement result is notified to the upper layer 210. In addition, the RRC layer reference signal measurement unit 51 receives from the component carrier management unit 204 the active / inactive state information of the component carrier managed in the MAC layer. The RRC layer reference signal measurement unit 51 can stop the measurement of the reference signal of the component carrier in the inactive state based on the input active / inactive state information of the component carrier.
続いて、本実施形態の通信システムにおけるCSI基準信号の測定手順について、図6を用いて説明を行なう。
Subsequently, the measurement procedure of the CSI reference signal in the communication system of the present embodiment will be described with reference to FIG.
ここで、従来のCSI基準信号設定はRRCメッセージの情報要素(Information element; IE)であるPhysicalConfigDedicatedおよびPhysicalConfigDedicatedSCell-r10に含まれる情報要素(CSI-RS-Config-r10)を用いて通知され、PCellおよび各SCellに1種類ずつ設定することが可能であった。以下の説明において、本実施形態におけるCSI基準信号設定も従来と同様にPhysicalConfigDedicatedおよびPhysicalConfigDedicatedSCell-r10の情報要素を用いて通知されるものとして説明をおこなうが、これに限定されるものではなく、RRCメッセージの情報要素を新たに定義して通知してもよいし、後述するCSI基準信号管理測定設定に含めて通知してもよい。
Here, the conventional CSI reference signal setting is notified by using the information element (CSI-RS-Config-r10) included in PhysicalConfigDedicatedSphyl-r10 and PhysicalConfigDedicatedScell-r10, which are information elements (Information element; IE) of the RRC message. One type could be set for each SCell. In the following description, the CSI reference signal setting in the present embodiment will be described as being notified using the information elements of PhysicalConfigDedicatedSted and PhysicalConfigDedicatedSCell-r10 as before, but is not limited to this, and is not limited to this. This information element may be newly defined and notified, or may be included in a CSI reference signal management measurement setting described later and notified.
図6において、まず、基地局装置1は移動局装置2に対して、RRCメッセージを用いて1または複数のCSI基準信号設定を通知する(ステップS61)。ここで通知されるCSI基準信号設定には、CSI基準信号の信号系列を一意に示す情報と、CSI基準信号の配置を示すリソース情報と、複数のCSI基準信号設定を識別するためのインデックス(第1の識別子)とが含まれる。例えば、このインデックスを0からの連番として定義する場合、各セル(PCellおよび各SCell)でそれぞれ0からの連番としてもよいし、すべてのセルのすべての設定に対して0からの連番としてもよい。あるいは、CSI基準信号の信号系列が各セル内の設定ごとに異なる場合は、この信号系列を一意に示す情報をインデックスの代用とすることもできる。また、前記CSI基準信号設定は完全な設定のリストを変更がある度に通知する方法でもよいし、追加・修正、削除の情報要素を用いて、個々の設定を追加・修正あるいは削除できるようにする方法でもよい。
In FIG. 6, first, the base station apparatus 1 notifies the mobile station apparatus 2 of one or more CSI reference signal settings using an RRC message (step S61). The CSI reference signal setting notified here includes information uniquely indicating the signal sequence of the CSI reference signal, resource information indicating the arrangement of the CSI reference signal, and an index (first number) for identifying a plurality of CSI reference signal settings. 1 identifier). For example, when this index is defined as a sequential number from 0, it may be a sequential number from 0 in each cell (PCell and each SCell), or a sequential number from 0 for all settings of all cells. It is good. Alternatively, when the signal sequence of the CSI reference signal is different for each setting in each cell, information uniquely indicating this signal sequence can be used as an index substitute. In addition, the CSI reference signal setting may be a method of notifying a complete setting list every time there is a change, or by adding, correcting, or deleting information elements so that individual settings can be added, corrected, or deleted. It is also possible to do it.
次に、基地局装置1は移動局装置2に対して、RRCメッセージを用いてCSI基準信号管理測定設定(CoMP Resource Management setとも称する)を通知する(ステップS62)。ここで、CSI基準信号管理測定とは、CoMP通信で使用するCSI基準信号を選択するために前記CSI基準信号設定で設定されたCSI基準信号の受信品質(RSRPやRSRQ)を測定することを意味する。CSI基準信号管理測定設定には、例えばセルインデックスなどの測定対象となるセルを一意に示す設定(第2の識別子)と、報告設定と、前記2つの設定の組み合わせに対して一意に紐付けされる測定ID(第3の識別子)とが含まれる。報告設定には、周期的(Periodic)な報告かイベント発生時の報告か、RSRPとRSRQのどちら(あるいは両方)を報告するのか、などの情報が含まれる。また、測定イベントとは、例えば、測定対象セルの任意のCSI基準信号の受信品質が所定の閾値よりも下回った/上回ったとき、任意のCSI基準信号の受信品質が特定のCSI基準信号の受信品質を下回った/上回ったとき、などの条件と、当該条件を判定するために用いるパラメータとで構成される情報である。パラメータには閾値や、オフセット値、測定イベントの成立に必要な時間などが設定される。
Next, the base station apparatus 1 notifies the mobile station apparatus 2 of the CSI reference signal management measurement setting (also referred to as CoMP Resource Management set) using the RRC message (step S62). Here, the CSI reference signal management measurement means measuring the reception quality (RSRP or RSRQ) of the CSI reference signal set in the CSI reference signal setting in order to select the CSI reference signal used in CoMP communication. To do. The CSI reference signal management measurement setting is uniquely associated with a combination of a setting (second identifier) that uniquely indicates a cell to be measured, such as a cell index, a report setting, and the two settings. Measurement ID (third identifier). The report setting includes information such as whether to report periodically (Periodic) or when an event occurs, whether to report RSRP or RSRQ (or both). Also, the measurement event is, for example, when the reception quality of an arbitrary CSI reference signal in a measurement target cell is lower than or exceeds a predetermined threshold value, and the reception quality of an arbitrary CSI reference signal is reception of a specific CSI reference signal. It is information composed of conditions such as when quality is below / above and parameters used to determine the conditions. The parameter is set with a threshold, an offset value, a time required for establishment of a measurement event, and the like.
前記2つの設定と測定IDの追加・変更や削除を個別におこなうことができるように、それぞれに対して追加・変更や削除のための情報要素を持つようにしてもよい。例えば、2つの測定対象セルと3つの報告設定が通知され、前記セルと報告設定の組み合わせに対して3つの測定IDが設定される場合について図7を用いて説明する。
The information elements for addition / change / deletion may be provided for each of the two settings and the measurement ID so that the addition / change / deletion can be performed individually. For example, a case where two measurement target cells and three report settings are notified and three measurement IDs are set for the combination of the cell and the report setting will be described with reference to FIG.
基地局装置1は、測定対象セルとして、セルインデックス#1のセルとセルインデックス#2のセルに、それぞれ識別子0と1を割り当てて移動局装置2に通知する。また、基地局装置1は、測定設定として、報告設定1と報告設定2と報告設定3に、それぞれ識別子0,1,2を割り当てて移動局装置2に通知する。さらに基地局装置1は、前記測定セルの識別子と前記報告設定の識別子の組み合わせに対して紐付けされる測定IDを移動局装置2に通知する。
The base station apparatus 1 assigns identifiers 0 and 1 to the cell with the cell index # 1 and the cell with the cell index # 2 as measurement target cells, and notifies the mobile station apparatus 2 of them. Further, the base station apparatus 1 assigns identifiers 0, 1, and 2 to report setting 1, report setting 2, and report setting 3, respectively, as measurement settings, and notifies the mobile station apparatus 2 of them. Furthermore, the base station apparatus 1 notifies the mobile station apparatus 2 of the measurement ID associated with the combination of the measurement cell identifier and the report setting identifier.
図7では、測定ID#0として、識別子0の測定対象セルと識別子0の報告設定との組み合わせが指定されている。同様に、識別子0の測定対象セルと識別子1の報告設定との組み合わせが測定ID#1に指定され、識別子1の測定対象セルと識別子2の報告設定との組み合わせが測定ID#2に指定されている。
In FIG. 7, a combination of the measurement target cell with identifier 0 and the report setting with identifier 0 is designated as measurement ID # 0. Similarly, the combination of the measurement target cell of identifier 0 and the report setting of identifier 1 is designated as measurement ID # 1, and the combination of the measurement target cell of identifier 1 and the report setting of identifier 2 is designated as measurement ID # 2. ing.
ここでは、一つの測定対象セルに対して複数の報告が設定される場合を前提としているが、一つの測定対象セルに対して一つの報告設定のみが設定される場合、測定対象セルを一意に示す設定(例えばセルインデックス)を測定IDの代用としてもよい。
Here, it is assumed that multiple reports are set for one measurement target cell, but when only one report setting is set for one measurement target cell, the measurement target cell is uniquely set. The setting shown (for example, cell index) may be used as a substitute for the measurement ID.
再度図6を参照して、ステップS62でCSI基準信号管理測定設定を通知された移動局装置2は、通知された測定設定を内部情報として保存する(ステップS63)。具体的には、移動局装置2は測定IDと測定対象セルの識別子と報告設定の識別子とを一つに紐付けして管理し、測定をおこなう。測定IDに紐付けられた測定対象セルの識別子と報告設定の識別子が存在する場合、設定を有効とみなして前記紐付けられた測定対象セルの測定をおこない、測定IDに紐付けられた測定対象セルの識別子あるいは報告設定の識別子のどちらかあるいは両方が存在しない場合、設定を無効とみなして前記測定IDに関連する測定はおこなわない。そして、誤り無く測定設定情報を設定できた場合、移動局装置2は、基地局装置1にCSI基準信号管理測定設定完了の通知をおこない(ステップS64)、RRC層基準信号測定部51において基準信号の測定を開始する。
Referring to FIG. 6 again, the mobile station apparatus 2 notified of the CSI reference signal management measurement setting in step S62 stores the notified measurement setting as internal information (step S63). Specifically, the mobile station apparatus 2 performs measurement by associating and managing the measurement ID, the measurement target cell identifier, and the report setting identifier. When the measurement target cell identifier and report setting identifier associated with the measurement ID exist, the measurement is performed on the measurement target cell associated with the setting as valid, and the measurement target associated with the measurement ID When either or both of the cell identifier and the report setting identifier do not exist, the setting is regarded as invalid and the measurement related to the measurement ID is not performed. If the measurement setting information can be set without error, the mobile station apparatus 2 notifies the base station apparatus 1 of CSI reference signal management measurement setting completion (step S64), and the RRC layer reference signal measurement unit 51 performs the reference signal. Start measuring.
RRC層基準信号測定部51は、コンポーネントキャリア管理部204から、測定対象となるセル(コンポーネントキャリア)の活性/不活性状態情報を取得し、測定対象セルが活性状態であり、かつ報告設定の条件を満たす場合に、基地局装置1に対して、RRCメッセージを用いてCSI基準信号管理測定報告を送信する(ステップS65およびステップS66)。CSI基準信号管理測定報告には、測定IDと、CSI基準信号設定通知で設定されたインデックスとを含むことが好ましい。一つの測定対象セルに対して一つの報告設定のみが設定される場合であり、かつセル毎にCSI基準信号管理測定報告をおこなう場合には、測定IDを不要としてもよい。
The RRC layer reference signal measurement unit 51 acquires the active / inactive state information of the measurement target cell (component carrier) from the component carrier management unit 204, the measurement target cell is in the active state, and the report setting condition When satisfy | filling, CSI reference signal management measurement report is transmitted with respect to the base station apparatus 1 using a RRC message (step S65 and step S66). The CSI reference signal management measurement report preferably includes the measurement ID and the index set by the CSI reference signal setting notification. When only one report setting is set for one measurement target cell and CSI reference signal management measurement report is performed for each cell, the measurement ID may not be required.
一方、RRC層基準信号測定部51は、コンポーネントキャリア管理部204から、測定対象となるセル(コンポーネントキャリア)の活性/不活性状態情報を取得し、測定対象セルが不活性状態である場合には、ステップS65において、ステップS66のCSI基準信号管理測定報告を行わないように制御する。例えば、RRC層基準信号測定部51は、PHY層基準信号測定部52から通知された測定結果を破棄して報告条件を満たすか否かの判断自体をおこなわないようにしてもよいし、コンポーネントキャリア管理部204からPHY層基準信号測定部52に活性/不活性状態情報を通知し、測定対象セルが不活性状態である場合に、PHY層における基準信号測定を停止するようにしてもよい。
On the other hand, the RRC layer reference signal measurement unit 51 acquires the active / inactive state information of the measurement target cell (component carrier) from the component carrier management unit 204, and when the measurement target cell is in an inactive state, In step S65, control is performed so that the CSI reference signal management measurement report in step S66 is not performed. For example, the RRC layer reference signal measurement unit 51 may discard the measurement result notified from the PHY layer reference signal measurement unit 52 so as not to determine whether or not the reporting condition is satisfied. The management unit 204 may notify the PHY layer reference signal measurement unit 52 of the active / inactive state information, and when the measurement target cell is in an inactive state, the reference signal measurement in the PHY layer may be stopped.
すなわち、基地局装置1は、CSI基準信号設定とCSI基準信号管理測定設定とを移動局装置2に通知し、移動局装置2は、前記CSI基準信号管理測定設定で指定された測定対象セル(測定オブジェクト)において、MAC層で設定される前記セルの活性/不活性状態が活性状態である場合に、前記セルに設定されたCSI基準信号設定のCSI基準信号の受信品質を測定するCSI基準信号管理測定を行う。さらに、移動局装置2は、前記CSI基準信号管理測定によって得られるCSI基準信号管理測定報告を、RRCメッセージを用いて基地局装置1に送信する。このように構成することによって、基地局装置1は、測定の必要なセルをMAC層でのシグナリングに基づき制御することができるため、RRCメッセージで測定の必要なセルを再設定する必要がなくなり、効率的かつ高速に測定対象セルを制御することができる。
That is, the base station apparatus 1 notifies the mobile station apparatus 2 of the CSI reference signal setting and the CSI reference signal management measurement setting, and the mobile station apparatus 2 measures the measurement target cell specified by the CSI reference signal management measurement setting ( CSI reference signal for measuring the reception quality of the CSI reference signal set in the CSI reference signal set in the cell when the active / inactive state of the cell set in the MAC layer is the active state in the measurement object) Perform management measurements. Further, the mobile station apparatus 2 transmits a CSI reference signal management measurement report obtained by the CSI reference signal management measurement to the base station apparatus 1 using an RRC message. By configuring in this way, the base station apparatus 1 can control a cell that requires measurement based on signaling in the MAC layer, so it is not necessary to reconfigure a cell that requires measurement with an RRC message, The measurement target cell can be controlled efficiently and at high speed.
