[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013161746A1 - 混合粉末の高密度成形方法および高密度成形装置 - Google Patents

混合粉末の高密度成形方法および高密度成形装置 Download PDF

Info

Publication number
WO2013161746A1
WO2013161746A1 PCT/JP2013/061741 JP2013061741W WO2013161746A1 WO 2013161746 A1 WO2013161746 A1 WO 2013161746A1 JP 2013061741 W JP2013061741 W JP 2013061741W WO 2013161746 A1 WO2013161746 A1 WO 2013161746A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
mixed powder
green compact
transfer device
cavity
Prior art date
Application number
PCT/JP2013/061741
Other languages
English (en)
French (fr)
Inventor
長谷川 和宏
佳樹 平井
Original Assignee
アイダエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイダエンジニアリング株式会社 filed Critical アイダエンジニアリング株式会社
Priority to US14/396,382 priority Critical patent/US20150132175A1/en
Priority to JP2014512546A priority patent/JP5881822B2/ja
Priority to EP13781049.5A priority patent/EP2842666A4/en
Priority to KR1020147031974A priority patent/KR20150011810A/ko
Publication of WO2013161746A1 publication Critical patent/WO2013161746A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/027Particular press methods or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/08Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space co-operating with moulds carried by a turntable
    • B30B11/10Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space co-operating with moulds carried by a turntable intermittently rotated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/0005Details of, or accessories for, presses; Auxiliary measures in connection with pressing for briquetting presses
    • B30B15/0011Details of, or accessories for, presses; Auxiliary measures in connection with pressing for briquetting presses lubricating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/30Feeding material to presses
    • B30B15/302Feeding material in particulate or plastic state to moulding presses
    • B30B15/304Feeding material in particulate or plastic state to moulding presses by using feed frames or shoes with relative movement with regard to the mould or moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/34Heating or cooling presses or parts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/105Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F2003/023Lubricant mixed with the metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F2003/145Both compacting and sintering simultaneously by warm compacting, below debindering temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/004Filling molds with powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy

Definitions

  • the present invention relates to a high-density molding method and a high-density molding apparatus capable of molding a green compact with a high density (for example, 7.75 g / cm 3 ) by pressing the mixed powder twice.
  • a metal powder is pressed (compressed) to form a green compact having a predetermined shape, and then the green compact is heated to a temperature near the melting point of the metal powder to form an interparticle bond ( It is a series of techniques for performing a sintering process that promotes solidification. As a result, it is possible to manufacture a mechanical component having a complicated shape and high precision in a low cost.
  • the mechanical strength of the green compact With the demand for further reduction in size and weight of machine parts, it is required to improve the mechanical strength of the green compact. On the other hand, it is said that when the green compact is exposed to a high temperature atmosphere, the magnetic properties are deteriorated. Thus, for example, in the actual production of the green compact for a magnetic core, the subsequent high-temperature treatment (sintering treatment) may be omitted. In other words, a method for increasing the mechanical strength without searching for a high temperature (sintering) is being sought.
  • the mechanical strength is said to increase significantly (hyperbolic) as the density of the green compact is increased.
  • a method of pressure forming while reducing frictional resistance by mixing a lubricant with metal powder is proposed (for example, JP-A-1-219101 (Patent Document 1)).
  • Patent Document 1 JP-A-1-219101
  • a mixed powder obtained by mixing a base metal powder with about 1 wt% (1 wt%) of a lubricant is pressed.
  • Many proposals aiming at further higher density have been made. These proposals can be broadly divided into improvements in the lubricant itself and improvements in processes related to pressure forming and sintering.
  • the former belongs to the proposal that the lubricant is a carbon molecule composite in which ball-like carbon molecules and plate-like carbon molecules are combined (Japanese Patent Laid-Open No. 2009-280908 (Patent Document 2)), penetration at 25 ° C. Can be mentioned as a lubricant having a thickness of 0.3 to 10 mm (Japanese Patent Laid-Open No. 2010-37632 (Patent Document 3)). Both are ideas for reducing the frictional resistance between metal powders and between metal powder and a mold.
  • Patent Document 4 Japanese Patent Laid-Open No. 2-156002
  • Patent Document 5 Japanese Patent Laid-Open No. 2000-87104
  • Patent Document 6 2 times press-2 times sintered powder metallurgy method
  • Patent Document 7 1 time molding-sintered powder metallurgy method
  • the first warm forming / sintering powder metallurgy method is to preheat a metal powder mixed with a solid lubricant and a liquid lubricant to melt part (or all) of the lubricant and to apply the lubricant between the particles. Disperse.
  • a pre-warm forming powder metallurgy method that facilitates handling is a primary forming step of forming a primary compact that can be handled by pressurizing the mixed powder prior to the warm forming step (eg, density ratio is less than 76%).
  • the secondary molded body (green compact) is obtained by carrying out a secondary molding step while the primary molded body is temporarily collapsed while the primary molded body is at a temperature lower than the temperature at which blue brittleness occurs. is there.
  • an iron powder mixture containing alloying components is pressed in a die to produce a green compact, and this compact (compact) is pressed at 870 ° C. for 5 minutes.
  • the pre-sintered body is preliminarily sintered to generate a pre-sintered body, and the pre-sintered body is pressed to generate a pre-sintered body that has been pressed twice, and then the pre-sintered body that has been pressed twice is 1000
  • This is a method for producing a sintered part by sintering at 5 ° C. for 5 minutes.
  • the mold is pre-heated and the lubricant is charged and adhered to the inner surface, and then the iron-based powder mixture (iron-based powder + lubricated) heated in the mold.
  • Agent powder press-molded at a predetermined temperature to form an iron-based powder molded body, then subject the iron-based powder molded body to sintering treatment, further bright quenching, and then tempering treatment. This is a method for producing an iron-based sintered body.
  • the density of the green compact is at most about 7.4 g / cm 3 (94% of the true density) in any improvement measures concerning the lubricant and the pressure forming / sintering process. Insufficient mechanical strength. Furthermore, when performing sintering treatment (high temperature atmosphere), oxidation proceeds according to temperature and time, so that the lubricant in the powder particle coating state burns and a residue is generated. The density in production will be 7.3 g / cm 3 or less because it causes quality degradation. In addition, any improvement measures are likely to be complicated and expensive. Handling is cumbersome and there are difficulties in practicality.
  • Patent Document 8 Japanese Patent Laid-Open No. 2002-343657 (Patent Document 8)
  • This proposed powder metallurgy method is based on the technical matter that if a coating containing a silicone resin and a pigment is formed on the surface of a magnetic metal powder, the insulation will not deteriorate even if a high temperature treatment is subsequently applied. It is.
  • the method for producing a dust core is to preform a magnetic powder whose surface is coated with a coating containing a silicone resin and a pigment to form a preform, and heat-treat the preform at a temperature of 500 ° C. or higher.
  • the heat treated body is subjected to compression molding. If the temperature for the heat treatment is 500 ° C. or lower, fracture is likely to occur during the subsequent compression molding, and if it is 1000 ° C. or higher, the insulating coating is decomposed and the insulating properties are burned out.
  • This high temperature treatment is performed in vacuum, in an inert gas atmosphere or in a reducing gas atmosphere from the viewpoint of preventing oxidation of the preform.
  • a dust core having a true density of 98% (7.7 g / cm 3 ) can be produced.
  • Patent Document 8 the two-time molding-one-time sintering powder metallurgy method (Patent Document 8) is more complicated and individualized than the other proposed methods, and is difficult to implement and implement. Incurs a significant increase. Further, it is a requirement that the preform is heat-treated at 500 ° C. or higher. Since the quality of the dust core must be performed in a special atmosphere in order to prevent deterioration, it is not suitable for mass production. In particular, in the case of a vitreous film-coated magnetic metal powder, the vitreous material is altered and dissolved, and thus cannot be applied.
  • Patent Documents 1 to 8 there is a description that can be carried out with respect to a sintering process in a relatively high temperature atmosphere, but details regarding the pressure forming process are not clear. Neither the specification / function of the pressure molding machine, the relationship between the applied pressure and density, nor the analysis of its limitations, can be described for new improvements.
  • An object of the present invention is to provide a mixed powder high-density molding method capable of producing a high-density green compact by performing two times of pressure forming with the heating sandwiched between the mixed powders and greatly reducing the production cost. And providing a high-density molding apparatus.
  • the green compact Since the green compact is manufactured by sintering metallurgy technology, it has been essential to subject the pressed green compact to a sintering treatment in a high temperature atmosphere (for example, 800 ° C. or higher).
  • a high temperature atmosphere for example, 800 ° C. or higher.
  • the high temperature treatment for sintering not only consumes a large amount of energy and has a huge cost burden, but also has a great negative effect on global environmental protection, so it needs to be reviewed.
  • the pressure molding process establishes the mixed powder as a specific form, and has been considered as a pre-stage (preliminary) mechanical process of the high-temperature sintering process and has been treated as such.
  • the high-temperature treatment for sintering is omitted exceptionally. This is to avoid adverse effects (deterioration of magnetic properties) caused by high temperature treatment. In other words, they were forced to obey dissatisfaction with the mechanical strength. Insufficient mechanical strength is a matter of density, and of course, the magnetic properties were also insufficient.
  • the present invention relates to the effectiveness of the lubricant during pressurization, the compression limit including the lubricant powder, the spatial occupancy in the mixed powder of the lubricant powder, the spatial arrangement state of the base metal powder and the lubricant powder, Based on research on their behavior and the final disposal mode of lubricants, as well as analysis on the effects of general pressure molding machine characteristics, compression limit and density of green compacts on strength and magnetism, and in practice It was created as one that can meet the demands for higher efficiency of the mixed powder filling operation adapted to the manufacture of the first and second, smaller and lighter molds.
  • the mixed powder filled in the container cavity is transferred to the first mold, and the mixed powder is subjected to intermediate compression by the first pressurizing step while maintaining the powder state of the lubricant in the first mold.
  • the body is molded, and then the lubricant is heated and liquefied to modify the lubrication aspect of the mixed powder intermediate compact, and then the mixed powder intermediate compact after heating is transferred to the second mold.
  • a 2nd pressurization process is given, and the high-density completed green compact close
  • the mixed powder which is a mixture of the base metal powder and the low melting point lubricant powder is filled in the container cavity, and the container
  • the mixed powder in the cavity is transferred into the cavity of the first mold positioned corresponding to the container, and the first powder is applied to the mixed powder in the cavity of the first mold to mix the mixed powder intermediate compact.
  • the first mold after molding and the mixed powder intermediate compact are heated to raise the temperature of the mixed powder intermediate compact to the melting point equivalent temperature, and the mixed powder intermediate compact after the temperature rise is
  • Each mold is positioned corresponding to the second mold, and the mixed powder intermediate compressed body in the cavity of the first mold is moved into the cavity of the second mold positioned corresponding to the first mold.
  • Mixed powder intermediate compact in the cavity of the second mold Adding a second pressure molding the mixed powder finished compacts high density, characterized in that.
  • the melting point of the lubricant powder can be a low melting point belonging to a temperature range of 90 to 190 ° C.
  • the second mold can be warmed up to the melting point equivalent temperature before receiving the mixed powder intermediate compression body.
  • the first mold can be warmed up after completion of the formation of the mixed powder intermediate compression body.
  • the second applied pressure can be made equal to the first applied pressure.
  • the mixed powder high-density molding apparatus is a container in which a mixed powder, which is a mixture of a base metal powder and a low melting point lubricant powder, is positioned at a mixed powder filling position.
  • a mixed powder feeder capable of filling in the cavity of the container, a mixed powder transfer device for transferring the mixed powder in the container cavity into the cavity of the first mold positioned corresponding to the container, and the cavity of the first mold
  • a first pressure molding machine for forming a mixed powder intermediate compression body by applying a first pressing force to the mixed powder in the first punch from the first punch, a first mold positioned at a heating temperature raising position, and mixing
  • the heating intermediate heating body for heating the powder intermediate compression body to raise the temperature of the mixed powder intermediate compression body to the temperature corresponding to the melting point, and the mixed powder intermediate compression body in the cavity of the first mold are positioned at the delivery relay position.
  • a second pressing force is applied from the second punch to the mixed powder intermediate compression body in the cavity of the second mold positioned at the finished green compact molding position.
  • a second pressure molding machine for forming a mixed powder finished compressed body having a density; and a product discharge device formed so that the mixed powder finished compressed body in the cavity of the second mold can be discharged at a product discharge position. It becomes.
  • the first mold transfer device formed to be capable of positioning corresponding to the container positioned at the mixed powder filling position by transferring the first mold
  • a pre-heating green compact transfer device formed to be able to be positioned corresponding to the heating temperature rising position by transferring the first mold from the intermediate green compact molding position
  • the first metal mold containing the mixed powder intermediate compression body After the mold is transferred from the heating temperature raising position, the post-heated green compact transfer device formed so as to be positioned corresponding to the transfer relay position and the second mold containing the mixed powder intermediate compression body are transferred from the transfer relay position.
  • the second mold transfer device formed so as to be capable of positioning corresponding to the finished green compact molding position and the second mold containing the mixed powder finished compact are transported from the finished compact compact molding position.
  • a completed green compact transfer device, and a second mold return transfer device configured to transfer the second mold containing the mixed powder completed compressed body from the product discharge position so as to be positioned corresponding to the underwriting relay position. Can be provided.
  • the mixed powder filling position, the heating temperature raising position, and the delivery relay position are spaced apart on a first circular locus centered on the first axis and the delivery relay position
  • the finished green compact forming position and the product discharge position are spaced apart from each other on a second circular locus centered on the second axis
  • the first mold transfer device, the pre-heating green compact transfer device, and the post-heating green compact A body transfer device is constructed using a first rotary table that is rotatable about a first axis, and a second mold transfer device, a finished green compact transfer device, and a second mold return transfer device Is constructed using a second rotary table that is rotatable about a second axis.
  • the apparatus may further include a first warming-up device that warms up the first mold.
  • the apparatus may further include a second warming-up device for warming up the second mold.
  • high-density green compacts can be manufactured reliably and stably, and the manufacturing cost can be greatly reduced, and the mixed powder filling operation adapted to actual manufacturing is highly efficient. And miniaturization and weight reduction of the first and second molds.
  • the mixed powder high-density molding method according to the above (1) to (5) can be surely carried out, and can be easily realized at low cost and handled. Simple.
  • the apparatus can be simplified and the green compact can be transferred quickly and smoothly as compared with the case of the invention of the above (6).
  • the apparatus can be further simplified as compared with the case of the invention of (7) above. Further simplification of the production line can be promoted, and handling becomes easier.
  • the fluidity of the dissolved lubricant in all directions during the second pressure molding can be further enhanced, so that not only between the base metal particles but also the particles and the second mold The frictional resistance between the two can be greatly reduced and maintained.
  • FIG. 1 is a diagram for explaining a high-density molding method according to the present invention.
  • FIG. 2 is a plan view for explaining the high-density molding apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view for explaining the operation from the mixed powder filling operation to the positioning of the intermediate green compact corresponding to the delivery relay position in the first embodiment of the present invention.
  • FIG. 4 is a vertical cross-sectional view for explaining the operation from the operation of receiving the intermediate green compact to the discharge of the finished green compact (product) at the product discharge position in the first embodiment of the present invention.
  • FIG. 1 is a diagram for explaining a high-density molding method according to the present invention.
  • FIG. 2 is a plan view for explaining the high-density molding apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view for explaining the operation from the mixed powder filling operation to the positioning of the intermediate green compact corresponding to the delivery relay position in the first embodiment of the present
  • FIG. 5 is a graph for explaining the relationship between the applied pressure and the density obtained by the applied pressure in the first embodiment of the present invention, and the characteristic A indicated by the dotted line is the molding state in the first mold.
  • a characteristic B indicated by a solid line indicates a molding state in the second mold.
  • FIG. 6A is an external perspective view for explaining the finished green compact (intermediate green compact) in the first embodiment of the present invention, and shows a ring shape.
  • FIG. 6B is an external perspective view for explaining the finished green compact (intermediate green compact) in the first embodiment of the present invention, and shows a cylindrical shape.
  • FIG. 6C is an external perspective view for explaining the finished green compact (intermediate green compact) in the first embodiment of the present invention, and shows an elongated round shaft shape.
  • FIG. 6D is an external perspective view for explaining the finished green compact (intermediate green compact) in the first embodiment of the present invention, and shows a disc shape.
  • FIG. 6E is an external perspective view for explaining the finished green compact (intermediate green compact) in the first embodiment of the present invention, and shows a complicated shape.
  • FIG. 7 is a longitudinal sectional view for explaining the operation from the mixed powder filling operation of the high-density molding apparatus according to the second embodiment of the present invention until the intermediate green compact is positioned corresponding to the delivery relay position.
  • FIG. 8 is a vertical cross-sectional view for explaining the operation from the operation of taking the intermediate green compact to the discharge of the finished green compact (product) at the product discharge position in the second embodiment of the present invention.
  • the mixed powder high-density molding apparatus 1 includes a mixed powder feeder 10, a container 23, a mixed powder transfer device (lower punch 37), a first pressure molding machine 30, and a heating riser.
  • a warming machine 40, an intermediate green compact transfer device (extrusion rod 50), a second pressure molding machine 60, and a product discharge device 70 are provided, and the mixed powder 100 shown in FIG.
  • Heating temperature raising process (PR4) that actively raises the temperature to the equivalent temperature
  • Intermediate green compact transfer step (PR5) in which the heated intermediate green compact 110 is transferred to the second mold 61, and the second pressure P2 is applied to the intermediate green compact 110 in the second mold 61.
  • a high-density molding method of the present mixed powder comprising a finished green compact forming step (PR6) and a product discharging step (PR7) for forming a finished compact of high-density mixed powder (sometimes referred to as a finished green compact 120) Is formed so that it can be carried out stably and reliably.
  • the first mold transfer for transferring the first mold 31 to the mixed powder filling position (intermediate green compact forming position) Z11, the heating temperature raising position Z12, and the delivery relay position Z13.
  • An apparatus (first mold return transfer device) 81, a pre-heating green compact transfer device 82, and a post-heating green compact transfer device 83 are provided, a delivery relay position Z13 (reception relay position Z21), and a finished green compact forming position.
  • a second mold transfer device 91, a finished green compact transfer device 92, and a second mold return transfer device 93 for transferring the second mold 61 to Z22 and the product discharge position Z23 are provided. Guarantees a quick and smooth transfer.
  • first mold transfer device 81 the pre-heating green compact transfer device 82, and the post-heat green compact transfer device 83 have an integrated structure using the first rotary table 80 of FIG.
  • the mold transfer device 91, the finished green compact transfer device 92, and the second mold return transfer device 93 are integrated with each other by using the second rotary table 90 of FIG. 2 to achieve the ultimate simplification. .
  • the mixed powder 100 in the present specification means a mixture of a base metal powder and a low melting point lubricant powder.
  • the base metal powder there are a case where it consists of only one kind of main metal powder and a case where it consists of one kind of main metal powder and one or a plurality of alloying component powders.
  • the case can be adapted.
  • the low melting point means that the temperature (melting point) is significantly lower than the melting point (temperature) of the base metal powder (melting point) and the temperature (melting point) can greatly suppress oxidation of the base metal powder. .
  • the mixed powder feeder 10 disposed at the mixed powder filling position Z 11 on the upstream side of the high-density molding line is an apparatus for filling the container 23 with the mixed powder 100. It is used when executing the mixed powder filling step (PR1) of FIG. It has a function to hold a certain amount of mixed powder 100 and a function to supply a fixed amount, and as a whole, it can selectively reciprocate between the initial position (the position not shown in the left direction in FIGS. 2 and 3) and the container device 20. It is.
  • the container device 20 includes a hollow cylindrical main body 21 having a stopper 22 at the top, a container 23 having a stopper 25 at the bottom and a hollow cylindrical container cavity 24 at the center, and the container 23 facing upward.
  • the spring 26 is energized and is positioned at the mixed powder filling position Z11.
  • a lower punch 37 that constitutes a part of the first pressure molding machine 30 (first mold 31) is slidably fitted in the container cavity 24, depending on the vertical position relative to the container 23.
  • the filling amount of the mixed powder 100 to be filled is determined.
  • the container 23 is held at the initial position in the vertical direction shown in FIG. 3A in a state where the stopper 25 is restrained by the stopper 22 by the urging force of the spring 26.
  • the container 23 (container cavity 24) is once filled and then the cavity 33 is filled. If the mixed powder 100 is transferred to the inside, a large amount of the mixed powder 100 can be filled in a state where the mixed powder 100 is slightly compressed by the preload. Moreover, it becomes easy to transfer the 1st metal mold
  • the mixed powder 100 Since it is important to uniformly and sufficiently fill the mixed powder 100 from the container 23 anywhere in the first mold 31 (die 32), the mixed powder 100 must be in a smooth state. That is, the form of the internal space (cavity 33) of the first metal mold 31 (die 32) is a form corresponding to the product form. Even if the product form is complicated or has a narrow part, non-uniform filling or insufficient filling is not preferable in order to guarantee the dimensional accuracy of the intermediate green compact 110.
