WO2013150812A1 - Apparatus for producing ferroelectric film and method for producing ferroelectric film - Google Patents
Apparatus for producing ferroelectric film and method for producing ferroelectric film Download PDFInfo
- Publication number
- WO2013150812A1 WO2013150812A1 PCT/JP2013/051846 JP2013051846W WO2013150812A1 WO 2013150812 A1 WO2013150812 A1 WO 2013150812A1 JP 2013051846 W JP2013051846 W JP 2013051846W WO 2013150812 A1 WO2013150812 A1 WO 2013150812A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- ferroelectric film
- seed crystal
- ferroelectric
- manufacturing
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 91
- 239000013078 crystal Substances 0.000 claims abstract description 139
- 239000000758 substrate Substances 0.000 claims abstract description 126
- 239000000463 material Substances 0.000 claims abstract description 43
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000001301 oxygen Substances 0.000 claims abstract description 38
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 38
- 239000012298 atmosphere Substances 0.000 claims abstract description 31
- 238000010438 heat treatment Methods 0.000 claims abstract description 26
- 238000003980 solgel method Methods 0.000 claims abstract description 21
- 230000001590 oxidative effect Effects 0.000 claims abstract description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 52
- 229910052726 zirconium Inorganic materials 0.000 claims description 52
- 238000000034 method Methods 0.000 claims description 28
- 229910052746 lanthanum Inorganic materials 0.000 claims description 27
- 229910052791 calcium Inorganic materials 0.000 claims description 23
- 229910052744 lithium Inorganic materials 0.000 claims description 23
- 229910052700 potassium Inorganic materials 0.000 claims description 23
- 229910052701 rubidium Inorganic materials 0.000 claims description 23
- 229910052708 sodium Inorganic materials 0.000 claims description 23
- 229910052712 strontium Inorganic materials 0.000 claims description 23
- 239000007789 gas Substances 0.000 claims description 20
- 229910052720 vanadium Inorganic materials 0.000 claims description 11
- 229910000906 Bronze Inorganic materials 0.000 claims description 10
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 10
- 239000010974 bronze Substances 0.000 claims description 10
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical group [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 10
- 229910052745 lead Inorganic materials 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 10
- 229910052758 niobium Inorganic materials 0.000 claims description 10
- 229910052707 ruthenium Inorganic materials 0.000 claims description 10
- 229910052715 tantalum Inorganic materials 0.000 claims description 10
- 229910052721 tungsten Inorganic materials 0.000 claims description 10
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 8
- 229910001882 dioxygen Inorganic materials 0.000 claims description 8
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 7
- 238000004544 sputter deposition Methods 0.000 claims description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 5
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 5
- 229910052684 Cerium Inorganic materials 0.000 claims description 5
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 5
- 229910052691 Erbium Inorganic materials 0.000 claims description 5
- 229910052693 Europium Inorganic materials 0.000 claims description 5
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims description 5
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 5
- 229910005793 GeO 2 Inorganic materials 0.000 claims description 5
- 229910052689 Holmium Inorganic materials 0.000 claims description 5
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 5
- 229910052765 Lutetium Inorganic materials 0.000 claims description 5
- 229910052779 Neodymium Inorganic materials 0.000 claims description 5
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 5
- 229910052772 Samarium Inorganic materials 0.000 claims description 5
- 229910052771 Terbium Inorganic materials 0.000 claims description 5
- 229910052775 Thulium Inorganic materials 0.000 claims description 5
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 5
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 claims description 5
- 229910052797 bismuth Inorganic materials 0.000 claims description 5
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 5
- 229910052792 caesium Inorganic materials 0.000 claims description 5
- 238000005229 chemical vapour deposition Methods 0.000 claims description 5
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- 229910052727 yttrium Inorganic materials 0.000 claims description 5
- 229910052753 mercury Inorganic materials 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 238000000137 annealing Methods 0.000 description 48
- 238000001035 drying Methods 0.000 description 13
- 238000001816 cooling Methods 0.000 description 12
- 238000004528 spin coating Methods 0.000 description 11
- 239000000126 substance Substances 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000004378 air conditioning Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 5
- 229910004121 SrRuO Inorganic materials 0.000 description 5
- 239000000428 dust Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B5/00—Single-crystal growth from gels
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/22—Complex oxides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/22—Complex oxides
- C30B29/32—Titanates; Germanates; Molybdates; Tungstates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02197—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02282—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02321—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
- H01L21/02323—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02337—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02356—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/07—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
- H10N30/074—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
- H10N30/077—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition
- H10N30/078—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition by sol-gel deposition
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
- H10N30/8548—Lead-based oxides
- H10N30/8554—Lead-zirconium titanate [PZT] based
Definitions
- the present invention relates to a ferroelectric film manufacturing apparatus and a ferroelectric film manufacturing method using a seed crystal member.
- FIG. 11 is a cross-sectional view for explaining a conventional method of manufacturing a ferroelectric film.
- a Pt film 102 oriented in (001) is formed on a substrate 101 such as a 4-inch wafer.
- a PZT sol-gel solution is spin-coated on the Pt film 102 by a spin coater. At this time, after rotating at 500 rpm for 5 seconds, it is rotated at 1500 rpm for 20 seconds.
- the applied PZT sol-gel solution was dried by holding for 30 seconds while heating to 250 ° C. on a hot plate to remove moisture, and then heated to 450 ° C. on a hot plate held at a higher temperature. Pre-baking is performed by holding for 2 seconds.
- the PZT amorphous film after pre-baking is annealed by holding at 10 ° C. in an oxygen atmosphere at 700 ° C. for 3 minutes using a pressure lamp annealing apparatus (RTA: rapidly thermal anneal), and PZT crystal To do.
- RTA pressure lamp annealing apparatus
- This crystallized PZT film has a perovskite structure, the film formation rate from spin coating of the sol-gel solution to crystallization is 2.65 nm / second, and the film formation time is 13 minutes.
- a PZT film 103 having a film thickness of 2 ⁇ m is formed on the Pt film 102 by the sol-gel method, and this PZT film 103 is oriented in (001) and (110) as shown in FIG.
- the PZT film 103 manufactured by using the sol-gel method is suitable for mass production because of its high film formation speed. However, since the (001) and (110) orientations are detected in this PZT film 103, the (001) orientation of the underlying Pt film is not completely transferred. Is very low.
- An object of one embodiment of the present invention is to provide an apparatus for manufacturing a ferroelectric film and a method for manufacturing a ferroelectric film that have a high single orientation or high priority orientation even when the sol-gel method is used.
- a processing chamber A holding unit for holding a substrate having an amorphous film including a ferroelectric material, which is disposed in the processing chamber and formed by a sol-gel method; A mechanism for bringing a seed crystal member into contact with the amorphous film held by the holding unit; A gas introduction mechanism for introducing oxygen gas into the processing chamber; A gas exhaust mechanism for exhausting the gas in the processing chamber; A heating mechanism for heating the processing chamber; Comprising A ferroelectric film is manufactured by oxidizing and crystallizing the amorphous film by heating in an oxygen atmosphere while bringing the seed crystal member into contact with the amorphous film. apparatus.
- the seed crystal member is a seed crystal film epitaxially grown by a sputtering method or a CVD method or a single crystal bulk produced by a Bridgman method.
- the ferroelectric film is ABO 3 or (Bi 2 O 2 ) 2+ (A m ⁇ 1 B m O 3m + 1 ) 2 ⁇ (where A is Li, Na, K, Rb, Pb, Ca, Sr, Ba, Bi, La, and Hf) At least one selected from the group consisting of B, B is at least one selected from the group consisting of Ru, Fe, Ti, Zr, Nb, Ta, V, W and Mo, and m is a natural number of 5 or less.) Perovskite or bismuth layered structure oxide represented by LanBa 2 Cu 3 O 7, Trm 2 Ba 2 Ca n-1 Cu n O 2n + 4 or TrmBa 2 Ca n-1 Cu n O 2n + 3 ( wherein, Lan is Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and at least one selected from the group consisting of Lu, Trm
- the gas introduction mechanism is a mechanism for introducing the pressurized oxygen gas into the processing chamber.
- the apparatus for producing a ferroelectric film according to claim 1 wherein the gas introduction mechanism is a mechanism that pressurizes the processing chamber to 4 atm or more by introducing the oxygen gas into the processing chamber.
- the mechanism for bringing the seed crystal member into contact with the amorphous film is a mechanism for bringing the seed crystal member into contact with the amorphous film under a certain pressure.
- the seed crystal member is a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (1):
- A is a ferroelectric film manufacturing apparatus characterized in that A is at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La. 60/40 ⁇ Zr / Ti ⁇ 40/60 (1)
- the seed crystal member is oriented to (001), An apparatus for manufacturing a ferroelectric film, wherein the ferroelectric film is oriented in (001).
- the seed crystal member is oriented in (111)
- the ferroelectric film is a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (4):
- A is a ferroelectric film manufacturing apparatus characterized in that A is at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La. 60/40 ⁇ Zr / Ti ⁇ 40/60 (4)
- the heating mechanism is a mechanism for irradiating lamp light into the processing chamber by a lamp heater.
- An amorphous film containing a ferroelectric material is formed on a substrate by a sol-gel method, By heating in an oxygen atmosphere while bringing a seed crystal member into contact with the amorphous film, the amorphous film is oxidized and crystallized to form a ferroelectric film, A method of manufacturing a ferroelectric film, wherein the seed crystal member is separated from the ferroelectric film.
- the ferroelectric film is ABO 3 or (Bi 2 O 2 ) 2+ (A m ⁇ 1 B m O 3m + 1 ) 2 ⁇ (where A is Li, Na, K, Rb, Pb, Ca, Sr, Ba, Bi, La, and Hf) At least one selected from the group consisting of B, B is at least one selected from the group consisting of Ru, Fe, Ti, Zr, Nb, Ta, V, W and Mo, and m is a natural number of 5 or less.) Perovskite or bismuth layered structure oxide represented by LanBa 2 Cu 3 O 7, Trm 2 Ba 2 Ca n-1 Cu n O 2n + 4 or TrmBa 2 Ca n-1 Cu n O 2n + 3 ( wherein, Lan is Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and at least one selected from the group consisting of Lu,
- the seed crystal film is a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (1):
- A is made of at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi and La. 60/40 ⁇ Zr / Ti ⁇ 40/60 (1)
- the seed crystal film is oriented to (001)
- the seed crystal film is oriented to (111), A method of manufacturing a ferroelectric film, wherein the ferroelectric film is oriented to (111).
- the ferroelectric film is a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (4):
- A is made of at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi and La. 60/40 ⁇ Zr / Ti ⁇ 40/60 (4)
- a crystallized ferroelectric film, The ferroelectric film is a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film unidirectionally oriented to (001),
- A is a ferroelectric film characterized in that A is at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La.
- the present invention it is possible to provide a ferroelectric film manufacturing apparatus and a ferroelectric film manufacturing method having high single orientation or high priority orientation even when the sol-gel method is used.
- FIG. 1 is a cross-sectional view for explaining a method of manufacturing a ferroelectric film according to one embodiment of the present invention.
- the contact substrate 20 having the seed crystal member 13 is prepared.
- a (001) -oriented SrRuO 3 film (not shown) is formed on the silicon wafer 11, and a (001) -oriented Pt film 12 is formed on the SrRuO 3 film. It is preferable to use the one having the seed crystal member 13 formed thereon.
- a seed crystal film oriented on the seed crystal member 13 may be used.
- the seed crystal film a film epitaxially grown by a sputtering method or a CVD method can be used.
- a single crystal bulk produced by the Bridgman method may be used as the contact substrate 20, or a LiNbO 3 or LiTaO 3 single crystal generally marketed as a substrate may be used.
- the seed crystal film for example, a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (1) is used.
- A may be made of at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La. 60/40 ⁇ Zr / Ti ⁇ 40/60 (1)
- Each element ratio of the Pb (Zr, Ti) O 3 film satisfies the following formula (2), and preferably satisfies the following formula (2 ′).
- Each element number ratio of the (Pb, A) (Zr, Ti) O 3 film satisfies the following formula (3), and preferably satisfies the following formula (3 ′).
- a substrate to be processed 22 having an amorphous film 16 containing a ferroelectric material is prepared. Specifically, for example, a (001) -oriented SrRuO 3 film (not shown) is formed on the silicon wafer 14, a (001) -oriented Pt film 15 is formed on the SrRuO 3 film, and a strong Pt film 15 is formed on the Pt film 15. An amorphous film 16 containing a dielectric material is formed by a sol-gel method. In this way, the substrate 22 to be processed is prepared.
- the amorphous film 16 is formed on the silicon wafer 14 via the SrRuO 3 film and the Pt film 15, but the amorphous film is formed on the silicon wafer 14 via another conductive film or insulating film. 16 may be formed.
- the contact substrate 20 is placed on the substrate 22 to be processed, and the seed crystal member 13 and the amorphous film 16 are oxygenated while the seed crystal member 13 is in contact with the amorphous film 16.
- Heat in atmosphere the ferroelectric film can be formed by oxidizing and crystallizing the amorphous film 16.
- the seed crystal member 13 and the amorphous film 16 are preferably heated in a pressurized oxygen atmosphere, and more preferably heated in a pressurized oxygen atmosphere of 4 atm or more. As a result, a ferroelectric film having stronger single orientation can be obtained.
- the contact between the amorphous film 16 and the seed crystal member 13 does not need to be in surface contact at the molecular level (it does not need to be completely in close contact), but is preferably a point contact assembly.
- the reason for this is that the crystal with strong single orientation of the seed crystal member 13 in the point contact is transferred to the amorphous film 16 preferentially over the crystal with weak single orientation, and thereby the amorphous film 16 is transferred to the amorphous film 16.
- a crystal having a strong single orientation is formed, and the crystal having a strong single orientation spreads in the direction parallel to and perpendicular to the surface of the amorphous film 16, so that the single orientation is stronger than that of the seed crystal member 13.
- the surface of the seed crystal member 13 may be smaller than the surface of the amorphous film 16, and in that case, a crystal having a strong single orientation is formed in the amorphous film 16, and the crystal having a strong single orientation is the amorphous film 16.
- the entire amorphous film 16 can be made into a crystal having a strong single orientation.
- the seed crystal member 13 is brought into contact with the amorphous film 16, it is preferable that the seed crystal member 13 is pressed and brought into contact with the amorphous film 16 at a constant pressure.
- a ferroelectric film with stable quality can be obtained by setting a constant pressure.
- the ferroelectric film has the same orientation as that of the seed crystal member 13. For example, when the seed crystal member 13 is oriented to (001), the ferroelectric film is also oriented to (001), and when the seed crystal member 13 is oriented to (111), The ferroelectric film is also oriented to (111).
- the Zr / Ti ratio is expressed by the following formula (5 ),
- the seed crystal member 13 can be easily oriented to (001). 52/48 ⁇ Zr / Ti ⁇ 40/60 (5)
- the Zr / Ti ratio is expressed by the following formula (6 ),
- the seed crystal member 13 can be easily oriented to (111). 60/40 ⁇ Zr / Ti ⁇ 52/48 (6)
- the seed crystal member 13 is separated from the ferroelectric film. Since the seed crystal member 13 is only in contact with the amorphous film 16, the seed crystal member 13 can be easily peeled off from the ferroelectric film.
- the seed crystal member 13 plays a role as an initial nucleus when the amorphous film 16 is crystallized, it can be used for a plurality of amorphous films 16. That is, if one contact substrate 20 is prepared, it can be used for a plurality of substrates 22 to be processed, which is economical. For this reason, the manufacturing cost of the ferroelectric film can be reduced. In addition, since the ferroelectric film of the plurality of substrates to be processed 22 can be manufactured for the seed crystal member 13 of the single contact substrate 20, the variation of the ferroelectric film can be reduced, and the ferroelectric film can be reproduced. Can be improved. Therefore, the quality control of the ferroelectric film to be manufactured becomes easy.
- the ferroelectric film may be a film made of at least one of the following (1) to (6).
- perovskite and bismuth layered structure oxide represented by) (2) LanBa 2 Cu 3 O 7, Trm 2 Ba 2 Ca n-1 Cu n O 2n + 4 or TrmBa 2 Ca n-1 Cu n O 2n + 3
- Lan is at least one selected from the group consisting of Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu
- Trm is Bi, Tl.
- Hg At least one selected from the group consisting, n represents 5 or less is a natural number.
- Superconducting oxide represented by) (3) A 0.5 BO 3 ( tetragonal bronze structure) or A 0.3 BO 3 ( (Hexagonal bronze structure) (wherein A is at least one selected from the group consisting of Li, Na, K, Rb, Cs, Pb, Ca, Sr, Ba, Bi and La, B is Ru, Fe, Ti, It is at least one selected from the group consisting of Zr, Nb, Ta, V, W and Mo.) (4) CaO, BaO, PbO, ZnO, MgO, B 2 O 3 , Al 2 O 3 , Y 2 O 3 , La 2 O 3 , Cr 2 O 3 , Bi 2 O 3 , Ga 2 O 3 , ZrO 2 , TiO 2 , HfO 2 , NbO 2 , MoO 3 , WO 3 and It is selected from the group consisting of V 2 O 5 At least one kind of material, (5) The material containing SiO 2 in the at least one material (6) The material containing SiO 2
- ferroelectric film examples include a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (4).
- A may be made of at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La. 60/40 ⁇ Zr / Ti ⁇ 40/60 (4)
- a ferroelectric film manufactured using a sol-gel method can increase single orientation or preferential orientation.
- the seed crystal member 13 that is single-oriented or preferentially oriented and has very good crystallinity is brought into contact with the amorphous film 16 and heated as an initial nucleus to be crystallized by heating in an oxygen atmosphere.
- a ferroelectric film having the same orientation as that of the seed crystal member 13 can be formed.
- the single orientation or the preferential orientation of the seed crystal member 13 having very good crystallinity can be faithfully transferred to the ferroelectric film using the sol-gel method.
- a ferroelectric film having a single orientation or preferential orientation and good crystallinity can be obtained.
- the ferroelectric film 15 using the sol-gel method crystallized by being brought into contact with the seed crystal member 13 has the same crystal structure as that of the seed crystal member 13. Further, the crystal structure of the ferroelectric film can be controlled by bringing the ferroelectric film into contact with the seed crystal member 13 whose crystal structure is determined.
- the deposition rate of the ferroelectric film using the sol-gel method is very fast compared to the deposition rate of the ferroelectric film that is epitaxially grown by, for example, the sputtering method.
- the manufacturing method of the ferroelectric film according to one embodiment of the present invention in which the ferroelectric film is formed on the seed crystal member 13 using the sol-gel method has a deposition rate suitable for mass production.
- the contact substrate 20 is placed on the substrate 22 to be processed, and the seed crystal member 13 and the amorphous film 16 are heated in an oxygen atmosphere while the amorphous crystal 16 is in contact with the seed crystal member 13.
- the organic solvent shown in Table 1 is used as the amorphous film 16 and the seed crystal member 13.
- the seed crystal member 13 and the amorphous film 16 may be heated and crystallized in an oxygen atmosphere while being filled with capillarity. As a result, it is possible to generate a ferroelectric film having a stronger single orientation.
- the organic solvent in this case is preferably an alcohol that is difficult to dry.
- ⁇ Ferroelectric film manufacturing equipment> 2 and 3 are cross-sectional views illustrating a pressure-type lamp annealing apparatus 30 according to one embodiment of the present invention.
- the pressurization type lamp annealing apparatus 30 has an Al chamber 21.
- the inner surface of the chamber 21 is subjected to surface treatment. That is, a reflective film is formed on the inner surface of the chamber 21.
- a specific surface treatment Au plating treatment or oxalic acid alumite treatment can be used. Thereby, an Au plating film or an oxalate alumite film is formed on the inner surface of the chamber 21, and the lamp light can be reflected by the Au plating film or the oxalate alumite film.
- the temperature increase rate can be increased.
- power consumption can be reduced.
- the chamber 21 is configured to be water cooled by a cooling mechanism (not shown).
- the stage 23 is made of a material that transmits lamp light, for example, quartz.
- a quartz glass 24 is disposed above the stage 23.
- the quartz glass 24 is formed thick because the inside of the chamber 21 is pressurized.
- a lamp heater 25 is disposed on the quartz glass 24, and this lamp heater 25 is disposed inside a metal casing. In this embodiment, a lamp heater is used, but another heating mechanism may be used.
- the pressure-type lamp annealing apparatus 30 has a mechanism for bringing the seed crystal member into contact with the amorphous film of the substrate 22 to be processed placed on the stage 23. Specifically, it has a moving mechanism 26 that moves the shaft 27 up and down, and the contact substrate 20 shown in FIG.
- the moving mechanism 26 is preferably a mechanism that presses the seed crystal member against the amorphous film at a constant pressure.
- a ferroelectric film with stable quality can be obtained by setting a constant pressure.
- the processing chamber 55 formed in the chamber 21 is preferably narrow. This is because the time required to pressurize to a predetermined pressure can be shortened. Further, the height in the processing chamber 55 is preferably low. The reason is that the distance between the substrate 22 to be processed and the lamp heater 25 disposed in the processing chamber 55 can be shortened, thereby increasing the temperature raising rate.
- the processing chamber 55 in the chamber 21 is connected to a pressurization line (gas introduction mechanism) 29.
- the pressurization line 29 has a pressurization line using argon gas, a pressurization line using oxygen gas, and a pressurization line using nitrogen gas.
- Each of the argon gas pressurization line, the oxygen gas pressurization line and the nitrogen gas pressurization line has a heating unit, and the heating unit has a constant gas temperature (for example, 40 to 50) in order to stabilize the process. °C).
- the processing chamber 55 in the chamber 21 is connected to a pressure adjustment line (gas exhaust mechanism) 28.
- the pressure adjusting line 28 and the pressurizing line 29 can pressurize the processing chamber 55 in the chamber 21 to a predetermined pressure (for example, less than 1 MPa).
- the pressure adjustment line 28 has a safety line, and this safety line is used to lower the inside of the processing chamber to atmospheric pressure when the inside of the processing chamber 55 is excessively pressurized and exceeds a certain pressure. It is.
- the pressure adjustment line 28 has an atmosphere release line, and this atmosphere release line returns the inside of the processing chamber 55 that has been normally pressurized to atmospheric pressure.
- the pressure adjustment line 28 has a line for returning the inside of the processing chamber 55 from the reduced pressure state to the atmospheric pressure, and this line reduces the pressure when the inside of the processing chamber 55 is in a reduced pressure state (vacuum state). It returns to atmospheric pressure from the state.
- a gate valve (not shown) is arranged on one side of the chamber 21, and the substrate 22 to be processed is carried into and out of the processing chamber 55 in the chamber 21 with the gate valve opened. .
- FIG. 4 is a schematic diagram showing an overall configuration of a ferroelectric film manufacturing apparatus according to an aspect of the present invention, and this manufacturing apparatus includes a pressure-type lamp annealing apparatus 30 shown in FIGS. 2 and 3. Yes.
- This ferroelectric film manufacturing apparatus has a transfer chamber.
- a spin coater 45 In this transfer chamber, a spin coater 45, an annealing apparatus 46 for drying at a temperature of 150 ° C. to 300 ° C., for example, 300 in a nitrogen atmosphere or an inert gas atmosphere.
- Annealing apparatus 47 for pre-baking at a temperature of up to 600 ° C. and normal pressure, a pressure lamp annealing apparatus (RTA) 30 shown in FIG. 2, a cooling apparatus 43 for performing cooling processing, an aligner 42 for performing alignment processing, and load / unload
- a cassette stage 41 for carrying out the transfer and a transfer robot 44 for transferring the substrate to be processed are arranged.
- the transfer robot 44 is a mechanism for transferring the substrate to be processed to the spin coater 45, the cassette stage 42, the aligner 42, the cooling device 43, the annealing devices 46 and 47, and the pressure type lamp annealing device 30.