なお、測定対象セルと報告設定の追加・修正、削除は任意のタイミングでおこなわれ、更新の際にはステップS63の設定の有効/無効の判断がおこなわれる。
It should be noted that addition / correction / deletion of the measurement target cell and the report setting is performed at an arbitrary timing, and the validity / invalidity of the setting in step S63 is determined at the time of update.
[第2の実施形態]
以下、本発明の第2の実施形態について説明する。第1の実施形態ではMAC層の制御によるセルの活性/不活性状態に基づいて、RRC層で基準信号測定および報告を行うか否かを判断する例を示したが、本実施形態ではCSI基準信号管理測定の設定あるいは報告設定に、セルが不活性状態である場合の測定を行うか否かの情報が含まれる例を示す。 [Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described. In the first embodiment, an example in which it is determined whether or not to perform reference signal measurement and reporting in the RRC layer based on the activation / inactivation state of the cell by the control of the MAC layer has been described. An example is shown in which information on whether or not to perform measurement when the cell is in an inactive state is included in the signal management measurement setting or report setting.
以下、本発明の第2の実施形態について説明する。第1の実施形態ではMAC層の制御によるセルの活性/不活性状態に基づいて、RRC層で基準信号測定および報告を行うか否かを判断する例を示したが、本実施形態ではCSI基準信号管理測定の設定あるいは報告設定に、セルが不活性状態である場合の測定を行うか否かの情報が含まれる例を示す。 [Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described. In the first embodiment, an example in which it is determined whether or not to perform reference signal measurement and reporting in the RRC layer based on the activation / inactivation state of the cell by the control of the MAC layer has been described. An example is shown in which information on whether or not to perform measurement when the cell is in an inactive state is included in the signal management measurement setting or report setting.
本実施形態の説明で用いる通信システム(基地局装置1および移動局装置2)は、第1の実施形態における、図1、および図2とそれぞれ同様であるので詳細な説明は繰り返さない。また、通信に用いられるメッセージも第1の実施形態と同様に新規のメッセージの利用あるいは既存のメッセージの流用が可能である。
Since the communication system (base station apparatus 1 and mobile station apparatus 2) used in the description of this embodiment is the same as that in FIG. 1 and FIG. 2 in the first embodiment, detailed description will not be repeated. Also, messages used for communication can use new messages or divert existing messages as in the first embodiment.
続いて、本実施形態における測定部211について、図9を用いて説明を行なう。
Subsequently, the measurement unit 211 in the present embodiment will be described with reference to FIG.
測定部211はRRC層基準信号測定部91とPHY層基準信号測定部92とを含む。PHY層基準信号測定部92は、受信部201から入力される基準信号のRSRPやRSRQ、チャネル状態などを測定し、RRC層基準信号測定部91へ通知する。RRC層基準信号測定部91は、上位レイヤ210から通知されるCSI基準信号管理測定設定によって設定された測定対象セルにおいて、PHY層基準信号測定部92から通知された個々の測定結果を必要であれば平均化し、報告設定に合致するか否かの判断をおこない、測定結果を上位レイヤ210へ通知する。また、RRC層基準信号測定部91には、コンポーネントキャリア管理部204から、MAC層で管理されているコンポーネントキャリアの活性/不活性状態情報が入力され、上位レイヤ210から、不活性状態セル(コンポーネントキャリア)の測定要否情報が入力される。RRC層基準信号測定部91は、入力されたコンポーネントキャリアの活性/不活性状態情報および測定要否情報に基づき、不活性状態のコンポーネントキャリアの基準信号の測定を停止するか否かを判断する。
The measurement unit 211 includes an RRC layer reference signal measurement unit 91 and a PHY layer reference signal measurement unit 92. The PHY layer reference signal measurement unit 92 measures the RSRP, RSRQ, channel state, and the like of the reference signal input from the reception unit 201 and notifies the RRC layer reference signal measurement unit 91 of it. The RRC layer reference signal measurement unit 91 needs individual measurement results notified from the PHY layer reference signal measurement unit 92 in the measurement target cell set by the CSI reference signal management measurement setting notified from the upper layer 210. If it is averaged, it is determined whether or not it matches the report setting, and the measurement result is notified to the upper layer 210. The RRC layer reference signal measurement unit 91 receives from the component carrier management unit 204 the active / inactive state information of the component carrier managed in the MAC layer, and receives the inactive state cell (component Carrier) measurement necessity information is input. The RRC layer reference signal measurement unit 91 determines whether or not to stop the measurement of the reference signal of the component carrier in the inactive state based on the input active / inactive state information of the component carrier and the measurement necessity information.
続いて、本実施形態の通信システムにおけるCSI基準信号の測定手順について、図8を用いて説明を行なう。
Subsequently, the measurement procedure of the CSI reference signal in the communication system of the present embodiment will be described with reference to FIG.
図8において、まず、基地局装置1は移動局装置2に対して、RRCメッセージを用いて1または複数のCSI基準信号設定を通知する(ステップS81)。ここで通知されるCSI基準信号設定には、CSI基準信号の信号系列を一意に示す情報と、CSI基準信号の配置を示すリソース情報と、複数のCSI基準信号設定を識別するためのインデックス(第1の識別子)とが含まれる。例えば、このインデックスを0からの連番として定義する場合、各セル(PCellおよび各SCell)でそれぞれ0からの連番としてもよいし、すべてのセルのすべての設定に対して0からの連番としてもよい。あるいは、CSI基準信号の信号系列が各セル内の設定ごとに異なる場合は、この信号系列を一意に示す情報をインデックスの代用とすることもできる。また、前記CSI基準信号設定は完全な設定のリストを変更がある度に通知する方法でもよいし、追加・修正、削除の情報要素を用いて、個々の設定を追加・修正あるいは削除できるようにする方法でもよい。
8, first, the base station apparatus 1 notifies the mobile station apparatus 2 of one or more CSI reference signal settings using an RRC message (step S81). The CSI reference signal setting notified here includes information uniquely indicating the signal sequence of the CSI reference signal, resource information indicating the arrangement of the CSI reference signal, and an index (first number) for identifying a plurality of CSI reference signal settings. 1 identifier). For example, when this index is defined as a sequential number from 0, it may be a sequential number from 0 in each cell (PCell and each SCell), or a sequential number from 0 for all settings of all cells. It is good. Alternatively, when the signal sequence of the CSI reference signal is different for each setting in each cell, information uniquely indicating this signal sequence can be used as an index substitute. In addition, the CSI reference signal setting may be a method of notifying a complete setting list every time there is a change, or by adding, correcting, or deleting information elements so that individual settings can be added, corrected, or deleted. It is also possible to do it.
