[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013153946A1 - Communication system and communication method - Google Patents

Communication system and communication method Download PDF

Info

Publication number
WO2013153946A1
WO2013153946A1 PCT/JP2013/058661 JP2013058661W WO2013153946A1 WO 2013153946 A1 WO2013153946 A1 WO 2013153946A1 JP 2013058661 W JP2013058661 W JP 2013058661W WO 2013153946 A1 WO2013153946 A1 WO 2013153946A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal device
station apparatus
communication system
terminal
Prior art date
Application number
PCT/JP2013/058661
Other languages
French (fr)
Japanese (ja)
Inventor
良太 山田
貴司 吉本
梢 横枕
加藤 勝也
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013153946A1 publication Critical patent/WO2013153946A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/06Hybrid resource partitioning, e.g. channel borrowing
    • H04W16/08Load shedding arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • the present invention relates to a communication system and a communication method.
  • a base station device constituting a cell (communication service area) for providing a wireless communication service to a plurality of terminal devices is arranged in a city and its surrounding area.
  • a cellular configuration in which a plurality of base station devices are arranged is formed, and the communication area is expanded.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Multiple Access: Orthogonal Frequency Division Multiple Access
  • data of a plurality of terminal devices is allocated using an area (for example, referred to as a resource block) configured from a predetermined frequency band or time zone as an allocation unit.
  • a transmission signal transmitted from a transmission-side base station apparatus is received by a reception-side terminal apparatus via a plurality of transmission paths. This is called a multipath environment.
  • a part or all of the range of the macro cell formed by the main base station apparatus (macro base station), and a low power base station (pico cell base station, femto cell base having a maximum transmission power smaller than that of the macro base station)
  • a technology for constructing a heterogeneous network in which a plurality of base station devices are arranged so as to overlap with the cell range of a station etc. and each terminal device is distributed (load distribution) to each base station device Has been proposed.
  • received power is applied as a reference when the main base station apparatus selects a base station apparatus to which each terminal apparatus is connected.
  • a base station device to which a terminal device is connected is selected based on received power, a high power base station is always selected, so that the terminal devices are concentrated on one base station device, and the dispersion effect is low.
  • a technique for connecting the terminal apparatus to a low power base station using a distance (path loss) standard, a biased power standard, or the like as a new standard has been proposed. (Non-Patent Document 1).
  • Non-Patent Document 1 when the transmission / reception apparatus is not connected to the base station apparatus having the maximum reception power, the terminal apparatus can obtain the dispersion effect, but the signal from the base station apparatus having the maximum reception power interferes. Therefore, there is a problem that the throughput deteriorates. Further, in Non-Patent Document 1, an emphasis is placed on increasing the number of terminal devices connected to the low power base station device by biasing the received voltage, and the base station device that does not achieve the maximum received power for the terminal device. When connected, the signal is interfered with from the base station device that provides the maximum received power, and the received SINR (Signal-to-Interference plus noise power ratio) decreases. .
  • SINR Signal-to-Interference plus noise power ratio
  • the present invention has been made in view of the above circumstances, and other than a base station apparatus that suppresses a decrease in throughput while distributing each terminal apparatus to a corresponding base station apparatus, and the terminal apparatus provides the maximum received power. It is an object of the present invention to provide a communication system and a communication method for reducing interference with a terminal device in cooperation with a plurality of base station devices when connecting to the base station device.
  • the configuration of the communication system according to the present invention is as follows.
  • the communication system of the present invention includes a plurality of base station devices and a terminal device connected to at least one of the plurality of base station devices, and the plurality of base station devices are connectable ranges of the base station devices.
  • a plurality of base station apparatuses cooperate with each other to reduce inter-cell interference by a base station apparatus connected to the terminal apparatus. It is characterized by selecting whether or not to perform.
  • the inter-cell interference is reduced when the base station apparatus connected to the terminal apparatus is a base station apparatus other than the base station apparatus that provides the maximum received power in the terminal apparatus. It is characterized by this.
  • the inter-cell interference is reduced. It is characterized by this.
  • the base station device other than the maximum transmission power is a pico base station device.
  • the base station apparatus reduces the inter-cell interference by precoding.
  • the terminal device reduces the inter-cell interference by using a reception weight.
  • the communication method of the present invention includes a plurality of base station devices and a terminal device connected to at least one of the plurality of base station devices, wherein the plurality of base station devices connect each base station device.
  • a communication system includes a plurality of base station apparatuses and a terminal apparatus connected to at least one of the plurality of base station apparatuses, and the plurality of base station apparatuses are connected to each base station apparatus.
  • the communication system is arranged such that all or some of the connectable cells overlap each other, and the plurality of base station devices cooperate with each other by the base station device to which the terminal device is connected.
  • the communication system reduces the inter-cell interference when the base station apparatus connected to the terminal apparatus is a base station apparatus other than the base station apparatus that provides the maximum received power in the terminal apparatus. By doing so, it is possible to effectively suppress the inter-cell interference that arrives at the terminal device, so that it is possible to achieve an excellent effect that it is possible to suppress a decrease in throughput.
  • the inter-cell interference when the base station apparatus to which the terminal apparatus is connected is connected to a base station other than the maximum transmission power among the plurality of base station apparatuses, the inter-cell interference By reducing this, it is possible to effectively suppress inter-cell interference that arrives at the terminal device, so that it is possible to achieve an excellent effect of suppressing a reduction in throughput.
  • the base station apparatus other than the maximum transmission power is a pico base station
  • even a pico base station apparatus having a transmission power lower than that of the macro base station apparatus can effectively prevent inter-cell interference coming to the terminal apparatus. Therefore, it is possible to achieve an excellent effect of suppressing a decrease in throughput.
  • the base station apparatus reduces the inter-cell interference by precoding, and the terminal apparatus reduces the inter-cell interference by reception weight, thereby achieving a scheduling effect.
  • the base station apparatus reduces the inter-cell interference by precoding
  • the terminal apparatus reduces the inter-cell interference by reception weight, thereby achieving a scheduling effect.
  • a communication method includes a plurality of base station devices and a terminal device connected to at least one of the plurality of base station devices, and the plurality of base station devices
  • a base station apparatus that has a step of selecting whether or not to reduce inter-cell interference, thereby selecting whether or not a plurality of base station apparatuses cooperate to suppress inter-cell interference and achieving maximum received power.
  • a plurality of base station apparatuses 300-j (j is an arbitrary positive integer) and a plurality of terminal apparatuses 400-k (k is an arbitrary positive integer) use OFDM.
  • An example of data transmission will be described. Note that the present embodiment is not limited to this, and other transmission methods can be applied.
  • FIG. 1 is a schematic diagram showing a configuration of a communication system 1 according to the first embodiment of the present invention.
  • the communication system 1 according to the first embodiment includes a plurality of base station apparatuses 300-j (300-1, 300-2) having different cell radii and a plurality of terminal apparatuses 400-k (400-1, 400-2). ).
  • Cell 300-1a (macro cell) of main base station apparatus 300-1 (also referred to as macro base station apparatus or high power base station) and base station apparatus 300 which is a low power base station having a maximum transmission power smaller than that of the macro base station apparatus -2 (also referred to as pico base station, fetom base station, and low power base station) cell 300-2a (pico cell) overlap each other.
  • macro base station apparatus also referred to as macro base station apparatus or high power base station
  • base station apparatus 300 which is a low power base station having a maximum transmission power smaller than that of the macro base station apparatus -2 (also referred to as pico base station, fetom base station, and low power base station) cell 300-2a (pico cell) overlap each other.
  • each terminal device 400-k is wirelessly connected based on the traffic of the base station device 300-j.
  • a base station device is selected.
  • the terminal device 400-1 is wirelessly connected to the base station device 300-1, and the transmission signal from the base station device 300-1 is the desired signal (r11) through the propagation path, and is received through the other propagation path.
  • the transmission signal from the base station apparatus 300-2 to be used becomes inter-cell interference (undesired signal) (s11).
  • the terminal device 400-2 is wirelessly connected to the base station device 300-2, and the transmission signal from the base station device 300-2 is the desired signal (r22) through the propagation path, and passes through the other propagation paths.
  • the transmission signal from the base station apparatus 300-1 received in this manner becomes inter-cell interference (undesired signal) (s22).
  • heterogeneous network By constructing such a heterogeneous network (heterogeneous network), it is possible to improve the total frequency utilization efficiency seen from the network side in the area covered by the macro cell.
  • the base station apparatus 300-3 and the base station apparatus 300-4 are arranged partially overlapping.
  • both base station apparatus 300-3 and base station apparatus 300-4 are macro base station apparatuses.
  • the base station device 300-3 and the base station device 300-4, and the terminal devices 400-k (400-3, 400-4, 400-5) constitute the communication system 1a.
  • the terminal device 400-3 is wirelessly connected to the base station device 300-3, and the transmission signal from the base station device 300-3 is the desired signal (r33) and is received through another propagation path. -4 is the inter-cell interference (undesired signal) (s33). Similarly, terminal device 400-4 wirelessly connects to base station device 300-4, and the transmission signal from base station device 300-4 is a desired signal (r44), and is received via another propagation path. The transmission signal from the station device 300-3 becomes inter-cell interference (undesired signal) (s55).
  • the terminal device 400-5 existing at the cell edge (end area of the communication service area) of the two overlapping cells 300-3a and 300-4a is wirelessly connected to the base station device 300-3, and the base station device 300-
  • the transmission signal from 3 is the desired signal (r55)
  • the transmission signal from the base station apparatus 300-4 received through another propagation path is inter-cell interference (undesired signal) (s55).
  • FIG. 3 is a block diagram showing a schematic configuration of the base station apparatus 300-j of the communication system 1 according to the first embodiment.
  • the base station apparatus 300-j includes an upper layer 301, an encoding unit 302, a modulation unit 303, a resource mapping unit 304, a reference signal generation unit 305, a control signal generation unit 306, and a transmission weight generation unit 307. , Transmission weight multiplier 308, IFFT units 309-1 to 309-T (Inverse ⁇ Fast Fourier Transform, T is an arbitrary positive integer hereinafter), GI insertion units 310-1 to 310T (guard interval) : Guard Interval), transmission units 311-1 to 311T, transmission antenna units 312-1 to 312-T, reception antenna unit 313, reception unit 314, control signal detection unit 315, and base station selection unit 316 .
  • T is an arbitrary positive integer hereinafter
  • GI insertion units 310-1 to 310T Guard interval
  • transmission units 311-1 to 311T transmission antenna units 312-1 to 312-T
  • reception antenna unit 313, reception unit 314, control signal detection unit 315 and base station selection unit 316 .
  • the base station device 300-j receives a signal transmitted from the terminal device 400 via the reception antenna unit 313, and the reception unit 314 can perform digital signal processing such as signal detection processing on the signal. Down-convert (radio frequency conversion) to an appropriate frequency band, and further perform filtering processing to remove spurious, and convert the filtered signal from an analog signal to a digital signal (Analog to Digital conversion).
  • the control signal detection unit 315 performs demodulation processing, decoding processing, and the like on the digital signal output from the reception unit 314, and detects a control signal.
  • the control signal includes a connection request from the terminal device 400 to the base station device 300, CQI (Channel Quality Indicator), received power of a base station device existing in the vicinity (hereinafter referred to as a peripheral base station device), and the like. .
  • the base station selection unit 316 selects a base station device to which the terminal device 400-k is connected based on the traffic and received power.
  • the upper layer 101 is a layer of functions higher than the physical layer (Physical Layer) among the layers of communication functions defined by the OSI reference model, for example, MAC (Media Access Control), data link layer, This corresponds to a layer such as a network layer.
  • Physical Layer Physical Layer
  • MAC Media Access Control
  • data link layer This corresponds to a layer such as a network layer.
  • the upper layer 101 also obtains feedback information such as MCS information and the number of spatial multiplexing included in the signal transmitted from the terminal device 400-k.
  • the upper layer 301 outputs information data to the encoding unit 302 based on the feedback information.
  • the upper layer 101 outputs control data to the control signal generation unit 306 in order to request notification of received power from the peripheral base station apparatus connected to the terminal apparatus 400-k.
  • the control data includes information such as a synchronization signal SCH, radio resource allocation (scheduling), MSC (Modulation and Coding Scheme), the number of spatial multiplexing (the number of channels by spatial multiplexing), and frequency allocation.
  • the upper layer 101 also notifies other parameters necessary for each part of the base station apparatus 300-1 to function.
  • the upper layer 101 outputs reference signal (referred to as a pilot signal) data for performing channel estimation and reception quality measurement in the terminal device 400-k to the reference signal generation unit 305. Further, the upper layer 101 outputs the connected base station information received from the neighboring base station apparatus to the transmission weight generation unit 307.
  • reference signal referred to as a pilot signal
  • the encoding unit 302 performs error correction encoding on the information data input from the upper layer 301.
  • the information data is, for example, an audio signal accompanying a call, a still image or moving image signal representing a captured image, a character message, or the like.
  • the encoding method used when the encoding unit 302 performs error correction encoding is, for example, turbo encoding, convolutional encoding, low density parity check encoding (low density parity check encoding); LDPC).
  • the encoding unit 302 performs rate matching processing on the encoded bit sequence in order to match the coding rate of the error correction-encoded data sequence with the encoding rate corresponding to the data transmission rate. May be. Further, the encoding unit 302 may have a function of rearranging and interleaving the error correction encoded data series.
  • Modulation section 303 modulates the signal input from encoding section 302 and generates a modulation symbol.
  • Modulating section 303 may have a function of rearranging generated modulation symbols and interleaving them.
  • the reference signal generation unit 305 generates a reference signal (pilot signal) composed of a known sequence used for reception power measurement and propagation path estimation, and outputs the generated reference signal to the resource mapping unit 304.
  • the reference signal is a signal used to estimate the propagation characteristics from the transmitting antenna units 312-1 to 312-T of the base station device to the receiving antenna units 401-1 to 401-R of each terminal device 400-k. is there.
  • the estimated propagation characteristics are used for propagation path information for calculating a transmission weight coefficient or propagation path compensation in a terminal device.
  • the control signal generation unit 306 generates a control signal including control data output from the upper layer 301.
  • the control signal may be subjected to error correction coding and modulation processing.
  • the resource mapping unit 304 maps modulation symbols, reference signals, and control signals to resource elements based on scheduling information notified from the upper layer 301 (hereinafter referred to as resource mapping).
  • the resource element is a minimum unit for arranging a signal composed of one subcarrier and one OFDM symbol.
  • the transmission weight generation unit 307 determines (or calculates) the amount of inter-cell interference based on the connected base station information received from the neighboring base station device, which is input from the higher layer 301, and cooperates between a plurality of base station devices. It is determined whether or not to suppress inter-cell interference. Further, when it is determined that the amount of inter-cell interference is greater than a predetermined reference, the transmission weight generation unit 307 generates a transmission weight and outputs the transmission weight to the multiplication unit 308.
  • the connection base station information is information related to the inter-cell interference amount of the base station apparatus to which the terminal apparatus is connected.
  • the transmission weight generation unit 307 determines that the amount of inter-cell interference is smaller than a predetermined reference, the transmission weight generation unit 307 notifies the transmission weight multiplication unit 308 of information indicating that inter-cell interference suppression is not performed in cooperation between a plurality of base station apparatuses. To do.
  • the unit matrix may be output to the transmission weight multiplier 308 as a weight.
  • the signal does not change before weight multiplication and after weight multiplication.
  • the transmission weight multiplier 308 multiplies the reception signal by the transmission weight coefficient V j that suppresses interference with the terminal device 400-k connected to the cell of the surrounding base station device and the terminal device connected to each base station device.
  • the reception weight coefficient U k to be calculated is calculated.
  • the transmission weight multiplication unit 107 multiplies the signal output from the resource mapping unit 304 by the transmission weight coefficient V j .
  • the reference signal generated by the reference signal generation unit 305 may be multiplied by the transmission weight coefficient V j and / or the reception weight coefficient U k .
  • the IFFT units 309-1 to 309-T perform inverse fast Fourier transform (IFFT) on the signal input from the transmission weight multiplication unit 308 to convert it into a time domain signal.
  • IFFT inverse fast Fourier transform
  • the GI insertion units 310-1 to 310-T insert guard intervals (GI) into the time domain signals converted by the IFFT units 309-1 to 309-T. For example, a part of the latter half of the time domain signal (effective symbol) output from the IFFT units 309-1 to 309-T is copied and added to the head of the effective symbol.
  • GI guard intervals
  • the transmitters 311-1 to 311-T convert the OFDM symbol including the guard interval (GI) inserted from the GI inserters 310-1 to 310-T into digital / analog (D / A). Convert to generate an analog signal.
  • Transmitters 109 to 109-T perform band limitation on the generated analog signal by filtering processing to generate a band limited signal.