- This manufacturing apparatus is provided with an air conditioning mechanism for adjusting the amount of dust in the air in the transfer chamber.
- This air conditioning mechanism can be reduced compared to the outside air.
- This air conditioning mechanism can also control the temperature or humidity in the transfer chamber.
- the cassette stage 41 has a plurality of substrates to be processed.
- the aligner 42 performs processing for detecting the center position of the surface of the substrate 22 to be processed.
- the annealing apparatus 46 is an apparatus that performs a drying process on the amorphous film coated on the substrate 22 by the spin coater 45.
- This drying process is, for example, a process for removing alcohol, moisture, and the like in the amorphous film.
- a hot plate (not shown) for holding and heating the substrate to be processed 22 is disposed.
- the hot plate 42 can heat the substrate 22 to be processed to a desired temperature (for example, 200 ° C.).
- the annealing apparatus 47 is an apparatus for performing temporary firing at a desired temperature (for example, 300 ° C. to 600 ° C.) in a nitrogen atmosphere on the amorphous film coated on the substrate 22 to be processed.
- a lamp heater (not shown) for holding and heating the substrate to be processed 22 is disposed.
- the lamp heater can heat the substrate 22 to be processed to a desired temperature.
- the annealing device 47 has a gas introduction mechanism for making the processing chamber a predetermined atmosphere, and an exhaust system (such as a vacuum pump) for exhausting the processing chamber.
- the gas introduction mechanism introduces nitrogen, for example.
- the RTA 30 is a pressure-type lamp annealing apparatus shown in FIGS. 2 and 3, and is an apparatus for performing a lamp annealing process on the amorphous film applied on the substrate 22 to be processed at a temperature of 500 to 1000 ° C., for example.
- This lamp annealing treatment can be performed in either a pressurized state or a normal pressure state.
- the cooling device 43 is a device for cooling the substrate to be processed 22 that has been subjected to a drying process, a temporary baking process, a lamp annealing process, or the like.
- This ferroelectric film is, for example, a PZT film.
- the substrate to be processed in the cassette stage 41 is transferred to the alignment processing chamber of the aligner 44 by the transfer robot 44, and this substrate to be processed is held by the holding mechanism of the alignment processing chamber.
- the amount of dust in the air is adjusted in the transfer chamber by the air conditioning mechanism, and the amount of dust in the air is adjusted in the alignment processing chamber by the air conditioning mechanism.
- processing for detecting the center position of the surface of the substrate to be processed is performed in the alignment processing chamber of the aligner 44. This processing is performed in order to detect the center position of the substrate surface and to match the center position of the substrate surface with the rotation center of the substrate when performing the spin coating process.
- the gate valve (not shown) of the spin coat processing chamber of the spin coater 45 is opened, and the substrate to be processed in the alignment processing chamber of the aligner 42 is transferred into the spin coat processing chamber by the transfer robot 44, and this substrate to be processed is spun.
- the gate valve is closed by the holding mechanism in the coating processing chamber. At this time, the amount of dust in the air is adjusted in the spin coat processing chamber by an air conditioning mechanism.
- the substrate to be processed is rotated while supplying the cleaning liquid onto the substrate to be processed by the cleaning nozzle. Thereby, the surface of the substrate to be processed is cleaned.
- the supply of the cleaning liquid is stopped, and the substrate to be processed is rotated to remove the cleaning liquid on the substrate to be processed.
- the substrate to be processed is rotated while dropping the chemical material onto the substrate to be processed by the dropping nozzle.
- the cleaning liquid is dropped onto the edge of the substrate surface by the edge rinse nozzle. Thereby, a chemical material film is applied on the substrate to be processed.
- the reason for dropping the cleaning liquid on the edge of the substrate surface is that when the film is applied onto the substrate to be processed by spin coating, the film thickness of the edge of the substrate to be processed is formed thicker than the center of the substrate to be processed. This is because the film at the end of the film is applied while being removed with a cleaning liquid. Accordingly, it is preferable to move the edge rinse nozzle little by little from the end of the substrate to be processed to the center, thereby gradually moving the position where the cleaning liquid is dropped from the end of the substrate to be processed to the center.
- the gate valve of the spin coat processing chamber of the spin coater 45 is opened, and the substrate to be processed in the spin coat processing chamber is transferred to the drying processing chamber of the annealing apparatus 46 by the transfer robot 44, and this substrate to be processed is held in the drying processing chamber. Hold by mechanism and close gate valve.
- a step of drying the chemical material film on the substrate to be processed is performed in the drying processing chamber of the annealing apparatus 46. This process will be described in detail below. While the air on the surface of the film applied on the substrate to be processed is exhausted by the exhaust mechanism, the substrate to be processed is heated to, for example, 200 to 250 ° C. by the hot plate. Thereby, moisture and the like in the chemical material film are removed.
- the gate valve of the pre-baking chamber of the annealing apparatus 47 is opened, the substrate in the drying processing chamber is transferred into the pre-baking chamber by the transfer robot 44, and the substrate to be processed is held by the holding mechanism in the pre-baking chamber. Close the gate valve.
- a step of pre-baking the chemical material film on the substrate to be processed in the pre-baking chamber of the annealing apparatus 47 is performed. Specifically, after the pre-baking chamber is evacuated by an exhaust system, the pre-baking chamber is brought to normal pressure in a vacuum atmosphere, a nitrogen atmosphere or an inert gas atmosphere by a gas introduction mechanism, and a lamp heater is used on the substrate to be processed. Temporary baking is performed by heating the chemical material film to a desired temperature (for example, 300 ° C. to 600 ° C.).
- the gate valve is opened, and the substrate to be processed in the temporary baking chamber of the annealing device 47 is transferred to the cooling chamber of the cooling device 43 by the transfer robot 44, and this substrate to be processed is held by the holding mechanism in the cooling chamber. Close the gate valve. Thereafter, the substrate to be processed is cooled to a predetermined temperature in the cooling processing chamber.
- the substrate in the cooling processing chamber is transferred into the alignment processing chamber of the aligner 42 by the transfer robot 44, and processing is performed to detect the center position of the surface of the processing substrate in the alignment processing chamber.
- the gate valve of the spin coat processing chamber of the spin coater 45 is opened, the substrate to be processed in the alignment processing chamber is transferred into the spin coating processing chamber by the transfer robot 44, and this substrate to be processed is held by the holding mechanism in the spin coating processing chamber. And close the gate valve.
- a plurality of chemical material films are laminated and formed on the substrate by repeating the spin coating process, the drying process, and the pre-baking process a plurality of times (for example, 30 times) in the same manner as described above.
- a thicker film for example, a film thickness of 1 ⁇ m or more
- the productivity can be improved by using the ferroelectric film manufacturing apparatus described above. Specifically, by operating the ferroelectric film manufacturing apparatus as described above by the control unit (not shown), the spin coating process, the drying process, and the pre-baking process can be automatically performed.
- the gate valve of the pre-baking chamber of the annealing apparatus 47 is opened, the gate valve of the pressurizing lamp annealing apparatus 30 is opened, and the substrate to be processed in the pre-baking chamber is transferred into the annealing chamber of the RTA 30 by the transfer robot 44. .
- the substrate 22 to be processed is held by the stage 23, and the gate valve is closed. It is preferable that the transfer time for transferring the substrate 22 to be processed into the annealing chamber 55 from the pre-baking chamber is 10 seconds or less.
- the reasons for shortening the transport time are as follows. If the transport time is long, the characteristics of the ferroelectric film are greatly affected. Specifically, after the pre-baking, the chemical material film has a very high oxygen activity and is in an oxygen-deficient state, so that it is combined with oxygen in the atmosphere and the film characteristics deteriorate. Therefore, it is preferable to shorten the conveyance time.
- a step of performing a lamp annealing process on a plurality of layers of chemical material films on the substrate 22 to be processed in the annealing chamber 55 is performed.
- a method of using the pressure type lamp annealing apparatus 30 will be described in detail with reference to FIGS.
- the contact substrate 20 attached to the tip of the shaft 27 is moved downward by the moving mechanism 26 as shown in FIG.
- the contact substrate 20 is placed on the substrate 22 to be processed, and the seed crystal member 13 is brought into contact with the amorphous film 16.
- a force for pressing the contact substrate 20 against the substrate to be processed 22 may be applied.
- the seed crystal member 13 and the amorphous film 16 are heated in an oxygen atmosphere while the contact substrate 20 is in contact with the substrate 22 to be processed.
- the ferroelectric film can be formed by oxidizing and crystallizing the amorphous film 16.
- the seed crystal member 13 and the amorphous film 16 may be heated in a pressurized oxygen atmosphere, and preferably in a pressurized oxygen atmosphere of 4 atm or more.
- the substrate 22 to be processed in the annealing chamber of the RTA 30 is transferred into the cassette stage 41 by the transfer robot 44, and the substrate to be processed is accommodated.
- the contact substrate 20 is placed on the substrate 22 to be processed.
- the substrate 22 and the contact substrate 20 may be upside down or arranged on the left and right.
- FIG. 5 is a cross-sectional view for explaining a pressure-type lamp annealing apparatus 31 according to an aspect of the present invention, and the same portions as those in FIGS. 2 and 3 are denoted by the same reference numerals.
- FIG. 6 is a schematic diagram showing the overall configuration of a ferroelectric film manufacturing apparatus according to an aspect of the present invention, and this manufacturing apparatus has a pressure-type lamp annealing apparatus 31 shown in FIG.
- the ferroelectric film manufacturing apparatus shown in FIG. 6 differs from the ferroelectric film manufacturing apparatus shown in FIG. 4 in that the single crystal substrate stage 48 is not provided.
- the single crystal substrate stage 48 is a stage that accommodates the contact substrate 20 shown in FIG.
- the gate valve of the pre-baking chamber of the annealing apparatus 47 is opened, the gate valve of the pressurizing lamp annealing apparatus 31 is opened, and the substrate to be processed in the pre-baking chamber is annealed by the transfer robot 44.
- the process until it is transported indoors is the same as that in the first embodiment.
- the contact substrate 20 is taken out from the single crystal substrate stage 48 by the transfer robot 44, and the contact substrate 20 is removed.
- the substrate 20 is transferred into the processing chamber 55, the contact substrate 20 is placed on the substrate 22 to be processed, and the seed crystal member 13 is brought into contact with the amorphous film 16. Then, the gate valve is closed.
- the ferroelectric film can be formed by oxidizing and crystallizing the amorphous film 16 by the pressure type lamp annealing apparatus 31 in the same manner as in the first embodiment.
- a substrate 22 to be processed was manufactured using the ferroelectric film manufacturing apparatus shown in FIGS. This will be described in detail below.
- a silicon oxide film having a thickness of 300 nm is formed on the 6-inch Si wafer 14, and a TiO 2 film having a thickness of 10 nm is formed on the silicon oxide film.
- a first Pt film is formed on the TiO 2 film at a temperature of 550 to 650 ° C. by sputtering.
- the film was formed in a film formation time of 25 minutes with a power output of argon gas pressure 0.4 Pa and DC power 100W.
- a second Pt film is formed on the first Pt film at room temperature by a vapor deposition method.
- the film was formed for 4 minutes with a power output of 3.3 ⁇ 10 ⁇ 3 Torr and 10 kV.
- a first coating film is formed on the Pt film 15 by applying a sol-gel solution on the Pt film 15 by spin coating. Specifically, 500 ⁇ L of the sol-gel solution was applied, the pressure was increased to 0 to 1500 rpm, held at 1500 rpm for 30 seconds, then rotated at 3000 rpm for 10 seconds and then stopped.
- this applied PZT sol-gel solution was heated and dried on a hot plate at 250 ° C. for 30 seconds and dried to remove moisture, and then heated to 450 ° C. on a hot plate held at a higher temperature. Pre-baking is performed by holding for 2 seconds.
- the contact substrate 20 has a seed crystal film 13 on the surface, and the seed crystal film 13 is a PZT film having a perovskite structure oriented in (001) and having very good crystallinity.
- the partial pressure of oxygen is 10 atm, 5 atm, and 1 atm using a pressure lamp annealing apparatus (RTA: rapidly thermal anneal) while bringing the seed crystal film 13 of the contact substrate 20 into contact with the PZT amorphous film after the preliminary firing.
- RTA pressure lamp annealing apparatus
- PZT crystallization is performed by annealing at a temperature of 700 ° C. for 20 minutes in an oxygen atmosphere. In this manner, the sample PZT film of the example using three types of oxygen partial pressures was produced.
- a sample was prepared under the same conditions as in the above example except that the contact substrate 20 was not contacted and the oxygen partial pressure was 10 atm.
- FIG. 7 is a diagram showing the results of evaluating the crystallinity of a sample PZT film produced at an oxygen partial pressure of 10 atm by XRD diffraction.
- FIG. 8 is a diagram showing the results of evaluating the crystallinity of a sample PZT film produced at an oxygen partial pressure of 5 atm by XRD diffraction.
- the ferroelectric film shown in FIG. 7 or 8 is a PZT film unidirectionally oriented to (001).
- a PZT film is shown; however, by applying one embodiment of the present invention, a Pb (Zr, Ti) O 3 film or a (Pb, A) Zr, Ti) O 3 film, and A realizes a ferroelectric film made of at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La. Can do.
- FIG. 9 is a diagram showing the results of evaluating the crystallinity of a sample PZT film produced at an oxygen partial pressure of 1 atm by XRD diffraction. As shown in FIG. 9, even with a PZT film formed by a sol-gel method, a PZT film preferentially oriented to (001) could be produced.
- FIG. 10 is a diagram showing the results of evaluating the crystallinity of a PZT film of a comparative example prepared at an oxygen partial pressure of 10 atm by XRD diffraction. As shown in FIG. 10, even when the oxygen partial pressure was set to 10 atm, a PZT film having extremely low crystallinity as a whole (very low peak intensity) and preferentially oriented to (110) was obtained.
- the perovskite structure of the seed crystal film of the contact substrate makes it easy to crystallize the PZT of the substrate to be processed, and if any part is crystallized, it is confirmed that the amorphous part next to the crystal is easily crystallized. did it.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Semiconductor Memories (AREA)
- Formation Of Insulating Films (AREA)
Abstract
[Problem] To provide an apparatus for producing a ferroelectric film and a method for producing a ferroelectric film, wherein the ferroelectric film has high single orientation or high preferred orientation even if the ferroelectric film is formed using a sol-gel method.
[Solution] One embodiment of the present invention is a method for producing a ferroelectric film, which is characterized in that: an amorphous film (16) containing a ferroelectric material is formed on a substrate using a sol-gel method; a ferroelectric film is formed by oxidizing and crystallizing the amorphous film (16) by heating the amorphous film (16) in an oxygen atmosphere, while having a seed crystal member (13) in contact with the amorphous film (16); and then the seed crystal member (13) is separated from the ferroelectric film.
Description
本発明は、種結晶部材を用いた強誘電体膜の製造装置及び強誘電体膜の製造方法に関する。
The present invention relates to a ferroelectric film manufacturing apparatus and a ferroelectric film manufacturing method using a seed crystal member.
<ゾルゲル法を用いた強誘電体膜の製造方法>
次に、従来の強誘電体膜の製造方法について説明する(例えば特許文献1参照)。
図11は、従来の強誘電体膜の製造方法を説明するための断面図である。
4インチウエハなどの基板101上に(001)に配向したPt膜102を形成する。 <Method for producing ferroelectric film using sol-gel method>
Next, a conventional method for manufacturing a ferroelectric film will be described (see, for example, Patent Document 1).
FIG. 11 is a cross-sectional view for explaining a conventional method of manufacturing a ferroelectric film.
APt film 102 oriented in (001) is formed on a substrate 101 such as a 4-inch wafer.
次に、従来の強誘電体膜の製造方法について説明する(例えば特許文献1参照)。
図11は、従来の強誘電体膜の製造方法を説明するための断面図である。
4インチウエハなどの基板101上に(001)に配向したPt膜102を形成する。 <Method for producing ferroelectric film using sol-gel method>
Next, a conventional method for manufacturing a ferroelectric film will be described (see, for example, Patent Document 1).
FIG. 11 is a cross-sectional view for explaining a conventional method of manufacturing a ferroelectric film.
A
次いで、Pt膜102上にスピンコータによってPZTゾルゲル溶液を回転塗布する。この際、500rpmで5秒回転させた後に1500rpmで20秒回転させる。PZTゾルゲル溶液は、濃度が25重量%のPZT(Zr/Ti=52/48)でPbが20%過剰な溶液である。
Next, a PZT sol-gel solution is spin-coated on the Pt film 102 by a spin coater. At this time, after rotating at 500 rpm for 5 seconds, it is rotated at 1500 rpm for 20 seconds. The PZT sol-gel solution is a PZT (Zr / Ti = 52/48) having a concentration of 25% by weight and a 20% excess Pb.
次いで、この塗布されたPZTゾルゲル溶液をホットプレート上で250℃に加熱しつつ30秒間保持して乾燥させ、水分を除去した後、さらに高温に保持したホットプレート上で450℃に加熱しつつ60秒間保持して仮焼成を行う。
Next, the applied PZT sol-gel solution was dried by holding for 30 seconds while heating to 250 ° C. on a hot plate to remove moisture, and then heated to 450 ° C. on a hot plate held at a higher temperature. Pre-baking is performed by holding for 2 seconds.
上記の回転塗布、乾燥、仮焼成を5回繰り返し、5層のPZTアモルファス膜を生成する。
The above spin coating, drying and pre-baking are repeated 5 times to produce a 5-layer PZT amorphous film.
次いで、仮焼成を行った後のPZTアモルファス膜に加圧式ランプアニール装置(RTA: rapidly thermal anneal)を用いて酸素雰囲気の10atmで700℃の温度に3分間保持してアニール処理を行い、PZT結晶化を行う。この結晶化されたPZT膜はペロブスカイト構造からなり、ゾルゲル溶液の回転塗布から結晶化までを含めた成膜速度は2.65nm/秒であり、成膜時間は13分である。
Next, the PZT amorphous film after pre-baking is annealed by holding at 10 ° C. in an oxygen atmosphere at 700 ° C. for 3 minutes using a pressure lamp annealing apparatus (RTA: rapidly thermal anneal), and PZT crystal To do. This crystallized PZT film has a perovskite structure, the film formation rate from spin coating of the sol-gel solution to crystallization is 2.65 nm / second, and the film formation time is 13 minutes.
上記のゾルゲル法によってPt膜102上には膜厚2μmのPZT膜103が形成され、このPZT膜103は、図12に示すように(001)及び(110)に配向している。
A PZT film 103 having a film thickness of 2 μm is formed on the Pt film 102 by the sol-gel method, and this PZT film 103 is oriented in (001) and (110) as shown in FIG.
上記のゾルゲル法を用いて製造されたPZT膜103は、成膜速度が速いため、量産に適している。しかし、このPZT膜103は、(001)配向と(110)配向が検出されるため、下地のPt膜の(001)配向が完全に転写されるわけではなく、単一配向性または優先配向性が非常に低い。
The PZT film 103 manufactured by using the sol-gel method is suitable for mass production because of its high film formation speed. However, since the (001) and (110) orientations are detected in this PZT film 103, the (001) orientation of the underlying Pt film is not completely transferred. Is very low.
本発明の一態様は、ゾルゲル法を用いて作製しても単一配向性または優先配向性が高い強誘電体膜の製造装置及び強誘電体膜の製造方法を提供することを課題とする。
An object of one embodiment of the present invention is to provide an apparatus for manufacturing a ferroelectric film and a method for manufacturing a ferroelectric film that have a high single orientation or high priority orientation even when the sol-gel method is used.
以下に、本発明の種々の態様について説明する。
(1)処理室と、
前記処理室内に配置され、ゾルゲル法により形成された強誘電体材料を含むアモルファス膜を有する基板を保持する保持部と、
前記保持部に保持された前記アモルファス膜に種結晶部材を接触させる機構と、
前記処理室内に酸素ガスを導入するガス導入機構と、
前記処理室内のガスを排気するガス排気機構と、
前記処理室内を加熱する加熱機構と、
を具備し、
前記アモルファス膜に前記種結晶部材を接触させながら酸素雰囲気で加熱することにより、前記アモルファス膜を酸化して結晶化することで強誘電体膜を製造することを特徴とする強誘電体膜の製造装置。 Hereinafter, various aspects of the present invention will be described.
(1) a processing chamber;
A holding unit for holding a substrate having an amorphous film including a ferroelectric material, which is disposed in the processing chamber and formed by a sol-gel method;
A mechanism for bringing a seed crystal member into contact with the amorphous film held by the holding unit;
A gas introduction mechanism for introducing oxygen gas into the processing chamber;
A gas exhaust mechanism for exhausting the gas in the processing chamber;
A heating mechanism for heating the processing chamber;
Comprising
A ferroelectric film is manufactured by oxidizing and crystallizing the amorphous film by heating in an oxygen atmosphere while bringing the seed crystal member into contact with the amorphous film. apparatus.
(1)処理室と、
前記処理室内に配置され、ゾルゲル法により形成された強誘電体材料を含むアモルファス膜を有する基板を保持する保持部と、
前記保持部に保持された前記アモルファス膜に種結晶部材を接触させる機構と、
前記処理室内に酸素ガスを導入するガス導入機構と、
前記処理室内のガスを排気するガス排気機構と、
前記処理室内を加熱する加熱機構と、
を具備し、
前記アモルファス膜に前記種結晶部材を接触させながら酸素雰囲気で加熱することにより、前記アモルファス膜を酸化して結晶化することで強誘電体膜を製造することを特徴とする強誘電体膜の製造装置。 Hereinafter, various aspects of the present invention will be described.
(1) a processing chamber;
A holding unit for holding a substrate having an amorphous film including a ferroelectric material, which is disposed in the processing chamber and formed by a sol-gel method;
A mechanism for bringing a seed crystal member into contact with the amorphous film held by the holding unit;
A gas introduction mechanism for introducing oxygen gas into the processing chamber;
A gas exhaust mechanism for exhausting the gas in the processing chamber;
A heating mechanism for heating the processing chamber;
Comprising
A ferroelectric film is manufactured by oxidizing and crystallizing the amorphous film by heating in an oxygen atmosphere while bringing the seed crystal member into contact with the amorphous film. apparatus.
(2)上記(1)において、
前記強誘電体膜は、前記種結晶部材の配向と同一の配向を有することを特徴とする強誘電体膜の製造装置。 (2) In (1) above,
The ferroelectric film manufacturing apparatus, wherein the ferroelectric film has the same orientation as that of the seed crystal member.
前記強誘電体膜は、前記種結晶部材の配向と同一の配向を有することを特徴とする強誘電体膜の製造装置。 (2) In (1) above,
The ferroelectric film manufacturing apparatus, wherein the ferroelectric film has the same orientation as that of the seed crystal member.
(3)上記(1)または(2)において、
前記種結晶部材は、スパッタリング法またはCVD法によりエピタキシャル成長させた種結晶膜、或いはブリッジマン法により作製した単結晶バルクであることを特徴とする強誘電体膜の製造装置。 (3) In the above (1) or (2),
The apparatus for producing a ferroelectric film, wherein the seed crystal member is a seed crystal film epitaxially grown by a sputtering method or a CVD method or a single crystal bulk produced by a Bridgman method.
前記種結晶部材は、スパッタリング法またはCVD法によりエピタキシャル成長させた種結晶膜、或いはブリッジマン法により作製した単結晶バルクであることを特徴とする強誘電体膜の製造装置。 (3) In the above (1) or (2),
The apparatus for producing a ferroelectric film, wherein the seed crystal member is a seed crystal film epitaxially grown by a sputtering method or a CVD method or a single crystal bulk produced by a Bridgman method.