次に、基地局装置1は移動局装置2に対して、RRCメッセージを用いてCSI基準信号管理測定設定と不活性状態測定要否インジケータを通知する(ステップS82)。ここで、CSI基準信号管理測定とは、CoMP通信で使用するCSI基準信号を選択するために前記CSI基準信号設定で設定されたCSI基準信号の受信品質(RSRPやRSRQ)を測定することを意味する。また、不活性状態測定要否インジケータとは、測定対象となるセルが不活性状態である場合に測定報告を行うか否かを示す情報である。CSI基準信号管理測定設定には、例えばセルインデックスなどの測定対象となるセルを一意に示す設定(第2の識別子)と、報告設定と、前記2つの設定の組み合わせに対して一意に紐付けされる測定ID(第3の識別子)とが含まれる。報告設定には、周期的(Periodic)な報告かイベント発生時の報告か、RSRPとRSRQのどちら(あるいは両方)を報告するのか、などの情報が含まれる。また、測定イベントとは、例えば、測定対象セルの任意のCSI基準信号の受信品質が所定の閾値よりも下回った/上回ったとき、任意のCSI基準信号の受信品質が特定のCSI基準信号の受信品質を下回った/上回ったとき、などの条件と、当該条件を判定するために用いるパラメータとで構成される情報である。パラメータには閾値や、オフセット値、測定イベントの成立に必要な時間などが設定される。
Next, the base station apparatus 1 notifies the mobile station apparatus 2 of the CSI reference signal management measurement setting and the inactive state measurement necessity indicator using the RRC message (step S82). Here, the CSI reference signal management measurement means measuring the reception quality (RSRP or RSRQ) of the CSI reference signal set in the CSI reference signal setting in order to select the CSI reference signal used in CoMP communication. To do. The inactive state measurement necessity indicator is information indicating whether or not a measurement report is performed when a cell to be measured is in an inactive state. The CSI reference signal management measurement setting is uniquely associated with a combination of a setting (second identifier) that uniquely indicates a cell to be measured, such as a cell index, a report setting, and the two settings. Measurement ID (third identifier). The report setting includes information such as whether to report periodically (Periodic) or when an event occurs, whether to report RSRP or RSRQ (or both). Also, the measurement event is, for example, when the reception quality of an arbitrary CSI reference signal in a measurement target cell is lower than or exceeds a predetermined threshold value, and the reception quality of an arbitrary CSI reference signal is reception of a specific CSI reference signal. It is information composed of conditions such as when quality is below / above and parameters used to determine the conditions. The parameter is set with a threshold, an offset value, a time required for establishment of a measurement event, and the like.
前記2つの設定と測定IDの追加・変更や削除を個別におこなうことができるように、それぞれに対して追加・変更や削除のための情報要素を持つようにしてもよい。例えば、2つの測定対象セルと3つの報告設定が通知され、前記セルと報告設定の組み合わせに対して3つの測定IDが設定される場合について図7を用いて説明する。
The information elements for addition / change / deletion may be provided for each of the two settings and the measurement ID so that the addition / change / deletion can be performed individually. For example, a case where two measurement target cells and three report settings are notified and three measurement IDs are set for the combination of the cell and the report setting will be described with reference to FIG.
基地局装置1は、測定対象セルとして、セルインデックス#1のセルとセルインデックス#2のセルに、それぞれ識別子0と1を割り当てて移動局装置2に通知する。また、基地局装置1は、測定設定として、報告設定1と報告設定2と報告設定3に、それぞれ識別子0,1,2を割り当てて移動局装置2に通知する。さらに基地局装置1は、前記測定セルの識別子と前記報告設定の識別子の組み合わせに対して紐付けされる測定IDを移動局装置2に通知する。
The base station apparatus 1 assigns identifiers 0 and 1 to the cell with the cell index # 1 and the cell with the cell index # 2 as measurement target cells, and notifies the mobile station apparatus 2 of them. Further, the base station apparatus 1 assigns identifiers 0, 1, and 2 to report setting 1, report setting 2, and report setting 3, respectively, as measurement settings, and notifies the mobile station apparatus 2 of them. Furthermore, the base station apparatus 1 notifies the mobile station apparatus 2 of the measurement ID associated with the combination of the measurement cell identifier and the report setting identifier.
図7では、測定ID#0として、識別子0の測定対象セルと識別子0の報告設定との組み合わせが指定されている。同様に、識別子0の測定対象セルと識別子1の報告設定との組み合わせが測定ID#1に指定され、識別子1の測定対象セルと識別子2の報告設定との組み合わせが測定ID#2に指定されている。
In FIG. 7, a combination of the measurement target cell with identifier 0 and the report setting with identifier 0 is designated as measurement ID # 0. Similarly, the combination of the measurement target cell of identifier 0 and the report setting of identifier 1 is designated as measurement ID # 1, and the combination of the measurement target cell of identifier 1 and the report setting of identifier 2 is designated as measurement ID # 2. ing.
ここでは、一つの測定対象セルに対して複数の報告が設定される場合を前提としているが、一つの測定対象セルに対して一つの報告設定のみが設定される場合、測定対象セルを一意に示す設定(例えばセルインデックス)を測定IDの代用としてもよい。
Here, it is assumed that multiple reports are set for one measurement target cell, but when only one report setting is set for one measurement target cell, the measurement target cell is uniquely set. The setting shown (for example, cell index) may be used as a substitute for the measurement ID.
前記不活性状態測定要否インジケータは、前記測定設定に含まれていてもよい。この場合、測定設定ごとに不活性状態セルでの測定をおこなうか否かを設定できる。また、前記不活性状態測定要否インジケータは、前記測定ID(第3の識別子)のそれぞれに対して設定されるよう通知されてもよい。この場合、第3の識別子ごとに不活性状態セルでの測定をおこなうか否かを設定できる。また、前記不活性状態測定要否インジケータは、移動局装置2に対して1種類のみ設定されるよう通知されてもよい。この場合、前記移動局装置2に割り当てられたすべての不活性状態セルにおいて測定をおこなうか否かを設定できる。
The inactive state measurement necessity indicator may be included in the measurement setting. In this case, it is possible to set whether or not to perform measurement in an inactive cell for each measurement setting. The inactive state measurement necessity indicator may be notified to be set for each of the measurement IDs (third identifiers). In this case, it is possible to set whether or not to perform measurement in the inactive cell for each third identifier. Further, the inactive state measurement necessity indicator may be notified to the mobile station apparatus 2 so that only one type is set. In this case, it is possible to set whether or not to perform measurement in all inactive cells assigned to the mobile station apparatus 2.
再度図8を参照して、ステップS82でCSI基準信号管理測定設定および不活性状態測定要否インジケータを通知された移動局装置2は、通知された測定設定および不活性状態セルでの測定要否情報を内部情報として保存する(ステップS83)。具体的には、移動局装置2は測定IDと測定対象セルの識別子と報告設定の識別子とを一つに紐付けして管理し、測定をおこなう。測定IDに紐付けられた測定対象セルの識別子と報告設定の識別子が存在する場合、設定を有効とみなして前記紐付けられた測定対象セルの測定をおこない、測定IDに紐付けられた測定対象セルの識別子あるいは報告設定の識別子のどちらかあるいは両方が存在しない場合、設定を無効とみなして前記測定IDに関連する測定はおこなわない。そして、誤り無く測定設定情報を設定できた場合、移動局装置2は、基地局装置1にCSI基準信号管理測定設定完了の通知をおこない(ステップS84)、RRC層基準信号測定部51において基準信号の測定を開始する。
Referring to FIG. 8 again, the mobile station apparatus 2 that has been notified of the CSI reference signal management measurement setting and the inactive state measurement necessity indicator in step S82 is informed of the measurement setting and the necessity of measurement in the inactive state cell. Information is stored as internal information (step S83). Specifically, the mobile station apparatus 2 performs measurement by associating and managing the measurement ID, the measurement target cell identifier, and the report setting identifier. When the measurement target cell identifier and report setting identifier associated with the measurement ID exist, the measurement is performed on the measurement target cell associated with the setting as valid, and the measurement target associated with the measurement ID When either or both of the cell identifier and the report setting identifier do not exist, the setting is regarded as invalid and the measurement related to the measurement ID is not performed. If the measurement setting information can be set without error, the mobile station apparatus 2 notifies the base station apparatus 1 of CSI reference signal management measurement setting completion (step S84), and the RRC layer reference signal measurement unit 51 performs the reference signal. Start measuring.
本実施形態におけるRRC層基準信号測定部91は、コンポーネントキャリア管理部204から、測定対象となるセル(コンポーネントキャリア)の活性/不活性状態情報を取得し、上位レイヤ210から不活性状態セルの測定要否情報を取得する。RRC層基準信号測定部91は、測定対象セルが活性状態であり、かつ報告設定の条件を満たす場合、あるいは、測定対象セルが不活性状態であるが測定要否情報で不活性状態セルの測定を行うよう指定されており、かつ報告設定の条件を満たす場合には、基地局装置1に対して、RRCメッセージを用いてCSI基準信号管理測定報告を送信する(ステップS85およびステップS86)。CSI基準信号管理測定報告は、測定IDと、CSI基準信号設定通知で設定されたインデックスとを含むことが好ましい。
The RRC layer reference signal measurement unit 91 according to the present embodiment acquires the active / inactive state information of the measurement target cell (component carrier) from the component carrier management unit 204, and measures the inactive state cell from the upper layer 210. Get necessity information. The RRC layer reference signal measurement unit 91 measures the inactive state when the measurement target cell is in the active state and the report setting condition is satisfied, or when the measurement target cell is in the inactive state but the measurement necessity information is used. When the condition for report setting is satisfied, the CSI reference signal management measurement report is transmitted to the base station apparatus 1 using the RRC message (steps S85 and S86). The CSI reference signal management measurement report preferably includes a measurement ID and an index set by the CSI reference signal setting notification.
一方、RRC層基準信号測定部91は、測定対象となるセル(コンポーネントキャリア)が不活性状態であり、かつ測定要否情報で不活性状態セルの測定を行わないよう指定されている場合には、ステップS85において、ステップS86のCSI基準信号管理測定報告を行わないように制御する。例えば、RRC層基準信号測定部91は、PHY層基準信号測定部92から通知された測定結果を破棄して報告条件を満たすか否かの判断自体をおこなわないようにしてもよい。また、PHY層基準信号測定部92に対して、コンポーネントキャリア管理部204から活性/不活性状態情報を通知し、上位レイヤ210から不活性状態セルの測定要否情報を通知し、測定対象セルが不活性状態であり、かつ測定要否情報で不活性状態セルの測定を行わないよう指定されている場合に、PHY層における基準信号測定を停止するようにしてもよい。
On the other hand, when the cell (component carrier) to be measured is in an inactive state and the measurement necessary / unnecessary information specifies that the RRC layer reference signal measuring unit 91 does not measure the inactive state cell, In step S85, control is performed so as not to perform the CSI reference signal management measurement report in step S86. For example, the RRC layer reference signal measurement unit 91 may discard the measurement result notified from the PHY layer reference signal measurement unit 92 so as not to determine whether or not the reporting condition is satisfied. Further, the active / inactive state information is notified from the component carrier management unit 204 to the PHY layer reference signal measuring unit 92, the measurement necessity information of the inactive state cell is notified from the upper layer 210, and the measurement target cell is notified. In the inactive state, when it is specified by the measurement necessity information that the measurement of the inactive cell is not performed, the reference signal measurement in the PHY layer may be stopped.
すなわち、基地局装置1が、CSI基準信号設定と、CSI基準信号管理測定の設定と、不活性状態測定要否情報(不活性状態測定要否インジケータ)とを移動局装置2に通知し、移動局装置2は、前記CSI基準信号管理測定設定で指定された測定対象セル(測定オブジェクト)において、MAC層で管理される前記セルの活性/不活性状態が不活性状態である場合に、RRC層で設定される前記不活性状態測定要否情報に従って、前記セルに設定されたCSI基準信号設定のCSI基準信号の受信品質を測定するCSI基準信号管理測定および前記CSI基準信号管理測定の報告を行うか否かを判断する。このように構成することによって、基地局装置1は、モビリティ管理などの理由で不活性状態のセルのCSI基準信号管理測定が必要となる場合であっても、測定の必要なセルをMAC層でのシグナリングに基づき制御することができるため、RRCメッセージで測定の必要なセルを再設定する必要がなくなり、効率的かつ高速に測定対象セルを制御することができる。
That is, the base station apparatus 1 notifies the mobile station apparatus 2 of CSI reference signal setting, CSI reference signal management measurement setting, and inactive state measurement necessity information (inactive state measurement necessity indicator). In the measurement target cell (measurement object) designated by the CSI reference signal management measurement setting, the station device 2 determines that the active / inactive state of the cell managed by the MAC layer is an inactive state. The CSI reference signal management measurement for measuring the reception quality of the CSI reference signal set in the CSI reference signal set in the cell and the CSI reference signal management measurement are reported in accordance with the inactive state measurement necessity information set in step (1). Determine whether or not. By configuring in this way, the base station apparatus 1 allows the cell that needs to be measured in the MAC layer even when the CSI reference signal management measurement of the inactive cell is required for reasons such as mobility management. Therefore, it is not necessary to reset a cell that needs to be measured with the RRC message, and the measurement target cell can be controlled efficiently and at high speed.
なお、測定対象セルと報告設定の追加・修正、削除は任意のタイミングでおこなわれ、更新の際にはステップS63の設定の有効/無効の判断がおこなわれる。
It should be noted that addition / correction / deletion of the measurement target cell and the report setting is performed at an arbitrary timing, and the validity / invalidity of the setting in step S63 is determined at the time of update.