  • the form (dimensions and shape) of the finished green compact 120 is not particularly limited, but examples are shown in FIGS. 6A to 6E.
  • 6A shows a ring shape
  • FIG. 6B shows a cylindrical shape
  • FIG. 6C shows an elongated round shaft shape
  • FIG. 6D shows a disk shape
  • FIG. 6E shows a complicated shape.
  • the intermediate green compact 110 (finished green compact 120) in this embodiment has a cylindrical shape shown in FIGS. 3 and 6B, and the form of the internal space (cavity 33) of the first mold 31 corresponds to this. It is finished in the form to do.
  • the lubricant for reducing the frictional resistance between the base metal particles occupying the majority of the base metal powder and the frictional resistance between the base metal powder and the inner surface of the mold is a solid solid (very (Small grain).
  • the mixed powder 100 has a high viscosity and low fluidity, so uniform filling and sufficient filling cannot be performed.
  • the lubricant is solid and stabilizes a predetermined lubricating action during the intermediate compacting performed in the first mold 31 (cavity 33) at room temperature and while applying the first pressure P1.
  • the first pressure P1 Must be able to maintain. Even if there is a case where a slight temperature increase may occur due to the pressurization of the first pressurizing force P1, it should be kept stable as well.
  • the melting point of the lubricant powder is The melting point must be very low (low melting point) compared to the melting point.
  • the melting point of the lubricant powder is selected as a low melting point belonging to a temperature range of 90 to 190 ° C., for example.
  • the lower temperature (90 ° C.) is an upper limit temperature (80 ° C.) of a value (for example, 70 to 80 ° C.) that will not reach this temperature even if a certain temperature rise occurs during intermediate compacting. )
  • the melting point (for example, 110 ° C.) of another metal soap is selected. That is, the concern that the lubricating oil powder is dissolved (liquefied) and flows out during the pressure molding of the intermediate green compact 110 is eliminated.
  • the upper temperature (190 ° C.) is a minimum value from the viewpoint of expanding the selectivity regarding the type of lubricant powder, and is particularly selected as a maximum value from the viewpoint of suppressing oxidation of the base metal powder during the heating temperature raising step. is there. That is, the lower temperature and the upper temperature in this temperature range (for example, 90 to 190 ° C.) should be understood as boundary values rather than limit values.
  • the lubricant powder many substances belonging to the metal soap (such as zinc stearate and magnesium stearate) can be selectively employed as the lubricant powder. Since the lubricant must be in a powder state, a viscous liquid such as zinc octylate cannot be used.
  • zinc stearate powder having a melting point of 120 ° C. was used as the lubricant powder.
  • a pressure molding is performed while using a lubricant having a temperature (melting point) lower than the mold temperature at the time of pressure molding and dissolving (liquefying) the lubricant from the beginning. The idea of performing is denied. If the dissolved lubricant flows out before the end of the molding of the intermediate green compact 110, it is easy to generate an insufficiently lubricated part on the way, so that sufficient pressure molding cannot be performed reliably and stably. Because.
  • the amount of lubricant powder shall be a value selected from experimental studies and empirical rules through actual production.
  • the amount of the lubricant powder is 0.23 to 0.08 wt% of the total amount of the mixed powder.
  • 0.08 wt% is a lower limit value that can ensure the lubricating action until the molding of the intermediate green compact 110 is completed, and 0.23 wt% obtains an expected compression ratio when the mixed powder 100 is used as the intermediate green compact 110. This is the upper limit value necessary for this purpose.
  • the amount of lubricant powder in practical use is the value of the true density ratio of the intermediate green compact 110 formed by applying the first pressure P1 in the first mold 31 and the second gold. It should be determined that it can secure the sweating phenomenon in the mold. At this time, it should not be overlooked from the viewpoint of preventing the occurrence of liquid dripping (liquid dripping phenomenon) of the liquefied lubricant from the mold, which causes deterioration of the working environment.
  • the amount of the lubricant powder is 0.2 to 0.1 wt%.
  • the upper limit value (0.2 wt%) is determined from the viewpoint of preventing the occurrence of a dripping phenomenon, and the lower limit value (0.1 wt%) is determined from the viewpoint of allowing the necessary and sufficient sweating phenomenon to occur without excess or deficiency. .
  • the amount is extremely small, and the industrial utility can be greatly improved.
  • the intermediate green compact 110 obtained by compressing the 0.2 wt% mixed powder 100 to a true density ratio of 80%, when the temperature is positively raised to the melting point equivalent temperature of the lubricant powder in the heating temperature raising step (PR3), the powder lubricant interspersed in the intermediate green compact 110 melts to fill the voids between the metal powder grains, and then passes between the metal powder grains and uniformly on the surface of the intermediate green compact 110. Exudes (spouts). That is, a sweating phenomenon is induced.
  • this intermediate green compact 11 is compressed by applying the second pressure P2 in the second mold, the frictional resistance between the base metal powder and the cavity inner wall is greatly reduced.
  • the mixed powder 100 having a value exceeding 0.1 wt% and less than 0.2 wt% is also true density.
  • the intermediate green compact 110 compressed to a value within the range of less than 90% and exceeding 80% a similar sweating phenomenon can be expressed. The occurrence of dripping phenomenon can also be prevented.
  • high-density molding can be performed, and a green compact (for example, a magnetic core) that satisfies not only magnetic properties but also mechanical strength can be manufactured.
  • a green compact for example, a magnetic core
  • the amount of lubricant consumed can be greatly reduced, and the liquid lubricant can be prevented from flowing from the mold, resulting in a favorable working environment.
  • the productivity can be improved and the green compact manufacturing cost can be reduced, so the industrial applicability can be greatly improved.
  • Patent Documents 1 to 8 recognizes the relationship between the content of the lubricant and the compressibility of the mixed powder 100, the dripping phenomenon due to the amount of the lubricant, and the sweating phenomenon. .
  • the purpose is to facilitate handling or to form a primary compact with a density ratio of less than 76%.
  • high-density molding In fact, once the primary molded body (intermediate green compact 120) is collapsed and then the secondary molded body (finished green compact) is molded, the density of the primary molding and secondary molding is increased. It is nothing other than denying the technical idea to make it easier.
  • the first pressure molding machine 30 applies a first pressure P1 to the mixed powder 100 supplied to the first mold 31 (cavity 33) using the mixed powder supply machine 10 to mix the mixed powder intermediate compact.
  • 110 is a press machine structure in this embodiment.
  • the first die 31 is composed of a lower die (die 32, lower punch 37) on the bolster side and an upper die (upper punch 36) on the slide (not shown) side.
  • the cavity 33 of the die 32 has a shape (hollow cylindrical shape) corresponding to the form (columnar shape) of the intermediate green compact 110 shown in FIG. This corresponds to the shape of the container cavity 24.
  • the upper punch 36 is moved up and down by an upper slide (not shown).
  • the lower surface of the upper punch 36 has a planar shape and can close the upper portion of the cavity 33. That is, it contacts most of the upper surface of the die 32.
  • the form of the intermediate green compact 110 is shown in FIGS. 6A and 6C. Also in the case shown in FIG. 6E, the shape corresponds to each. In the case of the ring shape shown in FIG. 6A, the ring shape is formed. In the case of the elongated round shaft shape shown in FIG. 6C, the shape is the same as the cylindrical shape of FIG. 6B, but is long in the vertical direction. In the case of the disc shape shown in FIG. 6D, the same shape is obtained, but it is short (thin) in the vertical direction. In the case of the complex shape shown in FIG. 6E, the corresponding complex shape is obtained. The same applies to the cavity 63 of the die 62 of the second pressure molding machine 60 (second mold 61).
  • the mixed powder transfer device is a device that transfers the mixed powder 100 in the container cavity into the cavity 33 of the first mold 31 positioned corresponding to the container 23, and includes a lower punch 37, and includes an upper punch 36 and a die 32. Transition operation is performed in cooperation with.
  • the upper punch 36 descends and comes into contact with the upper surface of the die 32 held by the first rotary table 80 (die holding part 85).
  • the die 32 is pushed down. Since the lower surface of the die 32 is in contact with the upper surface of the container 23, the container 23 is pushed down. There is no change in the vertical position of the lower punch 37. Therefore, the mixed powder 100 in the container cavity 24 is pushed up by the lower punch 37 and transferred into the die 32 (cavity 33) of the first mold 31.
  • the mixed powder transfer device (upper punch 36, lower punch 37) can transfer the mixed powder 100 in the container cavity 24 into the cavity 33 of the first mold 31 positioned corresponding to the container 23.
  • the intermediate green compact 110 in which the mixed powder 100 is compressed in cooperation with the lower punch 37 can be formed. It can. That is, as the first pressure molding machine 30, the mixed powder 100 is compressed by applying the first pressure P1 from the first punch (upper punch 36) to the mixed powder 100 in the cavity 33 of the first mold 31. The body (intermediate green compact 110) is formed. Since a mixed powder transfer device (lower punch 37) is provided, a large amount of the mixed powder 100 can be supplied and compressed and transferred as compared with the case where the cavity 33 is directly filled. Easy to densify. The dimensional accuracy of the intermediate green compact 110 is also high. When the slide is raised, the upper punch 36 is raised to the upper position shown in FIG. At this time, the first rotary table 80 rises to the upper limit position. The container 23 is returned to the original position shown in FIG.
  • the horizontal axis indicates the applied pressure P as an index.
  • the maximum capacity (pressing force P) in this embodiment is 10 Ton / cm 2 , and this is taken as the horizontal axis index 100.
  • Pb is a mold breakage pressure and has a horizontal axis index of 140 (14 Ton / cm 2 ).
  • the vertical axis indicates the true density ratio (density ⁇ ) as an index.
  • the vertical axis index 100 corresponds to a true density ratio (density ⁇ ) of 97% (7.6 g / cm 3 ).
  • the base metal powder is an iron powder coated with a glassy insulating coating for a magnetic core
  • the lubricant powder is a zinc stearate powder in the range of 0.2 to 0.1 wt%
  • the first pressure is applied.
  • P1 can compress the mixed powder intermediate compact (intermediate compact 110) to a true density ratio of 80 to 90% corresponding to a longitudinal index of 82 to 92 [equivalent to density ⁇ (6.24 to 7.02 g / cm 3 )] Is selected.
  • the vertical axis index 102 corresponds to the density ⁇ (7.75 g / cm 3 ), and the true density ratio (density ⁇ ) corresponds to 99%.
  • the base metal powder may be iron-based amorphous powder for magnetic core (Fe-Si alloy powder for magnetic core), iron-based amorphous powder for magnetic core, Fe-Si alloy powder for magnetic core, pure iron powder for machine parts, and the like.
  • the density ⁇ obtained by the first pressure molding machine 30 increases according to the characteristic A (curve) indicated by the dotted line.
  • the density ⁇ is 7.6 g / cm 3 at the first pressure P1 (the horizontal axis index is 100).
  • the true density ratio is 97%. Even if the first pressure P1 is increased to a value higher than this, the increase in the density ⁇ is minimal. Strong risk of mold damage.
  • the longitudinal axis index 100 (7.6g / cm 3) to be increased to 102 (7.75g / cm 3) it can be understood as innovative. That is, if the density ⁇ can be improved by 2%, the magnetic characteristics can be greatly improved (hyperbolic), and the mechanical strength can be dramatically improved. In addition, since the sintering process in a high-temperature atmosphere can be eliminated, oxidation of the green compact can be significantly suppressed (deterioration of magnetic core performance can be prevented). Note that the present invention can also be implemented by constructing or diverting a separate machine having a press function.
  • the intermediate green compact 110 molded by the first pressure molding machine 30 is heated to promote the dissolution (liquefaction) of the lubricant, and then the second pressure molding machine 60 It is formed so as to perform the second pressure molding process.
  • the density is increased according to the characteristic B (straight line) shown by the solid line in FIG. 75 g / cm 3 ) can be achieved. Details will be added in the description of the second pressure molding machine 60.
  • heating heating device 40 heats first mold 31 and mixed powder intermediate compact (intermediate green compact 110) positioned at heating temperature raising position Z12.
  • the heating / heating device 40 includes a hollow cylindrical main body 41 having a stopper 42 at the upper part, a lifting rod 43 having a stopper 45 at the lower part and an accommodating part 44 for accommodating a heater 47 at the upper part, It comprises a spring 48 that urges the rod 43 upward.
  • the lifting rod 43 is held at the initial upper position shown in FIG. 3D in a state where the stopper 45 is restrained by the stopper 42 by the biasing force of the spring 48.
  • the technical significance of the low-temperature heating process in the first pressure molding machine 30 will be described in relation to the first pressure molding process.
  • the presence of the lubricant powder is relatively sparse in relation to the base metal powder (sparse part).
  • a dense part (dense part) is recognized. The dense portion can reduce the frictional resistance between the particles of the base metal powder and the frictional resistance between the base metal powder and the inner surface of the mold.
  • the sparse part should increase the frictional resistance.
  • the dense portion has low friction, so that the compressibility is superior and the compression progresses easily. Since the sparse part has high friction, the compressibility is inferior and the compression is delayed. In any case, a compression progression difficulty phenomenon occurs in accordance with a preset value of the first pressure P1. That is, a compression limit occurs. Under this condition, when the fracture surface of the intermediate green compact 110 taken out from the die 32 is enlarged and observed, the base metal powder is pressed in an integral manner in the dense portion. However, lubricant powder is also mixed in. In the sparse part, a slight gap (space) remains between the pressed base metal powders. Almost no lubricant powder is found.
  • the lubricant powder is removed from the dense part, a compressible gap is created. If the lubricant can be replenished in the gap between the sparse parts, the compressibility of the parts can be improved.
  • the intermediate green compact 110 after the completion of the first pressure molding is heated to a temperature corresponding to the melting point of the lubricant powder (for example, 120 ° C.) to dissolve (liquefy) the lubricant powder.
  • a temperature corresponding to the melting point of the lubricant powder for example, 120 ° C.
  • the lubricant that has melted out from the dense part soaks into the periphery and is replenished to the part that has been sparse. Therefore, the frictional resistance between the particles of the base metal powder can be reduced, and the space occupied by the lubricant powder can also be compressed.
  • the frictional resistance between the base metal powder particles and the inner surface of the mold can also be reduced. That is, the second pressure molding process is performed while promoting the liquefaction of the lubricant.
  • the intermediate green compact transfer device (extrusion rod 50) includes a second die 61 (die) in which the intermediate green compact 110 in the cavity 33 of the first die 31 (die 32) is positioned at the delivery relay position Z13. 62) is a device for transfer to the cavity 63.
  • the intermediate green compact transfer device is formed from an extrusion rod 50 and a delivery relay stand 55 positioned at the delivery relay position Z13.
  • a lower limit position shown in FIG. 4G can be reciprocated up and down.
  • the rod diameter may be equal to or slightly smaller than the diameter of the upper punch 66 shown in FIG.
  • the intermediate green compact 110 can be delivered from the first mold 31 to the second mold 61 at the delivery relay position Z13 shown in FIG.
  • the intermediate green compact 110 is received from the first mold 31 at the underwriting relay position Z21. That is, the delivery relay position Z13 and the acceptance relay position Z21 are the same position.
  • the second pressure molding machine 60 shown in FIG. 4 (H) performs a second pressure molding process for applying the second pressure P2 to the intermediate green compact 110 set in the second mold 61. And a high-density mixed powder finished compact (finished green compact 120).
  • the second die 61 is composed of a lower die (die 62, lower punch equivalent base 67) on the bolster side and an upper die (upper punch 66) on the slide (not shown) side, and is positioned at a finished green compact forming position Z22.
  • the shape of the cavity 63 of the die 62 corresponds to the shape of the cavity 33 of the first mold 31 (die 32). That is, it has a shape (hollow cylindrical shape) corresponding to the form (columnar shape) of the finished green compact 120 shown in FIG.
  • the upper side of the die 62 is slightly larger than that of the die 32 in order to easily receive the intermediate green compact 110.
  • the upper punch 66 is pushed into the cavity by a slide (not shown) that can move up and down between an upper position and a lower position, and applies a second pressure P2 to the intermediate green compact 110.
  • a high density finished green compact 120 is formed.
  • the lower punch equivalent base 67 that receives the second pressure P2 has the same structure as the delivery relay base 55, but may have a similar structure including the lower punch 37 shown in FIG.
  • the maximum capacity (pressing force P) of the second pressure molding machine 60 in this embodiment is 10 Ton / cm 2 as in the case of the first pressure molding machine 30.
  • the first pressure molding machine 30 and the second pressure molding machine 60 are configured as a single press machine, and are constructed so that the dies 31 and 61 can be moved up and down synchronously with a common slide. You can also. From this point, the apparatus economy is advantageous, and the manufacturing cost of the finished green compact 120 can be reduced.
  • the density ⁇ obtained by the second pressure molding machine 60 follows the characteristic B indicated by the solid line. That is, in the case of the first pressure molding machine 30 [according to the characteristic A indicated by the dotted line. ], The density ⁇ does not gradually increase as the second pressure P2 is increased. That is, the density ⁇ does not increase until the final first pressure P1 (for example, the horizontal axis index 50, 75, or 85) in the first pressure molding step (PR3) is exceeded. When the second pressure P2 exceeds the final first pressure P1, the density ⁇ increases at a stretch. It is understood that the second pressure molding is performed as if the first pressure molding was continuously taken over.
  • the first pressure molding step it is not necessary to perform an operation in which the first pressure P1 is increased to a value (horizontal axis index 100) corresponding to the maximum capacity at any time. That is, it is possible to eliminate energy consumption for a useless time when the first pressure molding is continued after the compression limit. This leads to reduced manufacturing costs. Moreover, since it becomes easy to avoid the overload operation exceeding the horizontal axis index 100, there is no fear of die damage. Overall, handling is easy and safe and stable operation is possible.
  • the product discharge device 70 is a device for discharging the finished green compact 120 in the cavity 63 of the second mold 61 to the outside at the product discharge position Z23.
  • the product discharge device 70 includes a discharge rod 71 positioned corresponding to the product discharge position Z23 and a shooter 73 incorporated in the discharge stand 77, and is completed by pushing the discharge rod 71 into the cavity 63.
  • the green compact 120 can be discharged.
  • the discharge rod 71 can reciprocate up and down between an upper limit position (not shown) and a lower limit position shown in FIG.
  • the rod diameter is equal to or slightly smaller than the diameter of the upper punch 66 shown in FIG. If the discharge rod 71 is lowered to the lower limit position after the second mold 61 is positioned corresponding to the upper surface of the discharge table 77, the finished green compact in the cavity 63 of the die 62 constituting the second mold 61 will be described.
  • the body 120 can be discharged to the shooter 73.
  • the method for transferring (conveying) the green compact determines the slow speed of the production cycle, it is important to decide which method to use. In addition, how to make a specific configuration / structure is also important because it directly affects the device economy, handling / maintenance, and manufacturing costs. Incidentally, in the conventional example, the workpiece is often transferred (conveyed) in a linear direction.
  • a rotary transfer system using two rotary tables 80 and 90 is adopted.
  • the mixed powder filling position Z11, the heating temperature raising position Z12, and the delivery relay position Z13 are spaced apart on a first circular locus R1 centered on the first axis Z1.
  • the underwriting relay position Z21, the finished green compact forming position Z22, and the product discharge position Z23 are spaced apart on a second circular locus R2 centered on the second axis Z2.
  • each of them is arranged in three equal parts (120 degrees).
  • the distance between the first axis Z1 and the second axis Z2 is determined so that the delivery relay position (vertical axis) Z13 and the acceptance relay position (vertical axis) Z21 are the same position.
  • the first rotary table 80 can be intermittently rotated in the DRL (counterclockwise) direction around the first axis Z1, and the mold holder 85 is moved to the mixed powder filling position Z11, the heating temperature raising position Z12, and the delivery relay position Z13. It can be positioned corresponding to any of these, and can be stopped and held at that position.
  • the first rotary table 80 can be moved up and down between the upper limit position and the lower limit position, and can be stopped and held at both the upper limit position and the lower limit position.
  • the upper limit position is a position in the state shown in FIGS. 3A, 3C, 3D and 3F
  • the lower limit position is shown in FIGS. 3B, 3E and 3F. And it is a position which will be in the state shown in Drawing 4 (G).
  • the first rotary table 80 generates a pressing force that lowers the lifting rod 43 to the lower limit position against the biasing force of the spring 48 shown in FIGS.
  • the first rotary table 80 is supported by a transfer drive shaft 87 (rotation drive shaft 88, elevating shaft 89).
  • the rotation drive shaft 88 is controlled by the servo motor so that the rotation angle of the first rotation table 80 can be stopped and held at the set angle. Therefore, the mold holding portion 85 is accurately positioned corresponding to each position Z11, Z12, Z13. Can do.