(4)上記(1)乃至(3)のいずれか一項において、
前記強誘電体膜は、
ABO3あるいは(Bi2O2)2+(Am-1BmO3m+1)2-(式中、AはLi、Na、K、Rb、Pb、Ca、Sr、Ba、Bi、La及びHfからなる群から選択される少なくとも1種、BはRu、Fe、Ti、Zr、Nb、Ta、V、W及びMoからなる群から選択される少なくとも1種、mは5以下の自然数である。)で表されるペロブスカイトまたはビスマス層状構造酸化物、
LanBa2Cu3O7、Trm2Ba2Can-1CunO2n+4又はTrmBa2Can-1CunO2n+3(式中、LanはY、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも1種、TrmはBi、Tl及びHgからなる群から選択される少なくとも1種、nは5以下の自然数である。)で表される超伝導酸化物、
A0.5BO3(正方ブロンズ構造)又はA0.3BO3(六方ブロンズ構造)(式中、AはLi、Na、K、Rb、Cs、Pb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種、BはRu、Fe、Ti、Zr、Nb、Ta、V、W及びMoからなる群から選択される少なくとも1種である。)で表されるタングステンブロンズ構造酸化物、
CaO、BaO、PbO、ZnO、MgO、B2O3、Al2O3、Y2O3、La2O3、Cr2O3、Bi2O3、Ga2O3、ZrO2、TiO2、HfO2、NbO2、MoO3、WO3及びV2O5からなる群から選択される少なくとも1種の材料、
前記少なくとも1種の材料にSiO2を含む材料、及び、
前記少なくとも1種の材料にSiO2及びGeO2を含む材料の少なくとも1つからなることを特徴とする強誘電体膜の製造方法。 (4) In any one of (1) to (3) above,
The ferroelectric film is
ABO 3 or (Bi 2 O 2 ) 2+ (A m−1 B m O 3m + 1 ) 2− (where A is Li, Na, K, Rb, Pb, Ca, Sr, Ba, Bi, La, and Hf) At least one selected from the group consisting of B, B is at least one selected from the group consisting of Ru, Fe, Ti, Zr, Nb, Ta, V, W and Mo, and m is a natural number of 5 or less.) Perovskite or bismuth layered structure oxide represented by
LanBa 2 Cu 3 O 7, Trm 2 Ba 2 Ca n-1 Cu n O 2n + 4 or TrmBa 2 Ca n-1 Cu n O 2n + 3 ( wherein, Lan is Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and at least one selected from the group consisting of Lu, Trm is at least one selected from the group consisting of Bi, Tl and Hg, and n is 5 or less A superconducting oxide represented by
A 0.5 BO 3 (tetragonal bronze structure) or A 0.3 BO 3 (hexagonal bronze structure) (wherein A is Li, Na, K, Rb, Cs, Pb, Ca, Sr, Ba, Bi, and La) At least one selected from the group consisting of, and B is at least one selected from the group consisting of Ru, Fe, Ti, Zr, Nb, Ta, V, W, and Mo.) Structural oxides,
CaO, BaO, PbO, ZnO, MgO, B 2 O 3, Al 2 O 3, Y 2 O 3, La 2 O 3, Cr 2 O 3, Bi 2 O 3, Ga 2 O 3, ZrO 2, TiO 2 At least one material selected from the group consisting of HfO 2 , NbO 2 , MoO 3 , WO 3 and V 2 O 5 ;
A material comprising SiO 2 in the at least one material; and
A method for manufacturing a ferroelectric film, wherein the at least one material is made of at least one material containing SiO 2 and GeO 2 .
前記強誘電体膜は、
ABO3あるいは(Bi2O2)2+(Am-1BmO3m+1)2-(式中、AはLi、Na、K、Rb、Pb、Ca、Sr、Ba、Bi、La及びHfからなる群から選択される少なくとも1種、BはRu、Fe、Ti、Zr、Nb、Ta、V、W及びMoからなる群から選択される少なくとも1種、mは5以下の自然数である。)で表されるペロブスカイトまたはビスマス層状構造酸化物、
LanBa2Cu3O7、Trm2Ba2Can-1CunO2n+4又はTrmBa2Can-1CunO2n+3(式中、LanはY、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも1種、TrmはBi、Tl及びHgからなる群から選択される少なくとも1種、nは5以下の自然数である。)で表される超伝導酸化物、
A0.5BO3(正方ブロンズ構造)又はA0.3BO3(六方ブロンズ構造)(式中、AはLi、Na、K、Rb、Cs、Pb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種、BはRu、Fe、Ti、Zr、Nb、Ta、V、W及びMoからなる群から選択される少なくとも1種である。)で表されるタングステンブロンズ構造酸化物、
CaO、BaO、PbO、ZnO、MgO、B2O3、Al2O3、Y2O3、La2O3、Cr2O3、Bi2O3、Ga2O3、ZrO2、TiO2、HfO2、NbO2、MoO3、WO3及びV2O5からなる群から選択される少なくとも1種の材料、
前記少なくとも1種の材料にSiO2を含む材料、及び、
前記少なくとも1種の材料にSiO2及びGeO2を含む材料の少なくとも1つからなることを特徴とする強誘電体膜の製造方法。 (4) In any one of (1) to (3) above,
The ferroelectric film is
ABO 3 or (Bi 2 O 2 ) 2+ (A m−1 B m O 3m + 1 ) 2− (where A is Li, Na, K, Rb, Pb, Ca, Sr, Ba, Bi, La, and Hf) At least one selected from the group consisting of B, B is at least one selected from the group consisting of Ru, Fe, Ti, Zr, Nb, Ta, V, W and Mo, and m is a natural number of 5 or less.) Perovskite or bismuth layered structure oxide represented by
LanBa 2 Cu 3 O 7, Trm 2 Ba 2 Ca n-1 Cu n O 2n + 4 or TrmBa 2 Ca n-1 Cu n O 2n + 3 ( wherein, Lan is Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and at least one selected from the group consisting of Lu, Trm is at least one selected from the group consisting of Bi, Tl and Hg, and n is 5 or less A superconducting oxide represented by
A 0.5 BO 3 (tetragonal bronze structure) or A 0.3 BO 3 (hexagonal bronze structure) (wherein A is Li, Na, K, Rb, Cs, Pb, Ca, Sr, Ba, Bi, and La) At least one selected from the group consisting of, and B is at least one selected from the group consisting of Ru, Fe, Ti, Zr, Nb, Ta, V, W, and Mo.) Structural oxides,
CaO, BaO, PbO, ZnO, MgO, B 2 O 3, Al 2 O 3, Y 2 O 3, La 2 O 3, Cr 2 O 3, Bi 2 O 3, Ga 2 O 3, ZrO 2, TiO 2 At least one material selected from the group consisting of HfO 2 , NbO 2 , MoO 3 , WO 3 and V 2 O 5 ;
A material comprising SiO 2 in the at least one material; and
A method for manufacturing a ferroelectric film, wherein the at least one material is made of at least one material containing SiO 2 and GeO 2 .
(5)上記(1)乃至(4)のいずれか一項において、
前記ガス導入機構は、前記処理室内に加圧された前記酸素ガスを導入する機構であることを特徴とする強誘電体膜の製造装置。
(6)上記(1)乃至(5)のいずれか一項において、
前記ガス導入機構は、前記処理室内に前記酸素ガスを導入することで、前記処理室内を4atm以上に加圧する機構であることを特徴とする強誘電体膜の製造装置。
(7)上記(1)乃至(6)のいずれか一項において、
前記アモルファス膜に種結晶部材を接触させる機構は、前記アモルファス膜に前記種結晶部材を一定の圧力で加圧して接触させる機構であることを特徴とする強誘電体膜の製造装置。 (5) In any one of (1) to (4) above,
The ferroelectric film manufacturing apparatus, wherein the gas introduction mechanism is a mechanism for introducing the pressurized oxygen gas into the processing chamber.
(6) In any one of the above (1) to (5),
The apparatus for producing a ferroelectric film according toclaim 1, wherein the gas introduction mechanism is a mechanism that pressurizes the processing chamber to 4 atm or more by introducing the oxygen gas into the processing chamber.
(7) In any one of (1) to (6) above,
The apparatus for manufacturing a ferroelectric film, wherein the mechanism for bringing the seed crystal member into contact with the amorphous film is a mechanism for bringing the seed crystal member into contact with the amorphous film under a certain pressure.
前記ガス導入機構は、前記処理室内に加圧された前記酸素ガスを導入する機構であることを特徴とする強誘電体膜の製造装置。
(6)上記(1)乃至(5)のいずれか一項において、
前記ガス導入機構は、前記処理室内に前記酸素ガスを導入することで、前記処理室内を4atm以上に加圧する機構であることを特徴とする強誘電体膜の製造装置。
(7)上記(1)乃至(6)のいずれか一項において、
前記アモルファス膜に種結晶部材を接触させる機構は、前記アモルファス膜に前記種結晶部材を一定の圧力で加圧して接触させる機構であることを特徴とする強誘電体膜の製造装置。 (5) In any one of (1) to (4) above,
The ferroelectric film manufacturing apparatus, wherein the gas introduction mechanism is a mechanism for introducing the pressurized oxygen gas into the processing chamber.
(6) In any one of the above (1) to (5),
The apparatus for producing a ferroelectric film according to
(7) In any one of (1) to (6) above,
The apparatus for manufacturing a ferroelectric film, wherein the mechanism for bringing the seed crystal member into contact with the amorphous film is a mechanism for bringing the seed crystal member into contact with the amorphous film under a certain pressure.
(8)上記(1)乃至(7)のいずれか一項において、
前記種結晶部材は、Zr/Ti比が下記式(1)を満たすPb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜であり、
Aは、Li、Na、K、Rb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種からなることを特徴とする強誘電体膜の製造装置。
60/40≦Zr/Ti≦40/60 ・・・(1) (8) In any one of (1) to (7) above,
The seed crystal member is a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (1):
A is a ferroelectric film manufacturing apparatus characterized in that A is at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La.
60/40 ≦ Zr / Ti ≦ 40/60 (1)
前記種結晶部材は、Zr/Ti比が下記式(1)を満たすPb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜であり、
Aは、Li、Na、K、Rb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種からなることを特徴とする強誘電体膜の製造装置。
60/40≦Zr/Ti≦40/60 ・・・(1) (8) In any one of (1) to (7) above,
The seed crystal member is a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (1):
A is a ferroelectric film manufacturing apparatus characterized in that A is at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La.
60/40 ≦ Zr / Ti ≦ 40/60 (1)
(9)上記(8)において、
前記Pb(Zr,Ti)O3膜の各元素数比が下記式(2)を満たし、前記(Pb,A)(Zr,Ti)O3膜の各元素数比が下記式(3)を満たすことを特徴とする強誘電体膜の製造装置。
Pb/(Zr+Ti)<1.03 ・・・(2)
(Pb+A)/(Zr+Ti)≦1.35 ・・・(3) (9) In (8) above,
Each element number ratio of the Pb (Zr, Ti) O 3 film satisfies the following formula (2), and each element number ratio of the (Pb, A) (Zr, Ti) O 3 film satisfies the following formula (3). An apparatus for manufacturing a ferroelectric film characterized by satisfying the above.
Pb / (Zr + Ti) <1.03 (2)
(Pb + A) / (Zr + Ti) ≦ 1.35 (3)
前記Pb(Zr,Ti)O3膜の各元素数比が下記式(2)を満たし、前記(Pb,A)(Zr,Ti)O3膜の各元素数比が下記式(3)を満たすことを特徴とする強誘電体膜の製造装置。
Pb/(Zr+Ti)<1.03 ・・・(2)
(Pb+A)/(Zr+Ti)≦1.35 ・・・(3) (9) In (8) above,
Each element number ratio of the Pb (Zr, Ti) O 3 film satisfies the following formula (2), and each element number ratio of the (Pb, A) (Zr, Ti) O 3 film satisfies the following formula (3). An apparatus for manufacturing a ferroelectric film characterized by satisfying the above.
Pb / (Zr + Ti) <1.03 (2)
(Pb + A) / (Zr + Ti) ≦ 1.35 (3)
(10)上記(8)または(9)において、
前記種結晶部材は(001)に配向され、
前記強誘電体膜は(001)に配向されることを特徴とする強誘電体膜の製造装置。 (10) In the above (8) or (9),
The seed crystal member is oriented to (001),
An apparatus for manufacturing a ferroelectric film, wherein the ferroelectric film is oriented in (001).
前記種結晶部材は(001)に配向され、
前記強誘電体膜は(001)に配向されることを特徴とする強誘電体膜の製造装置。 (10) In the above (8) or (9),
The seed crystal member is oriented to (001),
An apparatus for manufacturing a ferroelectric film, wherein the ferroelectric film is oriented in (001).
(11)上記(8)または(9)において、
前記種結晶部材は(111)に配向され、
前記強誘電体膜は(111)に配向されることを特徴とする強誘電体膜の製造装置。 (11) In the above (8) or (9),
The seed crystal member is oriented in (111),
An apparatus for manufacturing a ferroelectric film, wherein the ferroelectric film is oriented in (111).
前記種結晶部材は(111)に配向され、
前記強誘電体膜は(111)に配向されることを特徴とする強誘電体膜の製造装置。 (11) In the above (8) or (9),
The seed crystal member is oriented in (111),
An apparatus for manufacturing a ferroelectric film, wherein the ferroelectric film is oriented in (111).
(12)上記(1)乃至(11)のいずれか一項において、
前記強誘電体膜は、Zr/Ti比が下記式(4)を満たすPb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜であり、
Aは、Li、Na、K、Rb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種からなることを特徴とする強誘電体膜の製造装置。
60/40≦Zr/Ti≦40/60 ・・・(4) (12) In any one of the above (1) to (11),
The ferroelectric film is a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (4):
A is a ferroelectric film manufacturing apparatus characterized in that A is at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La.
60/40 ≦ Zr / Ti ≦ 40/60 (4)
前記強誘電体膜は、Zr/Ti比が下記式(4)を満たすPb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜であり、
Aは、Li、Na、K、Rb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種からなることを特徴とする強誘電体膜の製造装置。
60/40≦Zr/Ti≦40/60 ・・・(4) (12) In any one of the above (1) to (11),
The ferroelectric film is a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (4):
A is a ferroelectric film manufacturing apparatus characterized in that A is at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La.
60/40 ≦ Zr / Ti ≦ 40/60 (4)
(13)上記(10)において、
前記種結晶膜は、Zr/Ti比が下記式(5)を満たすことを特徴とする強誘電体膜の製造装置。
52/48<Zr/Ti≦40/60 ・・・(5) (13) In the above (10),
An apparatus for manufacturing a ferroelectric film, wherein the seed crystal film has a Zr / Ti ratio satisfying the following formula (5).
52/48 <Zr / Ti ≦ 40/60 (5)
前記種結晶膜は、Zr/Ti比が下記式(5)を満たすことを特徴とする強誘電体膜の製造装置。
52/48<Zr/Ti≦40/60 ・・・(5) (13) In the above (10),
An apparatus for manufacturing a ferroelectric film, wherein the seed crystal film has a Zr / Ti ratio satisfying the following formula (5).
52/48 <Zr / Ti ≦ 40/60 (5)
(14)上記(11)において、
前記種結晶膜は、Zr/Ti比が下記式(6)を満たすことを特徴とする強誘電体膜の製造装置。
60/40≦Zr/Ti<52/48 ・・・(6) (14) In the above (11),
An apparatus for manufacturing a ferroelectric film, wherein the seed crystal film has a Zr / Ti ratio satisfying the following formula (6).
60/40 ≦ Zr / Ti <52/48 (6)
前記種結晶膜は、Zr/Ti比が下記式(6)を満たすことを特徴とする強誘電体膜の製造装置。
60/40≦Zr/Ti<52/48 ・・・(6) (14) In the above (11),
An apparatus for manufacturing a ferroelectric film, wherein the seed crystal film has a Zr / Ti ratio satisfying the following formula (6).
60/40 ≦ Zr / Ti <52/48 (6)
(15)上記(1)乃至(14)のいずれか一項において、
前記加熱機構は、前記処理室内にランプヒータによってランプ光を照射する機構であることを特徴とする強誘電体膜の製造装置。 (15) In any one of (1) to (14) above,
The apparatus for manufacturing a ferroelectric film, wherein the heating mechanism is a mechanism for irradiating lamp light into the processing chamber by a lamp heater.
前記加熱機構は、前記処理室内にランプヒータによってランプ光を照射する機構であることを特徴とする強誘電体膜の製造装置。 (15) In any one of (1) to (14) above,
The apparatus for manufacturing a ferroelectric film, wherein the heating mechanism is a mechanism for irradiating lamp light into the processing chamber by a lamp heater.
(16)基板上に強誘電体材料を含むアモルファス膜をゾルゲル法により形成し、
前記アモルファス膜に種結晶部材を接触させながら酸素雰囲気で加熱することにより、前記アモルファス膜を酸化して結晶化することで強誘電体膜を形成し、
前記種結晶部材を前記強誘電体膜から離すことを特徴とする強誘電体膜の製造方法。 (16) An amorphous film containing a ferroelectric material is formed on a substrate by a sol-gel method,
By heating in an oxygen atmosphere while bringing a seed crystal member into contact with the amorphous film, the amorphous film is oxidized and crystallized to form a ferroelectric film,
A method of manufacturing a ferroelectric film, wherein the seed crystal member is separated from the ferroelectric film.
前記アモルファス膜に種結晶部材を接触させながら酸素雰囲気で加熱することにより、前記アモルファス膜を酸化して結晶化することで強誘電体膜を形成し、
前記種結晶部材を前記強誘電体膜から離すことを特徴とする強誘電体膜の製造方法。 (16) An amorphous film containing a ferroelectric material is formed on a substrate by a sol-gel method,
By heating in an oxygen atmosphere while bringing a seed crystal member into contact with the amorphous film, the amorphous film is oxidized and crystallized to form a ferroelectric film,
A method of manufacturing a ferroelectric film, wherein the seed crystal member is separated from the ferroelectric film.
(17)上記(16)において、
前記強誘電体膜は、前記種結晶部材の配向と同一の配向を有することを特徴とする強誘電体膜の製造方法。 (17) In the above (16),
The method of manufacturing a ferroelectric film, wherein the ferroelectric film has the same orientation as that of the seed crystal member.
前記強誘電体膜は、前記種結晶部材の配向と同一の配向を有することを特徴とする強誘電体膜の製造方法。 (17) In the above (16),
The method of manufacturing a ferroelectric film, wherein the ferroelectric film has the same orientation as that of the seed crystal member.
(18)上記(16)または(17)において、
前記種結晶部材は、スパッタリング法またはCVD法によりエピタキシャル成長させた種結晶膜、或いはブリッジマン法により作製した単結晶バルクであることを特徴とする強誘電体膜の製造方法。 (18) In the above (16) or (17),
The method for producing a ferroelectric film, wherein the seed crystal member is a seed crystal film epitaxially grown by a sputtering method or a CVD method, or a single crystal bulk produced by a Bridgman method.
前記種結晶部材は、スパッタリング法またはCVD法によりエピタキシャル成長させた種結晶膜、或いはブリッジマン法により作製した単結晶バルクであることを特徴とする強誘電体膜の製造方法。 (18) In the above (16) or (17),
The method for producing a ferroelectric film, wherein the seed crystal member is a seed crystal film epitaxially grown by a sputtering method or a CVD method, or a single crystal bulk produced by a Bridgman method.
(19)上記(16)乃至(18)のいずれか一項において、
前記強誘電体膜は、
ABO3あるいは(Bi2O2)2+(Am-1BmO3m+1)2-(式中、AはLi、Na、K、Rb、Pb、Ca、Sr、Ba、Bi、La及びHfからなる群から選択される少なくとも1種、BはRu、Fe、Ti、Zr、Nb、Ta、V、W及びMoからなる群から選択される少なくとも1種、mは5以下の自然数である。)で表されるペロブスカイトまたはビスマス層状構造酸化物、
LanBa2Cu3O7、Trm2Ba2Can-1CunO2n+4又はTrmBa2Can-1CunO2n+3(式中、LanはY、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも1種、TrmはBi、Tl及びHgからなる群から選択される少なくとも1種、nは5以下の自然数である。)で表される超伝導酸化物、
A0.5BO3(正方ブロンズ構造)又はA0.3BO3(六方ブロンズ構造)(式中、AはLi、Na、K、Rb、Cs、Pb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種、BはRu、Fe、Ti、Zr、Nb、Ta、V、W及びMoからなる群から選択される少なくとも1種である。)で表されるタングステンブロンズ構造酸化物、
CaO、BaO、PbO、ZnO、MgO、B2O3、Al2O3、Y2O3、La2O3、Cr2O3、Bi2O3、Ga2O3、ZrO2、TiO2、HfO2、NbO2、MoO3、WO3及びV2O5からなる群から選択される少なくとも1種の材料、
前記少なくとも1種の材料にSiO2を含む材料、及び、
前記少なくとも1種の材料にSiO2及びGeO2を含む材料の少なくとも1つからなることを特徴とする強誘電体膜の製造方法。 (19) In any one of the above (16) to (18),
The ferroelectric film is
ABO 3 or (Bi 2 O 2 ) 2+ (A m−1 B m O 3m + 1 ) 2− (where A is Li, Na, K, Rb, Pb, Ca, Sr, Ba, Bi, La, and Hf) At least one selected from the group consisting of B, B is at least one selected from the group consisting of Ru, Fe, Ti, Zr, Nb, Ta, V, W and Mo, and m is a natural number of 5 or less.) Perovskite or bismuth layered structure oxide represented by
LanBa 2 Cu 3 O 7, Trm 2 Ba 2 Ca n-1 Cu n O 2n + 4 or TrmBa 2 Ca n-1 Cu n O 2n + 3 ( wherein, Lan is Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and at least one selected from the group consisting of Lu, Trm is at least one selected from the group consisting of Bi, Tl and Hg, and n is 5 or less A superconducting oxide represented by
A 0.5 BO 3 (tetragonal bronze structure) or A 0.3 BO 3 (hexagonal bronze structure) (wherein A is Li, Na, K, Rb, Cs, Pb, Ca, Sr, Ba, Bi, and La) At least one selected from the group consisting of, and B is at least one selected from the group consisting of Ru, Fe, Ti, Zr, Nb, Ta, V, W, and Mo.) Structural oxides,
CaO, BaO, PbO, ZnO, MgO, B 2 O 3, Al 2 O 3, Y 2 O 3, La 2 O 3, Cr 2 O 3, Bi 2 O 3, Ga 2 O 3, ZrO 2, TiO 2 At least one material selected from the group consisting of HfO 2 , NbO 2 , MoO 3 , WO 3 and V 2 O 5 ;
A material comprising SiO 2 in the at least one material; and
A method for manufacturing a ferroelectric film, wherein the at least one material is made of at least one material containing SiO 2 and GeO 2 .