上述の第1および第2の実施形態において、不活性状態セルの測定要否情報は、すべてのセル(周波数)に対して共通の情報として設定されてもよいし、セル(周波数)ごとに設定されてもよい。
In the first and second embodiments described above, the measurement necessity information of inactive cells may be set as common information for all cells (frequency), or set for each cell (frequency). May be.
すなわち、すべてのセル(周波数)に対して共通となる測定要否情報を、報知情報(システム情報)として報知してもよいし、移動局装置ごとに個別のRRCシグナリングで通知してもよい。また、セル(周波数)ごとに測定要否情報を設定するために、測定要否情報にセル(周波数)の情報が含まれるように通知してもよいし、CSI基準信号管理測定設定の測定対象セル(周波数)の設定や、コンポーネントキャリアの設定に前記セル(コンポーネントキャリア)での測定要否を示す情報が含まれるように構成して通知してもよい。
That is, measurement necessity information that is common to all cells (frequencies) may be reported as broadcast information (system information), or may be notified by individual RRC signaling for each mobile station apparatus. Further, in order to set the measurement necessity information for each cell (frequency), the measurement necessity information may be notified so that the cell (frequency) information is included, or the measurement target of the CSI reference signal management measurement setting You may comprise and notify so that the information which shows the measurement necessity in the said cell (component carrier) may be contained in the setting of a cell (frequency) and the setting of a component carrier.
また、上述の第1および第2の実施形態におけるCSI基準信号の受信品質は、RSRPやRSRQだけではなく、パスロスや、それ以外の測定値(SIR、SINR、RSSI、BLER)などを代わりに用いても良いし、これらの測定値の複数を組み合わせて使用することも可能である。また、本発明に係る実施形態で示される各パラメータの名称は、説明の便宜上呼称しているものであって、実際に適用されるパラメータ名称と本発明のパラメータ名称とが異なっていても、本発明が主張する発明の趣旨に影響するものではない。
In addition, the reception quality of the CSI reference signal in the first and second embodiments described above is not limited to RSRP or RSRQ, but instead uses path loss, other measured values (SIR, SINR, RSSI, BLER), and the like. It is also possible to use a combination of a plurality of these measured values. Further, the names of the parameters shown in the embodiment according to the present invention are referred to for convenience of explanation, and even if the parameter names actually applied and the parameter names of the present invention are different, It does not affect the gist of the claimed invention.
以上、本発明に係る実施形態の説明を行ってきたが、本発明における基地局装置や移動局装置に関しては、基地局装置および移動局装置の各部の機能またはこれらの機能の一部を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各実施形態で示した制御を行なってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
As described above, the embodiments according to the present invention have been described. However, with respect to the base station apparatus and the mobile station apparatus according to the present invention, the functions of each part of the base station apparatus and the mobile station apparatus or a part of these functions are realized. The control shown in each embodiment may be performed by recording a program for recording on a computer-readable recording medium, causing the computer system to read and execute the program recorded on the recording medium. Here, the “computer system” includes an OS and hardware such as peripheral devices.
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時刻の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時刻プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
Further, the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Further, the “computer-readable recording medium” dynamically holds a program for a short time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, it is also assumed that a server that holds a program for a certain time, such as a volatile memory inside a computer system that serves as a server or client. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
また、上記各実施形態に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現してもよい。各機能ブロックは個別にチップ化してもよいし、一部または全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路または汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
Further, each functional block used in each of the above embodiments may be realized as an LSI that is typically an integrated circuit. Each functional block may be individually formed into chips, or a part or all of them may be integrated into a chip. Further, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. In addition, when an integrated circuit technology that replaces LSI appears due to progress in semiconductor technology, an integrated circuit based on the technology can also be used.
以上、本発明の実施形態について特定の具体例に基づいて詳述してきたが、本発明の趣旨ならびに特許請求の範囲は、これら特定の具体例に限定されないことは明らかである。すなわち、本明細書の記載は例示説明を目的としたものであり、本発明に対して何ら制限を加えるものではない。
As described above, the embodiments of the present invention have been described in detail based on specific specific examples. However, it is obvious that the gist of the present invention and the scope of the claims are not limited to these specific specific examples. In other words, the description in the present specification is for illustrative purposes and does not limit the present invention.
1…基地局装置
2…移動局装置
101、201…受信部
102、202…復調部
103、203…復号部
104、205…制御部
105、207…符号部
106、208…変調部
107、209…送信部
108…ネットワーク信号送受信部
109、210…上位レイヤ
204…コンポーネントキャリア管理部
206…ランダムアクセス処理部
211…測定部 DESCRIPTION OFSYMBOLS 1 ... Base station apparatus 2 ... Mobile station apparatus 101, 201 ... Reception part 102, 202 ... Demodulation part 103, 203 ... Decoding part 104, 205 ... Control part 105, 207 ... Encoding part 106, 208 ... Modulation part 107, 209 ... Transmission unit 108 ... network signal transmission / reception units 109 and 210 ... upper layer 204 ... component carrier management unit 206 ... random access processing unit 211 ... measurement unit
2…移動局装置
101、201…受信部
102、202…復調部
103、203…復号部
104、205…制御部
105、207…符号部
106、208…変調部
107、209…送信部
108…ネットワーク信号送受信部
109、210…上位レイヤ
204…コンポーネントキャリア管理部
206…ランダムアクセス処理部
211…測定部 DESCRIPTION OF
Claims (9)
- 移動局装置が1以上の周波数帯域のセルを同時に用いて基地局装置と接続して通信を行なう通信システムであって、
前記基地局装置は、チャネル状態情報基準信号の受信品質を測定するための設定であるチャネル状態情報基準信号管理測定設定を、前記移動局装置に対してRRCシグナリングを用いて通知し、
前記移動局装置は、前記移動局装置のMAC層で管理されるセルの活性/不活性状態に基づき、前記チャネル状態情報基準信号管理測定設定で指定されたセルを対象とするチャネル状態情報基準信号管理測定の結果を前記基地局装置へ報告するか否かを判断することを特徴とする通信システム。 A communication system in which a mobile station apparatus performs communication by connecting to a base station apparatus using cells of one or more frequency bands simultaneously,
The base station apparatus notifies the mobile station apparatus of channel state information reference signal management measurement setting that is a setting for measuring reception quality of a channel state information reference signal using RRC signaling,
The mobile station apparatus uses a channel state information reference signal for a cell specified in the channel state information reference signal management measurement setting based on an active / inactive state of a cell managed in the MAC layer of the mobile station apparatus. A communication system characterized by determining whether or not to report a result of management measurement to the base station apparatus. - 移動局装置が1以上の周波数帯域のセルを同時に用いて基地局装置と接続して通信を行なう通信システムであって、
前記基地局装置は、チャネル状態情報基準信号の受信品質を測定するための設定であるチャネル状態情報基準信号管理測定設定と、不活性状態セルでのチャネル状態情報基準信号の測定を行うか否かを指定する不活性状態測定要否情報とを、前記移動局装置に対してRRCシグナリングを用いて通知し、
