WO2013155830A1 - Method for manufacturing array substrate, array substrate, and display device - Google Patents
Method for manufacturing array substrate, array substrate, and display device Download PDFInfo
- Publication number
- WO2013155830A1 WO2013155830A1 PCT/CN2012/083889 CN2012083889W WO2013155830A1 WO 2013155830 A1 WO2013155830 A1 WO 2013155830A1 CN 2012083889 W CN2012083889 W CN 2012083889W WO 2013155830 A1 WO2013155830 A1 WO 2013155830A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- insulating film
- gate
- layer
- substrate
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134363—Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
Definitions
- Embodiments of the present invention provide an array substrate including a display area and a non-display area, the display area including a gate line, a data line, and a plurality of pixel units defined by the gate line and the data line, wherein each The pixel unit includes a thin film transistor, a pixel electrode, and a common electrode, the pixel electrode being electrically connected to a drain electrode of the thin film transistor, wherein an inorganic insulating film is formed on the data line and a source electrode and a drain electrode of the thin film transistor On the semiconductor layer of the channel region, an organic insulating film is formed on the inorganic insulating film, a protective film is formed on the pixel electrode and the organic insulating film, and the common electrode is formed on the protective film such that The protective film is disposed between a layer where the common electrode is located and a layer where the pixel electrode is located, and the inorganic insulating film and the organic insulating film are disposed between the pixel electrode and the data line and
- Embodiments of the present invention provide a method for fabricating an array substrate, including:
- the semiconductor layer may be left under the data line (as shown in FIG. 13), or the semiconductor layer may not be retained (as shown in FIG. 14); the source electrode and/or the drain electrode may be completely located above the semiconductor layer ( As shown in Figure 13, it can also extend to areas outside the semiconductor layer (as shown in Figure 14). When the source electrode and/or the drain electrode extend to a region other than the semiconductor layer, it is possible to have a better contact effect.
- the semiconductor layer 5 may be a common silicon semiconductor (intrinsic semiconductor or doped semiconductor), an organic semiconductor, or an oxide semiconductor.
- the common electrode 16 may be in the shape of a slit, and the pixel electrode 12 may be in the form of a plate or a slit.
- the embodiment of the invention further provides a display device, which may include any of the above array substrates.
- the display device can be any product or component having a display function, such as a liquid crystal panel, an electronic paper, a cell phone, a tablet, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
- Step S11 providing a substrate, forming a gate line, a gate electrode and a gate pad on the substrate; specifically, first, sputtering, thermal evaporation or other film forming method may be used on the glass substrate or other type of transparent substrate
- the gate metal layer may be made of chromium (Cr), molybdenum (Mo), aluminum (A1), copper (Cu), tungsten (W), niobium (Nd) or alloys thereof, and the gate metal layer may One or more layers; then, forming a photoresist on the gate metal layer; then, exposing and developing the photoresist with a patterned mask to form a photoresist mask; A photoresist mask etches the gate metal layer to form a pattern of gate lines, gate electrodes, and gate pads; finally, the remaining photoresist is stripped.
- the common electrode lines may be formed while forming the patterns of the gate lines, the gate electrodes, and the gate
- a source/drain metal layer having a thickness of 1000 to 6000 A may be formed on the substrate 1 on which the step S13 is completed by using sputtering, thermal evaporation or other film forming methods, and the source/drain metal layer may be used.
- the thickness of the organic insulating film 10 is too small, the effect of reducing the parasitic capacitance between the subsequent common electrode and the data line (relative to the inorganic insulating film) is not significant; if the thickness of the organic insulating film 10 is too high , the slope of the step between the layers will increase, which may cause defects such as disconnection of the pixel electrode.
- the exposed inorganic insulating film 21 is etched using the organic insulating film 10 as a mask to form a first contact hole 11 and expose the gate insulating layer 4 and data at the gate pad 3.
- the organic insulating mold 10 since the organic insulating mold 10 is used, even between the pixel electrode 12 and the data line 8 The distance d2 in the horizontal direction is made smaller, and the parasitic capacitance between the pixel electrode and the data line is not too large. Therefore, the distance d2 can be reduced to 0 to 1 ⁇ m to increase the aperture ratio of the pixel.
- Step S21 providing a substrate, forming a gate line, a gate electrode and a gate pad on the substrate; specifically, first, sputtering, thermal evaporation or other film forming method may be used on the glass substrate or other type of transparent substrate
- the gate metal layer may be made of chromium (Cr), molybdenum (Mo), aluminum (A1), copper (Cu), tungsten (W), niobium (Nd) and alloys thereof, and the gate metal layer may be One or more layers; then, a photoresist is formed on the gate metal layer; then, the photoresist is exposed and developed by using a patterned mask to form a photoresist mask; The gate mask etches the gate metal layer to form a pattern of gate lines, gate electrodes and gate pads; finally, the remaining photoresist is stripped.
- a common electrode line may be formed while forming a pattern of a gate line, a gate electrode, and
- Step S25 forming a photoresist mask on the substrate completing step S24;
- a photoresist layer 19 is formed on the source/drain metal layer; then, the photoresist layer 19 is exposed and developed by using a gray tone or halftone mask patterned with a pattern, A photoresist mask including a photoresist completely reserved region, a photoresist portion remaining region, and a photoresist unretained region is formed.
- Step S27 etching a semiconductor material layer in the unreserved region of the photoresist, and performing an ashing process; specifically, as shown in FIG. 14, first, using a photoresist mask to the semiconductor material in the region where the photoresist is not reserved The layer 20 is etched to form a pattern of the semiconductor layer 5; then, the photoresist in the remaining portion of the photoresist is removed by an ashing process, and the photoresist in the completely remaining region of the photoresist is thinned to form a new photoresist.
- Mask etching a semiconductor material layer in the unreserved region of the photoresist
- Step S28 forming a pattern of the source electrode and the drain electrode
- an inorganic insulating film 21 having a thickness of 1000 2000 A may be deposited on the substrate 1 on which step S28 is completed by a method such as PECVD.
- the inorganic insulating film 21 may be selected from an oxide (e.g., SiOx) or a nitride (e.g., SiNx).
- the curing temperature may be 230 to 260 ° C, and the treatment time may be 30 to 60 minutes. If the curing temperature is lower than 230 ° C, the micro-cure of the protective film may cause contamination and film lift, etc.; if the curing temperature is higher than 260 ° C, the organic insulating film 10 may be denatured, thereby This makes the transmission rate low.
- Step S31 etching away the exposed inorganic insulating film
- the storage capacitor (Cst) rises, causing an increase in signal delay; if the thickness of the protective film 13 is larger than 4000 A, the process time and the manufacturing cost are too high.
- the common electrode 16 may include a first common electrode 161 located above the pixel electrode 12 and a second common electrode 162 located above the data line 8.
- the gate pad electrode 17 may be electrically connected to the gate pad 3 through the second contact hole 14, and the data pad electrode 18 may be electrically connected to the data pad 9 through the third contact hole 15.
- the second common electrode 162 is located above the data line 8, and can shield the electromagnetic field between the pixel electrode 12 and the data line 8, thereby reducing the width of the black matrix on the color filter. Thereby, the aperture ratio of the pixel can be increased. Further, in forming the semiconductor layer 5, the source electrode 6, and the drain electrode 7, since the ashing process is used, the number of masks can be reduced, thereby reducing the manufacturing cost.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
- Geometry (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Thin Film Transistor (AREA)
Abstract
A method for manufacturing an array substrate, the array substrate, and a display device. A display area of the array substrate comprises gate line, a data line (8) and multiple pixel units defined by the gate line and by the data line (8). Each pixel unit comprises a thin-film transistor (TFT), a pixel electrode (12), and a common electrode (16). The pixel electrode (12) is electrically connected to a drain electrode (7) of the TFT. A protective film (13) is arranged between the layer where the common electrode (16) is at and the layer where the pixel electrode (12) is at. An inorganic insulating film (21) and an organic insulating film (10) are provided between the pixel electrode (12) and the data line (8) and between the TFT and the protective film (13), thus reducing signal delays on the data line (8), and preventing the generation of drain current in the TFT at high temperatures.
Description
阵列基板的制造方法、 阵列基板及显示装置 技术领域 Array substrate manufacturing method, array substrate and display device
本发明实施例涉及一种阵列基板的制造方法、 阵列基板及显示装置。 背景技术 Embodiments of the present invention relate to a method of fabricating an array substrate, an array substrate, and a display device. Background technique
薄膜晶体管液晶显示器(TFT-LCD )具有体积小、 功耗低、 无辐射等特 点, 在当前的平板显示器市场中占据了主导地位。 高级超维场开关技术 ( ADvanced Super Dimension Switch, 简称 ADS )通过同一平面内狭缝电极 边缘所产生的电场以及狭缝电极层与板状电极层间产生的电场形成多维电 场,使液晶盒内狭缝电极间、电极正上方所有取向液晶分子都能够产生旋转, 从而提高了液晶工作效率并增大了透光效率。 高级超维场开关技术可以提高 TFT-LCD产品的画面品质, 具有高分辨率、 高透过率、 低功耗、 宽视角、 高 开口率、 低色差、 无挤压水波紋(push Mura )等优点。 Thin film transistor liquid crystal displays (TFT-LCDs) have a small size, low power consumption, and no radiation, and they dominate the current flat panel display market. The advanced super-dimensional field switching technology (ADS) uses a field generated by the edge of the slit electrode in the same plane and an electric field generated between the slit electrode layer and the plate electrode layer to form a multi-dimensional electric field, so that the liquid crystal cell is narrow. All the aligned liquid crystal molecules between the electrodes and directly above the electrodes can be rotated, thereby improving the liquid crystal working efficiency and increasing the light transmission efficiency. Advanced super-dimensional field switching technology can improve the picture quality of TFT-LCD products, with high resolution, high transmittance, low power consumption, wide viewing angle, high aperture ratio, low chromatic aberration, push mura, etc. advantage.
ADS模式 TFT-LCD是利用公共电极和像素电极之间的边缘场效应驱动 液晶, 根据其电极设计及层间结构, 液晶透过率等特性有较大变化。 图 1为 现有技术的 ADS模式液晶显示器的阵列基板的截面图。 如图 1所示, 在所 述阵列基板中, 栅电极 2形成在基板 1上, 栅电极 2上形成有栅绝缘层 4, 栅绝缘层 4上形成有半导体层 5, 源电极 6和漏电极 7形成在半导体层 5上 且彼此间隔开,像素电极 12形成在栅绝缘层 4上且与漏电极 7电连接,公共 电极 16形成在保护膜 13上, 栅线(未示出)和数据线 8限定像素区域, 栅 焊盘 3形成在基板 1上, 数据焊盘 9形成在栅绝缘层 4上。 为了防止漏光, 在数据线 8上方形成一部分公共电极 162。 ADS mode TFT-LCD uses the fringe field effect between the common electrode and the pixel electrode to drive the liquid crystal. According to its electrode design and interlayer structure, the liquid crystal transmittance and other characteristics have a great change. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view showing an array substrate of a prior art ADS mode liquid crystal display. As shown in FIG. 1, in the array substrate, a gate electrode 2 is formed on a substrate 1, a gate insulating layer 4 is formed on the gate electrode 2, and a semiconductor layer 5, a source electrode 6 and a drain electrode are formed on the gate insulating layer 4. 7 are formed on the semiconductor layer 5 and spaced apart from each other, the pixel electrode 12 is formed on the gate insulating layer 4 and electrically connected to the drain electrode 7, and the common electrode 16 is formed on the protective film 13, a gate line (not shown) and a data line 8 defines a pixel region, a gate pad 3 is formed on the substrate 1, and a data pad 9 is formed on the gate insulating layer 4. In order to prevent light leakage, a portion of the common electrode 162 is formed over the data line 8.