前記強誘電体膜は、
ABO3あるいは(Bi2O2)2+(Am-1BmO3m+1)2-(式中、AはLi、Na、K、Rb、Pb、Ca、Sr、Ba、Bi、La及びHfからなる群から選択される少なくとも1種、BはRu、Fe、Ti、Zr、Nb、Ta、V、W及びMoからなる群から選択される少なくとも1種、mは5以下の自然数である。)で表されるペロブスカイトまたはビスマス層状構造酸化物、
LanBa2Cu3O7、Trm2Ba2Can-1CunO2n+4又はTrmBa2Can-1CunO2n+3(式中、LanはY、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも1種、TrmはBi、Tl及びHgからなる群から選択される少なくとも1種、nは5以下の自然数である。)で表される超伝導酸化物、
A0.5BO3(正方ブロンズ構造)又はA0.3BO3(六方ブロンズ構造)(式中、AはLi、Na、K、Rb、Cs、Pb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種、BはRu、Fe、Ti、Zr、Nb、Ta、V、W及びMoからなる群から選択される少なくとも1種である。)で表されるタングステンブロンズ構造酸化物、
CaO、BaO、PbO、ZnO、MgO、B2O3、Al2O3、Y2O3、La2O3、Cr2O3、Bi2O3、Ga2O3、ZrO2、TiO2、HfO2、NbO2、MoO3、WO3及びV2O5からなる群から選択される少なくとも1種の材料、
前記少なくとも1種の材料にSiO2を含む材料、及び、
前記少なくとも1種の材料にSiO2及びGeO2を含む材料の少なくとも1つからなることを特徴とする強誘電体膜の製造方法。 (19) In any one of the above (16) to (18),
The ferroelectric film is
ABO 3 or (Bi 2 O 2 ) 2+ (A m−1 B m O 3m + 1 ) 2− (where A is Li, Na, K, Rb, Pb, Ca, Sr, Ba, Bi, La, and Hf) At least one selected from the group consisting of B, B is at least one selected from the group consisting of Ru, Fe, Ti, Zr, Nb, Ta, V, W and Mo, and m is a natural number of 5 or less.) Perovskite or bismuth layered structure oxide represented by
LanBa 2 Cu 3 O 7, Trm 2 Ba 2 Ca n-1 Cu n O 2n + 4 or TrmBa 2 Ca n-1 Cu n O 2n + 3 ( wherein, Lan is Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and at least one selected from the group consisting of Lu, Trm is at least one selected from the group consisting of Bi, Tl and Hg, and n is 5 or less A superconducting oxide represented by
A 0.5 BO 3 (tetragonal bronze structure) or A 0.3 BO 3 (hexagonal bronze structure) (wherein A is Li, Na, K, Rb, Cs, Pb, Ca, Sr, Ba, Bi, and La) At least one selected from the group consisting of, and B is at least one selected from the group consisting of Ru, Fe, Ti, Zr, Nb, Ta, V, W, and Mo.) Structural oxides,
CaO, BaO, PbO, ZnO, MgO, B 2 O 3, Al 2 O 3, Y 2 O 3, La 2 O 3, Cr 2 O 3, Bi 2 O 3, Ga 2 O 3, ZrO 2, TiO 2 At least one material selected from the group consisting of HfO 2 , NbO 2 , MoO 3 , WO 3 and V 2 O 5 ;
A material comprising SiO 2 in the at least one material; and
A method for manufacturing a ferroelectric film, wherein the at least one material is made of at least one material containing SiO 2 and GeO 2 .
(20)上記(16)乃至(19)のいずれか一項において、
前記酸素雰囲気で加熱する際は、加圧酸素雰囲気であることを特徴とする強誘電体膜の製造方法。
(21)上記(16)乃至(20)のいずれか一項において、
前記酸素雰囲気で加熱する際は、4atm以上の加圧酸素雰囲気であることを特徴とする強誘電体膜の製造方法。
(22)上記(16)乃至(21)のいずれか一項において、
前記アモルファス膜に種結晶部材を接触させる際は、前記アモルファス膜に前記種結晶部材を一定の圧力で加圧して接触させることを特徴とする強誘電体膜の製造方法。 (20) In any one of the above (16) to (19),
A method for producing a ferroelectric film, wherein the heating is performed in a pressurized oxygen atmosphere when heating in the oxygen atmosphere.
(21) In any one of (16) to (20) above,
The method of manufacturing a ferroelectric film, wherein the heating is performed in the oxygen atmosphere in a pressurized oxygen atmosphere of 4 atm or more.
(22) In any one of (16) to (21) above,
A method of manufacturing a ferroelectric film, wherein when the seed crystal member is brought into contact with the amorphous film, the seed crystal member is pressurized and brought into contact with the amorphous film at a constant pressure.
前記酸素雰囲気で加熱する際は、加圧酸素雰囲気であることを特徴とする強誘電体膜の製造方法。
(21)上記(16)乃至(20)のいずれか一項において、
前記酸素雰囲気で加熱する際は、4atm以上の加圧酸素雰囲気であることを特徴とする強誘電体膜の製造方法。
(22)上記(16)乃至(21)のいずれか一項において、
前記アモルファス膜に種結晶部材を接触させる際は、前記アモルファス膜に前記種結晶部材を一定の圧力で加圧して接触させることを特徴とする強誘電体膜の製造方法。 (20) In any one of the above (16) to (19),
A method for producing a ferroelectric film, wherein the heating is performed in a pressurized oxygen atmosphere when heating in the oxygen atmosphere.
(21) In any one of (16) to (20) above,
The method of manufacturing a ferroelectric film, wherein the heating is performed in the oxygen atmosphere in a pressurized oxygen atmosphere of 4 atm or more.
(22) In any one of (16) to (21) above,
A method of manufacturing a ferroelectric film, wherein when the seed crystal member is brought into contact with the amorphous film, the seed crystal member is pressurized and brought into contact with the amorphous film at a constant pressure.
(23)上記(19)乃至(22)のいずれか一項において、
前記種結晶膜は、Zr/Ti比が下記式(1)を満たすPb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜であり、
Aは、Li、Na、K、Rb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種からなることを特徴とする強誘電体膜の製造方法。
60/40≦Zr/Ti≦40/60 ・・・(1) (23) In any one of the above (19) to (22),
The seed crystal film is a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (1):
A is made of at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi and La.
60/40 ≦ Zr / Ti ≦ 40/60 (1)
前記種結晶膜は、Zr/Ti比が下記式(1)を満たすPb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜であり、
Aは、Li、Na、K、Rb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種からなることを特徴とする強誘電体膜の製造方法。
60/40≦Zr/Ti≦40/60 ・・・(1) (23) In any one of the above (19) to (22),
The seed crystal film is a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (1):
A is made of at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi and La.
60/40 ≦ Zr / Ti ≦ 40/60 (1)
(24)上記(23)において、
前記Pb(Zr,Ti)O3膜の各元素数比が下記式(2)を満たし、前記(Pb,A)(Zr,Ti)O3膜の各元素数比が下記式(3)を満たすことを特徴とする強誘電体膜の製造方法。
Pb/(Zr+Ti)<1.03 ・・・(2)
(Pb+A)/(Zr+Ti)≦1.35 ・・・(3) (24) In the above (23),
Each element number ratio of the Pb (Zr, Ti) O 3 film satisfies the following formula (2), and each element number ratio of the (Pb, A) (Zr, Ti) O 3 film satisfies the following formula (3). A manufacturing method of a ferroelectric film characterized by satisfying the above.
Pb / (Zr + Ti) <1.03 (2)
(Pb + A) / (Zr + Ti) ≦ 1.35 (3)
前記Pb(Zr,Ti)O3膜の各元素数比が下記式(2)を満たし、前記(Pb,A)(Zr,Ti)O3膜の各元素数比が下記式(3)を満たすことを特徴とする強誘電体膜の製造方法。
Pb/(Zr+Ti)<1.03 ・・・(2)
(Pb+A)/(Zr+Ti)≦1.35 ・・・(3) (24) In the above (23),
Each element number ratio of the Pb (Zr, Ti) O 3 film satisfies the following formula (2), and each element number ratio of the (Pb, A) (Zr, Ti) O 3 film satisfies the following formula (3). A manufacturing method of a ferroelectric film characterized by satisfying the above.
Pb / (Zr + Ti) <1.03 (2)
(Pb + A) / (Zr + Ti) ≦ 1.35 (3)
(25)上記(23)または(24)において、
前記種結晶膜は(001)に配向され、
前記強誘電体膜は(001)に配向されることを特徴とする強誘電体膜の製造方法。 (25) In the above (23) or (24),
The seed crystal film is oriented to (001),
A method of manufacturing a ferroelectric film, wherein the ferroelectric film is oriented to (001).
前記種結晶膜は(001)に配向され、
前記強誘電体膜は(001)に配向されることを特徴とする強誘電体膜の製造方法。 (25) In the above (23) or (24),
The seed crystal film is oriented to (001),
A method of manufacturing a ferroelectric film, wherein the ferroelectric film is oriented to (001).
(26)上記(23)または(24)において、
前記種結晶膜は(111)に配向され、
前記強誘電体膜は(111)に配向されることを特徴とする強誘電体膜の製造方法。 (26) In the above (23) or (24),
The seed crystal film is oriented to (111),
A method of manufacturing a ferroelectric film, wherein the ferroelectric film is oriented to (111).
前記種結晶膜は(111)に配向され、
前記強誘電体膜は(111)に配向されることを特徴とする強誘電体膜の製造方法。 (26) In the above (23) or (24),
The seed crystal film is oriented to (111),
A method of manufacturing a ferroelectric film, wherein the ferroelectric film is oriented to (111).
(27)上記(19)乃至(26)のいずれか一項において、
前記強誘電体膜は、Zr/Ti比が下記式(4)を満たすPb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜であり、
Aは、Li、Na、K、Rb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種からなることを特徴とする強誘電体膜の製造方法。
60/40≦Zr/Ti≦40/60 ・・・(4) (27) In any one of the above (19) to (26),
The ferroelectric film is a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (4):
A is made of at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi and La.
60/40 ≦ Zr / Ti ≦ 40/60 (4)
前記強誘電体膜は、Zr/Ti比が下記式(4)を満たすPb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜であり、
Aは、Li、Na、K、Rb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種からなることを特徴とする強誘電体膜の製造方法。
60/40≦Zr/Ti≦40/60 ・・・(4) (27) In any one of the above (19) to (26),
The ferroelectric film is a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (4):
A is made of at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi and La.
60/40 ≦ Zr / Ti ≦ 40/60 (4)
(28)上記(25)において、
前記種結晶膜は、Zr/Ti比が下記式(5)を満たすことを特徴とする強誘電体膜の製造方法。
52/48<Zr/Ti≦40/60 ・・・(5) (28) In the above (25),
The method for producing a ferroelectric film, wherein the seed crystal film has a Zr / Ti ratio satisfying the following formula (5).
52/48 <Zr / Ti ≦ 40/60 (5)
前記種結晶膜は、Zr/Ti比が下記式(5)を満たすことを特徴とする強誘電体膜の製造方法。
52/48<Zr/Ti≦40/60 ・・・(5) (28) In the above (25),
The method for producing a ferroelectric film, wherein the seed crystal film has a Zr / Ti ratio satisfying the following formula (5).
52/48 <Zr / Ti ≦ 40/60 (5)
(29)上記(26)において、
前記種結晶膜は、Zr/Ti比が下記式(6)を満たすことを特徴とする強誘電体膜の製造方法。
60/40≦Zr/Ti<52/48 ・・・(6)
(30)結晶化された強誘電体膜であって、
前記強誘電体膜は、(001)に単一配向したPb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜であり、
Aは、Li、Na、K、Rb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種からなることを特徴とする強誘電体膜。 (29) In the above (26),
The method of manufacturing a ferroelectric film, wherein the seed crystal film has a Zr / Ti ratio satisfying the following formula (6).
60/40 ≦ Zr / Ti <52/48 (6)
(30) A crystallized ferroelectric film,
The ferroelectric film is a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film unidirectionally oriented to (001),
A is a ferroelectric film characterized in that A is at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La.
前記種結晶膜は、Zr/Ti比が下記式(6)を満たすことを特徴とする強誘電体膜の製造方法。
60/40≦Zr/Ti<52/48 ・・・(6)
(30)結晶化された強誘電体膜であって、
前記強誘電体膜は、(001)に単一配向したPb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜であり、
Aは、Li、Na、K、Rb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種からなることを特徴とする強誘電体膜。 (29) In the above (26),
The method of manufacturing a ferroelectric film, wherein the seed crystal film has a Zr / Ti ratio satisfying the following formula (6).
60/40 ≦ Zr / Ti <52/48 (6)
(30) A crystallized ferroelectric film,
The ferroelectric film is a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film unidirectionally oriented to (001),
A is a ferroelectric film characterized in that A is at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La.
本発明の一態様によれば、ゾルゲル法を用いて作製しても単一配向性または優先配向性が高い強誘電体膜の製造装置及び強誘電体膜の製造方法を提供することができる。
According to one embodiment of the present invention, it is possible to provide a ferroelectric film manufacturing apparatus and a ferroelectric film manufacturing method having high single orientation or high priority orientation even when the sol-gel method is used.
以下では、本発明の実施形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it will be easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.
[実施の形態1]
<強誘電体膜の製造方法>
図1は、本発明の一態様に係る強誘電体膜の製造方法を説明するための断面図である。 [Embodiment 1]
<Manufacturing method of ferroelectric film>
FIG. 1 is a cross-sectional view for explaining a method of manufacturing a ferroelectric film according to one embodiment of the present invention.
<強誘電体膜の製造方法>
図1は、本発明の一態様に係る強誘電体膜の製造方法を説明するための断面図である。 [Embodiment 1]
<Manufacturing method of ferroelectric film>
FIG. 1 is a cross-sectional view for explaining a method of manufacturing a ferroelectric film according to one embodiment of the present invention.
まず、種結晶部材13を有する接触用基板20を用意する。接触用基板20は、例えばシリコンウエハ11上に(001)配向したSrRuO3膜(図示せず)が形成され、SrRuO3膜上に(001)配向したPt膜12が形成され、Pt膜12上に種結晶部材13が形成されたものを用いるとよい。
First, the contact substrate 20 having the seed crystal member 13 is prepared. For the contact substrate 20, for example, a (001) -oriented SrRuO 3 film (not shown) is formed on the silicon wafer 11, and a (001) -oriented Pt film 12 is formed on the SrRuO 3 film. It is preferable to use the one having the seed crystal member 13 formed thereon.
本実施の形態では、種結晶部材13に配向した種結晶膜を用いるとよい。種結晶膜には、スパッタリング法またはCVD法によりエピタキシャル成長させた膜を用いることができる。なお、種結晶膜以外の例としては、接触用基板20としてブリッジマン法により作製した単結晶バルクを用いてもよいし、一般に基板として市販されているLiNbO3、LiTaO3単結晶等でも良い。
In the present embodiment, a seed crystal film oriented on the seed crystal member 13 may be used. As the seed crystal film, a film epitaxially grown by a sputtering method or a CVD method can be used. As an example other than the seed crystal film, a single crystal bulk produced by the Bridgman method may be used as the contact substrate 20, or a LiNbO 3 or LiTaO 3 single crystal generally marketed as a substrate may be used.
上記の種結晶膜の具体例としては、例えばZr/Ti比が下記式(1)を満たすPb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜を用いるとよい。Aは、Li、Na、K、Rb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種からなるとよい。
60/40≦Zr/Ti≦40/60 ・・・(1) As a specific example of the seed crystal film, for example, a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (1) is used. Good. A may be made of at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La.
60/40 ≦ Zr / Ti ≦ 40/60 (1)
60/40≦Zr/Ti≦40/60 ・・・(1) As a specific example of the seed crystal film, for example, a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (1) is used. Good. A may be made of at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La.
60/40 ≦ Zr / Ti ≦ 40/60 (1)
Pb(Zr,Ti)O3膜の各元素数比は、下記式(2)を満たし、好ましくは下記式(2')を満たす。
Pb/(Zr+Ti)<1.03 ・・・(2)
1≦Pb/(Zr+Ti)<1.03 ・・・(2') Each element ratio of the Pb (Zr, Ti) O 3 film satisfies the following formula (2), and preferably satisfies the following formula (2 ′).
Pb / (Zr + Ti) <1.03 (2)
1 ≦ Pb / (Zr + Ti) <1.03 (2 ′)
Pb/(Zr+Ti)<1.03 ・・・(2)
1≦Pb/(Zr+Ti)<1.03 ・・・(2') Each element ratio of the Pb (Zr, Ti) O 3 film satisfies the following formula (2), and preferably satisfies the following formula (2 ′).
Pb / (Zr + Ti) <1.03 (2)
1 ≦ Pb / (Zr + Ti) <1.03 (2 ′)
(Pb,A)(Zr,Ti)O3膜の各元素数比は、下記式(3)を満たし、好ましくは下記式(3')満たす。
(Pb+A)/(Zr+Ti)≦1.35 ・・・(3)
1≦(Pb+A)/(Zr+Ti)≦1.35 ・・・(3') Each element number ratio of the (Pb, A) (Zr, Ti) O 3 film satisfies the following formula (3), and preferably satisfies the following formula (3 ′).
(Pb + A) / (Zr + Ti) ≦ 1.35 (3)
1 ≦ (Pb + A) / (Zr + Ti) ≦ 1.35 (3 ′)
(Pb+A)/(Zr+Ti)≦1.35 ・・・(3)
1≦(Pb+A)/(Zr+Ti)≦1.35 ・・・(3') Each element number ratio of the (Pb, A) (Zr, Ti) O 3 film satisfies the following formula (3), and preferably satisfies the following formula (3 ′).
(Pb + A) / (Zr + Ti) ≦ 1.35 (3)
1 ≦ (Pb + A) / (Zr + Ti) ≦ 1.35 (3 ′)
上記のエピタキシャル成長によるPb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜を用いることにより、(001)または(111)のいずれかに単一配向または優先配向し、かつ非常に良好な結晶性を有する種結晶膜を形成することができる。
By using the Pb (Zr, Ti) O 3 film or the (Pb, A) (Zr, Ti) O 3 film formed by the epitaxial growth described above, either (001) or (111) is unidirectionally or preferentially oriented. In addition, a seed crystal film having very good crystallinity can be formed.
次に、強誘電体材料を含むアモルファス膜16を有する被処理基板22を用意する。
詳細には、例えばシリコンウエハ14上に(001)配向したSrRuO3膜(図示せず)を形成し、SrRuO3膜上に(001)配向したPt膜15を形成し、Pt膜15上に強誘電体材料を含むアモルファス膜16をゾルゲル法により形成する。このようにして被処理基板22を用意する。 Next, a substrate to be processed 22 having anamorphous film 16 containing a ferroelectric material is prepared.
Specifically, for example, a (001) -oriented SrRuO 3 film (not shown) is formed on thesilicon wafer 14, a (001) -oriented Pt film 15 is formed on the SrRuO 3 film, and a strong Pt film 15 is formed on the Pt film 15. An amorphous film 16 containing a dielectric material is formed by a sol-gel method. In this way, the substrate 22 to be processed is prepared.
詳細には、例えばシリコンウエハ14上に(001)配向したSrRuO3膜(図示せず)を形成し、SrRuO3膜上に(001)配向したPt膜15を形成し、Pt膜15上に強誘電体材料を含むアモルファス膜16をゾルゲル法により形成する。このようにして被処理基板22を用意する。 Next, a substrate to be processed 22 having an
Specifically, for example, a (001) -oriented SrRuO 3 film (not shown) is formed on the
なお、本実施の形態では、シリコンウエハ14上にSrRuO3膜及びPt膜15を介してアモルファス膜16を形成しているが、シリコンウエハ14上に他の導電膜または絶縁膜を介してアモルファス膜16を形成してもよい。
In this embodiment, the amorphous film 16 is formed on the silicon wafer 14 via the SrRuO 3 film and the Pt film 15, but the amorphous film is formed on the silicon wafer 14 via another conductive film or insulating film. 16 may be formed.
次に、図1に示す矢印のように、被処理基板22上に接触用基板20を重ねて置き、アモルファス膜16に種結晶部材13を接触させながら、種結晶部材13及びアモルファス膜16を酸素雰囲気で加熱する。これにより、アモルファス膜16を酸化して結晶化することで強誘電体膜を形成することができる。
また、種結晶部材13及びアモルファス膜16を加圧酸素雰囲気で加熱することが好ましく、より好ましくは4atm以上の加圧酸素雰囲気で加熱することである。これにより、より単一配向性が強い強誘電体膜を得ることができる。 Next, as shown by arrows in FIG. 1, thecontact substrate 20 is placed on the substrate 22 to be processed, and the seed crystal member 13 and the amorphous film 16 are oxygenated while the seed crystal member 13 is in contact with the amorphous film 16. Heat in atmosphere. Thus, the ferroelectric film can be formed by oxidizing and crystallizing the amorphous film 16.
The seed crystal member 13 and theamorphous film 16 are preferably heated in a pressurized oxygen atmosphere, and more preferably heated in a pressurized oxygen atmosphere of 4 atm or more. As a result, a ferroelectric film having stronger single orientation can be obtained.
また、種結晶部材13及びアモルファス膜16を加圧酸素雰囲気で加熱することが好ましく、より好ましくは4atm以上の加圧酸素雰囲気で加熱することである。これにより、より単一配向性が強い強誘電体膜を得ることができる。 Next, as shown by arrows in FIG. 1, the
The seed crystal member 13 and the
また、上記のアモルファス膜16と種結晶部材13との接触は、分子レベルで面接触している必要はなく(完全に密着している必要はなく)、むしろ点接触の集合体のほうがよい。その理由は、点接触しているところにおける種結晶部材13の単一配向性の強い結晶が、単一配向性の弱い結晶よりも優先的にアモルファス膜16に転写され、それによってアモルファス膜16に単一配向性が強い結晶が形成され、その単一配向性が強い結晶がアモルファス膜16の表面と平行方向及び垂直方向にも広がっていくことで、種結晶部材13より単一配向性が強い強誘電体膜が被処理基板22の全面に生成されるものと考えられるからである。これに対し、アモルファス膜16と種結晶部材13との接触が分子レベルで十分に面接触している場合、種結晶部材13の単一配向性の強い結晶と弱い結晶の両方が転写されるため、種結晶部材13と同程度の単一配向性の強誘電体膜が生成されるものと考えられる。従って、上記の接触が点接触の集合体であることによって、種結晶部材13における単一配向性の強い結晶がアモルファス膜16に転写され、種結晶部材13における単一配向性の弱い結晶がアモルファス膜16に転写されないといった、単一配向性を強化するフィルターのような役割を果たし、その結果、種結晶部材13より単一配向性が強い強誘電体膜が生成されるものと考えられる。
Also, the contact between the amorphous film 16 and the seed crystal member 13 does not need to be in surface contact at the molecular level (it does not need to be completely in close contact), but is preferably a point contact assembly. The reason for this is that the crystal with strong single orientation of the seed crystal member 13 in the point contact is transferred to the amorphous film 16 preferentially over the crystal with weak single orientation, and thereby the amorphous film 16 is transferred to the amorphous film 16. A crystal having a strong single orientation is formed, and the crystal having a strong single orientation spreads in the direction parallel to and perpendicular to the surface of the amorphous film 16, so that the single orientation is stronger than that of the seed crystal member 13. This is because it is considered that the ferroelectric film is generated on the entire surface of the substrate 22 to be processed. On the other hand, when the contact between the amorphous film 16 and the seed crystal member 13 is sufficiently surface contact at the molecular level, both the strong crystal and the weak crystal of the single crystal orientation of the seed crystal member 13 are transferred. It is considered that a single-orientation ferroelectric film having the same degree as that of the seed crystal member 13 is produced. Therefore, when the contact is an aggregate of point contacts, a crystal having a strong single orientation in the seed crystal member 13 is transferred to the amorphous film 16, and a crystal having a weak single orientation in the seed crystal member 13 is amorphous. It is considered that a ferroelectric film having a single orientation stronger than that of the seed crystal member 13 is generated as a result of acting as a filter that enhances the single orientation, such as not being transferred to the film 16.
また、アモルファス膜16に種結晶部材13を部分的に接触させた場合でも同様の効果が得られると考えられる。従って、種結晶部材13の表面がアモルファス膜16の表面より小さくてもよく、その場合、アモルファス膜16に単一配向性が強い結晶が形成され、その単一配向性が強い結晶がアモルファス膜16の表面と平行方向にも広がっていくことで、アモルファス膜16の全体を単一配向性が強い結晶とすることができる。
また、アモルファス膜16に種結晶部材13を接触させる際は、アモルファス膜16に種結晶部材13を一定の圧力で加圧して接触させることが好ましい。このように一定の圧力とすることにより品質が安定した強誘電体膜を得ることができる。 Further, it is considered that the same effect can be obtained even when the seed crystal member 13 is partially brought into contact with theamorphous film 16. Therefore, the surface of the seed crystal member 13 may be smaller than the surface of the amorphous film 16, and in that case, a crystal having a strong single orientation is formed in the amorphous film 16, and the crystal having a strong single orientation is the amorphous film 16. As a result, the entire amorphous film 16 can be made into a crystal having a strong single orientation.
Further, when the seed crystal member 13 is brought into contact with theamorphous film 16, it is preferable that the seed crystal member 13 is pressed and brought into contact with the amorphous film 16 at a constant pressure. Thus, a ferroelectric film with stable quality can be obtained by setting a constant pressure.
また、アモルファス膜16に種結晶部材13を接触させる際は、アモルファス膜16に種結晶部材13を一定の圧力で加圧して接触させることが好ましい。このように一定の圧力とすることにより品質が安定した強誘電体膜を得ることができる。 Further, it is considered that the same effect can be obtained even when the seed crystal member 13 is partially brought into contact with the
Further, when the seed crystal member 13 is brought into contact with the
上記の強誘電体膜は、種結晶部材13の配向と同一の配向を有している。例えば、種結晶部材13が(001)に配向されている場合は、強誘電体膜も(001)に配向されることになり、種結晶部材13が(111)に配向されている場合は、強誘電体膜も(111)に配向されることになる。
The ferroelectric film has the same orientation as that of the seed crystal member 13. For example, when the seed crystal member 13 is oriented to (001), the ferroelectric film is also oriented to (001), and when the seed crystal member 13 is oriented to (111), The ferroelectric film is also oriented to (111).
また、前述したように、種結晶部材13に、Pb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜を用いた場合、Zr/Ti比が下記式(5)を満たすことで、種結晶部材13が(001)に配向され易くすることができる。
52/48<Zr/Ti≦40/60 ・・・(5) As described above, when a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film is used for the seed crystal member 13, the Zr / Ti ratio is expressed by the following formula (5 ), The seed crystal member 13 can be easily oriented to (001).
52/48 <Zr / Ti ≦ 40/60 (5)
52/48<Zr/Ti≦40/60 ・・・(5) As described above, when a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film is used for the seed crystal member 13, the Zr / Ti ratio is expressed by the following formula (5 ), The seed crystal member 13 can be easily oriented to (001).
52/48 <Zr / Ti ≦ 40/60 (5)
また、前述したように、種結晶部材13に、Pb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜を用いた場合、Zr/Ti比が下記式(6)を満たすことで、種結晶部材13が(111)に配向され易くすることができる。
60/40≦Zr/Ti<52/48 ・・・(6) As described above, when a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film is used for the seed crystal member 13, the Zr / Ti ratio is expressed by the following formula (6 ), The seed crystal member 13 can be easily oriented to (111).
60/40 ≦ Zr / Ti <52/48 (6)
60/40≦Zr/Ti<52/48 ・・・(6) As described above, when a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film is used for the seed crystal member 13, the Zr / Ti ratio is expressed by the following formula (6 ), The seed crystal member 13 can be easily oriented to (111).
60/40 ≦ Zr / Ti <52/48 (6)
この後、種結晶部材13を強誘電体膜から離す。種結晶部材13はアモルファス膜16に接触させているだけであるため、種結晶部材13は強誘電体膜から容易に剥がすことができる。
Thereafter, the seed crystal member 13 is separated from the ferroelectric film. Since the seed crystal member 13 is only in contact with the amorphous film 16, the seed crystal member 13 can be easily peeled off from the ferroelectric film.
種結晶部材13は、アモルファス膜16を結晶化する際の初期核としての役割を果たすものであるため、複数のアモルファス膜16に対して使用することができる。つまり、1枚の接触用基板20を用意すれば、複数枚の被処理基板22に対して使用することができ、経済的である。このため、強誘電体膜の製造コストを低減することができる。また、1枚の接触用基板20の種結晶部材13に対して複数枚の被処理基板22の強誘電体膜を製造できるため、強誘電体膜のばらつきを小さくでき、強誘電体膜の再現性を向上させることができる。従って、製造する強誘電体膜の品質管理も容易となる。
Since the seed crystal member 13 plays a role as an initial nucleus when the amorphous film 16 is crystallized, it can be used for a plurality of amorphous films 16. That is, if one contact substrate 20 is prepared, it can be used for a plurality of substrates 22 to be processed, which is economical. For this reason, the manufacturing cost of the ferroelectric film can be reduced. In addition, since the ferroelectric film of the plurality of substrates to be processed 22 can be manufactured for the seed crystal member 13 of the single contact substrate 20, the variation of the ferroelectric film can be reduced, and the ferroelectric film can be reproduced. Can be improved. Therefore, the quality control of the ferroelectric film to be manufactured becomes easy.
強誘電体膜は、下記の(1)~(6)の少なくとも一つからなる膜であるとよい。
(1)ABO3あるいは(Bi2O2)2+(Am-1BmO3m+1)2-(式中、AはLi、Na、K、Rb、Pb、Ca、Sr、Ba、Bi、La及びHfからなる群から選択される少なくとも1種、BはRu、Fe、Ti、Zr、Nb、Ta、V、W及びMoからなる群から選択される少なくとも1種、mは5以下の自然数である。)で表されるペロブスカイト及びビスマス層状構造酸化物
(2)LanBa2Cu3O7、Trm2Ba2Can-1CunO2n+4又はTrmBa2Can-1CunO2n+3(式中、LanはY、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも1種、TrmはBi、Tl及びHgからなる群から選択される少なくとも1種、nは5以下の自然数である。)で表される超伝導酸化物
(3)A0.5BO3(正方ブロンズ構造)又はA0.3BO3(六方ブロンズ構造)(式中、AはLi、Na、K、Rb、Cs、Pb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種、BはRu、Fe、Ti、Zr、Nb、Ta、V、W及びMoからなる群から選択される少なくとも1種である。)で表されるタングステンブロンズ構造酸化物
(4)CaO、BaO、PbO、ZnO、MgO、B2O3、Al2O3、Y2O3、La2O3、Cr2O3、Bi2O3、Ga2O3、ZrO2、TiO2、HfO2、NbO2、MoO3、WO3及びV2O5からなる群から選択される少なくとも1種の材料、
(5)前記少なくとも1種の材料にSiO2を含む材料
(6)前記少なくとも1種の材料にSiO2及びGeO2を含む材料 The ferroelectric film may be a film made of at least one of the following (1) to (6).
(1) ABO 3 or (Bi 2 O 2 ) 2+ (A m−1 B m O 3m + 1 ) 2− (where A is Li, Na, K, Rb, Pb, Ca, Sr, Ba, Bi, La And at least one selected from the group consisting of Hf, B is at least one selected from the group consisting of Ru, Fe, Ti, Zr, Nb, Ta, V, W and Mo, and m is a natural number of 5 or less. there. perovskite and bismuth layered structure oxide represented by) (2) LanBa 2 Cu 3 O 7, Trm 2 Ba 2 Ca n-1 Cu n O 2n + 4 or TrmBa 2 Ca n-1 Cu n O 2n + 3 ( in the formula , Lan is at least one selected from the group consisting of Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, and Trm is Bi, Tl. And Hg At least one selected from the group consisting, n represents 5 or less is a natural number. Superconducting oxide represented by) (3) A 0.5 BO 3 ( tetragonal bronze structure) or A 0.3 BO 3 ( (Hexagonal bronze structure) (wherein A is at least one selected from the group consisting of Li, Na, K, Rb, Cs, Pb, Ca, Sr, Ba, Bi and La, B is Ru, Fe, Ti, It is at least one selected from the group consisting of Zr, Nb, Ta, V, W and Mo.) (4) CaO, BaO, PbO, ZnO, MgO, B 2 O 3 , Al 2 O 3 , Y 2 O 3 , La 2 O 3 , Cr 2 O 3 , Bi 2 O 3 , Ga 2 O 3 , ZrO 2 , TiO 2 , HfO 2 , NbO 2 , MoO 3 , WO 3 and It is selected from the group consisting of V 2 O 5 At least one kind of material,
(5) The material containing SiO 2 in the at least one material (6) The material containing SiO 2 and GeO 2 in the at least one material
(1)ABO3あるいは(Bi2O2)2+(Am-1BmO3m+1)2-(式中、AはLi、Na、K、Rb、Pb、Ca、Sr、Ba、Bi、La及びHfからなる群から選択される少なくとも1種、BはRu、Fe、Ti、Zr、Nb、Ta、V、W及びMoからなる群から選択される少なくとも1種、mは5以下の自然数である。)で表されるペロブスカイト及びビスマス層状構造酸化物
(2)LanBa2Cu3O7、Trm2Ba2Can-1CunO2n+4又はTrmBa2Can-1CunO2n+3(式中、LanはY、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも1種、TrmはBi、Tl及びHgからなる群から選択される少なくとも1種、nは5以下の自然数である。)で表される超伝導酸化物
(3)A0.5BO3(正方ブロンズ構造)又はA0.3BO3(六方ブロンズ構造)(式中、AはLi、Na、K、Rb、Cs、Pb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種、BはRu、Fe、Ti、Zr、Nb、Ta、V、W及びMoからなる群から選択される少なくとも1種である。)で表されるタングステンブロンズ構造酸化物
(4)CaO、BaO、PbO、ZnO、MgO、B2O3、Al2O3、Y2O3、La2O3、Cr2O3、Bi2O3、Ga2O3、ZrO2、TiO2、HfO2、NbO2、MoO3、WO3及びV2O5からなる群から選択される少なくとも1種の材料、
(5)前記少なくとも1種の材料にSiO2を含む材料
(6)前記少なくとも1種の材料にSiO2及びGeO2を含む材料 The ferroelectric film may be a film made of at least one of the following (1) to (6).
(1) ABO 3 or (Bi 2 O 2 ) 2+ (A m−1 B m O 3m + 1 ) 2− (where A is Li, Na, K, Rb, Pb, Ca, Sr, Ba, Bi, La And at least one selected from the group consisting of Hf, B is at least one selected from the group consisting of Ru, Fe, Ti, Zr, Nb, Ta, V, W and Mo, and m is a natural number of 5 or less. there. perovskite and bismuth layered structure oxide represented by) (2) LanBa 2 Cu 3 O 7, Trm 2 Ba 2 Ca n-1 Cu n O 2n + 4 or TrmBa 2 Ca n-1 Cu n O 2n + 3 ( in the formula , Lan is at least one selected from the group consisting of Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, and Trm is Bi, Tl. And Hg At least one selected from the group consisting, n represents 5 or less is a natural number. Superconducting oxide represented by) (3) A 0.5 BO 3 ( tetragonal bronze structure) or A 0.3 BO 3 ( (Hexagonal bronze structure) (wherein A is at least one selected from the group consisting of Li, Na, K, Rb, Cs, Pb, Ca, Sr, Ba, Bi and La, B is Ru, Fe, Ti, It is at least one selected from the group consisting of Zr, Nb, Ta, V, W and Mo.) (4) CaO, BaO, PbO, ZnO, MgO, B 2 O 3 , Al 2 O 3 , Y 2 O 3 , La 2 O 3 , Cr 2 O 3 , Bi 2 O 3 , Ga 2 O 3 , ZrO 2 , TiO 2 , HfO 2 , NbO 2 , MoO 3 , WO 3 and It is selected from the group consisting of V 2 O 5 At least one kind of material,
(5) The material containing SiO 2 in the at least one material (6) The material containing SiO 2 and GeO 2 in the at least one material
強誘電体膜の具体例としては、Zr/Ti比が下記式(4)を満たすPb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜がある。Aは、Li、Na、K、Rb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種からなるとよい。
60/40≦Zr/Ti≦40/60 ・・・(4) Specific examples of the ferroelectric film include a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (4). A may be made of at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La.
60/40 ≦ Zr / Ti ≦ 40/60 (4)
60/40≦Zr/Ti≦40/60 ・・・(4) Specific examples of the ferroelectric film include a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (4). A may be made of at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La.
60/40 ≦ Zr / Ti ≦ 40/60 (4)
本実施の形態によれば、ゾルゲル法を用いて作製した強誘電体膜であっても単一配向性または優先配向性を高くすることができる。詳細には、単一配向または優先配向し、かつ非常に良好な結晶性を有する種結晶部材13をアモルファス膜16に接触させて初期核として利用しながら酸素雰囲気で加熱して結晶化することにより、種結晶部材13の配向と同一の配向を有する強誘電体膜を形成することができる。
According to this embodiment, even a ferroelectric film manufactured using a sol-gel method can increase single orientation or preferential orientation. Specifically, the seed crystal member 13 that is single-oriented or preferentially oriented and has very good crystallinity is brought into contact with the amorphous film 16 and heated as an initial nucleus to be crystallized by heating in an oxygen atmosphere. A ferroelectric film having the same orientation as that of the seed crystal member 13 can be formed.
言い換えると、非常に良好な結晶性を有する種結晶部材13の単一配向または優先配向を、ゾルゲル法を用いた強誘電体膜に忠実に転写することができる。その結果、単一配向または優先配向し、かつ結晶性の良い強誘電体膜を得ることができる。
In other words, the single orientation or the preferential orientation of the seed crystal member 13 having very good crystallinity can be faithfully transferred to the ferroelectric film using the sol-gel method. As a result, a ferroelectric film having a single orientation or preferential orientation and good crystallinity can be obtained.
つまり、種結晶部材13に接触させて結晶化したゾルゲル法を用いた強誘電体膜15は、種結晶部材13と同じ結晶構造となる。また、強誘電体膜を結晶構造が決められた種結晶部材13と接触させることによって、強誘電体膜の結晶構造を制御できる。
That is, the ferroelectric film 15 using the sol-gel method crystallized by being brought into contact with the seed crystal member 13 has the same crystal structure as that of the seed crystal member 13. Further, the crystal structure of the ferroelectric film can be controlled by bringing the ferroelectric film into contact with the seed crystal member 13 whose crystal structure is determined.
また、ゾルゲル法を用いる強誘電体膜の成膜速度は、例えばスパッタリング法によりエピタキシャル成長させる強誘電体膜の成膜速度に比べて非常に速い。このため、種結晶部材13上にゾルゲル法を用いて強誘電体膜を形成する本発明の一態様に係る強誘電体膜の製造方法は、量産に適した成膜速度を有するものになる。
Also, the deposition rate of the ferroelectric film using the sol-gel method is very fast compared to the deposition rate of the ferroelectric film that is epitaxially grown by, for example, the sputtering method. For this reason, the manufacturing method of the ferroelectric film according to one embodiment of the present invention in which the ferroelectric film is formed on the seed crystal member 13 using the sol-gel method has a deposition rate suitable for mass production.
また、本実施の形態では、被処理基板22上に接触用基板20を重ねて置き、アモルファス膜16に種結晶部材13を接触させながら、種結晶部材13及びアモルファス膜16を酸素雰囲気で加熱して結晶化するが、アモルファス膜16に種結晶部材13を接触させ、且つアモルファス膜16と種結晶部材13とを密着させるために、表1に示す有機溶媒をアモルファス膜16と種結晶部材13との間に毛管現象で満たしながら、種結晶部材13及びアモルファス膜16を酸素雰囲気で加熱して結晶化するとよい。その結果、更に単一配向性が強い強誘電体膜を生成することができる。この場合の有機溶媒は、乾燥し難いアルコール類であることが好ましい。
In the present embodiment, the contact substrate 20 is placed on the substrate 22 to be processed, and the seed crystal member 13 and the amorphous film 16 are heated in an oxygen atmosphere while the amorphous crystal 16 is in contact with the seed crystal member 13. In order to bring the seed crystal member 13 into contact with the amorphous film 16 and to bring the amorphous film 16 and the seed crystal member 13 into close contact with each other, the organic solvent shown in Table 1 is used as the amorphous film 16 and the seed crystal member 13. The seed crystal member 13 and the amorphous film 16 may be heated and crystallized in an oxygen atmosphere while being filled with capillarity. As a result, it is possible to generate a ferroelectric film having a stronger single orientation. The organic solvent in this case is preferably an alcohol that is difficult to dry.
<強誘電体膜の製造装置>
図2及び図3は、本発明の一態様に係る加圧式ランプアニール装置30を説明するための断面図である。 <Ferroelectric film manufacturing equipment>
2 and 3 are cross-sectional views illustrating a pressure-typelamp annealing apparatus 30 according to one embodiment of the present invention.
図2及び図3は、本発明の一態様に係る加圧式ランプアニール装置30を説明するための断面図である。 <Ferroelectric film manufacturing equipment>
2 and 3 are cross-sectional views illustrating a pressure-type
加圧式ランプアニール装置30はAl製のチャンバー21を有している。このチャンバー21の内表面には表面処理が施されている。つまり、チャンバー21の内表面には反射膜が形成されている。具体的な表面処理としては、Auメッキ処理又はシュウ酸アルマイト処理を用いることが可能である。これにより、チャンバー21の内表面にはAuメッキ膜又はシュウ酸アルマイト膜が形成され、このAuメッキ膜又はシュウ酸アルマイト膜でランプ光を反射させることができる。その結果、昇温レートを上げることができる。また、消費電力を少なくすることができる。また、チャンバー21は図示せぬ冷却機構によって水冷されるように構成されている。
The pressurization type lamp annealing apparatus 30 has an Al chamber 21. The inner surface of the chamber 21 is subjected to surface treatment. That is, a reflective film is formed on the inner surface of the chamber 21. As a specific surface treatment, Au plating treatment or oxalic acid alumite treatment can be used. Thereby, an Au plating film or an oxalate alumite film is formed on the inner surface of the chamber 21, and the lamp light can be reflected by the Au plating film or the oxalate alumite film. As a result, the temperature increase rate can be increased. In addition, power consumption can be reduced. The chamber 21 is configured to be water cooled by a cooling mechanism (not shown).
チャンバー21内には図1に示す被処理基板22を載置するステージ23が設けられている。ステージ23はランプ光が透過する材料、例えば石英で形成されている。ステージ23の上方には石英ガラス24が配置されている。この石英ガラス24は、チャンバー21内が加圧されるために厚く形成されている。
In the chamber 21, a stage 23 on which the substrate 22 to be processed shown in FIG. The stage 23 is made of a material that transmits lamp light, for example, quartz. A quartz glass 24 is disposed above the stage 23. The quartz glass 24 is formed thick because the inside of the chamber 21 is pressurized.
石英ガラス24の上にはランプヒータ25が配置されており、このランプヒータ25は金属製の筐体の内部に配置されている。なお、本実施の形態では、ランプヒータを用いているが、他の加熱機構を用いてもよい。
A lamp heater 25 is disposed on the quartz glass 24, and this lamp heater 25 is disposed inside a metal casing. In this embodiment, a lamp heater is used, but another heating mechanism may be used.
また、加圧式ランプアニール装置30は、ステージ23に載置された被処理基板22のアモルファス膜に種結晶部材を接触させる機構を有している。詳細には、軸27を上下に移動させる移動機構26を有しており、この軸27の先端には図1に示す接触用基板20が取り付けられる。この移動機構26は、アモルファス膜に種結晶部材を一定の圧力で加圧して接触させる機構であることが好ましい。このように一定の圧力とすることにより品質が安定した強誘電体膜を得ることができる。
Further, the pressure-type lamp annealing apparatus 30 has a mechanism for bringing the seed crystal member into contact with the amorphous film of the substrate 22 to be processed placed on the stage 23. Specifically, it has a moving mechanism 26 that moves the shaft 27 up and down, and the contact substrate 20 shown in FIG. The moving mechanism 26 is preferably a mechanism that presses the seed crystal member against the amorphous film at a constant pressure. Thus, a ferroelectric film with stable quality can be obtained by setting a constant pressure.
チャンバー21内に形成される処理室55は狭い方が好ましい。その理由は、所定の圧力まで加圧するのに必要な時間を短くすることができるからである。また、処理室55内の高さは低い方が好ましい。その理由は、処理室55内に配置された被処理基板22とランプヒータ25との間の距離を短くでき、それによって昇温レートを上げることができるからである。
The processing chamber 55 formed in the chamber 21 is preferably narrow. This is because the time required to pressurize to a predetermined pressure can be shortened. Further, the height in the processing chamber 55 is preferably low. The reason is that the distance between the substrate 22 to be processed and the lamp heater 25 disposed in the processing chamber 55 can be shortened, thereby increasing the temperature raising rate.
チャンバー21内の処理室55は加圧ライン(ガス導入機構)29に接続されている。加圧ライン29は、アルゴンガスによる加圧ライン、酸素ガスによる加圧ライン及び窒素ガスによる加圧ラインを有している。
The processing chamber 55 in the chamber 21 is connected to a pressurization line (gas introduction mechanism) 29. The pressurization line 29 has a pressurization line using argon gas, a pressurization line using oxygen gas, and a pressurization line using nitrogen gas.
アルゴンガスによる加圧ライン、酸素ガスによる加圧ライン及び窒素ガスによる加圧ラインそれぞれは、加熱ユニットを有しており、加熱ユニットは、プロセスを安定させるためにガス温度を一定(例えば40~50℃程度)にするものである。
Each of the argon gas pressurization line, the oxygen gas pressurization line and the nitrogen gas pressurization line has a heating unit, and the heating unit has a constant gas temperature (for example, 40 to 50) in order to stabilize the process. ℃).
また、チャンバー21内の処理室55は圧力調整ライン(ガス排気機構)28に接続されている。この圧力調整ライン28及び加圧ライン29によってチャンバー21内の処理室55を所定の圧力(例えば1MPa未満)に加圧できるようになっている。
The processing chamber 55 in the chamber 21 is connected to a pressure adjustment line (gas exhaust mechanism) 28. The pressure adjusting line 28 and the pressurizing line 29 can pressurize the processing chamber 55 in the chamber 21 to a predetermined pressure (for example, less than 1 MPa).
圧力調整ライン28は、安全ラインを有しており、この安全ラインは、処理室55内が異常に加圧され過ぎてある一定の圧力以上になった時に処理室内を大気圧まで下げるためのものである。
The pressure adjustment line 28 has a safety line, and this safety line is used to lower the inside of the processing chamber to atmospheric pressure when the inside of the processing chamber 55 is excessively pressurized and exceeds a certain pressure. It is.
また、圧力調整ライン28は、大気開放ラインを有しており、この大気開放ラインは、正常に加圧された処理室55内を大気圧に戻すものである。
Further, the pressure adjustment line 28 has an atmosphere release line, and this atmosphere release line returns the inside of the processing chamber 55 that has been normally pressurized to atmospheric pressure.
また、圧力調整ライン28は、処理室55内を減圧状態から大気圧に戻すラインを有しており、このラインは、処理室55内が減圧状態(真空状態)となっている場合に、減圧状態から大気圧に戻すものである。
Further, the pressure adjustment line 28 has a line for returning the inside of the processing chamber 55 from the reduced pressure state to the atmospheric pressure, and this line reduces the pressure when the inside of the processing chamber 55 is in a reduced pressure state (vacuum state). It returns to atmospheric pressure from the state.
チャンバー21の一方側にはゲートバルブ(図示せず)が配置されており、ゲートバルブを開いた状態で、チャンバー21内の処理室55に被処理基板22を搬入、搬出するようになっている。
A gate valve (not shown) is arranged on one side of the chamber 21, and the substrate 22 to be processed is carried into and out of the processing chamber 55 in the chamber 21 with the gate valve opened. .
図4は、本発明の一態様に係る強誘電体膜の製造装置の全体構成を示す模式図であり、この製造装置は、図2及び図3に示す加圧式ランプアニール装置30を有している。
FIG. 4 is a schematic diagram showing an overall configuration of a ferroelectric film manufacturing apparatus according to an aspect of the present invention, and this manufacturing apparatus includes a pressure-type lamp annealing apparatus 30 shown in FIGS. 2 and 3. Yes.
この強誘電体膜の製造装置は搬送室を有しており、この搬送室内には、スピンコータ45、150℃~300℃の温度で乾燥させるアニール装置46、窒素雰囲気または不活性ガス雰囲気で例えば300~600℃の温度、常圧で仮焼成を行うアニール装置47、図2に示す加圧式ランプアニール装置(RTA)30、冷却処理を行う冷却装置43、アライメント処理を行うアライナー42、ロード・アンロードを行うカセットステージ41、及び被処理基板を搬送する搬送ロボット44が配置されている。
This ferroelectric film manufacturing apparatus has a transfer chamber. In this transfer chamber, a spin coater 45, an annealing apparatus 46 for drying at a temperature of 150 ° C. to 300 ° C., for example, 300 in a nitrogen atmosphere or an inert gas atmosphere. Annealing apparatus 47 for pre-baking at a temperature of up to 600 ° C. and normal pressure, a pressure lamp annealing apparatus (RTA) 30 shown in FIG. 2, a cooling apparatus 43 for performing cooling processing, an aligner 42 for performing alignment processing, and load / unload A cassette stage 41 for carrying out the transfer and a transfer robot 44 for transferring the substrate to be processed are arranged.
搬送ロボット44は、スピンコータ45、カセットステージ42、アライナー42、冷却装置43、アニール装置46,47、及び加圧式ランプアニール装置30それぞれに被処理基板を搬送するための機構である。
The transfer robot 44 is a mechanism for transferring the substrate to be processed to the spin coater 45, the cassette stage 42, the aligner 42, the cooling device 43, the annealing devices 46 and 47, and the pressure type lamp annealing device 30.
この製造装置には、搬送室内の空気中の塵の量を調整する空調機構が設けられている。この空調機構によって搬送室内の空気中の塵の量を外気に比べて少なくすることができる。なお、この空調機構は、搬送室内の温度または湿度を制御することも可能である。
This manufacturing apparatus is provided with an air conditioning mechanism for adjusting the amount of dust in the air in the transfer chamber. With this air conditioning mechanism, the amount of dust in the air in the transfer chamber can be reduced compared to the outside air. This air conditioning mechanism can also control the temperature or humidity in the transfer chamber.
カセットステージ41は、複数の被処理基板を有している。
アライナー42は、被処理基板22の表面の中心位置を検出する処理を行うものである。 Thecassette stage 41 has a plurality of substrates to be processed.
Thealigner 42 performs processing for detecting the center position of the surface of the substrate 22 to be processed.
アライナー42は、被処理基板22の表面の中心位置を検出する処理を行うものである。 The
The
アニール装置46は、スピンコータ45によって被処理基板22上に塗布されたアモルファス膜に乾燥処理を行う装置である。この乾燥処理は、例えばアモルファス膜中のアルコール、水分などを除去する処理である。
The annealing apparatus 46 is an apparatus that performs a drying process on the amorphous film coated on the substrate 22 by the spin coater 45. This drying process is, for example, a process for removing alcohol, moisture, and the like in the amorphous film.
アニール装置46内には、被処理基板22を保持して加熱するためのホットプレート(図示せず)が配置されている。このホットプレート42は、被処理基板22を所望の温度(例えば200℃)に加熱することができる。
In the annealing apparatus 46, a hot plate (not shown) for holding and heating the substrate to be processed 22 is disposed. The hot plate 42 can heat the substrate 22 to be processed to a desired temperature (for example, 200 ° C.).
アニール装置47は、被処理基板22上に塗布されたアモルファス膜に窒素雰囲気中で所望の温度(例えば300℃~600℃)の仮焼成を行うための装置である。アニール装置47内には、被処理基板22を保持して加熱するためのランプヒータ(図示せず)が配置されている。このランプヒータは、被処理基板22を所望の温度に加熱することができる。また、アニール装置47は、処理室内を所定の雰囲気にするためのガス導入機構と、処理室内を排気する排気系(真空ポンプ等)を有している。ガス導入機構は、例えば窒素を導入するものである。
The annealing apparatus 47 is an apparatus for performing temporary firing at a desired temperature (for example, 300 ° C. to 600 ° C.) in a nitrogen atmosphere on the amorphous film coated on the substrate 22 to be processed. In the annealing apparatus 47, a lamp heater (not shown) for holding and heating the substrate to be processed 22 is disposed. The lamp heater can heat the substrate 22 to be processed to a desired temperature. Further, the annealing device 47 has a gas introduction mechanism for making the processing chamber a predetermined atmosphere, and an exhaust system (such as a vacuum pump) for exhausting the processing chamber. The gas introduction mechanism introduces nitrogen, for example.
RTA30は、図2及び図3に示す加圧式ランプアニール装置であって、被処理基板22上に塗布されたアモルファス膜に例えば500~1000℃の温度でランプアニール処理を行うための装置である。このランプアニール処理は加圧及び常圧のいずれの状態でも行うことが可能である。
The RTA 30 is a pressure-type lamp annealing apparatus shown in FIGS. 2 and 3, and is an apparatus for performing a lamp annealing process on the amorphous film applied on the substrate 22 to be processed at a temperature of 500 to 1000 ° C., for example. This lamp annealing treatment can be performed in either a pressurized state or a normal pressure state.
冷却装置43は、乾燥処理または仮焼成処理またはランプアニール処理などが行われた被処理基板22を冷却するための装置である。
The cooling device 43 is a device for cooling the substrate to be processed 22 that has been subjected to a drying process, a temporary baking process, a lamp annealing process, or the like.
次に、上記の強誘電体膜の製造装置を用いて被処理基板を処理することで被処理基板に強誘電体膜を製造する方法について図2~図4を参照しつつ説明する。この強誘電体膜は、例えばPZT膜である。
Next, a method for manufacturing a ferroelectric film on a substrate to be processed by processing the substrate to be processed using the above-described ferroelectric film manufacturing apparatus will be described with reference to FIGS. This ferroelectric film is, for example, a PZT film.
まず、図4に示すように、カセットステージ41内の被処理基板を、搬送ロボット44によってアライナー44のアライメント処理室に搬送し、この被処理基板をアライメント処理室の保持機構によって保持する。この際、搬送室内は、空調機構によって空気中の塵の量が調整されており、アライメント処理室内は、空調機構によって空気中の塵の量が調整されている。
First, as shown in FIG. 4, the substrate to be processed in the cassette stage 41 is transferred to the alignment processing chamber of the aligner 44 by the transfer robot 44, and this substrate to be processed is held by the holding mechanism of the alignment processing chamber. At this time, the amount of dust in the air is adjusted in the transfer chamber by the air conditioning mechanism, and the amount of dust in the air is adjusted in the alignment processing chamber by the air conditioning mechanism.
次いで、アライナー44のアライメント処理室内で被処理基板の表面の中心位置を検出する処理を行う。この処理を行うのは、基板表面の中心位置を検出しておき、スピンコート処理を行う際に基板表面の中心位置と基板の回転中心を一致させるためである。
Next, processing for detecting the center position of the surface of the substrate to be processed is performed in the alignment processing chamber of the aligner 44. This processing is performed in order to detect the center position of the substrate surface and to match the center position of the substrate surface with the rotation center of the substrate when performing the spin coating process.
この後、スピンコータ45のスピンコート処理室のゲートバルブ(図示せず)を開け、搬送ロボット44によってアライナー42のアライメント処理室内の被処理基板をスピンコート処理室内に搬送し、この被処理基板をスピンコート処理室内の保持機構によって保持し、ゲートバルブを閉じる。この際、スピンコート処理室内は、空調機構によって空気中の塵の量が調整されている。
Thereafter, the gate valve (not shown) of the spin coat processing chamber of the spin coater 45 is opened, and the substrate to be processed in the alignment processing chamber of the aligner 42 is transferred into the spin coat processing chamber by the transfer robot 44, and this substrate to be processed is spun. The gate valve is closed by the holding mechanism in the coating processing chamber. At this time, the amount of dust in the air is adjusted in the spin coat processing chamber by an air conditioning mechanism.
この後、スピンコータ45のスピンコート処理室内で被処理基板上にスピンコートにより膜を塗布する工程を行う。
Thereafter, a step of applying a film by spin coating on the substrate to be processed in the spin coat processing chamber of the spin coater 45 is performed.
この工程を以下に詳細に説明する。
洗浄ノズルによって被処理基板上に洗浄液を供給しつつ被処理基板を回転させる。これにより、被処理基板の表面が洗浄される。次に、洗浄液の供給を停止し、被処理基板を回転させることで、被処理基板上の洗浄液を除去する。
次に、滴下ノズルによって被処理基板上にケミカル材料を滴下しつつ被処理基板を回転させる。これとともに、エッヂリンスノズルによって基板表面の端部に洗浄液を滴下する。これにより、被処理基板上にはケミカル材料膜が塗布される。基板表面の端部に洗浄液を滴下する理由は、被処理基板上にスピンコートにより膜を塗布すると被処理基板の端部の膜厚が被処理基板の中央より厚く形成されるので、被処理基板の端部の膜を洗浄液で除去しながら塗布するためである。従って、エッヂリンスノズルを被処理基板の端部から中央側に少しずつ移動させることで、洗浄液を滴下する位置を被処理基板の端部から中央側に少しずつ移動させることが好ましい。 This process will be described in detail below.
The substrate to be processed is rotated while supplying the cleaning liquid onto the substrate to be processed by the cleaning nozzle. Thereby, the surface of the substrate to be processed is cleaned. Next, the supply of the cleaning liquid is stopped, and the substrate to be processed is rotated to remove the cleaning liquid on the substrate to be processed.
Next, the substrate to be processed is rotated while dropping the chemical material onto the substrate to be processed by the dropping nozzle. At the same time, the cleaning liquid is dropped onto the edge of the substrate surface by the edge rinse nozzle. Thereby, a chemical material film is applied on the substrate to be processed. The reason for dropping the cleaning liquid on the edge of the substrate surface is that when the film is applied onto the substrate to be processed by spin coating, the film thickness of the edge of the substrate to be processed is formed thicker than the center of the substrate to be processed. This is because the film at the end of the film is applied while being removed with a cleaning liquid. Accordingly, it is preferable to move the edge rinse nozzle little by little from the end of the substrate to be processed to the center, thereby gradually moving the position where the cleaning liquid is dropped from the end of the substrate to be processed to the center.
洗浄ノズルによって被処理基板上に洗浄液を供給しつつ被処理基板を回転させる。これにより、被処理基板の表面が洗浄される。次に、洗浄液の供給を停止し、被処理基板を回転させることで、被処理基板上の洗浄液を除去する。
次に、滴下ノズルによって被処理基板上にケミカル材料を滴下しつつ被処理基板を回転させる。これとともに、エッヂリンスノズルによって基板表面の端部に洗浄液を滴下する。これにより、被処理基板上にはケミカル材料膜が塗布される。基板表面の端部に洗浄液を滴下する理由は、被処理基板上にスピンコートにより膜を塗布すると被処理基板の端部の膜厚が被処理基板の中央より厚く形成されるので、被処理基板の端部の膜を洗浄液で除去しながら塗布するためである。従って、エッヂリンスノズルを被処理基板の端部から中央側に少しずつ移動させることで、洗浄液を滴下する位置を被処理基板の端部から中央側に少しずつ移動させることが好ましい。 This process will be described in detail below.
The substrate to be processed is rotated while supplying the cleaning liquid onto the substrate to be processed by the cleaning nozzle. Thereby, the surface of the substrate to be processed is cleaned. Next, the supply of the cleaning liquid is stopped, and the substrate to be processed is rotated to remove the cleaning liquid on the substrate to be processed.
Next, the substrate to be processed is rotated while dropping the chemical material onto the substrate to be processed by the dropping nozzle. At the same time, the cleaning liquid is dropped onto the edge of the substrate surface by the edge rinse nozzle. Thereby, a chemical material film is applied on the substrate to be processed. The reason for dropping the cleaning liquid on the edge of the substrate surface is that when the film is applied onto the substrate to be processed by spin coating, the film thickness of the edge of the substrate to be processed is formed thicker than the center of the substrate to be processed. This is because the film at the end of the film is applied while being removed with a cleaning liquid. Accordingly, it is preferable to move the edge rinse nozzle little by little from the end of the substrate to be processed to the center, thereby gradually moving the position where the cleaning liquid is dropped from the end of the substrate to be processed to the center.
この後、スピンコータ45のスピンコート処理室のゲートバルブを開け、搬送ロボット44によってスピンコート処理室内の被処理基板をアニール装置46の乾燥処理室内に搬送し、この被処理基板を乾燥処理室内の保持機構によって保持し、ゲートバルブを閉じる。
Thereafter, the gate valve of the spin coat processing chamber of the spin coater 45 is opened, and the substrate to be processed in the spin coat processing chamber is transferred to the drying processing chamber of the annealing apparatus 46 by the transfer robot 44, and this substrate to be processed is held in the drying processing chamber. Hold by mechanism and close gate valve.
この後、アニール装置46の乾燥処理室内で被処理基板上のケミカル材料膜に乾燥処理を施す工程を行う。
この工程を以下に詳細に説明する。
排気機構によって被処理基板上に塗布された膜の表面上の空気を排気しながら、ホットプレートによって被処理基板を例えば200~250℃に加熱する。これにより、ケミカル材料膜中の水分等を除去する。 Thereafter, a step of drying the chemical material film on the substrate to be processed is performed in the drying processing chamber of theannealing apparatus 46.
This process will be described in detail below.
While the air on the surface of the film applied on the substrate to be processed is exhausted by the exhaust mechanism, the substrate to be processed is heated to, for example, 200 to 250 ° C. by the hot plate. Thereby, moisture and the like in the chemical material film are removed.
この工程を以下に詳細に説明する。
排気機構によって被処理基板上に塗布された膜の表面上の空気を排気しながら、ホットプレートによって被処理基板を例えば200~250℃に加熱する。これにより、ケミカル材料膜中の水分等を除去する。 Thereafter, a step of drying the chemical material film on the substrate to be processed is performed in the drying processing chamber of the
This process will be described in detail below.
While the air on the surface of the film applied on the substrate to be processed is exhausted by the exhaust mechanism, the substrate to be processed is heated to, for example, 200 to 250 ° C. by the hot plate. Thereby, moisture and the like in the chemical material film are removed.
この後、アニール装置47の仮焼成処理室のゲートバルブを開け、搬送ロボット44によって乾燥処理室内の基板を仮焼成処理室内に搬送し、この被処理基板を仮焼成処理室内の保持機構によって保持し、ゲートバルブを閉じる。
Thereafter, the gate valve of the pre-baking chamber of the annealing apparatus 47 is opened, the substrate in the drying processing chamber is transferred into the pre-baking chamber by the transfer robot 44, and the substrate to be processed is held by the holding mechanism in the pre-baking chamber. Close the gate valve.
この後、アニール装置47の仮焼成処理室内で被処理基板上のケミカル材料膜に仮焼成を施す工程を行う。
詳細には、排気系によって仮焼成処理室内を真空排気した後に、ガス導入機構によって仮焼成処理室内を真空雰囲気中または窒素雰囲気または不活性ガス雰囲気で常圧とし、ランプヒータによって被処理基板上のケミカル材料膜を所望の温度(例えば300℃~600℃)に加熱することで仮焼成を行う。 Thereafter, a step of pre-baking the chemical material film on the substrate to be processed in the pre-baking chamber of theannealing apparatus 47 is performed.
Specifically, after the pre-baking chamber is evacuated by an exhaust system, the pre-baking chamber is brought to normal pressure in a vacuum atmosphere, a nitrogen atmosphere or an inert gas atmosphere by a gas introduction mechanism, and a lamp heater is used on the substrate to be processed. Temporary baking is performed by heating the chemical material film to a desired temperature (for example, 300 ° C. to 600 ° C.).
詳細には、排気系によって仮焼成処理室内を真空排気した後に、ガス導入機構によって仮焼成処理室内を真空雰囲気中または窒素雰囲気または不活性ガス雰囲気で常圧とし、ランプヒータによって被処理基板上のケミカル材料膜を所望の温度(例えば300℃~600℃)に加熱することで仮焼成を行う。 Thereafter, a step of pre-baking the chemical material film on the substrate to be processed in the pre-baking chamber of the
Specifically, after the pre-baking chamber is evacuated by an exhaust system, the pre-baking chamber is brought to normal pressure in a vacuum atmosphere, a nitrogen atmosphere or an inert gas atmosphere by a gas introduction mechanism, and a lamp heater is used on the substrate to be processed. Temporary baking is performed by heating the chemical material film to a desired temperature (for example, 300 ° C. to 600 ° C.).
この後、ゲートバルブを開け、搬送ロボット44によってアニール装置47の仮焼成処理室内の被処理基板を冷却装置43の冷却処理室内に搬送し、この被処理基板を冷却処理室内の保持機構によって保持し、ゲートバルブを閉じる。この後、冷却処理室内で被処理基板を所定の温度まで冷却する。
Thereafter, the gate valve is opened, and the substrate to be processed in the temporary baking chamber of the annealing device 47 is transferred to the cooling chamber of the cooling device 43 by the transfer robot 44, and this substrate to be processed is held by the holding mechanism in the cooling chamber. Close the gate valve. Thereafter, the substrate to be processed is cooled to a predetermined temperature in the cooling processing chamber.
この後、搬送ロボット44によって冷却処理室内の基板をアライナー42のアライメント処理室内に搬送し、この被処理基板をアライメント処理室内で被処理基板の表面の中心位置を検出する処理を行う。
Thereafter, the substrate in the cooling processing chamber is transferred into the alignment processing chamber of the aligner 42 by the transfer robot 44, and processing is performed to detect the center position of the surface of the processing substrate in the alignment processing chamber.
この後、スピンコータ45のスピンコート処理室のゲートバルブを開け、搬送ロボット44によってアライメント処理室内の被処理基板をスピンコート処理室内に搬送し、この被処理基板をスピンコート処理室内の保持機構によって保持し、ゲートバルブを閉じる。
Thereafter, the gate valve of the spin coat processing chamber of the spin coater 45 is opened, the substrate to be processed in the alignment processing chamber is transferred into the spin coating processing chamber by the transfer robot 44, and this substrate to be processed is held by the holding mechanism in the spin coating processing chamber. And close the gate valve.
この後、上述した方法と同様にスピンコート処理、乾燥処理、仮焼成処理の工程を複数回(例えば30回)繰り返すことにより、基板上に複数のケミカル材料膜を積層して形成する。このように繰り返す回数が多いほど基板上に厚い膜(例えば膜厚が1μm以上)を形成することができる。この場合に前述した強誘電体膜の製造装置を用いることにより生産性を向上させることができる。詳細には、強誘電体膜の製造装置を制御部(図示せず)によって上述したように動作せることにより、スピンコート処理、乾燥処理、仮焼成処理を自動で行うことができる。このため、それぞれの処理を個別に行い、オペレータが手で基板を搬送すると手がしびれたり処理の順序を間違えたり搬送中に基板を落としたりすることも考えられるが、このようなことが起こらないという利点がある。従って、大量生産する際に生産性を向上させることができ、歩留りを高めることができる。
Thereafter, a plurality of chemical material films are laminated and formed on the substrate by repeating the spin coating process, the drying process, and the pre-baking process a plurality of times (for example, 30 times) in the same manner as described above. As the number of repetitions increases, a thicker film (for example, a film thickness of 1 μm or more) can be formed on the substrate. In this case, the productivity can be improved by using the ferroelectric film manufacturing apparatus described above. Specifically, by operating the ferroelectric film manufacturing apparatus as described above by the control unit (not shown), the spin coating process, the drying process, and the pre-baking process can be automatically performed. For this reason, it is conceivable that each process is performed individually, and if the operator transports the substrate by hand, the hands may be numb, the processing order may be wrong, or the substrate may be dropped during transport, but this does not happen. There is an advantage. Therefore, productivity can be improved in mass production, and yield can be increased.
この後、アニール装置47の仮焼成処理室のゲートバルブを開け、加圧式ランプアニール装置30のゲートバルブを開け、搬送ロボット44によって仮焼成処理室内の被処理基板をRTA30のアニール処理室内に搬送する。図2に示す加圧式ランプアニール装置30において、被処理基板22をステージ23によって保持させ、ゲートバルブを閉じる。なお、仮焼成処理室内からアニール処理室55内に被処理基板22を搬送する搬送時間が10秒以下であることが好ましい。
Thereafter, the gate valve of the pre-baking chamber of the annealing apparatus 47 is opened, the gate valve of the pressurizing lamp annealing apparatus 30 is opened, and the substrate to be processed in the pre-baking chamber is transferred into the annealing chamber of the RTA 30 by the transfer robot 44. . In the pressure-type lamp annealing apparatus 30 shown in FIG. 2, the substrate 22 to be processed is held by the stage 23, and the gate valve is closed. It is preferable that the transfer time for transferring the substrate 22 to be processed into the annealing chamber 55 from the pre-baking chamber is 10 seconds or less.
このように搬送時間を短くする理由は次のとおりである。搬送時間が長くなると強誘電体膜の特性に大きく影響を与える。詳細には、仮焼成後は、ケミカル材料膜の酸素活性が非常に高く酸素欠乏状態であるため、大気中の酸素と結合してしまい、膜の特性が劣化する。従って、搬送時間を短くすることが好ましい。
The reasons for shortening the transport time are as follows. If the transport time is long, the characteristics of the ferroelectric film are greatly affected. Specifically, after the pre-baking, the chemical material film has a very high oxygen activity and is in an oxygen-deficient state, so that it is combined with oxygen in the atmosphere and the film characteristics deteriorate. Therefore, it is preferable to shorten the conveyance time.
この後、アニール処理室55内で被処理基板22上の複数層のケミカル材料膜にランプアニール処理を施す工程を行う。
Thereafter, a step of performing a lamp annealing process on a plurality of layers of chemical material films on the substrate 22 to be processed in the annealing chamber 55 is performed.
加圧式ランプアニール装置30を使用する方法について図2及び図3を参照しつつ詳細に説明する。
図2に示す状態で被処理基板22をステージ23上に保持させた後に、図3に示すように、軸27の先端に取り付けられた接触用基板20を移動機構26によって下方に移動させることで被処理基板22上に接触用基板20を重ねて置き、アモルファス膜16に種結晶部材13を接触させる。この際、接触用基板20を被処理基板22に押し付ける力を加えてもよい。このように接触用基板20を被処理基板22に接触させながら、種結晶部材13及びアモルファス膜16を酸素雰囲気で加熱する。これにより、アモルファス膜16を酸化して結晶化することで強誘電体膜を形成することができる。なお、種結晶部材13及びアモルファス膜16を加圧酸素雰囲気で加熱してもよく、好ましくは4atm以上の加圧酸素雰囲気で加熱するとよい。 A method of using the pressure typelamp annealing apparatus 30 will be described in detail with reference to FIGS.
After thesubstrate 22 to be processed is held on the stage 23 in the state shown in FIG. 2, the contact substrate 20 attached to the tip of the shaft 27 is moved downward by the moving mechanism 26 as shown in FIG. The contact substrate 20 is placed on the substrate 22 to be processed, and the seed crystal member 13 is brought into contact with the amorphous film 16. At this time, a force for pressing the contact substrate 20 against the substrate to be processed 22 may be applied. Thus, the seed crystal member 13 and the amorphous film 16 are heated in an oxygen atmosphere while the contact substrate 20 is in contact with the substrate 22 to be processed. Thus, the ferroelectric film can be formed by oxidizing and crystallizing the amorphous film 16. The seed crystal member 13 and the amorphous film 16 may be heated in a pressurized oxygen atmosphere, and preferably in a pressurized oxygen atmosphere of 4 atm or more.
図2に示す状態で被処理基板22をステージ23上に保持させた後に、図3に示すように、軸27の先端に取り付けられた接触用基板20を移動機構26によって下方に移動させることで被処理基板22上に接触用基板20を重ねて置き、アモルファス膜16に種結晶部材13を接触させる。この際、接触用基板20を被処理基板22に押し付ける力を加えてもよい。このように接触用基板20を被処理基板22に接触させながら、種結晶部材13及びアモルファス膜16を酸素雰囲気で加熱する。これにより、アモルファス膜16を酸化して結晶化することで強誘電体膜を形成することができる。なお、種結晶部材13及びアモルファス膜16を加圧酸素雰囲気で加熱してもよく、好ましくは4atm以上の加圧酸素雰囲気で加熱するとよい。 A method of using the pressure type
After the
この後、搬送ロボット44によってRTA30のアニール処理室内の被処理基板22をカセットステージ41内に搬送し、この被処理基板を収容する。
Thereafter, the substrate 22 to be processed in the annealing chamber of the RTA 30 is transferred into the cassette stage 41 by the transfer robot 44, and the substrate to be processed is accommodated.
なお、本実施の形態では、被処理基板22上に接触用基板20を置く構成としていが、被処理基板22と接触用基板20の上下は逆でもよいし、左右に配置してもよい。
In this embodiment, the contact substrate 20 is placed on the substrate 22 to be processed. However, the substrate 22 and the contact substrate 20 may be upside down or arranged on the left and right.
[実施の形態2]
<強誘電体膜の製造方法>
本実施の形態による強誘電体膜の製造方法は、実施の形態1による強誘電体膜の製造方法と同様であるので説明を省略する。 [Embodiment 2]
<Manufacturing method of ferroelectric film>
Since the manufacturing method of the ferroelectric film according to the present embodiment is the same as the manufacturing method of the ferroelectric film according to the first embodiment, the description thereof is omitted.
<強誘電体膜の製造方法>
本実施の形態による強誘電体膜の製造方法は、実施の形態1による強誘電体膜の製造方法と同様であるので説明を省略する。 [Embodiment 2]
<Manufacturing method of ferroelectric film>
Since the manufacturing method of the ferroelectric film according to the present embodiment is the same as the manufacturing method of the ferroelectric film according to the first embodiment, the description thereof is omitted.
<強誘電体膜の製造装置>
図5は、本発明の一態様に係る加圧式ランプアニール装置31を説明するための断面図であり、図2及び図3と同一部分には同一符号を付す。 <Ferroelectric film manufacturing equipment>
FIG. 5 is a cross-sectional view for explaining a pressure-typelamp annealing apparatus 31 according to an aspect of the present invention, and the same portions as those in FIGS. 2 and 3 are denoted by the same reference numerals.
図5は、本発明の一態様に係る加圧式ランプアニール装置31を説明するための断面図であり、図2及び図3と同一部分には同一符号を付す。 <Ferroelectric film manufacturing equipment>
FIG. 5 is a cross-sectional view for explaining a pressure-type
図5に示す加圧式ランプアニール装置31は、図2及び図3に示す加圧式ランプアニール装置30の移動機構26及び軸27を有しない点で、加圧式ランプアニール装置30と異なる。
5 is different from the pressure-type lamp annealing device 30 in that it does not have the moving mechanism 26 and the shaft 27 of the pressure-type lamp annealing device 30 shown in FIGS.
図6は、本発明の一態様に係る強誘電体膜の製造装置の全体構成を示す模式図であり、この製造装置は、図5に示す加圧式ランプアニール装置31を有している。
FIG. 6 is a schematic diagram showing the overall configuration of a ferroelectric film manufacturing apparatus according to an aspect of the present invention, and this manufacturing apparatus has a pressure-type lamp annealing apparatus 31 shown in FIG.
図6に示す強誘電体膜の製造装置は、単結晶基板ステージ48を有しない点で、図4に示す強誘電体膜の製造装置と異なる。この単結晶基板ステージ48は、図5に示す接触用基板20を収容するステージである。
The ferroelectric film manufacturing apparatus shown in FIG. 6 differs from the ferroelectric film manufacturing apparatus shown in FIG. 4 in that the single crystal substrate stage 48 is not provided. The single crystal substrate stage 48 is a stage that accommodates the contact substrate 20 shown in FIG.
次に、上記の強誘電体膜の製造装置を用いて被処理基板を処理することで被処理基板に強誘電体膜を製造する方法について図5及び図6を参照しつつ説明するが、実施の形態1と同一部分の説明は省略する。
Next, a method of manufacturing a ferroelectric film on a substrate to be processed by processing the substrate to be processed using the above-described ferroelectric film manufacturing apparatus will be described with reference to FIGS. 5 and 6. Description of the same parts as those of the first embodiment will be omitted.
図6に示すように、アニール装置47の仮焼成処理室のゲートバルブを開け、加圧式ランプアニール装置31のゲートバルブを開け、搬送ロボット44によって仮焼成処理室内の被処理基板をRTA30のアニール処理室内に搬送するまでの工程は、実施の形態1と同様である。
As shown in FIG. 6, the gate valve of the pre-baking chamber of the annealing apparatus 47 is opened, the gate valve of the pressurizing lamp annealing apparatus 31 is opened, and the substrate to be processed in the pre-baking chamber is annealed by the transfer robot 44. The process until it is transported indoors is the same as that in the first embodiment.
次いで、図5に示す加圧式ランプアニール装置31において、被処理基板22をステージ23によって保持させた後に、搬送ロボット44によって単結晶基板ステージ48から接触用基板20を取り出し、この接触用基板20を処理室55内に搬送し、被処理基板22上に接触用基板20を重ねて置き、アモルファス膜16に種結晶部材13を接触させる。そして、ゲートバルブを閉じる。
Next, in the pressure-type lamp annealing apparatus 31 shown in FIG. 5, after the substrate 22 to be processed is held by the stage 23, the contact substrate 20 is taken out from the single crystal substrate stage 48 by the transfer robot 44, and the contact substrate 20 is removed. The substrate 20 is transferred into the processing chamber 55, the contact substrate 20 is placed on the substrate 22 to be processed, and the seed crystal member 13 is brought into contact with the amorphous film 16. Then, the gate valve is closed.
この後、実施の形態1と同様の方法で、加圧式ランプアニール装置31によってアモルファス膜16を酸化して結晶化することにより強誘電体膜を形成することができる。
Thereafter, the ferroelectric film can be formed by oxidizing and crystallizing the amorphous film 16 by the pressure type lamp annealing apparatus 31 in the same manner as in the first embodiment.
以下、本実施例について説明する。
図5及び図6に示す強誘電体膜の製造装置を用いて被処理基板22を作製した。以下に詳細に説明する。 Hereinafter, this embodiment will be described.
Asubstrate 22 to be processed was manufactured using the ferroelectric film manufacturing apparatus shown in FIGS. This will be described in detail below.
図5及び図6に示す強誘電体膜の製造装置を用いて被処理基板22を作製した。以下に詳細に説明する。 Hereinafter, this embodiment will be described.
A
6インチSiウエハ14上に膜厚300nmの酸化シリコン膜を形成し、この酸化シリコン膜上に膜厚10nmのTiO2膜を形成する。
A silicon oxide film having a thickness of 300 nm is formed on the 6-inch Si wafer 14, and a TiO 2 film having a thickness of 10 nm is formed on the silicon oxide film.
次に、TiO2膜上に第1のPt膜をスパッタリング法により550~650℃の温度で成膜する。アルゴンガス圧0.4Pa、DCパワー100Wの電源出力で25分の成膜時間で形成した。
Next, a first Pt film is formed on the TiO 2 film at a temperature of 550 to 650 ° C. by sputtering. The film was formed in a film formation time of 25 minutes with a power output of argon gas pressure 0.4 Pa and DC power 100W.
次に、第1のPt膜上に第2のPt膜を蒸着法により常温で成膜する。3.3×10-3Torr、10kVの電源出力で4分の成膜時間で形成した。
Next, a second Pt film is formed on the first Pt film at room temperature by a vapor deposition method. The film was formed for 4 minutes with a power output of 3.3 × 10 −3 Torr and 10 kV.
次に、RTAによりSiウエハ14に650~750℃の温度で1~5分間の熱処理を施す。このようにして表面に(001)配向させた膜厚150nmのPt膜15を形成した6インチSiウエハを用意する。
Next, heat treatment is performed on the Si wafer 14 at a temperature of 650 to 750 ° C. for 1 to 5 minutes by RTA. In this way, a 6-inch Si wafer on which the (001) -oriented Pt film 15 having a thickness of 150 nm is formed on the surface is prepared.
次に、PZTゾルゲル溶液を用意する。PZTゾルゲル溶液は、濃度が25重量%のPZT(Zr/Ti=52/48)でPbが20%過剰な溶液である。
Next, a PZT sol-gel solution is prepared. The PZT sol-gel solution is a PZT (Zr / Ti = 52/48) having a concentration of 25% by weight and a 20% excess Pb.
次に、Pt膜15上にゾルゲル溶液をスピンコート法により塗布することにより、このPt膜15上に1層目の塗布膜が形成される。詳細には、500μLのゾルゲル溶液を塗布し、0~1500rpmまで上昇させ、1500rpmで30sec保持した後、3000rpmで10sec回転後、停止させた。
Next, a first coating film is formed on the Pt film 15 by applying a sol-gel solution on the Pt film 15 by spin coating. Specifically, 500 μL of the sol-gel solution was applied, the pressure was increased to 0 to 1500 rpm, held at 1500 rpm for 30 seconds, then rotated at 3000 rpm for 10 seconds and then stopped.
次いで、この塗布されたPZTゾルゲル溶液をホットプレート上で250℃に加熱しつつ30秒間保持して乾燥させ、水分を除去した後、さらに高温に保持したホットプレート上で450℃に加熱しつつ90秒間保持して仮焼成を行う。
Next, this applied PZT sol-gel solution was heated and dried on a hot plate at 250 ° C. for 30 seconds and dried to remove moisture, and then heated to 450 ° C. on a hot plate held at a higher temperature. Pre-baking is performed by holding for 2 seconds.
上記の回転塗布、乾燥、仮焼成を10回繰り返し、強誘電体材料を含む10層のPZTアモルファス膜を生成する。このPZTアモルファス膜の膜厚は3μmであった。
The above spin coating, drying, and pre-baking are repeated 10 times to produce a 10-layer PZT amorphous film containing a ferroelectric material. The thickness of this PZT amorphous film was 3 μm.
次に、図1に示す接触用基板20を用意する。この接触用基板20は表面に種結晶膜13を有しており、この種結晶膜13は、(001)に配向し、かつ非常に良好な結晶性を有するペロブスカイト構造のPZT膜である。
Next, a contact substrate 20 shown in FIG. 1 is prepared. The contact substrate 20 has a seed crystal film 13 on the surface, and the seed crystal film 13 is a PZT film having a perovskite structure oriented in (001) and having very good crystallinity.
そして、仮焼成を行った後のPZTアモルファス膜に接触用基板20の種結晶膜13を接触させながら加圧式ランプアニール装置(RTA: rapidly thermal anneal)を用いて酸素分圧10atm、5atm、1atmの酸素雰囲気で700℃の温度に20分間保持してアニール処理を行い、PZT結晶化を行う。このようにして3種類の酸素分圧による実施例のサンプルのPZT膜を作製した。
Then, the partial pressure of oxygen is 10 atm, 5 atm, and 1 atm using a pressure lamp annealing apparatus (RTA: rapidly thermal anneal) while bringing the seed crystal film 13 of the contact substrate 20 into contact with the PZT amorphous film after the preliminary firing. PZT crystallization is performed by annealing at a temperature of 700 ° C. for 20 minutes in an oxygen atmosphere. In this manner, the sample PZT film of the example using three types of oxygen partial pressures was produced.
比較例として、接触用基板20を接触させずに、酸素分圧を10atmとした以外は上記の実施例と同様の条件で、サンプルを作製した。
As a comparative example, a sample was prepared under the same conditions as in the above example except that the contact substrate 20 was not contacted and the oxygen partial pressure was 10 atm.
図7は、酸素分圧10atmで作製した実施例のサンプルのPZT膜をXRD回折で結晶性を評価した結果を示す図である。
図8は、酸素分圧5atmで作製した実施例のサンプルのPZT膜をXRD回折で結晶性を評価した結果を示す図である。 FIG. 7 is a diagram showing the results of evaluating the crystallinity of a sample PZT film produced at an oxygen partial pressure of 10 atm by XRD diffraction.
FIG. 8 is a diagram showing the results of evaluating the crystallinity of a sample PZT film produced at an oxygen partial pressure of 5 atm by XRD diffraction.
図8は、酸素分圧5atmで作製した実施例のサンプルのPZT膜をXRD回折で結晶性を評価した結果を示す図である。 FIG. 7 is a diagram showing the results of evaluating the crystallinity of a sample PZT film produced at an oxygen partial pressure of 10 atm by XRD diffraction.
FIG. 8 is a diagram showing the results of evaluating the crystallinity of a sample PZT film produced at an oxygen partial pressure of 5 atm by XRD diffraction.
図7及び図8に示すように、ゾルゲル法によって形成したPZT膜であっても、(001)に配向し、単一配向性且つ結晶性が非常に高い(ピーク強度の強い)PZT膜を作製することができた。
つまり、図7または図8に示す強誘電体膜は、(001)に単一配向したPZT膜である。なお、本実施例では、PZT膜を示しているが、本発明の一態様を適用することにより、(001)に単一配向したPb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜であり、Aは、Li、Na、K、Rb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種からなる強誘電体膜を実現することができる。 As shown in FIGS. 7 and 8, even a PZT film formed by a sol-gel method is oriented to (001), and a PZT film having a single orientation and very high crystallinity (high peak intensity) is produced. We were able to.
That is, the ferroelectric film shown in FIG. 7 or 8 is a PZT film unidirectionally oriented to (001). Note that in this example, a PZT film is shown; however, by applying one embodiment of the present invention, a Pb (Zr, Ti) O 3 film or a (Pb, A) Zr, Ti) O 3 film, and A realizes a ferroelectric film made of at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La. Can do.
つまり、図7または図8に示す強誘電体膜は、(001)に単一配向したPZT膜である。なお、本実施例では、PZT膜を示しているが、本発明の一態様を適用することにより、(001)に単一配向したPb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜であり、Aは、Li、Na、K、Rb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種からなる強誘電体膜を実現することができる。 As shown in FIGS. 7 and 8, even a PZT film formed by a sol-gel method is oriented to (001), and a PZT film having a single orientation and very high crystallinity (high peak intensity) is produced. We were able to.
That is, the ferroelectric film shown in FIG. 7 or 8 is a PZT film unidirectionally oriented to (001). Note that in this example, a PZT film is shown; however, by applying one embodiment of the present invention, a Pb (Zr, Ti) O 3 film or a (Pb, A) Zr, Ti) O 3 film, and A realizes a ferroelectric film made of at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La. Can do.
図9は、酸素分圧1atmで作製した実施例のサンプルのPZT膜をXRD回折で結晶性を評価した結果を示す図である。図9に示すように、ゾルゲル法によって形成したPZT膜であっても、(001)に優先配向したPZT膜を作製することができた。
FIG. 9 is a diagram showing the results of evaluating the crystallinity of a sample PZT film produced at an oxygen partial pressure of 1 atm by XRD diffraction. As shown in FIG. 9, even with a PZT film formed by a sol-gel method, a PZT film preferentially oriented to (001) could be produced.
図10は、酸素分圧10atmで作製した比較例のサンプルのPZT膜をXRD回折で結晶性を評価した結果を示す図である。図10に示すように、酸素分圧を10atmにしても全体に結晶性が非常に弱く(ピーク強度は非常に弱い)、且つ(110)に優先配向したPZT膜が得られた。
FIG. 10 is a diagram showing the results of evaluating the crystallinity of a PZT film of a comparative example prepared at an oxygen partial pressure of 10 atm by XRD diffraction. As shown in FIG. 10, even when the oxygen partial pressure was set to 10 atm, a PZT film having extremely low crystallinity as a whole (very low peak intensity) and preferentially oriented to (110) was obtained.
本実施例によれば、ゾルゲル法を用いて作製しても単一配向性または優先配向性が高い強誘電体膜が得られることが確認できた。特に、接触用基板の種結晶膜のペロブスカイト構造は被処理基板のPZTを結晶化させ易く、一部でも結晶化すれば、結晶の隣のアモルファス部分も簡単に結晶化が続いて起こることが確認できた。
According to this example, it was confirmed that a ferroelectric film having a high single orientation or high preferential orientation could be obtained even if it was produced using the sol-gel method. In particular, the perovskite structure of the seed crystal film of the contact substrate makes it easy to crystallize the PZT of the substrate to be processed, and if any part is crystallized, it is confirmed that the amorphous part next to the crystal is easily crystallized. did it.
11 シリコンウエハ
12 Pt膜
13 種結晶部材
14 シリコンウエハ
15 Pt膜
16 強誘電体材料を含むアモルファス膜
20 接触用基板
21 Al製のチャンバー
22 被処理基板
23 ステージ
24 石英ガラス
25 ランプヒータ
26 移動機構
27 軸
28 圧力調整ライン(ガス排気機構)
29 加圧ライン
30,31 加圧式ランプアニール装置
41 カセットステージ
42 アライナー
43 冷却装置
44 搬送ロボット
45 スピンコータ
46,47 アニール装置
48 単結晶基板ステージ
55 処理室
101 基板
102 Pt膜
103 PZT膜 DESCRIPTION OFSYMBOLS 11 Silicon wafer 12 Pt film | membrane 13 Seed crystal member 14 Silicon wafer 15 Pt film | membrane 16 Amorphous film containing a ferroelectric material 20 Contact substrate 21 Al chamber 22 Substrate 23 Stage 24 Quartz glass 25 Lamp heater 26 Moving mechanism 27 Shaft 28 Pressure adjustment line (gas exhaust mechanism)
29 Pressurization line 30, 31 Pressurization type lamp annealing device 41 Cassette stage 42 Aligner 43 Cooling device 44 Transfer robot 45 Spin coater 46, 47 Annealing device 48 Single crystal substrate stage 55 Processing chamber 101 Substrate 102 Pt film 103 PZT film
12 Pt膜
13 種結晶部材
14 シリコンウエハ
15 Pt膜
16 強誘電体材料を含むアモルファス膜
20 接触用基板
21 Al製のチャンバー
22 被処理基板
23 ステージ
24 石英ガラス
25 ランプヒータ
26 移動機構
27 軸
28 圧力調整ライン(ガス排気機構)
29 加圧ライン
30,31 加圧式ランプアニール装置
41 カセットステージ
42 アライナー
43 冷却装置
44 搬送ロボット
45 スピンコータ
46,47 アニール装置
48 単結晶基板ステージ
55 処理室
101 基板
102 Pt膜
103 PZT膜 DESCRIPTION OF
29
Claims (30)
- 処理室と、
前記処理室内に配置され、ゾルゲル法により形成された強誘電体材料を含むアモルファス膜を有する基板を保持する保持部と、
前記保持部に保持された前記アモルファス膜に種結晶部材を接触させる機構と、
前記処理室内に酸素ガスを導入するガス導入機構と、
前記処理室内のガスを排気するガス排気機構と、
前記処理室内を加熱する加熱機構と、
を具備し、
前記アモルファス膜に前記種結晶部材を接触させながら酸素雰囲気で加熱することにより、前記アモルファス膜を酸化して結晶化することで強誘電体膜を製造することを特徴とする強誘電体膜の製造装置。 A processing chamber;
A holding unit for holding a substrate having an amorphous film including a ferroelectric material, which is disposed in the processing chamber and formed by a sol-gel method;
A mechanism for bringing a seed crystal member into contact with the amorphous film held by the holding unit;
A gas introduction mechanism for introducing oxygen gas into the processing chamber;
A gas exhaust mechanism for exhausting the gas in the processing chamber;
A heating mechanism for heating the processing chamber;
Comprising
A ferroelectric film is manufactured by oxidizing and crystallizing the amorphous film by heating in an oxygen atmosphere while bringing the seed crystal member into contact with the amorphous film. apparatus. - 請求項1において、
前記強誘電体膜は、前記種結晶部材の配向と同一の配向を有することを特徴とする強誘電体膜の製造装置。 In claim 1,
The ferroelectric film manufacturing apparatus, wherein the ferroelectric film has the same orientation as that of the seed crystal member. - 請求項1または2において、
前記種結晶部材は、スパッタリング法またはCVD法によりエピタキシャル成長させた種結晶膜、或いはブリッジマン法により作製した単結晶バルクであることを特徴とする強誘電体膜の製造装置。 In claim 1 or 2,
The apparatus for producing a ferroelectric film, wherein the seed crystal member is a seed crystal film epitaxially grown by a sputtering method or a CVD method or a single crystal bulk produced by a Bridgman method. - 請求項1乃至3のいずれか一項において、
前記強誘電体膜は、
ABO3あるいは(Bi2O2)2+(Am-1BmO3m+1)2-(式中、AはLi、Na、K、Rb、Pb、Ca、Sr、Ba、Bi、La及びHfからなる群から選択される少なくとも1種、BはRu、Fe、Ti、Zr、Nb、Ta、V、W及びMoからなる群から選択される少なくとも1種、mは5以下の自然数である。)で表されるペロブスカイトまたはビスマス層状構造酸化物、
LanBa2Cu3O7、Trm2Ba2Can-1CunO2n+4又はTrmBa2Can-1CunO2n+3(式中、LanはY、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも1種、TrmはBi、Tl及びHgからなる群から選択される少なくとも1種、nは5以下の自然数である。)で表される超伝導酸化物、
A0.5BO3(正方ブロンズ構造)又はA0.3BO3(六方ブロンズ構造)(式中、AはLi、Na、K、Rb、Cs、Pb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種、BはRu、Fe、Ti、Zr、Nb、Ta、V、W及びMoからなる群から選択される少なくとも1種である。)で表されるタングステンブロンズ構造酸化物、
CaO、BaO、PbO、ZnO、MgO、B2O3、Al2O3、Y2O3、La2O3、Cr2O3、Bi2O3、Ga2O3、ZrO2、TiO2、HfO2、NbO2、MoO3、WO3及びV2O5からなる群から選択される少なくとも1種の材料、
前記少なくとも1種の材料にSiO2を含む材料、及び、
前記少なくとも1種の材料にSiO2及びGeO2を含む材料の少なくとも1つからなることを特徴とする強誘電体膜の製造方法。 In any one of Claims 1 thru | or 3,
The ferroelectric film is
ABO 3 or (Bi 2 O 2 ) 2+ (A m−1 B m O 3m + 1 ) 2− (where A is Li, Na, K, Rb, Pb, Ca, Sr, Ba, Bi, La, and Hf) At least one selected from the group consisting of B, B is at least one selected from the group consisting of Ru, Fe, Ti, Zr, Nb, Ta, V, W and Mo, and m is a natural number of 5 or less.) Perovskite or bismuth layered structure oxide represented by
LanBa 2 Cu 3 O 7, Trm 2 Ba 2 Ca n-1 Cu n O 2n + 4 or TrmBa 2 Ca n-1 Cu n O 2n + 3 ( wherein, Lan is Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and at least one selected from the group consisting of Lu, Trm is at least one selected from the group consisting of Bi, Tl and Hg, and n is 5 or less A superconducting oxide represented by
A 0.5 BO 3 (tetragonal bronze structure) or A 0.3 BO 3 (hexagonal bronze structure) (wherein A is Li, Na, K, Rb, Cs, Pb, Ca, Sr, Ba, Bi, and La) At least one selected from the group consisting of, and B is at least one selected from the group consisting of Ru, Fe, Ti, Zr, Nb, Ta, V, W, and Mo.) Structural oxides,
CaO, BaO, PbO, ZnO, MgO, B 2 O 3, Al 2 O 3, Y 2 O 3, La 2 O 3, Cr 2 O 3, Bi 2 O 3, Ga 2 O 3, ZrO 2, TiO 2 At least one material selected from the group consisting of HfO 2 , NbO 2 , MoO 3 , WO 3 and V 2 O 5 ;
A material comprising SiO 2 in the at least one material; and
A method for manufacturing a ferroelectric film, wherein the at least one material is made of at least one material containing SiO 2 and GeO 2 . - 請求項1乃至4のいずれか一項において、
前記ガス導入機構は、前記処理室内に加圧された前記酸素ガスを導入する機構であることを特徴とする強誘電体膜の製造装置。 In any one of Claims 1 thru | or 4,
The ferroelectric film manufacturing apparatus, wherein the gas introduction mechanism is a mechanism for introducing the pressurized oxygen gas into the processing chamber. - 請求項1乃至5のいずれか一項において、
前記ガス導入機構は、前記処理室内に前記酸素ガスを導入することで、前記処理室内を4atm以上に加圧する機構であることを特徴とする強誘電体膜の製造装置。 In any one of Claims 1 thru | or 5,
The apparatus for producing a ferroelectric film according to claim 1, wherein the gas introduction mechanism is a mechanism that pressurizes the processing chamber to 4 atm or more by introducing the oxygen gas into the processing chamber. - 請求項1乃至6のいずれか一項において、
前記アモルファス膜に種結晶部材を接触させる機構は、前記アモルファス膜に前記種結晶部材を一定の圧力で加圧して接触させる機構であることを特徴とする強誘電体膜の製造装置。 In any one of Claims 1 thru | or 6,
The apparatus for manufacturing a ferroelectric film, wherein the mechanism for bringing the seed crystal member into contact with the amorphous film is a mechanism for bringing the seed crystal member into contact with the amorphous film under a certain pressure. - 請求項1乃至7のいずれか一項において、
前記種結晶部材は、Zr/Ti比が下記式(1)を満たすPb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜であり、
Aは、Li、Na、K、Rb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種からなることを特徴とする強誘電体膜の製造装置。
60/40≦Zr/Ti≦40/60 ・・・(1) In any one of Claims 1 thru | or 7,
The seed crystal member is a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (1):
A is a ferroelectric film manufacturing apparatus characterized in that A is at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La.
60/40 ≦ Zr / Ti ≦ 40/60 (1) - 請求項8において、
前記Pb(Zr,Ti)O3膜の各元素数比が下記式(2)を満たし、前記(Pb,A)(Zr,Ti)O3膜の各元素数比が下記式(3)を満たすことを特徴とする強誘電体膜の製造装置。
Pb/(Zr+Ti)<1.03 ・・・(2)
(Pb+A)/(Zr+Ti)≦1.35 ・・・(3) In claim 8,
Each element number ratio of the Pb (Zr, Ti) O 3 film satisfies the following formula (2), and each element number ratio of the (Pb, A) (Zr, Ti) O 3 film satisfies the following formula (3). An apparatus for manufacturing a ferroelectric film characterized by satisfying the above.
Pb / (Zr + Ti) <1.03 (2)
(Pb + A) / (Zr + Ti) ≦ 1.35 (3) - 請求項8または9において、
前記種結晶部材は(001)に配向され、
前記強誘電体膜は(001)に配向されることを特徴とする強誘電体膜の製造装置。 In claim 8 or 9,
The seed crystal member is oriented to (001),
An apparatus for manufacturing a ferroelectric film, wherein the ferroelectric film is oriented in (001). - 請求項8または9において、
前記種結晶部材は(111)に配向され、
前記強誘電体膜は(111)に配向されることを特徴とする強誘電体膜の製造装置。 In claim 8 or 9,
The seed crystal member is oriented in (111),
An apparatus for manufacturing a ferroelectric film, wherein the ferroelectric film is oriented in (111). - 請求項1乃至11のいずれか一項において、
前記強誘電体膜は、Zr/Ti比が下記式(4)を満たすPb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜であり、
Aは、Li、Na、K、Rb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種からなることを特徴とする強誘電体膜の製造装置。
60/40≦Zr/Ti≦40/60 ・・・(4) In any one of Claims 1 thru | or 11,
The ferroelectric film is a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (4):
A is a ferroelectric film manufacturing apparatus characterized in that A is at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La.
60/40 ≦ Zr / Ti ≦ 40/60 (4) - 請求項10において、
前記種結晶膜は、Zr/Ti比が下記式(5)を満たすことを特徴とする強誘電体膜の製造装置。
52/48<Zr/Ti≦40/60 ・・・(5) In claim 10,
An apparatus for manufacturing a ferroelectric film, wherein the seed crystal film has a Zr / Ti ratio satisfying the following formula (5).
52/48 <Zr / Ti ≦ 40/60 (5) - 請求項11において、
前記種結晶膜は、Zr/Ti比が下記式(6)を満たすことを特徴とする強誘電体膜の製造装置。
60/40≦Zr/Ti<52/48 ・・・(6) In claim 11,
An apparatus for manufacturing a ferroelectric film, wherein the seed crystal film has a Zr / Ti ratio satisfying the following formula (6).
60/40 ≦ Zr / Ti <52/48 (6) - 請求項1乃至14のいずれか一項において、
前記加熱機構は、前記処理室内にランプヒータによってランプ光を照射する機構であることを特徴とする強誘電体膜の製造装置。 In any one of Claims 1 thru | or 14,
The apparatus for manufacturing a ferroelectric film, wherein the heating mechanism is a mechanism for irradiating lamp light into the processing chamber by a lamp heater. - 基板上に強誘電体材料を含むアモルファス膜をゾルゲル法により形成し、
前記アモルファス膜に種結晶部材を接触させながら酸素雰囲気で加熱することにより、前記アモルファス膜を酸化して結晶化することで強誘電体膜を形成し、
前記種結晶部材を前記強誘電体膜から離すことを特徴とする強誘電体膜の製造方法。 An amorphous film containing a ferroelectric material is formed on a substrate by a sol-gel method,
By heating in an oxygen atmosphere while bringing a seed crystal member into contact with the amorphous film, the amorphous film is oxidized and crystallized to form a ferroelectric film,
A method of manufacturing a ferroelectric film, wherein the seed crystal member is separated from the ferroelectric film. - 請求項16において、
前記強誘電体膜は、前記種結晶部材の配向と同一の配向を有することを特徴とする強誘電体膜の製造方法。 In claim 16,
The method of manufacturing a ferroelectric film, wherein the ferroelectric film has the same orientation as that of the seed crystal member. - 請求項16または17において、
前記種結晶部材は、スパッタリング法またはCVD法によりエピタキシャル成長させた種結晶膜、或いはブリッジマン法により作製した単結晶バルクであることを特徴とする強誘電体膜の製造方法。 In claim 16 or 17,
The method for producing a ferroelectric film, wherein the seed crystal member is a seed crystal film epitaxially grown by a sputtering method or a CVD method, or a single crystal bulk produced by a Bridgman method. - 請求項16乃至18のいずれか一項において、
前記強誘電体膜は、
ABO3あるいは(Bi2O2)2+(Am-1BmO3m+1)2-(式中、AはLi、Na、K、Rb、Pb、Ca、Sr、Ba、Bi、La及びHfからなる群から選択される少なくとも1種、BはRu、Fe、Ti、Zr、Nb、Ta、V、W及びMoからなる群から選択される少なくとも1種、mは5以下の自然数である。)で表されるペロブスカイトまたはビスマス層状構造酸化物、
LanBa2Cu3O7、Trm2Ba2Can-1CunO2n+4又はTrmBa2Can-1CunO2n+3(式中、LanはY、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも1種、TrmはBi、Tl及びHgからなる群から選択される少なくとも1種、nは5以下の自然数である。)で表される超伝導酸化物、
A0.5BO3(正方ブロンズ構造)又はA0.3BO3(六方ブロンズ構造)(式中、AはLi、Na、K、Rb、Cs、Pb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種、BはRu、Fe、Ti、Zr、Nb、Ta、V、W及びMoからなる群から選択される少なくとも1種である。)で表されるタングステンブロンズ構造酸化物、
CaO、BaO、PbO、ZnO、MgO、B2O3、Al2O3、Y2O3、La2O3、Cr2O3、Bi2O3、Ga2O3、ZrO2、TiO2、HfO2、NbO2、MoO3、WO3及びV2O5からなる群から選択される少なくとも1種の材料、
前記少なくとも1種の材料にSiO2を含む材料、及び、
前記少なくとも1種の材料にSiO2及びGeO2を含む材料の少なくとも1つからなることを特徴とする強誘電体膜の製造方法。 In any one of claims 16 to 18,
The ferroelectric film is
ABO 3 or (Bi 2 O 2 ) 2+ (A m−1 B m O 3m + 1 ) 2− (where A is Li, Na, K, Rb, Pb, Ca, Sr, Ba, Bi, La, and Hf) At least one selected from the group consisting of B, B is at least one selected from the group consisting of Ru, Fe, Ti, Zr, Nb, Ta, V, W and Mo, and m is a natural number of 5 or less.) Perovskite or bismuth layered structure oxide represented by
LanBa 2 Cu 3 O 7, Trm 2 Ba 2 Ca n-1 Cu n O 2n + 4 or TrmBa 2 Ca n-1 Cu n O 2n + 3 ( wherein, Lan is Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and at least one selected from the group consisting of Lu, Trm is at least one selected from the group consisting of Bi, Tl and Hg, and n is 5 or less A superconducting oxide represented by
A 0.5 BO 3 (tetragonal bronze structure) or A 0.3 BO 3 (hexagonal bronze structure) (wherein A is Li, Na, K, Rb, Cs, Pb, Ca, Sr, Ba, Bi, and La) At least one selected from the group consisting of, and B is at least one selected from the group consisting of Ru, Fe, Ti, Zr, Nb, Ta, V, W, and Mo.) Structural oxides,
CaO, BaO, PbO, ZnO, MgO, B 2 O 3, Al 2 O 3, Y 2 O 3, La 2 O 3, Cr 2 O 3, Bi 2 O 3, Ga 2 O 3, ZrO 2, TiO 2 At least one material selected from the group consisting of HfO 2 , NbO 2 , MoO 3 , WO 3 and V 2 O 5 ;
A material comprising SiO 2 in the at least one material; and
A method for manufacturing a ferroelectric film, wherein the at least one material is made of at least one material containing SiO 2 and GeO 2 . - 請求項16乃至19のいずれか一項において、
前記酸素雰囲気で加熱する際は、加圧酸素雰囲気であることを特徴とする強誘電体膜の製造方法。 In any one of claims 16 to 19,
A method for producing a ferroelectric film, wherein the heating is performed in a pressurized oxygen atmosphere when heating in the oxygen atmosphere. - 請求項16乃至20のいずれか一項において、
前記酸素雰囲気で加熱する際は、4atm以上の加圧酸素雰囲気であることを特徴とする強誘電体膜の製造方法。 In any one of claims 16 to 20,
The method of manufacturing a ferroelectric film, wherein the heating is performed in the oxygen atmosphere in a pressurized oxygen atmosphere of 4 atm or more. - 請求項16乃至21のいずれか一項において、
前記アモルファス膜に種結晶部材を接触させる際は、前記アモルファス膜に前記種結晶部材を一定の圧力で加圧して接触させることを特徴とする強誘電体膜の製造方法。 A device according to any one of claims 16 to 21.
A method of manufacturing a ferroelectric film, wherein when the seed crystal member is brought into contact with the amorphous film, the seed crystal member is pressurized and brought into contact with the amorphous film at a constant pressure. - 請求項19乃至22のいずれか一項において、
前記種結晶膜は、Zr/Ti比が下記式(1)を満たすPb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜であり、
Aは、Li、Na、K、Rb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種からなることを特徴とする強誘電体膜の製造方法。
60/40≦Zr/Ti≦40/60 ・・・(1) In any one of claims 19 to 22,
The seed crystal film is a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (1):
A is made of at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi and La.
60/40 ≦ Zr / Ti ≦ 40/60 (1) - 請求項23において、
前記Pb(Zr,Ti)O3膜の各元素数比が下記式(2)を満たし、前記(Pb,A)(Zr,Ti)O3膜の各元素数比が下記式(3)を満たすことを特徴とする強誘電体膜の製造方法。
Pb/(Zr+Ti)<1.03 ・・・(2)
(Pb+A)/(Zr+Ti)≦1.35 ・・・(3) In claim 23,
Each element number ratio of the Pb (Zr, Ti) O 3 film satisfies the following formula (2), and each element number ratio of the (Pb, A) (Zr, Ti) O 3 film satisfies the following formula (3). A manufacturing method of a ferroelectric film characterized by satisfying the above.
Pb / (Zr + Ti) <1.03 (2)
(Pb + A) / (Zr + Ti) ≦ 1.35 (3) - 請求項23または24において、
前記種結晶膜は(001)に配向され、
前記強誘電体膜は(001)に配向されることを特徴とする強誘電体膜の製造方法。 In claim 23 or 24,
The seed crystal film is oriented to (001),
A method of manufacturing a ferroelectric film, wherein the ferroelectric film is oriented to (001). - 請求項23または24において、
前記種結晶膜は(111)に配向され、
前記強誘電体膜は(111)に配向されることを特徴とする強誘電体膜の製造方法。 In claim 23 or 24,
The seed crystal film is oriented to (111),
A method of manufacturing a ferroelectric film, wherein the ferroelectric film is oriented to (111). - 請求項19乃至26のいずれか一項において、
前記強誘電体膜は、Zr/Ti比が下記式(4)を満たすPb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜であり、
Aは、Li、Na、K、Rb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種からなることを特徴とする強誘電体膜の製造方法。
60/40≦Zr/Ti≦40/60 ・・・(4) In any one of claims 19 to 26,
The ferroelectric film is a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film whose Zr / Ti ratio satisfies the following formula (4):
A is made of at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi and La.
60/40 ≦ Zr / Ti ≦ 40/60 (4) - 請求項25において、
前記種結晶膜は、Zr/Ti比が下記式(5)を満たすことを特徴とする強誘電体膜の製造方法。
52/48<Zr/Ti≦40/60 ・・・(5) In claim 25,
The method for producing a ferroelectric film, wherein the seed crystal film has a Zr / Ti ratio satisfying the following formula (5).
52/48 <Zr / Ti ≦ 40/60 (5) - 請求項26において、
前記種結晶膜は、Zr/Ti比が下記式(6)を満たすことを特徴とする強誘電体膜の製造方法。
60/40≦Zr/Ti<52/48 ・・・(6) In claim 26,
The method of manufacturing a ferroelectric film, wherein the seed crystal film has a Zr / Ti ratio satisfying the following formula (6).
60/40 ≦ Zr / Ti <52/48 (6) - 結晶化された強誘電体膜であって、
前記強誘電体膜は、(001)に単一配向したPb(Zr,Ti)O3膜または(Pb,A)(Zr,Ti)O3膜であり、
Aは、Li、Na、K、Rb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種からなることを特徴とする強誘電体膜。 A crystallized ferroelectric film comprising:
The ferroelectric film is a Pb (Zr, Ti) O 3 film or a (Pb, A) (Zr, Ti) O 3 film unidirectionally oriented to (001),
A is a ferroelectric film characterized in that A is at least one selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014509067A JP6149222B2 (en) | 2012-04-06 | 2013-01-29 | Ferroelectric film manufacturing apparatus and ferroelectric film manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-087809 | 2012-04-06 | ||
JP2012087809 | 2012-04-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013150812A1 true WO2013150812A1 (en) | 2013-10-10 |
Family
ID=49300313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/051846 WO2013150812A1 (en) | 2012-04-06 | 2013-01-29 | Apparatus for producing ferroelectric film and method for producing ferroelectric film |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6149222B2 (en) |
WO (1) | WO2013150812A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104193333A (en) * | 2014-08-18 | 2014-12-10 | 曹静 | Method for preparing antiferroelectric ceramics (Bi0.46Na0.46Ba0.06La0.02) ZrxTi (1-x)O3 |
WO2016121204A1 (en) * | 2015-01-26 | 2016-08-04 | 株式会社ユーテック | Pressurizing-type lamp annealing device, ferroelectric film and method for producing same |
CN113539812A (en) * | 2021-07-14 | 2021-10-22 | 湘潭大学 | Method for regulating and controlling electrical properties of hafnium oxide based ferroelectric film by homogeneous seed layer |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04267518A (en) * | 1991-02-22 | 1992-09-24 | Hokuriku Electric Ind Co Ltd | Manufacture of semiconductor thin film element |
JPH06107491A (en) * | 1992-09-28 | 1994-04-19 | Rohm Co Ltd | Production of crystalline thin film |
JPH06107489A (en) * | 1992-09-28 | 1994-04-19 | Rohm Co Ltd | Production of crystalline thin film |
JP2001135876A (en) * | 1999-11-02 | 2001-05-18 | Seiko Epson Corp | Manufacturing method of piezoelectric or ferrodielectric thin film |
JP2004281900A (en) * | 2003-03-18 | 2004-10-07 | Seiko Epson Corp | Method for producing ceramic film and pressurized heat treatment equipment for use therein |
WO2006087777A1 (en) * | 2005-02-16 | 2006-08-24 | Youtec Co., Ltd. | Pressurizing type lamp annealing device, pressurizing type lamp annealing method, thin-film, and electronic component |
JP2009094526A (en) * | 2008-11-13 | 2009-04-30 | Seiko Epson Corp | Solgel solution for forming ferroelectric film, method of manufacturing solgel solution for forming ferroelectric film, ferroelectric film, ferroelectric memory, piezoelectric element, and pyroelectric element |
JP2010228956A (en) * | 2009-03-26 | 2010-10-14 | Kanagawa Acad Of Sci & Technol | Method for forming thin film and method for manufacturing device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06107941A (en) * | 1992-09-25 | 1994-04-19 | Asahi Glass Co Ltd | Curable composition |
-
2013
- 2013-01-29 WO PCT/JP2013/051846 patent/WO2013150812A1/en active Application Filing
- 2013-01-29 JP JP2014509067A patent/JP6149222B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04267518A (en) * | 1991-02-22 | 1992-09-24 | Hokuriku Electric Ind Co Ltd | Manufacture of semiconductor thin film element |
JPH06107491A (en) * | 1992-09-28 | 1994-04-19 | Rohm Co Ltd | Production of crystalline thin film |
JPH06107489A (en) * | 1992-09-28 | 1994-04-19 | Rohm Co Ltd | Production of crystalline thin film |
JP2001135876A (en) * | 1999-11-02 | 2001-05-18 | Seiko Epson Corp | Manufacturing method of piezoelectric or ferrodielectric thin film |
JP2004281900A (en) * | 2003-03-18 | 2004-10-07 | Seiko Epson Corp | Method for producing ceramic film and pressurized heat treatment equipment for use therein |
WO2006087777A1 (en) * | 2005-02-16 | 2006-08-24 | Youtec Co., Ltd. | Pressurizing type lamp annealing device, pressurizing type lamp annealing method, thin-film, and electronic component |
JP2009094526A (en) * | 2008-11-13 | 2009-04-30 | Seiko Epson Corp | Solgel solution for forming ferroelectric film, method of manufacturing solgel solution for forming ferroelectric film, ferroelectric film, ferroelectric memory, piezoelectric element, and pyroelectric element |
JP2010228956A (en) * | 2009-03-26 | 2010-10-14 | Kanagawa Acad Of Sci & Technol | Method for forming thin film and method for manufacturing device |
Non-Patent Citations (2)
Title |
---|
S.H.HU ET AL.: "Preparation and optical waveguide property of metal alkoxide solution- derived Pb (Zr0,5Ti0.5) O3 thick films", APPLIED PHYSICS LETTERS, vol. 84, no. 18, 2004, pages 3609 - 3611 * |
ZHI-XIANG ZHU ET AL.: "Phase structure of epitaxial Pb(Zr,Ti)03 thin films on Nb-doped SrTi03 substrates", APPLIED PHYSICS LETTERS, vol. 91, 2007, pages 222910 - 1-3 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104193333A (en) * | 2014-08-18 | 2014-12-10 | 曹静 | Method for preparing antiferroelectric ceramics (Bi0.46Na0.46Ba0.06La0.02) ZrxTi (1-x)O3 |
WO2016121204A1 (en) * | 2015-01-26 | 2016-08-04 | 株式会社ユーテック | Pressurizing-type lamp annealing device, ferroelectric film and method for producing same |
JPWO2016121204A1 (en) * | 2015-01-26 | 2017-12-21 | 株式会社ユーテック | Pressurized lamp annealing apparatus, ferroelectric film and manufacturing method thereof |
CN113539812A (en) * | 2021-07-14 | 2021-10-22 | 湘潭大学 | Method for regulating and controlling electrical properties of hafnium oxide based ferroelectric film by homogeneous seed layer |
CN113539812B (en) * | 2021-07-14 | 2024-04-26 | 湘潭大学 | Method for regulating and controlling electrical properties of hafnium oxide-based ferroelectric film by homogenous seed layer |
Also Published As
Publication number | Publication date |
---|---|
JP6149222B2 (en) | 2017-06-21 |
JPWO2013150812A1 (en) | 2015-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5930852B2 (en) | Method for manufacturing ferroelectric crystal film | |
JP5509419B2 (en) | Ferroelectric film, electronic component, and method for manufacturing ferroelectric film | |
JP5568913B2 (en) | PZT film manufacturing method and steam heating apparatus | |
CN104609856B (en) | The highly preparation method of preferred orientation bismuth titanate sodium titanate-barium lead-free piezoelectric thin film | |
US9793464B2 (en) | Ferroelectric film and method for manufacturing the same | |
CN103733366B (en) | Piezoelectric element | |
US8877520B2 (en) | Ferroelectric film containing a perovskite structure oxide and method for manufacturing a ferroelectric film | |
JP6149222B2 (en) | Ferroelectric film manufacturing apparatus and ferroelectric film manufacturing method | |
US10854808B2 (en) | Ferroelectric ceramics, electronic component and manufacturing method of ferroelectric ceramics | |
JP5126950B2 (en) | Method for manufacturing metal oxide film, laminate, and electronic device | |
US20140268481A1 (en) | Complex oxide, thin-film capacitive element, liquid droplet discharge head, and method of producing complex oxide | |
CN100522885C (en) | Low-temperature preparation method for high zirconium content lead series composite antiferroelectric thin film | |
WO2022148080A1 (en) | Lead zirconate titanate thin film for next-generation high-speed communication, preparation method therefor, and application thereof | |
CN100386289C (en) | Microwave adjustable dielectric barium strontium titanate/bismuth zinc niobate composite film and its preparation method | |
CN109761605A (en) | One kind having the PZT thin film and preparation method thereof of (100) preferable grain orientation | |
JP6216808B2 (en) | Ferroelectric crystal film and manufacturing method thereof | |
JP6813758B2 (en) | Ferroelectric ceramics and their manufacturing methods | |
US9248589B2 (en) | Method for manufacturing ferroelectric film | |
CN100348771C (en) | Method for preparing lead based ferroelectric film | |
JP2004051418A (en) | Method of forming oxide thin film, and oxide thin film | |
KR100610150B1 (en) | Oriented PZT Thin Film and its Coating Process Using Lanthanum Nitrate Buffer Layer | |
JP2002324925A (en) | Method of manufacturing piezoelectric element | |
Wang et al. | Preparation and properties of SrBi2. 2 Ta2O9 thin film | |
CN101219805A (en) | Method for manufacturing high-brewage high-orientation titanium stannic acid barium ferro-electricity thin film | |
JP2000103693A (en) | Ferroelectric thin film and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13773025 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014509067 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13773025 Country of ref document: EP Kind code of ref document: A1 |