  • the lift shaft 89 splined to the rotary drive shaft 88 can be positioned by correspondingly raising and lowering the first rotary table 80 to either the upper limit position or the lower limit position by the cylinder device.
  • the first mold 31 (die 32) is attached to the mold holding portion 85.
  • the second turntable 90 can be intermittently rotated in the DRR (clockwise) direction around the second axis Z2, and the mold holding portion 95 can be placed in the acceptance relay position Z21, the finished green compact forming position Z22, and the product discharge position. Positioning corresponding to any position of Z23. Moreover, it can be stopped and held at each position.
  • the transfer rotating shaft 97 is dedicated for rotational driving, and does not have a lifting / lowering function in this embodiment. That is, the second turntable 90 is maintained in the state shown in FIG. 3F, FIG. 4G, FIG. 4H, and FIG.
  • a second mold 61 (die 62) is attached to the mold holding portion 95.
  • a plurality of (three) mold holders 85 are arranged in three equal isometric angles (120 degrees) on the first rotary table 80, and each mold holder 85 has a first mold. 31 is attached.
  • a plurality (three) of mold holders 95 are arranged in three equal isometric angles (120 degrees) on the second rotary table 90, and the second mold 61 is attached to each mold holder 95. It has been.
  • each of the rotary tables 80 and 90 is formed using a large-diameter disk, but a plurality of arm-tree members are arranged in three equal angles (120 degrees), and each arm-tree member is first, It is good also as a structure mounted
  • the first mold transfer device 81, the pre-heating green compact transfer device 82, and the post-heat green compact transfer device 83 are the first rotary table 80 (first mold transfer device 81, pre-heating pressure). It is understood that the powder transfer device 82 and the heated green compact transfer device 83) are integrally constructed. Each transfer device 81, 82, 83 uses the intermittent rotation in the DRL direction around the first axis Z1 of the first rotary table 80 to move the mold holding portion 85 along the first circular locus R1. The first mold 31 is transferred while being transferred. The raising and lowering of the first rotary table 80 is combined on the way.
  • the first mold transfer device 81 transfers the first mold 31 located at the delivery relay position Z13 shown in FIG. 3 (F) to the mixed powder filling position Z11 shown in FIG.
  • the first mold 31 is positioned corresponding to the container 23 at the position Z11. On the way, the first mold 31 is raised from the lower limit position to the upper limit position.
  • This first mold transfer device 81 may be said to be a first mold return transfer device in view of the function of returning the first mold 31 from the delivery relay position Z13 to the mixed powder filling position Z11.
  • the pre-heating green compact transfer device 82 moves the first die 31 located at the intermediate green compact molding position (mixed powder filling position Z11) shown in FIG. The position is transferred from the position Z11) to the heating temperature raising position Z12 shown in FIG. 3E, and the first mold 31 is positioned corresponding to the heating temperature raising position Z12. On the way, the first mold 31 is raised from the lower limit position shown in FIG. 3 (B) to the upper limit position shown in FIG. 3 (C). Next, by the rotation of the first turntable 80, the first mold 31 is transferred to the heating temperature raising position Z12 shown in FIG. Then, the first mold 31 is mounted (corresponding positioning) in the accommodating portion 44 at the upper limit position, and then lowered to the lower limit position by the lowering operation of the lifting rod 43.
  • the green compact transfer device 83 moves the first mold 31 containing the mixed powder intermediate compression body 110 from the heating temperature raising position Z12 shown in FIG. 3 (E) to the delivery relay position Z13 shown in FIG. 3 (F). Transport to.
  • the first die 31 is raised to the upper limit position by the raising / lowering operation of the first rotary table 80, and after being positioned corresponding to the delivery relay position Z13, is lowered to the lower limit position.
  • the second mold transfer device 91, the finished green compact transfer device 92, and the second mold return transfer device 93 include a second rotary table 90 (second mold transfer device 91, finished green compact). It is understood that the transfer device 92 and the second mold return transfer device 93) are integrally constructed. Each of the transfer devices 91, 92, 93 uses the intermittent rotation in the DRR direction around the second axis Z2 of the second rotary table 90 to move the mold holding portion 95 along the second circular locus R2. The second mold 61 is transferred while being transferred.
  • the second mold transfer device 91 is a finished green compact shown in FIG. 4 (H) in the second mold 61 located in the underwriting relay position Z21 shown in FIG. 4 (G) and containing the intermediate green compact 110.
  • the sheet is transferred to the forming position Z22 and positioned corresponding to the lower punch equivalent base 67 at the finished green compact forming position Z22.
  • the second turntable 90 is rotated by 120 °.
  • the finished green compact transfer device 92 transfers the second mold 61 containing the finished green compact 120 from the finished compact forming position Z22 shown in FIG. 4 (H) and the product shown in FIG. 4 (I).
  • the second mold 61 is positioned corresponding to the discharge position Z23.
  • the second turntable 90 is rotated by 120 ° in the DRR direction.
  • the second mold return transfer device 93 transfers the second mold 61 after discharging the finished green compact 120 from the product discharge position Z23 to the underwriting relay position (product discharge position Z23) shown in FIG. Then, the second mold 61 is positioned corresponding to the underwriting relay position (product discharge position Z23). That is, the second mold 61 is returned before the next cycle.
  • the green compact transfer device has a rotary table structure and transfers along a circular locus.
  • the green compact is delivered by directly extruding from the first mold 31 to the second mold 61 and delivering it.
  • this type of rotary transfer / extrusion delivery method there is no risk of workpiece dropout compared to the conventional transfer method (using a robot or transfer device to transfer the workpiece in a single linear direction), and the workpiece and slide or gold
  • the problem of avoiding collision with the mold is easy to solve, and quick and accurate transfer is possible.
  • the delivery of the mixed powder 100 shown in FIGS. 3A and 3B is the same.
  • the high-density molding method is performed by the following steps. Description will be made with reference to the processing steps shown in FIG. 1 (A) and the transfer operation (B) described corresponding thereto.
  • symbol for example, Z22
  • a mixed powder 100 in a smooth state is procured by mixing a base metal powder (iron powder coated with a glassy insulating coating for magnetic core) and 0.2 wt% lubricant powder (zinc stearate powder). A predetermined amount is supplied to the mixed powder feeder 10 (step PR0 in FIG. 1).
  • the mixed powder feeder 10 is transferred from a predetermined position (not shown) to a replenishment position (dotted line) shown in FIG.
  • the supply port of the mixed powder supplier 10 is opened, and a fixed amount of the mixed powder 100 is filled in the container device 20 [empty container cavity 24] (step PR1 in FIG. 1). For example, it can be filled in 2 seconds.
  • the supply port is closed and the mixed powder supply machine 10 returns to a predetermined position.
  • the first mold transfer device 81 works, and the first mold 31 (die 32) is returned from the state of FIG. 3 (F) to the state of FIG. 3 (A).
  • the upper punch 36 descends and pressurizes the mixed powder 100 in the die 32 (cavity 33) with the first pressure P1.
  • the first pressure molding process (process PR3 in FIG. 1) is executed.
  • Powder (solid) lubricants provide sufficient lubrication.
  • the density ⁇ of the compressed intermediate green compact 110 increases according to the characteristic A (dotted line) in FIG.
  • the first applied pressure P1 becomes a pressure (3.0 Ton / cm 2 ) corresponding to the horizontal axis index (for example, 30)
  • the true density ratio is 85%, that is, the density ⁇ is 6.63 g / cm 3 (vertical axis index 87 Equivalent).
  • pressure molding for 8 seconds is completed.
  • the formed intermediate green compact 110 remains in the cavity 33 of the first mold 31.
  • the pre-heating green compact transfer device 82 works. After the upper punch 36 is raised to the upper position, the first die 31 is raised to the upper limit position (position below the upper position of the upper punch 36) while accommodating the intermediate green compact 110. Next, the first mold 31 and the intermediate green compact 110 are transferred from the intermediate green compact molding position (mixed powder filling position Z11) to the heating temperature raising position Z12 shown in FIG. The first rotary table 80 rotates by 120 ° in the DRL direction of FIG. In preparation for the next cycle, the container 23 is returned from the lower limit position to the initial position (upper limit position) shown in FIG. By the biasing force of the spring 26. As shown in FIG.
  • the first mold 31 has a heating temperature riser 40 at the heating temperature raising position Z12 and at the upper limit position (lower than the upper limit position of the first mold 31). It is positioned corresponding to (accommodating portion 44). Subsequently, the elevating rod 43 is lowered to position the first mold 31 corresponding to the lower limit position (heating position) shown in FIG.
  • Heating temperature In FIG. 3 (E), when the accommodating portion 44 is lowered to the lower limit position (lower than the lower limit position of the first mold 31), the heating temperature riser 40 (heater 47) is activated.
  • the intermediate green compact 110 in the die 32 is heated to a temperature corresponding to the melting point of the lubricant powder (for example, 120 ° C.) (step PR4 in FIG. 1). That is, the lubricant is dissolved, and the lubricant distribution in the intermediate green compact 110 is uniformly modified by the flow of the lubricant.
  • the heating temperature raising time is, for example, 8 to 10 seconds.
  • the start timing of the heater 47 is not limited to this. For example, activation may be started from the state shown in FIG.
  • the heated compact transfer device 83 works. As shown in FIGS. 3E and 3F, the heated intermediate green compact 110 is transferred from the heating temperature raising position Z12 to the delivery relay position Z13 while being housed in the first mold 31. Is done. That is, the first turntable 80 rotates by 120 ° in the DRL direction of FIG. Since it is not transferred in the atmosphere exposure state, the temperature drop of the intermediate green compact 110 is hardly recognized. Then, the first die 31 (die 32) is placed on the second die 61 that is on standby (corresponding positioning) on the delivery relay stand 55. Then, the intermediate green compact transfer device (extrusion rod 50) works. That is, as shown in FIG.
  • the extrusion rod 50 descends from the upper position in FIG. 3 (F), and the heated intermediate green compact 110 accommodated in the first mold 31 is moved to the first position. 2 is moved into the second mold 61 (step PR5 in FIG. 1). After the transition is completed, the push rod 50 returns to the upper position.
  • the first mold transfer device 81 moves the first mold 31 shown in FIG. The position is raised to the upper limit position in FIG. 3 (F), and subsequently returned from the delivery relay position Z13 to the mixed powder filling position Z11 shown in FIG. 3 (A). Positioning corresponding to the container 23 is performed. Also at this time, the first rotary table 80 rotates by 120 ° in the DRL direction.
  • the second mold transfer device 91 also works.
  • the intermediate green compact 110 received at the underwriting relay position Z21 (delivery relay position Z13) in FIG. 3 (F) is transferred from the underwriting relay position Z21 in FIG. 4 (G) to the finished green compact forming position Z22 in FIG. 4 (H).
  • the intermediate green compact 110 is transferred while being accommodated in the second mold 61.
  • the second turntable 90 rotates by 120 ° in the DRR direction shown in FIG.
  • the density ⁇ suddenly increases from 6.63 g / cm 3 to the density ⁇ corresponding to the vertical axis index 102. It increases to (7.75 g / cm 3 ).
  • the second applied pressure P2 is increased to an abscissa index of 100 (10 Ton / cm 2 )
  • the density ⁇ (7.75 g / cm 3 ) becomes uniform as a whole.
  • the finished green compact 120 is formed in the mold (41) (step PR6 in FIG. 1). Thereafter, the upper punch 66 is raised to the upper position by the slide.
  • the vitreous material does not change or melt because the lubricant powder has a low melting point. Therefore, it is understood that a high-quality magnetic core green compact with low eddy current loss and high magnetic flux density can be efficiently manufactured.
  • the finished green compact transfer device 92 works, and the finished green compact 120 is housed in the second mold 61 while the finished compact forming position Z22 in FIG. ) To the product discharge position Z23.
  • the product is positioned corresponding to the product discharge position Z23, that is, the discharge table 77. During this period, the discharge rod 71 is waiting at the upper position.
  • the second turntable 90 rotates by 120 ° in the DRR direction.
  • the product discharge device 70 works.
  • the discharge rod 71 descends from the upper position and pushes the finished green compact 120 in the second mold 61 to the lower shooter 73.
  • Product discharge ends step PR7 in FIG. 1).
  • the discharge rod 71 rises to the upper position and enters a standby state.
  • the second mold return transfer device 93 returns and transfers the second mold 61 from the product discharge position Z23 in FIG. 4 (I) to the acceptance relay position Z21 (delivery relay position Z13) in FIG. 3 (F).
  • the second turntable 90 rotates by 120 ° in the DRR direction. Since it does not move up and down in the middle, it can be returned quickly.
  • the first pressure molding process, the heating temperature raising process, and the second pressure molding process for the metal powder (mixed powder 100) supplied and filled in order are synchronized.
  • the mixed powder 100 is filled in the container 23, and then the intermediate powder compact 110 is formed by moving into the first mold 31 and applying the first pressure P1. Then, the temperature is positively raised to a temperature corresponding to the melting point of the lubricant powder (for example, 120 ° C.), the intermediate green compact 110 is set in the second mold 61, and the second pressure P2 is applied. Because it is a high-density molding method for molding the finished green compact 120, it is possible to manufacture high-density green compact reliably and stably, greatly reducing the manufacturing cost, and a mixed powder suitable for actual production. It is possible to increase the efficiency of 100 filling operations and reduce the size and weight of the first mold 31 and the like.
  • the melting point of the lubricant powder is a low melting point in the temperature range of 90 to 190 ° C., it is possible to ensure a sufficient lubricating action of the lubricant during the first pressurizing step.
  • the selectivity of the lubricant can be expanded while promoting oxidation inhibition.
  • the second mold 61 can be warmed up to the melting point equivalent temperature before receiving the intermediate green compact 110, the fluidity of the dissolved lubricant in all directions during the second pressure molding can be further enhanced. . That is, the frictional resistance between the particles and the second mold 61 as well as between the base metal particles can be greatly reduced and maintained.
  • the first mold 31 can be warmed up after the formation of the intermediate green compact 110, shortening of the manufacturing cycle time including the temperature rising time of the intermediate green compact 110 can be promoted.
  • the second applied pressure P2 can be made equal to the first applied pressure P1
  • the fluidity of the dissolved lubricant in all directions during the pressure molding can be further enhanced.
  • the frictional resistance force between the particles and the second mold 61 as well as between the base metal particles can be greatly reduced and maintained.
  • when embodying the device for example, it can be easily based on a single press machine. Can be built.
  • the capacity of the conventional apparatus could not be increased beyond the density corresponding to the vertical axis index 100, according to the present invention.
  • the capacity of the conventional apparatus for example, a press machine
  • horizontal axis index 100 in FIG. 5 could not be increased beyond the density corresponding to the vertical axis index 100, according to the present invention.
  • the densification device 1 includes a mixed powder feeder 10, a mixed powder transfer device (lower punch 37), a first pressure molding machine 30, a heating temperature raising device 40, and an intermediate green compact transfer device (extrusion rod 50). ),
  • the second pressure molding machine 60, and the product discharge device 70, the above-described densification method can be implemented reliably and stably, and can be realized at low cost. Easy to handle.
  • a first mold transfer device 81 for transferring the first mold 31, a pre-heating green compact transfer device 82, and a post-heating green compact transfer device 83 are provided, and a second mold 61 is transferred. Since the mold transfer device 91, the finished green compact transfer device 92 and the second mold return transfer device 93 are provided, the apparatus can be simplified and the green compact can be transferred quickly and smoothly. .
  • the mixed powder filling position Z11, the heating temperature raising position Z12, and the delivery relay position Z13 are spaced apart on the first circular locus R1 centered on the first axis Z1, and the acceptance relay position Z21, the finished green compact.
  • the molding position Z22 and the product discharge position Z23 are spaced apart from each other on the second circular locus R2 centered on the second axis Z2, and each transfer device 81, 82, 83 can be rotated about the first axis Z1. Since each of the transfer devices 91, 92, and 93 is constructed using the first rotary table 90 that is rotatable about the second axis Z2, the second rotary table 90 is constructed. Therefore, the apparatus can be simplified further. Further simplification of the production line can be promoted and handling becomes easier. Compared with the conventional linear conveyance direction, rapid transfer and reduction in size and weight can be achieved as a whole.
  • FIGS. 1 to 6E This embodiment is shown in FIGS.
  • the basic configuration / function is the same as in the case of the first embodiment (FIGS. 1 to 6E), but the second mold 61 (die 62) constituting the second pressure molding machine 60 is used.
  • a second warm-up device 64 is provided.
  • a first warm-up device 34 is provided in a first mold 31 (die 32) constituting the first pressure molding machine 30.
  • both the first warm-up device 34 and the second warm-up device 64 are provided, but either one may be provided depending on the working temperature environment or the like.
  • FIG. 7 corresponds to FIG. 3 (FIG. 4) according to the first embodiment.
  • Others (FIGS. 1, 2, 5, 6A to 6E) are the same as those in the first embodiment.
  • the temperature of the heated intermediate green compact 110 is lowered to a low temperature outside a certain temperature range by the time when the second pressing force P2 is applied in the second mold 61 to start molding. If not, the high-density molding of the present invention can be performed without warming up the second mold 61. Furthermore, it may not be necessary to warm up the first mold 31 and preheat the intermediate green compact 110 before the heating and heating step. In that case, a warm-up function for warming up the second mold 61 and the first mold 31 may not be provided.
  • the temperature of the intermediate green compact 110 when the heat capacity of the intermediate green compact 110 is small, when the transfer time to the second mold 61 and the transfer path are long, the temperature has been increased depending on the composition of the mixed powder 100, the form of the intermediate green compact 110, and the like. There is a possibility that the temperature of the intermediate green compact 110 will decrease by the time the molding of the finished green compact 120 starts. In such a case, it is possible to obtain a preferable molding effect when the second mold 61 is warmed up.
  • the second mold 61 (die 62) is provided with a second warm-up device (heater) 64 capable of changing the set temperature.
  • the second warming-up device 64 has the second mold 61 at a temperature corresponding to the melting point of the lubricant powder (zinc stearate) (for example, 120 ° C.) until the intermediate green compact 110 is received (set). Warm up (warm up). The heated intermediate green compact 110 can be received without being cooled. As a result, the lubricating action can be ensured while preventing re-solidification of the previously dissolved (liquefied) lubricant.
  • This warm-up process is executed before the finished green compact forming process (PR6) in the first embodiment.
  • This warm-up is formed so that it can be heated until the finished green compact 120 is completely pressed.
  • the fluidity of the dissolved lubricant in all directions during pressure molding can be further enhanced, so that friction between not only the base metal particles but also the particles and the second die 61 (die 62) is achieved.
  • the resistance can be greatly reduced and maintained.
  • the composition of the mixed powder 100 and the form of the intermediate green compact 110 are specific, when the mixed powder intermediate compression body 110 has a large heat capacity, when a large heating temperature riser cannot be provided, or when the working environment temperature is If the temperature is low, there is a risk of spending a long time for heating and heating the intermediate green compact 110. In such a case, it is preferable to warm up the first mold 31. Therefore, in this embodiment, the first mold 31 is warmed up.
  • a first warm-up device (heater) 34 capable of changing the set temperature is built in the first mold 31 (die 32), and corresponds to FIG. 7 (A) [FIG. 3 (A). ].
  • the first mold 31 can be warmed up by turning on the heater. In other words, it can be used as a part of the heating warmer 40.
  • This preceding warm-up can reduce the heating time in the heating warmer 40 and is effective for shortening the production cycle. That is, as shown in FIGS. 7D and 7E, since both the heaters 47 and 34 can be used for heating from the outer peripheral surface and the lower surface, the temperature of the intermediate green compact 110 can be increased quickly at an average temperature as a whole. .
  • This warm-up process is executed after the end of the intermediate green compact forming process (PR3) in the first embodiment.
  • PR3 intermediate green compact forming process
  • it is formed so that it can be heated and warmed up until it is delivered to the heating warmer 40.
  • the first warm-up device 34 and the second warm-up device 64 are of the electric heating system (electric heater). It can also be implemented with an apparatus or the like.
  • the second mold 61 is formed in advance so that it can be warmed up.
  • the omnidirectional fluidity of the dissolved lubricant can be further enhanced during the pressure molding by the second pressure P2
  • the frictional resistance force between the particles and the second mold 61 as well as between the base metal particles can be increased. It can be greatly reduced and maintained.
  • the first mold 31 can be warmed up, if the warming-up execution is selected, the load on the heating warmer 40 can be reduced and the intermediate green compact 110 can be quickly heated.
  • the production cycle can be shortened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

 コンテナキャビティ24内に充填れた混合粉末100を第1の金型のキャビティ内に移行させ、第1の金型31で混合粉末100に第1の加圧力を加えて中間圧粉体110に成形し、成形後の第1の金型31および中間圧粉体110を加熱して当該中間圧粉体110を潤滑剤の融点相当温度に昇温し、昇温後の中間圧粉体110を第2の金型61のキャビティ内に移行させかつ第2の加圧力を加えて高密度の完成圧粉体を成形する。

Description

混合粉末の高密度成形方法および高密度成形装置
 混合粉末を2回加圧により高密度(例えば、7.75g/cm)の圧粉体を成形することができる高密度成形方法および高密度成形装置に関する。
 一般的に、粉末冶金技術は、金属粉末を加圧(圧縮)して所定形状の圧粉体に成形処理し、次いで圧粉体を当該金属粉末の融点近傍温度に加熱して粒子間結合(固化)を促す焼結処理を行う一連の技術である。これにより、形状複雑で寸法高精度の機械部品を低コストで製造することができる。
 機械部品の一段の小型軽量化要請に伴い、圧粉体の機械的強度の向上が求められる。他方、圧粉体を高温雰囲気に晒すと磁気特性が劣悪化すると言われている。かくして、例えば、磁心用圧粉体の実際製造に際しては、その後の高温処理(焼結処理)を省略する場合がある。換言すれば、高温処理(焼結処理)をしなくても、機械的強度を高める方法が模索されている。
 ここに、機械的強度は、圧粉体の密度を高めるにしたがって大幅(双曲線的)に高まるとされている。代表的な高密度化方法としては、金属粉末に潤滑剤を混合させることで摩擦抵抗力の低減を図りつつ加圧成形する方法が提案(例えば、特開平1-219101号公報(特許文献1))されている。一般的には、基金属粉末に約1重量%(1wt%)の潤滑剤を混合した混合粉末を加圧成形する。さらなる高密度化を目指した幾多の提案がされている。これら提案は、潤滑剤自体の改善と、加圧成形・焼結処理に係るプロセスの改善に大別される。
 前者に属するものとしては、潤滑剤をボール状炭素分子と板状炭素分子を組み合わせた炭素分子複合体とする提案(特開2009-280908号公報(特許文献2))、25℃における針入度が0.3~10mmである潤滑剤とする提案(特開2010-37632号公報(特許文献3))を挙げることができる。いずれも金属粉末同士、並びに金属粉末と金型との摩擦抵抗力を低減する考え方である。
 後者に属するものとしては、温間成形・焼結粉末冶金方法(特開平2-156002号公報(特許文献4))、ハンドリング容易化前置温間成形粉末冶金方法(特開2000-87104号公報(特許文献5))、2回プレス-2回焼結粉末冶金方法(特開平4-231404号公報(特許文献6))および1回成形-焼結粉末冶金方法(特開2001-181701号公報(特許文献7))が知られている。
 最初の温間成形・焼結粉末冶金方法は、固体潤滑剤および液体潤滑剤を混合した金属粉末を予熱することで潤滑剤の一部(または、全部)を溶融させかつ粒子間に潤滑剤を分散させる。これにより、粒子間および粒子・金型間の摩擦抵抗力を下げることで、成形性を向上しようとするものである。ハンドリング容易化前置温間成形粉末冶金方法は、温間成形工程に先立ち混合粉末を加圧してハンドリング可能な低密度(例えば、密度比が76%未満)の一次成形体を成形する一次成形工程を設け、この一次成形体を青熱脆性が生じる温度よりも低温の状態でかつ一次成形体を一旦崩壊しつつ二次成形工程を実施して二次成形体(圧粉体)を得るものである。2回プレス-2回焼結粉末冶金方法は、合金化成分を含む鉄粉末混合物をダイ内で加圧しつつ生の圧縮体を生成し、この圧縮体(圧粉体)を870℃で5分間だけ予備焼結して予備焼結体を生成し、この予備焼結体を加圧することで2回プレス済の予備焼結体を生成し、しかる後に2回プレス済の予備焼結体を1000℃で5分間焼結することにより焼結部品を生成する方法である。最後の1回成形-焼結粉末冶金方法は、金型を予め予熱しかつ内面に潤滑剤を帯電付着しておく、次いでこの金型内に加熱された鉄基粉末混合物(鉄基粉末+潤滑剤粉末)を充填し、所定温度で加圧成形して鉄基粉末成形体となし、次いで鉄基粉末成形体に焼結処理を施し、さらに光輝焼入れを行い、その後に焼き戻し処理を施して鉄基焼結体を製造する方法である。
 このように、潤滑剤や加圧成形・焼結処理プロセスに関するいずれの改善策でも、圧粉体の密度は最高でも7.4g/cm(真密度の94%)程度である。機械的強度が不十分である。さらに、焼結処理(高温雰囲気)を施す場合には、温度・時間に応じて酸化が進むので粉末粒子コーティング状態の潤滑剤が燃焼しかつ残渣が発生する結果、加圧成形後の圧粉体品質の劣化を招くから、製造上の密度は7.3g/cm以下となるであろう。しかも、いずれの改善策も、複雑でコスト高となる虞が強い。取扱も面倒で実用性に難点がある。
 特に、電磁機器(モータやトランス等)用の磁心(磁芯)を圧粉体から作製することを考えると、この程度の密度(7.3g/cm以下)では、極めて不満足との指摘が強い。損失(鉄損、ヒステリス損)量を減少し、磁束密度を高くするには圧粉体の一層の高密度化が必要である。例えば、平成21年度粉体粉末冶金協会秋季大会での発表資料(株式会社豊田中央研究所殿提供)からしても、明白である。磁心の密度は、例えば7.5g/cmでも、実用的には、磁気的特性のみならず機械的強度も不満足であるとの指摘がある。
 この磁心用圧粉体の製造に関しては、2回成形-1回焼結(1回焼鈍)粉末冶金方法(特開2002-343657号公報(特許文献8))が提案されている。この提案粉末冶金方法は、磁性金属粉末の表面にシリコーン樹脂と顔料とを含む被膜を形成しておけば、その後に高温処理が施されても絶縁性が低下しないという技術事項を根拠とするものである。すなわち、圧粉磁心の製造方法は、表面がシリコーン樹脂と顔料とを含む被膜で被覆された磁性粉末を予備成形して予備成形体を成形し、この予備成形体に500℃以上の温度で熱処理を施して熱処理体とし、次いでこの熱処理体に圧縮成形を施すことを特徴とする。熱処理用の温度は、500℃以下ではその後の圧縮成形時に破断が生じやすく、1000℃以上では絶縁被膜が分解して絶縁性が焼失するので、500~1000℃の範囲内とする。この高温処理は、予備成形体の酸化を防止する観点から、真空中、不活性ガス雰囲気または還元性ガス雰囲気中で行われる。かくして、真密度98%(7.7g/cm)の圧粉磁心を製造できると記載されている。
 しかしながら、2回成形-1回焼結粉末冶金方法(特許文献8)は、他の提案方法に比較して、ますます複雑化、個別化されるとともに具現化と実施化が難しく、製造コストの大幅高を招く。また、予備成形体を500℃以上で熱処理することを要件としている。圧粉磁心の品質が劣悪化を防止する意味で格別の雰囲気中で行わなければならないので、大量生産には不向きである。特に、ガラス質被膜被覆磁性金属粉末の場合には、ガラス質が変質・溶解してしまうので、適応できない。
 また、上記したいずれの提案方法・装置(特許文献1~8)においても、比較的に高温雰囲気内の焼結処理についての実施可能な記述はあるが、加圧成形工程に関する詳細は定かでない。加圧成形機の仕様・機能、加圧力と密度の関係やその限界に関する分析も新たな改善についての記載は認められない。
 かくして、小型軽量化に伴う一段の機械的強度が求められる点からも、高密度圧粉体(特に、磁心用高密度圧粉体)を確実・安定かつ低コストで製造できる方法・装置の開発が急務とされている。
 本発明の目的は、混合粉末に加温を挟んだ2回の加圧形成を施すことにより高密度圧粉体を製造できかつ製造コストを大幅に低減することができる混合粉末の高密度成形方法および高密度成形装置を提供することにある。
 圧粉体は焼結冶金技術より製造される慣行ゆえに、加圧成形された圧粉体を高温雰囲気(例えば、800℃以上)での焼結処理を施すことが必須とされてきた。しかし、焼結用高温処理は、エネルギー消費が大量でコスト負担が膨大であるばかりか地球的環境保全上も弊害が大きいので、見直す必要がある。
 また、従来、加圧成形処理は混合粉末を具体的形態として確立するものであり、高温焼結処理の前段階(予備)的な機械的処理として考えられ、そのように取り扱われてきた。しかるに、電磁機器(モータ、トランス等)に供される磁心用圧粉体を製造する場合に限り、例外的に、焼結用高温処理を省略しているのが実状である。高温処理した場合の弊害(磁気特性の劣悪化)を回避するためである。つまり、機械的強度に対する不満足を忍従することを余儀なくされていた。機械的強度の不足は、密度の問題であるから、当然として磁気特性も不十分であった。
 ここに、高温焼結処理をすることなくかつ加圧成形処理のみで圧粉体の高密度成形ができるならば、圧粉体の産業上の利用と普及を飛躍的に向上できる筈である。本発明は、加圧時の潤滑剤の有効性、潤滑剤粉末を含む圧縮限界性、潤滑剤粉末の混合粉末内での空間的占有性、基金属粉末と潤滑剤粉末の空間的配置状態やそれらの挙動性および潤滑剤の最終処分態様についての研究並びに一般的な加圧成形機の特性、圧縮限界性および圧粉体の密度が強度や磁性に及ぼす影響度についての分析に基づき、かつ実際の製造に適応した混合粉末の充填作業の高効率化および第1・第2の金型等の小型軽量化に応えられるものとして、創出したものである。
 すなわち、本発明は、コンテナキャビティ内に充填した混合粉末を第1の金型に移行させ、第1の金型で潤滑剤の粉末状態を維持しつつ第1の加圧工程により混合粉末中間圧縮体を成形し、次いで潤滑剤を加熱して液化させることにより混合粉末中間圧縮体内の潤滑様相の改変をなし、しかる後に加熱昇温後の混合粉末中間圧縮体を第2の金型に移行させかつ第2の加圧工程を施して真密度に近い高密度の完成圧粉体を成形するものである。換言すれば、高温焼結処理を必須とする従来焼結冶金技術から脱した新たな粉末冶金技術(潤滑剤の液化工程を挟んだ2回の加圧成形)の創成に係り、高密度圧粉体を確実に安定してかつ低コストで製造することのできる画期的で実用的な方法と装置を提供するものである。
 (1)詳しくは、本発明の第1の態様に係る混合粉末の高密度成形方法は、基金属粉末と低融点の潤滑剤粉末との混合物である混合粉末をコンテナキャビティ内に充填し、コンテナキャビティ内の混合粉末を当該コンテナに対応位置決めされた第1の金型のキャビティ内に移行させ、第1の金型のキャビティ内の混合粉末に第1の加圧力を加えて混合粉末中間圧縮体を成形し、成形後の第1の金型および混合粉末中間圧縮体を加熱して混合粉末中間圧縮体を該融点相当温度に昇温し、昇温後の混合粉末中間圧縮体を第1の金型ごと第2の金型に対応位置決めし、第1の金型のキャビティ内の混合粉末中間圧縮体を当該第1の金型に対応位置決めされた第2の金型のキャビティ内に移行させ、第2の金型のキャビティ内の混合粉末中間圧縮体に第2の加圧力を加えて高密度の混合粉末完成圧縮体を成形する、ことを特徴とする。
 また、(2)上記(1)の発明において、潤滑剤粉末の融点を、90~190℃の温度範囲内に属する低融点とすることができる。
 また、(3)上記(1)または上記(2)の発明において、第2の金型を、混合粉末中間圧縮体の受入れ以前に融点相当温度に暖機することができる。
 また、(4)上記(1)または上記(2)の発明において、第1の金型を、混合粉末中間圧縮体の成形完了後に暖機することができる。
 また、(5)上記(1)または上記(2)の発明において、第2の加圧力を、第1の加圧力と等しくすることができる。
 さらに、(6)本発明の第2の態様に係る混合粉末の高密度成形装置は、基金属粉末と低融点の潤滑剤粉末との混合物である混合粉末を混合粉末充填位置に位置決めされたコンテナのキャビティ内に充填可能な混合粉末供給機と、コンテナキャビティ内の混合粉末をコンテナに対応位置決めされた第1の金型のキャビティ内に移行させる混合粉末移行装置と、第1の金型のキャビティ内の混合粉末に第1のパンチから第1の加圧力を加えて混合粉末中間圧縮体を成形する第1の加圧成形機と、加熱昇温位置に位置決めされた第1の金型および混合粉末中間圧縮体を加熱して混合粉末中間圧縮体の温度を融点相当温度に昇温する加熱昇温機と、第1の金型のキャビティ内の混合粉末中間圧縮体を引渡中継位置に位置決めされた第2の金型に引渡し移行させる中間圧粉体移行装置と、完成圧粉体成形位置に位置決めされた第2の金型のキャビティ内の混合粉末中間圧縮体に第2のパンチから第2の加圧力を加えて高密度の混合粉末完成圧縮体を成形する第2の加圧成形機と、第2の金型のキャビティ内の混合粉末完成圧縮体を製品排出位置において排出可能に形成された製品排出装置を具備してなる。
 さらに、(7)上記(6)の発明において、前記第1の金型を移送させて混合粉末充填位置に位置決めされたコンテナに対応位置決め可能に形成された第1の金型移送装置と、前記第1の金型を中間圧粉体成形位置から移送させて加熱昇温位置に対応位置決め可能に形成された加熱前圧粉体移送装置と、混合粉末中間圧縮体を収容した前記第1の金型を加熱昇温位置から移送させて引渡中継位置に対応位置決め可能に形成された加熱後圧粉体移送装置と、混合粉末中間圧縮体を収容した前記第2の金型を引渡中継位置から移送させて完成圧粉体成形位置に対応位置決め可能に形成された第2の金型移送装置と、混合粉末完成圧縮体を収容した前記第2の金型を完成圧粉体成形位置から移送させて製品排出位置に対応位置決め可能に形成された完成圧粉体移送装置と、混合粉末完成圧縮体を収容した前記第2の金型を製品排出位置から移送させて引受中継位置に対応位置決め可能に形成された第2の金型戻し移送装置を設けることができる。
 さらに、(8)上記(6)の発明において、混合粉末充填位置、加熱昇温位置および引渡中継位置を第1の軸線を中心とする第1の円軌跡上に離隔配置しかつ引渡中継位置、完成圧粉体成形位置および製品排出位置を第2の軸線を中心とする第2の円軌跡上に離隔配置するとともに第1の金型移送装置、加熱前圧粉体移送装置および加熱後圧粉体移送装置が第1の軸線を中心として回動可能な第1の回転テーブルを利用して構築されかつ第2の金型移送装置、完成圧粉体移送装置および第2の金型戻し移送装置が第2の軸線を中心として回動可能な第2の回転テーブルを利用して構築されている。
 (9)上記(6)または(7)の発明において、前記第1の金型を暖機する第1の暖機装置をさらに有することができる。
 (10)上記(6)または(7)の発明において、前記第2の金型を暖機する第2の暖機装置をさらに有することができる。
 上記(1)の発明によれば、高密度圧粉体を確実・安定して製造できかつ製造コストを大幅に低減することができるとともに、実際の製造に適応した混合粉末の充填作業の高効率化および第1・第2の金型等の小型軽量化に応えられる。
 上記(2)の発明によれば、第1の加圧工程中における潤滑剤の十分な潤滑作用を担保できる。しかも、潤滑剤の種類に関する選択性が広い。
 上記(3)の発明によれば、第2の加圧成形中における溶解済み潤滑剤の全方向への流動性を一段と高められるから、基金属粒子間のみならず粒子と第2の金型との間の摩擦抵抗力を大幅に軽減維持できる。
 上記(4)の発明によれば、混合粉末中間圧縮体の昇温時間を含む製造サイクルタイムの短縮化を促進できる。
 上記(5)の発明によれば、加圧成形工程の実施およびその取扱いが容易で、間接的に圧粉体の製造コストの一層の低減にも寄与できる。
 さらに、上記(6)の発明によれば、上記(1)~(5)に係る混合粉末の高密度成形方法を確実に実施することができるとともに低コストでの具現化が容易で、取扱いが簡単である。
 さらに、上記(7)の発明によれば、上記(6)の発明の場合に比較して、装置簡素化を図れかつ圧粉体の迅速かつ円滑な移送ができる。
 さらにまた、上記(8)の発明によれば、上記(7)の発明の場合に比較して、一段の装置簡素化を図れる。製造ラインの一層の単純化を促進でき、取扱も一段と容易になる。
 上記(9)の発明によれば、混合粉末中間圧縮体の昇温時間を含む製造サイクルタイムの短縮化を促進できる。
 上記(10)の発明によれば、第2の加圧成形中における溶解済み潤滑剤の全方向への流動性を一段と高められるから、基金属粒子間のみならず粒子と第2の金型との間の摩擦抵抗力を大幅に軽減維持できる。
 なお、上記以外の本発明の構成および効果については、以下の説明から明らかとなろう。
図1は、本発明に係る高密度成形方法を説明するための図である。 図2は、本発明の第1の実施形態に係る高密度成形装置を説明するための平面図である。 図3は、本発明の第1の実施形態における混合粉末充填動作から中間圧粉体を引渡中継位置に対応位置決めするまでの動作を説明するための縦断面図である。 図4は、本発明の第1の実施形態における中間圧粉体の引受け動作から製品排出位置において完成圧粉体(製品)を排出するまでの動作を説明するための縦断面図である。 図5は、本発明の第1の実施形態における加圧力と当該加圧力で得られる密度との関係を説明するためのグラフであり、点線で示す特性Aは第1の金型での成形状態を、実線で示す特性Bは第2の金型での成形状態を示す。 図6Aは、本発明の第1の実施形態における完成圧粉体(中間圧粉体)を説明するための外観斜視図であって、リング形状を示す。 図6Bは、本発明の第1の実施形態における完成圧粉体(中間圧粉体)を説明するための外観斜視図であって、円柱形状を示す。 図6Cは、本発明の第1の実施形態における完成圧粉体(中間圧粉体)を説明するための外観斜視図であって、細長丸軸形状を示す。 図6Dは、本発明の第1の実施形態における完成圧粉体(中間圧粉体)を説明するための外観斜視図であって、円板形状を示す。 図6Eは、本発明の第1の実施形態における完成圧粉体(中間圧粉体)を説明するための外観斜視図であって、複雑形状を示す。 図7は、本発明の第2の実施形態に係る高密度成形装置の混合粉末充填動作から中間圧粉体を引渡中継位置に対応位置決めするまでの動作を説明するための縦断面図である。 図8は、本発明の第2の実施形態における中間圧粉体の引受け動作から製品排出位置において完成圧粉体(製品)を排出するまでの動作を説明するための縦断面図である。
 以下、本発明を実施するための最良の形態について、図面を参照して詳細に説明する。
 (第1の実施の形態)
 本混合粉末の高密度成形装置1は、図1~図6Eに示す如く、混合粉末供給機10とコンテナ23と混合粉末移行装置(下パンチ37)と第1の加圧成形機30と加熱昇温機40と中間圧粉体移行装置(押出ロッド50)と第2の加圧成形機60と製品排出装置70を具備し、図1(A)に示す混合粉末100をコンテナ23に充填する混合粉末充填工程(PR1)、混合粉末100を第1の金型31に移行する混合粉末移行工程(PR2)、第1の金型31内で混合粉末100に第1の加圧力P1を加えて混合粉末中間圧縮体(中間圧粉体110という場合もある。)を成形する中間圧粉体成形工程(PR3)、成形された中間圧粉体110を加熱してその温度を当該潤滑剤粉末の融点相当温度に積極的に昇温する加熱昇温工程(PR4)、加熱された中間圧粉体110を第2の金型61に移行する中間圧粉体移行工程(PR5)、第2の金型61内で中間圧粉体110に第2の加圧力P2を加えて高密度の混合粉末完成圧縮体(完成圧粉体120という場合もある。)を成形する完成圧粉体成形工程(PR6)および製品排出工程(PR7)からなる本混合粉末の高密度成形方法を、安定・確実に実施することができるように形成されている。
 また、この実施の形態では、混合粉末充填位置(中間圧粉体成形位置)Z11、加熱昇温位置Z12および引渡中継位置Z13に第1の金型31を移送するための第1の金型移送装置(第1の金型戻し移送装置)81と加熱前圧粉体移送装置82と加熱後圧粉体移送装置83を設け、引渡中継位置Z13(引受中継位置Z21)、完成圧粉体成形位置Z22および製品排出位置Z23に第2の金型61を移送するための第2の金型移送装置91、完成圧粉体移送装置92および第2の金型戻し移送装置93を設けて、金型の迅速かつ円滑な移送を担保する。
 さらに、第1の金型移送装置81、加熱前圧粉体移送装置82および加熱後圧粉体移送装置83を図2の第1の回転テーブル80を利用した一体的構造としかつ第2の金型移送装置91、完成圧粉体移送装置92および第2の金型戻し移送装置93を図2の第2の回転テーブル90を利用して一体的構造とし、究極的構成の簡略化を達成する。
 本願明細書中でいう混合粉末100とは、基金属粉末と低融点の潤滑剤粉末との混合物を意味する。また、基金属粉末としては、1種の主金属粉末だけからなる場合と、1種の主金属粉末およびこれに1または複数の合金化成分粉末を混合してなる場合とがあるが、いずれの場合も適応できる。低融点とは、基金属粉末の融点(温度)に比較して温度(融点)が著しく低い温度(融点)でかつ基金属粉末の酸化を大幅に抑制できる温度(融点)であることを意味する。
 高密度成形装置1を示す図3において、高密度成形ラインの上流側の混合粉末充填位置Z11に配置された混合粉末供給機10は、混合粉末100をコンテナ23に充填する装置である。図1(A)の混合粉末充填工程(PR1)を実行する際に用いられる。一定量の混合粉末100を保留する機能および定量供給機能を有し、全体として初期位置(図2、図3で左方向の図示しない位置)とコンテナ装置20との間を選択的に往復移送可能である。
 コンテナ装置20は、上部にストッパー22を有する中空円筒形状の本体21と、下部にストッパー25を有しかつ中心に中空円筒形状のコンテナキャビティ24を有するコンテナ23と、コンテナ23を上方に向けて付勢するバネ26とからなり、混合粉末充填位置Z11に位置決めされている。コンテナキャビティ24には、第1の加圧成形機30(第1の金型31)の一部を構成する下パンチ37が摺動自在に嵌装され、コンテナ23との上下方向の相対位置により充填される混合粉末100の充填量が決まる。コンテナ23は、バネ26の付勢力によりストッパー25がストッパー22に制止された状態で図3(A)に示す上下方向の初期位置に保持される。
 第1の加圧成形機30の第1の金型31を構成するダイス32のキャビティ33に混合粉末100を直接充填するよりも、一旦コンテナ23(コンテナキャビティ24)に充填してから、キャビティ33内に混合粉末100を移行させる方が、予圧により少々圧縮した状態として大量の混合粉末100を充填することができる。また、混合粉末中間圧縮体110とともに第1の金型31(ダイス32)を引渡中継位置(加熱昇温位置Z12)へ移送することが容易となる。ワーク(圧粉体)のみを第1の金型31から取り出して第2の金型に移送する従来例に比較すれば、構造の大幅な簡素化ができる。予圧は、詳細後記の混合粉末移行装置(下パンチ37)の働きにより与えられる。
 コンテナ23から第1の金型31(ダイス32)内の何処にも混合粉末100を均一かつ十分に充填させることが重要であるから、混合粉末100はサラサラ状態でなければならない。つまり、第1の金型31(ダイス32)の内部空間(キャビティ33)の形態は、製品形態に応じた形態とする。製品形態が複雑であるいは狭小部分を有する形態であっても、中間圧粉体110の寸法精度保証上、不均一充填や不十分充填は好ましくない。
 完成圧粉体120(中間圧粉体110)の形態(寸法、形状)は、特に限定されないが、例として図6A~図6Eに示す。図6Aはリング形状、図6Bは円柱形状、図6Cは細長丸軸形状、図6Dは円板形状で、図6Eは複雑形状を示す。この実施の形態における中間圧粉体110(完成圧粉体120)は、図3、図6Bに示す円柱形状であり、第1の金型31の内部空間(キャビティ33)の形態はこれに対応する形態に仕上げられている。
 ここに、基金属粉末の大部分を占める基金属粒子間の摩擦抵抗力および基金属粉末と金型内面との摩擦抵抗力を軽減するための潤滑剤は、常温においてサラサラ状態の固形状(非常に小さな粒状)であるものを選択する。例えば液状の潤滑剤を採用すると、混合粉末100の粘度が高くかつ流動性が低くなるので、均一充填や十分充填ができない。
 次いで、常温下の第1の金型31(キャビティ33)内でかつ第1の加圧力P1を加えつつ実行される中間圧粉体成形中に、潤滑剤は固形状で所定の潤滑作用を安定維持できなければならない。第1の加圧力P1の加圧により多少の温度上昇が生じる場合があったとしても、同様に安定維持されるべきである。
 一方において、中間圧粉体成形後に選択的に実行される図1の加熱昇温工程(PR4)との関係および基金属粉末の酸化抑制の観点から、潤滑剤粉末の融点は当該基金属粉末の融点に比較して非常に低い融点(低融点)とする必要がある。
 潤滑剤粉末の融点は、例えば、90~190℃の温度範囲内に属する低融点として選択されている。下側温度(90℃)は、中間圧粉体成形中にある程度の温度上昇が発生したとしても、この温度には到達しないであろう値(例えば、70~80℃)の上限温度(80℃)に対して余裕をもたせた値(例えば、90℃)とし、さらに他の金属石鹸の融点(例えば、110℃)に着目して選択してある。つまり、中間圧粉体110の加圧成形中に潤滑油粉末が溶解(液化)して流れ出てしまう心配を一掃する。
 上側温度(190℃)は、潤滑剤粉末の種類に関する選択性の拡大の観点からは最小値で、特に加熱昇温工程に際する基金属粉末の酸化抑制の観点からは最大値として選択してある。つまり、この温度範囲(例えば、90~190℃)の下側温度と上側温度は、限界値ではなく境界値として理解されたい。
 かくして、金属石鹸に属する多くの物質(ステアリン酸亜鉛、ステアリン酸マグネシウム等)を潤滑剤粉末として選択的に採用することができる。なお、潤滑剤は粉末状態でなければならないので、粘性のある液体のオクチル酸亜鉛等は採用できない。
 この実施の形態では、融点120℃のステアリン酸亜鉛粉末を潤滑剤粉末として実施した。なお、本発明においては、特許文献7の発明のように加圧成形時の金型温度よりも低い温度(融点)の潤滑剤を用いかつ最初から潤滑剤を溶解(液化)させつつ加圧成形を実行する考え方は否定する。中間圧粉体110の成形終了以前に溶解した潤滑剤が流出してしまったのでは、途中で潤滑不足の部位が発生し易くなりことから、十分な加圧成形を確実かつ安定して行えないからである。
 潤滑剤粉末の量は、試験研究並びに実際生産を通じた経験則から選択した値とする。この実施の形態に係る中間圧粉体成形工程(PR3)との関係では、潤滑剤粉末の量は、混合粉末全量の0.23~0.08wt%とする。0.08wt%は中間圧粉体110の成形終了まで潤滑作用を担保できる下限的な値であり、0.23wt%は混合粉末100から中間圧粉体110とする際に期待する圧縮比を得るために必要な上限的な値である。
 次に、生産実務的な潤滑剤粉末の量は、第1の金型31内で第1の加圧力P1を加えて成形される中間圧粉体110の真密度比の値並びに第2の金型内での発汗現象を担保できるものとして決定すべきである。この際、作業環境の劣悪化を招く金型から外部への液化潤滑剤の液垂れ(液垂れ現象)の発生を防止する観点を見逃してはならない。
 この実施形態では、中間圧粉体110の真密度比(真密度100%に対する比)の値を80~90%としたので、潤滑剤粉末の量は0.2~0.1wt%としている。上限側値(0.2wt%)は液垂れ現象の発生防止可能とする観点から決め、下限側値(0.1wt%)は過不足のない必要十分な発汗現象の発現可能とする観点から決める。上記従来提案例(1wt%)の場合に比較して極めて少々であり、産業上の利用性を大幅に向上できる。
 液垂れ現象の発生防止は、実際生産に対しては極めて重要である。机上発案や研究段階では、加圧時の摩擦抵抗の低減化の観点から潤滑剤が不足することを心配するあまりに過分な潤滑剤を混合する傾向にある。例えば7.3g/cmを超える高密度化ができるか否かの試行錯誤の段階にあることから、過分な潤滑剤が液状化して金型から流出する事象には全く無関心である。液垂れ現象の認識さえない。つまり、液化潤滑剤の液垂れは、潤滑剤使用料の増大によるコストアップ、作業環境の悪化による生産性の低下や作業者の負担増大を招くので、これを解決しなければ実用性に欠けかつ普及拡大に繋がらない。
 0.2wt%の混合粉末100を真密度比80%まで圧縮した中間圧粉体110の場合は、加熱昇温工程(PR3)で当該潤滑剤粉末の融点相当温度に積極的に昇温すると、中間圧粉体110内に点在する粉末潤滑剤が溶融して金属粉末粒間の空孔を満たし、次いで金属粉末粒間を通過して中間圧粉体110の表面に一様に液状潤滑剤が染み出る(噴出する)。つまり、発汗現象が誘発される。この中間圧粉体11を第2の金型内で第2の加圧力P2を加えて圧縮する際に、基金属粉末とキャビティ内面壁との摩擦抵抗は大幅に低減される。
 0.1wt%の混合粉末100を真密度比90%まで圧縮した中間圧粉体110の場合も、0.1wt%を超えかつ0.2wt%未満の範囲内の値の混合粉末100を真密度比90%未満かつ80%を超える範囲内の値まで圧縮した中間圧粉体110である場合も、同様な発汗現象を発現できる。液垂れ現象の発生防止もできる。
 かくして、高密度成形ができ、磁気的特性のみならず機械的強度も満たす圧粉体(例えば、磁心)を製造できる、金型破損の虞も一掃できる。しかも、潤滑剤の消費量を大幅に削減でき、金型からの液状潤滑剤の垂れ流しがなくなり作業環境が良好となる。全体として生産性向上および圧粉体製造コスト低減ができるから産業上の利用性を格段に向上できる。
 因みに、上記したいずれの従来方法・装置(特許文献1~8)でも、潤滑剤の含有率と混合粉末100の圧縮率との関係、潤滑剤の多少による液垂れ現象、発汗現象の認識がない。特に、温間粉末冶金方法(特許文献5)でさえ、その目的がハンドリング容易化のためか密度比が76%未満の一次成形体を成形する点は理解できる。しかし、高密度成形に関する技術的根拠並びに実施可能な事項は何も開示されていない。いわんや、その後に一旦、一次成形体(中間圧粉体120)を崩壊してから二次成形体(完成圧粉体)を成形する点からすれば、一次成形、二次成形の積み上げにより高密度化を図る技術思想を否定することに他ならない。
 第1の加圧成形機30は、混合粉末供給機10を用いて第1の金型31(キャビティ33)に供給された混合粉末100に第1の加圧力P1を加えて混合粉末中間圧縮体110を成形する装置であり、この実施の形態ではプレス機械構造である。
 図3(A)、(B)において、第1の金型31はボルスタ側の下型(ダイス32、下パンチ37)とスライド(図示省略)側の上型(上パンチ36)とからなる。ダイス32のキャビティ33は、上記したように図5(B)に示す中間圧粉体110の形態(円柱形状)に対応する形状(中空円筒形状)とされている。コンテナキャビティ24の形状に対応する。上パンチ36は、上方のスライド(図示省略)により昇降運動される。上パンチ36の下面は、平面形状でキャビティ33の上方部分を閉塞可能である。つまり、ダイス32の上面の大部分に当接する。
 なお、第1の加圧成形機30のダイス32のキャビティ33は、中間圧粉体110の形態(形状)に対応する形状とされるので、中間圧粉体110の形態が図6A、図6C~図6E示すものである場合も、それぞれに対応した形状となる。図6Aに示すリング形状の場合は、円環筒形状となる。図6Cに示す細長丸軸形状の場合は図6Bの円柱形状と同様な形状とするが上下方向に長い。図6Dに示す円板形状の場合も同様な形状となるが上下方向に短い(薄い)。図6Eに示す複雑形状の場合は、対応する複雑形状となる。なお、第2の加圧成形機60(第2の金型61)のダイス62のキャビティ63についても同様である。
 混合粉末移行装置は、コンテナキャビティ内の混合粉末100をコンテナ23に対応位置決めされた第1の金型31のキャビティ33内に移行させる装置で、下パンチ37から構成され、上パンチ36とダイス32との協働により移行動作する。
 すなわち、図3(A)において、上パンチ36が下降して第1の回転テーブル80(金型保持部85)に保持されたダイス32の上面に当接する。当該ダイス32を押下げる。ダイス32の下面がコンテナ23の上面に当接しているので、当該コンテナ23を押下げる。下パンチ37の上下方向の位置変化はない。したがって、コンテナキャビティ24内の混合粉末100は、下パンチ37により押上げられて、第1の金型31のダイス32(キャビティ33)内に移行される。この際、コンテナキャビティ24の上下方向寸法の方が、キャビティ33の上下方向寸法よりも大きいから、コンテナキャビティ24内の混合粉末100は予圧効果により予圧縮されながらキャビティ33内に移行される。すなわち、混合粉末移行装置(上パンチ36、下パンチ37)は、コンテナキャビティ24内の混合粉末100をコンテナ23に対応位置決めされた第1の金型31のキャビティ33内に移行させることができる。
 図3(B)に示す如く、上パンチ36が下方位置(最下限位置)に下降した状態で、下パンチ37との協働により混合粉末100を圧縮した中間圧粉体110を成形することができる。つまり、第1の加圧成形機30として、第1の金型31のキャビティ33内の混合粉末100に第1のパンチ(上パンチ36)から第1の加圧力P1を加えて混合粉末中間圧縮体(中間圧粉体110)を成形する。混合粉末移行装置(下パンチ37)が設けられているので、キャビティ33内に直接充填する場合に比較して、大量の混合粉末100を供給できかつ圧縮移行できるから、中間圧粉体110を高密度化し易い。中間圧粉体110の寸法精度も高い。スライドが上昇すると上パンチ36が図3(C)に示す上方位置に上昇する。この際、第1の回転テーブル80は、上限位置に上昇する。コンテナ23はバネ26により、図3(A)に示す元の位置に戻される。
 第1の加圧成形機30における加圧力P(第1の加圧力P1)とこれに対応して得られる中間圧粉体110の真密度比(密度ρ)との関係を、図5を参照して説明する。横軸は加圧力Pを指数で示してある。この実施形態における最大能力(加圧力P)は10Ton/cmであり、これを横軸指数100とする。Pbは金型破損圧力で、横軸指数140(14Ton/cm)である。縦軸は真密度比(密度ρ)を指数で示している。縦軸指数100は真密度比(密度ρ)が97%(7.6g/cm)に当たる。
 この実施の形態では、基金属粉末が磁心用ガラス質絶縁被膜被覆鉄粉末とされ、潤滑剤粉末が0.2~0.1wt%の範囲内のステアリン酸亜鉛粉末でありかつ第1の加圧力P1が混合粉末中間圧縮体(中間圧粉体110)を縦軸指数82~92[密度ρ(6.24~7.02g/cm)相当]に当たる真密度比80~90%に圧縮できるものと選択されている。
 因みに、縦軸指数102は密度ρ(7.75g/cm)に当たり、真密度比(密度ρ)は99%に相当する。
 なお、基金属粉末としては、磁心用鉄系アモルファス粉末(磁心用Fe-Si合金粉末)、磁心用鉄系アモルファス粉末、磁心用Fe-Si合金粉末、機械部品用純鉄粉末等でもよい。
 第1の加圧力P1を上げて行くと、第1の加圧成形機30で得られる密度ρは、点線で示す特性A(曲線)に従って高くなる。第1の加圧力P1(横軸指数100)で、密度ρが7.6g/cmとなる。真密度比は97%である。第1の加圧力P1をこれ以上の値に上昇させても、密度ρの向上は極微である。金型破損の虞が強い。
 従来は、加圧成形機(プレス機械)の最大能力で加圧して得られた密度ρに満足できない場合には、一段と大型のプレス機械を装備しなければならなかった。しかし、最大能力を例えば1.5倍に大型化しても、密度ρの向上は軽微である。かくして、現在プレス機械で得られるが低い密度ρ(例えば、7.5g/cm)で妥協していたのが実状であった。
 ここに、特に、現在プレス機械をそのまま利用して、縦軸指数100(7.6g/cm)から102(7.75g/cm)まで向上できることになれば、画期的と理解できる。つまり、密度ρを2%向上できるなら、磁気特性を大幅(双曲線的)に向上できかつ機械的強度をも飛躍的に向上できるからである。しかも、高温雰囲気での焼結処理を一掃化できるので、圧粉体の酸化を大幅に抑える(磁心性能の低下を防止できる)。なお、プレス機能をもつ別個な機械を構築しあるいは流用しても実施することができる。
 以上を実現化するために、第1の加圧成形機30で成形した中間圧粉体110を加熱することで潤滑剤の溶解(液化)を促し、しかる後に第2の加圧成形機60で2回目の加圧成形処理を施すように形成されている。第2の加圧成形機60おいて中間圧粉体110を加圧すると、図5に実線で示した特性B(直線)にしたがって高密度化し、縦軸指数102に相当する高密度(7.75g/cm)を達成できる。詳細は、第2の加圧成形機60の説明において、追記する。
 加熱昇温機40は、図3(D)、(E)を参照し、加熱昇温位置Z12に位置決めされた第1の金型31および混合粉末中間圧縮体(中間圧粉体110)を加熱して中間圧粉体110の温度を融点相当温度に積極的に昇温する装置である。この加熱昇温機40は、上部にストッパー42を有する中空円筒形状の本体41と、下部にストッパー45を有しかつ上部にヒーター47を収容させるための収容部44を有する昇降ロッド43と、昇降ロッド43を上方に向けて付勢するバネ48とからなる。昇降ロッド43は、バネ48の付勢力によりストッパー45がストッパー42に制止された状態で、図3(D)に示す初期上方位置に保持される。
 この状態で、収容部44に第1の金型31(ダイス32)が載置(対応位置決め)されると、第1の回転テーブル80が下限位置に下降して図3(E)の状態となる。すると、ヒーター47がONとされ中間圧粉体110を加熱昇温する。ヒーター47をONするタイミングは設定変更可能である。例えば、図3(D)に示すように中間圧粉体110が載置されたタイミングでもよい。電力事情や生産サイクル等から許される限りにおいて常時ON状態とすることも可能である。
 第1の加圧成形機30における低温加熱処理の技術的意義を、第1の加圧成形処理との関係において説明する。第1の金型31(ダイス32)内に充填された混合粉末100を観察してみると、基金属粉末との関係において潤滑剤粉末の存在が比較的に疎である部分(疎部分)と密である部分(密部分)とが認められる。密部分は、基金属粉末の粒子間の摩擦抵抗力および基金属粉末と金型内面との摩擦抵抗力を小さくできる。疎部分は、これら摩擦抵抗力が大きくなる筈である。
 第1の加圧成形機30での加圧中、密部分は低摩擦なので圧縮性が勝り、圧縮化進行し易い。疎部分は高摩擦なので圧縮性が劣り、圧縮化が遅れる。いずれにしても、予め設定された第1の加圧力P1の値に応じた圧縮進行困難化現象が発生する。つまり、圧縮限界が生じる。この状態下でダイス32から取出した中間圧粉体110の破断面を拡大観察すると、上記密部分であった部分は基金属粉末が一体的様相で圧接されている。しかし、潤滑剤粉末も紛れ込んでいる。疎部分であった部分は、圧接された基金属粉末間に僅かな隙間(空間)が残っている。潤滑剤粉末は殆ど見当たらない。
 かくして、密部分であった部分から潤滑剤粉末を除去すれば、圧縮可能な隙間が生まれる。疎部分であった部分の隙間に潤滑剤を補給することができれば、その部分の圧縮性を高められる。
 すなわち、第1の加圧成形終了後の中間圧粉体110を加熱して潤滑剤粉末の融点相当温度(例えば、120℃)に昇温することで、潤滑剤粉末を溶解(液化)させその流動性を高める。密部分であった部分から溶け出した潤滑剤はその周辺に浸み込みかつ疎部分であった部分に補給される。したがって、基金属粉末の粒子間の摩擦抵抗力を小さくでき、潤滑剤粉末が占めていた空間も圧縮できることになるわけである。基金属粉末の粒子と金型内面との摩擦抵抗力も小さくできる。つまり、潤滑剤の液化を促進しつつ第2の加圧成形処理を施す。
 中間圧粉体移行装置(押出ロッド50)は、第1の金型31(ダイス32)のキャビティ33内の中間圧粉体110を引渡中継位置Z13に位置決めされた第2の金型61(ダイス62)のキャビティ63内に引渡し移行させる装置である。
 図3(F)、図4(G)において、中間圧粉体移行装置は、引渡中継位置Z13に位置決めされた押出ロッド50と引渡中継台55から形成され、押出ロッド50は、図3(F)に示す上限位置と図4(G)に示す下限位置との間を往復上下動可能である。ロッド径は、図4(H)に示す上パンチ66の径と同等またはそれよりも多少小さめとすればよい。
 図3(F)は、第2の金型61が引渡中継台55の上面に対応位置決めされた後に、第1の金型31が上限位置から下限位置に下降して、第2の金型61の上面に載置された場合を示す。この状態下において、押出ロッド50を下降させれば、第1の金型31のキャビティ33内の混合粉末中間圧縮体110を第2の金型61のキャビティ63内に移行させることができる。
 つまり、図4(G)に示す引渡中継位置Z13において、中間圧粉体110を第1の金型31から第2の金型61に引き渡すことができる。第2の金型61からみれば、引受中継位置Z21において、中間圧粉体110を第1の金型31から引き受けることになる。つまり、引渡中継位置Z13と引受中継位置Z21とは、同じ位置である。
 図4(H)に示す第2の加圧成形機60は、第2の金型61にセットされた中間圧粉体110に第2の加圧力P2を加える第2の加圧成形処理を施して高密度の混合粉末完成圧縮体(完成圧粉体120)を成形するための装置である。
 第2の金型61はボルスタ側の下型(ダイス62、下パンチ相当台67)とスライド(図示省略)側の上型(上パンチ66)とからなり、完成圧粉体成形位置Z22に位置決めされている。ダイス62のキャビティ63の形状は、第1の金型31(ダイス32)のキャビティ33の形状に対応する。つまり、図5(B)に示す完成圧粉体120の形態(円柱形状)に対応する形状(中空円筒形状)とされている。ダイス62の上部側は、中間圧粉体110を受入れ容易化のためにダイス32の場合に比較して僅かに大きい。
 図4(H)において、上パンチ66は、上方位置と下方位置との間を昇降運動可能なスライド(図示省略)によりキャビティ内に押し込まれ、中間圧粉体110に第2の加圧力P2を加えて高密度の完成圧粉体120を成形する。この第2の加圧力P2を受ける下パンチ相当台67は、引渡中継台55と同様な構造としたが、図3(B)に示す下パンチ37を含む同様な構造としてもよい。
 なお、この実施形態における第2の加圧成形機60の最大能力(加圧力P)は、第1の加圧成形機30の場合と同じ10Ton/cmである。かくして、第1の加圧成形機30と第2の加圧成形機60とは1台のプレス機械として構成され、共通のスライドで各金型31、61を同期昇降されるように構築することもできる。この点からも、装置経済が有利で、完成圧粉体120の製造コストを低減できる。
 第2の加圧成形機60における加圧力(第2の加圧力P2)とこれに対応して得られる完成圧粉体120の密度ρとの関係を、図5を用いて説明する。
 第2の加圧成形機60で得られる密度ρは、実線で示す特性Bに従う。すなわち、第1の加圧成形機30の場合[点線で示す特性Aに従う。]とは異なり、第2の加圧力P2を上げて行くに従って次第に密度ρが高まるわけでない。つまり、第1の加圧成形工程(PR3)における最終の第1の加圧力P1(例えば、横軸指数50、75あるいは85)を越えるまでは密度ρは高くならない。第2の加圧力P2が最終の第1の加圧力P1を超えると、一気に密度ρが高まる。第2の加圧成形は、あたかも第1の加圧成形を連続的に引き継いで行われるものと理解される。
 かくして、第1の加圧成形工程において、第1の加圧力P1を何時でも最大能力に対応する値(横軸指数100)まで上昇させた運転をしなくてもよいことになる。つまり、圧縮限界以降に第1の加圧成形を続行した場合の無駄な時間、消費エネルギーを排斥できる。製造コスト低減に繋がる。また、横軸指数100を越える過負荷運転を回避し易くなるので、金型破損の心配がない。全体として、運転取扱いが容易で安全かつ安定運用ができる。
 製品排出装置70は、第2の金型61のキャビティ63内の完成圧粉体120を製品排出位置Z23において外部に排出する装置である。図4(I)において、製品排出装置70は、製品排出位置Z23に対応位置決めされた排出ロッド71と排出台77に組み込まれたシュータ73を含み、排出ロッド71をキャビティ63内に押し込むことで完成圧粉体120を排出することができる。
 すなわち、排出ロッド71は、図示省略した上限位置と図4(I)に示す下限位置との間を往復上下動可能である。ロッド径は、図4(H)に示す上パンチ66の径と同等またはそれよりも多少小さい。第2の金型61が排出台77の上面に対応位置決めされた後に、排出ロッド71を下限位置に下降させれば、第2の金型61を構成するダイス62のキャビティ63内の完成圧粉体120をシュータ73に排出することができる。
 圧粉体の移送(搬送)方法は、生産サイクルの遅速を決定付けるので、どの方法に決めるかは重要である。また、具体的な構成・構造を如何にするかは、装置経済、取扱・メンテナンス、製造コストに直結するから、これまた重要である。因みに、従来例は、ワークを直線方向に移送(搬送)する場合が多い。
 この発明においては、2つの回転テーブル80、90を利用した回転移送方式とした。図2において、混合粉末充填位置Z11、加熱昇温位置Z12および引渡中継位置Z13は、第1の軸線Z1を中心とする第1の円軌跡R1上に離隔配置される。また、引受中継位置Z21、完成圧粉体成形位置Z22および製品排出位置Z23を、第2の軸線Z2を中心とする第2の円軌跡R2上に離隔配置する。この実施の形態では、それぞれに3分割等角(120度)配置してある。そして、第1の軸線Z1を中心として回動可能な第1の回転テーブル80と第2の軸線Z2を中心として回動可能な第2の回転テーブル90を利用した移送装置として構築してある。
 第1の軸線Z1と第2の軸線Z2の間隔は、引渡中継位置(縦軸線)Z13と引受中継位置(縦軸線)Z21とが同じ位置となるように決定される。第1の回転テーブル80は、第1の軸線Z1を中心にDRL(左回り)方向に間欠回転可能で、金型保持部85を混合粉末充填位置Z11、加熱昇温位置Z12および引渡中継位置Z13のいずれにも対応位置決めできかつその位置で停止保持することができる。
 第1の回転テーブル80は、上限位置と下限位置との間を昇降可能でかつ上限位置および下限位置のいずれの位置にも停止保持可能である。上限位置とは、図3(A)、(C)、(D)および(F)に示した状態となる位置であり、下限位置とは、図3(B)、(E)、(F)および図4(G)に示した状態となる位置である。また、第1の回転テーブル80は、図3(D)、(E)に示すバネ48の付勢力に抗して昇降ロッド43を下限位置に下降させる押下力を発生する。
 図2において、第1の回転テーブル80は移送駆動軸87(回転駆動軸88、昇降軸89)で支持されている。回転駆動軸88はサーボモータで回転角度制御され、第1の回転テーブル80を設定角度に停止保持可能であるから、金型保持部85を各位置Z11、Z12、Z13に正確に対応位置決めすることができる。この回転駆動軸88にスプライン連結された昇降軸89は、シリンダ装置により選択的に上限位置および下限位置のいずれかに第1の回転テーブル80を昇降させて対応位置決めすることができる。金型保持部85には第1の金型31(ダイス32)が取り付けられる。
 第2の回転テーブル90は、第2の軸線Z2を中心にDRR(右回り)方向に間欠回転可能で、金型保持部95を引受中継位置Z21、完成圧粉体成形位置Z22および製品排出位置Z23のいずれの位置にも対応位置決めする。また、各位置において停止保持することができる。移送回転軸97は回転駆動専用で、この実施の形態では、昇降機能を持たない。すなわち、第2の回転テーブル90は、図3(F)および図4(G)、(H)、(I)に示した状態つまり所定の高さに維持されている。金型保持部95には第2の金型61(ダイス62)が取り付けられる。
 この実施の形態では、第1の回転テーブル80には、複数(3つ)の金型保持部85が3分割等角(120度)配置され、各金型保持部85に第1の金型31を取り付けられている。同様に、第2の回転テーブル90には、複数(3つ)の金型保持部95が3分割等角(120度)配置され、各金型保持部95に第2の金型61が取り付けられている。
 なお、いずれの回転テーブル80、90も大径円板を用いて形成されているが、複数の腕木状部材を3分割等角(120度)配置してかつ各腕木状部材を第1、第2の軸線Z1、Z2を中心に同期回転可能に装着した構造としてもよい。
 ここに、第1の金型移送装置81、加熱前圧粉体移送装置82および加熱後圧粉体移送装置83は、第1の回転テーブル80(第1の金型移送装置81、加熱前圧粉体移送装置82、加熱後圧粉体移送装置83)を利用して一体的に構築されているものと理解される。各移送装置81、82、83は、第1の回転テーブル80の第1の軸線Z1を中心とするDRL方向の間欠回転を利用して、金型保持部85を第1の円軌跡R1に沿って移送させつつ第1の金型31を移送する。途中に第1の回転テーブル80の昇降が組み合わされる。
 第1の金型移送装置81は、図3(F)に示す引渡中継位置Z13に在る第1の金型31を図3(A)に示す混合粉末充填位置Z11に移送し、混合粉末充填位置Z11に在るコンテナ23に当該第1の金型31を対応位置決めする。途中に、第1の金型31を下限位置から上限位置まで上昇させる。この第1の金型移送装置81は、第1の金型31を引渡中継位置Z13から混合粉末充填位置Z11に戻す機能からすれば、第1の金型戻し移送装置と言ってもよい。
 加熱前圧粉体移送装置82は、図3(B)に示す中間圧粉体成形位置(混合粉末充填位置Z11)に位置する第1の金型31を中間圧粉体成形位置(混合粉末充填位置Z11)から図3(E)に示す加熱昇温位置Z12に移送しかつ当該第1の金型31を加熱昇温位置Z12に対応位置決めする。途中に、第1の金型31は、図3(B)に示す下限位置から図3(C)に示す上限位置まで上昇される。次いで、第1の回転テーブル80の回転により、第1の金型31は図3(D)に示す加熱昇温位置Z12に移送される。そして、第1の金型31は、上限位置にある収容部44に搭載(対応位置決め)され、その後に、昇降ロッド43の下降動作により下限位置に下降される。
 加熱後圧粉体移送装置83は、混合粉末中間圧縮体110を収容した第1の金型31を図3(E)に示す加熱昇温位置Z12から図3(F)に示す引渡中継位置Z13に移送する。第1の回転テーブル80の昇降動作により、途中に、第1の金型31は上限位置まで上昇され、引渡中継位置Z13に対応位置決めされた後に下限位置まで下降させる。
 また、第2の金型移送装置91、完成圧粉体移送装置92および第2の金型戻し移送装置93は、第2の回転テーブル90(第2の金型移送装置91、完成圧粉体移送装置92、第2の金型戻し移送装置93)を利用して一体的に構築されているものと理解される。各移送装置91、92、93は、第2の回転テーブル90の第2の軸線Z2を中心とするDRR方向の間欠回転を利用して、金型保持部95を第2の円軌跡R2に沿って移送させつつ第2の金型61を移送する。
 第2の金型移送装置91は、図4(G)に示す引受中継位置Z21に在りかつ中間圧粉体110を収容した第2の金型61を図4(H)に示す完成圧粉体成形位置Z22に移送し、完成圧粉体成形位置Z22に在る下パンチ相当台67に対応位置決めする。第2の回転テーブル90は、120°だけ回転による。
 完成圧粉体移送装置92は、完成圧粉体120を収容した第2の金型61を図4(H)に示す完成圧粉体成形位置Z22から移送させかつ図4(I)に示す製品排出位置Z23に当該第2の金型61を対応位置決めする。第2の回転テーブル90は、DRR方向に120°だけ回転による。
 第2の金型戻し移送装置93は、完成圧粉体120を排出後の第2の金型61を製品排出位置Z23から図3(F)に示す引受中継位置(製品排出位置Z23)まで移送させて、第2の金型61を当該引受中継位置(製品排出位置Z23)に対応位置決めする。つまり、第2の金型61を次のサイクルに先立ち戻しておく。
 圧粉体移送装置が、回転テーブル構造でかつ円軌跡に沿って移送する構成とされている。また、圧粉体の引き渡し方式が、図3(F)、図4(G)に示すように第1の金型31から第2の金型61へ直接押出して引き渡す方式とされている。このような回転移送・押出引渡方式とすれば、従来搬送方式(ロボットやトランスファー装置を用いて直線一方向にワーク搬送する。)に比較して、ワーク脱落の心配がなく、ワークとスライドや金型との衝突回避問題も解消し易く、迅速で正確な移送ができる。図3(A)、(B)に示す混合粉末100の引渡しも、同様である。
 かかる実施の形態に係る混合粉末の高密度成形装置1では、次のような工程により高密度成形方法を実施する。図1(A)に示す処理工程と、これに対応させて記載された同(B)の移送動作を参照しながら説明する。なお、各工程を示すブロック内にカッコ書きされた符号(例えば、Z22)は、当該工程が実行されている位置(完成圧粉体成形位置)を示す。
 (混合粉末の調達)
 基金属粉末(磁心用ガラス質絶縁被膜被覆鉄粉末)と0.2wt%の潤滑剤粉末(ステアリン酸亜鉛粉末)を混合してサラサラ状態の混合粉末100を調達する。所定量だけ混合粉末供給機10に補給する(図1の工程PR0)。
 (混合粉末の充填)
 所定タイミングにおいて、混合粉末供給機10が所定位置(図示しない)から図3(A)に示す補給位置(点線)に移送される。次いで、混合粉末供給機10の供給口が開放され、コンテナ装置20[空のコンテナキャビティ24]内に定量の混合粉末100が充填される(図1の工程PR1)。例えば2秒間で充填できる。充填後に供給口が閉鎖され、混合粉末供給機10は所定位置に戻る。この際に、第1の金型移送装置81が働き、第1の金型31(ダイス32)は、図3(F)の状態から図3(A)の状態に戻される。
 (混合粉末の移行)
 図3(A)に示す状態において上パンチ36を下降させると、第1の金型31が第1の回転テーブル80ごと下降される。上パンチ36は、バネ26の付勢力に打ち勝って第1の金型31およびコンテナ23を押下げる。下パンチ37は所定位置に位置決め固定されているので、コンテナ23内の混合粉末100は予備圧縮されつつ第1の金型31(ダイス32)のキャビティ33内に移行される。つまり、混合粉末移行装置(下パンチ37)が働く。
 (中間圧粉体の成形)
 さらに、上パンチ36が下降してダイス32(キャビティ33)内の混合粉末100を第1の加圧力P1で加圧する。図3(B)で、第1の加圧成形処理(図1の工程PR3)が実行される。粉体(固形状)の潤滑剤は十分な潤滑作用を営む。圧縮された中間圧粉体110の密度ρは、図5の特性A(点線)にしたがって高くなる。第1の加圧力P1が横軸指数(例えば、30)相当の圧力(3.0Ton/cm)になると、真密度比が85%つまり密度ρが6.63g/cm(縦軸指数87相当)に高まる。例えば8秒間の加圧成形が終了する。成形された中間圧粉体110は、第1の金型31のキャビティ33に留まる。
 (中間圧粉体の移送)
 図3(C)において、加熱前圧粉体移送装置82が働く。上パンチ36が上方位置に上昇された後に、第1の金型31は中間圧粉体110を収容したまま上限位置(上パンチ36の上方位置よりも下の位置)まで上昇される。次いで、第1の金型31および中間圧粉体110を中間圧粉体成形位置(混合粉末充填位置Z11)から図3(D)に示す加熱昇温位置Z12に移送する。第1の回転テーブル80は、図2のDRL方向に120°だけ回転する。コンテナ23が次のサイクルに備えて、下限位置から図3(A)に示す初期位置(上限位置)に戻される。バネ26の付勢力による。第1の金型31は、図3(D)に示すように、加熱昇温位置Z12でかつ上限位置(第1の金型31の上限位置よりも低い。)に在る加熱昇温機40(収容部44)に対応位置決めされる。引き続き、昇降ロッド43が下降して、第1の金型31を図3(E)に示す下限位置(加熱位置)に対応位置決めする。
 (加熱昇温)
 図3(E)において、収容部44が下限位置(第1の金型31の下限位置よりも低い。)に下降すると、加熱昇温機40(ヒーター47)が起動する。ダイス32内の中間圧粉体110は、潤滑剤粉末の融点相当温度(例えば、120℃)に昇温される(図1の工程PR4)。つまり、潤滑剤が溶解され、その流動により中間圧粉体110内の潤滑剤分布を均一的に改変する。加熱昇温時間は、例えば8~10秒である。ヒーター47の起動タイミングはこれに限定されない。例えば、図3(D)の状態から、起動開始させてもよい。
 (昇温済中間圧粉体の引渡・引受け)
 加熱昇温が完了すると加熱後圧粉体移送装置83が働く。図3(E)、(F)に示すように、昇温された中間圧粉体110は、第1の金型31に収容された状態で、加熱昇温位置Z12から引渡中継位置Z13に移送される。つまり、第1の回転テーブル80は、図2のDRL方向に120°だけ回転する。大気露出状態で移送されることがないので、中間圧粉体110の温度低下は殆ど認められない。そして、第1の金型31(ダイス32)は、引渡中継台55に待機(対応位置決め)された第2の金型61に載置される。すると、中間圧粉体移行装置(押出ロッド50)が働く。つまり、図4(G)に示す如く、押出ロッド50が図3(F)の上方位置から下降して、第1の金型31に収容されている昇温済みの中間圧粉体110を第2の金型61内に移行させる(図1の工程PR5)。移行終了後に、押出ロッド50は上方位置に戻る。
 (第1の金型の戻し移送)
 中間圧粉体110が第1の金型31から第2の金型61に移行終了されると、第1の金型移送装置81が、図4(G)に示す第1の金型31を図3(F)の上限位置に上昇させ、引き続き引渡中継位置Z13から図3(A)に示す混合粉末充填位置Z11に戻す。コンテナ23に対応位置決めするわけである。この際も、第1の回転テーブル80は、DRL方向に120°だけ回転する。
 (中間圧粉体の移送)
 一方、第2の金型移送装置91も働く。図3(F)の引受中継位置Z21(引渡中継位置Z13)において引き受けた中間圧粉体110を、図4(G)の引受中継位置Z21から図4(H)の完成圧粉体成形位置Z22に移送する。中間圧粉体110は、第2の金型61に収容されたままの状態で移送される。第2の回転テーブル90は、図2に示すDRR方向に120°だけ回転する。
 (完成圧粉体の成形)
 図4(H)において、スライド(図示省略)とともに上パンチ66が上方位置から下降する。下パンチ相当台67は静止状態で第2の加圧力P2を受ける。つまり、ダイス62(キャビティ63)内の昇温済み中間圧粉体110を、第2の加圧力P2で加圧し始める。液状の潤滑剤が十分な潤滑作用を営む。特に、加圧成形の進行に伴い潤滑剤が全方向に流出する発汗現象が発生する。基金属粒子間のみならず粒子と金型との摩擦抵抗力を効率よく軽減できる。圧縮された中間圧粉体110の密度ρは、図5の特性B(実線)にしたがって高くなる。つまり、第2の加圧力P2が横軸指数(例えば、30…加圧力3.0Ton/cm)を超えると、密度ρが6.63g/cmから急激に縦軸指数102相当の密度ρ(7.75g/cm)に高まる。第2の加圧力P2を横軸指数100(10Ton/cm)まで上げると、密度ρ(7.75g/cm)は全体的に均一となる。ここで、例えば8秒間の第2の加圧成形処理が終了すると、金型(41)内に完成圧粉体120が成形されている(図1の工程PR6)。その後、スライドにより上パンチ66は上方位置まで上昇される。縦軸指数102に当たる密度ρ(7.75g/cm)の完成圧粉体120は、潤滑剤粉末が低融点であるからガラス質が変質・溶解することが無い。よって、渦電流損失が小さく、磁束密度を高められる高品質の磁心用圧粉体を能率よく製造することができると理解される。
 (完成圧粉体の移送)
 すると、完成圧粉体移送装置92が働き、完成圧粉体120を第2の金型61に収容したままの状態で、図4(H)の完成圧粉体成形位置Z22から図4(I)の製品排出位置Z23まで移送する。製品排出位置Z23つまり排出台77に対応位置決めされる。この期間中、排出ロッド71は上方位置に待機している。第2の回転テーブル90は、DRR方向に120°だけ回転する。
 (製品排出)
 製品排出装置70が働く。図4(I)において、排出ロッド71が上方位置から下降して第2の金型61内の完成圧粉体120を下方のシュータ73に押し出す。製品排出が終了する(図1の工程PR7)。終了後に、排出ロッド71は上方位置に上昇し待機状態となる。
 (第2の金型の戻し移送)
 第2の金型戻し移送装置93は、第2の金型61を図4(I)の製品排出位置Z23から図3(F)の引受中継位置Z21(引渡中継位置Z13)に戻し移送する。第2の回転テーブル90は、DRR方向に120°だけ回転する。途中に昇降動作しないので、迅速な戻し移送ができる。
 (製造サイクル)
 以上の各工程による高密度成形方法によれば、順番に供給充填される金属粉末(混合粉末100)についての第1の加圧成形処理、加熱昇温処理および第2の加圧成形処理を同期実行可能に構築すれば、最長の加熱昇温処理時間(10秒)に圧粉体移送時間(例えば、2~4秒)を加えた12~14秒のサイクル時間で高密度圧粉体(完成圧粉体120)を製造することができ得る。つまり、従来例における30分以上の高温焼結処理時間だけとの比較においても、製造・生産時間を飛躍的に向上できると理解される。例えば、小型軽量複雑形状で機械的強度の高い自動車用部品や、磁気特性および機械的強度が優れた電磁機器用部品の供給を安定化できそれらの生産コストの低減にも大きく貢献できる。
 しかして、この実施の形態によれば、混合粉末100をコンテナ23に充填し、その後に第1の金型31内に移行しかつ第1の加圧力P1を加えて中間圧粉体110を成形し、加熱して潤滑剤粉末の融点相当温度(例えば、120℃)に積極的に昇温され中間圧粉体110を第2の金型61にセットしかつ第2の加圧力P2を加えて完成圧粉体120を成形する高密度成形方法であるから、高密度圧粉体を確実・安定して製造できかつ製造コストを大幅に低減することができるとともに、実際の生産に適応した混合粉末100の充填作業の高効率化および第1の金型31等の小型軽量化に応えられる。
 また、高温で長時間の焼結処理を一掃することができるので、圧粉体110、120の酸化を大幅抑制できるばかりか、エネルギー消費の極限化および製造コストの大幅削減化を達成できる。地球的環境保全上も歓迎される。
 また、潤滑剤粉末の融点が90~190℃の温度範囲内の低融点であるから、第1の加圧工程中における潤滑剤の十分な潤滑作用を担保できる。しかも、酸化抑制を助長しつつ潤滑剤の選択性を拡大できる。
 第2の金型61が中間圧粉体110の受入れ以前に融点相当温度に暖機可能であるから、第2の加圧成形中における溶解済み潤滑剤の全方向への流動性を一段と高められる。すなわち、基金属粒子間のみならず粒子と第2の金型61との間の摩擦抵抗力を大幅に軽減維持できる。
 第1の金型31が中間圧粉体110の成形完了後に暖機可能であるから、中間圧粉体110の昇温時間を含む製造サイクルタイムの短縮化を促進できる。
 また、第2の加圧力P2を第1の加圧力P1と等しい値とすることができるから、加圧成形中における溶解済み潤滑剤の全方向への流動性を一段と高められる。基金属粒子間のみならず粒子と第2の金型61との間の摩擦抵抗力を大幅に軽減維持できる。しかも、加圧成形工程の実施およびその取扱いが容易で、間接的に圧粉体の製造コストの一層の低減にも寄与できるとともに、装置具現化に際しては例えば1台のプレス機械をベースとして簡単に構築することができる。
 また、基金属粉末を磁心用ガラス質絶縁被膜被覆鉄粉末から磁心用鉄系アモルファス粉末、磁心用Fe-Si合金粉末のいずれに変更しても、他の条件を同一としても、基金属粉末の種類に対応する磁気特性を有する磁心部品を能率よくかつ安定して製造できる。
 顧みて、従来装置(例えば、プレス機械)の能力(図5の横軸指数100)では縦軸指数100に相当する密度以上に高めることが不可能であったのに対して、本発明によれば同一装置で縦軸指数102に相当する密度まで高めることができる。この事実は、当該技術分野において画期的なことと賞賛される。
 さらに、高密度化装置1が、混合粉末供給機10と混合粉末移行装置(下パンチ37)と第1の加圧成形機30と加熱昇温機40と中間圧粉体移行装置(押出ロッド50)と第2の加圧成形機60と製品排出装置70から構成されているので、上記の高密度化方法を確実かつ安定して実施することができ、低コストで具現化できる。取扱いが簡単である。
 第1の金型31を移送させる第1の金型移送装置81と加熱前圧粉体移送装置82と加熱後圧粉体移送装置83とを設けかつ第2の金型61を移送させる第2の金型移送装置91、完成圧粉体移送装置92および第2の金型戻し移送装置93を設けてあるので、装置簡素化を図ることができかつ圧粉体の迅速かつ円滑な移送ができる。
 さらにまた、混合粉末充填位置Z11、加熱昇温位置Z12および引渡中継位置Z13を第1の軸線Z1を中心とする第1の円軌跡R1上に離隔配置しかつ引受中継位置Z21、完成圧粉体成形位置Z22および製品排出位置Z23を第2の軸線Z2を中心とする第2の円軌跡R2上に離隔配置するとともに各移送装置81、82、83が第1の軸線Z1を中心として回動可能な第1の回転テーブル80を利用して構築されかつ各移送装置91、92、93が第2の軸線Z2を中心として回動可能な第2の回転テーブル90を利用して構築されているので、一段の装置簡素化を図れる。製造ラインの一層の単純化も促進でき、取扱も一段と容易になる。従来の直線搬送方向に比較すれば、全体として迅速移送化および小型軽量化を達成できる。
 (第2の実施の形態)
 この実施の形態は、図7、図8に示されている。基本的構成・機能は第1の実施形態の場合(図1~図6E)と同じとされているが、第2の加圧成形機60を構成する第2の金型61(ダイス62)に第2の暖機装置64を設けてある。さらに、第1の加圧成形機30を構成する第1の金型31(ダイス32)に第1の暖機装置34を設けている。
 すなわち、第2の金型61を暖機しつつ加熱昇温済み中間圧粉体110の温度低下を防止可能に形成されている。加えて、第1の金型31を暖機しつつ中間圧粉体110の予備加熱を実行可能である。この実施の形態では、第1の暖機装置34および第2の暖機装置64の双方を設けたが、作業温度環境等によってはいずれか一方を設けるようにしてもよい。
 なお、図7(図8)は、第1の実施の形態に係る図3(図4)に対応するものである。他(図1、図2、図5、図6A~図6E)は第1の実施形態の場合と同じである。
 実施に際し、昇温済の中間圧粉体110の温度が、第2の金型61内において第2の加圧力P2を加えて成形開始する時点までに一定の温度範囲を外れた低温にまで低下していなければ、第2の金型61を暖機しなくても本発明の高密度成形を実施できる。さらに、昇温加熱工程前に第1の金型31を暖機して中間圧粉体110を予備昇温する必要がない場合がある。その場合には、第2の金型61および第1の金型31を暖機するための暖機機能を設けない場合もある。
 しかし、中間圧粉体110の熱容量が小さい場合、第2の金型61までの移送時間や移送経路が長い場合、混合粉末100の組成や中間圧粉体110の形態などによっては、昇温済の中間圧粉体110が完成圧粉体120の成形開始時点までに温度低下する虞がある。かかる場合には、第2の金型61を暖機した方が好ましい成形効果を得ることができる。
 図8において、第2の金型61(ダイス62)には、設定温度変更可能な第2の暖機装置(ヒーター)64が設けられている。この第2の暖機装置64は、中間圧粉体110を受入れる(セットされる)までに、潤滑剤粉末(ステアリン酸亜鉛)の融点相当温度(例えば、120℃)に第2の金型61を暖める(暖機する)。昇温済の中間圧粉体110を冷やすこと無く受入れることができる。これにより、先に溶解(液化)した潤滑剤の再固形化を防止しつつ潤滑作用を担保することができる。
 この暖機工程は、第1の実施形態における完成圧粉体成形工程(PR6)の以前に実行される。この暖機は、完成圧粉体120が加圧成形完了となるまで、加熱可能に形成してある。かくすれば、加圧成形中における溶解済み潤滑剤の全方向への流動性を一段と高められるから、基金属粒子間のみならず粒子と第2の金型61(ダイス62)との間の摩擦抵抗力を大幅に軽減維持できる。
 また、混合粉末100の組成や中間圧粉体110の形態が特異的である場合、混合粉末中間圧縮体110の熱容量が大きい場合、大きな加熱昇温機を設けられない場合、あるいは作業環境温度が低い場合は、中間圧粉体110の加熱昇温に長時間を費やす虞がある。かかる場合には、第1の金型31を暖機した方が好ましい。そのため、この実施の形態では、第1の金型31を暖機している。
 そこで、第1の金型31(ダイス32)内に設定温度変更可能な第1の暖機装置(ヒーター)34を内蔵させ、図7(A)[図3(A)に対応する。]に示す状態においてヒーターONにより第1の金型31を暖機可能としている。つまり、加熱昇温機40の一部を構成するものとして利用することができる。この先行暖機により加熱昇温機40での加熱時間を削減でき、生産サイクルの短縮化にも有効である。すなわち、図7(D)、(E)に示すように両ヒーター47、34により外周面および下面から加熱できるから、中間圧粉体110を全体として平均温度でかつ迅速に昇温することができる。
 この暖機工程は、第1の実施形態における中間圧粉体成形工程(PR3)の終了後に実行される。この実施の形態では、加熱昇温機40に引き渡されるまで、加熱暖機可能に形成してある。
 なお、第1の暖機装置34および第2の暖機装置64は、この実施の形態では電熱加熱方式(電気ヒーター)としたが、温油や温水を循環して暖機する循環方式の加熱装置などでも実施することができる。
 しかして、この実施の形態によれば、第1の実施の形態の場合と同様な作用効果を奏することができることに加え、さらに第2の金型61を予め暖機可能に形成されているので、第2の加圧力P2による加圧成形中に溶解潤滑剤の全方向流動性を一段と高められるから、基金属粒子間のみならず粒子と第2の金型61との間の摩擦抵抗力を大幅に軽減維持できる。
 また、第1の金型31を暖機可能であるから、暖機実行を選択しておけば、加熱昇温機40の負荷を低減できかつ中間圧粉体110を迅速に昇温できる。生産サイクルの短縮化が実現できる。
 1  高密度成形装置
 10 混合粉末供給機
 20 コンテナ装置
 23 コンテナ
 30 第1の加圧成形機
 31 第1の金型
 34 第1の暖機装置
 37 下パンチ(混合粉末移行装置)
 40 加熱昇温機
 50 押出ロッド(中間圧粉体移行装置)
 60 第2の加圧成形機
 61 第2の金型
 64 第2の暖機装置
 70 ワーク排出装置
 80 第1の回転テーブル(第1の金型移送装置、加熱前圧粉体移送装置、加熱後圧粉体移送装置)
 90 第2の回転テーブル(第2の金型移送装置、完成圧粉体移送装置、第2の金型戻し移送装置)
 100 混合粉末
 110 中間圧粉体(混合粉末中間圧縮体)
 120 完成圧粉体(混合粉末完成圧縮体)

Claims (10)

  1.  基金属粉末と低融点の潤滑剤粉末との混合物である混合粉末をコンテナキャビティ内に充填し、
     コンテナキャビティ内の混合粉末を当該コンテナに対応位置決めされた第1の金型のキャビティ内に移行させ、
     第1の金型のキャビティ内の混合粉末に第1の加圧力を加えて混合粉末中間圧縮体を成形し、
     成形後の第1の金型および混合粉末中間圧縮体を加熱して混合粉末中間圧縮体を該融点相当温度に昇温し、
     昇温後の混合粉末中間圧縮体を第1の金型ごと第2の金型に対応位置決めし、
     第1の金型のキャビティ内の混合粉末中間圧縮体を当該第1の金型に対応位置決めされた第2の金型のキャビティ内に移行させ、
     第2の金型のキャビティ内の混合粉末中間圧縮体に第2の加圧力を加えて高密度の混合粉末完成圧縮体を成形する、ことを特徴とする混合粉末の高密度成形方法。
  2.  前記潤滑剤粉末の融点が90~190℃の温度範囲内に属する低融点とされている、請求項1記載の混合粉末の高密度成形方法。
  3.  前記第2の金型が混合粉末中間圧縮体の受入れ以前に暖機される、請求項1または請求項2記載の混合粉末の高密度成形方法。
  4.  前記第1の金型が混合粉末中間圧縮体の成形完了後に暖機される、請求項1または請求項2に記載された混合粉末の高密度成形方法。
  5.  前記第2の加圧力が前記第1の加圧力と等しい値に選択されている、請求項1または請求項2に記載された混合粉末の高密度成形方法。
  6.  基金属粉末と低融点の潤滑剤粉末との混合物である混合粉末を混合粉末充填位置に位置決めされたコンテナキャビティ内に充填可能な混合粉末供給機と、
     コンテナキャビティ内の混合粉末をコンテナに対応位置決めされた第1の金型のキャビティ内に移行させる混合粉末移行装置と、
     第1の金型のキャビティ内の混合粉末に第1のパンチから第1の加圧力を加えて混合粉末中間圧縮体を成形する第1の加圧成形機と、
     加熱昇温位置に位置決めされた第1の金型および混合粉末中間圧縮体を加熱して混合粉末中間圧縮体の温度を融点相当温度に昇温する加熱昇温機と、
     第1の金型のキャビティ内の混合粉末中間圧縮体を引渡中継位置に位置決めされた第2の金型に引渡し移行させる中間圧粉体移行装置と、
     完成圧縮体成形位置に位置決めされた第2の金型のキャビティ内の混合粉末中間圧縮体に第2のパンチから第2の加圧力を加えて高密度の混合粉末完成圧縮体を成形する第2の加圧成形機と、
     第2の金型のキャビティ内の混合粉末完成圧縮体を製品排出位置において排出可能に形成された製品排出装置と、を具備する混合粉末の高密度成形装置。
  7.  前記第1の金型を移送させて混合粉末充填位置に位置決めされたコンテナに対応位置決め可能に形成された第1の金型移送装置と、
     前記第1の金型を中間圧粉体成形位置から移送させて加熱昇温位置に対応位置決め可能に形成された加熱前圧粉体移送装置と、
     混合粉末中間圧縮体を収容した前記第1の金型を加熱昇温位置から移送させて引渡中継位置に対応位置決め可能に形成された加熱後圧粉体移送装置と、
     混合粉末中間圧縮体を収容した前記第2の金型を引渡中継位置から移送させて完成圧粉体成形位置に対応位置決め可能に形成された第2の金型移送装置と、
     混合粉末完成圧縮体を収容した前記第2の金型を完成圧粉体成形位置から移送させて製品排出位置に対応位置決め可能に形成された完成圧粉体移送装置と、
     混合粉末完成圧縮体を収容した前記第2の金型を製品排出位置から移送させて引受中継位置に対応位置決め可能に形成された第2の金型戻し移送装置を設けた、請求項6記載の混合粉末の高密度成形装置。
  8.  前記混合粉末充填位置、加熱昇温位置および引渡中継位置を第1の軸線を中心とする第1の円軌跡上に離隔配置しかつ前記引渡中継位置、完成圧粉体成形位置および製品排出位置を第2の軸線を中心とする第2の円軌跡上に離隔配置し、
     前記第1の金型移送装置、加熱前圧粉体移送装置および加熱後圧粉体移送装置が第1の軸線を中心として回動可能な第1の回転テーブルを利用して構築され、
     前記第2の金型移送装置、完成圧粉体移送装置および第2の金型戻し移送装置が第2の軸線を中心として回動可能な第2の回転テーブルを利用して構築されている、請求項7記載の高密度成形装置。
  9.  前記第1の金型を暖機する第1の暖機装置をさらに有する、請求項6または請求項7記載の高密度成形装置。
  10.  前記第2の金型を暖機する第2の暖機装置をさらに有する、請求項6または請求項7記載の高密度成形装置。
PCT/JP2013/061741 2012-04-23 2013-04-22 混合粉末の高密度成形方法および高密度成形装置 WO2013161746A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/396,382 US20150132175A1 (en) 2012-04-23 2013-04-22 High-density molding device and high-density molding method for mixed powder
JP2014512546A JP5881822B2 (ja) 2012-04-23 2013-04-22 混合粉末の高密度成形方法および高密度成形装置
EP13781049.5A EP2842666A4 (en) 2012-04-23 2013-04-22 DEVICE FOR HIGH-DENSITY SHAPING AND METHOD FOR THE HIGH-DENSITY FORMING OF MIXED POWDER
KR1020147031974A KR20150011810A (ko) 2012-04-23 2013-04-22 혼합분말의 고밀도 성형방법 및 고밀도 성형장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012098060 2012-04-23
JP2012-098060 2012-04-23

Publications (1)

Publication Number Publication Date
WO2013161746A1 true WO2013161746A1 (ja) 2013-10-31

Family

ID=49466532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061741 WO2013161746A1 (ja) 2012-04-23 2013-04-22 混合粉末の高密度成形方法および高密度成形装置

Country Status (7)

Country Link
US (1) US20150132175A1 (ja)
EP (1) EP2842666A4 (ja)
JP (1) JP5881822B2 (ja)
KR (1) KR20150011810A (ja)
CN (2) CN203253924U (ja)
TW (1) TW201408404A (ja)
WO (1) WO2013161746A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106079550A (zh) * 2016-06-21 2016-11-09 孔庆虹 一种粉末定量加料方法及装置
CN107650418A (zh) * 2017-09-18 2018-02-02 南京东部精密机械有限公司 数控机电液混合驱动伺服粉末成形机阀控上冲功能集合系统
CN114799167A (zh) * 2021-01-21 2022-07-29 丰田自动车株式会社 粉末成型用模具装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201408404A (zh) * 2012-04-23 2014-03-01 Aida Eng Ltd 混合粉末之高密度成形方法及高密度成形裝置
BE1024526B1 (fr) * 2016-08-31 2018-04-03 Safran Aero Boosters S.A. Procede de realisation d'un joint abradable de turbomachine
AU2019356699B2 (en) * 2018-10-09 2022-06-16 Ihi Corporation Method for manufacturing Sm-Fe-N magnet, Sm-Fe-N magnet, and motor having Sm-Fe-N magnet
CN110788336A (zh) * 2019-12-02 2020-02-14 北京天宜上佳高新材料股份有限公司 一种摩擦块生产装置及摩擦块生产方法
CN111332502B (zh) * 2020-03-12 2023-10-31 苏州纳飞卫星动力科技有限公司 一种及时填料加热固体碘颗粒提升装填密度的装置
NL2025183B1 (en) * 2020-03-20 2021-10-20 Pianima B V A method for processing scrap metal
EP4079427A1 (de) * 2021-04-22 2022-10-26 GKN Sinter Metals Engineering GmbH Verfahren zur bestimmung eines parameters eines werkstoffes und presswerkzeug zur herstellung eines grünlings
CN114472891B (zh) * 2022-01-10 2023-11-24 江苏精研科技股份有限公司 一种高精密小模数齿轮高效成形方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219101A (ja) 1988-02-25 1989-09-01 Kobe Steel Ltd 粉末冶金用鉄粉およびその製造方法
JPH02156002A (ja) 1988-10-28 1990-06-15 Nuova Merisinter Spa 粉末緻密化法
JPH04231404A (ja) 1990-05-16 1992-08-20 Hoeganaes Corp 最適化2回プレス−2回焼結粉末冶金方法
JPH10259403A (ja) * 1997-03-18 1998-09-29 Seiko Epson Corp 圧縮成形装置および圧縮成形方法
JPH11267893A (ja) * 1998-03-17 1999-10-05 Hitachi Powdered Metals Co Ltd 圧粉体の成形方法
JP2000087104A (ja) 1998-09-04 2000-03-28 Hitachi Powdered Metals Co Ltd 圧粉体の成形方法
JP2001181701A (ja) 1999-12-22 2001-07-03 Kawasaki Steel Corp 高強度高密度鉄基焼結体の製造方法
JP2002343657A (ja) 2001-05-18 2002-11-29 Kawasaki Steel Corp 圧粉磁芯の製造方法および圧粉磁芯
JP2008211007A (ja) * 2007-02-27 2008-09-11 Tdk Corp 磁場成形装置
JP2009280908A (ja) 2008-04-22 2009-12-03 Jfe Steel Corp 粉末冶金用鉄基混合粉末の成形方法
JP2010037632A (ja) 2008-08-07 2010-02-18 Jfe Steel Corp 粉末冶金用粉末混合物および成形体の製造方法
JP2010251696A (ja) * 2009-03-25 2010-11-04 Tdk Corp 軟磁性圧粉磁芯および軟磁性圧粉磁芯の製造方法
WO2012060452A1 (ja) * 2010-11-04 2012-05-10 アイダエンジニアリング株式会社 混合粉末の高密度成形方法および高密度成形装置
WO2012077750A1 (ja) * 2010-12-08 2012-06-14 アイダエンジニアリング株式会社 高強度焼結成形体の製造方法およびその製造装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155912A (en) * 1978-05-30 1979-12-08 Showa Denko Kk Forming method for metal green compact
JP3871781B2 (ja) * 1997-10-14 2007-01-24 株式会社日立製作所 金属質粉成形素材及びその製造方法
JP2001252793A (ja) * 2000-03-09 2001-09-18 Hitachi Powdered Metals Co Ltd 圧粉体の成形方法
DE10203285C1 (de) * 2002-01-29 2003-08-07 Gkn Sinter Metals Gmbh Sinterfähige Pulvermischung zur Herstellung gesinterter Bauteile
TW201408404A (zh) * 2012-04-23 2014-03-01 Aida Eng Ltd 混合粉末之高密度成形方法及高密度成形裝置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219101A (ja) 1988-02-25 1989-09-01 Kobe Steel Ltd 粉末冶金用鉄粉およびその製造方法
JPH02156002A (ja) 1988-10-28 1990-06-15 Nuova Merisinter Spa 粉末緻密化法
JPH04231404A (ja) 1990-05-16 1992-08-20 Hoeganaes Corp 最適化2回プレス−2回焼結粉末冶金方法
JPH10259403A (ja) * 1997-03-18 1998-09-29 Seiko Epson Corp 圧縮成形装置および圧縮成形方法
JPH11267893A (ja) * 1998-03-17 1999-10-05 Hitachi Powdered Metals Co Ltd 圧粉体の成形方法
JP2000087104A (ja) 1998-09-04 2000-03-28 Hitachi Powdered Metals Co Ltd 圧粉体の成形方法
JP2001181701A (ja) 1999-12-22 2001-07-03 Kawasaki Steel Corp 高強度高密度鉄基焼結体の製造方法
JP2002343657A (ja) 2001-05-18 2002-11-29 Kawasaki Steel Corp 圧粉磁芯の製造方法および圧粉磁芯
JP2008211007A (ja) * 2007-02-27 2008-09-11 Tdk Corp 磁場成形装置
JP2009280908A (ja) 2008-04-22 2009-12-03 Jfe Steel Corp 粉末冶金用鉄基混合粉末の成形方法
JP2010037632A (ja) 2008-08-07 2010-02-18 Jfe Steel Corp 粉末冶金用粉末混合物および成形体の製造方法
JP2010251696A (ja) * 2009-03-25 2010-11-04 Tdk Corp 軟磁性圧粉磁芯および軟磁性圧粉磁芯の製造方法
WO2012060452A1 (ja) * 2010-11-04 2012-05-10 アイダエンジニアリング株式会社 混合粉末の高密度成形方法および高密度成形装置
WO2012077750A1 (ja) * 2010-12-08 2012-06-14 アイダエンジニアリング株式会社 高強度焼結成形体の製造方法およびその製造装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Autumn Meeting of Japan Society of Powder and Powder Metallurgy", 2009, TOYOTA CENTRAL R & D LABS., INC.
See also references of EP2842666A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106079550A (zh) * 2016-06-21 2016-11-09 孔庆虹 一种粉末定量加料方法及装置
CN107650418A (zh) * 2017-09-18 2018-02-02 南京东部精密机械有限公司 数控机电液混合驱动伺服粉末成形机阀控上冲功能集合系统
CN107650418B (zh) * 2017-09-18 2023-07-07 南京东部精密机械有限公司 数控机电液混合驱动伺服粉末成形机阀控上冲功能集合系统
CN114799167A (zh) * 2021-01-21 2022-07-29 丰田自动车株式会社 粉末成型用模具装置

Also Published As

Publication number Publication date
EP2842666A1 (en) 2015-03-04
KR20150011810A (ko) 2015-02-02
EP2842666A4 (en) 2016-01-13
CN103418791A (zh) 2013-12-04
US20150132175A1 (en) 2015-05-14
TW201408404A (zh) 2014-03-01
JP5881822B2 (ja) 2016-03-09
JPWO2013161746A1 (ja) 2015-12-24
CN203253924U (zh) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5881822B2 (ja) 混合粉末の高密度成形方法および高密度成形装置
JP5881817B2 (ja) 混合粉末の高密度成形方法および高密度成形装置
JP5885364B2 (ja) 混合粉末の高密度成形方法および高密度成形装置
JP5539159B2 (ja) 混合粉末の高密度成形方法および高密度成形装置。
EP2650065A1 (en) Method for manufacturing high-strength sinter-molded compact, and device for manufacturing same
JP5881816B2 (ja) 混合粉末の高密度成形方法および高密度成形装置
JP5881820B2 (ja) 混合粉末の高密度成形方法および高密度成形装置
JP5881821B2 (ja) 混合粉末の高密度成形方法および高密度成形装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512546

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14396382

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147031974

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013781049

Country of ref document: EP