前記移動局装置は、前記移動局装置のMAC層で管理されるセルの活性/不活性状態と、前記不活性状態測定要否情報とに基づき、前記チャネル状態情報基準信号管理測定設定で指定されたセルを対象とするチャネル状態情報基準信号管理測定の結果を前記基地局装置へ報告するか否かを判断することを特徴とする通信システム。 A communication system in which a mobile station apparatus performs communication by connecting to a base station apparatus using cells of one or more frequency bands simultaneously,
Whether the base station apparatus performs channel state information reference signal management measurement setting, which is a setting for measuring the reception quality of the channel state information reference signal, and measurement of the channel state information reference signal in an inactive state cell. Inactive state measurement necessity information for designating the mobile station apparatus using RRC signaling,
The mobile station apparatus is designated by the channel state information reference signal management measurement setting based on the active / inactive state of the cell managed by the MAC layer of the mobile station apparatus and the inactive state measurement necessity information. And determining whether or not to report the result of channel state information reference signal management measurement for the target cell to the base station apparatus. - 移動局装置と1以上の周波数帯域のセルを同時に用いて通信を行なう基地局装置であって、
前記移動局装置の不活性状態のセルのチャネル状態情報基準信号管理測定結果を報告させるか否かを、不活性状態セルでのチャネル状態情報基準信号管理測定を行うか否かを指定する不活性状態測定要否情報を前記移動局装置に対してRRCシグナリングを用いて通知することによって指定することを特徴とする基地局装置。 A base station apparatus that communicates with a mobile station apparatus using cells in one or more frequency bands simultaneously,
Specifies whether to report the channel state information reference signal management measurement result of the cell in an inactive state of the mobile station apparatus, and specifies whether to perform the channel state information reference signal management measurement in the inactive state cell A base station apparatus that specifies state measurement necessity information by notifying the mobile station apparatus using RRC signaling. - 1以上の周波数帯域のセルを同時に用いて基地局装置と接続して通信を行なう移動局装置であって、
前記移動局装置は、前記基地局装置によってRRCシグナリングによって通知されるチャネル状態情報基準信号の受信品質を測定するための設定であるチャネル状態情報基準信号管理測定設定で指定されるセルを対象とするチャネル状態情報基準信号管理測定の結果を前記基地局装置へ報告するか否かを、MAC層で管理されるセルの活性/不活性状態に基づき判断することを特徴とする移動局装置。 A mobile station apparatus that communicates by connecting to a base station apparatus using cells of one or more frequency bands simultaneously,
The mobile station apparatus targets a cell specified by a channel state information reference signal management measurement setting that is a setting for measuring reception quality of a channel state information reference signal notified by RRC signaling by the base station apparatus A mobile station apparatus that judges whether or not to report a result of channel state information reference signal management measurement to the base station apparatus based on an active / inactive state of a cell managed in a MAC layer. - 1以上の周波数帯域のセルを同時に用いて基地局装置と接続して通信を行なう移動局装置であって、
前記移動局装置は、チャネル状態情報基準信号の受信品質を測定するための設定であるチャネル状態情報基準信号管理測定設定と、不活性状態セルでのチャネル状態情報基準信号の測定を行うか否かを指定する不活性状態測定要否情報とを、前記基地局装置から受信し、
前記不活性状態測定要否情報に基づき、不活性状態のセルを対象とするチャネル状態情報基準信号管理測定の結果を前記基地局装置へ報告するか否かを判断することを特徴とする移動局装置。 A mobile station apparatus that communicates by connecting to a base station apparatus using cells of one or more frequency bands simultaneously,
Whether the mobile station apparatus performs channel state information reference signal management measurement setting, which is a setting for measuring the reception quality of the channel state information reference signal, and measurement of the channel state information reference signal in an inactive state cell. Inactive state measurement necessity information designating, from the base station device,
A mobile station, based on the inactive state measurement necessity information, determines whether or not to report a result of channel state information reference signal management measurement for a cell in an inactive state to the base station apparatus. apparatus. - 1以上の周波数帯域のセルを同時に用いて基地局装置と接続して通信を行なう移動局装置の測定方法であって、
前記基地局装置から、RRCシグナリングを用いて、チャネル状態情報基準信号の受信品質を測定するための設定であるチャネル状態情報基準信号管理測定設定を受信するステップと、
前記チャネル状態情報基準信号管理測定設定で指定されるセルを対象とするチャネル状態情報基準信号管理測定の結果を前記基地局装置へ報告するか否かを、MAC層で管理されるセルの活性/不活性状態に基づき判断するステップとを含むことを特徴とする測定方法。 A method for measuring a mobile station apparatus that communicates by connecting to a base station apparatus using cells of one or more frequency bands simultaneously,
Receiving from the base station device a channel state information reference signal management measurement setting that is a setting for measuring the reception quality of the channel state information reference signal using RRC signaling;
Whether to report the result of channel state information reference signal management measurement for the cell specified in the channel state information reference signal management measurement setting to the base station device, whether the cell is managed in the MAC layer / And determining based on the inactive state. - 1以上の周波数帯域のセルを同時に用いて基地局装置と接続して通信を行なう移動局装置の測定方法であって、
前記基地局装置から、RRCシグナリングを用いて、チャネル状態情報基準信号の受信品質を測定するための設定であるチャネル状態情報基準信号管理測定設定を受信するステップと、
前記基地局装置から、RRCシグナリングを用いて、不活性状態セルでの測定を行うか否かを指定する不活性状態測定要否情報を受信するステップと、
不活性状態のセルを対象とするチャネル状態情報基準信号管理測定の結果を前記基地局装置へ報告するか否かを、前記不活性状態測定要否情報に基づき判断するステップとを含むことを特徴とする測定方法。 A method for measuring a mobile station apparatus that communicates by connecting to a base station apparatus using cells of one or more frequency bands simultaneously,
Receiving from the base station device a channel state information reference signal management measurement setting that is a setting for measuring the reception quality of the channel state information reference signal using RRC signaling;
Receiving from the base station apparatus inactive state measurement necessity information specifying whether to perform measurement in an inactive state cell using RRC signaling;
Determining whether or not to report the result of channel state information reference signal management measurement for a cell in an inactive state to the base station device based on the inactive state measurement necessity information. Measuring method. - 1以上の周波数帯域のセルを同時に用いて基地局装置と接続して通信を行なう移動局装置に搭載される集積回路であって、
前記基地局装置から、RRCシグナリングを用いて、チャネル状態情報基準信号の受信品質を測定するための設定であるチャネル状態情報基準信号管理測定設定を受信する機能と、
前記チャネル状態情報基準信号管理測定設定で指定されるセルを対象とするチャネル状態情報基準信号管理測定の結果を前記基地局装置へ報告するか否かを、MAC層で管理されるセルの活性/不活性状態に基づき判断する機能とを含むことを特徴とする集積回路。 An integrated circuit mounted on a mobile station apparatus that communicates by connecting to a base station apparatus using cells of one or more frequency bands simultaneously,
A function of receiving a channel state information reference signal management measurement setting which is a setting for measuring the reception quality of the channel state information reference signal using RRC signaling from the base station device;
Whether to report the result of channel state information reference signal management measurement for the cell specified in the channel state information reference signal management measurement setting to the base station device, whether the cell is managed in the MAC layer / An integrated circuit including a function of determining based on an inactive state. - 1以上の周波数帯域のセルを同時に用いて基地局装置と接続して通信を行なう移動局装置に搭載される集積回路であって、
前記基地局装置から、RRCシグナリングを用いて、チャネル状態情報基準信号の受信品質を測定するための設定であるチャネル状態情報基準信号管理測定設定を受信する機能と、
前記基地局装置から、RRCシグナリングを用いて、不活性状態セルでの測定を行うか否かを指定する不活性状態測定要否情報を受信する機能と、
不活性状態のセルを対象とする前記チャネル状態情報基準信号管理測定結果を前記基地局装置へ報告するか否かを、前記不活性状態測定要否情報に基づき判断する機能とを含むことを特徴とする集積回路。 An integrated circuit mounted on a mobile station apparatus that communicates by connecting to a base station apparatus using cells of one or more frequency bands simultaneously,
A function of receiving a channel state information reference signal management measurement setting which is a setting for measuring the reception quality of the channel state information reference signal using RRC signaling from the base station device;
A function of receiving, from the base station device, inactive state measurement necessity information specifying whether to perform measurement in an inactive state cell using RRC signaling;
A function for determining whether to report the channel state information reference signal management measurement result for a cell in an inactive state to the base station apparatus based on the inactive state measurement necessity information. Integrated circuit.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-101929 | 2012-04-27 | ||
JP2012101929A JP2013229830A (en) | 2012-04-27 | 2012-04-27 | Communication system, base station device, mobile station device, measurement method, and integrated circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013161788A1 true WO2013161788A1 (en) | 2013-10-31 |
Family
ID=49483101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/061849 WO2013161788A1 (en) | 2012-04-27 | 2013-04-23 | Communication system, base station device, mobile station device, measurement method, and integrated circuit |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013229830A (en) |
WO (1) | WO2013161788A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109391986A (en) * | 2017-08-11 | 2019-02-26 | 华为技术有限公司 | A kind of secondary cell Activiation method, access network equipment, communication device and system |
CN113261330A (en) * | 2019-02-01 | 2021-08-13 | 三星电子株式会社 | Method and apparatus for performing early frequency measurement and fast reporting in a disconnected state by a terminal in a next generation mobile communication system |
CN113411878A (en) * | 2014-10-20 | 2021-09-17 | 索尼公司 | Apparatus and method for base station side and user side of wireless communication |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10834534B2 (en) * | 2017-06-29 | 2020-11-10 | Lg Electronics Inc. | Method and device for performing location measurement on basis of PDOA |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010143821A2 (en) * | 2009-06-08 | 2010-12-16 | Lg Electronics Inc. | Communication method using a carrier aggregation and apparatus therefore |
JP2011239387A (en) * | 2011-04-27 | 2011-11-24 | Ntt Docomo Inc | Mobile communication method and mobile station |
-
2012
- 2012-04-27 JP JP2012101929A patent/JP2013229830A/en active Pending
-
2013
- 2013-04-23 WO PCT/JP2013/061849 patent/WO2013161788A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010143821A2 (en) * | 2009-06-08 | 2010-12-16 | Lg Electronics Inc. | Communication method using a carrier aggregation and apparatus therefore |
JP2011239387A (en) * | 2011-04-27 | 2011-11-24 | Ntt Docomo Inc | Mobile communication method and mobile station |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113411878A (en) * | 2014-10-20 | 2021-09-17 | 索尼公司 | Apparatus and method for base station side and user side of wireless communication |
CN109391986A (en) * | 2017-08-11 | 2019-02-26 | 华为技术有限公司 | A kind of secondary cell Activiation method, access network equipment, communication device and system |
CN109391986B (en) * | 2017-08-11 | 2021-10-01 | 华为技术有限公司 | Secondary cell activation method, access network equipment, communication device and system |
US11218264B2 (en) | 2017-08-11 | 2022-01-04 | Huawei Technologies Co., Ltd. | Secondary cell activation method, access network device, and communications apparatus and system |
US11876744B2 (en) | 2017-08-11 | 2024-01-16 | Huawei Technologies Co., Ltd. | Secondary cell activation method, access network device, and communications apparatus and system |
US12041003B2 (en) | 2017-08-11 | 2024-07-16 | Huawei Technologies Co., Ltd. | Secondary cell activation method, access network device, and communications apparatus and system |
CN113261330A (en) * | 2019-02-01 | 2021-08-13 | 三星电子株式会社 | Method and apparatus for performing early frequency measurement and fast reporting in a disconnected state by a terminal in a next generation mobile communication system |
Also Published As
Publication number | Publication date |
---|---|
JP2013229830A (en) | 2013-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11129183B2 (en) | Method and apparatus for transmitting downlink control channel information in carrier aggregation system | |
JP6268502B2 (en) | Terminal device | |
EP2725861B1 (en) | Mobile station device, base station device, communication system, mobile station device capacity notification method, and integrated circuit | |
JP6010341B2 (en) | Base station apparatus, mobile station apparatus, measuring method, and integrated circuit | |
JP5926613B2 (en) | COMMUNICATION SYSTEM, BASE STATION DEVICE, MOBILE STATION DEVICE, MEASUREMENT METHOD, AND INTEGRATED CIRCUIT | |
JP6524552B2 (en) | Terminal device, base station device, and communication method | |
JP6505019B2 (en) | Terminal device and method in terminal device | |
WO2015068602A1 (en) | Terminal device, base-station device, communication method, and integrated circuit | |
WO2011096261A1 (en) | Wireless communication system, base station device, mobile station device, and wireless communication method | |
JP6099329B2 (en) | Terminal, base station, communication method and integrated circuit | |
JP2017079338A (en) | Terminal device, base station device and method | |
WO2014021391A1 (en) | Terminal, base station, communication method and integrated circuit | |
WO2014163137A1 (en) | Mobile communication system and user terminal | |
WO2013161788A1 (en) | Communication system, base station device, mobile station device, measurement method, and integrated circuit | |
WO2011102181A1 (en) | Wireless communication system, base station device, mobile station device and wireless communication method | |
JP6306859B2 (en) | Terminal apparatus, base station apparatus, and communication method | |
WO2014010477A1 (en) | Communication system, base station, mobile station, measurement method, and integrated circuit | |
WO2014156826A1 (en) | Wireless communication system, terminal apparatus, base station apparatus, wireless communication method and integrated circuit | |
WO2013141073A1 (en) | Communication system, base station device, mobile station device, notification method, reporting method, and integrated circuit | |
JP2012222635A (en) | Communication system,base station device, mobile station device, communication method, and integrated circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13782337 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13782337 Country of ref document: EP Kind code of ref document: A1 |