在上述阵列基板中, 公共电极 162 和数据线 8 之间存在寄生电容 In the above array substrate, there is a parasitic capacitance between the common electrode 162 and the data line 8
( Cdp— data to Vcom ) ,像素电极 12和数据线 8之间也存在寄生电容( Cdp— data to pixel ) 。 在结构上, 像素电极 12和数据线 8之间的距离较小时, 寄生电 容会比较大,这给像素电极 12的充电特性带来影响,随之会影响到显示的质 量, 导致画面上出现污渍、 残像或者闪烁现象。 为此, 需要增加像素电极 12 和数据线 8之间的距离来减小寄生电容, 但这却会导致像素的开口率降低。
另外, 公共电极 162和数据线 8之间的寄生电容较大时, 会导致数据线 8 上的信号发生延迟。 液晶显示器的分辨率越高、 面积越大时, 信号延迟会 越严重。 在现有的改善信号延迟的方法中, 主要是通过增大数据线 8和公共 电极 162之间的保护膜 13的厚度来降低寄生电容,但这会造成制造时间以及 制造成本的急剧增加。 发明内容 (Cdp_data to Vcom), there is also a parasitic capacitance (Cdp_data to pixel) between the pixel electrode 12 and the data line 8. Structurally, when the distance between the pixel electrode 12 and the data line 8 is small, the parasitic capacitance is relatively large, which affects the charging characteristics of the pixel electrode 12, which in turn affects the quality of the display, resulting in stains on the screen. , afterimage or flickering. For this reason, it is necessary to increase the distance between the pixel electrode 12 and the data line 8 to reduce the parasitic capacitance, but this causes the aperture ratio of the pixel to decrease. In addition, when the parasitic capacitance between the common electrode 162 and the data line 8 is large, the signal on the data line 8 is delayed. The higher the resolution of the liquid crystal display and the larger the area, the more severe the signal delay. In the existing method of improving the signal delay, the parasitic capacitance is mainly reduced by increasing the thickness of the protective film 13 between the data line 8 and the common electrode 162, but this causes a drastic increase in manufacturing time and manufacturing cost. Summary of the invention
本发明实施例提供一种阵列基板的制造方法、 阵列基板及显示装置, 以 降低阵列基板中数据线上的信号延迟, 并防止高温下 TFT中漏电流的产生。 Embodiments of the present invention provide a method of fabricating an array substrate, an array substrate, and a display device to reduce signal delay on a data line in an array substrate and prevent generation of leakage current in the TFT at a high temperature.
本发明实施例提供了一种阵列基板, 包括显示区域和非显示区域, 所述 显示区域包括栅线、 数据线以及由所述栅线和所述数据线定义的多个像素单 元, 其中每个所述像素单元包括薄膜晶体管、 像素电极和公共电极, 所述像 素电极与所述薄膜晶体管的漏电极电连接, 其中无机绝缘膜形成在所述数据 线和所述薄膜晶体管的源电极、 漏电极和沟道区域的半导体层上, 有机绝缘 膜形成在所述无机绝缘膜上, 保护膜形成在所述像素电极和所述有机绝缘膜 上, 所述公共电极形成在所述保护膜上, 使得所述保护膜设置在所述公共电 极所在的层与所述像素电极所在的层之间, 并且所述无机绝缘膜和所述有机 绝缘膜设置在所述像素电极和所述数据线之间以及所述薄膜晶体管与所述保 护膜之间。 Embodiments of the present invention provide an array substrate including a display area and a non-display area, the display area including a gate line, a data line, and a plurality of pixel units defined by the gate line and the data line, wherein each The pixel unit includes a thin film transistor, a pixel electrode, and a common electrode, the pixel electrode being electrically connected to a drain electrode of the thin film transistor, wherein an inorganic insulating film is formed on the data line and a source electrode and a drain electrode of the thin film transistor On the semiconductor layer of the channel region, an organic insulating film is formed on the inorganic insulating film, a protective film is formed on the pixel electrode and the organic insulating film, and the common electrode is formed on the protective film such that The protective film is disposed between a layer where the common electrode is located and a layer where the pixel electrode is located, and the inorganic insulating film and the organic insulating film are disposed between the pixel electrode and the data line and The thin film transistor is between the protective film.
本发明实施例提供了一种阵列基板的制造方法, 包括: Embodiments of the present invention provide a method for fabricating an array substrate, including:
在基板上形成栅电极和栅线; Forming a gate electrode and a gate line on the substrate;
在形成有所述栅电极和所述栅线的基板上形成栅绝缘层; Forming a gate insulating layer on the substrate on which the gate electrode and the gate line are formed;
在形成有所述栅绝缘层的基板上形成半导体层、 源电极、 漏电极、 数据 线; Forming a semiconductor layer, a source electrode, a drain electrode, and a data line on the substrate on which the gate insulating layer is formed;
在形成有所述半导体层、 所述源电极、 所述漏电极和所述数据线的基板 上形成无机绝缘膜; Forming an inorganic insulating film on the substrate on which the semiconductor layer, the source electrode, the drain electrode, and the data line are formed;
在形成有所述无机绝缘膜的基板上形成有机绝缘膜, 对所述有机绝缘膜 和所述无机绝缘膜进行构图; Forming an organic insulating film on the substrate on which the inorganic insulating film is formed, and patterning the organic insulating film and the inorganic insulating film;
在形成有所述有机绝缘膜的基板上形成像素电极, 所述像素电极与所述 漏电极电连接;
在形成有所述像素电极的基板上形成保护膜,并对所述保护膜进行构图; 在形成有所述保护膜的基板上形成公共电极。 Forming a pixel electrode on the substrate on which the organic insulating film is formed, the pixel electrode being electrically connected to the drain electrode; A protective film is formed on the substrate on which the pixel electrode is formed, and the protective film is patterned; a common electrode is formed on the substrate on which the protective film is formed.
本发明实施例提供了一种显示装置, 包括上述的阵列基板。 Embodiments of the present invention provide a display device including the above array substrate.
本发明实施例通过将低介电常数的有机绝缘膜应用于阵列基板, 来降低 公共电极和数据线之间的寄生电容, 从而能够降低数据线上的信号延迟, 改 善显示质量。 相对于现有技术中通过增加保护膜的厚度来降低寄生电容, 本 发明的技术方案还能够减少工艺时间和降低制造成本。 The embodiment of the present invention reduces the parasitic capacitance between the common electrode and the data line by applying a low dielectric constant organic insulating film to the array substrate, thereby reducing signal delay on the data line and improving display quality. The technical solution of the present invention can also reduce the process time and reduce the manufacturing cost as compared with the prior art by reducing the thickness of the protective film to reduce the parasitic capacitance.
另外, 本发明实施例还在有机绝缘膜和半导体层之间形成无机绝缘膜作 为緩冲层, 所述緩冲层能够阻止有机绝缘膜中的离子异物渗透到半导体层, 从而防止在高温下 TFT中漏电流的产生。 附图说明 In addition, the embodiment of the present invention further forms an inorganic insulating film as a buffer layer between the organic insulating film and the semiconductor layer, and the buffer layer can prevent ionic foreign matter in the organic insulating film from penetrating into the semiconductor layer, thereby preventing TFT at a high temperature. The generation of medium leakage current. DRAWINGS
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。 In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings of the embodiments will be briefly described below. It is obvious that the drawings in the following description relate only to some embodiments of the present invention, and are not intended to limit the present invention. .
图 1为现有技术的 ADS模式液晶显示器的阵列基板的截面图; 图 2〜图 15 为本发明实施例的阵列基板的制造方法中阵列基板的截面 图; 1 is a cross-sectional view of an array substrate of a prior art ADS mode liquid crystal display; FIG. 2 to FIG. 15 are cross-sectional views of an array substrate in a method of fabricating an array substrate according to an embodiment of the present invention;
图 16为本发明实施例的一种阵列基板的截面图。 具体实施方式 Figure 16 is a cross-sectional view of an array substrate in accordance with an embodiment of the present invention. detailed description
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。 The technical solutions of the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings of the embodiments of the present invention. It is apparent that the described embodiments are part of the embodiments of the invention, rather than all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the described embodiments of the present invention without departing from the scope of the invention are within the scope of the invention.
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的 "第一" 、 "第二" 以及类似的词语并不表示任何顺序、 数量或者重要性,而只是用来区分不同的组成部分。同样, "一个 "或者 "一"
等类似词语也不表示数量限制, 而是表示存在至少一个。 "连接" 或者 "相 连" 等类似的词语并非限定于物理的或者机械的连接, 而是可以包括电性的 连接, 不管是直接的还是间接的。 "上" 、 "下" 、 "左" 、 "右" 等仅用 于表示相对位置关系, 当被描述对象的绝对位置改变后, 则该相对位置关系 也相应地改变。 Unless otherwise defined, technical terms or scientific terms used herein shall be of ordinary meaning as understood by those of ordinary skill in the art to which the invention pertains. The words "first", "second" and similar terms used in the specification and claims of the invention are not intended to indicate any order, quantity or importance, but are merely used to distinguish different components. Similarly, "one" or "one" The like words do not denote a quantitative limitation, but rather indicate that there is at least one. "Connected" or "connected" and the like are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. "Upper", "Bottom", "Left", "Right", etc. are only used to indicate the relative positional relationship, and when the absolute position of the object to be described is changed, the relative positional relationship is also changed accordingly.
本发明实施例提供一种阵列基板, 包括显示区域和非显示区域, 所述显 示区域包括栅线、 数据线以及位于栅线和数据线之间的多个像素单元, 所述 非显示区域包括栅焊盘和数据焊盘, 其中, 所述像素单元包括薄膜晶体管 ( TFT ) 、 像素电极和公共电极, 所述像素电极与所述薄膜晶体管的漏电极 相连接, 其中, 所述公共电极包括位于像素电极上方的第一公共电极和位于 数据线上方的第二公共电极; 所述公共电极所在的层与所述像素电极所在的 层之间设置有保护膜; 所述像素电极和所述数据线之间、 以及所述薄膜晶体 管与所述保护膜之间设置有无机绝缘膜和有机绝缘膜, 所述无机绝缘膜形成 在所述数据线和所述薄膜晶体管的源电极、漏电极和沟道区域的半导体层上, 所述有机绝缘膜位于所述无机绝缘膜上。 Embodiments of the present invention provide an array substrate including a display area including a gate line, a data line, and a plurality of pixel units between the gate line and the data line, wherein the non-display area includes a gate a pad and a data pad, wherein the pixel unit includes a thin film transistor (TFT), a pixel electrode, and a common electrode, wherein the pixel electrode is connected to a drain electrode of the thin film transistor, wherein the common electrode includes a pixel a first common electrode above the electrode and a second common electrode above the data line; a protective film is disposed between the layer where the common electrode is located and the layer where the pixel electrode is located; the pixel electrode and the data line And an inorganic insulating film and an organic insulating film interposed between the thin film transistor and the protective film, the inorganic insulating film being formed on a source electrode, a drain electrode, and a channel region of the data line and the thin film transistor On the semiconductor layer, the organic insulating film is on the inorganic insulating film.
本发明的技术方案通过将低介电常数的有机绝缘膜应用于阵列基板, 来 降低公共电极和数据线之间的寄生电容,从而能够降低数据线上的信号延迟, 改善显示质量。 相对于现有技术中通过增加保护膜的厚度来降低寄生电容, 本发明的技术方案还能够减少工艺时间和降低制造成本。 The technical solution of the present invention reduces the parasitic capacitance between the common electrode and the data line by applying a low dielectric constant organic insulating film to the array substrate, thereby reducing signal delay on the data line and improving display quality. Compared with the prior art, by increasing the thickness of the protective film to reduce the parasitic capacitance, the technical solution of the present invention can also reduce the process time and reduce the manufacturing cost.
另外, 本发明的技术方案还在有机绝缘膜和半导体层之间形成无机绝缘 膜作为緩冲层, 所述緩冲层能够阻止有机绝缘膜中的离子异物渗透到半导体 层, 从而防止在高温下 TFT中漏电流的产生。 In addition, the technical solution of the present invention further forms an inorganic insulating film as a buffer layer between the organic insulating film and the semiconductor layer, and the buffer layer can prevent ionic foreign matter in the organic insulating film from penetrating into the semiconductor layer, thereby preventing high temperature The generation of leakage current in the TFT.
在本发明实施例中, 除了上述结构之外, 阵列基板的基板结构可以根据 实际情况进行设置, 比如: 薄膜晶体管可以为顶栅结构,也可以为底栅结构; 像素电极与漏电极的连接方式可以为搭接, 也可以为通过过孔连接等等, 在 此不做限定。 下面示例性的以一种阵列基板为例, 对本发明实施例的技术方 案进行说明。 In the embodiment of the present invention, in addition to the above structure, the substrate structure of the array substrate may be set according to actual conditions, for example, the thin film transistor may be a top gate structure or a bottom gate structure; a connection manner of the pixel electrode and the drain electrode It may be a lap joint, a through-hole connection, or the like, which is not limited herein. The following describes an exemplary embodiment of the present invention by taking an array substrate as an example.
图 16为本发明实施例的一种阵列基板的截面图。 参照图 16, 所述阵列 基板可以包括: 基板 1 ; 栅电极 2、 栅线(未示出)和栅焊盘 3 , 形成在基板 1上; 栅绝缘层 4, 形成在栅电极 2和栅线上; 半导体层 5、 数据线 8和数据
焊盘 9, 形成在栅绝缘层 4上; 源电极 6和漏电极 7 , 形成在半导体层 5上; 无机绝缘膜 21 , 形成在源电极 6、 漏电极 7、 数据线 8和半导体层 5上; 有 机绝缘膜 10, 形成在无机绝缘膜 21上, 无机绝缘膜 21和有机绝缘膜 10中 形成有第一接触孔 11 ; 像素电极 12, 形成在有机绝缘膜 10上, 像素电极 12通过第一接触孔 11与漏电极 7电连接; 保护膜 13 , 形成在像素电极 12 和有机绝缘膜 10上; 公共电极 16, 形成在保护膜 13上, 公共电极 16包括 位于像素电极 12上方的第一公共电极 161和位于数据线 8上方的第二公共电 极 162; 栅焊盘电极 17 , 形成在保护膜 13上且在对应于栅焊盘 3的位置, 所 述栅焊盘电极 17通过第二接触孔 14与栅焊盘 3电连接,第二接触孔 14穿过 保护膜 13、 有机绝缘膜 10和无机绝缘膜 21 ; 数据焊盘电极 18, 形成在保护 膜 13上且在对应于数据焊盘 9的位置,数据焊盘电极 18通过第三接触孔 15 与数据焊盘 9电连接, 第三接触孔 15穿过保护膜 13、 有机绝缘膜 10和无机 绝缘膜 21。 Figure 16 is a cross-sectional view of an array substrate in accordance with an embodiment of the present invention. Referring to FIG. 16, the array substrate may include: a substrate 1; a gate electrode 2, a gate line (not shown), and a gate pad 3 formed on the substrate 1; a gate insulating layer 4 formed on the gate electrode 2 and the gate line Upper; semiconductor layer 5, data line 8 and data Pads 9 are formed on the gate insulating layer 4; source electrodes 6 and drain electrodes 7 are formed on the semiconductor layer 5; and an inorganic insulating film 21 is formed on the source electrode 6, the drain electrode 7, the data line 8, and the semiconductor layer 5. The organic insulating film 10 is formed on the inorganic insulating film 21, and the first contact hole 11 is formed in the inorganic insulating film 21 and the organic insulating film 10; the pixel electrode 12 is formed on the organic insulating film 10, and the pixel electrode 12 passes through the first The contact hole 11 is electrically connected to the drain electrode 7; the protective film 13 is formed on the pixel electrode 12 and the organic insulating film 10; the common electrode 16 is formed on the protective film 13, and the common electrode 16 includes the first common electrode located above the pixel electrode 12. An electrode 161 and a second common electrode 162 located above the data line 8; a gate pad electrode 17 formed on the protective film 13 at a position corresponding to the gate pad 3, the gate pad electrode 17 passing through the second contact hole 14 is electrically connected to the gate pad 3, the second contact hole 14 passes through the protective film 13, the organic insulating film 10, and the inorganic insulating film 21; the data pad electrode 18 is formed on the protective film 13 and corresponds to the data pad 9 Position of the data pad electrode 18 through the third contact 9 and 15 is electrically connected to the data pad, the third contact hole 15 through the protective film 13, the organic insulating film 10 and the inorganic insulating film 21.
根据本发明的实施例, 通过将低介电常数(2.0~4.0 ) 的有机绝缘膜 10 应用于阵列基板, 以减小公共电极 162和数据线 8之间的寄生电容, 从而能 够降低数据线 8上的信号延迟, 改善显示质量。 相对于现有技术中通过增加 保护膜 13的厚度来降低寄生电容,本发明实施例还能够减少工艺时间和降低 制造成本。 According to the embodiment of the present invention, the data line 8 can be reduced by applying the low dielectric constant (2.0 to 4.0) of the organic insulating film 10 to the array substrate to reduce the parasitic capacitance between the common electrode 162 and the data line 8. Signal delay on the board to improve display quality. The embodiment of the present invention can also reduce the process time and reduce the manufacturing cost as compared with the prior art by reducing the thickness of the protective film 13 to reduce the parasitic capacitance.
根据本发明的实施例, 由于釆用了低介电常数的有机绝缘膜 10, 还可以 通过减小像素电极 12和数据线 8之间在水平方向(即,沿平行于基板 1的方 向)上的距离来增大像素的开口率,其中像素电极 12与数据线 8在沿平行于 基板 1的方向上的距离可以减小到 0 ~ 1μηι。 According to the embodiment of the present invention, since the organic insulating film 10 having a low dielectric constant is used, it is also possible to reduce the horizontal direction (i.e., the direction parallel to the substrate 1) between the pixel electrode 12 and the data line 8 The distance is increased to increase the aperture ratio of the pixel, wherein the distance between the pixel electrode 12 and the data line 8 in the direction parallel to the substrate 1 can be reduced to 0 to 1 μm.
另外,如果有机绝缘膜 10和半导体层 5接触, 则在高温环境下,有机绝 缘膜 10中的离子异物会渗透到半导体层 5, 导致 TFT中漏电流的增加。 根 据本发明的实施例, 在有机绝缘膜 10和半导体层 5之间形成无机绝缘膜 21 作为緩冲层,该緩冲层能够阻止有机绝缘膜 10中的离子异物渗透到半导体层 5 , 从而防止在高温下 TFT中漏电流的产生。 In addition, if the organic insulating film 10 is in contact with the semiconductor layer 5, ionic foreign matter in the organic insulating film 10 penetrates into the semiconductor layer 5 in a high temperature environment, resulting in an increase in leakage current in the TFT. According to an embodiment of the present invention, an inorganic insulating film 21 is formed as a buffer layer between the organic insulating film 10 and the semiconductor layer 5, and the buffer layer can prevent ionic foreign matter in the organic insulating film 10 from penetrating into the semiconductor layer 5, thereby preventing The generation of leakage current in the TFT at high temperatures.
在一个实施例中,有机绝缘膜 10的材料可以釆用聚丙烯酸,有机绝缘膜 10的厚度可以为 10000~40000Α。 保护膜 13可以釆用无机绝缘材料, 其厚度 为 2000~4000Α。无机绝缘膜 21可以釆用氧化物 (例如 SiOx )或者氮化物 (例
如 SiNx )等材料, 其厚度为 1000~2000A。 In one embodiment, the material of the organic insulating film 10 may be made of polyacrylic acid, and the thickness of the organic insulating film 10 may be 10,000 to 40,000 Å. The protective film 13 can be made of an inorganic insulating material and has a thickness of 2000 to 4000 Å. The inorganic insulating film 21 may be an oxide (for example, SiOx) or a nitride (for example) For materials such as SiNx), the thickness is 1000~2000A.
本发明实施例中, 数据线下方可以保留半导体层(如图 13所示), 也可 以不保留半导体层(如图 14所示) ; 源电极和 /或漏电极可以完全位于半导 体层的上方(如图 13所示) , 也可以延伸至半导体层之外的区域(如图 14 所示)。 当源电极和 /或漏电极延伸至半导体层之外的区域时, 可以具有更好 的接触效果。 In the embodiment of the present invention, the semiconductor layer may be left under the data line (as shown in FIG. 13), or the semiconductor layer may not be retained (as shown in FIG. 14); the source electrode and/or the drain electrode may be completely located above the semiconductor layer ( As shown in Figure 13, it can also extend to areas outside the semiconductor layer (as shown in Figure 14). When the source electrode and/or the drain electrode extend to a region other than the semiconductor layer, it is possible to have a better contact effect.
本发明实施例中, 半导体层 5可以为普通硅半导体(本征半导体或掺杂 半导体) , 也可以为有机半导体, 还可以为氧化物半导体。 In the embodiment of the present invention, the semiconductor layer 5 may be a common silicon semiconductor (intrinsic semiconductor or doped semiconductor), an organic semiconductor, or an oxide semiconductor.
本发明实施例中,公共电极 16可以为狭缝状,像素电极 12可以为板状, 也可以为狭缝状。 In the embodiment of the present invention, the common electrode 16 may be in the shape of a slit, and the pixel electrode 12 may be in the form of a plate or a slit.
本发明实施例还提供一种显示装置, 所述显示装置可以包括上述的任一 种阵列基板。 所述显示装置可以为任何具有显示功能的产品或部件, 诸如液 晶面板、 电子纸、 手机、 平板电脑、 电视机、 显示器、 笔记本电脑、 数码相 框、 导航仪等。 The embodiment of the invention further provides a display device, which may include any of the above array substrates. The display device can be any product or component having a display function, such as a liquid crystal panel, an electronic paper, a cell phone, a tablet, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
以下给出上述阵列基板的制造方法。 The method of manufacturing the above array substrate is given below.
方法实施例 1 Method embodiment 1
步骤 S11 , 提供一基板, 在基板上形成栅线、 栅电极和栅焊盘; 具体地, 首先, 可以釆用溅射、 热蒸发或其它成膜方法, 在玻璃基板或 其他类型的透明基板上面形成栅金属层,栅金属层可以釆用铬( Cr )、钼( Mo )、 铝(A1 ) 、 铜(Cu ) 、 钨(W ) 、 钕(Nd )或其合金, 并且, 栅金属层可以 为一层或多层; 然后, 在栅金属层上形成光刻胶; 接着, 釆用刻画有图形的 掩模板对光刻胶进行曝光和显影, 形成光刻胶掩模; 接下来, 釆用光刻胶掩 模对栅金属层进行刻蚀, 形成栅线、 栅电极和栅焊盘的图形; 最后, 剥离剩 余的光刻胶。 需要说明的是, 本步骤中, 在形成栅线、 栅电极和栅焊盘的图 形的同时, 还可以形成公共电极线。 Step S11, providing a substrate, forming a gate line, a gate electrode and a gate pad on the substrate; specifically, first, sputtering, thermal evaporation or other film forming method may be used on the glass substrate or other type of transparent substrate Forming a gate metal layer, the gate metal layer may be made of chromium (Cr), molybdenum (Mo), aluminum (A1), copper (Cu), tungsten (W), niobium (Nd) or alloys thereof, and the gate metal layer may One or more layers; then, forming a photoresist on the gate metal layer; then, exposing and developing the photoresist with a patterned mask to form a photoresist mask; A photoresist mask etches the gate metal layer to form a pattern of gate lines, gate electrodes, and gate pads; finally, the remaining photoresist is stripped. It should be noted that, in this step, the common electrode lines may be formed while forming the patterns of the gate lines, the gate electrodes, and the gate pads.
步骤 S12, 在完成步骤 S11的基板上形成栅绝缘层; Step S12, forming a gate insulating layer on the substrate completing step S11;
具体地, 如图 2所示, 可以釆用等离子体增强化学气相沉积(PECVD ) 等方法, 在完成步骤 S11的基板 1上沉积厚度为 2000 8000A的栅绝缘层 4。 栅绝缘层 4可以选用氧化物(例如 SiOx )或者氮化物(例如 SiNx )等材料。 Specifically, as shown in Fig. 2, a gate insulating layer 4 having a thickness of 2000 8000 A may be deposited on the substrate 1 on which step S11 is completed by plasma enhanced chemical vapor deposition (PECVD) or the like. The gate insulating layer 4 may be selected from an oxide (e.g., SiOx) or a nitride (e.g., SiNx).
步骤 S13 , 在完成步骤 S12的基板上形成半导体层;
具体地, 如图 3所示, 首先, 可以釆用 PECVD等方法, 在完成步骤 S12 的基板 1上形成厚度为 1000 4000A的半导体材料层; 然后, 在半导体材料 层上形成光刻胶;接着,釆用刻画有图形的掩模板对光刻胶进行曝光和显影, 形成光刻胶掩模; 接下来, 釆用光刻胶掩模对半导体材料层进行刻蚀, 形成 半导体层 5的图形; 最后, 剥离剩余的光刻胶。 Step S13, forming a semiconductor layer on the substrate on which step S12 is completed; Specifically, as shown in FIG. 3, first, a semiconductor material layer having a thickness of 1000 4000 A may be formed on the substrate 1 on which step S12 is completed by a method such as PECVD; then, a photoresist is formed on the semiconductor material layer; Etching and developing the photoresist with a patterned mask to form a photoresist mask; next, etching the semiconductor material layer with a photoresist mask to form a pattern of the semiconductor layer 5; , peel off the remaining photoresist.
步骤 S14, 在完成步骤 S13的基板上形成源电极、 漏电极、 数据线和数 据焊盘; Step S14, forming a source electrode, a drain electrode, a data line and a data pad on the substrate completing step S13;
具体地, 如图 4所示, 首先, 可以釆用溅射、 热蒸发或其它成膜方法, 在完成步骤 S13的基板 1上面形成厚度为 1000~6000A的源漏金属层, 源漏 金属层可以釆用铬(Cr ) 、 钼 (Mo ) 、 铝 (A1 ) 、 铜 ( Cu ) 、 钨(W ) 、 钕(Nd )或其合金, 并且, 源漏金属层可以为一层或多层; 然后, 在源漏金 属层上形成光刻胶; 接着, 釆用刻画有图形的掩模板对光刻胶进行曝光和显 影, 形成光刻胶掩模; 接下来, 釆用光刻胶掩模对源漏金属层进行刻蚀, 形 成源电极 6、 漏电极 7、数据线 8和数据焊盘 9的图形; 最后, 刻蚀掉在源电 极 6和漏电极 7之间的半导体层 5的一部分, 并剥离剩余的光刻胶, 以此完 成薄膜晶体管的沟道。 当半导体层 5为本征半导体和掺杂半导体(欧姆接触 层)构成的硅半导体结构时, "刻蚀掉源电极 6和漏电极 7之间的半导体层 5的一部分" 主要是指应刻蚀掉源电极 6和漏电极 7之间的欧姆接触层; 而 当半导体层 5为有机半导体或氧化物半导体时, "刻蚀掉半导体层 5的一部 分" 主要是由于刻蚀源漏金属层时的过刻所致, 而不需刻意去刻蚀掉半导体 层 5的一部分, 只需保证沟道区域的源漏金属层完全刻蚀掉即可。 Specifically, as shown in FIG. 4, first, a source/drain metal layer having a thickness of 1000 to 6000 A may be formed on the substrate 1 on which the step S13 is completed by using sputtering, thermal evaporation or other film forming methods, and the source/drain metal layer may be used. Using chromium (Cr), molybdenum (Mo), aluminum (A1), copper (Cu), tungsten (W), niobium (Nd) or alloys thereof, and the source and drain metal layers may be one or more layers; Forming a photoresist on the source/drain metal layer; then, exposing and developing the photoresist with a patterned mask to form a photoresist mask; next, using a photoresist mask to the source The drain metal layer is etched to form a pattern of the source electrode 6, the drain electrode 7, the data line 8 and the data pad 9; finally, a portion of the semiconductor layer 5 between the source electrode 6 and the drain electrode 7 is etched away, and The remaining photoresist is stripped to complete the channel of the thin film transistor. When the semiconductor layer 5 is a silicon semiconductor structure composed of an intrinsic semiconductor and a doped semiconductor (ohmic contact layer), "etching away a portion of the semiconductor layer 5 between the source electrode 6 and the drain electrode 7" mainly means etching The ohmic contact layer between the source electrode 6 and the drain electrode 7 is dropped; and when the semiconductor layer 5 is an organic semiconductor or an oxide semiconductor, "etching away a portion of the semiconductor layer 5" is mainly due to etching of the source and drain metal layer Due to the etching, it is not necessary to etch away a part of the semiconductor layer 5, and it is only necessary to ensure that the source and drain metal layers of the channel region are completely etched away.
步骤 S15 , 在完成步骤 S14的基板上形成无机绝缘膜; Step S15, forming an inorganic insulating film on the substrate on which step S14 is completed;
具体地, 如图 5所示, 可以釆用 PECVD等方法, 在完成步骤 S14的基 板 1上沉积厚度为 1000 2000A的无机绝缘膜 21。 无机绝缘膜 21可以选用 氧化物(例如 SiOx )或者氮化物(例如 SiNx )等材料。 Specifically, as shown in Fig. 5, an inorganic insulating film 21 having a thickness of 1000 2000 A may be deposited on the substrate 1 on which step S14 is completed by a method such as PECVD. The inorganic insulating film 21 may be selected from an oxide (e.g., SiOx) or a nitride (e.g., SiNx).
步骤 S16, 在完成步骤 S15的基板上形成有机绝缘膜, 并对有机绝缘膜 进行构图; Step S16, forming an organic insulating film on the substrate on which step S15 is completed, and patterning the organic insulating film;
具体地, 如图 6所示, 首先, 在完成步骤 S15的基板 1上形成厚度为 10000-40000A的有机绝缘膜 10,该有机绝缘膜 10可以釆用聚丙烯酸等有机 感光材料; 然后, 釆用刻画有图形的掩模板对有机绝缘膜进行曝光和显影,
暴露出对应于漏电极 7、 数据焊盘 9和栅焊盘 3的位置处的无机绝缘膜 21 ; 最后, 对有机绝缘膜 10进行固化(Cure )处理。 Specifically, as shown in FIG. 6, first, an organic insulating film 10 having a thickness of 10000-40000 A is formed on the substrate 1 on which the step S15 is completed, and the organic insulating film 10 can be made of an organic photosensitive material such as polyacrylic acid; An organic insulating film is exposed and developed by a patterned mask. The inorganic insulating film 21 at a position corresponding to the drain electrode 7, the data pad 9, and the gate pad 3 is exposed; finally, the organic insulating film 10 is subjected to a curing process.
在本步骤中,如果有机绝缘膜 10的厚度过小,则后续公共电极与数据线 之间的寄生电容的减小效果(相对于无机绝缘膜)不明显; 如果有机绝缘膜 10的厚度过高, 则层间台阶部的坡度会增加, 可能会带来像素电极断开等不 良。 In this step, if the thickness of the organic insulating film 10 is too small, the effect of reducing the parasitic capacitance between the subsequent common electrode and the data line (relative to the inorganic insulating film) is not significant; if the thickness of the organic insulating film 10 is too high , the slope of the step between the layers will increase, which may cause defects such as disconnection of the pixel electrode.
在本步骤中, 固化处理的温度可以为 230~260°C , 时间可以为 30~60分 钟。 如果固化温度低于 230°C , 进行后续工艺时由于保护膜的微固化, 会产 生污染以及膜翘起等不良; 如果固化温度高于 260 °C , 则可能造成有机绝缘 膜 10的变性, 从而使得透过率低下。 In this step, the curing temperature may be 230 to 260 ° C and the time may be 30 to 60 minutes. If the curing temperature is lower than 230 ° C, the micro-cure of the protective film may cause contamination and film lift, etc.; if the curing temperature is higher than 260 ° C, the organic insulating film 10 may be denatured, thereby This makes the transmission rate low.
步骤 S17, 刻蚀掉暴露的无机绝缘膜; Step S17, etching away the exposed inorganic insulating film;
具体地,如图 7所示, 以有机绝缘膜 10作为掩模,对暴露的无机绝缘膜 21进行刻蚀,形成第一接触孔 11 ,并暴露栅焊盘 3处的栅绝缘层 4和数据焊 盘 9。 Specifically, as shown in FIG. 7, the exposed inorganic insulating film 21 is etched using the organic insulating film 10 as a mask to form a first contact hole 11 and expose the gate insulating layer 4 and data at the gate pad 3. Pad 9.
步骤 S18, 在完成步骤 S17的基板上形成像素电极, 所述像素电极通过 所述第一接触孔与漏电极电连接; Step S18, forming a pixel electrode on the substrate of step S17, wherein the pixel electrode is electrically connected to the drain electrode through the first contact hole;
具体地, 如图 8所示, 首先, 可以釆用磁控溅射、 热蒸发或其它成膜方 法, 在完成步骤 S17的基板 1上形成厚度为 100 lOOOA的透明导电层, 该透 明导电层可以釆用氧化铟锡(ITO ) 、 氧化铟辞(IZO )或氧化铝辞等材料; 然后, 在透明导电层上形成光刻胶; 接着, 釆用刻画有图形的掩模板对光刻 胶进行曝光和显影, 形成光刻胶掩模; 接下来, 釆用光刻胶掩模对透明导电 层进行刻蚀 , 形成像素电极 12的图形, 所述像素电极 12通过所述第一接触 孔 11与漏电极 7电连接; 之后, 釆用光刻胶掩模刻蚀掉暴露的栅绝缘层 4, 以暴露出栅焊盘 3; 最后, 剥离剩余的光刻胶。 Specifically, as shown in FIG. 8, first, a transparent conductive layer having a thickness of 100 lOOOA may be formed on the substrate 1 on which the step S17 is completed by using magnetron sputtering, thermal evaporation or other film forming methods, and the transparent conductive layer may be釆 using indium tin oxide (ITO), indium oxide (IZO) or alumina, etc.; then, forming a photoresist on the transparent conductive layer; then, using a patterned mask to expose the photoresist And developing, forming a photoresist mask; next, etching the transparent conductive layer with a photoresist mask to form a pattern of the pixel electrode 12, the pixel electrode 12 passing through the first contact hole 11 and leakage The pole 7 is electrically connected; thereafter, the exposed gate insulating layer 4 is etched away with a photoresist mask to expose the gate pad 3; finally, the remaining photoresist is stripped.
在本步骤中,如果像素电极 12的厚度过小, 则会使得其电阻过高; 如果 像素电极 12的厚度过大, 则会造成透过率低下。 In this step, if the thickness of the pixel electrode 12 is too small, the resistance thereof is too high; if the thickness of the pixel electrode 12 is too large, the transmittance is lowered.
图 9的左半部分是根据现有技术的在完成像素电极之后的阵列基板的截 面图, 右半部分为根据本发明实施例在完成像素电极之后的阵列基板的截面 图。如图 9所示,在现有技术中, 为避免像素电极 12和数据线 8之间的寄生 电容给像素电极 12的充电特性带来的影响, 像素电极 12与数据线 8之间的
距离 dl需要做的较大, 一般为 2μπι左右, 这导致像素的开口率降低; 而在 本发明实施例中, 由于釆用了有机绝缘模 10,则即使像素电极 12和数据线 8 之间在水平方向上的距离 d2做的较小,像素电极和数据线之间的寄生电容也 不会太大, 因此, 可以将所述距离 d2减小到 0 ~ 1μπι以增加像素的开口率。 The left half of Fig. 9 is a cross-sectional view of the array substrate after completion of the pixel electrode according to the prior art, and the right half is a cross-sectional view of the array substrate after completion of the pixel electrode according to an embodiment of the present invention. As shown in FIG. 9, in the prior art, in order to avoid the influence of the parasitic capacitance between the pixel electrode 12 and the data line 8 on the charging characteristics of the pixel electrode 12, between the pixel electrode 12 and the data line 8 The distance dl needs to be made larger, generally about 2 μm, which results in a decrease in the aperture ratio of the pixel. In the embodiment of the present invention, since the organic insulating mold 10 is used, even between the pixel electrode 12 and the data line 8 The distance d2 in the horizontal direction is made smaller, and the parasitic capacitance between the pixel electrode and the data line is not too large. Therefore, the distance d2 can be reduced to 0 to 1 μm to increase the aperture ratio of the pixel.
步骤 S19, 在完成步骤 S18的基板上形成保护膜, 并对保护膜进行构图; 具体地, 如图 10所示, 首先, 可以釆用 PECVD等方法, 在完成步骤 S18的基板 1上形成厚度为 2000 4000Α的保护膜 13,该保护模 13可以釆用 SiNx或 SiOx等材料; 然后, 在保护膜 13上形成光刻胶; 接着, 釆用刻画有 图形的掩模板对光刻胶进行曝光和显影, 形成光刻胶掩模; 接下来, 釆用光 刻胶掩模对保护膜 13进行刻蚀,形成第二接触孔 14和第三接触孔 15以分别 暴露出栅焊盘 3和数据焊盘 9; 最后, 剥离剩余的光刻胶。 Step S19, forming a protective film on the substrate on which step S18 is completed, and patterning the protective film; specifically, as shown in FIG. 10, first, a thickness of the substrate 1 on which the step S18 is completed may be formed by a method such as PECVD. 2000 4000 Α protective film 13, the protective mold 13 can be made of SiNx or SiOx; then, a photoresist is formed on the protective film 13; then, the photoresist is exposed and developed by using a patterned mask Forming a photoresist mask; next, etching the protective film 13 with a photoresist mask to form a second contact hole 14 and a third contact hole 15 to expose the gate pad 3 and the data pad, respectively 9; Finally, strip the remaining photoresist.
在本步骤中, 如果保护膜 13的厚度低于 2000A, 则存储电容(Cst )上 升,会造成信号延迟增加; 如果保护膜 13的厚度大于 4000A, 则会造成工艺 时间及制造成本过高。 In this step, if the thickness of the protective film 13 is less than 2000 A, the storage capacitor (Cst) rises, causing an increase in signal delay; if the thickness of the protective film 13 is larger than 4000 A, the process time and manufacturing cost are too high.
步骤 S20, 在完成步骤 S19的基板上形成公共电极、 栅焊盘电极和数据 焊盘电极。 Step S20, forming a common electrode, a gate pad electrode, and a data pad electrode on the substrate on which step S19 is completed.
具体地, 如图 16所示, 首先, 可以釆用磁控溅射、 热蒸发或其它成膜方 法, 在完成步骤 S19的基板 1上形成厚度为 100~1000A的透明导电层, 透明 导电层可以釆用氧化铟锡(ITO )、 氧化铟辞(IZO )或氧化铝辞等材料; 然 后, 在透明导电层上形成光刻胶; 接着, 釆用刻画有图形的掩模板对光刻胶 进行曝光和显影, 形成光刻胶掩模; 接下来, 釆用光刻胶掩模对透明导电层 进行刻蚀, 形成公共电极 16、 栅焊盘电极 17和数据焊盘电极 18的图形; 最 后, 剥离剩余的光刻胶 Specifically, as shown in FIG. 16, first, a transparent conductive layer having a thickness of 100 to 1000 A may be formed on the substrate 1 on which the step S19 is completed by using magnetron sputtering, thermal evaporation, or other film forming methods, and the transparent conductive layer may be Using a material such as indium tin oxide (ITO), indium oxide (IZO) or alumina; then, forming a photoresist on the transparent conductive layer; and then, exposing the photoresist with a patterned mask And developing, forming a photoresist mask; next, etching the transparent conductive layer with a photoresist mask to form a pattern of the common electrode 16, the gate pad electrode 17, and the data pad electrode 18; finally, stripping Remaining photoresist
所述公共电极 16可以包括位于像素电极 12上方的第一公共电极 161和 位于数据线 8上方的第二公共电极 162。 公共电极 16可以为狭缝状。 栅焊盘 电极 17通过第二接触孔 14与栅焊盘 3电连接,数据焊盘电极 18通过第三接 触孔 15与数据焊盘 9电连接 The common electrode 16 may include a first common electrode 161 located above the pixel electrode 12 and a second common electrode 162 located above the data line 8. The common electrode 16 may have a slit shape. The gate pad electrode 17 is electrically connected to the gate pad 3 through the second contact hole 14, and the data pad electrode 18 is electrically connected to the data pad 9 through the third contact hole 15.
在本步骤中,如果公共电极 16的厚度过小, 则会使得其电阻过高; 如果 公共电极 16的厚度过大, 则会造成透过率低下。 In this step, if the thickness of the common electrode 16 is too small, the resistance thereof is too high; if the thickness of the common electrode 16 is too large, the transmittance is lowered.
在本实施例中, 第二公共电极 162位于数据线 8的上方, 能够屏蔽像素
电极 12和数据线 8之间的电磁场,由此能够减小彩色滤光片上黑矩阵的宽度, 从而能够增加像素的开口率。 In this embodiment, the second common electrode 162 is located above the data line 8 and is capable of shielding pixels. The electromagnetic field between the electrode 12 and the data line 8 can thereby reduce the width of the black matrix on the color filter, thereby increasing the aperture ratio of the pixel.
方法实施例 2 Method embodiment 2
步骤 S21, 提供一基板, 在基板上形成栅线、 栅电极和栅焊盘; 具体地, 首先, 可以釆用溅射、 热蒸发或其它成膜方法, 在玻璃基板或 其他类型的透明基板上面形成栅金属层,栅金属层可以釆用铬( Cr )、钼( Mo )、 铝(A1) 、 铜(Cu) 、 钨(W) 、 钕(Nd)及其合金, 并且栅金属层可以为 一层或多层; 然后, 在栅金属层上形成光刻胶; 接着, 釆用刻画有图形的掩 模板对光刻胶进行曝光和显影, 形成光刻胶掩模; 接下来, 釆用光刻胶掩模 对栅金属层进行刻蚀, 形成栅线、 栅电极和栅焊盘的图形; 最后, 剥离剩余 的光刻胶。 需要说明的是, 本步骤中, 在形成栅线、 栅电极和栅焊盘的图形 的同时, 还可以形成公共电极线。 Step S21, providing a substrate, forming a gate line, a gate electrode and a gate pad on the substrate; specifically, first, sputtering, thermal evaporation or other film forming method may be used on the glass substrate or other type of transparent substrate Forming a gate metal layer, the gate metal layer may be made of chromium (Cr), molybdenum (Mo), aluminum (A1), copper (Cu), tungsten (W), niobium (Nd) and alloys thereof, and the gate metal layer may be One or more layers; then, a photoresist is formed on the gate metal layer; then, the photoresist is exposed and developed by using a patterned mask to form a photoresist mask; The gate mask etches the gate metal layer to form a pattern of gate lines, gate electrodes and gate pads; finally, the remaining photoresist is stripped. It should be noted that, in this step, a common electrode line may be formed while forming a pattern of a gate line, a gate electrode, and a gate pad.
步骤 S22, 在完成步骤 S21的基板上形成栅绝缘层; Step S22, forming a gate insulating layer on the substrate on which step S21 is completed;
具体地, 如图 2所示, 可以釆用等离子体增强化学气相沉积(PECVD) 等方法, 在完成步骤 S21的基板 1上沉积厚度为 2000 8000A的栅绝缘层 4。 栅绝缘层 4可以选用氧化物(例如 SiOx)或者氮化物(例如 SiNx)等材料。 Specifically, as shown in Fig. 2, a gate insulating layer 4 having a thickness of 2000 8000 A may be deposited on the substrate 1 on which step S21 is completed by plasma enhanced chemical vapor deposition (PECVD) or the like. The gate insulating layer 4 may be selected from an oxide (e.g., SiOx) or a nitride (e.g., SiNx).
步骤 S23, 在完成步骤 S22的基板上形成半导体材料层; Step S23, forming a semiconductor material layer on the substrate completing step S22;
具体地, 如图 11所示, 可以釆用 PECVD等方法, 在完成步骤 S22的基 板 1上形成厚度为 1000 4000A的半导体材料层 20。 Specifically, as shown in Fig. 11, a semiconductor material layer 20 having a thickness of 1000 4000 A can be formed on the substrate 1 on which step S22 is completed by a method such as PECVD.
步骤 S24, 在完成步骤 S23的基板上形成源漏金属层; Step S24, forming a source/drain metal layer on the substrate of step S23;
具体地, 可以釆用溅射、 热蒸发或其它成膜方法, 在完成步骤 S23的基 板 1上面形成厚度为 1000 6000A的源漏金属层, 该源漏金属层可以釆用铬 (Cr) 、 钼 (Mo) 、 铝(A1) 、 铜 (Cu) 、 钨 (W) 、 钕 (Nd)或其合金, 并且, 源漏金属层可以为一层或多层。 Specifically, a source/drain metal layer having a thickness of 1000 6000 A may be formed on the substrate 1 completing the step S23 by sputtering, thermal evaporation or other film forming method, and the source/drain metal layer may be made of chromium (Cr) or molybdenum. (Mo), aluminum (A1), copper (Cu), tungsten (W), niobium (Nd) or an alloy thereof, and the source/drain metal layer may be one or more layers.
步骤 S25, 在完成步骤 S24的基板上形成光刻胶掩模; Step S25, forming a photoresist mask on the substrate completing step S24;
具体地, 如图 12所示, 首先, 在源漏金属层上形成光刻胶层 19; 接着, 釆用刻画有图形的灰色调或半色调掩模板对光刻胶层 19进行曝光和显影,形 成包括光刻胶完全保留区域、 光刻胶部分保留区域和光刻胶未保留区域的光 刻胶掩模。 Specifically, as shown in FIG. 12, first, a photoresist layer 19 is formed on the source/drain metal layer; then, the photoresist layer 19 is exposed and developed by using a gray tone or halftone mask patterned with a pattern, A photoresist mask including a photoresist completely reserved region, a photoresist portion remaining region, and a photoresist unretained region is formed.
步骤 S26, 形成数据线和数据焊盘的图形;
具体地,如图 13所示,釆用光刻胶掩模对光刻胶未保留区域的源漏金属 层进行刻蚀, 形成数据线 8和数据焊盘 9的图形。 Step S26, forming a pattern of the data line and the data pad; Specifically, as shown in FIG. 13, the source/drain metal layer of the unretained region of the photoresist is etched by a photoresist mask to form a pattern of the data line 8 and the data pad 9.
步骤 S27 , 刻蚀光刻胶未保留区域的半导体材料层, 并进行灰化工艺; 具体地,如图 14所示, 首先, 釆用光刻胶掩模对光刻胶未保留区域的半 导体材料层 20进行刻蚀, 形成半导体层 5的图形; 然后, 通过灰化工艺去除 光刻胶部分保留区域的光刻胶, 光刻胶完全保留区域的光刻胶变薄, 形成新 的光刻胶掩模。 Step S27, etching a semiconductor material layer in the unreserved region of the photoresist, and performing an ashing process; specifically, as shown in FIG. 14, first, using a photoresist mask to the semiconductor material in the region where the photoresist is not reserved The layer 20 is etched to form a pattern of the semiconductor layer 5; then, the photoresist in the remaining portion of the photoresist is removed by an ashing process, and the photoresist in the completely remaining region of the photoresist is thinned to form a new photoresist. Mask.
步骤 S28, 形成源电极和漏电极的图形; Step S28, forming a pattern of the source electrode and the drain electrode;
具体地, 如图 15所示, 首先, 釆用光刻胶掩模刻蚀暴露的源漏金属层, 形成源电极 6和漏电极 7的图形; 然后, 刻蚀掉源电极 6和漏电极 7之间的 半导体层 5的一部分, 并剥离剩余的光刻胶, 从而形成薄膜晶体管的沟道。 当半导体层 5为本征半导体和掺杂半导体(欧姆接触层)构成的硅半导体结 构时, "刻蚀掉源电极 6和漏电极 7之间的半导体层 5的一部分" 主要是指 应刻蚀掉源电极 6和漏电极 7之间的欧姆接触层; 而当半导体层 5为有机半 导体或氧化物半导体时, "刻蚀掉半导体层 5的一部分" 主要是由于刻蚀源 漏金属层时的过刻所致, 而不需刻意去刻蚀掉半导体层 5的一部分, 只需保 证沟道区域的源漏金属层完全刻蚀掉即可。 Specifically, as shown in FIG. 15, first, the exposed source/drain metal layer is etched by a photoresist mask to form a pattern of the source electrode 6 and the drain electrode 7; then, the source electrode 6 and the drain electrode 7 are etched away. A portion of the semiconductor layer 5 is interposed and the remaining photoresist is stripped to form a channel of the thin film transistor. When the semiconductor layer 5 is a silicon semiconductor structure composed of an intrinsic semiconductor and a doped semiconductor (ohmic contact layer), "etching away a portion of the semiconductor layer 5 between the source electrode 6 and the drain electrode 7" mainly means etching The ohmic contact layer between the source electrode 6 and the drain electrode 7 is dropped; and when the semiconductor layer 5 is an organic semiconductor or an oxide semiconductor, "etching away a portion of the semiconductor layer 5" is mainly due to etching of the source and drain metal layer Due to the etching, it is not necessary to etch away a part of the semiconductor layer 5, and it is only necessary to ensure that the source and drain metal layers of the channel region are completely etched away.
在以下步骤中, 虽然图中未示出, 但是可以理解的是, 在数据线 8和数 据焊盘 9下方仍然保留了未刻蚀掉的半导体材料。 In the following steps, although not shown in the drawings, it is understood that the unetched semiconductor material remains under the data lines 8 and the data pads 9.
步骤 S29, 在完成步骤 S28的基板上形成无机绝缘膜; Step S29, forming an inorganic insulating film on the substrate completing step S28;
具体地, 如图 5所示, 可以釆用 PECVD等方法, 在完成步骤 S28的基 板 1上沉积厚度为 1000 2000A的无机绝缘膜 21。 无机绝缘膜 21可以选用 氧化物(例如 SiOx )或者氮化物(例如 SiNx )等材料。 Specifically, as shown in Fig. 5, an inorganic insulating film 21 having a thickness of 1000 2000 A may be deposited on the substrate 1 on which step S28 is completed by a method such as PECVD. The inorganic insulating film 21 may be selected from an oxide (e.g., SiOx) or a nitride (e.g., SiNx).
步骤 S30, 在完成步骤 S29的基板上形成有机绝缘膜, 并对有机绝缘膜 进行构图; Step S30, forming an organic insulating film on the substrate on which step S29 is completed, and patterning the organic insulating film;
具体地, 如图 6所示, 首先, 在完成步骤 S29的基板 1上形成厚度为 10000-40000A的有机绝缘膜 10,该有机绝缘膜 10可以釆用聚丙烯酸等有机 感光材料; 然后, 釆用刻画有图形的掩模板对有机绝缘膜进行曝光和显影, 暴露出漏电极、 数据焊盘 9和栅焊盘 3处的无机绝缘膜 21 ; 最后, 对有机绝 缘膜 10进行固化 ( Cure )处理。
在本步骤中,如果有机绝缘膜 10的厚度过小,则后续公共电极与数据线 之间的寄生电容的减小效果(相对于无机绝缘膜)不明显; 如果有机绝缘膜Specifically, as shown in FIG. 6, first, an organic insulating film 10 having a thickness of 10000-40000 A is formed on the substrate 1 on which the step S29 is completed, and the organic insulating film 10 can be made of an organic photosensitive material such as polyacrylic acid; The patterned insulating mask exposes and develops the organic insulating film to expose the drain electrode, the data pad 9 and the inorganic insulating film 21 at the gate pad 3; finally, the organic insulating film 10 is subjected to a curing (Cure) process. In this step, if the thickness of the organic insulating film 10 is too small, the effect of reducing the parasitic capacitance between the subsequent common electrode and the data line (relative to the inorganic insulating film) is not significant; if the organic insulating film
10的厚度过大, 则层间台阶部的坡度会增加, 可能会带来像素电极断开等不 良。 If the thickness of 10 is too large, the slope of the step between the layers may increase, which may cause the pixel electrode to be broken or the like.
在本步骤中, 固化处理的温度可以为 230~260°C ,处理时间可以为 30~60 分钟。 如果固化温度低于 230°C , 进行后续工艺时由于保护膜的微固化, 会 产生污染以及膜翘起等不良; 如果固化温度高于 260 °C , 则可能造成有机绝 缘膜 10的变性, 从而使得透过率低下。 In this step, the curing temperature may be 230 to 260 ° C, and the treatment time may be 30 to 60 minutes. If the curing temperature is lower than 230 ° C, the micro-cure of the protective film may cause contamination and film lift, etc.; if the curing temperature is higher than 260 ° C, the organic insulating film 10 may be denatured, thereby This makes the transmission rate low.
步骤 S31 , 刻蚀掉暴露的无机绝缘膜; Step S31, etching away the exposed inorganic insulating film;
具体地,如图 7所示, 以有机绝缘膜 10作为掩模,对暴露的无机绝缘膜 Specifically, as shown in FIG. 7, the exposed inorganic insulating film is formed using the organic insulating film 10 as a mask.
21进行刻蚀,形成第一接触孔 11 ,并暴露栅焊盘 3处的栅绝缘层 4和数据焊 盘 9。 The etching is performed to form the first contact hole 11 and expose the gate insulating layer 4 and the data pad 9 at the gate pad 3.
步骤 S32, 在完成步骤 S31的基板上形成像素电极, 所述像素电极通过 所述第一接触孔与漏电极电连接; Step S32, forming a pixel electrode on the substrate of the step S31, wherein the pixel electrode is electrically connected to the drain electrode through the first contact hole;
具体地, 如图 8所示, 首先, 可以釆用磁控溅射、 热蒸发或其它成膜方 法, 在完成步骤 S31的基板 1上形成厚度为 100 lOOOA的透明导电层, 该透 明导电层可以釆用氧化铟锡(ITO ) 、 氧化铟辞(IZO )或氧化铝辞等材料; 然后, 在透明导电层上形成光刻胶; 接着, 釆用刻画有图形的掩模板对光刻 胶进行曝光和显影, 形成光刻胶掩模; 接下来, 釆用光刻胶掩模对透明导电 层进行刻蚀, 形成像素电极 12的图形, 所述像素电极 12通过所述第一接触 孔 11与漏电极 7电连接; 之后, 釆用光刻胶掩模刻蚀掉暴露的栅绝缘层 4, 以暴露出栅焊盘 3; 最后, 剥离剩余的光刻胶。 在每个像素单元中, 像素电 极可以为板状, 也可以为狭缝状。 Specifically, as shown in FIG. 8, first, a transparent conductive layer having a thickness of 100 lOOOA may be formed on the substrate 1 on which the step S31 is completed by using magnetron sputtering, thermal evaporation, or other film forming methods, and the transparent conductive layer may be釆 using indium tin oxide (ITO), indium oxide (IZO) or alumina, etc.; then, forming a photoresist on the transparent conductive layer; then, using a patterned mask to expose the photoresist And developing, forming a photoresist mask; next, etching the transparent conductive layer with a photoresist mask to form a pattern of the pixel electrode 12, the pixel electrode 12 passing through the first contact hole 11 and leakage The pole 7 is electrically connected; thereafter, the exposed gate insulating layer 4 is etched away with a photoresist mask to expose the gate pad 3; finally, the remaining photoresist is stripped. In each of the pixel units, the pixel electrode may be in the form of a plate or a slit.
在本步骤中,如果像素电极 12的厚度过小, 则会使得其电阻过高; 如果 像素电极 12的厚度过大, 则会造成透过率低下。 In this step, if the thickness of the pixel electrode 12 is too small, the resistance thereof is too high; if the thickness of the pixel electrode 12 is too large, the transmittance is lowered.
图 9的左半部分是根据现有技术在完成像素电极之后的阵列基板的截面 图,右半部分为根据本发明实施例在完成像素电极之后的阵列基板的截面图。 如图 9所示,在现有技术中,为避免像素电极 12和数据线 8之间的寄生电容 给像素电极 12的充电特性带来的影响, 像素电极 12与数据线 8之间的距离 dl需要做的较大, 一般为 2μπι左右, 这导致像素的开口率降低; 而在本发
明实施例中, 由于釆用了有机绝缘模 10, 则即使像素电极 12和数据线 8之 间的距离 d2做的较小,像素电极和数据线之间的寄生电容也不会太大,因此, 可以将所述距离 d2减小到 0 ~ Ιμπι, 来增加像素的开口率。 The left half of Fig. 9 is a cross-sectional view of the array substrate after completion of the pixel electrode according to the prior art, and the right half is a cross-sectional view of the array substrate after completion of the pixel electrode according to an embodiment of the present invention. As shown in FIG. 9, in the prior art, in order to avoid the influence of the parasitic capacitance between the pixel electrode 12 and the data line 8 on the charging characteristics of the pixel electrode 12, the distance between the pixel electrode 12 and the data line 8 is dl. Need to be done, generally about 2μπι, which leads to a decrease in the aperture ratio of the pixel; In the embodiment, since the organic insulating mold 10 is used, even if the distance d2 between the pixel electrode 12 and the data line 8 is made small, the parasitic capacitance between the pixel electrode and the data line is not too large, so The distance d2 can be reduced to 0 ~ Ιμπι to increase the aperture ratio of the pixel.
步骤 S33, 在完成步骤 S32的基板上形成保护膜, 并对保护膜进行构图; 具体地, 如图 10所示, 首先, 可以釆用 PECVD等方法, 在完成步骤 Step S33, forming a protective film on the substrate on which step S32 is completed, and patterning the protective film; specifically, as shown in FIG. 10, first, a method such as PECVD may be used to complete the steps.
S32的基板 1上形成厚度为 2000 4000Α的保护膜 13, 保护模 13可以釆用 SiNx或 SiOx等材料; 然后, 在保护膜 13上形成光刻胶; 接着, 釆用刻画有 图形的掩模板对光刻胶进行曝光和显影, 形成光刻胶掩模; 接下来, 釆用光 刻胶掩模对保护膜 13进行刻蚀,形成第二接触孔 14和第三接触孔 15以分别 暴露出栅焊盘 3和数据焊盘 9; 最后, 剥离剩余的光刻胶。 A protective film 13 having a thickness of 2000 4000 Å is formed on the substrate 1 of S32, and a material such as SiNx or SiOx can be used for the protective mold 13; then, a photoresist is formed on the protective film 13; and then, a mask pair patterned with a pattern is used. The photoresist is exposed and developed to form a photoresist mask. Next, the protective film 13 is etched by using a photoresist mask to form a second contact hole 14 and a third contact hole 15 to respectively expose the gate. Pad 3 and data pad 9; Finally, the remaining photoresist is stripped.
在本步骤中, 如果保护膜 13的厚度小于 2000A时, 则存储电容(Cst ) 上升,会造成信号延迟增加; 如果保护膜 13的厚度大于 4000A, 则会造成工 艺时间及制造成本过高。 In this step, if the thickness of the protective film 13 is less than 2000 A, the storage capacitor (Cst) rises, causing an increase in signal delay; if the thickness of the protective film 13 is larger than 4000 A, the process time and the manufacturing cost are too high.
步骤 S34, 在完成步骤 S33的基板上形成公共电极、 栅焊盘电极和数据 焊盘电极。 Step S34, forming a common electrode, a gate pad electrode, and a data pad electrode on the substrate on which step S33 is completed.
具体地, 如图 16 所示, 首先, 可以釆用磁控溅射、 热蒸发或其它成膜 方法, 在完成步骤 S33的基板 1上形成厚度为 100 lOOOA的透明导电层, 透 明导电层可以釆用氧化铟锡(ITO ) 、 氧化铟辞(IZO )或氧化铝辞等材料; 然后, 在透明导电层上形成光刻胶; 接着, 釆用刻画有图形的掩模板对光刻 胶进行曝光和显影, 形成光刻胶掩模; 接下来, 釆用光刻胶掩模对透明导电 层进行刻蚀, 形成公共电极 16、 栅焊盘电极 17和数据焊盘电极 18的图形; 最后, 剥离剩余的光刻胶。 Specifically, as shown in FIG. 16, first, a transparent conductive layer having a thickness of 100 lOOOA may be formed on the substrate 1 on which step S33 is completed by magnetron sputtering, thermal evaporation or other film forming method, and the transparent conductive layer may be 釆Using a material such as indium tin oxide (ITO), indium oxide (IZO) or alumina; then, forming a photoresist on the transparent conductive layer; then, exposing the photoresist with a patterned mask Developing, forming a photoresist mask; next, etching the transparent conductive layer with a photoresist mask to form a pattern of the common electrode 16, the gate pad electrode 17, and the data pad electrode 18; finally, peeling off the remaining Photoresist.
公共电极 16可以包括位于像素电极 12上方的第一公共电极 161和位于 数据线 8上方的第二公共电极 162。 栅焊盘电极 17可以通过第二接触孔 14 与栅焊盘 3电连接, 数据焊盘电极 18可以通过第三接触孔 15与数据焊盘 9 电连接。 The common electrode 16 may include a first common electrode 161 located above the pixel electrode 12 and a second common electrode 162 located above the data line 8. The gate pad electrode 17 may be electrically connected to the gate pad 3 through the second contact hole 14, and the data pad electrode 18 may be electrically connected to the data pad 9 through the third contact hole 15.
在本步骤中,如果公共电极 16的厚度过小, 则会使得其电阻过高; 如果 公共电极 16的厚度过大, 则会造成透过率低下。 In this step, if the thickness of the common electrode 16 is too small, the resistance thereof is too high; if the thickness of the common electrode 16 is too large, the transmittance is lowered.
在本实施例中, 第二公共电极 162位于数据线 8的上方, 能够屏蔽像素 电极 12和数据线 8之间的电磁场,以此能够减小彩色滤光片上黑矩阵的宽度,
从而能够增加像素的开口率。 另外,在形成半导体层 5、 源电极 6和漏电极 7 时, 由于釆用了灰化工艺, 还可以减少掩模板数量, 从而降低制造成本。 In this embodiment, the second common electrode 162 is located above the data line 8, and can shield the electromagnetic field between the pixel electrode 12 and the data line 8, thereby reducing the width of the black matrix on the color filter. Thereby, the aperture ratio of the pixel can be increased. Further, in forming the semiconductor layer 5, the source electrode 6, and the drain electrode 7, since the ashing process is used, the number of masks can be reduced, thereby reducing the manufacturing cost.
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。
The above is only an exemplary embodiment of the present invention, and is not intended to limit the scope of the present invention. The scope of the present invention is defined by the appended claims.
Claims
1. 一种阵列基板,包括显示区域和非显示区域,所述显示区域包括栅线、 数据线以及由所述栅线和所述数据线定义的多个像素单元, 其中每个所述像 素单元包括薄膜晶体管、 像素电极和公共电极, 所述像素电极与所述薄膜晶 体管的漏电极电连接, An array substrate comprising a display region including a gate line, a data line, and a plurality of pixel units defined by the gate line and the data line, wherein each of the pixel units a thin film transistor, a pixel electrode, and a common electrode, wherein the pixel electrode is electrically connected to a drain electrode of the thin film transistor,
其中无机绝缘膜形成在所述数据线和所述薄膜晶体管的源电极、 漏电极 和沟道区域的半导体层上, 有机绝缘膜形成在所述无机绝缘膜上, 保护膜形 成在所述像素电极和所述有机绝缘膜上,所述公共电极形成在所述保护膜上, 使得所述保护膜设置在所述公共电极所在的层与所述像素电极所在的层之 间, 并且所述无机绝缘膜和所述有机绝缘膜设置在所述像素电极和所述数据 线之间以及所述薄膜晶体管与所述保护膜之间。 Wherein an inorganic insulating film is formed on the data line and the semiconductor layer of the source electrode, the drain electrode and the channel region of the thin film transistor, an organic insulating film is formed on the inorganic insulating film, and a protective film is formed on the pixel electrode And the organic insulating film, the common electrode is formed on the protective film such that the protective film is disposed between a layer where the common electrode is located and a layer where the pixel electrode is located, and the inorganic insulating A film and the organic insulating film are disposed between the pixel electrode and the data line and between the thin film transistor and the protective film.
2. 如权利要求 1所述的阵列基板, 其中: 2. The array substrate of claim 1, wherein:
所述薄膜晶体管的栅电极和所述栅线形成在基板上; a gate electrode of the thin film transistor and the gate line are formed on a substrate;
栅绝缘层形成在所述栅电极和所述栅线上; a gate insulating layer is formed on the gate electrode and the gate line;
半导体层和所述数据线形成在所述栅绝缘层上; a semiconductor layer and the data line are formed on the gate insulating layer;
所述源电极和所述漏电极形成在所述半导体层上; The source electrode and the drain electrode are formed on the semiconductor layer;
第一接触孔形成在所述无机绝缘膜和所述有机绝缘膜中; a first contact hole formed in the inorganic insulating film and the organic insulating film;
所述像素电极形成在有机绝缘膜上 , 所述像素电极通过所述第一接触孔 与所述漏电极电连接; The pixel electrode is formed on an organic insulating film, and the pixel electrode is electrically connected to the drain electrode through the first contact hole;
所述公共电极包括位于所述像素电极上方的第一公共电极和位于所述数 据线上方的第二公共电极。 The common electrode includes a first common electrode above the pixel electrode and a second common electrode above the data line.
3. 如权利要求 1-2中任一项所述的阵列基板, 其中所述数据线下方保留 有半导体层材料, 或者所述数据线与下面的栅绝缘层直接接触。 The array substrate according to any one of claims 1 to 2, wherein a semiconductor layer material remains under the data line, or the data line is in direct contact with the underlying gate insulating layer.
4. 如权利要求 1-3中任一项所述的阵列基板, 还包括: The array substrate according to any one of claims 1 to 3, further comprising:
栅焊盘, 在所述非显示区域中且与所述栅线位于同一层; a gate pad in the non-display area and in the same layer as the gate line;
数据焊盘, 在所述非显示区域中且与所述数据线位于同一层; a data pad in the non-display area and in the same layer as the data line;
栅焊盘电极, 形成在所述保护膜上且在对应于所述栅焊盘的位置, 所述 栅焊盘电极通过第二接触孔与所述栅焊盘电连接, 该第二接触孔穿过所述保 护膜、 所述有机绝缘膜和所述无机绝缘膜; 数据焊盘电极, 形成在所述保护膜上且在对应于所述数据焊盘的位置, 所述数据焊盘电极通过第三接触孔与所述数据焊盘电连接, 该第三接触孔穿 过所述保护膜、 所述有机绝缘膜和所述无机绝缘膜。 a gate pad electrode formed on the protective film and at a position corresponding to the gate pad, the gate pad electrode being electrically connected to the gate pad through a second contact hole, the second contact hole being worn Passing through the protective film, the organic insulating film, and the inorganic insulating film; a data pad electrode formed on the protective film and at a position corresponding to the data pad, the data pad electrode being electrically connected to the data pad through a third contact hole, the third contact hole being worn The protective film, the organic insulating film, and the inorganic insulating film are passed through.
5. 如权利要求 1-4中任一项所述的阵列基板, 其中: The array substrate according to any one of claims 1 to 4, wherein:
所述像素电极与所述数据线在水平方向上的距离为 0 ~ 1μπι。 The distance between the pixel electrode and the data line in the horizontal direction is 0 ~ 1μπι.
6. 如权利要求 1-5中任一项所述的阵列基板, 其中: The array substrate according to any one of claims 1 to 5, wherein:
所述无机绝缘膜的厚度为 1000~2000Α。 The inorganic insulating film has a thickness of 1000 to 2000 Å.
7. 如权利要求 1-6中任一项所述的阵列基板, 其中: The array substrate according to any one of claims 1 to 6, wherein:
所述有机绝缘膜的材料为聚丙烯酸。 The material of the organic insulating film is polyacrylic acid.
8. 如权利要求 1-7中任一项所述的阵列基板, 其中: The array substrate according to any one of claims 1 to 7, wherein:
所述有机绝缘膜的厚度为 10000~40000Α。 The organic insulating film has a thickness of 10,000 to 40,000 Å.
9. 如权利要求 1-8中任一项所述的阵列基板, 其中: The array substrate according to any one of claims 1 to 8, wherein:
所述保护膜釆用无机绝缘材料, 其厚度为 2000~4000Α。 The protective film is made of an inorganic insulating material and has a thickness of 2000 to 4000 Å.
10. 一种阵列基板的制造方法, 包括: 10. A method of fabricating an array substrate, comprising:
在基板上形成栅电极和栅线; Forming a gate electrode and a gate line on the substrate;
在形成有所述栅电极和所述栅线的基板上形成栅绝缘层; Forming a gate insulating layer on the substrate on which the gate electrode and the gate line are formed;
在形成有所述栅绝缘层的基板上形成半导体层、 源电极、 漏电极、 数据 线; Forming a semiconductor layer, a source electrode, a drain electrode, and a data line on the substrate on which the gate insulating layer is formed;
在形成有所述半导体层、 所述源电极、 所述漏电极和所述数据线的基板 上形成无机绝缘膜; Forming an inorganic insulating film on the substrate on which the semiconductor layer, the source electrode, the drain electrode, and the data line are formed;
在形成有所述无机绝缘膜的基板上形成有机绝缘膜, 对所述有机绝缘膜 和所述无机绝缘膜进行构图; Forming an organic insulating film on the substrate on which the inorganic insulating film is formed, and patterning the organic insulating film and the inorganic insulating film;
在形成有所述有机绝缘膜的基板上形成像素电极, 所述像素电极与所述 漏电极电连接; Forming a pixel electrode on the substrate on which the organic insulating film is formed, the pixel electrode being electrically connected to the drain electrode;
在形成有所述像素电极的基板上形成保护膜,并对所述保护膜进行构图; 在形成有所述保护膜的基板上形成公共电极。 A protective film is formed on the substrate on which the pixel electrode is formed, and the protective film is patterned; a common electrode is formed on the substrate on which the protective film is formed.
11. 如权利要求 10所述的制造方法, 其中: 11. The manufacturing method according to claim 10, wherein:
栅焊盘形成在所述基板上, 数据焊盘形成在所述栅绝缘层上; a gate pad is formed on the substrate, and a data pad is formed on the gate insulating layer;
所述对所述有机绝缘膜和所述无机绝缘膜进行构图形成穿过所述有机绝 缘膜和所述无机绝缘膜的第一接触孔并暴露所述栅焊盘处的栅绝缘层和所述 数据焊盘, 所述像素电极通过所述第一接触孔电连接到所述漏电极; 所述对所述保护膜进行构图形成第二接触孔和第三接触孔, 该第二接触 孔穿过所述保护膜、 所述有机绝缘膜、 所述无机绝缘膜和所述栅绝缘层, 该 第三接触孔穿过所述保护膜、 所述有机绝缘膜和所述无机绝缘膜; Forming the organic insulating film and the inorganic insulating film to form a first contact hole through the organic insulating film and the inorganic insulating film and exposing a gate insulating layer at the gate pad and the a data pad, the pixel electrode being electrically connected to the drain electrode through the first contact hole; the patterning the protective film to form a second contact hole and a third contact hole, the second contact hole passing through The protective film, the organic insulating film, the inorganic insulating film, and the gate insulating layer, the third contact hole passes through the protective film, the organic insulating film, and the inorganic insulating film;
栅焊盘电极和数据焊盘电极形成在所述保护膜上, 所述栅焊盘电极通过 所述第二接触孔与所述栅焊盘电连接, 所述数据焊盘电极通过所述第三接触 孔与所述数据焊盘电连接; 以及 a gate pad electrode and a data pad electrode are formed on the protective film, the gate pad electrode is electrically connected to the gate pad through the second contact hole, and the data pad electrode passes through the third a contact hole electrically connected to the data pad;
所述公共电极包括位于所述像素电极上方的第一公共电极和位于所述数 据线上方的第二公共电极。 The common electrode includes a first common electrode above the pixel electrode and a second common electrode above the data line.
12. 如权利要求 10-11 中任一项所述的制造方法, 其中在对所述有机绝 缘膜进行构图之后, 还包括: The manufacturing method according to any one of claims 10 to 11, wherein after the organic insulating film is patterned, the method further comprises:
对所述有机绝缘膜进行固化处理, 所述固化处理的温度为 230~260°C , 时间为 30~60分钟。 The organic insulating film is subjected to a curing treatment at a temperature of 230 to 260 ° C for a period of 30 to 60 minutes.
13. 如权利要求 10-12中任一项所述的制造方法, 其中: The manufacturing method according to any one of claims 10 to 12, wherein:
所述像素电极与所述数据线在沿平行于所述基板的方向之间的距离为 a distance between the pixel electrode and the data line in a direction parallel to the substrate is
0 ~ 1μπι。 0 ~ 1μπι.
14. 如权利要求 10-13中任一项所述的制造方法, 其中: The manufacturing method according to any one of claims 10 to 13, wherein:
所述无机绝缘膜的厚度为 1000~2000Α。 The inorganic insulating film has a thickness of 1000 to 2000 Å.
15. 如权利要求 10-14中任一项所述的制造方法, 其中: The manufacturing method according to any one of claims 10 to 14, wherein:
所述有机绝缘膜的材料为聚丙烯酸。 The material of the organic insulating film is polyacrylic acid.
16. 如权利要求 10-15中任一项所述的制造方法, 其中: The manufacturing method according to any one of claims 10 to 15, wherein:
所述有机绝缘膜的厚度为 10000~40000Α。 The organic insulating film has a thickness of 10,000 to 40,000 Å.
17. 如权利要求 10-16中任一项所述的制造方法, 其中: The manufacturing method according to any one of claims 10 to 16, wherein:
所述保护膜釆用无极绝缘材料, 其厚度为 2000~4000Α。 The protective film is made of an infinitely insulating material and has a thickness of 2000 to 4000 Å.
18. 如权利要求 10-17 中任一项所述的制造方法, 其中所述在形成有所 述栅绝缘层的基板上形成所述半导体层、 所述源电极、 所述漏电极、 所述数 据线和所述数据焊盘包括: The manufacturing method according to any one of claims 10 to 17, wherein the semiconductor layer, the source electrode, the drain electrode, and the thin film are formed on a substrate on which the gate insulating layer is formed The data line and the data pad include:
在形成有所述栅绝缘层的基板上形成半导体材料层; Forming a semiconductor material layer on the substrate on which the gate insulating layer is formed;
对所述半导体材料层进行构图以形成半导体层; Patterning the layer of semiconductor material to form a semiconductor layer;
在形成有所述半导体层的基板上形成金属层; 对所述金属层进行构图, 形成源电极、 漏电极、 数据线和数据焊盘, 源 电极和漏电极之间的半导体层形成沟道。 Forming a metal layer on the substrate on which the semiconductor layer is formed; The metal layer is patterned to form a source electrode, a drain electrode, a data line, and a data pad, and a semiconductor layer between the source electrode and the drain electrode forms a channel.
19. 如权利要求 10-18 中任一项所述的制造方法, 其中所述在形成有所 述栅绝缘层的基板上形成所述半导体层、 所述源电极、 所述漏电极、 所述数 据线和所述数据焊盘包括: The manufacturing method according to any one of claims 10 to 18, wherein the semiconductor layer, the source electrode, the drain electrode, and the thin film are formed on a substrate on which the gate insulating layer is formed The data line and the data pad include:
在形成有所述栅绝缘层的所述基板上依次形成半导体材料层和金属层; 在所述金属层上形成光刻胶层; Forming a semiconductor material layer and a metal layer on the substrate on which the gate insulating layer is formed; forming a photoresist layer on the metal layer;
釆用半色调或灰色调掩模板对所述光刻胶层进行曝光和显影, 形成光刻 胶完全保留区域、 光刻胶部分保留区域和光刻胶未保留区域; Exposing and developing the photoresist layer with a halftone or gray tone mask to form a photoresist completely reserved region, a photoresist portion remaining region, and a photoresist unretained region;
刻蚀掉所述光刻胶未保留区域的金属层和半导体材料层; Etching off the metal layer and the semiconductor material layer of the unretained region of the photoresist;
通过灰化工艺去除所述光刻胶部分保留区域的光刻胶; Removing the photoresist of the remaining portion of the photoresist by an ashing process;
刻蚀掉所述光刻胶部分保留区域的金属层以及半导体材料层的一部分。 A metal layer of the photoresist portion remaining region and a portion of the semiconductor material layer are etched away.
20. 一种显示装置, 包括如权利要求 1至 9中任一项所述的阵列基板。 A display device comprising the array substrate according to any one of claims 1 to 9.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101190080A CN102645808A (en) | 2012-04-20 | 2012-04-20 | Manufacture method of array substrate, array substrate and display device |
CN201210119008.0 | 2012-04-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013155830A1 true WO2013155830A1 (en) | 2013-10-24 |
Family
ID=46658715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/083889 WO2013155830A1 (en) | 2012-04-20 | 2012-10-31 | Method for manufacturing array substrate, array substrate, and display device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102645808A (en) |
WO (1) | WO2013155830A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104966721A (en) * | 2015-07-15 | 2015-10-07 | 京东方科技集团股份有限公司 | Array substrate and manufacturing method thereof, display panel and display apparatus |
CN106298647A (en) * | 2016-08-31 | 2017-01-04 | 京东方科技集团股份有限公司 | A kind of array base palte and preparation method thereof, display floater and preparation method thereof |
JP2017500727A (en) * | 2013-11-12 | 2017-01-05 | 深▲セン▼市華星光電技術有限公司 | Thin film transistor substrate manufacturing method and thin film transistor substrate manufactured by the method |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102645808A (en) * | 2012-04-20 | 2012-08-22 | 京东方科技集团股份有限公司 | Manufacture method of array substrate, array substrate and display device |
CN102707523A (en) * | 2012-04-20 | 2012-10-03 | 京东方科技集团股份有限公司 | Manufacturing method of array substrate as well as array substrate and display device |
TWI501015B (en) * | 2013-04-03 | 2015-09-21 | Au Optronics Corp | Pixel structure and method for manufacturing the same |
CN103219319B (en) * | 2013-04-26 | 2015-11-25 | 京东方科技集团股份有限公司 | Array base palte and preparation method thereof, display unit |
CN103325792A (en) * | 2013-05-23 | 2013-09-25 | 合肥京东方光电科技有限公司 | Array substrate, preparation method and display device |
CN103325794A (en) * | 2013-05-30 | 2013-09-25 | 合肥京东方光电科技有限公司 | Array substrate, display device and method for manufacturing array substrate |
CN103346160B (en) * | 2013-07-10 | 2016-04-06 | 京东方科技集团股份有限公司 | Array base palte and preparation method thereof, display unit |
CN103439840B (en) | 2013-08-30 | 2017-06-06 | 京东方科技集团股份有限公司 | A kind of manufacture method of array base palte, display device and array base palte |
CN104766819B (en) * | 2014-01-06 | 2017-12-08 | 瀚宇彩晶股份有限公司 | Picture element substrate and its manufacture method |
CN103943637B (en) * | 2014-04-10 | 2016-08-31 | 京东方科技集团股份有限公司 | A kind of array base palte, its manufacture method and display device |
CN104298040B (en) | 2014-10-31 | 2018-07-06 | 京东方科技集团股份有限公司 | A kind of COA substrates and preparation method thereof and display device |
CN105870124B (en) * | 2015-01-21 | 2019-06-07 | 群创光电股份有限公司 | Display device |
CN105185789A (en) * | 2015-09-07 | 2015-12-23 | 昆山龙腾光电有限公司 | Fabrication method of array substrate, array substrate and liquid crystal display device |
WO2018018351A1 (en) * | 2016-07-25 | 2018-02-01 | 深圳市柔宇科技有限公司 | Method for manufacturing array substrate |
CN107086220A (en) * | 2017-04-24 | 2017-08-22 | 惠科股份有限公司 | Active switch array substrate, manufacturing method thereof and display panel |
KR102418577B1 (en) * | 2017-12-13 | 2022-07-08 | 엘지디스플레이 주식회사 | Display device having touch sensor and manufacturing the same |
CN110310921B (en) * | 2019-07-09 | 2021-10-01 | 京东方科技集团股份有限公司 | Display substrate, manufacturing method thereof, display panel and display device |
CN114114763B (en) * | 2020-08-27 | 2023-08-08 | 合肥京东方显示技术有限公司 | Display substrate and display panel |
CN113867028A (en) * | 2021-10-09 | 2021-12-31 | 福建华佳彩有限公司 | Pixel structure with low touch load |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1369730A (en) * | 2001-01-29 | 2002-09-18 | 株式会社日立制作所 | Liquid crystal display |
CN1395139A (en) * | 2001-07-02 | 2003-02-05 | 日本电气株式会社 | Plane internal switching type liquid crystal display and its manufacturing method |
CN1420386A (en) * | 2001-11-15 | 2003-05-28 | 日本电气株式会社 | Plane switch mode active matrix liquid crystal display device and mfg. method thereof |
CN101393363A (en) * | 2007-09-21 | 2009-03-25 | 北京京东方光电科技有限公司 | FFS type TFT-LCD array substrate structure and method for manufacturing same |
US20090322974A1 (en) * | 2008-06-25 | 2009-12-31 | Samsung Electronics Co., Ltd. | Liquid crystal display and driving method thereof |
CN102645808A (en) * | 2012-04-20 | 2012-08-22 | 京东方科技集团股份有限公司 | Manufacture method of array substrate, array substrate and display device |
-
2012
- 2012-04-20 CN CN2012101190080A patent/CN102645808A/en active Pending
- 2012-10-31 WO PCT/CN2012/083889 patent/WO2013155830A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1369730A (en) * | 2001-01-29 | 2002-09-18 | 株式会社日立制作所 | Liquid crystal display |
CN1395139A (en) * | 2001-07-02 | 2003-02-05 | 日本电气株式会社 | Plane internal switching type liquid crystal display and its manufacturing method |
CN1420386A (en) * | 2001-11-15 | 2003-05-28 | 日本电气株式会社 | Plane switch mode active matrix liquid crystal display device and mfg. method thereof |
CN101393363A (en) * | 2007-09-21 | 2009-03-25 | 北京京东方光电科技有限公司 | FFS type TFT-LCD array substrate structure and method for manufacturing same |
US20090322974A1 (en) * | 2008-06-25 | 2009-12-31 | Samsung Electronics Co., Ltd. | Liquid crystal display and driving method thereof |
CN102645808A (en) * | 2012-04-20 | 2012-08-22 | 京东方科技集团股份有限公司 | Manufacture method of array substrate, array substrate and display device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017500727A (en) * | 2013-11-12 | 2017-01-05 | 深▲セン▼市華星光電技術有限公司 | Thin film transistor substrate manufacturing method and thin film transistor substrate manufactured by the method |
CN104966721A (en) * | 2015-07-15 | 2015-10-07 | 京东方科技集团股份有限公司 | Array substrate and manufacturing method thereof, display panel and display apparatus |
CN106298647A (en) * | 2016-08-31 | 2017-01-04 | 京东方科技集团股份有限公司 | A kind of array base palte and preparation method thereof, display floater and preparation method thereof |
US10763283B2 (en) | 2016-08-31 | 2020-09-01 | Boe Technology Group Co., Ltd. | Array substrate, manufacturing method thereof, display panel and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102645808A (en) | 2012-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013155830A1 (en) | Method for manufacturing array substrate, array substrate, and display device | |
WO2013155845A1 (en) | Method for manufacturing array substrate, array substrate, and display device | |
US10120247B2 (en) | Manufacturing method for TFT substrate and TFT substrate manufactured by the manufacturing method thereof | |
US9859304B2 (en) | Manufacturing method of array substrate, array substrate and display device | |
US9759958B2 (en) | Array substrate, display device and method for manufacturing array substrate | |
WO2014015453A1 (en) | Thin film transistor, array substrate and manufacturing method thereof, and display device | |
KR20080001105A (en) | Array substrate for lcd and the fabrication method thereof | |
WO2016029543A1 (en) | Thin-film transistor array substrate and preparation method therefor, and display apparatus | |
WO2013071800A1 (en) | Display device, thin film transistor, array substrate and manufacturing method thereof | |
KR101900170B1 (en) | Method for manufacturing array substrate, array substrate and display device | |
US20180046046A1 (en) | Array substrate, method for manufacturing the same, and display device | |
WO2014166181A1 (en) | Thin-film transistor and manufacturing method thereof, array base plate and display apparatus | |
JP2006338008A (en) | Array substrate having enhanced numerical aperture, method of manufacturing the same, and display apparatus having the same | |
US20130140574A1 (en) | Thin film transistor array substrate and method for manufacturing the same and electronic device | |
US10254609B2 (en) | Array substrate including pixel electrode and drain electrode in direct contact to each other, and method of manufacturing the same, display panel, and display device | |
WO2015192595A1 (en) | Array substrate and manufacturing method thereof, and display device | |
US20200348784A1 (en) | Touch display substrate, method of manufacturing the same and display device | |
US9281325B2 (en) | Array substrate, manufacturing method thereof and display device | |
US9690146B2 (en) | Array substrate, its manufacturing method, and display device | |
US10403761B2 (en) | Array substrate and manufacturing method thereof, and display device | |
EP2819155B1 (en) | Thin film transistor array substrate and producing method thereof | |
US20140071553A1 (en) | Color filter substrate, tft array substrate, manufacturing method of the same, and liquid crystal display panel | |
CN106024705B (en) | The production method of TFT substrate | |
WO2013075591A1 (en) | Array substrate, preparing method thereof and display device | |
US9397121B2 (en) | Array substrate and method for manufacturing the same, display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12874739 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.03.2015) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12874739 Country of ref document: EP Kind code of ref document: A1 |