WO2013152675A1 - 自移动地面处理机器人及其清洁工作的控制方法 - Google Patents
自移动地面处理机器人及其清洁工作的控制方法 Download PDFInfo
- Publication number
- WO2013152675A1 WO2013152675A1 PCT/CN2013/073425 CN2013073425W WO2013152675A1 WO 2013152675 A1 WO2013152675 A1 WO 2013152675A1 CN 2013073425 W CN2013073425 W CN 2013073425W WO 2013152675 A1 WO2013152675 A1 WO 2013152675A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- robot
- threshold
- cleaning
- small area
- control method
- Prior art date
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 106
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000004018 waxing Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000005295 random walk Methods 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0227—Control of position or course in two dimensions specially adapted to land vehicles using mechanical sensing means, e.g. for sensing treated area
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0219—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L2201/00—Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
- A47L2201/04—Automatic control of the travelling movement; Automatic obstacle detection
Definitions
- the invention belongs to the field of intelligent robots, and in particular to a self-moving ground processing robot and a control method thereof for cleaning work. Background technique
- existing cleaning robots mainly perform three cleaning modes: random cleaning mode, fixed-point cleaning mode, and wall/obstacle follow-up cleaning mode (also known as welt cleaning).
- random cleaning mode When there is a dirty area on the ground, the robot performs fixed-point cleaning on the dirty area such as spiral cleaning; when it is not necessary to perform fixed-point cleaning on the ground, the random mode can be used, that is, the robot randomly walks, so that the robot effectively covers the entire ground; When cleaning a wall edge or obstacle edge that is missing from the random sweep mode, the robot uses the wall/obstacle to follow the sweep mode, which is to sweep along the edge of the obstacle.
- the above three cleaning modes are described in detail in U.S. Patent No. 7,738,343, and the cleaning robot can effectively clean the target floor by separately or in combination with the above three cleaning modes.
- the cleaning robot is in the random cleaning mode most of the time, that is, it is cleaned while walking on the working surface. There is no fixed cleaning path. When cleaning, the main brush and the side brush can be used to work together. If an obstacle is encountered, the obstacle is left after the collision. Continue to clean, it will not deliberately clean along the obstacles. If the bottom edge of the obstacle is small or irregular, such as legs, legs, etc., it can be bypassed in the random cleaning mode, which will not affect the cleaning effect. However, for some narrow areas or corners, there will be leakage cleaning. Insufficient cleaning work affects cleaning efficiency. When the cleaning robot performs the spot cleaning mode, it is usually impossible to clean the edge area of the obstacle. In particular, after the cleaning robot performs the wall/obstacle following cleaning mode, it only cleans the wall or normal obstacle edge relative to the diameter of the robot, and does not clean the area slightly away from the edge of the obstacle. Summary of the invention
- the technical problem to be solved by the present invention is to provide a self-moving ground treatment robot and a control method for the cleaning work thereof, which are suitable for cleaning corners or narrow areas, in view of the deficiencies of the prior art.
- the control method for the cleaning work of the mobile ground processing robot of the present invention specifically includes the following steps: Step SO: The robot randomly walks;
- Step S1 The robot continues to walk randomly after hitting the obstacle
- Step S2 The control unit determines that the straight line segment distance of the two consecutive collisions is within a range between the first threshold and the second threshold, and starts performing small area cleaning work; otherwise, returns to step S0. Further, the small area cleaning work in the step S2 specifically includes the following steps:
- Step S21 controlling the robot to perform cleaning work toward the first side area
- Step S22 When it is determined that the bottom of the first side area is reached, the control robot turns to exit the first side area, and proceeds to step S23; otherwise, returns to step S21;
- Step S23 The robot performs cleaning work in the opposite second side area
- Step S24 When it is judged that the bottom of the second side area is reached, the small area cleaning work is stopped and the small area is exited; otherwise, the process returns to step S23.
- the method for exiting the small area in step S24 specifically includes the following steps:
- Step S241 The robot is stuck on the side
- Step S242 When it is determined that the position of the robot where the position of the robot deviates from the entire small area reaches the third threshold, the process returns to step S1; otherwise, the process returns to step S241.
- the small area cleaning work in the step S2 specifically includes the following steps:
- Step S21 ' controlling the robot to perform cleaning work toward the first side area
- Step S25 When it is determined that the distance of the traveling straight line segment is not within the range between the first threshold and the second threshold, the control robot turns to exit the first side region, and proceeds to step S23'; otherwise, returns to step S21';
- Step S23 ' the robot performs cleaning work in the opposite second side area
- Step S27 When it is judged that the distance of the traveling straight line segment is not within the range between the first threshold and the second threshold, stop the small area cleaning work and exit the small area; otherwise, return to step S23'.
- the method for exiting the small area in step S27 specifically includes the following steps:
- Step S271 When the distance of the straight line segment is greater than or equal to the second threshold, return to step SO; otherwise, proceed to step S272;
- Step S272 The robot is walking on the side;
- Step S273 When it is determined that the position of the robot where the shortest linear distance from the entire small area reaches the third threshold, the process returns to step S1; otherwise, the process returns to step S272.
- the first threshold is 30 cm
- the second threshold is 180 cm
- the third threshold is 100 cm.
- the cleaning operation is a bow type cleaning
- the bow type cleaning path includes a welt section and a straight section, and at least one end of the straight section intersects the obstacle.
- the distance of the walking straight line segment is less than or equal to a second threshold.
- the distance between the welt segments is 2/3 of the width of the robot.
- the self-moving ground processing robot of the present invention comprises a functional component, a walking unit, a driving unit, an obstacle sensor, and a control unit;
- the obstacle sensor is configured to detect whether there is an obstacle at the front end or the side of the robot, and deliver the detected information to the control unit;
- the control unit is respectively connected to the functional component and the driving unit, and the driving unit is connected to the walking unit, and the driving unit receives an instruction of the control unit to drive the walking unit to travel according to a predetermined route,
- the functional component accepts the instruction of the control unit to perform ground processing according to a predetermined working mode;
- the control unit controls the function component and the driving unit to operate according to the above control method.
- the self-moving ground processing robot further includes a striker located at an end of the robot traveling direction, and the obstacle sensor is provided on the striker.
- FIG. 1 is a block diagram showing the structure of a self-moving cleaning robot according to the present invention.
- Embodiment 3 is a schematic flow chart of Embodiment 1 of a control method for cleaning a self-moving cleaning robot according to the present invention
- Embodiment 4 is a schematic travel diagram of Embodiment 1 of a control method for cleaning a self-moving cleaning robot according to the present invention
- FIG. 5 is a schematic flow chart of a second embodiment of a control method for cleaning a self-moving cleaning robot according to the present invention.
- Fig. 6 is a schematic view showing the walking of the second embodiment of the control method for cleaning the self-moving cleaning robot of the present invention. detailed description
- the self-moving ground processing robot includes a cleaning component 1, a traveling unit 2, a driving unit 3, an obstacle sensor 4 located at the front end of the robot, and a control unit 5.
- the self-moving ground processing robot is a cleaning robot including a body 6, and a collision plate 61 is provided at a front portion of the body 6, and an obstacle sensor 4 is disposed on the collision plate 61.
- Robots generally use obstacle sensors to detect peripheral obstacles for avoidance or welt.
- the obstacle sensor may be an ultrasonic sensor, an infrared sensor, a travel switch, or the like.
- the ultrasonic sensor If the ultrasonic sensor is working, it will be ultrasonic
- the signal is transmitted to the traveling path of the robot and receives an ultrasonic signal reflected back from the obstacle to determine whether the obstacle exists and the distance from the obstacle.
- the infrared sensor includes an infrared emitter and a receiver, and the infrared receiver receives infrared rays reflected from the obstacle to determine whether the obstacle exists and the distance from the obstacle.
- the robot of the present invention is further provided with a distance detector, such as an encoder connected to the traveling wheel, and measures the traveling distance of the robot by calculating the number of rotations of the wheel.
- a distance detector such as an encoder connected to the traveling wheel, and measures the traveling distance of the robot by calculating the number of rotations of the wheel.
- the robot is equipped with a direction sensor such as a code wheel, an acceleration sensor or a gyroscope to judge and control the direction of travel of the robot.
- the robot To clean small areas, the robot first recognizes small areas. If the distance between the two obstacles is not greater than a certain value, it can be assumed that the area between the two obstacles is a small area. For a narrow area such as a corridor, the distance between two parallel wall surfaces is less than a certain value such as 2m, which is a small area; or the right corner corner of the room, the square corner defined by the diagonal line is 2m; or the sofa and the wall When the distance between them is less than 2 m, the area between the sofa and the wall is a small area. In fact, since the random cleaning and welt cleaning mode has already cleaned most of the room, it is not appropriate to define a large distance between the two obstacles as a small area.
- the robot control unit determines that the robot reaches a small area when the robot collides with two obstacles and calculates that the walking distance of the robot is within a certain range.
- the first threshold value and the second threshold value are set in the robot control unit. When the walking distance of the robot when the two obstacles collide is between the two thresholds, it is judged that the robot reaches the small area to perform small area cleaning.
- the following describes in detail how the self-moving ground handling robot of the present invention cleans small areas, such as sweeping corner areas, narrow areas, small areas between common obstacles and wall surfaces, or small areas between common obstacles.
- the mobile ground handling robot starts to walk randomly in the room (step S0).
- the collision plate set at the front end of the robot will be obstacles (such as wall or ordinary obstacles).
- a collision occurs, and the obstacle sensor 4 provided on the striker transmits a signal to the control unit.
- the first threshold and the second threshold are set in the control unit 5 of the robot.
- the first threshold is 30 cm and the second threshold is 180 cm.
- the robot calculates whether the linear distance between the first and second collisions is between 30 and 180 cm, if not , the robot will continue to walk randomly.
- the control unit 5 When the robot collides with the obstacle for the third time, the control unit 5 continues to calculate the linear distance between the second and third collisions. In particular, when the robot detects that the linear distance between two consecutive collisions is in the range of 30 to 180 cm (step S2), the control unit 5 determines that a small area is entered, thereby starting the small area cleaning mode; otherwise, the robot continues to be random. Walk until the conditions for starting the small area cleaning mode are met.
- the robot starts to perform small area cleaning. Specifically, the robot cleans the area according to the set walking path, such as bow type, Z type, W type, etc., to ensure that it can be cleaned. Go to the corner or the edge of the wall/obstacle.
- the process of cleaning the small area is as follows: The X axis is established by the straight line of the robot collision twice, and the control unit controls the robot orientation. The corresponding axis of the coordinate axis is deflected, and the wall/normal obstacle is cleaned along the second collision. The distance of the edge cleaning is about 2/3 of the width of the robot, and then the line returns to the first collision.
- the wall/normal obstacle is cleaned, so that a welt-straight-edge motion is repeated.
- the path of the bow-shaped cleaning is divided into a straight segment and a welt segment.
- the robot first cleans toward the bottom of the corner, that is, the first side area on the right side of the X-axis (step S21), the distance of the straight section is continuously decreased, and then it is judged whether the robot reaches the bottom of the first side area (step S22).
- the control unit judges that it has reached the bottom of the first side region of the corner wall, and then exits the side region that has been cleaned, and then starts the bow type cleaning in the opposite direction, that is, the X axis.
- the second side area on the left side is cleaned (step S23) until it is cleaned to the bottom of the other side, and then it is judged whether the robot reaches the bottom of the second side area (step S24), for example, when it is judged that the straight line distance is less than or equal to the first
- a threshold of 30 cm the cleaning of the second side region is completed. At this point, the cleaning of the entire small area is over.
- the robot when the bow-type cleaning reverses the second side cleaning, only one obstacle on the wall surface, when the measured straight line distance has reached the second threshold value of 180 cm, the robot has already collided with another by default.
- the edge of the obstacle collides with the virtual obstacle, and the control unit performs the virtual welt walking, that is, the straight line segment distance cannot exceed the second threshold of 180 cm, and at least one end of the straight line segment intersects the wall/obstacle.
- the robot can also determine whether to reach the bottom of the small area by other means, such as the distance of the welt section is less than 2/3 of the width of the robot body or the obstacle sensor disposed on both sides of the robot simultaneously senses the obstacle signal. Or when the robot rotates at a certain angle, such as 150 degrees, it senses the obstacle signal again; or after rotating a certain angle, the machine's horizontal abscissa or ordinate remains unchanged or changes little.
- the robot always cleans one side of the area first, then cleans the second area in reverse, as shown in Figure 4.
- the robot first judges that the distance between the two collisions is between the first threshold and the second threshold, the robot records the two collision points a1 (xl, yl) and a2 (x2, y2) and establishes the coordinate system with the line of ala2. .
- the robot is judged that the robot is always cleaning toward the first side or the second side area by increasing or decreasing the Y coordinate. In this way, the robot can always reach the two corners of the room and complete the small area cleaning.
- the control unit controls the robot to walk along the wall/obstacle (step S241), and when the shortest linear distance of the robot from the small area reaches the third threshold, for example, 100 cm (step S242), the robot is determined.
- the small area has been exited and the control unit controls the robot to start walking randomly.
- the complete small area cleaning path is shown in Figure 4.
- the route indicated by A is the cleaning of the first side of the front side
- the route indicated by B is the cleaning of the second side of the reverse side
- the route indicated by C is the cleaning of the side.
- the present invention provides another control for cleaning a small area of a mobile ground handling robot. Method.
- the robot After the power is turned on, the robot starts to walk randomly in the room (step so), and the robot continues to walk randomly after hitting the obstacle (step S1), when the straight line distance of two consecutive collisions is measured within a range of 30 to 180 cm (steps) S2), the control unit determines that it has entered a small area and starts the small area cleaning mode.
- the robot After this mode is activated, the robot will perform a small area cleaning operation, assuming that it is still cleaned according to the bow type path.
- the robot first cleans toward one side (step S21 ').
- the control unit controls the robot to continue walking; when it is judged that the walking straight line distance is not within the range (Ste S25), the control unit controls the robot to exit the side area, and then starts the bow type cleaning toward the second side area in the opposite direction (step S23').
- the bow type walking mode described in this embodiment is the same as that in the first embodiment.
- step S27 When it is determined that the straight line segment distance of the bow type walking is not in the range of 30 to 180 cm (step S27), there are two cases: when it is judged that the straight line segment distance is greater than or equal to the second threshold value of 180 cm (step 271), the control unit controls The robot starts to walk randomly. As shown in Figure 6, the route indicated by A is the beginning of the front cleaning, the route indicated by B is the reverse cleaning, and the route indicated by C is the random cleaning. When the distance is less than or equal to the first threshold of 30 cm, the judgment has been reached. At the bottom of the small area, the robot completes the small area cleaning work, and the control unit controls the robot to exit the small area.
- control unit controls the robot to walk along the wall/obstacle (step S272), and is measured by the coordinate relationship.
- the control unit controls the robot to start random walking.
- the first threshold, the second threshold, and the third threshold are all related to the size of the robot itself and the walking path, and the user can modify it according to requirements. If it is desired that the small area of the robot cleaning is larger or smaller, the second threshold may be increased or decreased correspondingly; and if the machine size itself is large, the first threshold and the third threshold are correspondingly increased.
- the self-moving robot may also be a waxing robot, and the waxing device (ie, a functional component) protruding from the outside of the robot causes the self-moving robot to stick
- the ground of the welt may also be waxed, and the waxing device on the side may be fixedly extended on the outside of the robot or in a telescopic manner.
- the self-moving ground processing robot described in the present invention can have different functional components in the ground processing robot according to actual functional needs, such as: cleaning unit, waxing unit, polishing unit, etc., thereby realizing different grounds. The need for work processing.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Electric Vacuum Cleaner (AREA)
Abstract
本发明属于智能机器人技术领域,具体地说,涉及一种自移动地面处理机器人及其清洁工作的控制方法。控制方法具体包括如下步骤:步骤S0:机器人随机行走;步骤S1:机器人碰撞障碍物后继续随机行走;步骤S2:控制单元判断连续两次碰撞的直线段距离在第一阈值和第二阈值之间的范围内,开始执行小区域清洁工作;否则,返回步骤S0。本发明自移动地面处理机器人包括功能部件、行走单元、驱动单元、障碍物传感器、控制单元;所述控制单元按上述的控制方法控制所述功能部件、驱动单元工作,本发明适合清扫角落或狭长区域。
Description
自移动地面处理机器人及其清洁工作的控制方法 技术领域
本发明属于一种智能机器人领域, 具体地说, 涉及一种自移动地面处理机器人及 其清洁工作的控制方法。 背景技术
目前, 现有的清洁机器人主要进行三种清洁模式: 随机清扫模式、 定点清扫模式 以及墙 /障碍物跟随清扫模式 (也称为贴边清扫)。 当地面有区域比较脏时, 机器人对 该脏区域进行定点清扫如螺旋清扫; 当不需要对地面进行定点清扫时, 可以釆用随机 模式, 即机器人随机行走, 以便机器人有效覆盖整个地面; 当需要对随机清扫模式遗 漏的墙边沿或障碍物边沿进行清洁时, 机器人采用墙 /障碍物跟随清扫模式, 即沿着障 碍物边沿进行清扫。 如美国专利 US7388343就详细介绍上述三种清洁模式, 清扫机器 人一般通过分别或结合上述三种清洁模式能有效对目标地面进行清洁。
清洁机器人大部分时间处于随机清扫模式,即在工作表面一边随意行走一边清扫, 没有固定的清扫路径, 清扫时可以采用主刷和边刷配合工作, 如遇到障碍物, 碰撞后 离开障碍物, 再继续清扫, 其不会刻意地沿着障碍物清扫。 如果障碍物的底边较小或 不规则, 如桌腿、 凳腿等, 在随机清扫模式中可以绕过去, 不会影响清洁效果, 但是, 对一些狭小区域或角落会出现漏清扫的现象, 使清洁工作不彻底, 影响了清洁效率。 清洁机器人执行定点清扫模式时, 通常无法对障碍物边沿区域进行清洁。 特别的, 清 洁机器人执行墙 /障碍物跟随清扫模式后, 其仅仅将墙或普通障碍物边沿相对于机器人 直径的区域进行清扫, 对离障碍物边沿稍远距离的区域仍未进行清洁。 发明内容
本发明所要解决的技术问题在于, 针对现有技术的不足, 提供一种自移动地面处 理机器人及其清洁工作的控制方法, 适合清扫角落或狭长区域。
本发明自移动地面处理机器人清洁工作的控制方法, 具体包括如下步骤: 步骤 SO : 机器人随机行走;
步骤 S 1 : 机器人碰撞障碍物后继续随机行走;
步骤 S2 : 控制单元判断连续两次碰撞的直线段距离在第一阈值和第二阈值之间的 范围内, 开始执行小区域清洁工作; 否则, 返回歩骤 S0。
进一步地, 所述步骤 S2中小区域清洁工作具体包含如下步骤:
步骤 S21 : 控制机器人朝向第一侧区域进行清洁工作;
步骤 S22: 判断抵达第一侧区域的底部时, 控制机器人转向退出第一侧区域后, 进入步骤 S23; 否则, 返回步骤 S21 ;
歩骤 S23: 机器人朝反向的第二侧区域进行清洁工作;
步骤 S24: 判断抵达第二侧区域的底部时, 停止小区域清洁工作并退出小区域; 否则, 返回步骤 S23。
步骤 S24中退出小区域的方法具体包含如下步骤:
步骤 S241 : 机器人贴边行走;
歩骤 S242:判断机器人所在的位置偏离整个小区域的最短直线距离达到第三阈值 时, 返回步骤 SO; 否则, 返回步骤 S241。
所述步骤 S2中小区域清洁工作具体包含如下步骤:
步骤 S21 ' : 控制机器人朝向第一侧区域进行清洁工作;
步骤 S25 : 判断行走直线段距离不在第一阈值和第二阈值之间的范围内时, 控制 机器人转向退出第一侧区域后, 进入步骤 S23 ' ; 否则, 返回歩骤 S21 ' ;
步骤 S23 ' : 机器人朝反向的第二侧区域进行清洁工作;
步骤 S27 : 判断行走直线段距离不在第一阈值和第二阈值之间的范围内时, 停止 小区域清洁工作并退出该小区域; 否则, 返回步骤 S23 '。
步骤 S27中退出小区域的方法具体包含如下步骤:
步骤 S271 : 当行走直线段距离大于或等于第二阈值时, 返回步骤 SO; 否则, 进 入歩骤 S272;
步骤 S272: 机器人贴边行走;
步骤 S273 :判断机器人所在的位置偏离整个小区域的最短直线距离达到第三阈值 时, 返回步骤 SO; 否则, 返回步骤 S272。
其中, 所述第一阈值为 30cm, 第二阈值为 180cm, 所述第三阈值为 100cm。 所述清洁工作为弓字型清扫, 所述弓字型清扫路径包括贴边段和直线段, 所述直 线段至少一端与障碍物相交。
所述行走直线段距离小于或等于第二阈值。
所述贴边段距离为机器人宽度的 2/3。
当机器人贴边行走距离小于机器人宽度的 2/3、或者机器人行走直线段距离小于第 二阈值、或者机器人旋转预定角度后碰撞障碍物后,判断机器人抵达一侧区域的底部。
本发明自移动地面处理机器人包括功能部件、 行走单元、 驱动单元、 障碍物传感 器、 控制单元;
所述障碍物传感器用于探测机器人的前端或侧面是否有障碍物, 并将探测到的信 息输送给所述控制单元;
所述控制单元分别与所述功能部件和驱动单元相连接, 驱动单元与所述的行走单 元相连接,所述驱动单元接受控制单元的指令, 驱动所述行走单元按预定的路线行走, 所述功能部件接受控制单元的指令按预定的工作模式进行地面处理;
所述控制单元按上述的控制方法控制所述功能部件、 驱动单元工作。
所述的自移动地面处理机器人还包括位于所述机器人行走方向端部的撞板, 在撞 板上设有所述障碍物传感器。 附图说明
图 1为本发明所述自移动清洁机器人的结构组成框图;
图 2为本发明所述自移动清洁机器人的外观结构;
图 3 为本发明所述自移动清洁机器人清洁工作的控制方法实施例一的流程示意 图;
图 4 为本发明所述自移动清洁机器人清洁工作的控制方法实施例一的行走示意 图;
图 5 为本发明所述自移动清洁机器人清洁工作的控制方法实施例二的流程示意 图;
图 6 为本发明所述自移动清洁机器人清洁工作的控制方法实施例二的行走示意 图。 具体实施方式
实施例一
如图 1为本发明的自移动地面处理机器人的结构组成框图, 该自移动地面处理机 器人包括清扫部件 1、 行走单元 2、 驱动单元 3、 位于机器人前端的障碍物传感器 4和 控制单元 5。 如图 2所示, 该自移动地面处理机器人为清扫机器人, 该清扫机器人包 括本体 6, 在该本体 6的前部设有撞板 61, 障碍物传感器 4设置在撞板 61上。机器人 一般通过障碍物传感器探测周边障碍物来进行回避或贴边。 具体的, 该障碍物传感器 可以是超声波传感器、 红外传感器、 行程开关等。 如超声波传感器工作时, 将超声波
信号发射到机器人的行进路径, 并接收从障碍物反射回的超声波信号, 从而确定障碍 物是否存在以及离障碍物的距离。 如红外传感器包含红外发射器和接收器, 红外接收 器接收从障碍物反射回的红外线, 来确定障碍物是否存在以及离障碍物的距离。
本发明机器人还设有距离探测器, 如在行进轮上连接编码器, 并通过计算轮子的 旋转次数测量机器人的行进距离。 另外, 机器人还设有方向传感器, 如码盘、 加速度 传感器或陀螺仪等, 用来判断和控制机器人的行进方向。
要清扫小区域, 机器人首先要识别小区域。 若两个障碍物之间的距离不大于一定 数值时, 则可以假定两障碍物之间的区域为小区域。 如走廊等狭长区域, 两平行墙面 之间的距离小于一定数值如 2m时, 为小区域; 或者房间直角角落, 对角线为 2m所确 定的方形角落为小区域; 或者沙发和墙面之间的距离小于 2m时, 沙发和墙面之间的 区域为小区域。实际上, 由于随机清扫和贴边清扫模式已经将房间大部分地区清扫过, 故将两障碍物之间的距离较大的区域定义为小区域不合适。 因而, 可以通过机器人碰 撞两障碍物并计算该机器人的行走距离在一定范围内时, 确定机器人抵达小区域。 具 体地说, 在机器人控制单元中设置第一阔值和第二阈值, 当机器人碰撞两障碍物时的 行走距离处于该两阈值之间时, 判断机器人抵达小区域从而进行小区域清扫。
下面详细介绍本发明自移动地面处理机器人如何清扫小区域, 如清扫边角区域、 狭长区域、 普通障碍物与墙面之间的小区域或普通障碍物之间的小区域等。
如图 3-4所示, 打开电源后, 自移动地面处理机器人在房间里开始随机行走 (步 骤 S0), 在随机行走过程中机器人前端设置的撞板会与障碍物 (如墙面或普通障碍物 等) 发生碰撞, 撞板上设置的障碍物传感器 4将信号传递给控制单元。 机器人的控制 单元 5内设置了第一阈值和第二阈值,较佳的,第一阈值为 30cm,第二阈值为 180cm。 机器人第一碰撞障碍物后继续随机行走 (步骤 Sl ), 当机器人第二次碰撞障碍物时, 机器人计算该第一次、 第二次碰撞间的直线距离是否在 30~180cm之间, 若不在, 则 机器人将继续随机行走。当机器人第三次碰撞障碍物时,控制单元 5继续计算第二次、 第三次碰撞之间的直线距离。 特别的, 当机器人检测连续两次碰撞间的直线距离在 30~180cm的范围内时 (歩骤 S2), 控制单元 5就判定进入了小区域, 从而启动小区域 清扫模式; 否则, 机器人继续随机行走, 直到满足启动该小区域清扫模式的条件。
当小区域清扫模式启动后, 机器人就开始执行小区域清扫工作, 具体来说机器人 按照设定的行走路径对该区域进行清扫, 如弓字型, Z字型, W型等, 以确保可以清 扫到角落或墙面 /障碍物的边缘。 例如, 以弓字型作为设定的清扫路径, 清扫小区域的 过程如下: 以机器人连续两次碰撞的直线建立坐标轴 X轴, 控制单元控制机器人朝向
相对应的坐标轴 Y轴方向发生偏转, 沿着第二次碰撞的墙面 /普通障碍物贴边清扫, 贴 边清扫的距离大约为机器人宽度的 2/3, 然后直线返回第一次碰撞的墙面 /普通障碍物 贴边清扫, 如此重复一个贴边-直线-贴边的动作, 如图 4所示, 其弓字型清扫的路径 分为直线段和贴边段。 按照图 4的路径, 机器人首先朝向墙角底部即 X轴右侧的第一 侧区域进行清扫 (步骤 S21 ) , 直线段距离不断减小, 然后, 判断机器人是否抵达第一 侧区域的底部 (步骤 S22) , 如当直线段距离小于等于第一阈值 30cm时, 控制单元判 断已到达墙角第一侧区域底部, 于是退出已经清扫过的这一侧区域, 然后开始朝反方 向进行弓字型清扫即 X轴左侧的第二侧区域进行清扫(步骤 S23 ) ,直至清扫到另一侧 的底部, 再后判断机器人是否抵达第二侧区域的底部 (步骤 S24), 如当判断直线段距 离小于或等于第一阈值 30cm时, 从而完成第二侧区域的清扫。 此时, 整个小区域清 洁工作结束。 需要说明的是, 在图 4中, 弓字型清扫反向第二侧清扫时, 仅有墙面一 个障碍物, 当测得直线段距离已经达到第二阈值 180cm时, 机器人默认已经碰撞另一 障碍物的边缘即碰撞虚拟障碍物, 控制单元进行虚拟贴边行走, 也就是说直线段距离 不可能超过第二闽值 180cm, 该直线段至少一端与墙面 /障碍物是相交的。 另外, 步骤 S24 中机器人也可以通过其它方式判断是否抵达小区域的底部, 如贴边段的距离小于 机器人机体宽度的 2/3或者设置在机器人两侧的障碍物传感器同时感测到障碍物信号; 或者机器人旋转一定角度如 150度时, 再次感应障碍物信号; 或者旋转一定角度后, 机器中心横坐标或纵坐标保持不变或变化很小。
机器人总是先清扫一侧区域, 然后反向清扫第二次区域, 如图 4。 当机器人初次 判断两次碰撞之间的距离介于第一阈值和第二阈值时,机器人记录两次碰撞点 al ( xl , yl ) 和 a2 ( x2, y2 ) 并以 ala2所在直线建立坐标轴系。 当以 ala2所在直线建立 x轴 时, 通过 Y坐标不断增大或不断减小, 来判断机器人始终朝向第一侧或第二侧区域清 扫。 这样, 机器人就总能抵达房间的两个角落而完成小区域清扫。
小区域清扫完成后, 控制单元控制机器人沿墙面 /障碍物贴边行走 (步骤 S241 ) , 当测得机器人距离小区域的最短直线距离达到第三阈值如 100cm时 (歩骤 S242 ), 判 定机器人已经退出该小区域, 控制单元控制机器人开始随机行走。 完整的小区域清扫 路径如图 4所示, A所指路线为开始的正面第一侧区域清扫, B所指路线为反面第二 侧区域清扫, C所指路线为贴边清扫。 实施例二
如图 5-6所示, 本发明提供另一种自移动地面处理机器人小区域清洁工作的控制
方法。
同样打开电源后, 机器人在房间里开始随机行走 (步骤 so ) , 机器人碰撞障碍物 后继续随机行走(步骤 S 1 ) ,当测得连续两次碰撞的直线距离在 30~ 180cm的范围内(步 骤 S2), 控制单元就判定进入了小区域, 启动小区域清扫模式。
该模式启动后, 机器人就开始执行小区域清扫工作, 假设还是按照弓字型的路径 进行清扫。 机器人先朝向一侧进行清扫 (步骤 S21 ' ), 当判断弓字型行走的直线段距 离在 30~180cm的范围内, 控制单元控制机器人继续行走; 当判断行走直线段距离不 在该范围内时 (步骤 S25 ) , 控制单元控制机器人退出这一侧区域, 然后开始朝反方向 第二侧区域进行弓字型清扫 (步骤 S23 ' )。 本实施例所述的弓字型行走方式与实施例 一中的相同。
当测得弓字型行走的直线段距离不在 30~180cm的范围内时 (步骤 S27 ) , 有两种 情况: 当判断直线段距离大于或等于第二阈值 180cm时(步骤 271 ), 控制单元控制机 器人开始随机行走, 如图 6所示, A所指路线为开始的正面清扫, B所指路线为反面 清扫, C所指路线为随机清扫; 当距离小于等于第一阈值 30cm时, 判断已达到小区 域的底部, 机器人完成小区域清扫工作, 控制单元控制机器人退出该小区域, 具体来 说控制单元控制机器人沿着沿墙面 /障碍物贴边行走 (步骤 S272) , 通过坐标轴关系测 得机器人距离小区域的最短直线距离达到第三阈值如 100cm时 (步骤 S273 ), 控制单 元控制机器人开始随机行走。
上述实施例中, 第一阈值、 第二阈值、 第三阈值均和机器人本身的尺寸和行走路 径相关, 使用者可以根据需求自行修改。如希望机器人清扫的小区域再大或再小一些, 可对应增大或减小第二阈值; 又如机器尺寸本身较大时, 对应增加第一阈值和第三阈 值。 另外, 除了上述实施例所描述的自移动机器人具有清扫功能之外, 该自移动机器 人还可以是打蜡机器人, 通过机器人外侧伸出的打蜡装置(即功能部件), 使得自移动 机器人在贴边移动时, 也可将贴边的地面进行打蜡, 该侧部的打蜡装置可以是固定伸 出于机器人外侧, 也可以呈伸缩状。 本发明中所述的自移动地面处理机器人, 可以根 据实际的功能需要, 在地面处理机器人内设有不同的功能部件, 诸如: 清扫单元、 打 蜡单元、 磨光单元等, 从而实现对地面不同工作处理的需要。
Claims
1. 一种自移动地面处理机器人清洁工作的控制方法, 其特征在于, 具体包括如下 步骤:
步骤 SO : 机器人随机行走;
歩骤 S1 : 机器人碰撞障碍物后继续随机行走;
步骤 S2: 控制单元判断连续两次碰撞的直线段距离在第一阈值和第二阈值之间的 范围内, 开始执行小区域清洁工作; 否则, 返回步骤 SO。
2. 如权利要求 1所述的控制方法, 其特征在于, 所述步骤 S2中小区域清洁工作 具体包含如下步骤:
步骤 S21 : 控制机器人朝向第一侧区域进行清洁工作;
步骤 S22: 判断抵达第一侧区域的底部时, 控制机器人转向退出第一侧区域后, 进入步骤 S23; 否则, 返回步骤 S21 ;
步骤 S23: 机器人朝反向的第二侧区域进行清洁工作;
步骤 S24: 判断抵达第二侧区域的底部时, 停止小区域清洁工作并退出小区域; 否则, 返回步骤 S23。
3. 如权利要求 2所述的控制方法, 其特征在于, 步骤 S24中退出小区域的方法具 体包含如下步骤:
步骤 S241 : 机器人贴边行走;
歩骤 S242:判断机器人所在的位置偏离整个小区域的最短直线距离达到第三阈值 时, 返回步骤 SO; 否则, 返回步骤 S241。
4. 如权利要求 1所述的控制方法, 其特征在于, 所述步骤 S2中小区域清洁工作 具体包含如下步骤:
歩骤 S21 ' : 控制机器人朝向第一侧区域进行清洁工作;
步骤 S25 : 判断行走直线段距离不在第一阈值和第二阈值之间的范围内时, 控制 机器人转向退出第一侧区域后, 进入步骤 S23 ' ; 否则, 返回步骤 S21 ' ;
步骤 S23 ' : 机器人朝反向的第二侧区域进行清洁工作;
步骤 S27 : 判断行走直线段距离不在第一阈值和第二阈值之间的范围内时, 停止 小区域清洁工作并退出该小区域; 否则, 返回歩骤 S23 '。
5. 如权利要求 4所述的控制方法, 其特征在于, 步骤 S27中退出小区域的方法具 体包含如下步骤:
步骤 S271 : 当行走直线段距离大于等于第二阈值时, 返回步骤 SO ; 否则, 进入 步骤 S272;
步骤 S272: 机器人贴边行走;
步骤 S273 :判断机器人所在的位置偏离整个小区域的最短直线距离达到第三阈值 时, 返回步骤 SO ; 否则, 返回步骤 S272。
6. 如权利要求 1所述的控制方法, 其特征在于, 所述第一阈值为 30cm, 第二阈 值为 180cm。
7. 如权利要求 3或 5所述的控制方法, 其特征在于, 所述第三阈值为 100cm。
8. 如权利要求 2或 4所述的控制方法,其特征在于,所述清洁工作为弓字型清扫, 所述弓字型清扫路径包括贴边段和直线段, 所述直线段至少一端与障碍物相交。
9. 如权利要求 2所述的控制方法, 其特征在于, 所述步骤 S21或步骤 S23中的行 走直线段距离小于或等于第二阈值。
10. 如权利要求 9所述的控制方法, 其特征在于, 所述贴边段距离为机器人宽度 的 2/3。
11. 如权利要求 2所述的控制方法, 其特征在于, 所述步骤 S22或步骤 S24中判 断机器人抵达区域底部的具体条件为:机器人贴边行走距离小于机器人宽度的 2/3、或 者机器人行走直线段距离小于第二阈值、 或者机器人旋转预定角度后碰撞障碍物。
12. 一种自移动地面处理机器人, 所述机器人包括: 功能部件、 行走单元、 驱动 单元、 障碍物传感器、 控制单元;
所述障碍物传感器用于探测机器人的前端或侧面是否有障碍物, 并将探测到的信 息输送给所述控制单元; 所述控制单元分别与所述功能部件和驱动单元相连接, 驱动单元与所述的行走单 元相连接,所述驱动单元接受控制单元的指令, 驱动所述行走单元按预定的路线行走, 所述功能部件接受控制单元的指令按预定的工作模式进行地面处理;
其特征在于,所述控制单元按权利要求 1至 10任一项所述的方法控制所述功能部 件、 驱动单元工作。
13. 如权利要求 12所述的自移动地面处理机器人, 其特征在于, 还包括位于所述 机器人行走方向端部的撞板, 在撞板上设有所述障碍物传感器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015504849A JP6549033B2 (ja) | 2012-04-13 | 2013-03-29 | 自律移動地面処理ロボット、及びその清掃作業の制御方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210108722.X | 2012-04-13 | ||
CN201210108722.XA CN103376801B (zh) | 2012-04-13 | 2012-04-13 | 自移动地面处理机器人及其清洁工作的控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013152675A1 true WO2013152675A1 (zh) | 2013-10-17 |
Family
ID=49327088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/073425 WO2013152675A1 (zh) | 2012-04-13 | 2013-03-29 | 自移动地面处理机器人及其清洁工作的控制方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6549033B2 (zh) |
CN (1) | CN103376801B (zh) |
WO (1) | WO2013152675A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108318056A (zh) * | 2018-03-26 | 2018-07-24 | 四川出入境检验检疫局检验检疫技术中心 | 家用扫地清洁机器人行走性多参数检测的装置 |
CN110262512A (zh) * | 2019-07-12 | 2019-09-20 | 北京机械设备研究所 | 一种移动机器人脱离u形障碍陷阱的避障方法及系统 |
CN111650933A (zh) * | 2020-05-19 | 2020-09-11 | 上海有个机器人有限公司 | 控制机器人脱困方法、装置、终端及可读存储介质 |
CN112198876A (zh) * | 2020-09-28 | 2021-01-08 | 湖南格兰博智能科技有限责任公司 | 一种适用于扫地机器人的带地图全覆盖清扫模块化控制方法 |
CN114200928A (zh) * | 2018-05-15 | 2022-03-18 | 北京石头世纪科技股份有限公司 | 智能移动设备及其控制方法、存储介质 |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012146195A1 (zh) | 2011-04-28 | 2012-11-01 | 苏州宝时得电动工具有限公司 | 自动工作系统、自动行走设备及其转向方法 |
CN103941306B (zh) * | 2014-01-13 | 2017-02-01 | 苏州爱普电器有限公司 | 清洁机器人及用于控制其避开障碍物的方法 |
CN104765363B (zh) * | 2014-12-10 | 2018-04-24 | 深圳市银星智能科技股份有限公司 | 智能扫地机器人及其控制方法 |
EP3234713B1 (en) | 2014-12-16 | 2022-06-15 | Aktiebolaget Electrolux | Cleaning method for a robotic cleaning device |
WO2016095965A2 (en) | 2014-12-16 | 2016-06-23 | Aktiebolaget Electrolux | Experience-based roadmap for a robotic cleaning device |
CN104757909B (zh) * | 2015-01-22 | 2019-09-10 | 深圳市银星智能科技股份有限公司 | 一种清洁机器人的清洁模式 |
CN106142104B (zh) * | 2015-04-10 | 2019-01-22 | 科沃斯机器人股份有限公司 | 自移动机器人及其控制方法 |
CN106814732A (zh) * | 2015-11-27 | 2017-06-09 | 科沃斯机器人股份有限公司 | 自移动机器人及其行走模式转换方法和行走方法 |
CN107291071A (zh) | 2016-03-30 | 2017-10-24 | 苏州宝时得电动工具有限公司 | 自动工作系统、自动行走设备及其转向方法 |
CN107263509B (zh) * | 2016-04-06 | 2024-02-09 | 王方明 | 公共清扫机器人路径规划系统及控制方法 |
CN105867375A (zh) * | 2016-04-12 | 2016-08-17 | 上海应用技术学院 | 一种服务机器人的行走控制系统及其控制方法 |
CN106239528B (zh) * | 2016-08-30 | 2019-04-09 | 宁波菜鸟智能科技有限公司 | 扫地机器人的路径清扫方法 |
JP6931994B2 (ja) * | 2016-12-22 | 2021-09-08 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | 自律移動体、移動制御方法及び移動制御プログラム |
CN107340768B (zh) * | 2016-12-29 | 2020-08-28 | 珠海市一微半导体有限公司 | 一种智能机器人的路径规划方法 |
TWI634403B (zh) * | 2017-01-26 | 2018-09-01 | 好樣科技有限公司 | 自動清潔機及其控制方法 |
KR102260529B1 (ko) * | 2017-04-11 | 2021-06-03 | 아미크로 세미컨덕터 씨오., 엘티디. | 지도 예측에 기반한 로봇 운동 제어 방법 |
CN106843239B (zh) * | 2017-04-11 | 2020-05-01 | 珠海市一微半导体有限公司 | 基于地图预测的机器人运动控制方法 |
CN106970623B (zh) * | 2017-04-18 | 2021-05-25 | 杭州匠龙机器人科技有限公司 | 智能清洁装置及其网格路径作业方法 |
CN110286674B (zh) * | 2017-04-24 | 2022-08-16 | 广州科语机器人有限公司 | 移动机器人在工作区域内的角度修正方法及移动机器人 |
WO2018219473A1 (en) | 2017-06-02 | 2018-12-06 | Aktiebolaget Electrolux | Method of detecting a difference in level of a surface in front of a robotic cleaning device |
CN107468170B (zh) * | 2017-08-31 | 2021-03-02 | 安徽信息工程学院 | 气动控制轮换拖把清洁机器人 |
EP3687357B1 (en) | 2017-09-26 | 2024-07-10 | Aktiebolaget Electrolux | Controlling movement of a robotic cleaning device |
CN107885213A (zh) * | 2017-11-22 | 2018-04-06 | 广东艾可里宁机器人智能装备有限公司 | 一种扫地机器人室内导航系统及方法 |
CN107997689B (zh) * | 2017-12-01 | 2020-06-05 | 深圳市无限动力发展有限公司 | 扫地机器人和扫地机器人的避障方法及装置 |
CN108873882B (zh) * | 2018-02-11 | 2022-06-07 | 北京石头创新科技有限公司 | 智能移动设备及其移动路径规划方法、装置、程序、介质 |
CN108196555B (zh) * | 2018-03-09 | 2019-11-05 | 珠海市一微半导体有限公司 | 自主移动机器人沿边行走的控制方法 |
CN110362099B (zh) * | 2018-03-26 | 2022-08-09 | 科沃斯机器人股份有限公司 | 机器人清扫方法、装置、机器人及存储介质 |
CN108490945A (zh) * | 2018-04-12 | 2018-09-04 | 南京苏美达智能技术有限公司 | 割草机器人判断狭窄区域并自动离开的方法 |
CN109464075A (zh) * | 2018-12-07 | 2019-03-15 | 江苏美的清洁电器股份有限公司 | 扫地机器人的清扫控制方法及其装置和扫地机器人 |
CN111466833A (zh) * | 2019-01-24 | 2020-07-31 | 燕成祥 | 清洁机器人的全浮动式接触变向装置 |
CN111693045B (zh) * | 2019-03-13 | 2024-08-23 | 北京奇虎科技有限公司 | 扫地机的清扫路线生成方法及装置 |
CN112230644B (zh) * | 2019-07-15 | 2023-10-10 | 苏州宝时得电动工具有限公司 | 自主机器人及其沿边控制方法、装置及存储介质 |
CN110764503B (zh) * | 2019-10-23 | 2022-11-22 | 广东美的白色家电技术创新中心有限公司 | 扫地机器人及其清扫方法、控制装置 |
CN112230658A (zh) * | 2020-10-15 | 2021-01-15 | 珠海格力电器股份有限公司 | 扫地机器人的运动控制方法、装置及扫地机器人 |
CN112947408B (zh) * | 2021-01-19 | 2021-12-03 | 佛山市顺德区一拓电气有限公司 | 一种清洁设备的控制方法及装置 |
CN113261879B (zh) * | 2021-04-29 | 2022-10-11 | 深圳市无限动力发展有限公司 | 角落清洁方法、装置、计算机设备和存储介质 |
CN114587191B (zh) * | 2022-01-26 | 2023-09-05 | 深圳市无限动力发展有限公司 | 扫地机分区清扫方法、装置、计算机设备和存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101238960A (zh) * | 2007-02-10 | 2008-08-13 | 三星电子株式会社 | 使用边角检测的机器人清洁器及其控制方法 |
CN201602713U (zh) * | 2009-10-09 | 2010-10-13 | 泰怡凯电器(苏州)有限公司 | 自移动地面处理机器人 |
CN101923351A (zh) * | 2009-06-12 | 2010-12-22 | 三星电子株式会社 | 机器人清洁器及其控制方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3498495B2 (ja) * | 1996-09-25 | 2004-02-16 | ミノルタ株式会社 | 自律走行車 |
ITFI20010021A1 (it) * | 2001-02-07 | 2002-08-07 | Zucchetti Ct Sistemi S P A | Apparecchio pulitore aspirante automatico per pavimenti |
ES2600352T3 (es) * | 2001-06-12 | 2017-02-08 | Irobot Corporation | Robot móvil |
JP2005211365A (ja) * | 2004-01-30 | 2005-08-11 | Funai Electric Co Ltd | 自律走行ロボットクリーナー |
JP2006020831A (ja) * | 2004-07-08 | 2006-01-26 | Matsushita Electric Ind Co Ltd | 自走式掃除機およびそのプログラム |
JP2009112723A (ja) * | 2007-11-09 | 2009-05-28 | Hitachi Appliances Inc | 自走式掃除機 |
CN101714000B (zh) * | 2009-09-30 | 2012-07-04 | 刘瑜 | 一种自动吸尘器的路径规划方法 |
CN201572040U (zh) * | 2009-10-09 | 2010-09-08 | 泰怡凯电器(苏州)有限公司 | 自移动地面处理机器人 |
-
2012
- 2012-04-13 CN CN201210108722.XA patent/CN103376801B/zh active Active
-
2013
- 2013-03-29 WO PCT/CN2013/073425 patent/WO2013152675A1/zh active Application Filing
- 2013-03-29 JP JP2015504849A patent/JP6549033B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101238960A (zh) * | 2007-02-10 | 2008-08-13 | 三星电子株式会社 | 使用边角检测的机器人清洁器及其控制方法 |
CN101923351A (zh) * | 2009-06-12 | 2010-12-22 | 三星电子株式会社 | 机器人清洁器及其控制方法 |
CN201602713U (zh) * | 2009-10-09 | 2010-10-13 | 泰怡凯电器(苏州)有限公司 | 自移动地面处理机器人 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108318056A (zh) * | 2018-03-26 | 2018-07-24 | 四川出入境检验检疫局检验检疫技术中心 | 家用扫地清洁机器人行走性多参数检测的装置 |
CN114200928A (zh) * | 2018-05-15 | 2022-03-18 | 北京石头世纪科技股份有限公司 | 智能移动设备及其控制方法、存储介质 |
CN114200928B (zh) * | 2018-05-15 | 2023-07-14 | 北京石头世纪科技股份有限公司 | 智能移动设备及其控制方法、存储介质 |
CN110262512A (zh) * | 2019-07-12 | 2019-09-20 | 北京机械设备研究所 | 一种移动机器人脱离u形障碍陷阱的避障方法及系统 |
CN110262512B (zh) * | 2019-07-12 | 2022-03-29 | 北京机械设备研究所 | 一种移动机器人脱离u形障碍陷阱的避障方法及系统 |
CN111650933A (zh) * | 2020-05-19 | 2020-09-11 | 上海有个机器人有限公司 | 控制机器人脱困方法、装置、终端及可读存储介质 |
CN111650933B (zh) * | 2020-05-19 | 2023-05-05 | 上海有个机器人有限公司 | 控制机器人脱困方法、装置、终端及可读存储介质 |
CN112198876A (zh) * | 2020-09-28 | 2021-01-08 | 湖南格兰博智能科技有限责任公司 | 一种适用于扫地机器人的带地图全覆盖清扫模块化控制方法 |
CN112198876B (zh) * | 2020-09-28 | 2023-10-03 | 湖南格兰博智能科技有限责任公司 | 一种适用于扫地机器人的带地图全覆盖清扫模块化控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103376801A (zh) | 2013-10-30 |
JP2015513161A (ja) | 2015-04-30 |
CN103376801B (zh) | 2016-08-03 |
JP6549033B2 (ja) | 2019-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013152675A1 (zh) | 自移动地面处理机器人及其清洁工作的控制方法 | |
CN110403539B (zh) | 清洁机器人的清洁控制方法、清洁机器人以及存储介质 | |
US11157015B2 (en) | Coverage robot navigating | |
US9844876B2 (en) | Robot cleaner and control method thereof | |
CN110477820B (zh) | 清洁机器人的沿障碍物清洁方法、清洁机器人以及存储介质 | |
US8655539B2 (en) | Control method of performing rotational traveling of robot cleaner | |
US20180000300A1 (en) | Robot cleaner | |
KR101566207B1 (ko) | 로봇 청소기 및 그 제어방법 | |
EP2921095B1 (en) | Robot cleaner and method for controlling the same | |
KR102083188B1 (ko) | 청소 로봇 및 그 제어 방법 | |
US20060235585A1 (en) | Self-guided cleaning robot | |
WO2020087699A1 (zh) | 一种清洁机器人的路径清扫方法、系统和芯片 | |
JP2003505127A5 (zh) | ||
WO2011041959A1 (zh) | 自移动地面处理机器人及其贴边地面处理的控制方法 | |
KR101938703B1 (ko) | 로봇 청소기 및 그 제어방법 | |
CN110495825B (zh) | 清洁机器人的跨越障碍物方法、清洁机器人以及存储介质 | |
JP4097667B2 (ja) | ロボット掃除機およびその制御方法 | |
JPH0546246A (ja) | 掃除ロボツト及びその走行方法 | |
TWI680736B (zh) | 自主行走型清掃機 | |
JP2005211499A (ja) | 自走式掃除機 | |
JP2021105963A (ja) | 自律走行作業装置 | |
KR20090085933A (ko) | 로봇 청소기 제어 방법 | |
JP4910972B2 (ja) | 自走式装置およびプログラム | |
KR101484941B1 (ko) | 로봇청소기 및 그 제어방법 | |
CN212846498U (zh) | 传感器阵列控制器和非暂时性计算机可读存储器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13775297 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015504849 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13775297 Country of ref document: EP Kind code of ref document: A1 |