  • Transmitters 311-1 to 311-T upconvert the generated band-limited signal to a radio frequency band, output it to transmission antenna units 312-1 to 312-T, and transmit antenna units 312-1 to 312-T. Sent.
  • FIG. 4 is a schematic diagram illustrating a configuration of the terminal device 400-k according to the first embodiment.
  • the terminal device 400-k includes a plurality of receiving antenna units 401-1 to 401-R (hereinafter, R is an arbitrary positive integer), a plurality of receiving units 402-1 to 402-R, and a GI removing unit 403-1 to 403. -R, a plurality of FFT units 404-1 to 404 -R, reception weight multiplication unit 405, MIMO separation unit 406, channel estimation unit 407, reception power calculation unit 408, demodulation unit 409, decoding unit 410, upper layer 411, control A signal generation unit 412, a transmission unit 413, and a transmission antenna unit 414 are included.
  • the terminal device 400-k receives the transmission signal of the base station device 300-j via the receiving antenna units 401-1 to 401-R.
  • Receiving sections 402-1 to 402-R down-convert radio frequency signals input from receiving antenna sections 401-1 to 401-R into a frequency band where digital signal processing is possible, and further filter the down-converted signals To remove unnecessary components (Spurious). Further, the receiving units 202-1 to 202-R convert the filtered signal from an analog signal to a digital signal (A / D; Analog-to-Digital), and the converted digital signal is a GI removing unit 403-. Output to 1 to 403-R.
  • the GI removal units 403-1 to 403-R remove the guard interval (GI) and output signals from which the GI has been removed to the FFT units 404-1 to 404-R.
  • the FFT units 404-1 to 404 -R perform fast Fourier transform (FFT: Fast Fourier Transform) to convert the signals input from the GI removal units 403-1 to 403 -R from time domain signals to frequency domain signals.
  • FFT Fast Fourier Transform
  • the data is output to channel estimation section 407, reception weight multiplication section 405 and reception power calculation section 408.
  • the channel estimation unit 407 performs propagation path estimation using a reference signal included in the input signal.
  • Channel estimation section 407 notifies propagation path estimation value to MIMO separation section 406.
  • the propagation path estimated value is, for example, a transfer function, an impulse response, or the like.
  • the received power calculation unit 408 calculates the received power from each base station apparatus based on the reference signal input via the FFT units 404-1 to 404 -R, and outputs it to the upper layer 411.
  • Reception weight multiplier 405 multiplies reception weight coefficient U k corresponding to transmission weight coefficient V j multiplied by base station apparatus 300-j.
  • the reception weight coefficient U k is generated and transmitted by the base station apparatus 300-j, but when only the transmission weight coefficient V j is received from the base station apparatus 300-j, the transmission weight coefficient V j and the channel It is also possible to calculate the reception weight coefficient U k using the propagation path estimation value estimated by the estimation unit 407. Further, when the reference signal is multiplied by the transmission weight coefficient V j, the reception weight coefficient that suppresses interference on the terminal device side may be obtained.
  • the MIMO separation unit 406 performs MIMO separation based on the output of the reception weight multiplication unit 405 and the channel estimation value from the channel estimation unit 407.
  • MIMO separation is performed in order to suppress inter-stream interference caused by receiving a signal transmitted from each transmission antenna after being spatially multiplexed.
  • MIMO separation includes linear detection such as ZF (Zero Forcing) and MMSE (Maximum Mean Square Error), nonlinear detection such as MLD (Maximum Likelihood Detection) and interference canceller.
  • the interference canceller includes a parallel interference canceller PIC (Parallel Interference Canceller) and a sequential interference canceller SIC (Successive Interference Canceller).
  • the demodulation unit 409 performs demodulation processing on the output signal from the MIMO separation unit 406.
  • the demodulation process may be either a hard decision (calculation of a coded bit sequence) or a soft decision (calculation of a coded bit LLR).
  • the decoding unit 410 performs error correction decoding processing on the encoded bit sequence (or encoded bit LLR) after demodulation output from the demodulation unit 409, calculates information data transmitted to itself, 411.
  • This error correction decoding processing method is a method corresponding to error correction coding such as turbo coding and convolution coding performed by the connected base station apparatus 300-j. Either a hard decision or a soft decision can be applied to the error correction decoding process.
  • the control signal generation unit 412 includes propagation path information between the own station and the base station apparatus 300-j, information including CQI and a channel estimation value, a signal for requesting connection to the base station apparatus 300-j, and a neighboring base station A control signal is generated from information indicating the received power of the apparatus. Specifically, the control signal generation unit 412 generates a control signal for transmitting feedback information (including CQI and the like) to the base station apparatus. The feedback information is determined by the upper layer 411 based on the channel estimation value calculated by the channel estimation unit 407.
  • the signal including the control signal output from the control signal generation unit 412 is up-converted by the transmission unit 413 before the frequency band that can be transmitted in the downlink, and is connected via the transmission antenna unit 414 to the base station apparatus 300- sent to j.
  • T the number of transmission antenna units (antennas) 312-1 to 312-T of each base station apparatus
  • R the number of reception antenna units 401-1 to 401-R of the terminal apparatus 400-j.
  • T and R are arbitrary integers.
  • the transmission weight coefficient value of T row and T column in the q-th base station apparatus (q is an arbitrary integer) is V q
  • the reception weight coefficient value of T row and R column in the p-th terminal apparatus (p is an arbitrary integer).
  • U p the R-row T-column channel matrix between the q-th base station apparatus and the p-th terminal apparatus is represented as H qp .
  • the transmission weight coefficient value V q is set to an arbitrary value.
  • V q V q H I transmission weight coefficient value V q that preserves the relationship of T (H is a complex conjugate transposed matrix, I N is the identity matrix of N rows and N columns).
  • N TX represents the number of base station apparatuses.
  • reception weight coefficient values (U p ) eigenvectors corresponding to T eigenvalues from the smaller one of the covariance matrix Q p are calculated as reception weight coefficient values (U p ).
  • the covariance matrix Q q r of interference in the base station apparatus is calculated based on the following (Formula 2).
  • Eigenvalues corresponding to T eigenvalues from the smaller of the covariance matrix Q q r are calculated as new reception weight coefficient values.
  • the uplink and downlink are reversed, and a new reception weight coefficient value is further calculated as a new transmission weight coefficient value (V q ).
  • a counter (not shown) that counts the number of times of processing is incremented by one, and the above processing is repeated until a predetermined number of times I is reached.
  • V q obtained at the time, respectively transmit weights U p, and receive weights. In this way, the above processing is repeated to suppress interference.
  • the transmission / reception weight obtained above is a weight that maximizes SIR (Signal-to-Interference Power Ratio), but SINR (Signal-to-interference and noise power ratio: Signal-) is as follows. A weight that maximizes to-Interference (and Noise (Power) Ratio) can also be used.
  • the weights that maximize SINR are as follows, for example.
  • the weights u p, t obtained by (Equation 3) are the reception weights of the t-th stream spatially multiplexed, and v q, t obtained by (Equation 5) are the transmission weights of the t-th stream.
  • d represents the number of streams.
  • ⁇ n 2 is noise power
  • I N is a unit matrix of N rows and N columns.
  • FIG. 5 is a sequence diagram illustrating an example of a processing operation in which the base station devices (300-A and 300-B) to which the terminal device 400-1 is connected are selected in the communication system 1.
  • the base station devices (base station devices 300-A and 300-B) periodically transmit synchronization signals and reference signals to the terminal device 400-1 at predetermined time intervals (steps 501 and 502). ).
  • the terminal device 400-1 is in a communicable and waiting state (idle state).
  • synchronization signals there are multiple types of synchronization signals.
  • the primary synchronization channel Primary Synchronization Channel
  • the secondary synchronization channel Secondary Synchronization Channel type.
  • a synchronization channel is transmitted from each base station apparatus in order to shorten the cell search.
  • the terminal device 400-1 detects the sector ID on the primary SCH, detects the cell ID on the secondary SCH, and determines each cell.
  • the terminal device 400-1 uses a synchronization signal to start a process (cell search) for detecting a cell (cell ID) that can be used for communication (step 503).
  • the cell search is a procedure for identifying a cell (communication service area) that can be connected after the terminal device is turned on.
  • the terminal device 400-1 makes a connection request to the base station device (in this case, the base station device 300-A) having the cell ID with the maximum received power (step 504).
  • the base station device 300-A measures its own current traffic (total traffic with other terminal devices connected to its own cell). When it is determined that the current communication volume is greater than the predetermined amount, the base station apparatus is connected to another base station apparatus with a small communication volume, so that other base station apparatuses (base station apparatus 300-B in FIG. 5) exist in the vicinity. ) Is sent an instruction (communication amount request) to notify its current communication amount (step 505).
  • the base station device 300-B that has received the communication amount notification instruction sends its current communication amount to the base station device 300-A (communication amount notification) (step 506).
  • the base station apparatus 300-A determines the base station apparatus to which the terminal apparatus 400-1 is connected in consideration of the traffic, received power, biased received power, or the like (step 507). .
  • the base station device 300-A that has received the communication amount notification determines the communication amount of the base station device 300-B based on a predetermined amount that is set in advance, and determines that the communication amount is small (depending on the preset communication amount) If there are fewer, a cooperative communication request is transmitted to the base station apparatus 300-B (step 508a). When it is determined that the communication volume is large, the base station apparatus 300-A instructs the other base station apparatus (not shown) that can be connected to notify its current communication volume (communication volume request). )
  • the base station apparatus 300-A transmits a cooperative communication request to the base station apparatus 300-B so as to connect to the terminal apparatus 400-1
  • the base station apparatus 300-A sends the terminal apparatus 400-1 to the terminal apparatus 400-1 almost simultaneously.
  • 1 notifies the base station ID of the base station apparatus to be connected (ID unique to the base station apparatus) (connection base station notification) (step 509).
  • the terminal device 400-1 Upon receiving the connection base station notification, the terminal device 400-1 makes a connection request to the base station device 300-B (step 510).
  • the base station device 300-B that has received the connection request notifies (ACKs) the connection permission to the terminal device 400-1 (step 511).
  • the terminal device 400-1 notifies the base station device 300-B of a channel quality display (CQI: Channel Quality Indicator) indicating the channel state (transmission path state) (step 512).
  • CQI Channel Quality Indicator
  • the channel state includes a modulation and coding scheme (MCS: Modulation and Coding Scheme), information for determining the number of MIMO ranks, between the peripheral base station apparatus including the base station apparatus 300-B and the terminal apparatus 400-1.
  • MCS Modulation and Coding Scheme
  • the base station apparatus 300-B performs scheduling, MCS setting, rank setting setting, and the like based on the CQI transmitted from the terminal apparatus 400-1 (step 513).
  • base station apparatus 300-B suppresses interference given to base station apparatus 300-A and base station apparatus 300-B to terminal apparatus 400-1 and other terminal apparatuses connected to the peripheral base station apparatus.
  • the transmission weight coefficient to be transmitted is calculated, and the transmission weight coefficient of the base station apparatus 300-A is transmitted to the base station apparatus 300-A (transmission weight notification) (step 514).
  • the base station apparatus 300-A performs control so as to suppress the interference given to the terminal apparatus 400-1 using the transmitted transmission weight coefficient (step 515).
  • the base station apparatus 300-B performs precoding (weighting) based on the obtained transmission weighting coefficient (step 516). Further, the base station apparatus 300-B calculates a reception weight coefficient used in the terminal apparatus 400-1, and transmits the reception weight coefficient to the terminal apparatus 400-1 (step 517).
  • the base station device 300-B transmits a data signal to the terminal device 400-1 (step 518).
  • the base station apparatus when a terminal apparatus is connected to a base station apparatus that does not have the maximum received power, the base station apparatus does not receive interference from the base station apparatus that has the maximum received power.
  • interference suppression is performed when the terminal device is connected to a base station other than the base station having the maximum received power.
  • a base other than the base station having the maximum transmission power is used. An example of performing processing for suppressing interference when connecting to a station will be described.
  • the communication system 1b includes a plurality of different base station devices (macro base stations and picocell base stations), and constructs a heterogeneous network. Part or all of the macro cell range formed by the macro base station (FIG. 6, base station apparatus 300-D) and the pico cell base station (FIG. 6, base station apparatus 300-C) having a maximum transmission power smaller than that of the macro base station It is arranged so that it overlaps the cell range.
  • the configurations of the base station devices 300-C and 300-D and the terminal device 400-2 included in the communication system 1b according to the second embodiment are the same as those of the base station device included in the communication system 1 according to the first embodiment. Since the configuration is the same as that of the terminal 300-j (300-A, 300-B) and the terminal device 400-k (400-1), description thereof is omitted.
  • FIG. 6 is a sequence diagram showing an example of processing of the base station devices 300-C and 300-D and the terminal device 400-2 in the present embodiment in the communication system 1b.
  • the base station devices (base station devices 300-C and 300-D) periodically transmit a synchronization signal and a reference signal to the terminal device 400-2 at predetermined time intervals, respectively (steps 601 and 602). ).
  • the terminal device 400-2 is in a communicable and waiting state (idle state).
  • the terminal device 400-2 After the power is turned on, the terminal device 400-2 starts a process (cell search) for detecting a cell (cell ID) that can be used for communication using a synchronization signal (step 603), and receives power (or bias)
  • the cell ID of the base station apparatus (base station apparatus 300-C in FIG. 6) having the largest received power is acquired, and a connection request is made to the base station apparatus 300-C (step 604).
  • the base station device 300-C permits (ACKs) the connection to the terminal device 400-2 and the connection is established (step 605).
  • the base station device 300-C transmits a cooperative communication request to the base station device 300-D (step 610).
  • the terminal apparatus 400-2 notifies the base station apparatus 300-C of a channel quality display (CQI) indicating the channel state (transmission path state) (step 611).
  • the channel state includes a modulation and coding scheme (MCS), information for determining the number of MIMO ranks, and a channel estimation value between the peripheral base station apparatus including the base station apparatus 300-D and the terminal apparatus 400-2. Including.
  • the base station apparatus 300-C performs scheduling, MCS setting, rank setting setting, and the like based on the CQI transmitted from the terminal apparatus 400-2 (step 612).
  • the base station apparatus 300-C transmits a channel information notification to the base station apparatus 300-D in order to share the channel quality indication (CQI) received in step 611 with the base station apparatus 300-D (step 613).
  • CQI channel quality indication
  • base station apparatus 300-D suppresses the transmission weight coefficient that suppresses the interference that base station apparatus 300-D gives to terminal apparatus 400-2, and the interference that base station apparatus 300-C gives to the terminal apparatus of another cell.
  • the transmission weight coefficient and the terminal device 400-2 are calculated, and the transmission weight coefficient for the base station device 300-C is transmitted to the base station device 300-C (transmission weight notification) (step 614).
  • the base station apparatus 300-D calculates a reception weight coefficient used in the terminal apparatus 400-2 and transmits the reception weight coefficient to the terminal apparatus 400-2 (step 615).
  • the base station apparatus 300-C performs precoding (weighting) based on the transmission weight coefficient transmitted from the base station apparatus 300-D (step 616).
  • the base station device 300-C transmits a data signal to the terminal device 400-1 (step 617).
  • the terminal device 400-2 is notified of the base station ID (ID unique to the base station device) of the base station device to which the terminal device 400-2 should connect (connection base station notification) (step 613).
  • the base station apparatus 300-C performs control so as to suppress the interference given to the terminal apparatus 400-2 using the transmitted transmission weight coefficient (step 618).
  • the plurality of base station devices cooperate with each other by cooperation between the plurality of base station devices.
  • the influence of inter-cell interference can be suppressed, and the inter-cell interference arriving at the terminal device can be effectively suppressed, so that a reduction in throughput can be suppressed.
  • the program that operates on the terminal device according to the present invention is a program that controls the CPU or the like (a program that causes a computer to function) so as to realize the functions of the above-described embodiments according to the present invention.
  • Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU, and corrected and written as necessary.
  • a recording medium for storing the program a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient.
  • the processing is performed in cooperation with the operating system or other application programs.
  • the function of the invention may be realized.
  • the program when distributing to the market, can be stored in a portable recording medium for distribution, or transferred to a server computer connected via a network such as the Internet.
  • the storage device of the server computer is also included in the present invention.
  • Each functional block of the receiving apparatus may be individually formed as a chip, or a part or all of them may be integrated into a chip. When each functional block is integrated, an integrated circuit controller for controlling them is added.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided are a communication system and a communication method with which a reduction in throughput is inhibited while each terminal device is distributed to a corresponding base station device, and with which, in cases when a terminal device connects to a base station device other than the base station device providing maximum reception power, a plurality of base station devices work in coordination with each other in order to attenuate interference with the terminal device. A communication system (1) is provided with a plurality of base station devices (300-A, 300-B), and a terminal device (400-1) for connecting to at least one of the plurality of base station devices (300-A, 300-B), said plurality of base station devices being disposed such that the whole or a part of the connectable ranges of the base station devices overlap each other. The base station device (300-B) having the terminal device (400-1) connected thereto is controlled so as to cooperate with the other of the plurality of base station devices in order to attenuate inter-cell interference received by the terminal device (400-1).

Description

通信システム及び通信方法Communication system and communication method
 本発明は、通信システム及び通信方法に関する。 The present invention relates to a communication system and a communication method.
 携帯電話などの無線通信システムにおいて、都市及びその周辺地域には、複数の端末装置に無線通信サービスを提供するためのセル(通信サービスエリア)を構成する基地局装置が配置されている。特に、無線通信システムでは、複数の基地局装置が配置されたセルラー構成を成し、通信エリアの拡張が図られている。 In a wireless communication system such as a mobile phone, a base station device constituting a cell (communication service area) for providing a wireless communication service to a plurality of terminal devices is arranged in a city and its surrounding area. In particular, in a wireless communication system, a cellular configuration in which a plurality of base station devices are arranged is formed, and the communication area is expanded.
 次世代移動通信システムの多くで、OFDM(直交周波数分割多重:Orthogonal Frequency Division Multiplexing)が採用されている。複数の直交するキャリアを用いるOFDMを用いた多元接続には、OFDMA(直交周波数多元接続:Orthogonal Frequency Division Multiple Access)がある。OFDMAでは、所定の周波数帯域や時間区域から構成される領域(例えば、リソースブロックと称す)を割り当て単位として、複数の端末装置のデータが割り当てられる。広帯域伝送の場合、送信側の基地局装置から送信される送信信号は、複数の伝送経路を介して受信側の端末装置で受信される。これをマルチパス環境という。 Many of the next-generation mobile communication systems employ OFDM (Orthogonal Frequency Division Multiplexing). As a multiple access using OFDM using a plurality of orthogonal carriers, there is OFDMA (Orthogonal Frequency Multiple Access: Orthogonal Frequency Division Multiple Access). In OFDMA, data of a plurality of terminal devices is allocated using an area (for example, referred to as a resource block) configured from a predetermined frequency band or time zone as an allocation unit. In the case of broadband transmission, a transmission signal transmitted from a transmission-side base station apparatus is received by a reception-side terminal apparatus via a plurality of transmission paths. This is called a multipath environment.
 マルチパス環境でデータが受送信される場合、受信品質の良いリソースブロックと受信品質の悪いリソースブロックとが存在するため、各基地局は、各端末装置に受信品質の良いリソースブロックを割り当てる、スケジューリングと呼ばれる処理を行うことで、大容量且つ受信品質の高い伝送を実現している。 When data is received and transmitted in a multipath environment, there are resource blocks with good reception quality and resource blocks with poor reception quality, so that each base station allocates resource blocks with good reception quality to each terminal device. By carrying out a process called “”, transmission with large capacity and high reception quality is realized.
 しかしながら、近年、急速な都市化に伴い高層ビルやマンション等が建設されることで、多くの受信不感地域又は弱電界地域が発生する。これらの地域では、たびたび端末装置と基地局装置との接続が制限されることが生じ得る。また、基地局装置に接続する端末装置の数が増えるにつれて、基地局装置は、一部の端末装置に受信品質の良いリソースブロックを割り当てることができなくなりスケジューリングの効果が著しく減少することがある。 However, in recent years, with the rapid urbanization, high-rise buildings, condominiums, etc. are constructed, and many reception insensitive areas or weak electric field areas are generated. In these areas, the connection between the terminal device and the base station device can often be restricted. Also, as the number of terminal devices connected to the base station apparatus increases, the base station apparatus cannot allocate resource blocks with good reception quality to some terminal apparatuses, and the scheduling effect may be significantly reduced.
 また、移動通信システムの高速化に伴い、端末装置に対するスループットを一層向上することが要求されている。スループットを向上する方法として、主基地局装置(マクロ基地局)が構成するマクロセルの範囲の一部又は全部と、マクロ基地局より最大送信電力が小さい小電力基地局(ピコセル基地局、フェムトセル基地局等)のセルの範囲とを重複するように、複数の基地局装置を配置させ、各端末装置を各基地局装置に分散(負荷分散)させる異種ネットワーク(ヘテロジーニアス・ネットワーク)を構築する技術が提案されている。 Also, with the increase in the speed of mobile communication systems, it is required to further improve the throughput for terminal devices. As a method of improving the throughput, a part or all of the range of the macro cell formed by the main base station apparatus (macro base station), and a low power base station (pico cell base station, femto cell base having a maximum transmission power smaller than that of the macro base station) A technology for constructing a heterogeneous network in which a plurality of base station devices are arranged so as to overlap with the cell range of a station etc. and each terminal device is distributed (load distribution) to each base station device Has been proposed.
 一般に、各端末装置の接続する基地局装置を主基地局装置が選択する際の基準として受信電力が適用されている。受信電力を基準として端末装置の接続する基地局装置が選択される場合、常に高電力基地局が選択されるため、端末装置が1つの基地局装置に集中し分散効果は低くなる。端末装置が1つの基地局装置に集中することを防ぐため、新たな基準として距離(パスロス)基準や、バイアス付電力基準等を用いて端末装置を低電力基地局に接続させる技術が提案されている(非特許文献1)。 Generally, received power is applied as a reference when the main base station apparatus selects a base station apparatus to which each terminal apparatus is connected. When a base station device to which a terminal device is connected is selected based on received power, a high power base station is always selected, so that the terminal devices are concentrated on one base station device, and the dispersion effect is low. In order to prevent the terminal apparatus from concentrating on one base station apparatus, a technique for connecting the terminal apparatus to a low power base station using a distance (path loss) standard, a biased power standard, or the like as a new standard has been proposed. (Non-Patent Document 1).
 しかしながら、非特許文献1では、送受信装置に対して最大の受信電力となる基地局装置に接続しない場合、端末装置の分散効果は得られるが、最大受信電力である基地局装置からの信号が干渉となるため、スループットが劣化すると言う問題がある。また、非特許文献1では、受信電圧にバイアスを付して低電力基地局装置に接続する端末装置数を増やすことに重点が置かれ、端末装置にとって最大の受信電力にはならない基地局装置に接続した場合、最大受信電力を提供する基地局装置からに信号が干渉となり、受信SINR(受信信号電力対干渉及び雑音電力比:Signal-to-Interference plus noise power ratio)が低下するという課題がある。 However, in Non-Patent Document 1, when the transmission / reception apparatus is not connected to the base station apparatus having the maximum reception power, the terminal apparatus can obtain the dispersion effect, but the signal from the base station apparatus having the maximum reception power interferes. Therefore, there is a problem that the throughput deteriorates. Further, in Non-Patent Document 1, an emphasis is placed on increasing the number of terminal devices connected to the low power base station device by biasing the received voltage, and the base station device that does not achieve the maximum received power for the terminal device. When connected, the signal is interfered with from the base station device that provides the maximum received power, and the received SINR (Signal-to-Interference plus noise power ratio) decreases. .
 本発明は、上述のごとき実情に鑑みてなされたもので、各端末装置を対応する基地局装置に分散させながら、スループットの低下を抑制し、端末装置が最大受信電力を提供する基地局装置以外の基地局装置と接続する場合、複数の基地局装置間で協調して該端末装置への干渉を軽減する通信システム及び通信方法を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and other than a base station apparatus that suppresses a decrease in throughput while distributing each terminal apparatus to a corresponding base station apparatus, and the terminal apparatus provides the maximum received power. It is an object of the present invention to provide a communication system and a communication method for reducing interference with a terminal device in cooperation with a plurality of base station devices when connecting to the base station device.
 上述した課題を解決するために本発明に係る通信システムの構成は、次の通りである。 In order to solve the above-described problems, the configuration of the communication system according to the present invention is as follows.
 本発明の通信システムは、複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する端末装置とを備え、前記複数の基地局装置が各基地局装置の接続可能範囲であるセルの全域或いは一部が互いに重複するように配置される通信システムであって、前記端末装置が接続する基地局装置によって、前記複数の基地局装置が協調してセル間干渉の軽減を行うか否かを選択することを特徴とするものである。 The communication system of the present invention includes a plurality of base station devices and a terminal device connected to at least one of the plurality of base station devices, and the plurality of base station devices are connectable ranges of the base station devices. A plurality of base station apparatuses cooperate with each other to reduce inter-cell interference by a base station apparatus connected to the terminal apparatus. It is characterized by selecting whether or not to perform.
 また、本発明の通信システムにおいて、前記端末装置が接続する基地局装置が、該端末装置における最大受信電力を提供する基地局装置以外の基地局装置である場合に前記セル間干渉の軽減を行うことを特徴とするものである。 Further, in the communication system of the present invention, the inter-cell interference is reduced when the base station apparatus connected to the terminal apparatus is a base station apparatus other than the base station apparatus that provides the maximum received power in the terminal apparatus. It is characterized by this.
 また、本発明の通信システムにおいて、前記端末装置が接続する基地局装置が、前記複数の基地局装置の中で最大送信電力以外の基地局に接続する場合に、前記セル間干渉の軽減を行うことを特徴とするものである。 Further, in the communication system of the present invention, when the base station apparatus connected to the terminal apparatus connects to a base station other than the maximum transmission power among the plurality of base station apparatuses, the inter-cell interference is reduced. It is characterized by this.
 また、本発明の通信システムにおいて、前記最大送信電力以外の基地局装置は、ピコ基地局装置であることを特徴とするものである。 In the communication system of the present invention, the base station device other than the maximum transmission power is a pico base station device.
 また、本発明の通信システムにおいて、前記基地局装置は、プレコーディングによって前記セル間干渉の軽減を行うことを特徴とするものである。
また、本発明の通信システムにおいて、前記端末装置は、受信重みによって前記セル間干渉の軽減を行うことを特徴とするものである。
In the communication system of the present invention, the base station apparatus reduces the inter-cell interference by precoding.
In the communication system according to the present invention, the terminal device reduces the inter-cell interference by using a reception weight.
 また、本発明の通信方法は、複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する端末装置とを備え、前記複数の基地局装置が各基地局装置の接続可能範囲であるセルの全域或いは一部が互いに重複するように配置される通信システムにおける通信方法であって、前記端末装置が接続する基地局装置によって、前記複数の基地局装置が協調してセル間干渉の軽減を行うか否かを選択するステップを備えることを特徴とするものである。 The communication method of the present invention includes a plurality of base station devices and a terminal device connected to at least one of the plurality of base station devices, wherein the plurality of base station devices connect each base station device. A communication method in a communication system arranged such that all or some of cells in a possible range overlap each other, wherein the plurality of base station devices cooperate with each other by base station devices to which the terminal devices are connected. A step of selecting whether or not to reduce interfering interference.
 本発明によれば、通信システムは、複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する端末装置とを備え、前記複数の基地局装置が各基地局装置の接続可能範囲であるセルの全域或いは一部が互いに重複するように配置される通信システムであって、前記端末装置が接続する基地局装置によって、前記複数の基地局装置が協調してセル間干渉の軽減を行うか否かを選択することで、複数の基地局装置が協調してセル間干渉の抑制を行うか否かを選択し、最大受信電力となる基地局装置以外と接続する場合、最大受信電力となる基地局装置から端末装置に到来するセル間干渉を効果的に抑制することができるため、スループットが低下することを抑えることができるという優れた効果を奏し得る。 According to the present invention, a communication system includes a plurality of base station apparatuses and a terminal apparatus connected to at least one of the plurality of base station apparatuses, and the plurality of base station apparatuses are connected to each base station apparatus. The communication system is arranged such that all or some of the connectable cells overlap each other, and the plurality of base station devices cooperate with each other by the base station device to which the terminal device is connected. By selecting whether or not to perform the reduction, select whether or not to suppress inter-cell interference in cooperation with a plurality of base station devices, when connecting to other than the base station device that is the maximum received power, Since the inter-cell interference arriving at the terminal device from the base station apparatus that has the maximum received power can be effectively suppressed, it is possible to achieve an excellent effect that it is possible to suppress a decrease in throughput.
 本発明によれば、通信システムは、前記端末装置が接続する基地局装置が、該端末装置における最大受信電力を提供する基地局装置以外の基地局装置である場合に前記セル間干渉の軽減を行うことで、端末装置に到来するセル間干渉を効果的に抑制することができるため、スループットが低下することを抑えることができるという優れた効果を奏し得る。 According to the present invention, the communication system reduces the inter-cell interference when the base station apparatus connected to the terminal apparatus is a base station apparatus other than the base station apparatus that provides the maximum received power in the terminal apparatus. By doing so, it is possible to effectively suppress the inter-cell interference that arrives at the terminal device, so that it is possible to achieve an excellent effect that it is possible to suppress a decrease in throughput.
 本発明によれば、本発明の通信システムにおいて、前記端末装置が接続する基地局装置が、前記複数の基地局装置の中で最大送信電力以外の基地局に接続する場合に、前記セル間干渉の軽減を行うことで、端末装置に到来するセル間干渉を効果的に抑制することができるため、スループットが低下することを抑えることができるという優れた効果を奏し得る。 According to the present invention, in the communication system of the present invention, when the base station apparatus to which the terminal apparatus is connected is connected to a base station other than the maximum transmission power among the plurality of base station apparatuses, the inter-cell interference By reducing this, it is possible to effectively suppress inter-cell interference that arrives at the terminal device, so that it is possible to achieve an excellent effect of suppressing a reduction in throughput.
 本発明によれば、前記最大送信電力以外の基地局装置は、ピコ基地局であることで、マクロ基地局装置よりも送信電力が低いピコ基地局装置でも端末装置に到来するセル間干渉を効果的に抑制することができるため、スループットが低下することを抑えることができるという優れた効果を奏し得る。 According to the present invention, since the base station apparatus other than the maximum transmission power is a pico base station, even a pico base station apparatus having a transmission power lower than that of the macro base station apparatus can effectively prevent inter-cell interference coming to the terminal apparatus. Therefore, it is possible to achieve an excellent effect of suppressing a decrease in throughput.
 本発明によれば、前記基地局装置は、プレコーディングによって前記セル間干渉の軽減を行い、また、前記端末装置は、受信重みによって前記セル間干渉の軽減を行うことを行うことで、スケジューリング効果を得ることができ、良好な受信特性を得た通信が可能となるという優れた効果を奏し得る。 According to the present invention, the base station apparatus reduces the inter-cell interference by precoding, and the terminal apparatus reduces the inter-cell interference by reception weight, thereby achieving a scheduling effect. Thus, it is possible to achieve an excellent effect that communication with good reception characteristics is possible.
 本発明によれば、通信方法は、複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する端末装置とを備え、前記複数の基地局装置が各基地局装置の接続可能範囲であるセルの全域或いは一部が互いに重複するように配置される通信システムにおける通信方法であって、前記端末装置が接続する基地局装置によって、前記複数の基地局装置が協調してセル間干渉の軽減を行うか否かを選択するステップを備えることで、複数の基地局装置が協調してセル間干渉の抑制を行うか否かを選択し、最大受信電力となる基地局装置以外と接続する場合、最大受信電力となる基地局装置から端末装置に到来するセル間干渉を効果的に抑制することができるため、スループットが低下することを抑えることができるという優れた効果を奏し得る。 According to the present invention, a communication method includes a plurality of base station devices and a terminal device connected to at least one of the plurality of base station devices, and the plurality of base station devices A communication method in a communication system arranged so that all or part of cells that can be connected overlap each other, wherein the plurality of base station devices cooperate with each other by base station devices to which the terminal devices are connected. A base station apparatus that has a step of selecting whether or not to reduce inter-cell interference, thereby selecting whether or not a plurality of base station apparatuses cooperate to suppress inter-cell interference and achieving maximum received power. When connecting to other than the above, it is possible to effectively suppress the inter-cell interference that arrives at the terminal device from the base station apparatus that has the maximum received power, and therefore, it is possible to suppress the decrease in throughput. A can achieve.
第1の実施形態に係る通信システムの構成を示す概略図である。It is the schematic which shows the structure of the communication system which concerns on 1st Embodiment. 第1の実施形態に係る通信システムの構成の一部を示す概略図である。It is the schematic which shows a part of structure of the communication system which concerns on 1st Embodiment. 第1の実施形態に係る通信システムの基地局装置の構成を示す概略図である。It is the schematic which shows the structure of the base station apparatus of the communication system which concerns on 1st Embodiment. 第1の実施形態に係る通信システムの端末装置の構成を示す概略図である。It is the schematic which shows the structure of the terminal device of the communication system which concerns on 1st Embodiment. 第1の実施形態に係る通信システムの基地局装置及び端末装置間の処理を示すシーケンス図である。It is a sequence diagram which shows the process between the base station apparatus of the communication system which concerns on 1st Embodiment, and a terminal device. 第2の実施形態に係る通信システムの基地局装置及び端末装置間の処理を示すシーケンス図である。It is a sequence diagram which shows the process between the base station apparatus of the communication system which concerns on 2nd Embodiment, and a terminal device.
<第1の実施形態>
 第1の実施形態に係る通信システム1では、複数の基地局装置300-j(jは任意の正整数)及び複数の端末装置400-k(kは任意の正整数)が、OFDM式を用いてデータの伝送を行う例について説明する。尚、本実施形態ではこれに限らず、その他の伝送方式を適用できる。
<First Embodiment>
In the communication system 1 according to the first embodiment, a plurality of base station apparatuses 300-j (j is an arbitrary positive integer) and a plurality of terminal apparatuses 400-k (k is an arbitrary positive integer) use OFDM. An example of data transmission will be described. Note that the present embodiment is not limited to this, and other transmission methods can be applied.
 図1は、本発明の第1の実施形態に係る通信システム1の構成を示す概略図である。第1の実施形態に係る通信システム1は、異なるセル半径の複数の基地局装置300-j(300-1、300-2)と、複数の端末装置400-k(400-1、400-2)を備えている。 FIG. 1 is a schematic diagram showing a configuration of a communication system 1 according to the first embodiment of the present invention. The communication system 1 according to the first embodiment includes a plurality of base station apparatuses 300-j (300-1, 300-2) having different cell radii and a plurality of terminal apparatuses 400-k (400-1, 400-2). ).
 主基地局装置300-1(マクロ基地局装置、高電力基地局ともいう)のセル300-1a(マクロセル)と、マクロ基地局装置より最大送信電力が小さい小電力基地局である基地局装置300-2(ピコ基地局、フェトム基地局、低電力基地局ともいう)のセル300-2a(ピコセル)とが重複するように各基地局装置が配置されている。 Cell 300-1a (macro cell) of main base station apparatus 300-1 (also referred to as macro base station apparatus or high power base station) and base station apparatus 300 which is a low power base station having a maximum transmission power smaller than that of the macro base station apparatus -2 (also referred to as pico base station, fetom base station, and low power base station) cell 300-2a (pico cell) overlap each other.
 セル内には、複数の端末装置400-k(400-1、400―2)が存在し、詳しくは後述するが、基地局装置300―jの通信量に基づいて各端末装置が無線接続する基地局装置が選択される。 There are a plurality of terminal devices 400-k (400-1, 400-2) in the cell, and as will be described in detail later, each terminal device is wirelessly connected based on the traffic of the base station device 300-j. A base station device is selected.
 端末装置400-1において、基地局装置300-1と無線接続し、伝搬路を通って基地局装置300-1からの送信信号が所望信号(r11)であり、他の伝搬路を通って受信する基地局装置300-2からの送信信号がセル間干渉(非所望信号)(s11)となる。 The terminal device 400-1 is wirelessly connected to the base station device 300-1, and the transmission signal from the base station device 300-1 is the desired signal (r11) through the propagation path, and is received through the other propagation path. The transmission signal from the base station apparatus 300-2 to be used becomes inter-cell interference (undesired signal) (s11).
 また、端末装置400-2において、基地局装置300-2と無線接続し、伝搬路を通って基地局装置300-2からの送信信号が所望信号(r22)であり、他の伝搬路を通って受信する基地局装置300-1からの送信信号がセル間干渉(非所望信号)(s22)となる。 In addition, the terminal device 400-2 is wirelessly connected to the base station device 300-2, and the transmission signal from the base station device 300-2 is the desired signal (r22) through the propagation path, and passes through the other propagation paths. The transmission signal from the base station apparatus 300-1 received in this manner becomes inter-cell interference (undesired signal) (s22).
 このような異種ネットワーク(ヘテロジーニアス・ネットワーク)を構築することにより、マクロセルが網羅するエリア内におけるネットワーク側から見たトータルな周波数利用効率を向上させることが可能となる。 By constructing such a heterogeneous network (heterogeneous network), it is possible to improve the total frequency utilization efficiency seen from the network side in the area covered by the macro cell.
 また、複数の基地局装置300-j(300-3、300-4)の配置として、図2に示すように、最大送信電力が同程度の基地局装置が隣接し、通信可能範囲であるセルの半径(セル半径)が一部重複し、基地局装置300-3及び基地局装置300-4が配置することが挙げられる。この場合、基地局装置300-3及び基地局装置300-4は共にマクロ基地局装置であると仮定する。この場合、基地局装置300-3及び基地局装置300-4と、端末装置400-k(400-3、400-4、400-5)とにより通信システム1aが構成されている。 In addition, as shown in FIG. 2, as the arrangement of a plurality of base station apparatuses 300-j (300-3, 300-4), cells that have the same maximum transmission power and are adjacent to each other and are in a communicable range In other words, the base station apparatus 300-3 and the base station apparatus 300-4 are arranged partially overlapping. In this case, it is assumed that both base station apparatus 300-3 and base station apparatus 300-4 are macro base station apparatuses. In this case, the base station device 300-3 and the base station device 300-4, and the terminal devices 400-k (400-3, 400-4, 400-5) constitute the communication system 1a.
 端末装置400-3において、基地局装置300-3と無線接続し、基地局装置300-3からの送信信号が所望信号(r33)であり、他の伝搬路を通って受信する基地局装置300-4からの送信信号がセル間干渉(非所望信号)(s33)となる。同様に、端末装置400-4において、基地局装置300-4と無線接続し、基地局装置300-4からの送信信号が所望信号(r44)であり、他の伝搬路を通って受信する基地局装置300-3からの送信信号がセル間干渉(非所望信号)(s55)となる。また、2つの重複するセル300-3a、300-4aのセルエッジ(通信サービスエリアの端地域)に存在する端末装置400-5において、基地局装置300-3と無線接続し、基地局装置300-3からの送信信号が所望信号(r55)であり、他の伝搬路を通って受信する基地局装置300-4からの送信信号がセル間干渉(非所望信号)(s55)となる。 The terminal device 400-3 is wirelessly connected to the base station device 300-3, and the transmission signal from the base station device 300-3 is the desired signal (r33) and is received through another propagation path. -4 is the inter-cell interference (undesired signal) (s33). Similarly, terminal device 400-4 wirelessly connects to base station device 300-4, and the transmission signal from base station device 300-4 is a desired signal (r44), and is received via another propagation path. The transmission signal from the station device 300-3 becomes inter-cell interference (undesired signal) (s55). Further, the terminal device 400-5 existing at the cell edge (end area of the communication service area) of the two overlapping cells 300-3a and 300-4a is wirelessly connected to the base station device 300-3, and the base station device 300- The transmission signal from 3 is the desired signal (r55), and the transmission signal from the base station apparatus 300-4 received through another propagation path is inter-cell interference (undesired signal) (s55).
 次に、第1の実施形態に係る通信システム1の基地局装置300-j(300-1、300-2)の構成について説明する。図3は、第1の実施形態に係る通信システム1の基地局装置300-jの概略構成を示すブロック図である。 Next, the configuration of the base station apparatus 300-j (300-1, 300-2) of the communication system 1 according to the first embodiment will be described. FIG. 3 is a block diagram showing a schematic configuration of the base station apparatus 300-j of the communication system 1 according to the first embodiment.
 基地局装置300-jは、図3に示すように、上位レイヤ301、符号化部302、変調部303、リソースマッピング部304、参照信号生成部305、制御信号生成部306、送信重み生成部307、送信重み乗算部308、IFFT部309-1~309-T(逆高速フーリエ変換:Inverse Fast Fourier Transform、尚、以下、Tは任意の正整数)、GI挿入部310-1~310T(ガードインターバル:Guard Interval)、送信部311-1~311T、送信アンテナ部312-1~312-T、受信アンテナ部313、受信部314、制御信号検出部315、基地局選択部316を備えて構成される。 As shown in FIG. 3, the base station apparatus 300-j includes an upper layer 301, an encoding unit 302, a modulation unit 303, a resource mapping unit 304, a reference signal generation unit 305, a control signal generation unit 306, and a transmission weight generation unit 307. , Transmission weight multiplier 308, IFFT units 309-1 to 309-T (Inverse 高速 Fast Fourier Transform, T is an arbitrary positive integer hereinafter), GI insertion units 310-1 to 310T (guard interval) : Guard Interval), transmission units 311-1 to 311T, transmission antenna units 312-1 to 312-T, reception antenna unit 313, reception unit 314, control signal detection unit 315, and base station selection unit 316 .
 基地局装置300-j(300-1)は、受信アンテナ部313を介して、端末装置400が送信する信号を受信し、受信部314は、該信号を信号検出処理等のデジタル信号処理が可能な周波数帯へダウンコンバート(無線周波数変換)し、さらにスプリアスを除去するフィルタリング処理を行ない、フィルタリング処理した信号をアナログ信号からデジタル信号に変換(Analog to Disital変換)を行なう。 The base station device 300-j (300-1) receives a signal transmitted from the terminal device 400 via the reception antenna unit 313, and the reception unit 314 can perform digital signal processing such as signal detection processing on the signal. Down-convert (radio frequency conversion) to an appropriate frequency band, and further perform filtering processing to remove spurious, and convert the filtered signal from an analog signal to a digital signal (Analog to Digital conversion).
 制御信号検出部315は、受信部314が出力したデジタル信号に対して復調処理及び復号処理等を行い、制御信号を検出する。尚、制御信号には、端末装置400から基地局装置300への接続要求、CQI(Channel Quality Indicator)及び周辺に存在する基地局装置(以下、周辺基地局装置と称す)の受信電力等を含む。 The control signal detection unit 315 performs demodulation processing, decoding processing, and the like on the digital signal output from the reception unit 314, and detects a control signal. The control signal includes a connection request from the terminal device 400 to the base station device 300, CQI (Channel Quality Indicator), received power of a base station device existing in the vicinity (hereinafter referred to as a peripheral base station device), and the like. .
 基地局選択部316は、端末装置400-kが接続する基地局装置を通信量や受信電力に基づいて選択する。 The base station selection unit 316 selects a base station device to which the terminal device 400-k is connected based on the traffic and received power.
 上位レイヤ101は、OSI参照モデルで定義された通信機能の階層のうち、物理層(Physical Layer)よりも上位の機能の階層、例えば、MAC(媒体アクセス制御:Media Access Control)、データリンク層、ネットワーク層等のレイヤが該当する。 The upper layer 101 is a layer of functions higher than the physical layer (Physical Layer) among the layers of communication functions defined by the OSI reference model, for example, MAC (Media Access Control), data link layer, This corresponds to a layer such as a network layer.
 また、上位レイヤ101は、端末装置400-kから送信された信号に含まれるMCS情報、空間多重数等のフィードバック情報も取得する。上位レイヤ301は、フィードバック情報に基づき、符号化部302に情報データを出力する。また、上位レイヤ101は、端末装置400-kに接続する周辺基地局装置から受信電力の通知を要求するために制御データを制御信号生成部306に出力する。制御データは、同期信号SCH、無線リソース割当(スケジューリング)、MSC(変調符号化方式:Modulation and Coding Scheme)、空間多重数(空間多重によるチャネル数)及び周波数割当等の情報を含む。尚、上位レイヤ101は、基地局装置300-1を構成する各部位が、機能を発揮するために必要なその他のパラメータも通知する。 Further, the upper layer 101 also obtains feedback information such as MCS information and the number of spatial multiplexing included in the signal transmitted from the terminal device 400-k. The upper layer 301 outputs information data to the encoding unit 302 based on the feedback information. Further, the upper layer 101 outputs control data to the control signal generation unit 306 in order to request notification of received power from the peripheral base station apparatus connected to the terminal apparatus 400-k. The control data includes information such as a synchronization signal SCH, radio resource allocation (scheduling), MSC (Modulation and Coding Scheme), the number of spatial multiplexing (the number of channels by spatial multiplexing), and frequency allocation. The upper layer 101 also notifies other parameters necessary for each part of the base station apparatus 300-1 to function.
 また、上位レイヤ101は、端末装置400-kにおける伝搬路推定や受信品質測定を行うための参照信号(reference signal:パイロット信号ともいう)データを参照信号生成部305に出力する。また、上位レイヤ101は、周辺基地局装置から受信する接続基地局情報を送信重み生成部307に出力する。 Also, the upper layer 101 outputs reference signal (referred to as a pilot signal) data for performing channel estimation and reception quality measurement in the terminal device 400-k to the reference signal generation unit 305. Further, the upper layer 101 outputs the connected base station information received from the neighboring base station apparatus to the transmission weight generation unit 307.
 符号化部302は、上位レイヤ301から入力された情報データに対して、誤り訂正符号化を行う。情報データは、例えば、通話に伴う音声信号、撮影した画像を表す静止画像又は動画像信号、文字メッセージ等である。符号化部302が誤り訂正符号化を行う際に用いる符号化方式は、例えば、ターボ符号化(turbo coding)、畳み込み符号化(convolutional coding)、低密度パリティ検査符号化(low density parity check coding;LDPC)等である。 The encoding unit 302 performs error correction encoding on the information data input from the upper layer 301. The information data is, for example, an audio signal accompanying a call, a still image or moving image signal representing a captured image, a character message, or the like. The encoding method used when the encoding unit 302 performs error correction encoding is, for example, turbo encoding, convolutional encoding, low density parity check encoding (low density parity check encoding); LDPC).
 尚、符号化部302は、誤り訂正符号化したデータ系列の符号化率(coding rate)をデータ伝送率に対応する符号化率に合わせるために、符号化ビット系列に対してレートマッチング処理を行ってもよい。また、符号化部302は、誤り訂正符号化したデータ系列を並び替えてインターリーブする機能を有してもよい。 Note that the encoding unit 302 performs rate matching processing on the encoded bit sequence in order to match the coding rate of the error correction-encoded data sequence with the encoding rate corresponding to the data transmission rate. May be. Further, the encoding unit 302 may have a function of rearranging and interleaving the error correction encoded data series.
 変調部303は、符号化部302から入力された信号を変調して変調シンボルを生成する。変調部303が行う変調処理は、例えば、BPSK(binary phase shift keying;2相位相変調)、QPSK(quadrature phase shift keying;4相位相変調)、M-QAM(M-quadrature amplitude modulation;M値直交振幅変調、例えば、M=16、64、256、1024、4096)などである。尚、変調部303は、生成した変調シンボルを並び替えてインターリーブする機能を有してもよい。 Modulation section 303 modulates the signal input from encoding section 302 and generates a modulation symbol. The modulation processing performed by the modulation unit 303 includes, for example, BPSK (binary phase shift keying; two-phase phase modulation), QPSK (quadture phase shift keying; four-phase phase modulation), M-QAM (M-quad quadrature quadrature value; Amplitude modulation, eg M = 16, 64, 256, 1024, 4096). Modulating section 303 may have a function of rearranging generated modulation symbols and interleaving them.
 参照信号生成部305は、受信電力の測定や伝搬路推定に用いる既知の系列からなる参照信号(パイロット信号)を生成し、生成した参照信号をリソースマッピング部304に出力する。例えば、参照信号は、基地局装置の送信アンテナ部312-1~312-Tから各端末装置400-kの受信アンテナ部401-1~401-Rまでの伝搬特性を推定するために用いる信号である。推定した伝搬特性は、送信重み係数の算出のための伝搬路情報、或いは端末装置における伝搬路補償に用いられる。 The reference signal generation unit 305 generates a reference signal (pilot signal) composed of a known sequence used for reception power measurement and propagation path estimation, and outputs the generated reference signal to the resource mapping unit 304. For example, the reference signal is a signal used to estimate the propagation characteristics from the transmitting antenna units 312-1 to 312-T of the base station device to the receiving antenna units 401-1 to 401-R of each terminal device 400-k. is there. The estimated propagation characteristics are used for propagation path information for calculating a transmission weight coefficient or propagation path compensation in a terminal device.
 制御信号生成部306は、上位レイヤ301が出力する制御データを含む制御信号を生成する。尚、該制御信号に誤り訂正符号化及び変調処理を施してもよい。 The control signal generation unit 306 generates a control signal including control data output from the upper layer 301. The control signal may be subjected to error correction coding and modulation processing.
 リソースマッピング部304は、上位レイヤ301から通知されるスケジューリング情報に基づいて、変調シンボル、参照信号及び制御信号をリソースエレメントにマッピングする(以降、リソースマッピングと称す)。リソースエレメントとは、1つのサブキャリアと1つのOFDMシンボルから成る信号を配置する最小単位をいう。 The resource mapping unit 304 maps modulation symbols, reference signals, and control signals to resource elements based on scheduling information notified from the upper layer 301 (hereinafter referred to as resource mapping). The resource element is a minimum unit for arranging a signal composed of one subcarrier and one OFDM symbol.
 送信重み生成部307は、上位レイヤ301から入力される、周辺基地局装置から受信する接続基地局情報に基づいてセル間干渉量を判定(又は算出)し、複数の基地局装置間で協調したセル間干渉抑制を行うか否かを判定する。さらに、送信重み生成部307は、セル間干渉量が所定の基準より多いと判定した場合、送信重みを生成し、乗算部308に出力する。尚、接続基地局情報は、端末装置が接続する基地局装置のセル間干渉量に関する情報である。 The transmission weight generation unit 307 determines (or calculates) the amount of inter-cell interference based on the connected base station information received from the neighboring base station device, which is input from the higher layer 301, and cooperates between a plurality of base station devices. It is determined whether or not to suppress inter-cell interference. Further, when it is determined that the amount of inter-cell interference is greater than a predetermined reference, the transmission weight generation unit 307 generates a transmission weight and outputs the transmission weight to the multiplication unit 308. The connection base station information is information related to the inter-cell interference amount of the base station apparatus to which the terminal apparatus is connected.
 送信重み生成部307は、セル間干渉量が所定の基準より少ないと判定した場合、複数の基地局装置間で協調したセル間干渉抑制を行なわないことを示す情報を送信重み乗算部308に通知する。又は、セル間干渉量が所定の基準より少ないと判定した場合、単位行列を重みとして送信重み乗算部308に出力しても良い。単位行列を重みとして用いる場合、重み乗算前と重み乗算後で信号は変わらない。 When the transmission weight generation unit 307 determines that the amount of inter-cell interference is smaller than a predetermined reference, the transmission weight generation unit 307 notifies the transmission weight multiplication unit 308 of information indicating that inter-cell interference suppression is not performed in cooperation between a plurality of base station apparatuses. To do. Alternatively, when it is determined that the amount of inter-cell interference is less than a predetermined reference, the unit matrix may be output to the transmission weight multiplier 308 as a weight. When a unit matrix is used as a weight, the signal does not change before weight multiplication and after weight multiplication.
 送信重み乗算部308は、周辺の基地局装置のセルに接続する端末装置400-kへの干渉を抑制する送信重み係数V並びに各基地局装置と接続している端末装置が受信信号に乗算する受信重み係数Uを算出する。また、送信重み乗算部107は、リソースマッピング部304が出力する信号に対して送信重み係数Vを乗算する。尚、参照信号生成部305が生成する参照信号に対して送信重み係数V及び/又は受信重み係数Uを乗算するとしても良い。 The transmission weight multiplier 308 multiplies the reception signal by the transmission weight coefficient V j that suppresses interference with the terminal device 400-k connected to the cell of the surrounding base station device and the terminal device connected to each base station device. The reception weight coefficient U k to be calculated is calculated. Further, the transmission weight multiplication unit 107 multiplies the signal output from the resource mapping unit 304 by the transmission weight coefficient V j . Note that the reference signal generated by the reference signal generation unit 305 may be multiplied by the transmission weight coefficient V j and / or the reception weight coefficient U k .
 IFFT部309-1~309-Tは、送信重み乗算部308から入力された信号に対して、逆高速フーリエ変換(IFFT:inverse fast Fourier transform)をして時間領域信号に変換する。 The IFFT units 309-1 to 309-T perform inverse fast Fourier transform (IFFT) on the signal input from the transmission weight multiplication unit 308 to convert it into a time domain signal.
 GI挿入部310-1~310-Tでは、IFFT部309-1~309-Tが変換した時間領域の信号にガードインターバル(GI)を挿入する。例えば、IFFT部309-1~309-Tが出力する時間領域の信号(有効シンボル)の後半の一部をコピーし、有効シンボルの先頭に付加する。 The GI insertion units 310-1 to 310-T insert guard intervals (GI) into the time domain signals converted by the IFFT units 309-1 to 309-T. For example, a part of the latter half of the time domain signal (effective symbol) output from the IFFT units 309-1 to 309-T is copied and added to the head of the effective symbol.
 送信部311-1~311-Tは、GI挿入部310-1~310-Tから挿入されたガードインターバル(GI)を含むOFDMシンボルを、D/A(digital-to-analog;デジタル・アナログ)変換して、アナログ信号を生成する。送信部109~109-Tは、生成したアナログ信号に対してフィルタリング処理により帯域制限して帯域制限信号を生成する。送信部311-1~311-Tは、生成した帯域制限信号を無線周波数帯域にアップコンバートし、送信アンテナ部312-1~312-Tに出力し、送信アンテナ部312-1~312-Tから送信される。 The transmitters 311-1 to 311-T convert the OFDM symbol including the guard interval (GI) inserted from the GI inserters 310-1 to 310-T into digital / analog (D / A). Convert to generate an analog signal. Transmitters 109 to 109-T perform band limitation on the generated analog signal by filtering processing to generate a band limited signal. Transmitters 311-1 to 311-T upconvert the generated band-limited signal to a radio frequency band, output it to transmission antenna units 312-1 to 312-T, and transmit antenna units 312-1 to 312-T. Sent.
 次に、第1の実施形態における端末装置400-k(kは任意の整数)について説明する。図4は、第1の実施形態に係る端末装置400-kの構成を示す概略図である。 Next, the terminal device 400-k (k is an arbitrary integer) in the first embodiment will be described. FIG. 4 is a schematic diagram illustrating a configuration of the terminal device 400-k according to the first embodiment.
 端末装置400-kは、複数の受信アンテナ部401-1~401-R(以下、Rは任意の正整数)、複数の受信部402-1~402-R、GI除去部403-1~403-R、複数のFFT部404-1~404-R、受信重み乗算部405、MIMO分離部406、チャネル推定部407、受信電力算出部408、復調部409、復号部410、上位レイヤ411、制御信号生成部412、送信部413及び送信アンテナ部414を含んで構成される。 The terminal device 400-k includes a plurality of receiving antenna units 401-1 to 401-R (hereinafter, R is an arbitrary positive integer), a plurality of receiving units 402-1 to 402-R, and a GI removing unit 403-1 to 403. -R, a plurality of FFT units 404-1 to 404 -R, reception weight multiplication unit 405, MIMO separation unit 406, channel estimation unit 407, reception power calculation unit 408, demodulation unit 409, decoding unit 410, upper layer 411, control A signal generation unit 412, a transmission unit 413, and a transmission antenna unit 414 are included.
 端末装置400-kは、受信アンテナ部401-1~401-Rを介して、基地局装置300-jの送信信号を受信する。 The terminal device 400-k receives the transmission signal of the base station device 300-j via the receiving antenna units 401-1 to 401-R.
 受信部402-1~402-Rは、受信アンテナ部401-1~401-Rから入力された無線周波数信号をデジタル信号処理が可能な周波数帯域にダウンコンバートし、ダウンコンバートした信号を更にフィルタリング処理を行って不要成分(スプリアス;Spurious)を除去する。また、受信部202-1~202-Rは、フィルタリング処理を行った信号をアナログ信号からデジタル信号に(A/D;Analog-to-Digital)変換し、変換したデジタル信号をGI除去部403-1~403-Rに出力する。 Receiving sections 402-1 to 402-R down-convert radio frequency signals input from receiving antenna sections 401-1 to 401-R into a frequency band where digital signal processing is possible, and further filter the down-converted signals To remove unnecessary components (Spurious). Further, the receiving units 202-1 to 202-R convert the filtered signal from an analog signal to a digital signal (A / D; Analog-to-Digital), and the converted digital signal is a GI removing unit 403-. Output to 1 to 403-R.
 GI除去部403-1~403-Rは、ガードインターバル(GI)を除去し、GIが除去された信号をFFT部404-1~404-Rに出力する。 The GI removal units 403-1 to 403-R remove the guard interval (GI) and output signals from which the GI has been removed to the FFT units 404-1 to 404-R.
 FFT部404-1~404-Rは、GI除去部403-1~403-Rから入力された信号を時間領域信号から周波数領域信号に変換する高速フーリエ変換(FFT:Fast Fourier Transform)を行い、チャネル推定部407、受信重み乗算部405及び受信電力算出部408に出力する。 The FFT units 404-1 to 404 -R perform fast Fourier transform (FFT: Fast Fourier Transform) to convert the signals input from the GI removal units 403-1 to 403 -R from time domain signals to frequency domain signals. The data is output to channel estimation section 407, reception weight multiplication section 405 and reception power calculation section 408.
 チャネル推定部407は、入力された信号に含まれる参照信号を用いて、伝搬路推定を行う。そして、チャネル推定部407は、伝搬路推定値をMIMO分離部406に通知する。尚、伝搬路推定値は、例えば、伝達関数、インパルス応答などである。 The channel estimation unit 407 performs propagation path estimation using a reference signal included in the input signal. Channel estimation section 407 notifies propagation path estimation value to MIMO separation section 406. The propagation path estimated value is, for example, a transfer function, an impulse response, or the like.
 受信電力算出部408は、FFT部404-1~404-Rを介して入力される参照信号に基づいて各基地局装置からの受信電力を算出し、上位レイヤ411に出力する。 The received power calculation unit 408 calculates the received power from each base station apparatus based on the reference signal input via the FFT units 404-1 to 404 -R, and outputs it to the upper layer 411.
 受信重み乗算部405は、基地局装置300-jで乗算された送信重み係数Vに対応する受信重み係数Uを乗算する。この受信重み係数Uは、基地局装置300-jで生成され送信されたものを用いるが、基地局装置300-jから送信重み係数Vのみを受信した場合、送信重み係数Vとチャネル推定部407で推定された伝搬路推定値を用いて受信重み係数Uを算出することも可能である。また、参照信号に送信重み係数Vが乗算されている場合には、端末装置側で干渉が抑制されるような受信重み係数を求める構成としても良い。 Reception weight multiplier 405 multiplies reception weight coefficient U k corresponding to transmission weight coefficient V j multiplied by base station apparatus 300-j. The reception weight coefficient U k is generated and transmitted by the base station apparatus 300-j, but when only the transmission weight coefficient V j is received from the base station apparatus 300-j, the transmission weight coefficient V j and the channel It is also possible to calculate the reception weight coefficient U k using the propagation path estimation value estimated by the estimation unit 407. Further, when the reference signal is multiplied by the transmission weight coefficient V j, the reception weight coefficient that suppresses interference on the terminal device side may be obtained.
 MIMO分離部406は、受信重み乗算部405の出力と、チャネル推定部407からの伝搬路推定値に基づきMIMO分離を行う。MIMO伝送において、各送信アンテナで送信された信号が空間多重されて受信されることに起因するストリーム間干渉を抑制するため、MIMO分離が行われる。MIMO分離には、ZF(Zero Forcing)、MMSE(Maximum Mean Square Error:最小平均2乗誤差)等の線形検出や、MLD(Maximum Likelihood Detection:最尤検出)、干渉キャンセラ等の非線形検出が挙げられる。さらに、干渉キャンセラには、並列型干渉キャンセラPIC(Parallel Interference Canceller)や逐次型干渉キャンセラSIC(Successive Interference Canceller)がある。 The MIMO separation unit 406 performs MIMO separation based on the output of the reception weight multiplication unit 405 and the channel estimation value from the channel estimation unit 407. In MIMO transmission, MIMO separation is performed in order to suppress inter-stream interference caused by receiving a signal transmitted from each transmission antenna after being spatially multiplexed. MIMO separation includes linear detection such as ZF (Zero Forcing) and MMSE (Maximum Mean Square Error), nonlinear detection such as MLD (Maximum Likelihood Detection) and interference canceller. . Further, the interference canceller includes a parallel interference canceller PIC (Parallel Interference Canceller) and a sequential interference canceller SIC (Successive Interference Canceller).
 復調部409は、MIMO分離部406からの出力信号に対して復調処理を行う。該復調処理は、硬判定(符号化ビット系列の算出)、軟判定(符号化ビットLLRの算出)のどちらでもよい。 The demodulation unit 409 performs demodulation processing on the output signal from the MIMO separation unit 406. The demodulation process may be either a hard decision (calculation of a coded bit sequence) or a soft decision (calculation of a coded bit LLR).
 復号部410は、復調部409が出力する復調後の符号化ビット系列(又は、符号化ビットLLR)に対して誤り訂正復号処理を行い、自己宛に送信された情報データを算出し、上位レイヤ411に出力する。この誤り訂正復号処理の方式は、接続している基地局装置300-jが行ったターボ符号化、畳み込み符号化等の誤り訂正符号化に対応する方式である。誤り訂正復号処理は、硬判定又は軟判定のどちらも適用できる。 The decoding unit 410 performs error correction decoding processing on the encoded bit sequence (or encoded bit LLR) after demodulation output from the demodulation unit 409, calculates information data transmitted to itself, 411. This error correction decoding processing method is a method corresponding to error correction coding such as turbo coding and convolution coding performed by the connected base station apparatus 300-j. Either a hard decision or a soft decision can be applied to the error correction decoding process.
 制御信号生成部412は、自局と基地局装置300-jとの間の伝搬路情報、CQIやチャネル推定値を含む情報、基地局装置300-jに接続要求するための信号、周辺基地局装置の受信電力を示す情報などから制御信号を生成する。詳しくは、制御信号生成部412は、フィードバック情報(CQI等を含む)を基地局装置に送信するための制御信号を生成する。フィードバック情報は、上位レイヤ411が、チャネル推定部407が算出した伝搬路推定値に基づいて決定する。 The control signal generation unit 412 includes propagation path information between the own station and the base station apparatus 300-j, information including CQI and a channel estimation value, a signal for requesting connection to the base station apparatus 300-j, and a neighboring base station A control signal is generated from information indicating the received power of the apparatus. Specifically, the control signal generation unit 412 generates a control signal for transmitting feedback information (including CQI and the like) to the base station apparatus. The feedback information is determined by the upper layer 411 based on the channel estimation value calculated by the channel estimation unit 407.
 制御信号生成部412が出力する制御信号を含む信号は、送信部413で、下りリンクにおいて送信可能な周波数帯まえアップコンバートされ、送信アンテナ部414を介して、接続している基地局装置300-jに送信される。 The signal including the control signal output from the control signal generation unit 412 is up-converted by the transmission unit 413 before the frequency band that can be transmitted in the downlink, and is connected via the transmission antenna unit 414 to the base station apparatus 300- sent to j.
 次に、基地局装置300-jの送信重み乗算部308における送信重み係数V及び受信重み係数Uの算出方法について説明する。 Next, a calculation method of transmission weight coefficient V j and reception weight coefficient U k in transmission weight multiplication section 308 of base station apparatus 300-j will be described.
 以下、各基地局装置の送信アンテナ部(アンテナ)312-1~312-Tの数をT、端末装置400-jの受信アンテナ部401-1~401-Rの数をRとして説明する。上述したようにT及びRは任意の整数である。 Hereinafter, description will be made assuming that the number of transmission antenna units (antennas) 312-1 to 312-T of each base station apparatus is T, and the number of reception antenna units 401-1 to 401-R of the terminal apparatus 400-j is R. As described above, T and R are arbitrary integers.
 第qの基地局装置(qは任意の整数)におけるT行T列の送信重み係数値をV、第pの端末装置(pは任意の整数)におけるT行R列の受信重み係数値をU、第qの基地局装置と第pの端末装置との間のR行T列チャネル行列をHqpと表す。 The transmission weight coefficient value of T row and T column in the q-th base station apparatus (q is an arbitrary integer) is V q , and the reception weight coefficient value of T row and R column in the p-th terminal apparatus (p is an arbitrary integer). U p , the R-row T-column channel matrix between the q-th base station apparatus and the p-th terminal apparatus is represented as H qp .
 まず、送信重み係数値Vを任意の値に設定する。但し、V =Iの関係を保つような送信重み係数値Vを設定する(Hは複素共役転置行列、IはN行N列の単位行列である)。 First, the transmission weight coefficient value V q is set to an arbitrary value. However, setting the V q V q H = I transmission weight coefficient value V q that preserves the relationship of T (H is a complex conjugate transposed matrix, I N is the identity matrix of N rows and N columns).
 次に、第pの端末装置における干渉の共分散行列Qを以下の(式1)に基づき算出する。尚、NTXは基地局装置の数を表す。 Next, the covariance matrix Q p of interference in the p-th terminal device is calculated based on the following (Equation 1). N TX represents the number of base station apparatuses.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 続いて、共分散行列Qの小さい方からT個の固有値に対応する固有ベクトルを受信重み係数値(U)として算出する。上りリンク(基地局装置から端末装置への伝送方向)と下りリンク(端末装置から基地局装置への伝送方向)を逆転させて、算出した受信重み係数値Uを送信重み係数値とみなす。 Subsequently, eigenvectors corresponding to T eigenvalues from the smaller one of the covariance matrix Q p are calculated as reception weight coefficient values (U p ). By reversing the uplink and downlink (transmission direction from a base station apparatus to a terminal) (transmission direction from the terminal apparatus to the base station apparatus), regarded as a reception weight coefficient value U p and the calculated transmission weight factor values.
 このとき、基地局装置における干渉の共分散行列Q を以下の(式2)に基づいて算出する。 At this time, the covariance matrix Q q r of interference in the base station apparatus is calculated based on the following (Formula 2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
なお、Nuはユーザ数を表す。 Nu represents the number of users.
 共分散行列Q の小さい方からT個の固有値に対応する固有値を新たな受信重み係数値として算出する。上りリンクと下りリンクを逆転させて、新たな受信重み係数値をさらに新たな送信重み係数値(V)として算出する。 Eigenvalues corresponding to T eigenvalues from the smaller of the covariance matrix Q q r are calculated as new reception weight coefficient values. The uplink and downlink are reversed, and a new reception weight coefficient value is further calculated as a new transmission weight coefficient value (V q ).
 処理の回数をカウントするカウンタ(図示せず)を1つインクリメントし、所定の回数Iに到達するまで上記処理を繰返す。所定の回数に到達した場合、処理を終了し、そのときに得られているV、Uをそれぞれ送信重み、受信重みとする。このように上述の処理を繰り返し、干渉の抑制を図る。 A counter (not shown) that counts the number of times of processing is incremented by one, and the above processing is repeated until a predetermined number of times I is reached. When reaching the predetermined number of times, the process ends, V q obtained at the time, respectively transmit weights U p, and receive weights. In this way, the above processing is repeated to suppress interference.
 尚、上記で求めた送受信重みはSIR(信号対干渉電力比:Signal-to-Interference Power Ratio)を最大とする重みであるが、次のようなSINR(信号対干渉及び雑音電力比:Signal-to-Interference and Noise Power Ratio)を最大とする重みを用いることもできる。 The transmission / reception weight obtained above is a weight that maximizes SIR (Signal-to-Interference Power Ratio), but SINR (Signal-to-interference and noise power ratio: Signal-) is as follows. A weight that maximizes to-Interference (and Noise (Power) Ratio) can also be used.
 SINRを最大とする重みは、例えば、次のようなものがある。 The weights that maximize SINR are as follows, for example.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 (式3)で求めた重みup,tが空間多重した第tストリームの受信重みであり、(式5)で求めたvq,tが第tストリームの送信重みである。(式4)、(式6)におけるdはストリーム数を表す。従って送受信重みはそれぞれu=[up,1,・・・,up,d]、v=[vq,1,・・・,vq,d]である。尚、σ は雑音電力、IはN行N列の単位行列である。 The weights u p, t obtained by (Equation 3) are the reception weights of the t-th stream spatially multiplexed, and v q, t obtained by (Equation 5) are the transmission weights of the t-th stream. In (Expression 4) and (Expression 6), d represents the number of streams. Thus transmission and reception weights each u p = [u p, 1 , ···, u p, d], v q = [v q, 1, ···, v q, d] is. Here, σ n 2 is noise power, and I N is a unit matrix of N rows and N columns.
 このように繰り返し新たな送信重み係数値及び受信重み係数値を算出して干渉を抑制する構成としたが、本発明はこれに限らず、送信重み係数値のみを用いて干渉を抑制しても良い。また以下の(式7)及び(式8)で表すように端末装置側でゼロフォーシングの重みを用いて干渉を抑制しても良い。 In this way, a new transmission weight coefficient value and reception weight coefficient value are repeatedly calculated to suppress interference. However, the present invention is not limited to this, and even if interference is suppressed using only the transmission weight coefficient value. good. Further, as represented by the following (Expression 7) and (Expression 8), interference may be suppressed by using the weight of zero forcing on the terminal device side.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 また、(式9)のように基地局装置の所望信号対与干渉及び雑音電力を最小とするような重みを用いてもよい。 Also, as in (Equation 9), a weight that minimizes the desired signal interference and noise power of the base station apparatus may be used.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 次に、通信システム1における基地局装置300-j(基地局装置300-A及び300-B)及び端末装置400-k(端末装置400-1)における接続手順について説明する。図5は、通信システム1において、端末装置400-1の接続する基地局装置(300-A及び300-B)が選択される処理動作の一例を示すシーケンス図である。 Next, a connection procedure in the base station device 300-j (base station devices 300-A and 300-B) and the terminal device 400-k (terminal device 400-1) in the communication system 1 will be described. FIG. 5 is a sequence diagram illustrating an example of a processing operation in which the base station devices (300-A and 300-B) to which the terminal device 400-1 is connected are selected in the communication system 1.
 最初に、基地局装置(基地局装置300-A及び300-B)は、それぞれ所定の時間間隔で定期的に同期信号や参照信号を端末装置400-1に対して送信する(ステップ501、502)。端末装置400-1は、通信可能で待ち受けている状態(アイドル状態)にある。 First, the base station devices (base station devices 300-A and 300-B) periodically transmit synchronization signals and reference signals to the terminal device 400-1 at predetermined time intervals (steps 501 and 502). ). The terminal device 400-1 is in a communicable and waiting state (idle state).
 尚、同期信号は、複数の種類が存在し、例えば、LTE(Long Term Evolution)では、プライマリー同期チャネル(プライマリーSCH:Primary Synchronization Channel)とセカンダリ同期チャネル(セカンダリSCH:Secondary Synchronization Channel)の2種類がある。端末装置400-1が基地局装置から信号を受信するには、セルサーチを短縮するため各基地局装置から同期チャネルが送信される。端末装置400-1は、プライマリーSCHでセクタIDを検出し、セカンダリSCHでセルIDを検出し各セルを判断する。 There are multiple types of synchronization signals. For example, in LTE (Long Term Evolution), the primary synchronization channel (Primary SCH: Primary Synchronization Channel) and the secondary synchronization channel (Secondary SCH: Secondary Synchronization Channel type). is there. In order for terminal apparatus 400-1 to receive a signal from the base station apparatus, a synchronization channel is transmitted from each base station apparatus in order to shorten the cell search. The terminal device 400-1 detects the sector ID on the primary SCH, detects the cell ID on the secondary SCH, and determines each cell.
 端末装置400-1は、電源投入された後、同期信号を用いて、通信のため利用可能なセル(セルID)を検出する処理(セルサーチ)を開始する(ステップ503)。尚、セルサーチとは、端末装置が電源投入後、接続可能なセル(通信サービスエリア)を識別するための手順である。 After the power is turned on, the terminal device 400-1 uses a synchronization signal to start a process (cell search) for detecting a cell (cell ID) that can be used for communication (step 503). The cell search is a procedure for identifying a cell (communication service area) that can be connected after the terminal device is turned on.
 端末装置400-1は、受信電力が最大となるセルIDを有する基地局装置(この場合、基地局装置300-A)に接続要求をする(ステップ504)。 The terminal device 400-1 makes a connection request to the base station device (in this case, the base station device 300-A) having the cell ID with the maximum received power (step 504).
 基地局装置300-Aは、自身の現在の通信量(自己のセル内に接続する他の端末装置との総通信量)を測定する。現在の通信量が所定量より多いと判定した場合、通信量の少ない他の基地局装置に端末装置を接続させるため、周辺に存在する他の基地局装置(図5では基地局装置300-B)に対して、自己の現在の通信量を通知するよう指示(通信量要求)を送る(ステップ505)。 The base station device 300-A measures its own current traffic (total traffic with other terminal devices connected to its own cell). When it is determined that the current communication volume is greater than the predetermined amount, the base station apparatus is connected to another base station apparatus with a small communication volume, so that other base station apparatuses (base station apparatus 300-B in FIG. 5) exist in the vicinity. ) Is sent an instruction (communication amount request) to notify its current communication amount (step 505).
 通信量報知指示を受け取った基地局装置300-Bは、自己の現在の通信量を基地局装置300-Aに送る(通信量通知)(ステップ506)。 The base station device 300-B that has received the communication amount notification instruction sends its current communication amount to the base station device 300-A (communication amount notification) (step 506).
 ステップ504の接続依頼を受けた基地局装置300-Aは、端末装置400-1が接続する基地局装置を、通信量又は受信電力又はバイアス付受信電力等を考慮して判定する(ステップ507)。 Receiving the connection request in step 504, the base station apparatus 300-A determines the base station apparatus to which the terminal apparatus 400-1 is connected in consideration of the traffic, received power, biased received power, or the like (step 507). .
 通信量通知を受け取った基地局装置300-Aは、基地局装置300-Bの通信量を予め設定する所定量に基づき判断し、該通信量が少ないと判断した場合(予め設定した通信量により少ない場合)、協調通信要求を基地局装置300-Bに対して送信する(ステップ508a)。該通信量が多いと判断した場合、基地局装置300-Aは、他に接続可能な基地局装置(図示せず)に対して、自己の現在の通信量を通知するよう指示(通信量要求)を送る。 The base station device 300-A that has received the communication amount notification determines the communication amount of the base station device 300-B based on a predetermined amount that is set in advance, and determines that the communication amount is small (depending on the preset communication amount) If there are fewer, a cooperative communication request is transmitted to the base station apparatus 300-B (step 508a). When it is determined that the communication volume is large, the base station apparatus 300-A instructs the other base station apparatus (not shown) that can be connected to notify its current communication volume (communication volume request). )
 基地局装置300-Aは、端末装置400-1と接続するよう協調通信要求を基地局装置300-Bに対して送信した際に、ほぼ同時に端末装置400-1に対して、端末装置400-1が接続すべき基地局装置の基地局ID(基地局装置に固有のID)を通知する(接続基地局通知)(ステップ509)。 When the base station apparatus 300-A transmits a cooperative communication request to the base station apparatus 300-B so as to connect to the terminal apparatus 400-1, the base station apparatus 300-A sends the terminal apparatus 400-1 to the terminal apparatus 400-1 almost simultaneously. 1 notifies the base station ID of the base station apparatus to be connected (ID unique to the base station apparatus) (connection base station notification) (step 509).
 接続基地局通知を受け取った端末装置400-1は、基地局装置300-Bに対して接続要求を行う(ステップ510)。 Upon receiving the connection base station notification, the terminal device 400-1 makes a connection request to the base station device 300-B (step 510).
 接続要求を受け取った基地局装置300-Bは、端末装置400-1に対して接続許可を通知(ACK)する(ステップ511)。 The base station device 300-B that has received the connection request notifies (ACKs) the connection permission to the terminal device 400-1 (step 511).
 端末装置400-1は、チャネル状態(伝送路状態)を表すチャネル品質表示(CQI:Channel Quality Indicator)を基地局装置300-Bに通知する(ステップ512)。チャネル状態には、変調符号化方式(MCS:Modulation and Coding Scheme)、MIMOのランク数を決定するための情報、基地局装置300-Bを含む周辺基地局装置と端末装置400-1との間のチャネル推定値を含む。 The terminal device 400-1 notifies the base station device 300-B of a channel quality display (CQI: Channel Quality Indicator) indicating the channel state (transmission path state) (step 512). The channel state includes a modulation and coding scheme (MCS: Modulation and Coding Scheme), information for determining the number of MIMO ranks, between the peripheral base station apparatus including the base station apparatus 300-B and the terminal apparatus 400-1. Of channel estimates.
 基地局装置300-Bは、端末装置400-1から送信されたCQIに基づいてスケジューリング、MCSの設定、ランク数の設定等を行う(ステップ513)。 The base station apparatus 300-B performs scheduling, MCS setting, rank setting setting, and the like based on the CQI transmitted from the terminal apparatus 400-1 (step 513).
 さらに、基地局装置300-Bは、基地局装置300-A及び基地局装置300-Bの各々が端末装置400-1及び周辺基地局装置に接続している他の端末装置に与える干渉を抑制する送信重み係数を算出し、基地局装置300-Aの送信重み係数を基地局装置300-Aに送信する(送信重み通知)(ステップ514)。 Further, base station apparatus 300-B suppresses interference given to base station apparatus 300-A and base station apparatus 300-B to terminal apparatus 400-1 and other terminal apparatuses connected to the peripheral base station apparatus. The transmission weight coefficient to be transmitted is calculated, and the transmission weight coefficient of the base station apparatus 300-A is transmitted to the base station apparatus 300-A (transmission weight notification) (step 514).
 基地局装置300-Aは、送信された送信重み係数を用いて端末装置400-1に与えていた干渉を抑制するように制御する(ステップ515)。 The base station apparatus 300-A performs control so as to suppress the interference given to the terminal apparatus 400-1 using the transmitted transmission weight coefficient (step 515).
 基地局装置300-Bは、求めた送信重み係数に基づきプレコーディング(重み付け)を行う(ステップ516)。 また、基地局装置300-Bは、端末装置400-1で用いる受信重み係数を算出し、該受信重み係数を端末装置400-1に送信する(ステップ517)。 The base station apparatus 300-B performs precoding (weighting) based on the obtained transmission weighting coefficient (step 516). Further, the base station apparatus 300-B calculates a reception weight coefficient used in the terminal apparatus 400-1, and transmits the reception weight coefficient to the terminal apparatus 400-1 (step 517).
 続いて、基地局装置300-Bは、端末装置400-1にデータ信号を送信する(ステップ518)。 Subsequently, the base station device 300-B transmits a data signal to the terminal device 400-1 (step 518).
 以上のように、第1の実施形態では、端末装置が最大受信電力ではない基地局装置に接続する場合、最大受信電力となる基地局装置から干渉を受けないように複数の基地局装置間で協調することで、端末装置に到来するセル間干渉を効果的に抑制することができるため、スループットが低下することを抑えることができ、セル間干渉を効果的に抑制することができる。また、通信量の少ない基地局装置に接続することができるため、スケジューリング効果を得ることができ、良好な受信特性を得た通信が可能となる。
<第2の実施形態>
 第1の実施形態では端末装置が最大受信電力となる基地局以外の基地局と接続する場合に干渉抑制を行うとしたが、第2の実施形態では、最大送信電力である基地局以外の基地局と接続する場合に干渉を抑制する処理を行う例を示す。
As described above, in the first embodiment, when a terminal apparatus is connected to a base station apparatus that does not have the maximum received power, the base station apparatus does not receive interference from the base station apparatus that has the maximum received power. By cooperating, it is possible to effectively suppress inter-cell interference arriving at the terminal device, so that it is possible to suppress a decrease in throughput, and it is possible to effectively suppress inter-cell interference. In addition, since it is possible to connect to a base station apparatus with a small communication amount, it is possible to obtain a scheduling effect and to perform communication with good reception characteristics.
<Second Embodiment>
In the first embodiment, interference suppression is performed when the terminal device is connected to a base station other than the base station having the maximum received power. In the second embodiment, a base other than the base station having the maximum transmission power is used. An example of performing processing for suppressing interference when connecting to a station will be described.
 第2の実施形態に係る通信システム1bは、複数の異なる基地局装置(マクロ基地局、ピコセル基地局)を備え、ヘテロジーニアス・ネットワークを構築する。マクロ基地局(図6、基地局装置300-D)が構成するマクロセルの範囲の一部又は全部と、マクロ基地局より最大送信電力が小さいピコセル基地局(図6、基地局装置300-C)セルの範囲とが重複するように配置されている。 The communication system 1b according to the second embodiment includes a plurality of different base station devices (macro base stations and picocell base stations), and constructs a heterogeneous network. Part or all of the macro cell range formed by the macro base station (FIG. 6, base station apparatus 300-D) and the pico cell base station (FIG. 6, base station apparatus 300-C) having a maximum transmission power smaller than that of the macro base station It is arranged so that it overlaps the cell range.
 第2の実施形態に係る通信システム1bに含まれる基地局装置300-C、300-D及び端末装置400-2のそれぞれの構成は、第1の実施形態の通信システム1に含まれる基地局装置300-j(300-A、300-B)及び端末装置400-k(400-1)の構成と同じであるため、説明を省略する。 The configurations of the base station devices 300-C and 300-D and the terminal device 400-2 included in the communication system 1b according to the second embodiment are the same as those of the base station device included in the communication system 1 according to the first embodiment. Since the configuration is the same as that of the terminal 300-j (300-A, 300-B) and the terminal device 400-k (400-1), description thereof is omitted.
 図6は、通信システム1bにおいて、本実施形態における基地局装置300-C、300-D、端末装置400-2の処理の一例を示すシーケンス図である。 FIG. 6 is a sequence diagram showing an example of processing of the base station devices 300-C and 300-D and the terminal device 400-2 in the present embodiment in the communication system 1b.
 最初に、基地局装置(基地局装置300-C及び300-D)は、それぞれ所定の時間間隔で定期的に同期信号や参照信号を端末装置400-2に対して送信する(ステップ601、602)。端末装置400-2は、通信可能で待ち受けている状態(アイドル状態)にある。 First, the base station devices (base station devices 300-C and 300-D) periodically transmit a synchronization signal and a reference signal to the terminal device 400-2 at predetermined time intervals, respectively (steps 601 and 602). ). The terminal device 400-2 is in a communicable and waiting state (idle state).
 端末装置400-2は、電源投入された後、同期信号を用いて通信のため利用可能なセル(セルID)を検出する処理(セルサーチ)を開始し(ステップ603)、受信電力(又はバイアス受信電力)が最大の基地局装置(図6では、基地局装置300-C)のセルIDを取得し、基地局装置300-Cに接続要求する(ステップ604)。 After the power is turned on, the terminal device 400-2 starts a process (cell search) for detecting a cell (cell ID) that can be used for communication using a synchronization signal (step 603), and receives power (or bias) The cell ID of the base station apparatus (base station apparatus 300-C in FIG. 6) having the largest received power is acquired, and a connection request is made to the base station apparatus 300-C (step 604).
 基地局装置300-Cは、端末装置400-2に接続を許可(ACK)し、接続が確立される(ステップ605)。 The base station device 300-C permits (ACKs) the connection to the terminal device 400-2 and the connection is established (step 605).
 基地局装置300-Cは、協調通信要求を基地局装置300-Dに対して送信する(ステップ610)。 The base station device 300-C transmits a cooperative communication request to the base station device 300-D (step 610).
 端末装置400-2は、チャネル状態(伝送路状態)を表すチャネル品質表示(CQI)を基地局装置300-Cに通知する(ステップ611)。チャネル状態には、変調符号化方式(MCS)、MIMOのランク数を決定するための情報、基地局装置300-Dを含む周辺基地局装置と端末装置400-2との間のチャネル推定値を含む。 The terminal apparatus 400-2 notifies the base station apparatus 300-C of a channel quality display (CQI) indicating the channel state (transmission path state) (step 611). The channel state includes a modulation and coding scheme (MCS), information for determining the number of MIMO ranks, and a channel estimation value between the peripheral base station apparatus including the base station apparatus 300-D and the terminal apparatus 400-2. Including.
 基地局装置300-Cは、端末装置400-2から送信されたCQIに基づいてスケジューリング、MCSの設定、ランク数の設定等を行う(ステップ612)。 The base station apparatus 300-C performs scheduling, MCS setting, rank setting setting, and the like based on the CQI transmitted from the terminal apparatus 400-2 (step 612).
 基地局装置300-Cは、ステップ611で受信したチャネル品質表示(CQI)を基地局装置300-Dと共有するために、チャネル情報通知を基地局装置300-Dに送信する(ステップ613)。 The base station apparatus 300-C transmits a channel information notification to the base station apparatus 300-D in order to share the channel quality indication (CQI) received in step 611 with the base station apparatus 300-D (step 613).
 さらに、基地局装置300-Dは、基地局装置300-Dが端末装置400-2に与える干渉を抑制する送信重み係数、基地局装置300-Cが他セルの端末装置に与える干渉を抑制する送信重み係数、端末装置400-2を算出し、基地局装置300-Cのための送信重み係数を基地局装置300-Cに送信する(送信重み通知)(ステップ614)。 Further, base station apparatus 300-D suppresses the transmission weight coefficient that suppresses the interference that base station apparatus 300-D gives to terminal apparatus 400-2, and the interference that base station apparatus 300-C gives to the terminal apparatus of another cell. The transmission weight coefficient and the terminal device 400-2 are calculated, and the transmission weight coefficient for the base station device 300-C is transmitted to the base station device 300-C (transmission weight notification) (step 614).
 また、基地局装置300-Dは、端末装置400-2で用いる受信重み係数を算出し、該受信重み係数を端末装置400-2に送信する(ステップ615)。 Also, the base station apparatus 300-D calculates a reception weight coefficient used in the terminal apparatus 400-2 and transmits the reception weight coefficient to the terminal apparatus 400-2 (step 615).
 一方、基地局装置300-Cは、基地局装置300-Dより送信された送信重み係数に基づきプレコーディング(重み付け)を行う(ステップ616)。 Meanwhile, the base station apparatus 300-C performs precoding (weighting) based on the transmission weight coefficient transmitted from the base station apparatus 300-D (step 616).
 続いて、基地局装置300-Cは、端末装置400-1にデータ信号を送信する(ステップ617)。 Subsequently, the base station device 300-C transmits a data signal to the terminal device 400-1 (step 617).
 端末装置400-2に対して、端末装置400-2が接続すべき基地局装置の基地局ID(基地局装置に固有のID)を通知する(接続基地局通知)(ステップ613)。 The terminal device 400-2 is notified of the base station ID (ID unique to the base station device) of the base station device to which the terminal device 400-2 should connect (connection base station notification) (step 613).
 基地局装置300-Cは、送信された送信重み係数を用いて端末装置400-2に与えていた干渉を抑制するように制御する(ステップ618)。 The base station apparatus 300-C performs control so as to suppress the interference given to the terminal apparatus 400-2 using the transmitted transmission weight coefficient (step 618).
 以上のように、第2の実施形態では、端末装置が最大送信電力以外の基地局装置と接続する場合に、複数の基地局装置間で協調することで、複数の基地局装置が協調してセル間干渉の影響を抑制することができ、また、端末装置に到来するセル間干渉を効果的に抑制することができるため、スループットが低下することを抑えることができる。 As described above, in the second embodiment, when a terminal device is connected to a base station device other than the maximum transmission power, the plurality of base station devices cooperate with each other by cooperation between the plurality of base station devices. The influence of inter-cell interference can be suppressed, and the inter-cell interference arriving at the terminal device can be effectively suppressed, so that a reduction in throughput can be suppressed.
 尚、本発明に係る端末装置で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであってもよい。また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。 Note that the program that operates on the terminal device according to the present invention is a program that controls the CPU or the like (a program that causes a computer to function) so as to realize the functions of the above-described embodiments according to the present invention. Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU, and corrected and written as necessary. As a recording medium for storing the program, a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient. In addition, by executing the loaded program, not only the functions of the above-described embodiment are realized, but also based on the instructions of the program, the processing is performed in cooperation with the operating system or other application programs. The function of the invention may be realized.
 また市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明に含まれる。また、上述した実施形態における端末装置および基地局装置の一部、または全部を典型的には集積回路であるLSIとして実現してもよい。受信装置の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。各機能ブロックを集積回路化した場合に、それらを制御する集積回路制御部が付加される。 Also, when distributing to the market, the program can be stored in a portable recording medium for distribution, or transferred to a server computer connected via a network such as the Internet. In this case, the storage device of the server computer is also included in the present invention. Moreover, you may implement | achieve part or all of the terminal device and base station apparatus in embodiment mentioned above as LSI which is typically an integrated circuit. Each functional block of the receiving apparatus may be individually formed as a chip, or a part or all of them may be integrated into a chip. When each functional block is integrated, an integrated circuit controller for controlling them is added.
 また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。 Further, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. In addition, when an integrated circuit technology that replaces LSI appears due to progress in semiconductor technology, an integrated circuit based on the technology can also be used.
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and the design and the like within the scope not departing from the gist of the present invention are also claimed. Included in the range.
 1、1a 通信システム
 300-1、300-2、300-3、300-4 基地局装置
 301、411 上位レイヤ
 302 符号化部
 303 変調部
 304 リソースマッピング部
 305 参照信号生成部
 306 制御信号生成部
 307 送信重み生成部
 308 送信重み乗算部
 303-1、309-T IFFT部
 310-1、310-T、413 送信部
 312-1、312-T、414 送信アンテナ部
 313、401-1、401-R 受信アンテナ部
 314、402-1、402-R 受信部
 315 制御信号検出部
 316 基地局選択部
 400-1、400-2、400-3、400-4 端末装置
 403-1、203-R GI除去部
 404-1、404-R FFT部
 405 受信重み乗算部
 406 MIMO分離部
 407 チャネル推定部
 408 受信電力算出部
 409 復調部
 410 復号部
 412 制御信号生成部
1, 1a Communication system 300-1, 300-2, 300-3, 300-4 Base station apparatus 301, 411 Upper layer 302 Encoding section 303 Modulation section 304 Resource mapping section 305 Reference signal generation section 306 Control signal generation section 307 Transmission weight generation unit 308 Transmission weight multiplication unit 303-1, 309-T IFFT unit 310-1, 310-T, 413 Transmission unit 312-1, 312-T, 414 Transmission antenna unit 313, 401-1, 401-R Reception antenna unit 314, 402-1, 402-R Reception unit 315 Control signal detection unit 316 Base station selection unit 400-1, 400-2, 400-3, 400-4 Terminal device 403-1, 203-R GI removal Unit 404-1, 404-R FFT unit 405 reception weight multiplication unit 406 MIMO separation unit 407 channel estimation 408 reception power calculation unit 409 demodulation unit 410 decoding unit 412 control signal generating unit

Claims (7)

  1.  複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する端末装置とを備え、前記複数の基地局装置が各基地局装置の接続可能範囲であるセルの全域或いは一部が互いに重複するように配置される通信システムであって、
     前記端末装置が接続する基地局装置によって、前記複数の基地局装置が協調してセル間干渉の軽減を行うか否かを選択することを特徴とする通信システム。
    A plurality of base station devices, and a terminal device connected to at least one of the plurality of base station devices, wherein the plurality of base station devices are connected to each base station device in the entire range or one cell. The communication system is arranged so that the parts overlap each other,
    A communication system, wherein a plurality of base station devices select whether to reduce inter-cell interference in cooperation with a base station device to which the terminal device is connected.
  2.  前記端末装置が接続する基地局装置が、該端末装置における最大受信電力を提供する基地局装置以外の基地局装置である場合に前記セル間干渉の軽減を行うことを特徴とする請求項1に記載の通信システム。 The inter-cell interference is reduced when the base station apparatus connected to the terminal apparatus is a base station apparatus other than the base station apparatus that provides the maximum received power in the terminal apparatus. The communication system described.
  3.  前記端末装置が接続する基地局装置が、前記複数の基地局装置の中で最大送信電力以外の基地局に接続する場合に、前記セル間干渉の軽減を行うことを特徴とする請求項1又は2に記載の通信システム。 The base station apparatus connected to the terminal apparatus reduces the inter-cell interference when connecting to a base station other than the maximum transmission power among the plurality of base station apparatuses. 2. The communication system according to 2.
  4.  前記最大送信電力以外の基地局装置は、ピコ基地局装置であることを特徴とする請求項3に記載の通信システム。 The communication system according to claim 3, wherein the base station device other than the maximum transmission power is a pico base station device.
  5.  前記基地局装置は、プレコーディングによって前記セル間干渉の軽減を行うことを特徴とする請求項1から4のいずれか1項に記載に通信システム。 The communication system according to any one of claims 1 to 4, wherein the base station apparatus reduces the inter-cell interference by precoding.
  6.  前記端末装置は、受信重みによって前記セル間干渉の軽減を行うことを特徴とする請求項1から5のいずれか1項に記載に通信システム。 The communication system according to any one of claims 1 to 5, wherein the terminal device reduces the inter-cell interference by a reception weight.
  7.  複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する端末装置とを備え、前記複数の基地局装置が各基地局装置の接続可能範囲であるセルの全域或いは一部が互いに重複するように配置される通信システムにおける通信方法であって、
     前記端末装置が接続する基地局装置によって、前記複数の基地局装置が協調してセル間干渉の軽減を行うか否かを選択するステップを備えることを特徴とする通信方法。
    A plurality of base station devices, and a terminal device connected to at least one of the plurality of base station devices, wherein the plurality of base station devices are connected to each base station device in the entire range or one cell. A communication method in a communication system arranged so that parts overlap each other,
    A communication method comprising the step of selecting whether or not the plurality of base station apparatuses cooperate to reduce inter-cell interference by a base station apparatus connected to the terminal apparatus.
PCT/JP2013/058661 2012-04-13 2013-03-26 Communication system and communication method WO2013153946A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012092039A JP2015122546A (en) 2012-04-13 2012-04-13 Communication system and communication method
JP2012-092039 2012-04-13

Publications (1)

Publication Number Publication Date
WO2013153946A1 true WO2013153946A1 (en) 2013-10-17

Family

ID=49327515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058661 WO2013153946A1 (en) 2012-04-13 2013-03-26 Communication system and communication method

Country Status (2)

Country Link
JP (1) JP2015122546A (en)
WO (1) WO2013153946A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004297483A (en) * 2003-03-27 2004-10-21 Kyocera Corp Mobile station, and communication control method
JP2010154262A (en) * 2008-12-25 2010-07-08 Kddi Corp Cellular mobile communication system, base station control device, and base station- coordinated communication control method
WO2012029237A1 (en) * 2010-09-03 2012-03-08 パナソニック株式会社 Wireless communication system, low transmission power cell base station, macrocell base station, wireless terminal, and load distribution method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004297483A (en) * 2003-03-27 2004-10-21 Kyocera Corp Mobile station, and communication control method
JP2010154262A (en) * 2008-12-25 2010-07-08 Kddi Corp Cellular mobile communication system, base station control device, and base station- coordinated communication control method
WO2012029237A1 (en) * 2010-09-03 2012-03-08 パナソニック株式会社 Wireless communication system, low transmission power cell base station, macrocell base station, wireless terminal, and load distribution method

Also Published As

Publication number Publication date
JP2015122546A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
US9843942B2 (en) Device and method of enhancing downlink UE-specific demodulation reference signal to facilitate inter-cell interference cancellation and suppression
JP5296210B2 (en) Distributed uplink multi-cell successive interference cancellation for cellular networks
JP5295977B2 (en) Characterizing co-channel interference in wireless communication systems
JP5226786B2 (en) Interference-based phase shift precoding for OFDM
US20180160401A1 (en) Terminal device and base station device
TW201503621A (en) Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
CN105027461A (en) Orthogonal Beamforming for Multi-User Multiple-Input Multiple-Output (MU-MIMO)
JP2012204909A (en) Base station, terminal, communication system, and communication method
CN105553527A (en) Apparatus and method for wireless communication
WO2015001982A1 (en) Terminal device and receiving method
JP2011019101A (en) Transmission directivity control apparatus, and method of controlling transmission directivity
JP5675193B2 (en) Base station, communication method and integrated circuit
JP2012120064A (en) Radio signal processing method and radio communication device
KR101784625B1 (en) Method and Apparatus for Non-orthogonal Multiple Access-based Space Shift Keying and MIMO Multiplexing
US10448407B2 (en) Interference cancellation enhancement in HetNets through coordinated SIMO/MIMO interference codes
WO2013153946A1 (en) Communication system and communication method
EP3662586B1 (en) Improved block-diagnolization based beamforming
JP2013120975A (en) Communication system, communication method, base station device, and mobile station device
JP2014135529A (en) Base station device, communication system, transmission method and communication method
WO2015001981A1 (en) Terminal device, base station device, and receiving method
US9232530B2 (en) Managing a radio transmission between a base station and a user equipment
WO2013154083A1 (en) Communication system, communication method, base station device, and mobile station device
US20220386241A1 (en) Pre-emptive suppression of inter-cell interference in cellular wireless communication networks
WO2015016193A1 (en) Terminal device, base-station device, and reception method
JP2014154916A (en) Base station device, terminal device, communication system, transmission method, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13776342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13776342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP