[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013157526A1 - タッチパネル基板および表示装置 - Google Patents

タッチパネル基板および表示装置 Download PDF

Info

Publication number
WO2013157526A1
WO2013157526A1 PCT/JP2013/061219 JP2013061219W WO2013157526A1 WO 2013157526 A1 WO2013157526 A1 WO 2013157526A1 JP 2013061219 W JP2013061219 W JP 2013061219W WO 2013157526 A1 WO2013157526 A1 WO 2013157526A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
electrode
touch panel
lattice
electrodes
Prior art date
Application number
PCT/JP2013/061219
Other languages
English (en)
French (fr)
Inventor
山岸 慎治
和寿 木田
加藤 浩巳
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/391,835 priority Critical patent/US9401712B2/en
Publication of WO2013157526A1 publication Critical patent/WO2013157526A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1643Details related to the display arrangement, including those related to the mounting of the display in the housing the display being associated to a digitizer, e.g. laptops that can be used as penpads
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • H03K17/9622Capacitive touch switches using a plurality of detectors, e.g. keyboard
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K2017/9602Touch switches characterised by the type or shape of the sensing electrodes
    • H03K2017/9604Touch switches characterised by the type or shape of the sensing electrodes characterised by the number of electrodes
    • H03K2017/9613Touch switches characterised by the type or shape of the sensing electrodes characterised by the number of electrodes using two electrodes per touch switch
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/960755Constructional details of capacitive touch and proximity switches

Definitions

  • the present invention relates to a touch panel substrate and a display device including the touch panel substrate.
  • a display device in which a display unit and an input unit are integrated is widely used in order to reduce the size of the device.
  • a portable terminal such as a cellular phone, a PDA (Personal Digital Assistant), or a notebook personal computer
  • a finger or an input pen detection target
  • Display devices equipped with a touch panel are widely used.
  • touch panels such as a so-called resistance film (pressure-sensitive) method and a capacitance method are known as touch panels.
  • touch panels using a capacitive method are widely used.
  • the contact position is detected by detecting a change in capacitance when a finger or an input pen is brought into contact with the display screen. For this reason, the contact position can be detected by a simple operation.
  • a so-called sensor electrode which is a position detection electrode for detecting a contact position of an object is often formed of ITO (indium tin oxide) or the like.
  • ITO indium tin oxide
  • the resistance of the sensor electrode formed of ITO increases and the detection sensitivity decreases.
  • Patent Documents 1 and 2 describe a configuration in which a sensor electrode is formed by a grid-like metal wiring in order to reduce the resistance of the sensor electrode.
  • Each sensor electrode is composed of a plurality of grid electrodes divided in a square shape so that the sensor electrode extending in the vertical direction and the sensor electrode extending in the horizontal direction do not overlap.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2011-129501 (published on June 30, 2011)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2010-039537 (published on Feb. 18, 2010)”
  • the occurrence of moire is related to the pitch of the wiring formed on the touch panel and the pitch of the pixels (black matrix pitch) in the vertical and horizontal directions.
  • the pitch of the black matrix is determined by the size of the display panel and the pixel arrangement.
  • the pitch of the sensor electrodes arranged in the vertical and horizontal directions of the touch panel is determined as a specification depending on the size of the display panel and the required performance (resolution).
  • the pitch of the sensor electrodes is determined, the size of the outer shape of the grid electrode included in the sensor electrodes is also determined.
  • the length obtained by dividing the length of the side of the grid electrode by the number of wirings of the grid is the pitch of the grid (wiring pitch).
  • the present invention has been made in view of the present situation, and according to one embodiment of the present invention, a touch panel substrate used for a touch panel with improved display quality and a display device including the same can be realized.
  • the touch panel substrate is: A first detection electrode having a plurality of first grid electrodes having a rectangular outer shape arranged along the first direction; A second detection electrode having a plurality of second grid electrodes having a quadrangular outer shape arranged along a second direction different from the first direction,
  • Each first grid electrode includes a first conductor line formed in a parallel grid shape along the outer shape of the first grid electrode, The first grid electrodes adjacent in the first direction are electrically connected by a first relay wiring formed therebetween, A diagonal line between two diagonal lines adjacent to the first relay wiring in each first grid electrode is inclined with respect to the first direction,
  • Each second grid electrode includes a second conductor line formed in a grid shape parallel to the outer shape of the second grid electrode, The second grid electrodes adjacent in the second direction are electrically connected by a second relay wiring formed therebetween, In each second grid electrode, a diagonal line between two diagonal lines adjacent to the second relay wiring is inclined with respect to the second direction.
  • the touch panel substrate according to the present invention can improve the display quality by suppressing the generation of moire, and can appropriately detect the contact position.
  • FIG. 5 is a diagram in which the first detection electrode shown in FIG. 3 and the second detection electrode shown in FIG. 4 are overlapped, and is a plan view showing the wiring configuration of the touch panel substrate. It is a figure which shows the superimposition of the said touchscreen board
  • FIG. 16 is a diagram in which the first detection electrode shown in FIG. 15 and the second detection electrode shown in FIG. 16 are overlapped, and is a plan view showing a configuration of wiring on the touch panel substrate.
  • a display device (hereinafter referred to as a display device) having a touch panel function according to an embodiment of the present invention will be described below.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a display device according to the present embodiment.
  • a display device 1 shown in FIG. 1 includes a touch panel substrate 2, a display panel 3, various drive circuits (data signal line drive circuit, scanning signal line drive circuit, etc .; not shown) that drive the display panel 3, and a backlight. 4 is provided.
  • the display panel 3 is an active matrix type liquid crystal display panel in which a liquid crystal layer is sandwiched between an active matrix substrate and a color filter substrate.
  • the display panel 3 includes a black matrix (not shown) that partitions each pixel in a grid pattern. Since a general display panel 3 can be used, a detailed description of its structure is omitted.
  • the display panel 3 is not limited to a liquid crystal display panel, and an arbitrary display panel such as an organic EL display can be used.
  • the backlight 4 is provided on the back side of the display panel 3 and irradiates the display panel 3 with light.
  • the touch panel substrate 2 is a capacitive touch panel substrate provided on the front side (user side) of the display panel 3.
  • the touch panel substrate 2 includes a substrate 5, a first electrode layer 6, a second electrode layer 7, a first protective layer 8, and a second protective layer 9.
  • a first electrode layer 6 is provided on the front side of the substrate 5, and a second electrode layer 7 is provided on the back side of the substrate 5.
  • a first protective layer 8 is provided on the front surface side of the first electrode layer 6.
  • a second protective layer 9 is provided on the back side of the second electrode layer 7.
  • the substrate 5 is formed of a dielectric, and can be formed of, for example, glass or a plastic film.
  • the first electrode layer 6 is formed with a plurality of first detection electrodes formed of low resistance conductor wires such as metal. Each first detection electrode extends in the same direction as the direction in which the scanning signal line extends (lateral direction: first direction).
  • the second electrode layer 7 is formed with a plurality of second detection electrodes formed of low resistance conductor wires such as metal. Each second detection electrode extends in a direction perpendicular to the direction in which the first detection electrode extends (direction in which the data signal line extends: vertical direction, second direction).
  • the first protective layer 8 is a surface with which a detection target object comes into contact, and can be formed of a light-transmitting insulator such as glass or a plastic film.
  • the second protective layer 9 can be formed of a light-transmitting insulator such as glass or a plastic film. The second protective layer 9 is adhered on the display panel 3.
  • a capacitance is formed between the first detection electrode and the second detection electrode.
  • the capacitance value changes.
  • the touched position can be specified.
  • the first detection electrode may be referred to as a transmission electrode
  • the second detection electrode may be referred to as a reception electrode.
  • a position detection circuit for detecting the coordinate position of a detection target object a well-known circuit can be used and it is not specifically limited.
  • FIG. 18 is a plan view showing the arrangement of the first detection electrodes 101 and the second detection electrodes 102 in the touch panel substrate 100 of the comparative example.
  • the touch panel substrate 100 is covered with a plurality of first grid electrodes 103 and second grid electrodes 104 having a square outer shape.
  • the first grid electrode 103 and the second grid electrode 104 are formed in different layers.
  • the first grid electrode 103 and the second grid electrode 104 are formed by conductor wires formed in a grid shape having a square outer shape. Therefore, the light emitted from the display panel can pass through the touch panel substrate 100.
  • FIG. 18 does not show the detailed configuration of the first grid electrode 103 and the second grid electrode 104, but the plurality of first grid electrodes 103 arranged in the horizontal direction are electrically connected to each other.
  • One first detection electrode 101 has a plurality of first grid electrodes 103 arranged in the horizontal direction.
  • a plurality of first detection electrodes 101 extending in the horizontal direction are arranged in the vertical direction.
  • the plurality of second grid electrodes 104 arranged in the vertical direction are electrically connected to each other.
  • One second detection electrode 102 has a plurality of second grid electrodes 104 arranged in the vertical direction.
  • a plurality of second detection electrodes 102 extending in the vertical direction are arranged in the horizontal direction.
  • FIG. 19 is a plan view showing a detailed configuration of the first detection electrode 101 of the comparative example.
  • Each first detection electrode 101 extends in the lateral direction and includes a plurality of first grid electrodes 103. Between the first grid electrodes 103 adjacent in the horizontal direction, a relay wiring 105 formed of a conductor line is provided. Adjacent first grid electrodes 103 are connected via the relay wiring 105. Note that the first grid electrodes 103 adjacent in the vertical direction are separated from each other.
  • the conductor lines in the first grid electrode 103 are formed in a parallel grid shape along the outer shape of the first grid electrode 103. That is, the grid of conductor lines is formed so that each conductor line is parallel to the outer side of the first grid electrode 103.
  • the conductor wires are arranged in a square grid shape.
  • each first detection electrode 101 extends in the horizontal direction, it can be detected in which row the detection target is located.
  • the second detection electrode 102 has a shape obtained by rotating the first detection electrode 101 by 90 °.
  • the conductor lines are arranged in a lattice pattern in the entire touch panel substrate 100.
  • the grid-like conductor lines interfere with the black matrix of the display panel 3, and moire may occur.
  • FIG. 20 is a diagram showing the relationship between the arrangement of the touch panel substrate and the occurrence of moire. As shown in FIG. 20A, the display panel 3 and the touch panel substrate 100 are aligned with the direction in which the scanning signal lines of the display panel 3 extend (lateral direction) and the direction in which the first detection electrode 101 of the touch panel substrate 100 extends. , It is assumed that moire occurs.
  • FIG. 20B shows the display panel 3 and the touch panel substrate 100 by tilting the direction in which the first detection electrode 101 of the touch panel substrate 100 extends with respect to the direction (lateral direction) in which the scanning signal line of the display panel 3 extends. Shows the case of overlapping. There may be a plurality of such angles ⁇ at which moire disappears.
  • the direction in which the first detection electrodes 101 extend and the direction of the grid-shaped conductor lines are inclined by 45 °.
  • the conductor lines of the touch panel substrate 100 are similarly disposed with respect to the display panel 3.
  • the moire disappears.
  • the moire disappears or becomes weak near a certain angle ⁇ .
  • the display panel 3 and the touch panel substrate 100 cannot be tilted and pasted as shown in FIG.
  • the direction in which the first detection electrode 101 extends is also oblique with respect to the display panel 3, and the position cannot be properly detected.
  • the touch panel substrate of the embodiment described below can be manufactured using the angle ⁇ as a guide.
  • FIG. 2 is a plan view showing the arrangement of the first detection electrodes 11 and the second detection electrodes 12 in the touch panel substrate 2 of the present embodiment.
  • a plurality of first grid electrodes 13 and second grid electrodes 14 having a square outer shape are arranged on the touch panel substrate 2.
  • the squares showing the outer shapes (regions formed) of the plurality of first grid electrodes 13 and the plurality of second grid electrodes 14 are uniformly inclined.
  • the first grid electrode 13 and the second grid electrode 14 are formed in different layers.
  • the first grid electrode 13 and the second grid electrode 14 are formed by conductor wires having a square outer shape. Therefore, the light emitted from the display panel can pass through the touch panel substrate 2.
  • the pitch of the first detection electrodes 11 and the pitch of the second detection electrodes 12 are the same. Therefore, the position can be detected with the same accuracy both in the vertical direction and in the horizontal direction.
  • the pitch of the first detection electrodes 11 and the pitch of the second detection electrodes 12 are determined as specifications based on required performance (detection accuracy, detection resolution). Therefore, the pitch of the first detection electrodes 11 and the pitch of the second detection electrodes 12 are the same as in the comparative example shown in FIG. However, each 1st grid electrode 13 and the 2nd grid electrode 14 incline compared with a comparative example, and the 1st grid electrodes 13 are arranged mutually spaced apart. Further, the second grid electrodes 14 are spaced apart from each other.
  • first grid electrode 13 and the second grid electrode 14 are separated by a square region (first Are electrically connected to each other via a relay wiring formed in (region) 15.
  • One first detection electrode 11 has a plurality of first grid electrodes 13 arranged in the horizontal direction.
  • a plurality of first detection electrodes 11 extending in the horizontal direction are arranged in the vertical direction.
  • the plurality of second grid electrodes 14 arranged in the vertical direction apart from each other are electrically connected to each other via another relay wiring formed in the square region 15 therebetween.
  • One second detection electrode 12 has a plurality of second grid electrodes 14 arranged in the vertical direction.
  • a plurality of second detection electrodes 12 extending in the vertical direction are arranged in the horizontal direction.
  • Diagonal lines in the first grid electrode 13 are inclined at an angle ⁇ with respect to the direction (lateral direction) in which the first detection electrode 11 extends. However, the first grid electrodes 13 are arranged along the direction in which the first detection electrodes 11 extend. Similarly, a diagonal line (two diagonal lines adjacent to the region 15) in the second grid electrode 14 is inclined at an angle ⁇ with respect to a direction (vertical direction) in which the second detection electrode 12 extends. However, the second grid electrodes 14 are arranged along the direction in which the second detection electrodes 12 extend.
  • FIG. 3 is a plan view showing a detailed configuration of the first detection electrode 11.
  • the outer shape of each first grid electrode 13 is indicated by a dotted line
  • the conductor wire (first conductor line) 17 constituting the first grid electrode 13 is indicated by a solid line.
  • Each first detection electrode 11 extends in the lateral direction and has a plurality of first grid electrodes 13.
  • the first grid electrodes 13 adjacent in the horizontal direction are separated from each other, and a relay wiring (first relay wiring) 16 formed of a conductor wire is provided therebetween. Adjacent first grid electrodes 13 are connected to each other through the relay wiring 16. Note that the first grid electrodes 13 adjacent in the vertical direction are separated from each other.
  • the first grid electrode 13 and the relay wiring 16 are formed in the same layer (the first electrode layer 6 in FIG. 1).
  • the conductor lines 17 in the first grid electrode 13 are formed in a parallel grid shape along the outer shape of the first grid electrode 13. That is, the grid of the conductor lines 17 is formed so that each conductor line 17 is parallel to the outer side (square) side of the first grid electrode 13.
  • the conductor wires (grid wiring) 17 constituting the first grid electrode 13 are arranged in a square grid shape.
  • the conductor wire 17 and the relay wiring 16 are formed of a low resistance metal or the like.
  • the relay wiring 16 is formed at a position where a part of the lattice-shaped conductor wire (grid wiring) 17 is extended.
  • Diagonal lines (two diagonal lines adjacent to the relay wiring 16) in the first grid electrode 13 are inclined at an angle ⁇ with respect to the direction (lateral direction) in which the first detection electrode 11 extends. That is, the diagonal of the minimum unit lattice (minimum unit square) of the lattice forming the first lattice electrode 13 is inclined by an angle ⁇ with respect to the direction (lateral direction) in which the first detection electrode 11 extends.
  • the first grid electrodes 13 are arranged along the direction in which the first detection electrodes 11 extend.
  • the first grid electrode 13 and the grid-shaped conductor wire 17 constituting the first grid electrode 13 are formed to be inclined at a predetermined angle, and the first grid electrodes 13 that are separated and adjacent to each other are relayed. 16 is connected.
  • the grid-shaped conductor wires 17 constituting the first grid electrode 13 can be inclined at an angle at which moiré is unlikely to occur, and the first detection electrode 11 can be extended in the lateral direction.
  • FIG. 4 is a plan view showing a detailed configuration of the second detection electrode 12.
  • the outer shape of each second grid electrode 14 is indicated by a dotted line, and the conductor wire (second conductor line) 19 constituting the second grid electrode 14 is indicated by a solid line.
  • the second detection electrode 12 has the same configuration as that obtained by rotating the first detection electrode 11 by 90 °.
  • Each second detection electrode 12 extends in the vertical direction and has a plurality of second grid electrodes 14.
  • the second grid electrodes 14 adjacent in the vertical direction are separated from each other, and a relay wiring (second relay wiring) 18 formed of a conductor wire is provided therebetween.
  • the adjacent second grid electrodes 14 are connected to each other through the relay wiring 18. Note that the second grid electrodes 14 adjacent in the horizontal direction are separated from each other.
  • the second grid electrode 14 and the relay wiring 18 are formed in the same layer (the second electrode layer 7 in FIG. 1).
  • the conductor wire 19 in the second grid electrode 14 is formed in a parallel grid shape along the outer shape of the second grid electrode 14. That is, the grid of the conductor lines 19 is formed so that each conductor line 19 is parallel to the side of the outer shape (square) of the second grid electrode 14.
  • the conductor wires (lattice wiring) 19 constituting the second grid electrode 14 are arranged in a square grid shape.
  • the conductor wire 19 and the relay wiring 18 are formed of a low resistance metal or the like.
  • the relay wiring 18 is formed at a position where a part of the lattice-shaped conductor wire (lattice wiring) 19 is extended.
  • Diagonal lines (two diagonal lines adjacent to the relay wiring 18) in the second grid electrode 14 are inclined at an angle ⁇ with respect to the direction (vertical direction) in which the second detection electrode 12 extends. That is, the diagonal of the minimum unit lattice (minimum unit square) of the lattice forming the second lattice electrode 14 is similarly inclined by the angle ⁇ with respect to the direction (vertical direction) in which the second detection electrode 12 extends. However, the second grid electrodes 14 are arranged along the direction in which the second detection electrodes 12 extend.
  • the second grid electrode 14 and the grid-shaped conductor wire 19 constituting the second grid electrode 14 are formed to be inclined at a predetermined angle, and the second grid electrodes 14 that are separated and adjacent to each other are relayed. 18 is connected.
  • the grid-shaped conductor wire 19 constituting the second grid electrode 14 can be inclined at an angle at which moiré is unlikely to occur, and the second detection electrode 12 can be extended in the vertical direction.
  • FIG. 5 is a diagram in which the first detection electrode 11 shown in FIG. 3 and the second detection electrode 12 shown in FIG. 4 are overlapped, and is a plan view showing the configuration of the wiring of the touch panel substrate 2.
  • a uniform lattice pattern is formed on the entire touch panel substrate 2 (a predetermined region where the detection electrodes are formed).
  • the conductor lines 17 of the first detection electrodes 11 and the conductor lines 19 of the second detection electrodes are arranged so as not to overlap on the same line. Therefore, the pattern of the 1st detection electrode 11 and the 2nd detection electrode 12 is hard to be visually recognized by a user, and a display quality is not reduced.
  • the direction in which the first detection electrode 11 extends (lateral direction) and the direction in which the second detection electrode 12 extends (vertical direction) are orthogonal to each other.
  • a line in one direction of a lattice of a black matrix (not shown) formed on the display panel 3 is parallel to a direction (lateral direction) in which the first detection electrode 11 extends, and a line in the other direction is a second line. It is parallel to the direction (longitudinal direction) in which the detection electrode 12 extends.
  • the diagonal line of the minimum unit lattice (minimum unit quadrilateral) of the lattice forming the first lattice electrode 13 or the second lattice electrode 14 is the direction in which the first detection electrode 11 extends (lateral direction) and the second detection electrode 12 extends. It is inclined with respect to both directions (vertical direction). Further, the conductor lines of the lattice are also inclined with respect to both the direction in which the first detection electrode 11 extends (lateral direction) and the direction in which the second detection electrode 12 extends (vertical direction). One of the two diagonal lines of the lattice has an angle ⁇ (0 °) with respect to either the direction in which the first detection electrode 11 extends (lateral direction) or the direction in which the second detection electrode 12 extends (vertical direction). ⁇ ⁇ 45 °) is inclined.
  • the conductor wire may be extended so that the conductor wire 17 of the first detection electrode 11 and the conductor wire 19 of the second detection electrode partially overlap, or conduction between the first detection electrodes 11 is avoided. Therefore, a part of the conductor wires may be removed. Further, the number of grid lines and the like can be appropriately changed so as to equally divide the lengths of the outer sides of the first grid electrode 13 and the second grid electrode 14.
  • FIG. 6 is a diagram showing the overlay of the touch panel substrate 2 and the display panel 3.
  • a grid-like black matrix 10 that partitions pixels is formed on the display panel 3.
  • the black matrix 10 is formed of a light shield.
  • the first detection electrode 11 extends in the horizontal direction
  • the second detection electrode 12 extends in the vertical direction.
  • one diagonal line of the lattice is inclined by an angle ⁇ with respect to the direction in which the first detection electrode 11 extends. Therefore, even when the touch panel substrate 2 is superimposed on the display panel 3 without being tilted, the display device 1 can suppress the occurrence of moire and can appropriately detect the contact position.
  • the first grid electrode 13 and the second grid electrode 14 are formed to be inclined together with the grid inside, and the first grid electrode 13 and Relay wirings 16 and 18 are formed in a gap (region 15) generated between the second grid electrodes 14.
  • a uniform grid of conductor lines is formed on the touch panel substrate 2 by changing the angle at which the first grid electrode 13 and the second grid electrode 14 are inclined and the size of the region 15 where the relay wirings 16 and 18 are formed. Can do.
  • the conductor wire grid can be formed at a desired angle ⁇ . Therefore, it is possible to manufacture the display device 1 that can suppress the generation of moire and improve the display quality.
  • the pitch of the detection electrodes is obtained by dividing the width and height of a predetermined area (position detection area) for detecting the position of the touch panel by the number of detection electrodes.
  • the pitch of the first detection electrodes and the pitch of the second detection electrodes may not be the same.
  • the difference between the vertical and horizontal pitches is slight.
  • FIG. 7 is a plan view showing the arrangement of the first detection electrodes 11 and the second detection electrodes 12 in the touch panel substrate 20 of the present embodiment.
  • the laminated structure of the touch panel substrate 20 is the same as the structure shown in FIG.
  • the pitch of the first detection electrodes 11 and the pitch of the second detection electrodes 12 are different from each other, and the pitch of the first detection electrodes 11 is larger than the pitch of the second detection electrodes 12. Therefore, the plurality of first grid electrodes 23 and second grid electrodes 24 arranged on the touch panel substrate 20 have rhombuses whose outer shapes are vertically long.
  • the rhombus which shows the external shape (formation area
  • the first grid electrode 23 and the second grid electrode 24 are formed in different layers.
  • the plurality of first grid electrodes 23 arranged side by side in the horizontal direction are electrically connected to each other via a relay wiring formed in a rhombus region 25 therebetween.
  • One first detection electrode 11 has a plurality of first grid electrodes 23 arranged in the horizontal direction.
  • a plurality of first detection electrodes 11 extending in the horizontal direction are arranged in the vertical direction.
  • the plurality of second grid electrodes 24 that are arranged apart from each other in the vertical direction are electrically connected to each other via another relay wiring formed in the rhombus region 25 therebetween.
  • One second detection electrode 12 has a plurality of second grid electrodes 24 arranged in the vertical direction.
  • a plurality of second detection electrodes 12 extending in the vertical direction are arranged in the horizontal direction.
  • Diagonal lines (two diagonal lines adjacent to the region 25) in the first grid electrode 23 are inclined at an angle ⁇ with respect to the direction (lateral direction) in which the first detection electrode 11 extends. However, the first grid electrodes 23 are arranged along the direction in which the first detection electrodes 11 extend. Similarly, a diagonal line (two diagonal lines adjacent to the region 25) in the second grid electrode 24 is inclined at an angle ⁇ with respect to the direction (vertical direction) in which the second detection electrode 12 extends. However, the second grid electrodes 24 are arranged along the direction in which the second detection electrodes 12 extend.
  • FIG. 8 is a plan view showing a detailed configuration of the first detection electrode 11.
  • the outer shape of each first grid electrode 23 is indicated by a dotted line, and the conductor wire 17 constituting the first grid electrode 23 is indicated by a solid line.
  • the first grid electrodes 23 adjacent in the horizontal direction are separated from each other, and a relay wiring (first relay wiring) 26 formed of a conductor wire is provided therebetween. Adjacent first grid electrodes 23 are connected to each other through the relay wiring 26. Note that the first grid electrodes 23 adjacent in the vertical direction are separated from each other.
  • the conductor wire 17 in the first grid electrode 23 is formed in a parallel grid shape along the outer shape of the first grid electrode 23. That is, the grid of the conductor lines 17 is formed so that each conductor line 17 is parallel to the side of the outer shape (diamond) of the first grid electrode 23.
  • the conductor wires (lattice wiring) 17 constituting the first grid electrode 23 are arranged in a rhombus grid shape.
  • the relay wiring 26 is formed at a position where a part of the lattice-shaped conductor wire (grid wiring) 17 is extended.
  • Diagonal lines (two diagonal lines adjacent to the relay wiring 26) in the first grid electrode 23 are inclined at an angle ⁇ with respect to the direction (lateral direction) in which the first detection electrode 11 extends. That is, the diagonal line of the minimum unit lattice (minimum unit rectangle) of the lattice forming the first lattice electrode 23 is similarly inclined by the angle ⁇ with respect to the direction (lateral direction) in which the first detection electrode 11 extends.
  • FIG. 9 is a plan view showing a detailed configuration of the second detection electrode 12.
  • the outer shape of each second grid electrode 24 is indicated by a dotted line, and the conductor wire 19 constituting the second grid electrode 24 is indicated by a solid line.
  • the second grid electrodes 24 adjacent in the vertical direction are separated from each other, and a relay wiring (second relay wiring) 28 formed of a conductor wire is provided therebetween.
  • the adjacent second grid electrodes 24 are connected to each other through the relay wiring 28. Note that the second grid electrodes 24 adjacent in the lateral direction are separated from each other.
  • the conductor wire 19 in the second grid electrode 24 is formed in a parallel grid shape along the outer shape of the second grid electrode 24. That is, the grid of the conductor lines 19 is formed so that each conductor line 19 is parallel to the side of the outer shape (diamond) of the second grid electrode 24.
  • the conductor wires (lattice wiring) 19 constituting the second grid electrode 24 are arranged in a rhombus grid shape.
  • the relay wiring 28 is formed at a position where a part of a grid-shaped conductor wire (lattice wiring) 19 is extended.
  • the diagonal lines (two diagonal lines adjacent to the relay wiring 28) in the second grid electrode 24 are inclined at an angle ⁇ with respect to the direction (vertical direction) in which the second detection electrode 12 extends. That is, the diagonal line of the minimum unit lattice (minimum unit rectangle) of the lattice forming the second lattice electrode 24 is inclined by an angle ⁇ with respect to the direction (vertical direction) in which the second detection electrode 12 extends.
  • FIG. 10 is a diagram in which the first detection electrode 11 shown in FIG. 8 and the second detection electrode 12 shown in FIG. 9 are overlapped, and is a plan view showing the configuration of the wiring of the touch panel substrate 20.
  • a uniform rhombus lattice pattern is formed on the entire touch panel substrate 20 (a predetermined region where the detection electrodes are formed).
  • the conductor line 17 of the first detection electrode 11 and the conductor line 19 of the second detection electrode 12 are arranged so as not to overlap on the same line. Therefore, the pattern of the 1st detection electrode 11 and the 2nd detection electrode 12 is hard to be visually recognized by a user, and a display quality is not reduced.
  • the direction in which the first detection electrode 11 extends (lateral direction) and the direction in which the second detection electrode 12 extends (vertical direction) are orthogonal to each other.
  • the diagonal line of the minimum unit lattice (minimum unit quadrilateral) of the lattice forming the first lattice electrode 23 or the second lattice electrode 24 is the direction in which the first detection electrode 11 extends (lateral direction) and the second detection electrode 12 extends. It is inclined with respect to both directions (vertical direction). Further, the conductor lines of the lattice are also inclined with respect to both the direction in which the first detection electrode 11 extends (lateral direction) and the direction in which the second detection electrode 12 extends (vertical direction). One of the two diagonal lines of the lattice has an angle ⁇ (0 °) with respect to either the direction in which the first detection electrode 11 extends (lateral direction) or the direction in which the second detection electrode 12 extends (vertical direction). ⁇ ⁇ 45 °) is inclined.
  • the first grid electrode 23 and the second grid electrode 24 whose outer shapes are rhombuses are formed so as to be tilted together with the rhombus grid in the middle, and a gap generated between the first grid electrode 23 and the second grid electrode 24 is formed.
  • Relay wirings 26 and 28 are formed in (region 25). Therefore, even when the pitch of the first detection electrodes 11 and the pitch of the second detection electrodes 12 are different from each other, a uniform grid of conductor lines can be formed on the touch panel substrate 20. Furthermore, the conductor wire grid can be formed at a desired angle ⁇ . Therefore, generation of moire can be suppressed and display quality can be improved.
  • each grid electrode has a diamond shape that is almost square.
  • each grid of the conductor lines constituting the grid electrode also has a diamond shape that is substantially square.
  • FIG. 11 is a plan view showing the arrangement of the first detection electrodes 11 and the second detection electrodes 12 in the touch panel substrate 30 of the present embodiment.
  • the laminated structure of the touch panel substrate 30 is the same as the structure shown in FIG.
  • the first grid electrode 33 and the second grid electrode 34 are formed in different layers.
  • the plurality of first grid electrodes 33 that are spaced apart in the horizontal direction are electrically connected to each other via a relay wiring formed in a square region 35 therebetween.
  • One first detection electrode 11 has a plurality of first grid electrodes 13 arranged in the horizontal direction.
  • a plurality of first detection electrodes 11 extending in the horizontal direction are arranged in the vertical direction.
  • the plurality of second grid electrodes 34 arranged in the vertical direction are electrically connected to each other via another relay wiring formed in a square region 35 therebetween.
  • One second detection electrode 12 has a plurality of second grid electrodes 34 arranged in the vertical direction.
  • a plurality of second detection electrodes 12 extending in the vertical direction are arranged in the horizontal direction.
  • the pitch of the first detection electrodes 11 and the pitch of the second detection electrodes 12 are the same.
  • the pitch of the first detection electrodes 11 and the pitch of the second detection electrodes 12 are the same as in the first embodiment.
  • Diagonal lines (two diagonal lines adjacent to the region 35) in the first grid electrode 33 are inclined at an angle ⁇ with respect to the direction (lateral direction) in which the first detection electrode 11 extends. However, the first grid electrodes 33 are arranged along the direction in which the first detection electrodes 11 extend. Similarly, a diagonal line (two diagonal lines adjacent to the region 15) in the second grid electrode 34 is inclined at an angle ⁇ with respect to the direction (vertical direction) in which the second detection electrode 12 extends. However, the second grid electrodes 34 are arranged along the direction in which the second detection electrodes 12 extend.
  • each 1st grid electrode 33 and the 2nd grid electrode 34 incline more largely than the 1st grid electrode in Embodiment 1, and the 2nd grid electrode, and the 1st grid electrodes 33 are arranged mutually spaced apart. Yes. Further, the second grid electrodes 34 are spaced apart from each other. Therefore, the gap (region 35) between the first grid electrode 33 and the second grid electrode 34 is larger than that in the first embodiment.
  • FIG. 12 is a plan view showing a detailed configuration of the first detection electrode 11.
  • the outer shape of each first grid electrode 33 is indicated by a dotted line
  • the conductor wire 17 constituting the first grid electrode 33 is indicated by a solid line.
  • the first grid electrodes 33 adjacent in the horizontal direction are separated from each other, and a relay wiring (first relay wiring) 36 formed of a conductor wire is provided therebetween. Adjacent first grid electrodes 33 are connected to each other through the relay wiring 36. Note that the first grid electrodes 33 adjacent in the vertical direction are separated from each other.
  • the conductor wire 17 in the first grid electrode 33 is formed in a parallel grid shape along the outer shape of the first grid electrode 33. That is, the grid of the conductor lines 17 is formed so that each conductor line 17 is parallel to the outer side (square) side of the first grid electrode 33.
  • the conductor wires (lattice wiring) 17 constituting the first grid electrode 33 are arranged in a square grid shape.
  • the relay wiring 36 is formed at a position where a part of the grid-shaped conductor wire (grid wiring) 17 is extended. Since the area where the relay wiring 36 is formed is larger than that in the first embodiment, more relay wiring 36 is formed than in the first embodiment.
  • Diagonal lines (two diagonal lines adjacent to the relay wiring 36) in the first grid electrode 33 are inclined at an angle ⁇ with respect to the direction (lateral direction) in which the first detection electrode 11 extends. That is, the diagonal of the minimum unit lattice (minimum unit quadrilateral) of the lattice forming the first lattice electrode 33 is similarly inclined by the angle ⁇ with respect to the direction (lateral direction) in which the first detection electrode 11 extends.
  • FIG. 13 is a plan view showing a detailed configuration of the second detection electrode 12.
  • the outer shape of each second grid electrode 34 is indicated by a dotted line, and the conductor wire 19 constituting the second grid electrode 34 is indicated by a solid line.
  • the second grid electrodes 34 adjacent in the vertical direction are separated from each other, and a relay wiring (second relay wiring) 38 formed of a conductor wire is provided therebetween.
  • the adjacent second grid electrodes 34 are connected to each other through the relay wiring 38. Note that the second grid electrodes 34 adjacent in the horizontal direction are separated from each other.
  • the conductor wire 19 in the second grid electrode 34 is formed in a parallel grid shape along the outer shape of the second grid electrode 34. That is, the grid of the conductor lines 19 is formed so that each conductor line 19 is parallel to the side of the outer shape (square) of the second grid electrode 34.
  • the conductor wires (lattice wiring) 19 constituting the second grid electrode 34 are arranged in a square grid shape.
  • the relay wiring 38 is formed at a position where a part of the lattice-shaped conductor wire (grid wiring) 19 is extended.
  • FIG. 14 is a diagram in which the first detection electrode 11 shown in FIG. 12 and the second detection electrode 12 shown in FIG. 13 are overlapped, and is a plan view showing the configuration of the wiring of the touch panel substrate 30.
  • a substantially uniform square lattice pattern is formed on the entire touch panel substrate 30 (a predetermined region where the detection electrodes are formed).
  • the conductor line 17 of the first detection electrode 11 and the conductor line 19 of the second detection electrode 12 are arranged so as not to overlap on the same line.
  • a region 39 in which the relay wirings 36 and 38 are not formed is a blank region in which no conductor line is formed.
  • the direction in which the first detection electrode 11 extends (lateral direction) and the direction in which the second detection electrode 12 extends (vertical direction) are orthogonal to each other.
  • the diagonal line of the minimum unit lattice (minimum unit quadrilateral) of the lattice forming the first lattice electrode 33 or the second lattice electrode 34 is the direction in which the first detection electrode 11 extends (lateral direction) and the second detection electrode 12 extends. It is inclined with respect to both directions (vertical direction). Further, the conductor lines of the lattice are also inclined with respect to both the direction in which the first detection electrode 11 extends (lateral direction) and the direction in which the second detection electrode 12 extends (vertical direction). One of the two diagonal lines of the lattice has an angle ⁇ (0 °) with respect to either the direction in which the first detection electrode 11 extends (lateral direction) or the direction in which the second detection electrode 12 extends (vertical direction). ⁇ ⁇ 45 °) is inclined.
  • the pitch of the first detection electrodes 11 and the pitch of the second detection electrodes 12 are fixed, and the first grid electrodes 33 are fixed.
  • the angle ⁇ at which the second grid electrode 34 tilts can be made larger.
  • the sizes of the first grid electrode 33 and the second grid electrode 34 are slightly reduced. Therefore, if the number of conductor lines 17 formed on the first grid electrode 33 is the same, the pitch of the conductor lines forming the grid is also reduced. However, the change in the pitch of the conductor wire with respect to the change in the angle ⁇ is small.
  • the touch panel substrate 30 of this embodiment can suppress the generation of moire and improve the display quality.
  • the arrangement and inclination angle ⁇ of the first and second grid electrodes are the same as those shown in FIG.
  • FIG. 15 is a plan view showing a detailed configuration of the first detection electrode 11 of the present embodiment.
  • the outer shape of each first grid electrode 43 is indicated by a dotted line, and the conductor wire 17 constituting the first grid electrode 43 is indicated by a solid line.
  • the first grid electrode 43 of the present embodiment is different from the first grid electrode 33 of FIG. 12 in that an extended grid wiring 46 for filling a blank area is provided.
  • the extended lattice wiring 46 is formed so as to extend a part of the lattice in a region (second region) corresponding to the region 39 which is a blank region shown in FIG.
  • the extended grid wirings 46 provided on the two first grid electrodes 43 adjacent in the vertical direction face each other but are not in contact with each other. For this reason, the two first detection electrodes 11 adjacent in the vertical direction are not electrically connected to each other.
  • FIG. 16 is a plan view showing a detailed configuration of the second detection electrode 12 of the present embodiment.
  • the outer shape of each second grid electrode 44 is indicated by a dotted line, and the conductor wire 19 constituting the second grid electrode 44 is indicated by a solid line.
  • an extended grid wiring 48 for filling a blank area is provided in the second grid electrode 44 of this embodiment.
  • the extended lattice wiring 48 is formed so as to extend a part of the lattice to a position corresponding to the region 39 which is a blank region shown in FIG.
  • the extended grid wirings 48 provided on the two second grid electrodes 44 adjacent in the lateral direction face each other but are not in contact with each other. For this reason, the two second detection electrodes 12 adjacent in the lateral direction are not electrically connected to each other.
  • FIG. 17 is a view in which the first detection electrode 11 shown in FIG. 15 and the second detection electrode 12 shown in FIG. 16 are overlapped, and is a plan view showing the configuration of the wiring of the touch panel substrate 40.
  • a uniform square lattice pattern is formed on the entire touch panel substrate 40 (a predetermined region where the detection electrodes are formed).
  • the conductor line 17 of the first detection electrode 11 and the conductor line 19 of the second detection electrode 12 are arranged so as not to overlap on the same line.
  • the grid pattern can be made uniform throughout the touch panel substrate 40 by forming the extended grid wirings 46 and 48 in the region where the relay wiring is not formed. Therefore, the pattern of the first detection electrode 11 and the second detection electrode 12 is not easily seen by the user, and the display quality is not deteriorated.
  • the diagonal of the lattice can be inclined by an appropriate angle ⁇ , the touch panel substrate 40 can suppress the generation of moire and improve the display quality.
  • the touch panel substrate includes a first detection electrode having a plurality of first grid electrodes having a rectangular outer shape arranged along the first direction, and a second direction different from the first direction. And a second detection electrode having a plurality of second grid electrodes each having a quadrangular outer shape, and each first grid electrode is formed in a parallel grid shape along the outer shape of the first grid electrode.
  • the first grid electrodes that include one conductor line and are adjacent to each other in the first direction are electrically connected by a first relay wiring formed therebetween, and the first relay in each first grid electrode.
  • a diagonal line between two diagonal lines adjacent to the wiring is inclined with respect to the first direction, and each second grid electrode is formed in a parallel grid shape along the outer shape of the second grid electrode.
  • the second grid electrodes that include the second conductor wire and are adjacent to each other in the second direction are A diagonal line between two diagonals adjacent to the second relay line in each second grid electrode is electrically connected by a second relay line formed between them, with respect to the second direction. Tilted.
  • the first grid electrode and the second grid electrode are formed so as to be inclined with respect to the first direction and the second direction together with the grid inside.
  • the first detection electrode and the second detection electrode are configured to extend in the first direction and the second direction, respectively. Therefore, generation of moire can be suppressed and display quality can be improved, and a contact position can be detected appropriately.
  • the first direction and the second direction may be orthogonal to each other.
  • each first grid electrode and each second grid electrode may be a rhombus.
  • each first grid electrode and each second grid electrode may be a square.
  • the touch panel substrate in Aspect 2, includes a plurality of first detection electrodes arranged in the second direction and a plurality of second detection electrodes arranged in the first direction.
  • the pitch of the plurality of first detection electrodes arranged is the same as the pitch of the plurality of second detection electrodes arranged, and the outer shape of each of the first and second grid electrodes is a square. It can also be.
  • the first conductor line is formed in a parallel square lattice shape along the outer shape of the first grid electrode, and the second conductor line is provided.
  • one diagonal line of the grid of the first conductor lines is inclined at an angle ⁇ with respect to the first direction, and the grid of the first conductor lines
  • the other diagonal line may be inclined by the angle ⁇ with respect to the second direction.
  • the first detection electrode is formed in a first layer
  • the second detection electrode is a second layer different from the first layer. It can also be set as the structure currently formed in this.
  • the region where the first relay wiring is formed may be a square.
  • the first conductor line and the second conductor line may be configured to form a uniform lattice pattern on the touch panel substrate.
  • the touch panel substrate in the aspects 1 to 10, includes a first region out of regions generated between the plurality of first lattice electrodes and the plurality of second lattice electrodes.
  • the grid-like first relay wiring and the second relay wiring are formed, and a first extended grid wiring in which a part of the grid of the first grid electrode is extended in a second region different from the first region.
  • a second extended grid wiring formed by extending a part of the grid of the second grid electrode, and a uniform grid pattern may be formed on the touch panel substrate.
  • a display device includes the touch panel substrate according to any one of aspects 1 to 11 and a display panel.
  • a line in one direction of the black matrix lattice formed in the display panel is parallel to the first direction, and a line in the other direction is the second line.
  • a configuration parallel to the direction may also be adopted.
  • the present invention can be used for a display device having a touch panel function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Position Input By Displaying (AREA)

Abstract

 表示品位を向上したタッチパネルに用いられるタッチパネル基板を実現する。本発明の一態様に係るタッチパネル基板(2)は、横方向に沿って並べられた複数の第1格子電極(13)を有する第1検出電極(11)を備える。各第1格子電極(13)は、その外形に沿って平行な格子形状に形成された導体線を含み、各第1格子電極(13)における、第1中継配線に隣接する2つの対角の間の対角線は、横方向に対して傾いている。

Description

タッチパネル基板および表示装置
 本発明は、タッチパネル基板および該タッチパネル基板を備えた表示装置に関するものである。
 近年、装置の小型化を図るため、表示部と入力部とが一体化された表示装置が広く普及している。特に、携帯電話機、PDA(Personal Digital Assistants)、ノート型パーソナルコンピュータ等の携帯端末では、指または入力用のペン(検出対象物)を表示表面に接触させると、その接触位置を検出することができるタッチパネルを備えた表示装置が広く用いられている。
 タッチパネルとしては、従来、いわゆる抵抗膜(感圧)方式や静電容量方式等、種々のタイプのタッチパネルが知られている。そのなかでも、静電容量方式を用いたタッチパネルが広く用いられている。
 静電容量方式のタッチパネルでは、指や入力用のペンを表示画面に接触させたときの静電容量の変化を検出することで接触位置を検出する。このため、簡便な操作で接触位置を検出することができる。
 物体の接触位置を検出する位置検出電極である所謂センサ電極は、ITO(酸化インジウム錫)等で形成されることが多い。しかしながら、大画面のタッチパネルの場合、ITOで形成されたセンサ電極の抵抗が大きくなり、検出の感度が低下するという問題がある。
 特許文献1、2には、センサ電極の抵抗を低減するために、格子状の金属配線でセンサ電極を形成する構成が記載されている。縦方向に延びるセンサ電極と横方向に延びるセンサ電極とが重ならないように、各センサ電極は、正方形状に区画された格子電極が複数連なって構成されている。
日本国公開特許公報「特開2011-129501号公報(2011年6月30日公開)」 日本国公開特許公報「特開2010-039537号公報(2010年2月18日公開)」
 しかしながら、上記従来の構成では、格子状の金属配線と表示パネルのブラックマトリクスが干渉することによりモアレが生じることがあり、表示品位が劣化することがある。
 モアレの発生は、縦方向および横方向における、タッチパネルに形成された配線のピッチと、画素のピッチ(ブラックマトリクスのピッチ)とに関係している。ブラックマトリクスのピッチは表示パネルの大きさおよび画素の配置等によって決まる。
 また、タッチパネルの縦横に配列するセンサ電極のピッチは、表示パネルの大きさおよび要求される性能(分解能)によって仕様として決められる。センサ電極のピッチが決まると、センサ電極が有する格子電極の外形の大きさも決まる。格子電極の辺の長さを格子の配線数で割った長さが、格子のピッチ(配線のピッチ)になる。しかしながら、性能(検出感度)および開口率等の観点から、格子の配線数には好ましい範囲がある。そのため、設計者が自由に配線ピッチを決められるわけではない。よって、上記従来の構成では、モアレが生じてしまうことがある。
 本発明はかかる現状に鑑みてなされたものであり、本発明の一態様によれば、表示品位を向上したタッチパネルに用いられるタッチパネル基板、ならびにそれを備えた表示装置を実現することができる。
 本発明に係るタッチパネル基板は、
 第1方向に沿って並べられた外形が四角形の複数の第1格子電極を有する第1検出電極と、
 上記第1方向とは異なる第2方向に沿って並べられた外形が四角形の複数の第2格子電極を有する第2検出電極とを備え、
 各第1格子電極は、該第1格子電極の外形に沿って平行な格子形状に形成された第1導体線を含み、
 上記第1方向に隣接する上記第1格子電極同士は、その間に形成された第1中継配線で電気的に接続されており、
 各第1格子電極における、上記第1中継配線に隣接する2つの対角の間の対角線は、上記第1方向に対して傾いており、
 各第2格子電極は、該第2格子電極の外形に沿って平行な格子形状に形成された第2導体線を含み、
 上記第2方向に隣接する上記第2格子電極同士は、その間に形成された第2中継配線で電気的に接続されており、
 各第2格子電極における、上記第2中継配線に隣接する2つの対角の間の対角線は、上記第2方向に対して傾いていることを特徴としている。
 それゆえ、本発明に係るタッチパネル基板は、モアレの発生を抑制して表示品位を向上することができ、かつ、接触位置を適切に検出することができる。
本発明の一実施形態に係る表示装置の概略構成を示す断面図である。 本発明の一実施形態に係るタッチパネル基板における第1検出電極および第2検出電極の配置を示す平面図である。 上記第1検出電極の詳細な構成を示す平面図である。 上記第2検出電極の詳細な構成を示す平面図である。 図3に示す第1検出電極および図4に示す第2検出電極を重ねた図であり、上記タッチパネル基板の配線の構成を示す平面図である。 上記タッチパネル基板および表示パネルの重ね合わせを示す図である。 本発明の他の実施形態に係るタッチパネル基板における第1検出電極および第2検出電極の配置を示す平面図である。 上記第1検出電極の詳細な構成を示す平面図である。 上記第2検出電極の詳細な構成を示す平面図である。 図8に示す第1検出電極および図9に示す第2検出電極を重ねた図であり、タッチパネル基板の配線の構成を示す平面図である。 本発明のさらに他の実施形態に係るタッチパネル基板における第1検出電極および第2検出電極の配置を示す平面図である。 上記第1検出電極の詳細な構成を示す平面図である。 上記第2検出電極の詳細な構成を示す平面図である。 図12に示す第1検出電極および図13に示す第2検出電極を重ねた図であり、タッチパネル基板の配線の構成を示す平面図である。 本発明のさらに他の実施形態に係る第1検出電極の詳細な構成を示す平面図である。 本発明のさらに他の実施形態に係る第2検出電極の詳細な構成を示す平面図である。 図15に示す第1検出電極および図16に示す第2検出電極を重ねた図であり、タッチパネル基板の配線の構成を示す平面図である。 比較例のタッチパネル基板における第1検出電極および第2検出電極の配置を示す平面図である。 比較例の第1検出電極の詳細な構成を示す平面図である。 タッチパネル基板の配置と、モアレの発生との関係を示す図である。
 [実施形態1]
 本発明に係る一実施形態のタッチパネル機能を有する表示装置(以下、表示装置という)について以下に説明する。
 (表示装置の構成)
 図1は、本実施形態に係る表示装置の概略構成を示す断面図である。図1に示す表示装置1は、タッチパネル基板2と、表示パネル3と、表示パネル3を駆動する各種駆動回路(データ信号線駆動回路、走査信号線駆動回路等;図示せず)と、バックライト4とを備えている。
 表示パネル3は、アクティブマトリクス基板およびカラーフィルタ基板の間に液晶層を挟持させたアクティブマトリクス型の液晶表示パネルである。表示パネル3は、各画素を格子状に区画するブラックマトリクス(図示せず)を備える。表示パネル3は、一般的なものを使用することができるため、その構造の詳細な説明は省略する。また、表示パネル3としては、液晶表示パネルに限らず、有機ELディスプレイ等の任意の表示パネルを使用することができる。
 バックライト4は、表示パネル3の背面側に設けられ、表示パネル3に光を照射する。
 タッチパネル基板2は、表示パネル3の前面側(ユーザ側)に設けられた、静電容量型のタッチパネル基板である。タッチパネル基板2は、基板5、第1電極層6、第2電極層7、第1保護層8、および、第2保護層9を備える。基板5の前面側に第1電極層6が設けられ、基板5の背面側に第2電極層7が設けられている。第1電極層6の前面側には、第1保護層8が設けられている。第2電極層7の背面側には、第2保護層9が設けられている。
 基板5は、誘電体で形成されており、例えば、ガラスまたはプラスティックフィルム等で形成することができる。
 第1電極層6には、金属等の低抵抗の導体線で形成された複数の第1検出電極が形成されている。各第1検出電極は、走査信号線が延びる方向(横方向:第1方向)と同じ方向に延びている。
 第2電極層7には、金属等の低抵抗の導体線で形成された複数の第2検出電極が形成されている。各第2検出電極は、第1検出電極が延びる方向とは直交する方向(データ信号線が延びる方向:縦方向、第2方向)に延びている。
 第1保護層8は、検出対象物が接触する面であり、ガラスまたはプラスティックフィルム等の透光性の絶縁体で形成することができる。また、第2保護層9も、同様にガラスまたはプラスティックフィルム等の透光性の絶縁体で形成することができる。第2保護層9は、表示パネル3上に接着される。
 第1検出電極と第2検出電極との間には静電容量が形成される。タッチパネル基板2の表面に検出対象物が接触することにより、この静電容量の値が変化する。この静電容量の値の変化を検出することにより、接触された位置を特定することができる。例えば、第1検出電極に駆動電圧を印加し、第2検出電極の電圧の変化を測定することで、静電容量の値が変化した第1検出電極(行)および第2検出電極(列)を特定する。この場合、第1検出電極を送信電極、第2検出電極を受信電極と呼ぶこともある。なお、検出対象物の座標位置を検出するための位置検出回路としては、周知の回路を用いることができ、特に限定されるものではない。
 (比較例)
 まず、比較例のタッチパネル基板100を使用する場合のモアレの発生と、その回避方法について説明する。
 図18は、比較例のタッチパネル基板100における第1検出電極101および第2検出電極102の配置を示す平面図である。タッチパネル基板100は、外形が正方形の、複数の第1格子電極103および第2格子電極104で敷き詰められている。第1格子電極103および第2格子電極104は、互いに異なる層に形成されている。
 第1格子電極103および第2格子電極104は、外形が正方形の格子形状に形成された導体線によって形成されている。そのため、表示パネルから出射された光は、タッチパネル基板100を通過することができる。
 図18には、第1格子電極103および第2格子電極104の詳細な構成は示していないが、横方向に並ぶ複数の第1格子電極103は、互いに電気的に接続されている。1つの第1検出電極101は、横方向に並ぶ複数の第1格子電極103を有する。そして、横方向に延在する複数の第1検出電極101が、縦方向に並んでいる。
 また、縦方向に並ぶ複数の第2格子電極104は、互いに電気的に接続されている。1つの第2検出電極102は、縦方向に並ぶ複数の第2格子電極104を有する。そして、縦方向に延在する複数の第2検出電極102が、横方向に並んでいる。
 図19は、比較例の第1検出電極101の詳細な構成を示す平面図である。
 各第1検出電極101は、横方向に延びており、複数の第1格子電極103を有する。横方向に隣接する第1格子電極103の間には、導体線で形成された中継配線105が設けられている。中継配線105を介して、隣接する第1格子電極103が接続されている。なお、縦方向に隣接する第1格子電極103同士は、分断されている。
 第1格子電極103の中の導体線は、第1格子電極103の外形に沿って平行な格子形状に形成されている。すなわち、各導体線が第1格子電極103の外形の辺に対して平行になるように、導体線の格子が形成されている。ここでは、第1格子電極103は正方形であるので、導体線は正方格子形状に配置されている。
 このように、各第1検出電極101が横方向に延びているので、いずれの行に検出対象物が位置するかを検出することができる。
 なお、第2検出電極102は、第1検出電極101を90°回転させた形状をしている。第1検出電極101および第2検出電極102を重ね合わせると、タッチパネル基板100の全体において導体線が格子状に配置されることになる。
 しかしながら、表示パネル3上にタッチパネル基板100を配置すると、この格子状の導体線と表示パネル3のブラックマトリクスとが干渉し、モアレが発生することがある。
 図20は、タッチパネル基板の配置と、モアレの発生との関係を示す図である。図20の(a)に示すように、表示パネル3の走査信号線が延びる方向(横方向)とタッチパネル基板100の第1検出電極101が延びる方向とを一致させて表示パネル3とタッチパネル基板100とを重ね合わせた場合に、モアレが発生したとする。
 このような場合でも、図20の(b)に示すように表示パネル3とタッチパネル基板100とを傾けて重ね合わせると、モアレが消えることがある。図20の(b)は、表示パネル3の走査信号線が延びる方向(横方向)に対してタッチパネル基板100の第1検出電極101が延びる方向を角度θ傾けて表示パネル3とタッチパネル基板100とを重ね合わせた場合を示す。このような、モアレが消える角度θは、複数存在することもある。タッチパネル基板100では、第1検出電極101が延びる方向と格子形状の導体線の方向とは45°傾いている。すなわち、タッチパネル基板100を表示パネル3に対して回転させて配置することにより、タッチパネル基板100の導体線も同じように表示パネル3に対して回転して配置されることになる。これにより、モアレが消えることになる。このように、ある角度θの近傍では、モアレが消えるまたは弱くなる。
 しかしながら、実際には、図20の(b)に示すように表示パネル3とタッチパネル基板100とを傾けて貼り付けるわけにはいかない。タッチパネル基板100を傾けると、第1検出電極101が延びる方向も表示パネル3に対して斜めになり、位置の検出を適正に行うことができなくなる。
 そこで、上記角度θを目安にして、以下に説明する実施例のタッチパネル基板を製作することができる。
 (実施例)
 図2は、本実施形態のタッチパネル基板2における第1検出電極11および第2検出電極12の配置を示す平面図である。タッチパネル基板2には、外形が正方形の、複数の第1格子電極13および第2格子電極14が配置されている。ただし、複数の第1格子電極13および複数の第2格子電極14のそれぞれの外形(形成されている領域)を示す正方形は、一様に傾いている。第1格子電極13および第2格子電極14は、互いに異なる層に形成されている。
 第1格子電極13および第2格子電極14は、外形が正方形の格子形状に形成された導体線によって形成されている。そのため、表示パネルから出射された光は、タッチパネル基板2を通過することができる。
 第1検出電極11のピッチおよび第2検出電極12のピッチは、互いに同じである。そのため、縦方向においても横方向においても同じ精度で位置の検出を行うことができる。第1検出電極11のピッチおよび第2検出電極12のピッチは、要求される性能(検出精度、検出解像度)に基づいて仕様として決められる。それゆえ、第1検出電極11のピッチおよび第2検出電極12のピッチは、図18に示す比較例と同じである。ただし、各第1格子電極13および第2格子電極14は、比較例に比べて傾いており、第1格子電極13同士は、互いに離間して配置されている。また、第2格子電極14同士は、互いに離間して配置されている。
 図2には、第1格子電極13および第2格子電極14の詳細な構成は示していないが、横方向に離間して並ぶ複数の第1格子電極13は、その間の正方形の領域(第1領域)15に形成された中継配線を介して互いに電気的に接続されている。1つの第1検出電極11は、横方向に並ぶ複数の第1格子電極13を有する。そして、横方向に延在する複数の第1検出電極11が、縦方向に並んでいる。
 また、縦方向に離間して並ぶ複数の第2格子電極14は、その間の正方形の領域15に形成された別の中継配線を介して互いに電気的に接続されている。1つの第2検出電極12は、縦方向に並ぶ複数の第2格子電極14を有する。そして、縦方向に延在する複数の第2検出電極12が、横方向に並んでいる。
 第1格子電極13における対角線(領域15に隣接する2つの対角の対角線)は、第1検出電極11が延びる方向(横方向)に対して、角度θ傾いている。ただし、各第1格子電極13は、第1検出電極11が延びる方向に沿って並んでいる。同様に、第2格子電極14における対角線(領域15に隣接する2つの対角の対角線)は、第2検出電極12が延びる方向(縦方向)に対して、角度θ傾いている。ただし、各第2格子電極14は、第2検出電極12が延びる方向に沿って並んでいる。
 図3は、第1検出電極11の詳細な構成を示す平面図である。図3においては、各第1格子電極13の外形を点線で示し、第1格子電極13を構成する導体線(第1導体線)17を実線で示している。
 各第1検出電極11は、横方向に延びており、複数の第1格子電極13を有する。横方向に隣接する第1格子電極13同士は互いに離間しており、その間には、導体線で形成された中継配線(第1中継配線)16が設けられている。中継配線16を介して、隣接する第1格子電極13同士が接続されている。なお、縦方向に隣接する第1格子電極13同士は、分断されている。第1格子電極13および中継配線16は、同じ層(図1の第1電極層6)に形成されている。
 第1格子電極13の中の導体線17は、第1格子電極13の外形に沿って平行な格子形状に形成されている。すなわち、各導体線17が第1格子電極13の外形(正方形)の辺に対して平行になるように、導体線17の格子が形成されている。ここでは、第1格子電極13は正方形であるので、第1格子電極13を構成する導体線(格子配線)17は正方格子形状に配置されている。
 導体線17および中継配線16は、低抵抗の金属等で形成されている。また、ここでは、中継配線16は、格子形状の導体線(格子配線)17の一部を延長した位置に形成されている。
 第1格子電極13における対角線(中継配線16に隣接する2つの対角の対角線)は、第1検出電極11が延びる方向(横方向)に対して、角度θ傾いている。すなわち、第1格子電極13を形成する格子の最小単位の格子(最小単位の四角形)の対角線は、第1検出電極11が延びる方向(横方向)に対して、角度θ傾いている。ただし、各第1格子電極13は、第1検出電極11が延びる方向に沿って並んでいる。
 このように、本実施形態では、第1格子電極13およびそれを構成する格子形状の導体線17を、所定の角度に傾けて形成し、離間して隣接する第1格子電極13同士を中継配線16によって接続する。これにより、第1格子電極13を構成する格子形状の導体線17を、モアレの発生しにくい角度に傾け、かつ、第1検出電極11を横方向に延ばした構成とすることができる。
 図4は、第2検出電極12の詳細な構成を示す平面図である。図4においては、各第2格子電極14の外形を点線で示し、第2格子電極14を構成する導体線(第2導体線)19を実線で示している。第2検出電極12は、第1検出電極11を90°回転させたものと同じ構成である。
 各第2検出電極12は、縦方向に延びており、複数の第2格子電極14を有する。縦方向に隣接する第2格子電極14同士は互いに離間しており、その間には、導体線で形成された中継配線(第2中継配線)18が設けられている。中継配線18を介して、隣接する第2格子電極14同士が接続されている。なお、横方向に隣接する第2格子電極14同士は、分断されている。第2格子電極14および中継配線18は、同じ層(図1の第2電極層7)に形成されている。
 第2格子電極14の中の導体線19は、第2格子電極14の外形に沿って平行な格子形状に形成されている。すなわち、各導体線19が第2格子電極14の外形(正方形)の辺に対して平行になるように、導体線19の格子が形成されている。ここでは、第2格子電極14は正方形であるので、第2格子電極14を構成する導体線(格子配線)19は正方格子形状に配置されている。
 導体線19および中継配線18は、低抵抗の金属等で形成されている。また、ここでは、中継配線18は、格子形状の導体線(格子配線)19の一部を延長した位置に形成されている。
 第2格子電極14における対角線(中継配線18に隣接する2つの対角の対角線)は、第2検出電極12が延びる方向(縦方向)に対して、角度θ傾いている。すなわち、第2格子電極14を形成する格子の最小単位の格子(最小単位の四角形)の対角線は、第2検出電極12が延びる方向(縦方向)に対して、同じく角度θ傾いている。ただし、各第2格子電極14は、第2検出電極12が延びる方向に沿って並んでいる。
 このように、本実施形態では、第2格子電極14およびそれを構成する格子形状の導体線19を、所定の角度に傾けて形成し、離間して隣接する第2格子電極14同士を中継配線18によって接続する。これにより、第2格子電極14を構成する格子形状の導体線19を、モアレの発生しにくい角度に傾け、かつ、第2検出電極12を縦方向に延ばした構成とすることができる。
 図5は、図3に示す第1検出電極11および図4に示す第2検出電極12を重ねた図であり、タッチパネル基板2の配線の構成を示す平面図である。第1検出電極11および第2検出電極12を重ねると、タッチパネル基板2の全体(検出電極が形成される所定の領域)において、一様な格子模様が形成される。また、第1検出電極11の導体線17と第2検出電極の導体線19とが、同じ線上で重ならないような配置になる。そのため、第1検出電極11および第2検出電極12のパターンがユーザに視認されにくく、表示品位を低下させることがない。第1検出電極11が延びる方向(横方向)と第2検出電極12が延びる方向(縦方向)とは、互いに直交する。
 なお、表示パネル3に形成されるブラックマトリクス(図示せず)の格子の一方向の線は、第1検出電極11が延びる方向(横方向)に平行であり、他方向の線は、第2検出電極12が延びる方向(縦方向)に平行である。
 第1格子電極13または第2格子電極14を形成する格子の最小単位の格子(最小単位の四角形)の対角線は、第1検出電極11が延びる方向(横方向)および第2検出電極12が延びる方向(縦方向)の両方に対して傾いている。また、格子の導体線も、第1検出電極11が延びる方向(横方向)および第2検出電極12が延びる方向(縦方向)の両方に対して傾いている。格子の2つの対角線のうちの一方の対角線は、第1検出電極11が延びる方向(横方向)および第2検出電極12が延びる方向(縦方向)のいずれかに対して、角度θ(0°<θ<45°)傾いている。
 なお、第1検出電極11の導体線17と第2検出電極の導体線19とが部分的に重なるように導体線を延ばしてもよいし、または、第1検出電極11同士の導通を回避するために、一部の導体線が除去されていてもよい。また、格子の線の数等は、第1格子電極13および第2格子電極14の外形の辺の長さを等分するように適宜変更することができる。
 図6は、タッチパネル基板2および表示パネル3の重ね合わせを示す図である。表示パネル3には画素を区画する格子状のブラックマトリクス10が形成されている。ブラックマトリクス10は、遮光体で形成されている。タッチパネル基板2において、第1検出電極11は横方向に延び、第2検出電極12は縦方向に延びる。一方で、タッチパネル基板2において、格子の一方の対角線は、第1検出電極11が延びる方向に対して、角度θ傾いている。それゆえ、表示パネル3に対してタッチパネル基板2を傾けずに重ね合わせた場合でも、表示装置1は、モアレの発生を抑制することができ、接触位置を適切に検出することができる。
 本実施形態では、外形が正方形の格子電極を隙間なく敷き詰める従来の構成とは異なり、第1格子電極13および第2格子電極14を、中の格子と共に傾けて形成し、第1格子電極13および第2格子電極14の間に生じた隙間(領域15)に中継配線16、18を形成する。第1格子電極13および第2格子電極14を傾ける角度と、中継配線16、18が形成される領域15の大きさとを変えることで、タッチパネル基板2において一様な導体線の格子を形成することができる。さらに、導体線の格子を所望の角度θ傾けて形成することができる。それゆえ、モアレの発生を抑制することができ、表示品位を向上することができる表示装置1を製造することができる。
 [実施形態2]
 実施形態1では、第1検出電極のピッチと第2検出電極のピッチとが同じ場合について説明した。本実施形態では、第1検出電極のピッチと第2検出電極のピッチとが互いに異なっている場合について説明する。なお、説明の便宜上、実施形態1にて説明した図面と同じ機能を有する部材・構成については、同じ符号を付記し、その詳細な説明を省略する。
 通常、タッチパネルの位置検出を行う所定の領域(位置検出領域)の幅および高さを、それぞれ検出電極の数で割ったものを検出電極のピッチとする。しかしながら、タッチパネルの位置検出領域の縦横比によっては、第1検出電極のピッチと第2検出電極のピッチとを同じにできない場合がある。ただし、この場合でも、縦横のピッチの違いは僅かである。
 図7は、本実施形態のタッチパネル基板20における第1検出電極11および第2検出電極12の配置を示す平面図である。なお、タッチパネル基板20の積層構造は、図1に示す構造と同じである。タッチパネル基板20においては、第1検出電極11のピッチおよび第2検出電極12のピッチが互いに異なり、第1検出電極11のピッチが第2検出電極12のピッチより大きい。そのため、タッチパネル基板20に配置される複数の第1格子電極23および第2格子電極24は、その外形が縦長のひし形になる。また、複数の第1格子電極23および複数の第2格子電極24のそれぞれの外形(形成されている領域)を示すひし形は、一様に傾いている。第1格子電極23および第2格子電極24は、互いに異なる層に形成されている。
 横方向に離間して並ぶ複数の第1格子電極23は、その間のひし形の領域25に形成された中継配線を介して互いに電気的に接続されている。1つの第1検出電極11は、横方向に並ぶ複数の第1格子電極23を有する。そして、横方向に延在する複数の第1検出電極11が、縦方向に並んでいる。
 また、縦方向に離間して並ぶ複数の第2格子電極24は、その間のひし形の領域25に形成された別の中継配線を介して互いに電気的に接続されている。1つの第2検出電極12は、縦方向に並ぶ複数の第2格子電極24を有する。そして、縦方向に延在する複数の第2検出電極12が、横方向に並んでいる。
 第1格子電極23における対角線(領域25に隣接する2つの対角の対角線)は、第1検出電極11が延びる方向(横方向)に対して、角度θ傾いている。ただし、各第1格子電極23は、第1検出電極11が延びる方向に沿って並んでいる。同様に、第2格子電極24における対角線(領域25に隣接する2つの対角の対角線)は、第2検出電極12が延びる方向(縦方向)に対して、角度θ傾いている。ただし、各第2格子電極24は、第2検出電極12が延びる方向に沿って並んでいる。
 図8は、第1検出電極11の詳細な構成を示す平面図である。図8においては、各第1格子電極23の外形を点線で示し、第1格子電極23を構成する導体線17を実線で示している。
 横方向に隣接する第1格子電極23同士は互いに離間しており、その間には、導体線で形成された中継配線(第1中継配線)26が設けられている。中継配線26を介して、隣接する第1格子電極23同士が接続されている。なお、縦方向に隣接する第1格子電極23同士は、分断されている。
 第1格子電極23の中の導体線17は、第1格子電極23の外形に沿って平行な格子形状に形成されている。すなわち、各導体線17が第1格子電極23の外形(ひし形)の辺に対して平行になるように、導体線17の格子が形成されている。ここでは、第1格子電極23はひし形であるので、第1格子電極23を構成する導体線(格子配線)17はひし形の格子形状に配置されている。
 中継配線26は、格子形状の導体線(格子配線)17の一部を延長した位置に形成されている。
 第1格子電極23における対角線(中継配線26に隣接する2つの対角の対角線)は、第1検出電極11が延びる方向(横方向)に対して、角度θ傾いている。すなわち、第1格子電極23を形成する格子の最小単位の格子(最小単位の四角形)の対角線は、第1検出電極11が延びる方向(横方向)に対して、同じく角度θ傾いている。
 図9は、第2検出電極12の詳細な構成を示す平面図である。図9においては、各第2格子電極24の外形を点線で示し、第2格子電極24を構成する導体線19を実線で示している。
 縦方向に隣接する第2格子電極24同士は互いに離間しており、その間には、導体線で形成された中継配線(第2中継配線)28が設けられている。中継配線28を介して、隣接する第2格子電極24同士が接続されている。なお、横方向に隣接する第2格子電極24同士は、分断されている。
 第2格子電極24の中の導体線19は、第2格子電極24の外形に沿って平行な格子形状に形成されている。すなわち、各導体線19が第2格子電極24の外形(ひし形)の辺に対して平行になるように、導体線19の格子が形成されている。ここでは、第2格子電極24はひし形であるので、第2格子電極24を構成する導体線(格子配線)19はひし形の格子形状に配置されている。
 中継配線28は、格子形状の導体線(格子配線)19の一部を延長した位置に形成されている。
 第2格子電極24における対角線(中継配線28に隣接する2つの対角の対角線)は、第2検出電極12が延びる方向(縦方向)に対して、角度θ傾いている。すなわち、第2格子電極24を形成する格子の最小単位の格子(最小単位の四角形)の対角線は、第2検出電極12が延びる方向(縦方向)に対して、角度θ傾いている。
 図10は、図8に示す第1検出電極11および図9に示す第2検出電極12を重ねた図であり、タッチパネル基板20の配線の構成を示す平面図である。第1検出電極11および第2検出電極12を重ねると、タッチパネル基板20の全体(検出電極が形成される所定の領域)において、一様なひし形の格子模様が形成される。また、第1検出電極11の導体線17と第2検出電極12の導体線19とが、同じ線上で重ならないような配置になる。そのため、第1検出電極11および第2検出電極12のパターンがユーザに視認されにくく、表示品位を低下させることがない。第1検出電極11が延びる方向(横方向)と第2検出電極12が延びる方向(縦方向)とは、互いに直交する。
 第1格子電極23または第2格子電極24を形成する格子の最小単位の格子(最小単位の四角形)の対角線は、第1検出電極11が延びる方向(横方向)および第2検出電極12が延びる方向(縦方向)の両方に対して傾いている。また、格子の導体線も、第1検出電極11が延びる方向(横方向)および第2検出電極12が延びる方向(縦方向)の両方に対して傾いている。格子の2つの対角線のうちの一方の対角線は、第1検出電極11が延びる方向(横方向)および第2検出電極12が延びる方向(縦方向)のいずれかに対して、角度θ(0°<θ<45°)傾いている。
 本実施形態では、外形がひし形の第1格子電極23および第2格子電極24を、中のひし形の格子と共に傾けて形成し、第1格子電極23および第2格子電極24の間に生じた隙間(領域25)に中継配線26、28を形成する。そのため、第1検出電極11のピッチと第2検出電極12のピッチとが互いに異なる場合においても、タッチパネル基板20において一様な導体線の格子を形成することができる。さらに、導体線の格子を所望の角度θ傾けて形成することができる。それゆえ、モアレの発生を抑制することができ、表示品位を向上することができる。
 また、縦横のピッチが僅かに違う場合は、各格子電極は、ほぼ正方形であるひし形になる。同様に、格子電極を構成する導体線の各格子も、ほぼ正方形であるひし形になる。本実施形態で説明したように、各格子電極を傾け、かつ、生じた隙間に中継配線を形成することで、第1検出電極が横方向に延び、第2検出電極が縦方向に延びるように構成することができる。これにより、一様な格子を形成し、かつ、モアレの発生を抑制することができ、接触位置を適切に検出することができる。
 [実施形態3]
 本実施形態では、角度θが実施形態1より大きい場合について説明する。なお、説明の便宜上、実施形態1にて説明した図面と同じ機能を有する部材・構成については、同じ符号を付記し、その詳細な説明を省略する。
 図11は、本実施形態のタッチパネル基板30における第1検出電極11および第2検出電極12の配置を示す平面図である。なお、タッチパネル基板30の積層構造は、図1に示す構造と同じである。タッチパネル基板30には、外形が正方形の、複数の第1格子電極33および第2格子電極34が配置されている。ただし、複数の第1格子電極33および複数の第2格子電極34のそれぞれの外形(形成されている領域)を示す正方形は、一様に傾いている。第1格子電極33および第2格子電極34は、互いに異なる層に形成されている。
 横方向に離間して並ぶ複数の第1格子電極33は、その間の正方形の領域35に形成された中継配線を介して互いに電気的に接続されている。1つの第1検出電極11は、横方向に並ぶ複数の第1格子電極13を有する。そして、横方向に延在する複数の第1検出電極11が、縦方向に並んでいる。
 また、縦方向に離間して並ぶ複数の第2格子電極34は、その間の正方形の領域35に形成された別の中継配線を介して互いに電気的に接続されている。1つの第2検出電極12は、縦方向に並ぶ複数の第2格子電極34を有する。そして、縦方向に延在する複数の第2検出電極12が、横方向に並んでいる。
 第1検出電極11のピッチおよび第2検出電極12のピッチは、互いに同じである。また、第1検出電極11のピッチおよび第2検出電極12のピッチは、実施形態1と同じである。
 第1格子電極33における対角線(領域35に隣接する2つの対角の対角線)は、第1検出電極11が延びる方向(横方向)に対して、角度θ傾いている。ただし、各第1格子電極33は、第1検出電極11が延びる方向に沿って並んでいる。同様に、第2格子電極34における対角線(領域15に隣接する2つの対角の対角線)は、第2検出電極12が延びる方向(縦方向)に対して、角度θ傾いている。ただし、各第2格子電極34は、第2検出電極12が延びる方向に沿って並んでいる。
 ただし、各第1格子電極33および第2格子電極34は、実施形態1における第1格子電極および第2格子電極より大きく傾いており、第1格子電極33同士は、互いに離間して配置されている。また、第2格子電極34同士は、互いに離間して配置されている。そのため、実施形態1に比べて、第1格子電極33および第2格子電極34の間の隙間(領域35)が大きい。
 図12は、第1検出電極11の詳細な構成を示す平面図である。図12においては、各第1格子電極33の外形を点線で示し、第1格子電極33を構成する導体線17を実線で示している。
 横方向に隣接する第1格子電極33同士は互いに離間しており、その間には、導体線で形成された中継配線(第1中継配線)36が設けられている。中継配線36を介して、隣接する第1格子電極33同士が接続されている。なお、縦方向に隣接する第1格子電極33同士は、分断されている。
 第1格子電極33の中の導体線17は、第1格子電極33の外形に沿って平行な格子形状に形成されている。すなわち、各導体線17が第1格子電極33の外形(正方形)の辺に対して平行になるように、導体線17の格子が形成されている。ここでは、第1格子電極33は正方形であるので、第1格子電極33を構成する導体線(格子配線)17は正方格子形状に配置されている。
 中継配線36は、格子形状の導体線(格子配線)17の一部を延長した位置に形成されている。中継配線36が形成される領域が実施形態1より大きいので、中継配線36も実施形態1より多く形成される。
 第1格子電極33における対角線(中継配線36に隣接する2つの対角の対角線)は、第1検出電極11が延びる方向(横方向)に対して、角度θ傾いている。すなわち、第1格子電極33を形成する格子の最小単位の格子(最小単位の四角形)の対角線は、第1検出電極11が延びる方向(横方向)に対して、同じく角度θ傾いている。
 図13は、第2検出電極12の詳細な構成を示す平面図である。図13においては、各第2格子電極34の外形を点線で示し、第2格子電極34を構成する導体線19を実線で示している。
 縦方向に隣接する第2格子電極34同士は互いに離間しており、その間には、導体線で形成された中継配線(第2中継配線)38が設けられている。中継配線38を介して、隣接する第2格子電極34同士が接続されている。なお、横方向に隣接する第2格子電極34同士は、分断されている。
 第2格子電極34の中の導体線19は、第2格子電極34の外形に沿って平行な格子形状に形成されている。すなわち、各導体線19が第2格子電極34の外形(正方形)の辺に対して平行になるように、導体線19の格子が形成されている。ここでは、第2格子電極34は正方形であるので、第2格子電極34を構成する導体線(格子配線)19は正方格子形状に配置されている。
 中継配線38は、格子形状の導体線(格子配線)19の一部を延長した位置に形成されている。
 図14は、図12に示す第1検出電極11および図13に示す第2検出電極12を重ねた図であり、タッチパネル基板30の配線の構成を示す平面図である。第1検出電極11および第2検出電極12を重ねると、タッチパネル基板30の全体(検出電極が形成される所定の領域)において、ほぼ一様な正方形の格子模様が形成される。また、第1検出電極11の導体線17と第2検出電極12の導体線19とが、同じ線上で重ならないような配置になる。第1格子電極33および第2格子電極34の間の隙間のうち、中継配線36・38が形成されない領域39は、導体線の形成されていない空白領域となる。ただし、空白領域は一様に分布するので、ユーザには視認されにくい。第1検出電極11が延びる方向(横方向)と第2検出電極12が延びる方向(縦方向)とは、互いに直交する。
 第1格子電極33または第2格子電極34を形成する格子の最小単位の格子(最小単位の四角形)の対角線は、第1検出電極11が延びる方向(横方向)および第2検出電極12が延びる方向(縦方向)の両方に対して傾いている。また、格子の導体線も、第1検出電極11が延びる方向(横方向)および第2検出電極12が延びる方向(縦方向)の両方に対して傾いている。格子の2つの対角線のうちの一方の対角線は、第1検出電極11が延びる方向(横方向)および第2検出電極12が延びる方向(縦方向)のいずれかに対して、角度θ(0°<θ<45°)傾いている。
 本実施形態のように、中継配線36・38が形成される領域35を大きくすることで、第1検出電極11のピッチおよび第2検出電極12のピッチを固定したままで、第1格子電極33および第2格子電極34が傾く角度θをより大きくすることができる。なお、これに合わせて第1格子電極33および第2格子電極34の大きさ自体も少し小さくなる。そのため、第1格子電極33に形成される導体線17の数が同じであれば、格子を形成する導体線のピッチも小さくなる。ただし、角度θの変化に対する導体線のピッチの変化は小さい。そのため、モアレが消える角度にはある程度の範囲があるので、タッチパネル基板30の格子の傾きの角度θが所望の角度であれば(比較例のタッチパネル基板を傾けたときにモアレが消える角度であれば)、モアレは発生しない、または弱くなる。よって、本実施形態のタッチパネル基板30は、モアレの発生を抑制し、表示品位を向上することができる。
 [実施形態4]
 本実施形態では、実施形態3で空白領域となる領域39にも格子模様を形成する構成について説明する。なお、説明の便宜上、実施形態3にて説明した図面と同じ機能を有する部材・構成については、同じ符号を付記し、その詳細な説明を省略する。
 第1格子電極および第2格子電極の配置および傾きの角度θは、図11に示す構成と同じである。
 図15は、本実施形態の第1検出電極11の詳細な構成を示す平面図である。図15においては、各第1格子電極43の外形を点線で示し、第1格子電極43を構成する導体線17を実線で示している。
 本実施形態の第1格子電極43では、図12の第1格子電極33に比べて、空白領域を埋めるための延長格子配線46が設けられている点が異なる。延長格子配線46は、図14に示す空白領域である領域39に対応する領域(第2領域)に、格子の一部を延長するように形成されている。縦方向に隣接する2つの第1格子電極43に設けられた延長格子配線46は、互いに対向しているが、接触はしていない。そのため、縦方向に隣接する2つの第1検出電極11同士は、導通していない。
 図16は、本実施形態の第2検出電極12の詳細な構成を示す平面図である。図16においては、各第2格子電極44の外形を点線で示し、第2格子電極44を構成する導体線19を実線で示している。
 本実施形態の第2格子電極44には、空白領域を埋めるための延長格子配線48が設けられている。延長格子配線48は、図14に示す空白領域である領域39に対応する位置に、格子の一部を延長するように形成されている。横方向に隣接する2つの第2格子電極44に設けられた延長格子配線48は、互いに対向しているが、接触はしていない。そのため、横方向に隣接する2つの第2検出電極12同士は、導通していない。
 図17は、図15に示す第1検出電極11および図16に示す第2検出電極12を重ねた図であり、タッチパネル基板40の配線の構成を示す平面図である。第1検出電極11および第2検出電極12を重ねると、タッチパネル基板40の全体(検出電極が形成される所定の領域)において、一様な正方形の格子模様が形成される。また、第1検出電極11の導体線17と第2検出電極12の導体線19とが、同じ線上で重ならないような配置になる。
 本実施形態では、中継配線が形成されない領域に、延長格子配線46・48を形成することにより、タッチパネル基板40の全体において、格子模様を一様にすることができる。それゆえ、第1検出電極11および第2検出電極12のパターンがユーザに視認されにくく、表示品位を低下させることがない。また、格子の対角線を適切な角度θ傾けることができるので、タッチパネル基板40は、モアレの発生を抑制し、表示品位を向上することができる。
 〔まとめ〕
 本発明の態様1に係るタッチパネル基板は、第1方向に沿って並べられた外形が四角形の複数の第1格子電極を有する第1検出電極と、上記第1方向とは異なる第2方向に沿って並べられた外形が四角形の複数の第2格子電極を有する第2検出電極とを備え、各第1格子電極は、該第1格子電極の外形に沿って平行な格子形状に形成された第1導体線を含み、上記第1方向に隣接する上記第1格子電極同士は、その間に形成された第1中継配線で電気的に接続されており、各第1格子電極における、上記第1中継配線に隣接する2つの対角の間の対角線は、上記第1方向に対して傾いており、各第2格子電極は、該第2格子電極の外形に沿って平行な格子形状に形成された第2導体線を含み、上記第2方向に隣接する上記第2格子電極同士は、その間に形成された第2中継配線で電気的に接続されており、各第2格子電極における、上記第2中継配線に隣接する2つの対角の間の対角線は、上記第2方向に対して傾いている。
 上記の構成によれば、第1格子電極および第2格子電極は、それぞれ、中の格子と共に第1方向および第2方向に対して傾けて形成される。その上、第1検出電極および第2検出電極は、それぞれ、第1方向および第2方向に延びるよう構成される。それゆえ、モアレの発生を抑制して表示品位を向上することができ、かつ、接触位置を適切に検出することができる。
 本発明の態様2に係るタッチパネル基板では、態様1の上記タッチパネル基板において、上記第1方向および上記第2方向は直交する構成とすることもできる。
 本発明の態様3に係るタッチパネル基板では、態様1または2において、各第1格子電極および各第2格子電極の外形は、ひし形である構成とすることもできる。
 本発明の態様4に係るタッチパネル基板では、態様1から3において、各第1格子電極および各第2格子電極の外形は、正方形である構成とすることもできる。
 本発明の態様5に係るタッチパネル基板では、態様2において、上記タッチパネル基板は、上記第2方向に並ぶ複数の上記第1検出電極と、上記第1方向に並ぶ複数の上記第2検出電極とを備え、上記複数の第1検出電極が並ぶピッチと、上記複数の第2検出電極が並ぶピッチとは、同じであり、各第1格子電極および各第2格子電極の外形は、正方形である構成とすることもできる。
 本発明の態様6に係るタッチパネル基板では、態様4または5において、上記第1導体線は、上記第1格子電極の外形に沿って平行な正方格子形状に形成されており、上記第2導体線は、上記第2格子電極の外形に沿って平行な正方格子形状に形成されている構成とすることもできる。
 本発明の態様7に係るタッチパネル基板では、態様1から6において、上記第1導体線の格子の一方の対角線は、上記第1方向に対して角度θ傾いており、上記第1導体線の格子の他方の対角線は、上記第2方向に対して上記角度θ傾いている構成とすることもできる。
 本発明の態様8に係るタッチパネル基板では、態様1から7において、上記第1検出電極は、第1層に形成されており、上記第2検出電極は、上記第1層とは異なる第2層に形成されている構成とすることもできる。
 本発明の態様9に係るタッチパネル基板では、態様4から6において、第1中継配線が形成される領域は、正方形である構成とすることもできる。
 本発明の態様10に係るタッチパネル基板では、態様1から9において、上記第1導体線および上記第2導体線は、上記タッチパネル基板に一様な格子模様を形成する構成とすることもできる。
 本発明の態様11に係るタッチパネル基板では、態様1から10において、上記タッチパネル基板は、上記複数の第1格子電極および上記複数の第2格子電極の間に生じる領域のうち、第1領域には、格子状の上記第1中継配線および上記第2中継配線が形成され、上記第1領域とは異なる第2領域には、上記第1格子電極の格子の一部を延長した第1延長格子配線と、上記第2格子電極の格子の一部を延長した第2延長格子配線とが形成され、上記タッチパネル基板には、一様な格子模様が形成される構成とすることもできる。
 本発明の態様12に係る表示装置は、態様1から11のいずれかの上記タッチパネル基板と、表示パネルとを備える。
 本発明の態様13に係る表示装置では、態様12において、上記表示パネルに形成されたブラックマトリクスの格子の一方向の線は、上記第1方向に平行であり、他方向の線は上記第2方向に平行である構成とすることもできる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、タッチパネル機能を有する表示装置に利用することができる。
1  表示装置
2、20、30、40  タッチパネル基板
3  表示パネル
4  バックライト
5  基板
6  第1電極層
7  第2電極層
8  第1保護層
9  第2保護層
10  ブラックマトリクス
11  第1検出電極
12  第2検出電極
13、23、33、43  第1格子電極
14、24、34、44  第2格子電極
15、25、35  領域(第1領域)
16、26、36  中継配線(第1中継配線)
17  導体線(第1導体線)
18、28、38  中継配線(第2中継配線)
19  導体線(第2導体線)
39  領域(第2領域)
46  延長格子配線(第1延長格子配線)
48  延長格子配線(第2延長格子配線)

Claims (13)

  1.  第1方向に沿って並べられた外形が四角形の複数の第1格子電極を有する第1検出電極と、
     上記第1方向とは異なる第2方向に沿って並べられた外形が四角形の複数の第2格子電極を有する第2検出電極とを備え、
     各第1格子電極は、該第1格子電極の外形に沿って平行な格子形状に形成された第1導体線を含み、
     上記第1方向に隣接する上記第1格子電極同士は、その間に形成された第1中継配線で電気的に接続されており、
     各第1格子電極における、上記第1中継配線に隣接する2つの対角の間の対角線は、上記第1方向に対して傾いており、
     各第2格子電極は、該第2格子電極の外形に沿って平行な格子形状に形成された第2導体線を含み、
     上記第2方向に隣接する上記第2格子電極同士は、その間に形成された第2中継配線で電気的に接続されており、
     各第2格子電極における、上記第2中継配線に隣接する2つの対角の間の対角線は、上記第2方向に対して傾いていることを特徴とするタッチパネル基板。
  2.  上記第1方向および上記第2方向は直交することを特徴とする請求項1に記載のタッチパネル基板。
  3.  各第1格子電極および各第2格子電極の外形は、ひし形であることを特徴とする請求項1または2に記載のタッチパネル基板。
  4.  各第1格子電極および各第2格子電極の外形は、正方形であることを特徴とする請求項1から3のいずれか一項に記載のタッチパネル基板。
  5.  上記第2方向に並ぶ複数の上記第1検出電極と、
     上記第1方向に並ぶ複数の上記第2検出電極とを備え、
     上記複数の第1検出電極が並ぶピッチと、上記複数の第2検出電極が並ぶピッチとは、同じであり、
     各第1格子電極および各第2格子電極の外形は、正方形であることを特徴とする請求項2に記載のタッチパネル基板。
  6.  上記第1導体線は、上記第1格子電極の外形に沿って平行な正方格子形状に形成されており、
     上記第2導体線は、上記第2格子電極の外形に沿って平行な正方格子形状に形成されていることを特徴とする請求項4または5に記載のタッチパネル基板。
  7.  上記第1導体線の格子の一方の対角線は、上記第1方向に対して角度θ傾いており、
     上記第1導体線の格子の他方の対角線は、上記第2方向に対して上記角度θ傾いていることを特徴とする請求項1から6のいずれか一項に記載のタッチパネル基板。
  8.  上記第1検出電極は、第1層に形成されており、上記第2検出電極は、上記第1層とは異なる第2層に形成されていることを特徴とする請求項1から7のいずれか一項に記載のタッチパネル基板。
  9.  第1中継配線が形成される領域は、正方形であることを特徴とする請求項4から6のいずれか一項に記載のタッチパネル基板。
  10.  上記第1導体線および上記第2導体線により、上記タッチパネル基板に一様な格子模様が形成されることを特徴とする請求項1から9のいずれか一項に記載のタッチパネル基板。
  11.  上記複数の第1格子電極および上記複数の第2格子電極の間に生じる領域のうち、
     第1領域には、格子状の上記第1中継配線および上記第2中継配線が形成され、
     上記第1領域とは異なる第2領域には、上記第1格子電極の格子の一部を延長した第1延長格子配線と、上記第2格子電極の格子の一部を延長した第2延長格子配線とが形成され、
     上記タッチパネル基板には、一様な格子模様が形成されることを特徴とする請求項1から10のいずれか一項に記載のタッチパネル基板。
  12.  請求項1から11のいずれか一項に記載のタッチパネル基板と、
     表示パネルとを備えることを特徴とする表示装置。
  13.  上記表示パネルに形成されたブラックマトリクスの格子の一方向の線は、上記第1方向に平行であり、他方向の線は上記第2方向に平行であることを特徴とする請求項12に記載の表示装置。
PCT/JP2013/061219 2012-04-16 2013-04-15 タッチパネル基板および表示装置 WO2013157526A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/391,835 US9401712B2 (en) 2012-04-16 2013-04-15 Touch panel substrate with first grid electrodes and second grid electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012093264 2012-04-16
JP2012-093264 2012-04-16

Publications (1)

Publication Number Publication Date
WO2013157526A1 true WO2013157526A1 (ja) 2013-10-24

Family

ID=49383482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061219 WO2013157526A1 (ja) 2012-04-16 2013-04-15 タッチパネル基板および表示装置

Country Status (2)

Country Link
US (1) US9401712B2 (ja)
WO (1) WO2013157526A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017215965A (ja) * 2016-05-31 2017-12-07 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示装置
JP2019212331A (ja) * 2014-10-17 2019-12-12 株式会社半導体エネルギー研究所 表示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102337621B1 (ko) * 2015-11-25 2021-12-08 동우 화인켐 주식회사 터치 패널 및 이를 포함하는 화상 표시 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010039537A (ja) * 2008-07-31 2010-02-18 Gunze Ltd タッチパネル

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2330488A4 (en) * 2008-07-31 2011-11-02 Gunze Kk PLANAR ELEMENT AND TOUCH SWITCH
JP4820451B2 (ja) 2009-11-20 2011-11-24 富士フイルム株式会社 導電シート、導電シートの使用方法及びタッチパネル

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010039537A (ja) * 2008-07-31 2010-02-18 Gunze Ltd タッチパネル

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019212331A (ja) * 2014-10-17 2019-12-12 株式会社半導体エネルギー研究所 表示装置
JP2021077385A (ja) * 2014-10-17 2021-05-20 株式会社半導体エネルギー研究所 表示装置
JP7154323B2 (ja) 2014-10-17 2022-10-17 株式会社半導体エネルギー研究所 表示装置
US11747938B2 (en) 2014-10-17 2023-09-05 Semiconductor Energy Laboratory Co., Ltd. Touch panel
JP2017215965A (ja) * 2016-05-31 2017-12-07 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示装置
JP7007113B2 (ja) 2016-05-31 2022-02-10 三星ディスプレイ株式會社 表示装置

Also Published As

Publication number Publication date
US20150077651A1 (en) 2015-03-19
US9401712B2 (en) 2016-07-26

Similar Documents

Publication Publication Date Title
WO2014021168A1 (ja) タッチパネル基板および表示装置
JP4945483B2 (ja) 表示パネル
US9207720B2 (en) Flexible touch screen panel and fabrication method thereof
US9733508B2 (en) Touch liquid crystal display device
US8390598B2 (en) Touch screen, touch panel and display device
US10156924B2 (en) Metal grid, touch screen display device and a manufacture method for touch screen
US9134828B2 (en) Touch panel having a shielding structure and method of manufacturing the same
WO2014021225A1 (ja) タッチパネル基板及び表示装置
JP2011086149A (ja) 静電容量型タッチセンサ
TWI395008B (zh) 觸控面板及觸控顯示器裝置
JP6932613B2 (ja) タッチパネル及びそれを備えた表示装置
JP2015035122A (ja) タッチパネル及びタッチパネルを備えた液晶表示装置
JP6494287B2 (ja) タッチスクリーン、タッチパネル、表示装置、および電子機器
US20180067578A1 (en) Display apparatus with touch detection function
US20160364040A1 (en) Touch screen and display device
US20170329455A1 (en) Touch panel and touch display screen
WO2014021226A1 (ja) タッチパネル基板及び表示装置
US20160349869A1 (en) Self-capacitive touch panel and conductive layer structure thereof
WO2014077315A1 (ja) タッチパネル基板、電子機器、及び電子機器の製造方法
CN106155411A (zh) 触摸屏、触摸面板、显示装置以及电子设备
TWI787293B (zh) 觸控面板及顯示裝置
JP2014035612A (ja) タッチパネル
US11221716B2 (en) Touch substrate and touch display apparatus with touch electrodes having zigzag boundaries
WO2013157526A1 (ja) タッチパネル基板および表示装置
JP5870945B2 (ja) タッチスクリーン、タッチパネル、表示装置および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13777522

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14391835

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13777522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP