[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013161011A1 - 空調給湯システム - Google Patents

空調給湯システム Download PDF

Info

Publication number
WO2013161011A1
WO2013161011A1 PCT/JP2012/061011 JP2012061011W WO2013161011A1 WO 2013161011 A1 WO2013161011 A1 WO 2013161011A1 JP 2012061011 W JP2012061011 W JP 2012061011W WO 2013161011 A1 WO2013161011 A1 WO 2013161011A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
water supply
air conditioning
hot water
Prior art date
Application number
PCT/JP2012/061011
Other languages
English (en)
French (fr)
Inventor
小谷 正直
陽子 國眼
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201280072563.0A priority Critical patent/CN104272036B/zh
Priority to US14/396,424 priority patent/US20150075199A1/en
Priority to JP2014512066A priority patent/JP5866000B2/ja
Priority to EP12875269.8A priority patent/EP2846111A4/en
Priority to PCT/JP2012/061011 priority patent/WO2013161011A1/ja
Priority to IN8932DEN2014 priority patent/IN2014DN08932A/en
Publication of WO2013161011A1 publication Critical patent/WO2013161011A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D15/00Other domestic- or space-heating systems
    • F24D15/04Other domestic- or space-heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/31Air conditioning systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies

Definitions

  • the present invention relates to an air conditioning and hot water supply system that performs air conditioning and hot water supply.
  • Patent Document 1 describes an air conditioning / hot water supply complex system in which an indoor unit and a hot water supply heat source circuit are connected in parallel and in which the indoor unit and the heat source unit are connected by at least two connection pipes via a branch unit. It is done.
  • the primary side (air conditioning heat exchanger side) of the refrigerant-refrigerant heat exchanger (intermediate heat exchanger) is made to function as a condenser in both the cooling operation and the heating operation.
  • the secondary side heat exchanger side for hot water supply
  • the exhaust heat of an air-conditioning heat source and a hot-water supply heat source is mutually utilized.
  • the refrigerant flowing through the refrigerant-refrigerant heat exchanger is indoors. It is as high temperature as the machine. This is because the refrigerant-refrigerant heat exchanger is connected in parallel to the indoor unit.
  • the hot water supply unit is usually installed in an outdoor or indoor non-air-conditioned space. Therefore, the refrigerant-refrigerant heat exchanger, which is a component of the hot water supply cycle, is at about the outdoor temperature which is the ambient temperature of the hot water supply unit. Then, when performing the heating operation, heat is released from the high temperature refrigerant to the low temperature outdoor air in the refrigerant-refrigerant heat exchanger.
  • this invention makes it a subject to provide the air conditioning hot-water supply system which can implement
  • the present invention relates to a primary heat transfer tube constituting a part of an annular circuit provided in an air conditioning refrigerant circuit, and a pipe in which an internal heat exchanger branches from the annular circuit via a pressure reducing device.
  • the pressure reducing device decompresses the first refrigerant flowing from the pipe according to the operation mode, and the first refrigerant to be decompressed is connected to the secondary heat transfer tube.
  • the first refrigerant flowing through the primary heat transfer tube is cooled by flowing out toward the first side.
  • FIG. 6 is a pressure-specific enthalpy diagram showing the state of the refrigerant during cooling operation. It is a systematic diagram showing the flow of the refrigerant in heating operation (normal) mode.
  • FIG. 6 is a pressure-specific enthalpy diagram showing the state of the refrigerant in the heating operation (normal) mode. It is a systematic diagram showing the flow of the refrigerant in the heating operation (exhaust heat) mode, and a to-be-heated liquid.
  • FIG. 7 is a pressure-specific enthalpy diagram showing the state of the refrigerant in the heating operation (exhaust heat) mode.
  • the air-conditioning and hot water supply system which concerns on 2nd Embodiment of this invention WHEREIN: It is a systematic diagram which shows the flow of the refrigerant
  • FIG. 8 is a pressure-specific enthalpy diagram showing the state of the refrigerant during heating operation when using the air conditioning and hot water supply system according to the prior art.
  • FIG. 1 is a system diagram of the air conditioning and hot water supply system according to the first embodiment of the present invention.
  • the air conditioning and hot water supply system S includes an outdoor unit 1, indoor units 2a and 2b, a hot water supply unit 3, a hot water supply tank unit 4, and a control device 50.
  • the indoor units 2a and 2b are installed indoors (within the air conditioned space).
  • the outdoor unit 1, the hot water supply unit 3, and the hot water supply tank unit 4 are installed outdoors (outside the air conditioned space).
  • FIG. 1 shows, as an example, the case where the air conditioning and hot water supply system S includes two indoor units.
  • the indoor units 2a and 2b and the outdoor unit 1 each have a control unit (not shown) so that they can communicate with each other via a communication line (not shown).
  • each control unit described above is schematically shown as a control device 50.
  • the air-conditioning and hot-water supply system S includes a "cooling operation” for cooling the room in which the indoor units 2a and 2b are installed, a “heating operation” for heating the room in which the indoor units 2a and 2b are installed, and a liquid to be heated (for example, Water heating and supply a high-temperature heated liquid to the tank 42, a cooling and hot water supply operation, a cooling and hot water supply operation, and a heating and hot water supply operation, a heating and hot water supply operation , Has the ability to do.
  • a liquid to be heated for example, Water heating and supply a high-temperature heated liquid to the tank 42, a cooling and hot water supply operation, a cooling and hot water supply operation, and a heating and hot water supply operation, a heating and hot water supply operation , Has the ability to do.
  • the air conditioning and hot water supply system S includes the air conditioning refrigerant circuit 10 in which the first refrigerant circulates, the hot water supply refrigerant circuit 30 in which the second refrigerant circulates, and the hot water supply circuit 40 in which the liquid to be heated flows. .
  • the air conditioning refrigerant circuit 10 includes an air conditioning compressor 11, a four-way valve 12, an outdoor heat exchanger 13, an outdoor expansion valve 14, a primary heat transfer pipe 21a of the intermediate heat exchanger 21, and an internal heat exchanger An annular circuit in which the primary side heat transfer tubes 15a and the indoor unit 2 are sequentially connected is provided. Further, on the suction side of the air conditioning compressor 11, an accumulator 19 for separating the first refrigerant from gas to liquid in order to prevent liquid compression in the air conditioning compressor 11 is installed. In addition, an internal heat exchanger expansion valve 16 is provided so as to reduce the pressure of the first refrigerant before it flows into the secondary side of the internal heat exchanger 15.
  • the air conditioning compressor 11 is a compressor that compresses the first refrigerant to a high temperature and a high pressure.
  • a rotary, scroll, or reciprocating compressor can be used as the air conditioning compressor 11.
  • the four-way valve 12 switches the direction of the first refrigerant flowing through the indoor heat exchangers 18a and 18b between the cooling operation and the heating operation. That is, by switching the four-way valve 12, the low temperature and low pressure first refrigerant expanded by the air conditioning expansion valves 17a and 17b flows into the indoor heat exchangers 18a and 18b during the cooling operation. In the heating operation, the high-temperature and high-pressure first refrigerant compressed by the air conditioning compressor 11 flows into the indoor heat exchangers 18a and 18b.
  • the outdoor heat exchanger 13 air conditioning heat source side heat exchanger
  • the outdoor expansion valve 14 first expansion valve
  • the intermediate heat exchanger 21 is a heat exchanger that performs heat exchange between the first refrigerant flowing through the primary heat transfer pipe 21 a and the second refrigerant flowing through the secondary heat transmission pipe 21 b.
  • the internal heat exchanger 15 has a first refrigerant flowing through the primary side (the side connected to the indoor expansion valves 17a and 17b), and a side connected to the secondary side (the internal heat exchanger expansion valve 16).
  • the heat exchanger exchanges heat with the first refrigerant flowing therethrough. That is, the internal heat exchanger 15 is connected on the secondary side to the pipe P branched from the annular circuit through the primary heat transfer pipe 15a constituting a part of the annular circuit and the expansion valve 16 for internal heat exchanger. And a heat transfer tube 15b.
  • one end of the secondary heat transfer pipe 15b of the internal heat exchanger 15 is connected to the internal heat exchanger expansion valve 16, and the other end is connected to a pipe connecting the four-way valve 12 and the accumulator 19.
  • the internal heat exchanger expansion valve 16 depressurizes the first refrigerant flowing from the pipe P according to the operation mode, and the depressurized first refrigerant is transferred to the secondary heat transfer pipe 15b of the internal heat exchanger 15. Flow out towards you. Thus, the first refrigerant flowing through the primary heat transfer pipe 15a of the internal heat exchanger 15 is cooled.
  • the indoor expansion valves 17a and 17b are interposed between the internal heat exchanger 15 and the indoor heat exchangers 18a and 18b, and are decompressed to decompress the first refrigerant in the cooling operation mode and the heating operation mode. Act as a device.
  • the indoor heat exchangers 18a and 18b air conditioning utilization side heat exchangers
  • the indoor heat exchangers 18a and 18b are connected to the discharge side of the air conditioning compressor 11 via the four-way valve 12, and the air (indoor air) sent from the indoor fan 18f and the It is a heat exchanger that exchanges heat with one refrigerant.
  • the indoor expansion valve 17a constituting the indoor unit 2a and the indoor heat exchanger 18a are connected in series, and the indoor expansion valve 17b constituting the indoor unit 2b and the indoor heat exchanger 18b Connected in series.
  • the indoor unit 2a and the indoor unit 2b are connected in parallel.
  • the indoor expansion valves 17a and 17b may be simply referred to as “the indoor expansion valve 17”
  • the indoor heat exchangers 18a and 18b may be simply referred to as the "indoor heat exchanger 18".
  • HFC, HFO-1234yf, HFO-1234ze natural refrigerant (for example, CO 2 refrigerant) or the like can be used.
  • natural refrigerant for example, CO 2 refrigerant
  • the hot water supply refrigerant circuit 30 provided in the hot water supply unit 3 includes a hot water supply compressor 31, a primary side heat transfer pipe 32a of the hot water supply heat exchanger 32, an expansion valve 33 for hot water supply, and a secondary of the intermediate heat exchanger 21.
  • the side heat transfer pipe 21b is connected by an annular pipe.
  • the hot water supply compressor 31 is a compressor that compresses the second refrigerant to a high temperature and a high pressure.
  • the hot water supply heat exchanger 32 is a heat exchanger that exchanges heat between the second refrigerant flowing through the primary heat transfer pipe 32a and the liquid to be heated flowing through the secondary heat transfer pipe 32b.
  • the hot water supply expansion valve 33 functions as a pressure reducing device that reduces the pressure of the second refrigerant.
  • a natural refrigerant for example, a CO 2 refrigerant
  • coolant uses the refrigerant
  • the hot water supply circuit 40 is configured by connecting the hot water supply pump 41, the secondary-side heat transfer pipe 32b of the hot water supply heat exchanger 32, and the tank 42 in an annular piping.
  • the hot water supply pump 41 is a pump that pumps up the liquid to be heated from the tank 42 and pumps it toward the secondary heat transfer pipe 32 b of the hot water supply heat exchanger 32.
  • the tank 42 stores the liquid to be heated, and is covered with a heat insulating material (not shown). As described above, for example, water can be used as the liquid to be heated.
  • the hot water supply tank unit 4 includes a water supply fitting 43, a hot water supply fitting 45, and three-way valves 44 and 46.
  • One end of the water supply fitting 43 is connected to the three-way valve 44, and the other end is connected to a water supply terminal (not shown).
  • the hot water supply terminal not shown
  • the heated fluid flows into the lower part of the tank 42 through the water supply fitting 43 by the pressure from the water supply source. There is.
  • the three-way valves 44 and 46 are configured to be able to adjust the flow rate ratio of the heated liquid flowing therethrough, and are mutually connected via a pipe 47a. Then, the heated liquid (water) having a flow rate corresponding to the opening degree of each of the three-way valves 44, 46 is made to flow through the pipe 47a, whereby the high temperature heated liquid supplied from the tank 42 is adjusted to an appropriate temperature. It is supposed to be adjusted.
  • One end of the water heater 45 is connected to the three-way valve 46, and the other end is connected to a hot water supply terminal (not shown). When the user opens the hot water supply terminal, the liquid to be heated (hot water) whose temperature has been adjusted is supplied to the hot water supply terminal via the hot water supply fitting 45.
  • the air conditioning and hot water supply system S also includes a control device 50.
  • Control device 50 determines the operation mode of the air conditioning and hot water supply system, and various valves (four-way valve 12, outdoor expansion valve 14, internal heat exchanger expansion valve 16, indoor expansion valve 17 and hot water expansion valve according to the determined operation mode State of valve 33) (opening degree), rotational speed of compressor (air conditioner compressor 11, hot water supply compressor 31), rotational speed of each heat exchanger fan (outdoor fan 13f, indoor fan 18f), and hot water supply It controls the rotational speed of the pump 41 to control various operations of the air conditioning and hot water supply system S.
  • each operation mode of the air conditioning and hot water supply system S executed by the control device 50 will be described.
  • pipes through which the first refrigerant, the second refrigerant, and the liquid to be heated flow are illustrated by thick lines, and the flow directions are illustrated by arrows.
  • the various valves (the outdoor expansion valve 14, the internal heat exchanger expansion valve 16, the indoor expansion valve 17 and the hot-water supply expansion valve 33) are illustrated in black as having closed flow. .
  • FIG. 2 is a system diagram showing flows of the refrigerant and the liquid to be heated in the hot water supply operation mode.
  • the control device 50 controls the switching means (not shown) of the four-way valve 12 to be at the position of the hot water supply operation. That is, the control device 50 switches the four-way valve 12 so that the discharge side of the air conditioning compressor 11 and the indoor heat exchanger 18 are connected and the accumulator 19 and the outdoor heat exchanger 13 are connected. Control). Further, the control device 50 fully closes the internal heat exchanger expansion valve 16, fully opens the indoor expansion valve 17, and controls the opening degree (throttling) of the outdoor expansion valve 14. Furthermore, the control device 50 controls the rotational speeds of the air conditioning compressor 11, the hot water supply compressor 31, and the outdoor fan 13f.
  • the air conditioning refrigerant circuit 10 in this mode will be described.
  • the high temperature and high pressure first refrigerant discharged from the air conditioning compressor 11 passes through the four-way valve 12, the indoor heat exchanger 18, the indoor expansion valve 17, and the primary heat transfer pipe 15a of the internal heat exchanger 15, and is condensed. Flows into the primary heat transfer tube 21a of the intermediate heat exchanger 21 functioning as a heat exchanger.
  • the indoor fan 18f is stopped in the hot water supply operation mode, heat exchange between the first refrigerant flowing through the indoor heat exchanger 18 and the indoor air is hardly performed.
  • the high temperature and high pressure first refrigerant flowing through the primary side heat transfer pipe 21a of the intermediate heat exchanger 21 releases heat by heat exchange with the second refrigerant flowing through the secondary side heat transfer pipe 21b of the intermediate heat exchanger 21. It becomes a medium temperature high pressure first refrigerant.
  • the medium temperature high pressure first refrigerant flowing out from the primary side heat transfer pipe 21a of the intermediate heat exchanger 21 is decompressed by the outdoor expansion valve 14 to become a low temperature low pressure first refrigerant, and the outdoor heat exchanger 13 functions as an evaporator.
  • the first refrigerant flowing through the outdoor heat exchanger 13 exchanges heat with air (outdoor air) sent by the outdoor fan 13 f, thereby drawing heat (absorbing heat) from the air. Then, the first refrigerant that has absorbed heat flows back from the outdoor heat exchanger 13 to the air conditioning compressor 11 via the four-way valve 12 and the accumulator 19.
  • the hot water supply refrigerant circuit 30 will be described.
  • the high-temperature and high-pressure second refrigerant discharged from the hot-water supply compressor 31 flows into the primary-side heat transfer pipe 32 a of the hot-water supply heat exchanger 32 functioning as a condenser.
  • the second refrigerant flowing through the primary heat transfer pipe 32a of the hot water supply heat exchanger 32 releases heat by exchanging heat with the liquid to be heated flowing through the secondary heat transfer pipe 32b, and the medium-temperature high-pressure second refrigerant It becomes.
  • the medium-temperature and high-pressure second refrigerant flowing out of the primary-side heat transfer pipe 32a of the hot-water supply heat exchanger 32 is decompressed by the hot-water supply expansion valve 33 and becomes a low-temperature and low-pressure second refrigerant.
  • the low temperature and low pressure second refrigerant flows into the secondary heat transfer pipe 21b of the intermediate heat exchanger 21 functioning as an evaporator.
  • the second refrigerant flowing through the secondary side heat transfer pipe 21b of the intermediate heat exchanger 21 exchanges heat with the high temperature and high pressure first refrigerant flowing through the primary side heat transfer pipe 21a, thereby drawing heat from the first refrigerant. (Takes heat). Further, the second refrigerant that has absorbed heat flows back from the intermediate heat exchanger 21 to the hot water supply compressor 31.
  • the control device 50 controls the rotational speed of the hot water supply pump 41.
  • the liquid to be heated that has flowed out from the lower part of the tank 42 flows into the secondary heat transfer pipe 32b of the hot water supply heat exchanger 32.
  • the liquid to be heated flowing through the secondary side heat transfer pipe 32b of the hot water supply heat exchanger 32 absorbs heat by exchanging heat with the second refrigerant flowing through the primary side heat transfer pipe 32a, and becomes a high temperature heated liquid .
  • the high-temperature heated liquid flowing out from the secondary-side heat transfer pipe 32 b of the hot water supply heat exchanger 32 is pressure-fed by the hot water supply pump 41 to the upper part of the tank 42 and stored in the tank 42.
  • FIG. 3 is a system diagram showing the flow of the refrigerant in the cooling operation (normal) mode.
  • the hot water supply refrigerant circuit 30 and the hot water supply circuit 40 are stopped.
  • the control device 50 controls the switching means (not shown) of the four-way valve 12 to be at the position of the cooling operation. That is, the control device 50 switches the four-way valve 12 so that the discharge side of the air conditioning compressor 11 and the outdoor heat exchanger 13 are connected and the accumulator 19 and the indoor heat exchanger 18 are connected. Control).
  • control device 50 fully opens the throttle of the outdoor expansion valve 14 so that an appropriate amount of the first refrigerant flows through the secondary heat transfer pipe 15b of the internal heat exchanger 15, the expansion valve for the internal heat exchanger Control 16 stops (opening). Further, the control device 50 sets the opening degree (throttle) of the indoor expansion valve 17 so that the first refrigerant of an amount according to the air conditioning load generated indoors (air conditioned space) flows to the indoor heat exchanger 18. Control. Furthermore, the control device 50 controls the rotational speeds of the air conditioning compressor 11, the indoor fan 18f, and the outdoor fan 13f.
  • the state of the first refrigerant flowing through the air conditioning refrigerant circuit 10 will be described with reference to the pressure-specific enthalpy chart shown in FIG.
  • the vertical axis represents absolute pressure (kPa)
  • the horizontal axis represents specific enthalpy (kJ / kg).
  • the first refrigerant is in a gas-liquid two-phase state in a portion surrounded by a saturated liquid line and a saturated vapor line, is in a liquid state on the left side of the saturated liquid line, and is in a gas state on the right side of the saturated vapor line There is.
  • reference numerals in parentheses correspond to the states of A to F shown in FIG.
  • symbol W has shown the enthalpy given by the compressor 11 for air conditioning.
  • the first high-temperature and high-pressure refrigerant flowing through the outdoor heat exchanger 13 exchanges heat with the air (outdoor air) sent by the outdoor fan 13 f to dissipate heat (exhaust heat) into the air, and the medium-temperature high-pressure first refrigerant It becomes one refrigerant (C1).
  • the medium-temperature and high-pressure first refrigerant flowing out of the outdoor heat exchanger 13 passes through the outdoor expansion valve 14 and flows into the primary heat transfer pipe 21 a of the intermediate heat exchanger 21.
  • the first refrigerant flowing through the primary heat transfer tube 21a of the intermediate heat exchanger 21 exchanges heat with the outdoor air, dissipates heat, and is cooled C (C2).
  • the first refrigerant flowing out of the intermediate heat exchanger 21 is branched to the pipe P1 and the pipe P2 at the branch point Q.
  • the opening degree (throttling) of the internal heat exchanger expansion valve 16 is controlled such that the amount of the first refrigerant branched into the pipe P2 becomes 3 to 5% of the amount of the first refrigerant flowing into the branch point Q Be done.
  • the first refrigerant flowing from the pipe P2 into the internal heat exchanger expansion valve 16 is decompressed by the internal heat exchanger expansion valve 16 and becomes a low temperature and low pressure first refrigerant, and the secondary heat transfer pipe 15b of the internal heat exchanger 15 Flow into The first refrigerant flowing through the secondary side heat transfer pipe 15b of the internal heat exchanger 15 exchanges heat with the medium temperature high pressure first refrigerant flowing through the primary side heat transfer pipe 15a and absorbs heat (E). To flow. Then, the first refrigerant flowing into the pipe L joins with the first refrigerant flowing from the indoor heat exchanger 18 and returns to the air conditioning compressor 11 via the accumulator 19.
  • the medium-temperature high-pressure first refrigerant flowing through the primary-side heat transfer tube 15a of the internal heat exchanger 15 further exchanges heat with the low-temperature low-pressure first refrigerant flowing through the above-described secondary-side heat transfer tube 15b. It is cooled (C3).
  • C3 cooled
  • the enthalpy of the first refrigerant flowing out of the primary heat transfer tube 15a can be further reduced, and the heat for cooling can be increased. That is, the amount of refrigerant flowing in the evaporator can be reduced, and the pressure loss in the indoor heat exchanger 18 functioning as the evaporator can be reduced. Therefore, the first refrigerant can be efficiently circulated in the air conditioning refrigerant circuit 10.
  • the first refrigerant flowing out of the primary heat transfer pipe 15a of the internal heat exchanger 15 is decompressed by the indoor expansion valve 17 and becomes a low temperature and low pressure first refrigerant (D) and flows into the indoor heat exchanger 18.
  • the first refrigerant flowing through the indoor heat exchanger 18 absorbs heat from the air by exchanging heat with air (indoor air) sent from the indoor fan 18 f (F), and passes through the four-way valve 12 and the accumulator 19. Then, the air is returned to the air conditioning compressor 11 (G).
  • FIG. 4 is a system diagram showing flows of the refrigerant and the liquid to be heated in the cooling operation (exhaust heat) mode.
  • the control device 50 controls the switching means (not shown) of the four-way valve 12 to be at the position of the cooling operation. Further, the control device 50 fully opens the throttle of the outdoor expansion valve 14 so that an appropriate amount of the first refrigerant flows through the secondary heat transfer pipe 15b of the internal heat exchanger 15, the expansion valve for the internal heat exchanger Control 16 stops (opening). Further, control device 50 controls the opening degree (throttle) of the indoor expansion valve so that the first refrigerant of an amount according to the air conditioning load generated indoors (air conditioned space) flows to indoor heat exchanger 18 .
  • control device 50 controls the rotational speeds of the air conditioning compressor 11, the indoor fan 18f, and the outdoor fan 13f. Further, the control device 50 controls the rotational speed of the hot water supply compressor 31 and the throttling (opening degree) of the hot water supply expansion valve 33 so that the amount of refrigerant suitable for the hot water supply load flows. Further, the control device 50 controls the rotational speed of the hot water supply pump 41 so that the circulation amount of the liquid to be heated (water) flowing in the hot water supply circuit 40 becomes appropriate.
  • the operation of the air conditioning refrigerant circuit 10 will be described below with reference to FIGS. 4 and 5.
  • the operations of the hot water supply refrigerant circuit 30 and the hot water supply circuit 40 are the same as in the case of the above-described hot water supply operation mode, and thus the description thereof is omitted.
  • the first high-temperature and high-pressure refrigerant flowing through the outdoor heat exchanger 13 exchanges heat with the air (outdoor air) sent by the outdoor fan 13 f to dissipate heat (exhaust heat) into the air, and the medium-temperature high-pressure first refrigerant It becomes one refrigerant (C1).
  • the medium-temperature and high-pressure first refrigerant flowing out of the outdoor heat exchanger 13 passes through the outdoor expansion valve 14 and flows into the primary heat transfer pipe 21 a of the intermediate heat exchanger 21.
  • the secondary side heat transfer pipe 21b of the intermediate heat exchanger 21 acts as an evaporator
  • the first refrigerant flowing through the primary side heat transfer pipe 21a serves as the second refrigerant flowing through the secondary side heat transfer pipe 21b.
  • Heat is released and cooled (C2).
  • the temperature of the first refrigerant flowing out of the primary heat transfer pipe 21a of the intermediate heat exchanger 21 can be made sufficiently low.
  • the first refrigerant flowing out of the intermediate heat exchanger 21 is branched to the pipe P1 and the pipe P2 at the branch point Q.
  • the first refrigerant flowing from the pipe P2 into the internal heat exchanger expansion valve 16 is decompressed by the internal heat exchanger expansion valve 16 and becomes a low temperature and low pressure first refrigerant, and the secondary heat transfer pipe 15b of the internal heat exchanger 15 Flow into The first refrigerant flowing through the secondary side heat transfer pipe 15b of the internal heat exchanger 15 exchanges heat with the medium temperature high pressure first refrigerant flowing through the primary side heat transfer pipe 15a and absorbs heat (E). To flow. Then, the first refrigerant flowing into the pipe L joins with the first refrigerant flowing from the indoor heat exchanger 18 and returns to the air conditioning compressor 11 via the accumulator 19.
  • the medium-temperature high-pressure first refrigerant flowing through the primary-side heat transfer tube 15a of the internal heat exchanger 15 further exchanges heat with the low-temperature low-pressure first refrigerant flowing through the above-described secondary-side heat transfer tube 15b. It is cooled (C3). Then, the first refrigerant flowing out of the primary heat transfer pipe 15a of the internal heat exchanger 15 is decompressed by the indoor expansion valve 17 and becomes a low temperature and low pressure first refrigerant (D) and flows into the indoor heat exchanger 18.
  • the first refrigerant flowing through the indoor heat exchanger 18 absorbs heat from the air by exchanging heat with air (indoor air) sent from the indoor fan 18 f (F), and passes through the four-way valve 12 and the accumulator 19. Then, the air is returned to the air conditioning compressor 11 (G).
  • the first refrigerant circulating in the air conditioning refrigerant circuit 10 is cooled by the outdoor heat exchanger 13 and further cooled by the intermediate heat exchanger 21 and the internal heat exchanger 15. Therefore, since the enthalpy difference which can be utilized by the indoor heat exchanger 18 functioning as an evaporator increases, the amount of the first refrigerant flowing through the indoor heat exchanger 18 can be reduced. As a result, the pressure loss occurring in the indoor heat exchanger 18 functioning as an evaporator is reduced, so the efficiency of the air conditioning refrigerant circuit 10 can be improved.
  • the cooling amount of the intermediate heat exchanger 21 is higher than that in the cooling operation (normal) mode described above. Can be increased. Therefore, the efficiency of the air conditioning refrigerant circuit 10 can be further improved.
  • FIG. 6 is a system diagram showing the flow of the refrigerant in the heating operation (normal) mode.
  • the control device 50 controls the switching means (not shown) of the four-way valve 12 to be at the position of the heating operation. That is, the control device 50 switches the four-way valve 12 so that the discharge side of the air conditioning compressor 11 and the indoor heat exchanger 18 are connected, and the suction side of the accumulator 19 and the outdoor heat exchanger 13 are connected. Control means (not shown).
  • the controller 50 controls the indoor expansion valve 17 and the outdoor expansion valve 14 so that the first refrigerant in an amount according to the air conditioning load generated indoors (air conditioned space) circulates through the air conditioning refrigerant circuit 10. Control the opening degree (aperture). Further, the control device 50 controls the throttling (opening degree) of the internal heat exchanger expansion valve 16 so that an appropriate amount of the first refrigerant flows through the secondary side heat transfer pipe 15b of the internal heat exchanger 15. Furthermore, the control device 50 controls the rotational speeds of the air conditioning compressor 11, the indoor fan 18f, and the outdoor fan 13f.
  • the operation of the air conditioning refrigerant circuit 10 will be described below with reference to FIGS. 6 and 7.
  • the high temperature and high pressure first refrigerant (A) discharged from the air conditioning compressor 11 flows into the indoor heat exchanger 18 functioning as a condenser through the four-way valve 12 (B).
  • the first high-temperature and high-pressure refrigerant flowing through the indoor heat exchanger 18 exchanges heat with air (indoor air) sent by the indoor fan 18f to dissipate heat (exhaust heat) to the air, and the medium-temperature high-pressure first refrigerant It becomes one refrigerant (C1).
  • the medium-temperature high-pressure first refrigerant flowing out of the outdoor heat exchanger 13 passes through the indoor expansion valve 17 (C2), and flows into the primary heat transfer pipe 21a of the intermediate heat exchanger 21.
  • the degree of opening (the throttling) of the indoor expansion valve 17 is almost fully open, and the indoor expansion valve 17 hardly reduces the pressure (see C1 ⁇ C2 in FIG. 7).
  • the first refrigerant flowing out of the indoor expansion valve 17 can be prevented from being in a gas-liquid two-phase state, and the pressure loss generated in the internal heat exchanger 15 and the intermediate heat exchanger 21 can be reduced.
  • the temperature drop can be suppressed.
  • the medium-temperature high-pressure first refrigerant that has passed through the indoor expansion valve 17 flows into the primary heat transfer pipe 15 a of the internal heat exchanger 15.
  • the first refrigerant flowing through the primary heat transfer tube 15a of the internal heat exchanger 15 exchanges heat with the low temperature and low pressure first refrigerant flowing through the secondary heat transfer tube 15b and is cooled (C3).
  • C3 the temperature of the first refrigerant flowing through the primary heat transfer tube 15a of the internal heat exchanger 15 can be reduced to about the ambient temperature (outdoor temperature), so that the temperature of the first air with the outdoor air generated in the intermediate heat exchanger 21 can be reduced. Heat exchange can be suppressed. Therefore, it is possible to prevent the load above the air conditioning load from being applied to the air conditioning refrigerant circuit 10, and the air conditioning refrigerant circuit 10 can be efficiently operated.
  • the first refrigerant flowing out of the internal heat exchanger 15 is branched to the pipe P2 and the pipe P3 at the branch point Q.
  • the opening degree (throttling) of the internal heat exchanger expansion valve 16 is controlled such that the amount of the first refrigerant branched to the pipe P2 becomes 3 to 5% of the amount of the first refrigerant flowing through the pipe P1 Be done.
  • the first refrigerant flowing from the pipe P2 into the internal heat exchanger expansion valve 16 is decompressed by the internal heat exchanger expansion valve 16 and becomes a low temperature and low pressure first refrigerant, and the secondary heat transfer pipe 15b of the internal heat exchanger 15 Flow into The first refrigerant flowing through the secondary-side heat transfer pipe 15b of the internal heat exchanger 15 exchanges heat with the medium-temperature high-pressure first refrigerant flowing through the primary-side heat transfer pipe 15a, absorbs heat and is heated (E) It flows into the piping L.
  • the heat generated by the first refrigerant flowing through the primary heat transfer tube 15a of the internal heat exchanger 15 is absorbed by the first refrigerant flowing through the secondary heat transfer tube 15b, whereby the air conditioning refrigerant is used. It can be recollected in the circuit 10. Then, the first refrigerant flowing into the pipe L joins with the first refrigerant flowing from the outdoor heat exchanger 13, and returns to the air conditioning compressor 11 via the accumulator 19.
  • the first refrigerant flowing out of the primary heat transfer tube 15 a of the internal heat exchanger 15 flows into the primary heat transfer tube 21 a of the intermediate heat exchanger 21.
  • the second refrigerant in the secondary-side heat transfer pipe 21b of the intermediate heat exchanger 21 is lowered to about the ambient temperature (outdoor temperature). Therefore, almost no heat exchange occurs in the intermediate heat exchanger 21.
  • the first refrigerant flowing out of the intermediate heat exchanger 21 is decompressed by the outdoor expansion valve 14 to become a low temperature and low pressure first refrigerant (D), and flows into the outdoor heat exchanger 13 functioning as an evaporator.
  • the first refrigerant flowing through the outdoor heat exchanger 13 absorbs heat from the air by heat exchange with the air (outdoor air) sent by the outdoor fan 13 f (F), and passes through the four-way valve 12 and the accumulator 19. Then, the air is returned to the air conditioning compressor 11 (G).
  • the first refrigerant circulating in the air conditioning refrigerant circuit 10 reduces the heat radiation to the outdoor air generated in the intermediate heat exchanger 21, and a load more than the air conditioning load is applied to the air conditioning refrigerant circuit 10. Can be prevented. Therefore, when heat is recovered again by the internal heat exchanger 15, it is possible to reduce the amount of heat absorption required by the evaporator (the outdoor heat exchanger 13). As a result, the evaporation pressure Pe2 of the evaporator of the first refrigerant can be made higher than the evaporation pressure Pe1 when heat is not recovered, and the efficiency of the air conditioning refrigerant circuit 10 is improved.
  • FIG. 8 is a system diagram showing flows of the refrigerant and the liquid to be heated in the heating operation (exhaust heat) mode.
  • the control device 50 controls the switching means (not shown) of the four-way valve 12 to be at the position of the heating operation. Further, the controller 50 controls the indoor expansion valve 17 and the outdoor expansion valve 14 so that the first refrigerant in an amount according to the air conditioning load generated indoors (air conditioned space) circulates through the air conditioning refrigerant circuit 10. Control the opening degree. Further, the control device 50 completely closes the throttle of the internal heat exchanger expansion valve 16.
  • the heat can be supplied from the first refrigerant flowing through the primary heat transfer pipe 21a of the intermediate heat exchanger 21 to the second refrigerant flowing through the secondary heat transfer pipe 21b. It can be used. Furthermore, the control device 50 controls the rotational speeds of the air conditioning compressor 11, the indoor fan 18f, and the outdoor fan 13f.
  • control device 50 controls the rotational speed of the hot water supply compressor 31 and the throttling (opening degree) of the hot water supply expansion valve 33 so that the amount of refrigerant suitable for the hot water supply load flows. Further, the control device 50 controls the rotational speed of the hot water supply pump 41 so that the circulation amount of the liquid to be heated (water) flowing in the hot water supply circuit 40 becomes appropriate.
  • the operation of the air conditioning refrigerant circuit 10 will be described below with reference to FIGS. 8 and 9.
  • the operations of the hot water supply refrigerant circuit 30 and the hot water supply circuit 40 are the same as in the case of the above-described hot water supply operation mode, and thus the description thereof is omitted.
  • the medium-temperature high-pressure first refrigerant flowing out of the outdoor heat exchanger 13 passes through the indoor expansion valve 17 and the primary heat transfer pipe 15 a of the internal heat exchanger 15 to the primary heat transfer pipe 21 a of the intermediate heat exchanger 21.
  • the opening degree (throttle) of the indoor expansion valve 17 is in a state close to full opening, and the pressure is hardly reduced by the indoor expansion valve. Further, since the opening degree of the internal heat exchanger expansion valve 16 is fully closed, the heat exchange of the first refrigerant in the internal heat exchanger 15 is not performed.
  • the medium-temperature high-pressure first refrigerant flowing through the primary-side heat transfer pipe 21a of the intermediate heat exchanger 21 exchanges heat with the second refrigerant flowing through the secondary-side heat transfer pipe 21b of the intermediate heat exchanger 21 and radiates heat (( C2).
  • the first refrigerant flowing out of the intermediate heat exchanger 21 is decompressed by the outdoor expansion valve 14 to become a low temperature and low pressure first refrigerant (D) and flows into the outdoor heat exchanger 13.
  • the first refrigerant flowing through the outdoor heat exchanger 13 exchanges heat with the air (outdoor air) sent by the outdoor fan 13 f to absorb heat from the air (E), via the four-way valve 12 and the accumulator 19. It returns to the air conditioning compressor 11 (F).
  • the air conditioning and hot water supply system S According to the air conditioning and hot water supply system S according to the present embodiment, the low temperature and low pressure in which the first refrigerant flowing through the primary heat transfer pipe 15a of the internal heat exchanger 15 flows through the secondary heat transfer pipe 15b during cooling operation. It is cooled by the first refrigerant of Therefore, since the pressure loss in the indoor heat exchanger 18 functioning as an evaporator can be reduced, the operating efficiency of the entire air conditioning and hot water supply system S can be improved.
  • the first refrigerant In the heating operation (normal) mode, the first refrigerant is cooled by the internal heat exchanger 15 before flowing into the intermediate heat exchanger 21. Therefore, the heat radiation to the outdoor air which occurs in intermediate heat exchanger 21 can be reduced, and it can prevent that the load more than air-conditioning load is applied to refrigerant circuit 10 for air-conditioning. Further, in the internal heat exchanger 15, the heat generated by the first refrigerant flowing through the primary side heat transfer tube 15a is absorbed by the first refrigerant flowing through the secondary side heat transfer tube 15b, whereby the refrigerant circuit for air conditioning It can be recollected within 10. Thus, even when the hot water supply side refrigeration cycle is not in operation, the surplus load generated in the intermediate heat exchanger 21 can be suppressed, and the efficiency of the entire air conditioning and hot water supply system S can be improved in both cooling and heating operations. it can.
  • the internal heat exchanger expansion valve 16 is fully closed to prevent heat exchange from occurring in the internal heat exchanger 15, whereby the intermediate heat exchanger 21 is heated to a high temperature.
  • the first refrigerant passes through and exchanges heat with the second refrigerant. Therefore, the efficiency of the entire air conditioning and hot water supply system S can be improved.
  • FIG. 11 is a pressure-specific enthalpy diagram showing the state of the refrigerant during heating operation in the case of using the air conditioning and hot water supply system according to the prior art (for example, Patent Document 1).
  • the first refrigerant discharged from the air conditioning compressor (A) flows into the indoor heat exchanger (B).
  • the first refrigerant exchanges heat with indoor air in the indoor heat exchanger (C1), and flows into the intermediate heat exchanger.
  • the intermediate heat exchanger is usually installed in the outdoor unit, it is in thermal contact with the outdoor air.
  • the first refrigerant releases heat to the outside (C2).
  • the amount of heat required for the outdoor heat exchanger functioning as an evaporator increases by the amount of heat released in (C1)-(C2) shown in FIG.
  • the evaporation pressure of the first refrigerant decreases from Pe1 to Pe2
  • the amount of work of the air conditioning compressor decreases from W1 to W2. Therefore, the efficiency of the entire air conditioning and hot water supply system is reduced.
  • the efficiency of the entire air conditioning and hot water supply system S can be improved in either of the case of cooling and heating.
  • the second embodiment is different from the first embodiment in that a bypass pipe U and two-way valves 61, 62, 63 (opening and closing means) are installed, but the other configuration is the same as the first embodiment. It is. Therefore, the said different part is demonstrated and description is abbreviate
  • FIG. 10 is a system diagram showing flows of the refrigerant and the liquid to be heated in the hot water supply operation mode in the air conditioning and hot water supply system S1 according to the second embodiment of the present invention.
  • a bypass pipe U shown in FIG. 10 is a pipe connecting a pipe connecting the primary heat transfer pipe 15a of the internal heat exchanger 15 to the indoor expansion valve 17 and a pipe on the discharge side of the air conditioning compressor 11. .
  • One end of the bypass pipe U is connected to the pipe connecting the discharge side of the air conditioning compressor 11 and the two-way valve 61 (see symbol T), and the other end is connected to the primary heat transfer pipe 15a of the internal heat exchanger 15 and two sides. It is connected to a pipe connecting the valve 63 (see symbol V).
  • a two-way valve 61 is provided between the discharge side of the air conditioning compressor 11 and the four-way valve 12, and a two-way valve 62 is provided in the middle of the bypass pipe U.
  • a two-way valve 63 is provided between the primary heat transfer pipe 15 a constituting the internal heat exchanger 15 and the indoor expansion valve 17. That is, in the hot water supply operation mode, the two-way valves 61, 62, 63 cause the first refrigerant flowing out of the air conditioning compressor 11 to flow into the primary heat transfer pipe 15a of the internal heat exchanger 15 via the bypass pipe U. It is the "opening and closing means" for
  • the control device 50 controls the switching means (not shown) of the four-way valve 12 to be at the position of the hot water supply operation. Further, the control device 50 fully closes the internal heat exchanger expansion valve 16, fully opens the indoor expansion valve 17, and controls the opening degree (throttling) of the outdoor expansion valve 14. Further, the control device 50 closes the two-way valves 61 and 63 and opens the two-way valve 62. This can prevent the high temperature and high pressure first refrigerant discharged from the air conditioning compressor 11 from flowing into the indoor heat exchanger 18. Furthermore, the control device 50 controls the rotational speeds of the air conditioning compressor 11, the hot water supply compressor 31, and the outdoor fan 13f. In the hot water supply operation mode, the control device 50 stops the indoor fan 18 f.
  • the air conditioning refrigerant circuit 10 in this mode will be described.
  • the operations of the hot water supply refrigerant circuit 30 and the hot water supply circuit 40 are the same as in the case of the above-described hot water supply operation mode, and thus the description thereof is omitted.
  • the high-temperature high-pressure first refrigerant discharged from the air conditioning compressor 11 passes through the two-way valve and the primary heat transfer pipe 15a of the internal heat exchanger 15, and the primary side of the intermediate heat exchanger 21 functioning as a condenser. It flows into the heat transfer tube 21a.
  • the high temperature and high pressure first refrigerant flowing through the primary side heat transfer tube 21a of the intermediate heat exchanger 21 dissipates heat by heat exchange with the liquid to be heated flowing through the secondary side heat transfer tube 21b of the intermediate heat exchanger 21. It becomes a medium temperature high pressure first refrigerant.
  • the medium-temperature and high-pressure first refrigerant flowing out of the primary-side heat transfer pipe 21 a of the intermediate heat exchanger 21 is decompressed by the outdoor expansion valve 14 and becomes a low-temperature and low-pressure first refrigerant. Then, the low temperature and low pressure first refrigerant flows into the outdoor heat exchanger 13 functioning as an evaporator.
  • the first refrigerant flowing through the outdoor heat exchanger 13 exchanges heat with air (outdoor air) sent by the outdoor fan 13 f, thereby drawing heat (absorbing heat) from the air. Then, the first refrigerant that has absorbed heat flows back from the outdoor heat exchanger 13 to the air conditioning compressor 11 via the four-way valve 12 and the accumulator 19.
  • control device 50 when performing other operation modes (cooling operation (normal) mode, cooling operation (exhaust heat) mode, heating operation (normal) mode, and heating operation (exhaust heat) mode), the control device 50 performs two-way operation.
  • the valves 61 and 63 are fully opened, and the two-way valve 62 is fully closed.
  • the control in this case is the same as that of the first embodiment, so the description will be omitted.
  • the said each embodiment demonstrated the case where pressure reduction of a 1st refrigerant
  • the said each embodiment demonstrated the case where two indoor units were installed, it does not restrict to this. That is, the number of indoor units may be one, or three or more. In the case of installing a plurality of indoor units, the indoor units are connected in parallel to each other.
  • the first refrigerant flowing out of the air conditioning compressor 11 is made to flow as the "opening / closing means" for flowing into the primary side heat transfer pipe 15a of the internal heat exchanger 15 via the bypass pipe U.
  • the directional valves 61, 62, 63 are used, the present invention is not limited to this. That is, in place of the two-way valve, a three-way valve may be installed to realize the action of the "opening / closing means".
  • Air conditioning and hot water supply system 1 outdoor unit 10 air conditioning refrigerant circuit 11 air conditioning compressor 12 four-way valve 13 outdoor heat exchanger (air conditioning heat source side heat exchanger) 14 Outdoor expansion valve (1st expansion valve) 15 Internal heat exchanger 16 Expansion valve for internal heat exchanger (pressure reducing device) 17a, 17b Indoor expansion valve (second expansion valve) 18a, 18b Indoor heat exchanger (air conditioning use side heat exchanger) 19 Accumulator 2a, 2b Indoor unit 21 Intermediate heat exchanger 30 Hot water supply refrigerant circuit 40 Hot water supply circuit 50 Control device 61, 62, 63 Two-way valve (opening and closing means) U bypass piping

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 高い運転効率を実現できる空調給湯システムを提供する。内部熱交換器(15)が、空調用冷媒回路(10)が備える環状回路の一部分を構成する一次側伝熱管(15a)と、減圧装置(16)を介して前記環状回路から分岐する配管(P)に接続される二次側伝熱管(15b)と、を有し、減圧装置(16)は、運転モードに応じて前記配管(P)から流入する第一冷媒を減圧し、減圧される第一冷媒を二次側伝熱管(15b)に向けて流出することによって、一次側伝熱管(15a)を通流する第一冷媒を冷却する

Description

空調給湯システム
 本発明は、空調と給湯を行う空調給湯システムに関する。
 空調と給湯を行う空調給湯システムとして、例えば、特許文献1に示す技術が開示されている。
 特許文献1には、室内機と給湯熱源用回路とを並列に接続するとともに、室内機と熱源機とが、分岐ユニットを介して少なくとも2本の接続配管で接続される空調給湯複合システムについて記載されている。
 特許文献1に記載の技術では、冷房運転及び暖房運転のいずれの場合においても、冷媒-冷媒熱交換器(中間熱交換器)の一次側(空調用熱交換器側)を凝縮器として機能させ、二次側(給湯用熱交換器側)を蒸発器として機能させる。これによって、空調熱源と給湯熱源の排熱を相互に利用するようになっている。
特開2010-236817号公報
 しかしながら、特許文献1に記載の技術では、室内機と冷媒-冷媒熱交換器(中間熱交換器)とが並列に接続されるため、給湯サイクルが稼働しない場合でも冷媒-冷媒熱交換器を通流する冷媒が、外気と熱的に接触する。したがって、空調給湯複合システムに対し、空調負荷(空調運転に伴う熱負荷)を超える負荷が加わる場合がある。
 例えば、特許文献1に記載の技術において、空調サイクルで暖房運転を実行し、給湯サイクルを稼働させない場合(つまり、給湯負荷が無い場合)、冷媒-冷媒熱交換器を通流する冷媒は、室内機と同程度の高温になる。これは、冷媒-冷媒熱交換器が室内機と並列接続されているためである。
 一方、給湯ユニットは、通常、室外又は屋内の非空調空間に設置されている。したがって、給湯サイクルの構成要素である冷媒-冷媒熱交換器は、給湯ユニットの周囲温度である室外温度程度になっている。
 そうすると、暖房運転を行う際に、冷媒-冷媒熱交換器において高温の冷媒から低温の室外空気に熱が放出されてしまう。
 この結果、特許文献1に記載の技術では、空調に必要な負荷に加えて、さらに冷媒-冷媒熱交換器において冷媒から室外空気に放熱されることになる。この熱は、室内の快適性の向上や給湯に利用するための熱として活用されないため、システム全体の効率を悪化させてしまうという問題がある。
 そこで、本発明は、高い運転効率を実現できる空調給湯システムを提供することを課題とする。
 前記課題を解決するために、本発明は、内部熱交換器が、空調用冷媒回路が備える環状回路の一部分を構成する一次側伝熱管と、減圧装置を介して前記環状回路から分岐する配管に接続される二次側伝熱管と、を有し、前記減圧装置は、運転モードに応じて前記配管から流入する第一冷媒を減圧し、減圧される第一冷媒を前記二次側伝熱管に向けて流出することによって、前記一次側伝熱管を通流する第一冷媒を冷却することを特徴とする。
 本発明によれば、高い運転効率を実現する空調給湯システムを提供することができる。
本発明の第1実施形態に係る空調給湯システムの系統図である。 給湯運転モードにおける冷媒及び被加熱液体の流れを示す系統図である。 冷房運転(通常)モードにおける冷媒の流れを示す系統図である。 冷房運転(排熱)モードにおける冷媒及び被加熱液体の流れを示す系統図である。 冷房運転時における冷媒の状態を示す圧力-比エンタルピ線図である。 暖房運転(通常)モードにおける冷媒の流れを示す系統図である。 暖房運転(通常)モードにおける冷媒の状態を示す圧力-比エンタルピ線図である。 暖房運転(排熱)モードにおける冷媒及び被加熱液体の流れを示す系統図である。 暖房運転(排熱)モードにおける冷媒の状態を示す圧力-比エンタルピ線図である。 本発明の第2実施形態に係る空調給湯システムにおいて、給湯運転モードにおける冷媒及び被加熱液体の流れを示す系統図である。 従来技術に係る空調給湯システムを用いた場合の、暖房運転時における冷媒の状態を示す圧力-比エンタルピ線図である。
 以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
≪空調給湯システム≫
 図1は、本発明の第1実施形態に係る空調給湯システムの系統図である。図1に示すように、空調給湯システムSは、室外機1と、室内機2a,2bと、給湯ユニット3と、給湯タンクユニット4と、制御装置50と、を備えている。
 室内機2a,2bは、室内(被空調空間内)に設置されている。また、室外機1、給湯ユニット3、及び給湯タンクユニット4は、室外(被空調空間外)に設置されている。ちなみに、図1では、一例として、空調給湯システムSが室内機を2台備える場合を示している。
 また、室内機2a,2bと室外機1とはそれぞれ制御部(図示せず)を有し、通信線(図示せず)を介して相互に通信することができるようになっている。なお、図1では、前記した各制御部を模式的に制御装置50として示している。
 空調給湯システムSは、室内機2a,2bが設置された室内を冷房する「冷房運転」と、室内機2a,2bが設置された室内を暖房する「暖房運転」と、被加熱液体(例えば、水)を加熱してタンク42に高温の被加熱液体を供給する「給湯運転」と、冷房運転及び給湯運転を行う「冷房給湯運転」と、暖房運転及び給湯運転を行う「暖房給湯運転」と、を行う機能を有している。
 また、空調給湯システムSは、第一冷媒が循環する空調用冷媒回路10と、第二冷媒が循環する給湯用冷媒回路30と、被加熱液体が通流する給湯回路40と、を備えている。
<空調用冷媒回路>
 以下では、室外機1に対して並列に接続された室内機2a,2bを総称して、単に「室内機2」と記すことがあるものとする。
 空調用冷媒回路10は、空調用圧縮機11と、四方弁12と、室外熱交換器13と、室外用膨張弁14と、中間熱交換器21の一次側伝熱管21aと、内部熱交換器15の一次側伝熱管15aと、室内機2と、が順次接続された環状回路を備えている。また、空調用圧縮機11の吸入側には、空調用圧縮機11での液圧縮を防止するために第一冷媒を気液分離するアキュムレータ19が設置されている。また、内部熱交換器15の二次側に流入する手前側で第一冷媒を減圧するように、内部熱交換器用膨張弁16が設置されている。
 空調用圧縮機11は、第一冷媒を圧縮して高温高圧にする圧縮機である。空調用圧縮機11として、例えば、ロータリ式、スクロール式、レシプロ式の圧縮機を用いることができる。
 四方弁12は、冷房運転と暖房運転とで室内熱交換器18a,18bを通流する第一冷媒の向きを切り替える。すなわち、四方弁12の切り替えによって、冷房運転時には空調用膨張弁17a,17bで膨張した低温低圧の第一冷媒が、室内熱交換器18a,18bに流入するようになっている。また、暖房運転時には、空調用圧縮機11で圧縮された高温高圧の第一冷媒が、室内熱交換器18a,18bに流入するようになっている。
 室外熱交換器13(空調熱源側熱交換器)は、四方弁12を介して空調用圧縮機11の吐出側に接続され、室外ファン13fから送られてくる空気(室外空気)と第一冷媒との熱交換を行う熱交換器である。
 室外用膨張弁14(第一膨張弁)は、室外熱交換器13と中間熱交換器21との間に介在し、給湯運転モード及び暖房運転モードにおいて第一冷媒を減圧する減圧装置として機能する。
 中間熱交換器21は、一次側伝熱管21aを通流する第一冷媒と、二次側伝熱管21bを通流する第二冷媒との熱交換を行う熱交換器である。
 内部熱交換器15は、一次側(室内用膨張弁17a,17bに接続されている側)を通流する第一冷媒と、二次側(内部熱交換器用膨張弁16に接続されている側)を通流する第一冷媒との熱交換を行う熱交換器である。
 すなわち、内部熱交換器15は、前記した環状回路の一部分を構成する一次側伝熱管15aと、内部熱交換器用膨張弁16を介して前記環状回路から分岐する配管Pに接続される二次側伝熱管15bと、を有する。
 ちなみに、内部熱交換器15の二次側伝熱管15bは、一端が内部熱交換器用膨張弁16に接続され、他端が四方弁12とアキュムレータ19とをつなぐ配管に接続されている。
 内部熱交換器用膨張弁16(減圧装置)は、運転モードに応じて配管Pから流入する第一冷媒を減圧し、減圧された第一冷媒を内部熱交換器15の二次側伝熱管15bに向けて流出する。これによって、内部熱交換器15の一次側伝熱管15aを通流する第一冷媒を冷却するようになっている。
 室内用膨張弁17a,17b(第二膨張弁)は、内部熱交換器15と室内熱交換器18a,18bとの間に介在し、冷房運転モード及び暖房運転モードにおいて第一冷媒を減圧する減圧装置として機能する。
 室内熱交換器18a,18b(空調利用側熱交換器)は、四方弁12を介して空調用圧縮機11の吐出側に接続され、室内ファン18fから送られてくる空気(室内空気)と第一冷媒との熱交換を行う熱交換器である。
 図1に示すように、室内機2aを構成する室内用膨張弁17aと室内熱交換器18aとが直列に接続され、室内機2bを構成する室内用膨張弁17bと室内熱交換器18bとが直列に接続されている。そして、室内機2aと室内機2bとが並列に接続されている。なお、記載において、室内用膨張弁17a,17bを単に「室内用膨張弁17」と記し、室内熱交換器18a,18bを単に「室内熱交換器18」と記すことがあるものとする。
 なお、第一冷媒として、HFC、HFO-1234yf、HFO-1234ze、自然冷媒(例えば、CO2冷媒)などを用いることができる。
<給湯用冷媒回路>
 給湯ユニット3に設けられた給湯用冷媒回路30は、給湯用圧縮機31と、給湯用熱交換器32の一次側伝熱管32aと、給湯用膨張弁33と、中間熱交換器21の二次側伝熱管21bとが環状に配管で接続されている。
 給湯用圧縮機31は、第二冷媒を圧縮して高温高圧にする圧縮機である。
 給湯用熱交換器32は、一次側伝熱管32aを通流する第二冷媒と、二次側伝熱管32bを通流する被加熱液体との熱交換を行う熱交換器である。
 給湯用膨張弁33は、第二冷媒を減圧する減圧装置として機能する。
 第二冷媒として、HFC、HFO-1234yf、HFO-1234ze、自然冷媒(例えば、CO冷媒)などを用いることができる。なお、第二冷媒は第一冷媒よりも高い臨界点(温度、圧力)を有する冷媒を使用することが好ましい。
<給湯回路>
 給湯回路40は、給湯用ポンプ41と、給湯用熱交換器32の二次側伝熱管32bと、タンク42と、を環状に配管で接続して構成されている。
 給湯用ポンプ41は、タンク42から被加熱液体を汲み上げ、給湯用熱交換器32の二次側伝熱管32bに向けて圧送するポンプである。
 タンク42は、被加熱液体を貯留するものであり、断熱材(図示せず)で覆われている。前記したように、被加熱液体として、例えば水を用いることができる。
 また、給湯タンクユニット4は、給水金具43と、給湯金具45と、三方弁44,46と、を備えている。
 給水金具43は、一端が三方弁44に接続され、他端が給水端末(図示せず)に接続されている。そして、使用者が給湯端末(図示せず)を開操作した場合に、給水源からの圧力によって、給水金具43を介してタンク42の下部に被加熱液体(水)が流入するようになっている。
 三方弁44,46は、通流する被加熱液体の流量比率を調整可能に構成され、配管47aを介して相互に接続されている。そして、各三方弁44,46の開度に応じた流量の被加熱液体(水)を、配管47aを介して流入させることにより、タンク42から供給される高温の被加熱液体を適度な温度に調整するようになっている。
 給湯金具45は、一端が三方弁46に接続され、他端が給湯端末(図示せず)に接続されている。そして、使用者が給湯端末を開操作することにより、温度調整がされた被加熱液体(湯)が給湯金具45を介して給湯端末に供給されるようになっている。
<制御装置50>
 また、空調給湯システムSは、制御装置50を備えている。
 制御装置50は、空調給湯システムの運転モードを決定し、決定した運転モードに従って各種弁(四方弁12、室外用膨張弁14、内部熱交換器用膨張弁16、室内用膨張弁17、給湯用膨張弁33)の状態(開度)、圧縮機(空調用圧縮機11、給湯用圧縮機31)の回転速度、各熱交換器のファン(室外ファン13f、室内ファン18f)の回転速度、及び給湯用ポンプ41の回転速度を制御して、空調給湯システムSの各種運転を制御する機能を有している。
(各運転モードの制御)
 次に、制御装置50が実行する空調給湯システムSの各運転モードについて説明する。
 なお、以下に説明する各系統図において、第一冷媒、第二冷媒、被加熱液体のそれぞれが通流している配管を太線で図示し、流れる向きを矢印で図示することとする。また、各種弁(室外用膨張弁14、内部熱交換器用膨張弁16、室内用膨張弁17、給湯用膨張弁33)について、通流を閉止しているものを黒塗りで図示するものとする。
(1.給湯運転モード)
 図2は、給湯運転モードにおける冷媒及び被加熱液体の流れを示す系統図である。このモードにおいて、室内ファン18fは停止している。
 制御装置50は、四方弁12の切替手段(図示せず)が給湯運転の位置となるように制御する。すなわち、制御装置50は、空調用圧縮機11の吐出側と室内熱交換器18とが接続され、アキュムレータ19と室外熱交換器13とが接続されるように、四方弁12の切替手段(図示せず)を制御する。また、制御装置50は、内部熱交換器用膨張弁16を全閉とし、室内用膨張弁17を全開とし、室外用膨張弁14の開度(絞り)を制御する。さらに、制御装置50は、空調用圧縮機11及び給湯用圧縮機31、及び室外ファン13fの回転速度を制御する。
 このモードにおける空調用冷媒回路10について説明する。
 空調用圧縮機11から吐出された高温高圧の第一冷媒は、四方弁12、室内熱交換器18、室内用膨張弁17、及び内部熱交換器15の一次側伝熱管15aを通過し、凝縮器として機能する中間熱交換器21の一次側伝熱管21aに流入する。ちなみに、給湯運転モードでは室内ファン18fを停止させているため、室内熱交換器18を通流する第一冷媒と室内空気との熱交換はほとんど行われない。
 中間熱交換器21の一次側伝熱管21aを通流する高温高圧の第一冷媒は、中間熱交換器21の二次側伝熱管21bを通流する第二冷媒と熱交換することにより放熱して、中温高圧の第一冷媒となる。
 中間熱交換器21の一次側伝熱管21aから流出した中温高圧の第一冷媒は、室外用膨張弁14で減圧されて低温低圧の第一冷媒となり、蒸発器として機能する室外熱交換器13に流入する。室外熱交換器13を通流する第一冷媒は、室外ファン13fにより送られてくる空気(室外空気)と熱交換することにより、前記空気から熱を汲み上げる(吸熱する)。そして、吸熱した第一冷媒は、室外熱交換器13から四方弁12及びアキュムレータ19を介して空調用圧縮機11に還流する。
 次に、給湯用冷媒回路30について説明する。
 給湯用圧縮機31から吐出された高温高圧の第二冷媒は、凝縮器として機能する給湯用熱交換器32の一次側伝熱管32aに流入する。給湯用熱交換器32の一次側伝熱管32aを通流する第二冷媒は、二次側伝熱管32bを通流する被加熱液体と熱交換することにより放熱して、中温高圧の第二冷媒となる。
 給湯用熱交換器32の一次側伝熱管32aから流出した中温高圧の第二冷媒は、給湯用膨張弁33で減圧され、低温低圧の第二冷媒となる。
 そして、低温低圧の第二冷媒は、蒸発器として機能する中間熱交換器21の二次側伝熱管21bに流入する。中間熱交換器21の二次側伝熱管21bを通流する第二冷媒は、一次側伝熱管21aを通流する高温高圧の第一冷媒と熱交換することにより、第一冷媒から熱を汲み上げる(吸熱する)。さらに、吸熱した第二冷媒は、中間熱交換器21から給湯用圧縮機31に還流する。
 次に、給湯回路40について説明する。制御装置50は、給湯用ポンプ41の回転速度を制御する。
 給湯用ポンプ41を駆動することにより、タンク42の下部から流出した被加熱液体は、給湯用熱交換器32の二次側伝熱管32bに流入する。給湯用熱交換器32の二次側伝熱管32bを通流する被加熱液体は、一次側伝熱管32aを通流する第二冷媒と熱交換することにより吸熱し、高温の被加熱液体となる。そして、給湯用熱交換器32の二次側伝熱管32bから流出した高温の被加熱液体は、給湯用ポンプ41によりタンク42の上部に圧送され、タンク42内に貯留される。
(2.冷房運転(通常)モード)
 図3は、冷房運転(通常)モードにおける冷媒の流れを示す系統図である。このモードにおいて、給湯用冷媒回路30及び給湯回路40は停止している。
 制御装置50は、四方弁12の切替手段(図示せず)が冷房運転の位置となるように制御する。すなわち、制御装置50は、空調用圧縮機11の吐出側と室外熱交換器13とが接続され、アキュムレータ19と室内熱交換器18とが接続されるように、四方弁12の切替手段(図示せず)を制御する。
 また、制御装置50は、室外用膨張弁14の絞りを全開とし、内部熱交換器15の二次側伝熱管15bに適切な量の第一冷媒が流通するように、内部熱交換器用膨張弁16の絞り(開度)を制御する。また、制御装置50は、室内(被空調空間)で発生する空調負荷に応じた量の第一冷媒が室内熱交換器18に通流するように室内用膨張弁17の開度(絞り)を制御する。
 さらに、制御装置50は、空調用圧縮機11、室内ファン18f、及び室外ファン13fの回転速度を制御する。
 以下では、図5に示す圧力-比エンタルピ線図を参照しながら、空調用冷媒回路10を通流する第一冷媒の状態について説明する。
 なお、図5に示す圧力-比エンタルピ線図において、縦軸は絶対圧力(kPa)を示し、横軸は比エンタルピ(kJ/kg)を示している。また、第一冷媒は、飽和液線及び飽和蒸気線で囲まれた部分で気液二相状態であり、飽和液線の左側で液体状態であり、飽和蒸気線の右側では気体状態となっている。なお、他の圧力-比エンタルピ線図についても同様である。
 また、以下の説明において、かっこ内の符号は、図5に示すA~Fの状態に対応している。また、符号Wは、空調用圧縮機11によって与えられるエンタルピを示している。
 空調用圧縮機11から吐出された高温高圧の第一冷媒(A)は、四方弁12を介して、凝縮器として機能する室外熱交換器13に流入する(B)。室外熱交換器13を通流する高温高圧の第一冷媒は、室外ファン13fにより送られてくる空気(室外空気)と熱交換することにより前記空気に放熱(排熱)し、中温高圧の第一冷媒となる(C1)。
 室外熱交換器13から流出した中温高圧の第一冷媒は、室外用膨張弁14を通過し、中間熱交換器21の一次側伝熱管21aに流入する。ここで、中間熱交換器21の周囲温度は室外温度程度であるため、中間熱交換器21の一次側伝熱管21aを通流する第一冷媒は室外空気と熱交換して放熱し、冷却される(C2)。
 そして、中間熱交換器21から流出した第一冷媒は、分岐点Qで配管P1と配管P2に分流する。なお、配管P2に分流する第一冷媒の量が、分岐点Qに流入する第一冷媒の量の3~5%となるように、内部熱交換器用膨張弁16の開度(絞り)が制御される。
 配管P2から内部熱交換器用膨張弁16に流入した第一冷媒は、この内部熱交換器用膨張弁16で減圧されて低温低圧の第一冷媒となり、内部熱交換器15の二次側伝熱管15bに流入する。内部熱交換器15の二次側伝熱管15bを通流する第一冷媒は、一次側伝熱管15aを通流する中温高圧の第一冷媒と熱交換して吸熱し(E)、配管Lに流入する。そして、配管Lに流入した第一冷媒は、室内熱交換器18から流入する第一冷媒と合流し、アキュムレータ19を介して空調用圧縮機11に還流する。
 一方、内部熱交換器15の一次側伝熱管15aを通流する中温高圧の第一冷媒は、前記した二次側伝熱管15bを通流する低温低圧の第一冷媒と熱交換することによってさらに冷却される(C3)。この結果、一次側伝熱管15aから流出する第一冷媒のエンタルピをより小さくし、冷房利用熱を大きくすることができる。つまり、蒸発器で流通する冷媒量を低減させ、蒸発器として機能する室内熱交換器18での圧力損失を低減できるため、空調用冷媒回路10において効率良く第一冷媒を循環させることができる。
 そして、内部熱交換器15の一次側伝熱管15aから流出した第一冷媒は、室内用膨張弁17で減圧されて低温低圧の第一冷媒となり(D)、室内熱交換器18に流入する。
 室内熱交換器18を通流する第一冷媒は、室内ファン18fから送られてくる空気(室内空気)と熱交換することにより前記空気から吸熱し(F)、四方弁12及びアキュムレータ19を介して空調用圧縮機11に還流する(G)。
(3.冷房運転(排熱)モード)
 図4は、冷房運転(排熱)モードにおける冷媒及び被加熱液体の流れを示す系統図である。
 制御装置50は、四方弁12の切替手段(図示せず)が冷房運転の位置となるように制御する。また、制御装置50は、室外用膨張弁14の絞りを全開とし、内部熱交換器15の二次側伝熱管15bに適切な量の第一冷媒が流通するように、内部熱交換器用膨張弁16の絞り(開度)を制御する。また、制御装置50は、室内(被空調空間)で発生する空調負荷に応じた量の第一冷媒が室内熱交換器18に通流するように室内膨張弁の開度(絞り)を制御する。さらに、制御装置50は、空調用圧縮機11、室内ファン18f、及び室外ファン13fの回転速度を制御する。
 また、制御装置50は、給湯負荷に適した冷媒量が流通するように、給湯用圧縮機31の回転速度、及び給湯用膨張弁33の絞り(開度)を制御する。また、制御装置50は、給湯回路40内を流動する被加熱液体(水)の循環量を適切とするように給湯用ポンプ41の回転速度を制御する。
 以下、図4及び図5を用いて空調用冷媒回路10の動作を説明する。なお、給湯用冷媒回路30及び給湯回路40の動作は、前記した給湯運転モードの場合と同様であるため、説明を省略する。
 空調用圧縮機11から吐出された高温高圧の第一冷媒(A)は、四方弁12を介して、凝縮器として機能する室外熱交換器13に流入する(B)。室外熱交換器13を通流する高温高圧の第一冷媒は、室外ファン13fにより送られてくる空気(室外空気)と熱交換することにより前記空気に放熱(排熱)し、中温高圧の第一冷媒となる(C1)。
 室外熱交換器13から流出した中温高圧の第一冷媒は、室外用膨張弁14を通過し、中間熱交換器21の一次側伝熱管21aに流入する。ここで、中間熱交換器21の二次側伝熱管21bは蒸発器として作用するため、一次側伝熱管21aを通流する第一冷媒は二次側伝熱管21bを通流する第二冷媒に放熱し、冷却される(C2)。これによって、中間熱交換器21の一次側伝熱管21aから流出する第一冷媒を充分低い温度とすることができる。
 そして、中間熱交換器21から流出した第一冷媒は、分岐点Qで配管P1と配管P2に分流する。
 配管P2から内部熱交換器用膨張弁16に流入した第一冷媒は、この内部熱交換器用膨張弁16で減圧されて低温低圧の第一冷媒となり、内部熱交換器15の二次側伝熱管15bに流入する。内部熱交換器15の二次側伝熱管15bを通流する第一冷媒は、一次側伝熱管15aを通流する中温高圧の第一冷媒と熱交換して吸熱し(E)、配管Lに流入する。そして、配管Lに流入した第一冷媒は、室内熱交換器18から流入する第一冷媒と合流し、アキュムレータ19を介して空調用圧縮機11に還流する。
 一方、内部熱交換器15の一次側伝熱管15aを通流する中温高圧の第一冷媒は、前記した二次側伝熱管15bを通流する低温低圧の第一冷媒と熱交換することによってさらに冷却される(C3)。そして、内部熱交換器15の一次側伝熱管15aから流出した第一冷媒は、室内用膨張弁17で減圧されて低温低圧の第一冷媒となり(D)、室内熱交換器18に流入する。
 室内熱交換器18を通流する第一冷媒は、室内ファン18fから送られてくる空気(室内空気)と熱交換することにより前記空気から吸熱し(F)、四方弁12及びアキュムレータ19を介して空調用圧縮機11に還流する(G)。
 このように、空調用冷媒回路10を循環する第一冷媒は、室外熱交換器13で冷却され、さらに、中間熱交換器21、及び内部熱交換器15において冷却される。したがって、蒸発器と機能する室内熱交換器18で利用できるエンタルピ差が増大するため、室内熱交換器18を通流する第一冷媒の量を低減することができる。これによって、蒸発器として機能する室内熱交換器18で生じる圧力損失が低減されるため、空調用冷媒回路10の効率を改善することができる。
 ちなみに、冷房運転(排熱)モードは、給湯用冷媒回路30での冷温排熱を中間熱交換器21で活用できるため、前記した冷房運転(通常)モードよりも中間熱交換器21の冷却量を増加させるができる。したがって、空調用冷媒回路10の効率をさらに改善することができる。
(4.暖房運転(通常)モード)
 図6は、暖房運転(通常)モードにおける冷媒の流れを示す系統図である。このモードにおいて、給湯用冷媒回路30及び給湯回路40は停止している。
 制御装置50は、四方弁12の切替手段(図示せず)が暖房運転の位置となるように制御する。すなわち、制御装置50は、空調用圧縮機11の吐出側と室内熱交換器18とが接続され、アキュムレータ19の吸入側と室外熱交換器13とが接続されるように、四方弁12の切替手段(図示せず)を制御する。
 また、制御装置50は、室内(被空調空間)で発生する空調負荷に応じた量の第一冷媒が空調用冷媒回路10を循環するように、室内用膨張弁17及び室外用膨張弁14の開度(絞り)を制御する。また、制御装置50は、内部熱交換器15の二次側伝熱管15bに適切な量の第一冷媒が流通するように、内部熱交換器用膨張弁16の絞り(開度)を制御する。
 さらに、制御装置50は、空調用圧縮機11、室内ファン18f、及び室外ファン13fの回転速度を制御する。
 以下、図6及び図7を用いて空調用冷媒回路10の動作を説明する。
 空調用圧縮機11から吐出された高温高圧の第一冷媒(A)は、四方弁12を介して、凝縮器として機能する室内熱交換器18に流入する(B)。室内熱交換器18を通流する高温高圧の第一冷媒は、室内ファン18fにより送られてくる空気(室内空気)と熱交換することにより前記空気に放熱(排熱)し、中温高圧の第一冷媒となる(C1)。
 室外熱交換器13のから流出した中温高圧の第一冷媒は、室内用膨張弁17を通過し(C2)、中間熱交換器21の一次側伝熱管21aに流入する。なお、室内用膨張弁17の開度(絞り)は全開に近い状態となっており、室内用膨張弁17ではほとんど減圧されない(図7のC1→C2参照)。これによって、室内用膨張弁17から流出する第一冷媒が気液二相状態となることを防止し、内部熱交換器15及び中間熱交換器21で生じる圧力損失を低減でき、圧力損失によって生ずる温度低下を抑制できる。
 室内用膨張弁17を通過した中温高圧の第一冷媒は、内部熱交換器15の一次側伝熱管15aに流入する。内部熱交換器15の一次側伝熱管15aを通流する第一冷媒は、二次側伝熱管15bを通流する低温低圧の第一冷媒と熱交換して冷却される(C3)。この結果、内部熱交換器15の一次側伝熱管15aを通流する第一冷媒の温度を周囲温度(室外温度)程度まで低下させることができ、中間熱交換器21で発生する室外空気との熱交換を抑制できる。したがって、空調負荷以上の負荷が空調用冷媒回路10に加わることを防止し、効率良く空調用冷媒回路10を運転できる。
 そして、内部熱交換器15から流出した第一冷媒は、分岐点Qで配管P2と配管P3に分流する。なお、配管P2に分流する第一冷媒の量が、配管P1を通流する第一冷媒の量の3~5%となるように、内部熱交換器用膨張弁16の開度(絞り)が制御される。
 配管P2から内部熱交換器用膨張弁16に流入した第一冷媒は、この内部熱交換器用膨張弁16で減圧されて低温低圧の第一冷媒となり、内部熱交換器15の二次側伝熱管15bに流入する。内部熱交換器15の二次側伝熱管15bを通流する第一冷媒は、一次側伝熱管15aを通流する中温高圧の第一冷媒と熱交換して吸熱して加熱され(E)、配管Lに流入する。
 このように、内部熱交換器15の一次側伝熱管15aを通流する第一冷媒が放熱した熱は、二次側伝熱管15bを通流する第一冷媒が吸熱することによって、空調用冷媒回路10内で再回収できる。
 そして、配管Lに流入した第一冷媒は、室外熱交換器13から流入する第一冷媒と合流し、アキュムレータ19を介して空調用圧縮機11に還流する。
 一方、内部熱交換器15の一次側伝熱管15aから流出した第一冷媒は、中間熱交換器21の一次側伝熱管21aに流入する。前記したように、中間熱交換器21の二次側伝熱管21b内の第二冷媒は、周囲温度(室外温度)程度まで低下している。したがって、中間熱交換器21において熱交換はほとんど生じない。
 中間熱交換器21から流出した第一冷媒は、室外用膨張弁14で減圧されて低温低圧の第一冷媒となり(D)、蒸発器として機能する室外熱交換器13に流入する。室外熱交換器13を通流する第一冷媒は、室外ファン13fにより送られてくる空気(室外空気)と熱交換することにより前記空気から吸熱し(F)、四方弁12及びアキュムレータ19を介して空調用圧縮機11に還流する(G)。
 以上のような動作によって、空調用冷媒回路10を循環する第一冷媒は、中間熱交換器21で生じる室外空気への放熱を低減し、空調負荷以上の負荷が空調用冷媒回路10に加わることを防止できる。したがって、内部熱交換器15で熱を再回収した場合、蒸発器(室外熱交換器13)で要求される吸熱量を減少させることができる。この結果、第一冷媒の蒸発器の蒸発圧力Pe2を、熱回収を行わない場合の蒸発圧力Pe1よりも高くすることができ、空調用冷媒回路10の効率が改善する。
(5.暖房運転(排熱)モード)
 図8は、暖房運転(排熱)モードにおける冷媒及び被加熱液体の流れを示す系統図である。
 制御装置50は、四方弁12の切替手段(図示せず)が暖房運転の位置となるように制御する。また、制御装置50は、室内(被空調空間)で発生する空調負荷に応じた量の第一冷媒が空調用冷媒回路10を循環するように、室内用膨張弁17及び室外用膨張弁14の開度を制御する。また、制御装置50は、内部熱交換器用膨張弁16の絞りを全閉とする。これによって、中間熱交換器21の一次側伝熱管21aを通流する第一冷媒から、二次側伝熱管21bを通流する第二冷媒に温熱を供給でき、給湯用冷媒回路30の熱源として利用することができる。
 さらに、制御装置50は、空調用圧縮機11、室内ファン18f、及び室外ファン13fの回転速度を制御する。
 また、制御装置50は、給湯負荷に適した冷媒量が流通するように、給湯用圧縮機31の回転速度、及び給湯用膨張弁33の絞り(開度)を制御する。また、制御装置50は、給湯回路40内を流動する被加熱液体(水)の循環量を適切となるように給湯用ポンプ41の回転速度を制御する。
 以下、図8及び図9を用いて空調用冷媒回路10の動作を説明する。なお、給湯用冷媒回路30及び給湯回路40の動作は、前記した給湯運転モードの場合と同様であるため、説明を省略する。
 空調用圧縮機11から吐出された高温高圧の第一冷媒(A)は、四方弁12を介して、凝縮器として機能する室内熱交換器18に流入する(B)。室内熱交換器18を通流する高温高圧の第一冷媒は、室内ファン18fにより送られてくる空気(室内空気)と熱交換することにより前記空気に放熱(排熱)し、中温高圧の第一冷媒となる(C1)。
 室外熱交換器13のから流出した中温高圧の第一冷媒は、室内用膨張弁17及び内部熱交換器15の一次側伝熱管15aを通過し、中間熱交換器21の一次側伝熱管21aに流入する。なお、室内用膨張弁17の開度(絞り)は全開に近い状態となっており、室内膨張弁ではほとんど減圧されない。
 また、内部熱交換器用膨張弁16の開度は全閉となっているため、内部熱交換器15においては第一冷媒が熱交換されることはない。
 中間熱交換器21の一次側伝熱管21aを通流する中温高圧の第一冷媒は、中間熱交換器21の二次側伝熱管21bを通流する第二冷媒と熱交換し、放熱する(C2)。中間熱交換器21から流出した第一冷媒は、室外用膨張弁14で減圧されて低温低圧の第一冷媒となり(D)、室外熱交換器13に流入する。
 室外熱交換器13を通流する第一冷媒は、室外ファン13fにより送られてくる空気(室外空気)と熱交換することにより前記空気から吸熱し(E)、四方弁12及びアキュムレータ19を介して空調用圧縮機11に還流する(F)。
<効果>
 本実施形態に係る空調給湯システムSによれば、冷房運転時において、内部熱交換器15の一次側伝熱管15aを通流する第一冷媒を、二次側伝熱管15bを通流する低温低圧の第一冷媒により冷却する。したがって、蒸発器として機能する室内熱交換器18での圧力損失を低減できるため、空調給湯システムS全体の運転効率を向上することができる。
 また、暖房運転(通常)モードでは、第一冷媒が中間熱交換器21に流入する前に、内部熱交換器15で冷却する。したがって、中間熱交換器21で生じる室外空気への放熱を低減し、空調負荷以上の負荷が空調用冷媒回路10に加わることを防止できる。また、内部熱交換器15では、一次側伝熱管15aを通流する第一冷媒が放熱した熱を、二次側伝熱管15bを通流する第一冷媒が吸熱することによって、空調用冷媒回路10内で再回収できる。
 このように、給湯側冷凍サイクルが非稼働時においても、中間熱交換器21で発生する余剰負荷を抑制し、冷房・暖房のいずれの運転においても空調給湯システムS全体の効率を向上することができる。
 また、暖房運転(排熱)モードでは、内部熱交換器用膨張弁16を全閉とすることで、内部熱交換器15で熱交換が起こらないようにすることで、中間熱交換器21に高温の第一冷媒を通流させ、第二冷媒と熱交換させる。したがって、空調給湯システムS全体の効率を向上することができる。
 図11に、従来技術(例えば、特許文献1)に係る空調給湯システムを用いた場合の、暖房運転時における冷媒の状態を示す圧力-比エンタルピ線図を示す。
 図11に示すように、空調用圧縮機を吐出した第一冷媒は(A)、室内熱交換器に流入する(B)。そして、第一冷媒は、室内熱交換器において室内空気と熱交換し(C1)、中間熱交換器に流入する。前記したように、通常、中間熱交換器は室外機に設置されているため、室外空気と熱的に接触している。そうすると、中間熱交換器において第一冷媒は、室外に放熱することとなる(C2)。したがって、図11に示す(C1)-(C2)での放熱分だけ、蒸発器として機能する室外熱交換器に要求される加熱量が増加する。この結果、第一冷媒の蒸発圧力がPe1からPe2に低下するとともに、空調用圧縮機の仕事量がW1からW2に低下する。したがって、空調給湯システム全体の効率が低下してしまう。
 これに対して、本実施形態では、前記したように、冷房・暖房のいずれの場合でも空調給湯システムS全体の効率を向上することができる。
≪第2実施形態≫
 第2実施形態は、第1実施形態と比較してバイパス配管U、二方弁61,62,63(開閉手段)が設置されている点が異なるが、その他の構成は第1実施形態と同様である。したがって、当該異なる部分について説明し、重複する部分については説明を省略する。
 図10は、本発明の第2実施形態に係る空調給湯システムS1において、給湯運転モードにおける冷媒及び被加熱液体の流れを示す系統図である。
 図10に示すバイパス配管Uは、内部熱交換器15の一次側伝熱管15aと室内用膨張弁17とをつなぐ配管と、空調用圧縮機11の吐出側の配管と、を接続する配管である。バイパス配管Uの一端は、空調用圧縮機11の吐出側と二方弁61とをつなぐ配管に接続され(符号T参照)、他端は内部熱交換器15の一次側伝熱管15aと二方弁63とをつなぐ配管に接続されている(符号V参照)。
 また、空調用冷媒回路10において空調用圧縮機11の吐出側と四方弁12との間に二方弁61が設けられ、バイパス配管Uの途中に二方弁62が設けられている。また、内部熱交換器15を構成する一次側伝熱管15aと、室内用膨張弁17との間に二方弁63が設けられている。
 すなわち、二方弁61,62,63は、給湯運転モードにおいて、空調用圧縮機11から流出する第一冷媒を、バイパス配管Uを介して内部熱交換器15の一次側伝熱管15aに流入させるための「開閉手段」となっている。
 制御装置50は、四方弁12の切替手段(図示せず)が給湯運転の位置となるように制御する。また、制御装置50は、内部熱交換器用膨張弁16を全閉とし、室内用膨張弁17を全開とし、室外用膨張弁14の開度(絞り)を制御する。
 また、制御装置50は、二方弁61,63を閉状態にするとともに、二方弁62を開状態とする。これによって、空調用圧縮機11から吐出される高温高圧の第一冷媒が室内熱交換器18に流入することを防止できる。
 さらに、制御装置50は、空調用圧縮機11及び給湯用圧縮機31、及び室外ファン13fの回転速度を制御する。なお、給湯運転モードにおいて制御装置50は、室内ファン18fを停止させている。
 このモードにおける空調用冷媒回路10について説明する。なお、給湯用冷媒回路30及び給湯回路40の動作は、前記した給湯運転モードの場合と同様であるため、説明を省略する。
 空調用圧縮機11から吐出された高温高圧の第一冷媒は、二方弁、及び内部熱交換器15の一次側伝熱管15aを通過し、凝縮器として機能する中間熱交換器21の一次側伝熱管21aに流入する。
 中間熱交換器21の一次側伝熱管21aを通流する高温高圧の第一冷媒は、中間熱交換器21の二次側伝熱管21bを通流する被加熱液体と熱交換することにより放熱して、中温高圧の第一冷媒となる。
 中間熱交換器21の一次側伝熱管21aから流出した中温高圧の第一冷媒は、室外用膨張弁14で減圧され、低温低圧の第一冷媒となる。
 そして、低温低圧の第一冷媒は、蒸発器として機能する室外熱交換器13に流入する。室外熱交換器13を通流する第一冷媒は、室外ファン13fにより送られてくる空気(室外空気)と熱交換することにより、前記空気から熱を汲み上げる(吸熱する)。そして、吸熱した第一冷媒は、室外熱交換器13から四方弁12及びアキュムレータ19を介して空調用圧縮機11へと還流する。
 なお、その他の運転モード(冷房運転(通常)モード、冷房運転(排熱)モード、暖房運転(通常)モード、及び暖房運転(排熱)モード)を実行する際、制御装置50は、二方弁61,63を全開とし、二方弁62を全閉とする。
 この場合の制御については第1実施形態と同様であるから、説明を省略する。
<効果>
 図10に示すバイパス配管U及び二方弁61,62,63を設置することによって、給湯運転時において室内熱交換器18に第一冷媒が流入しなくなる。つまり、室内熱交換器18での不要な熱交換が発生せず、中間熱交換器21において第二冷媒と、高温の第一冷媒とをさらに効率良く熱交換することができる。
≪変形例≫
 以上、本発明に係る給湯空調システムについて各実施形態により説明したが、本発明の実施態様はこれらの記載に限定されるものではなく、種々の変更などを行うことができる。
 例えば、前記各実施形態では、室外機1と、給湯ユニット3と、給湯タンクユニット4とを別体の構成として説明したが、これに限らない。すなわち、これらの構成をヒートポンプユニットとして一体化してもよい。
 また、前記各実施形態では、内部熱交換器用膨張弁16(減圧装置)によって第一冷媒を減圧する場合について説明したが、これに限らない。すなわち、内部熱交換器用膨張弁16に代えて、キャピラリチューブなどを用いてもよい。
 また、前記各実施形態では、室内機を2台設置する場合について説明したが、これに限らない。すなわち、室内機は1台であってもよいし、3台以上であってもよい。なお、複数台の室内機を設置する場合には、それぞれの室内機を互いに並列接続する。
 また、前記第2実施形態において、空調用圧縮機11から流出する第一冷媒を、バイパス配管Uを介して内部熱交換器15の一次側伝熱管15aに流入させるための「開閉手段」として二方弁61,62,63を用いたが、これに限らない。すなわち、二方弁に代えて、前記「開閉手段」の作用を実現するための三方弁を設置してもよい。
 S,S1 空調給湯システム
 1 室外機
 10 空調用冷媒回路
 11 空調用圧縮機
 12 四方弁
 13 室外熱交換器(空調熱源側熱交換器)
 14 室外用膨張弁(第一膨張弁)
 15 内部熱交換器
 16 内部熱交換器用膨張弁(減圧装置)
 17a,17b 室内用膨張弁(第二膨張弁)
 18a,18b 室内熱交換器(空調利用側熱交換器)
 19 アキュムレータ
 2a,2b 室内機
 21 中間熱交換器
 30 給湯用冷媒回路
 40 給湯回路
 50 制御装置
 61,62,63 二方弁(開閉手段)
 U バイパス配管

Claims (4)

  1.  第一冷媒が循環する空調用冷媒回路と、第二冷媒が循環する給湯用冷媒回路と、を備える空調給湯システムにおいて、
     前記空調用冷媒回路は、
     空調用圧縮機と、四方弁と、空調熱源側熱交換器と、第一膨張弁と、第一冷媒と第二冷媒とを熱交換可能な中間熱交換器と、第一冷媒を冷却可能な内部熱交換器と、第二膨張弁と、空調利用側熱交換器と、が順次接続される環状回路を備え、
     前記内部熱交換器は、
     前記環状回路の一部分を構成する一次側伝熱管と、減圧装置を介して前記環状回路から分岐する分岐配管に接続される二次側伝熱管と、を有し、
     前記減圧装置は、
     運転モードに応じて前記分岐配管から流入する第一冷媒を減圧し、減圧される第一冷媒を前記二次側伝熱管に向けて流出することによって、前記一次側伝熱管を通流する第一冷媒を冷却すること
     を特徴とする空調給湯システム。
  2.  前記第二膨張弁と、当該第二膨張弁に直列に接続される前記空調利用側熱交換器と、を含む室内機ユニットを複数備え、
     前記室内機ユニットが並列に接続されること
     を特徴とする請求の範囲第1項に記載の空調給湯システム。
  3.  前記減圧装置は、膨張弁又はキャピラリチューブであること
     を特徴とする請求の範囲第1項又は第2項に記載の空調給湯システム。
  4.  前記内部熱交換器の一次側伝熱管と前記第二膨張弁とをつなぐ配管と、前記空調用圧縮機の吐出側の配管と、を接続するバイパス配管と、
     給湯運転モードにおいて、前記空調用圧縮機から流出する第一冷媒を、前記バイパス配管を介して前記内部熱交換器の一次側伝熱管に流入させるための開閉手段と、を備えること
     を特徴とする請求の範囲第3項に記載の空調給湯システム。
PCT/JP2012/061011 2012-04-25 2012-04-25 空調給湯システム WO2013161011A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280072563.0A CN104272036B (zh) 2012-04-25 2012-04-25 空气调节供给热水系统
US14/396,424 US20150075199A1 (en) 2012-04-25 2012-04-25 Air-Conditioning/Hot-Water Supply System
JP2014512066A JP5866000B2 (ja) 2012-04-25 2012-04-25 空調給湯システム
EP12875269.8A EP2846111A4 (en) 2012-04-25 2012-04-25 AIR CONDITIONING / HOT WATER SUPPLY SYSTEM
PCT/JP2012/061011 WO2013161011A1 (ja) 2012-04-25 2012-04-25 空調給湯システム
IN8932DEN2014 IN2014DN08932A (ja) 2012-04-25 2012-04-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/061011 WO2013161011A1 (ja) 2012-04-25 2012-04-25 空調給湯システム

Publications (1)

Publication Number Publication Date
WO2013161011A1 true WO2013161011A1 (ja) 2013-10-31

Family

ID=49482382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061011 WO2013161011A1 (ja) 2012-04-25 2012-04-25 空調給湯システム

Country Status (6)

Country Link
US (1) US20150075199A1 (ja)
EP (1) EP2846111A4 (ja)
JP (1) JP5866000B2 (ja)
CN (1) CN104272036B (ja)
IN (1) IN2014DN08932A (ja)
WO (1) WO2013161011A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032184A (ja) * 2015-07-30 2017-02-09 パナソニックIpマネジメント株式会社 熱生成ユニット
WO2018186043A1 (ja) * 2017-04-07 2018-10-11 パナソニックIpマネジメント株式会社 給湯装置、二元温水生成ユニット
JP2020056536A (ja) * 2018-10-02 2020-04-09 ダイキン工業株式会社 冷凍サイクル装置
WO2023008048A1 (ja) * 2021-07-28 2023-02-02 株式会社日立製作所 熱サイクルシステム、インホイールモータおよび車両

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6072076B2 (ja) * 2012-12-20 2017-02-01 三菱電機株式会社 空気調和装置
US10197331B2 (en) * 2015-01-26 2019-02-05 Hitachi, Ltd. Solid-liquid separation system
GB2539036A (en) * 2015-06-04 2016-12-07 Micallef Chris Dual heat exchanger (condenser)
JP2017161085A (ja) * 2016-03-07 2017-09-14 パナソニックIpマネジメント株式会社 ヒートポンプ装置
DE102018112362A1 (de) * 2018-05-23 2019-11-28 Grohe Ag Vorrichtung und Verfahren zur Reinigung einer Trinkwasseraufbereitungsanlage
CN109579300A (zh) * 2018-12-21 2019-04-05 广东志高暖通设备股份有限公司 一种具有多四通阀流路切换的热水多联系统及控制方法
CN109579299A (zh) * 2018-12-21 2019-04-05 广东志高暖通设备股份有限公司 一种热水多联系统及其控制方法
US20220364770A1 (en) * 2021-05-12 2022-11-17 Ebara Corporation Multi-refrigeration-cycle apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58262U (ja) * 1981-06-25 1983-01-05 三菱電機株式会社 冷暖房装置
JPH09152195A (ja) * 1995-11-28 1997-06-10 Sanyo Electric Co Ltd 冷凍装置
JP2008070053A (ja) * 2006-09-14 2008-03-27 Samsung Electronics Co Ltd 空気調和装置
JP2010236817A (ja) 2009-03-31 2010-10-21 Mitsubishi Electric Corp 空調給湯複合システム
JP2010276230A (ja) * 2009-05-27 2010-12-09 Sanyo Electric Co Ltd 冷凍装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058262U (ja) * 1991-07-10 1993-02-05 東洋運搬機株式会社 ラジエータ
JP3925383B2 (ja) * 2002-10-11 2007-06-06 ダイキン工業株式会社 給湯装置、空調給湯システム、及び給湯システム
JP2004226018A (ja) * 2003-01-24 2004-08-12 Sanyo Electric Co Ltd 冷凍装置
JP4284290B2 (ja) * 2005-03-24 2009-06-24 日立アプライアンス株式会社 ヒートポンプ給湯機
US8015836B2 (en) * 2007-03-27 2011-09-13 Mitsubishi Electric Corporation Heat pump system
JP5049888B2 (ja) * 2008-06-10 2012-10-17 日立アプライアンス株式会社 冷凍サイクル装置
JP5264936B2 (ja) * 2009-01-15 2013-08-14 三菱電機株式会社 空調給湯複合システム
JP2010175106A (ja) * 2009-01-28 2010-08-12 Sanyo Electric Co Ltd 冷凍装置
JP5711448B2 (ja) * 2009-02-24 2015-04-30 ダイキン工業株式会社 ヒートポンプシステム
JP5627606B2 (ja) * 2009-12-28 2014-11-19 ダイキン工業株式会社 ヒートポンプシステム
KR101608538B1 (ko) * 2009-12-31 2016-04-01 엘지전자 주식회사 냉매사이클 연동 물 순환 시스템
JP2012073008A (ja) * 2010-09-30 2012-04-12 Toshiba Carrier Corp 冷凍サイクル装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58262U (ja) * 1981-06-25 1983-01-05 三菱電機株式会社 冷暖房装置
JPH09152195A (ja) * 1995-11-28 1997-06-10 Sanyo Electric Co Ltd 冷凍装置
JP2008070053A (ja) * 2006-09-14 2008-03-27 Samsung Electronics Co Ltd 空気調和装置
JP2010236817A (ja) 2009-03-31 2010-10-21 Mitsubishi Electric Corp 空調給湯複合システム
JP2010276230A (ja) * 2009-05-27 2010-12-09 Sanyo Electric Co Ltd 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2846111A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032184A (ja) * 2015-07-30 2017-02-09 パナソニックIpマネジメント株式会社 熱生成ユニット
WO2018186043A1 (ja) * 2017-04-07 2018-10-11 パナソニックIpマネジメント株式会社 給湯装置、二元温水生成ユニット
JP2020056536A (ja) * 2018-10-02 2020-04-09 ダイキン工業株式会社 冷凍サイクル装置
JP7189423B2 (ja) 2018-10-02 2022-12-14 ダイキン工業株式会社 冷凍サイクル装置
WO2023008048A1 (ja) * 2021-07-28 2023-02-02 株式会社日立製作所 熱サイクルシステム、インホイールモータおよび車両

Also Published As

Publication number Publication date
CN104272036A (zh) 2015-01-07
EP2846111A1 (en) 2015-03-11
CN104272036B (zh) 2016-11-09
JPWO2013161011A1 (ja) 2015-12-21
IN2014DN08932A (ja) 2015-05-22
US20150075199A1 (en) 2015-03-19
EP2846111A4 (en) 2016-03-30
JP5866000B2 (ja) 2016-02-17

Similar Documents

Publication Publication Date Title
WO2013161011A1 (ja) 空調給湯システム
US10605498B2 (en) Heat pump apparatus
EP2045546B1 (en) Air conditioning system
WO2011052031A1 (ja) ヒートポンプ
JP5709978B2 (ja) 空気調和装置
WO2012077166A1 (ja) 空気調和装置
WO2012070083A1 (ja) 空気調和装置
JP5490245B2 (ja) 空気調和装置
JP5395950B2 (ja) 空気調和装置および空調給湯システム
JP5595521B2 (ja) ヒートポンプ装置
JP5183804B2 (ja) 冷凍サイクル装置、空気調和装置
WO2010128557A1 (ja) 空気調和装置
WO2011052055A1 (ja) 空気調和装置
WO2012066608A1 (ja) 空気調和機
EP2388532A2 (en) Hot water supply device associated with heat pump
KR101988309B1 (ko) 가스히트펌프 시스템
JP2014126350A (ja) 空気調和機
JP6550859B2 (ja) 冷凍装置
WO2020174618A1 (ja) 空気調和装置
JP4553761B2 (ja) 空気調和装置
WO2018097124A1 (ja) 空気調和装置
WO2021065678A1 (ja) 空気調和機
KR20140128695A (ko) 이원 냉동사이클 히트펌프시스템의 제어방법
WO2011052050A1 (ja) 空気調和装置
JP2006023073A (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512066

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14396424

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012875269

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE