[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013150748A1 - 光変調器、光ピックアップ及び光変調モジュール - Google Patents

光変調器、光ピックアップ及び光変調モジュール Download PDF

Info

Publication number
WO2013150748A1
WO2013150748A1 PCT/JP2013/002106 JP2013002106W WO2013150748A1 WO 2013150748 A1 WO2013150748 A1 WO 2013150748A1 JP 2013002106 W JP2013002106 W JP 2013002106W WO 2013150748 A1 WO2013150748 A1 WO 2013150748A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
waveguide
layer
conductive oxide
oxide layer
Prior art date
Application number
PCT/JP2013/002106
Other languages
English (en)
French (fr)
Inventor
竜也 高岡
佐野 晃正
和田 秀彦
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380001508.7A priority Critical patent/CN103582842B/zh
Priority to JP2013550057A priority patent/JP5979509B2/ja
Priority to US14/123,156 priority patent/US8909002B2/en
Publication of WO2013150748A1 publication Critical patent/WO2013150748A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/011Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/128Modulators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1387Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/10Function characteristic plasmon

Definitions

  • the present invention relates to an optical modulator that modulates light, an optical pickup including the optical modulator, and an optical modulation module including the optical modulator.
  • a direct modulation method in which a light source is directly modulated by modulating a drive current, and an optical modulator that separately provides light from a light source that emits a constant amount are used.
  • an indirect modulation method There is an indirect modulation method.
  • the direct modulation method is limited in speeding up the modulation due to the presence of the threshold current and capacitance of the light source. For this reason, an indirect modulation method capable of increasing the modulation speed is required as the transfer rate of the optical pickup or the optical communication is increased.
  • phase modulation type in which intensity modulation is performed by interference of light phase-modulated using an electro-optic crystal such as LiNbO 3 or KTP, and a surface plasmon polariton (hereinafter referred to as “surface plasmon polariton”) , Abbreviated as SPP) and a plasmon coupling type that modulates the amount of transmitted light by utilizing the coupling of guided light.
  • phase modulation type is now widely used as an optical modulator for optical communication.
  • the amount of change in the refractive index due to the electro-optic effect is small, and it is necessary to apply an electric field over an optical path of several mm in order to obtain sufficient phase modulation. For this reason, it is difficult to reduce the size of the phase modulation type modulator.
  • the electrode for applying an electric field is large, there is a problem that the parasitic capacitance of the electrode is large and hinders high-speed modulation.
  • an optical modulator that modulates transmitted light by using a coupling between SPP localized at the interface between a metal and an electro-optic polymer and guided light propagating through a waveguide (for example, Patent Documents). 1).
  • the excitation condition of the SPP is manipulated by applying an electric field to the electro-optic polymer, and the transmitted light is modulated by the strength of the coupling between the guided light and the SPP.
  • FIG. 30 is a cross-sectional view of a conventional plasmon modulator described in Patent Document 1.
  • the plasmon modulator 801 includes a waveguide section and a plasmon excitation section disposed adjacent to the waveguide section.
  • the waveguide portion is constituted by a waveguide 802 sandwiched between two coating materials 803.
  • the plasmon excitation part is configured by a photoelectric material 806 sandwiched between two metal electrodes 805a and 805b.
  • an electro-optic polymer is introduced as the photoelectric material 806.
  • the waveguide portion and the plasmon excitation portion are adjacent to each other through the buffer layer 804.
  • the plasmon modulator 801 there are guided light propagating through the waveguide 802 and SPP localized at the interface between the metal electrode 805a and the photoelectric material 806.
  • the energy of the guided light is combined with the SPP and absorbed when the phase matching condition between the guided light and the SPP is satisfied.
  • the wave number of SPP depends on the refractive index around the interface. Therefore, the plasmon modulator 801 controls the wave number of the SPP by applying an electric field to the photoelectric material 806 and changing the refractive index of the photoelectric material 806 by the electro-optic effect, and the degree of coupling between the SPP and the guided light. Can be controlled.
  • the plasmon modulator 801 can modulate the intensity of the output light transmitted through the plasmon modulator 801 by controlling the attenuation amount of the guided light due to the coupling with the SPP.
  • Patent Document 2 proposes forming a two-dimensional periodic structure on a metal electrode. Accordingly, an electro-optic crystal such as LiNbO 3 or KTP having a remarkable electro-optic effect that cannot be used due to the high refractive index in the configuration of Patent Document 1 can be used.
  • an electro-optic crystal such as LiNbO 3 or KTP having a remarkable electro-optic effect that cannot be used due to the high refractive index in the configuration of Patent Document 1 can be used.
  • the amount of refractive index change due to the electro-optic effect of the electro-optic polymer is about 0.001 when an electric field of 30 V / um is applied, and is very small. For this reason, the change in the phase matching condition due to the presence or absence of the applied electric field between the guided light and the SPP is small, and the difference in the attenuation amount of the guided light due to the coupling with the SPP is small.
  • the degree of modulation of modulated light is low because the difference in attenuation of guided light depending on the presence or absence of an applied electric field is small.
  • it is possible to increase the degree of modulation by increasing the modulator length there is a problem that the insertion loss of the modulator increases in this case.
  • the present invention has been made in order to solve the above-described problem. Even when the length of the optical modulator is short, the optical modulator and the optical modulator can increase the degree of modulation and perform high-speed modulation.
  • An object of the present invention is to provide a pickup and a light modulation module.
  • An optical modulator includes a waveguide through which guided light propagates, a metal layer formed adjacent to the waveguide, and a surface side of the metal layer not adjacent to the waveguide. Between the formed conductive oxide layer having conductivity, the insulating layer formed adjacent to the conductive oxide layer, the metal layer, and the conductive oxide layer or the insulating layer A modulation circuit that applies a voltage to the conductive oxide layer, and an interface where the conductive oxide layer and the insulating layer are adjacent to each other is a surface of the metal layer that is not adjacent to the waveguide from a wavelength in vacuum of the guided light. Are formed at a short distance.
  • the interface where the conductive oxide layer and the insulating layer are adjacent to each other is formed at a distance shorter than the wavelength in the vacuum of the guided light from the surface of the metal layer that is not adjacent to the waveguide.
  • the electron density of the conductive oxide layer near the interface between the conductive oxide layer and the insulating layer changes.
  • a large refractive index change occurs near the interface of the conductive oxide layer.
  • the phase matching condition between the guided light and the SPP changes significantly depending on the presence or absence of the applied voltage, and the difference in attenuation of the guided light due to the presence or absence of the applied voltage due to the coupling with the SPP increases. Since the difference in the amount of attenuation of the guided light depending on the presence or absence of the applied voltage is large, the degree of modulation can be increased and the modulation can be performed at high speed even if the length of the optical modulator is short.
  • FIG. 1 is a top view of an optical modulator according to Embodiment 1 of the present invention.
  • FIG. 2 is a sectional view of the optical modulator shown in FIG. 1 taken along the line II-II. It is a front view of the optical modulator in Embodiment 1 of this invention. It is a figure which shows the cross section and refractive index distribution of a plasmon modulator when the voltage is not applied between the metal layer and the conductive layer by the modulation circuit. It is a figure which shows the cross section and refractive index distribution of a plasmon modulator when the voltage is applied between the metal layer and the conductive layer by the modulation circuit.
  • FIG. 1 shows the reflectance calculation model for calculating the reflectance change of a multilayer film by the presence or absence of an electron density change layer. It is a figure which shows the calculation result of a reflectance when the light whose wavelength in a vacuum is 800 nm injects into the metal layer with the incident angle (theta) from the waveguide side. It is sectional drawing of the waveguide width direction of the plasmon modulator in the 1st modification of Embodiment 1 of this invention. It is sectional drawing of the waveguide width direction of the plasmon modulator in the 2nd modification of Embodiment 1 of this invention. It is a front view of the plasmon modulator in the 3rd modification of Embodiment 1 of this invention.
  • FIG. 11 is a cross-sectional view of the plasmon modulator shown in FIG. 10 taken along the line XI-XI. It is sectional drawing of the waveguide width direction of the plasmon modulator in the 4th modification of Embodiment 1 of this invention.
  • FIG. 13 is a cross-sectional view of the plasmon modulator shown in FIG. 12 taken along line XIII-XIII. It is sectional drawing of the waveguide light propagation direction of the plasmon modulator in the 5th modification of Embodiment 1 of this invention. It is sectional drawing of the waveguide light propagation direction of the plasmon modulator in the 6th modification of Embodiment 1 of this invention. It is a top view of the light modulation module in Embodiment 2 of this invention.
  • FIG. 10 taken along the line XI-XI. It is sectional drawing of the waveguide width direction of the plasmon modulator in the 4th modification of Embodiment 1 of this invention.
  • FIG. 13 is a cross-section
  • FIG. 17 is a cross-sectional view of the light modulation module shown in FIG. 16 taken along line XVII-XVII.
  • FIG. 17 is a cross-sectional view of the light modulation module shown in FIG. 16 taken along line XVIII-XVIII.
  • FIG. 25 is a sectional view of the light modulation module shown in FIG. 24 taken along the line XXV-XXV.
  • FIG. 25 is a sectional view of the light modulation module shown in FIG. 24 taken along the line XXVI-XXVI.
  • It is sectional drawing of the waveguide width direction of the light modulation module in the 1st modification of Embodiment 4 of this invention.
  • It is sectional drawing of the waveguide width direction of the light modulation module in the 2nd modification of Embodiment 4 of this invention.
  • It is a block diagram which shows the whole structure of the optical communication system in Embodiment 5 of this invention. It is sectional drawing of the conventional plasmon modulator.
  • FIG. 1 to 3 are diagrams showing a schematic configuration of a plasmon modulator (optical modulator) 101 according to the first embodiment of the present invention.
  • FIG. 1 is a top view of plasmon modulator 101 according to Embodiment 1 of the present invention.
  • 2 is a cross-sectional view of the plasmon modulator 101 shown in FIG. 1 taken along the line II-II.
  • FIG. 3 is a front view of plasmon modulator 101 according to the first embodiment of the present invention.
  • the plasmon modulator 101 includes a waveguide 112 on which a waveguide light formed on a clad 111 propagates, a metal layer 113 formed adjacent to the waveguide 112, and a metal layer 113.
  • the conductive oxide layer 114 having conductivity, the insulating layer 115 formed over the conductive oxide layer 114, and the conductive layer 116 formed over the insulating layer 115 are provided.
  • the x direction represents the waveguide width direction
  • the y direction represents the waveguide thickness direction
  • the z direction represents the guided light propagation direction.
  • the y direction is a direction in which the layers are stacked
  • the x direction is a direction perpendicular to the z direction (guided light propagation direction) and the y direction (the direction in which the layers are stacked).
  • the thickness of the conductive oxide layer 114 is thinner than the wavelength of the guided light in vacuum.
  • the interface 11 between the conductive oxide layer 114 and the insulating layer 115 is formed from a surface of the metal layer 113 not adjacent to the waveguide 112 at a distance shorter than the wavelength of the guided light in vacuum.
  • the modulation circuit 102 modulates output light by applying a voltage between the metal layer 113 and the conductive layer 116.
  • the conductive oxide layer 114 is formed on the side of the metal layer 113 that is not adjacent to the waveguide.
  • the insulating layer 115 is formed adjacent to the conductive oxide layer 114.
  • the conductive layer 116 functions as an electrode for applying a voltage to the insulating layer 115.
  • the modulation circuit 102 applies a voltage between the metal layer 113 and the conductive oxide layer 114 or the insulating layer 115.
  • SPP can exist at the interface between the metal layer 113 and the conductive oxide layer 114.
  • the energy of the guided light is combined with the SPP and absorbed when the phase matching condition between the guided light and the SPP is satisfied.
  • the wave number of SPP depends on the refractive index around the interface.
  • the modulation circuit 102 applies a voltage between the metal layer 113 and the conductive layer 116 to change the refractive index of the conductive oxide layer 114. As a result, the phase matching condition between the guided light and the SPP changes, and the light is modulated.
  • a mechanism for changing the refractive index of the conductive oxide layer 114 will be described later.
  • the clad 111 is made of a material having a refractive index lower than that of the waveguide 112, and is made of, for example, glass or resin.
  • the waveguide 112 is a channel waveguide in which light is confined two-dimensionally.
  • the thickness and width of the waveguide 112 are preferably designed such that the waveguide 112 is single mode. Thereby, the effective refractive index of the waveguide mode excited by the waveguide 112 is uniquely determined, and the guided light can be efficiently coupled with the SPP.
  • the material of the waveguide 112 is, for example, SiN having a higher refractive index than glass.
  • the wavelength in vacuum of incident light is in the visible light range of 500 nm to 800 nm, and has linearly polarized light in the waveguide thickness direction.
  • the guided light propagating through the waveguide 112 is linearly polarized light.
  • the main polarization direction of the guided light propagating through the waveguide 112 is a direction perpendicular to the metal layer 113. Note that the main polarization direction of the guided light is the polarization direction of, for example, 50% or more of the guided light passing through the waveguide 112.
  • the incident light excites TM mode guided light whose main polarization direction is the waveguide thickness direction in the waveguide 112.
  • the only guided light that can be coupled to the SPP is TM-mode guided light having a polarization component perpendicular to the surface of the metal layer 113. Therefore, a high degree of modulation can be obtained by setting the guided light to the TM mode.
  • the material of the metal layer 113 may be any metal that can excite surface plasmon resonance, such as gold or silver. Also, as shown in FIG. 3, the width W 2 of the metal layer 113 is larger than the width W 1 of the waveguide 112 (W 2 > W 1 ). With such a configuration, the energy of the guided light absorbed by the metal layer 113 as heat after being combined with the SPP can be efficiently radiated.
  • the conductive oxide layer 114 is made of, for example, ITO or IZO. Further, the thickness of the conductive oxide layer 114 is equal to or less than the wavelength of the guided light in vacuum. Furthermore, the thickness of the conductive oxide layer 114 is preferably, for example, 5 nm or more, and more preferably, for example, 10 nm or more.
  • the insulating layer 115 is made of an insulator such as SiO 2 having a refractive index lower than that of the waveguide 112.
  • the material of the conductive layer 116 may be any material having conductivity, and may be a metal or a conductive oxide.
  • Such a multilayer structure of the plasmon modulator 101 is manufactured by using a sputtering method, a vapor deposition method, or a photolithography technique.
  • FIGS. 4 is a diagram showing a cross section of the plasmon modulator 101 and the distribution of the refractive index n when no voltage is applied between the metal layer 113 and the conductive layer 116 by the modulation circuit 102.
  • FIG. 3 is a diagram illustrating a cross section of the plasmon modulator 101 and a distribution of a refractive index n when a voltage is applied between the metal layer 113 and the conductive layer 116 by the modulation circuit 102.
  • FIG. 3 is a diagram illustrating a cross section of the plasmon modulator 101 and a distribution of a refractive index n when a voltage is applied between the metal layer 113 and the conductive layer 116 by the modulation circuit 102.
  • Non-patent literature (Eyal Feigenbaum, Kenneth Diest and Harry A.Atwater, "Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies", Nano Letters, 10 May 2010, 2111-2116)
  • conductive oxide film According to the electron density is 10 19 cm -3 to 10 21 cm -3 or less is conductive oxide film has a large refractive index change due to the electron density changes in the following visible light region 800nm or more wavelength 500 nm, and exhibits good transparency.
  • the phase matching condition of the SPP greatly depends on the refractive index near the metal surface.
  • the interface 11 between the conductive oxide layer 114 and the insulating layer 115 is formed in a region in which the distance from the surface of the metal layer 113 is equal to or less than the wavelength in the vacuum of the guided light, whereby the electron density changing layer 114a can be formed in the vicinity of the metal layer 113, and the amount of change in the phase matching condition of the SPP due to the change in the refractive index of the electron density changing layer 114a can be increased.
  • the thickness of the conductive oxide layer 114 is desirably 100 nm or less.
  • FIG. 6 is a diagram showing a reflectance calculation model for calculating the change in reflectance of the multilayer film depending on the presence or absence of the electron density changing layer 114a.
  • the reflectance calculation model is generated in the metal layer 113 made of Ag, the conductive oxide layer 114 made of ITO, and the conductive oxide layer 114 on the waveguide 112 made of SiN.
  • the electron density changing layer 114a and the insulating layer 115 made of SiO 2 are modeled in a multilayer structure.
  • the thickness of the waveguide 112 was semi-infinite, and the refractive index of the waveguide 112 was 2.01.
  • the thickness of the metal layer 113 (Ag) was 40 nm, and the refractive index of the metal layer 113 was 0.169 + 4.878i.
  • the thickness of the conductive oxide layer 114 (ITO) was 20 nm, and the thickness of the electron density changing layer 114a generated when a voltage was applied was 5 nm.
  • the refractive index of the conductive oxide layer 114 (ITO) was 1.95, and the refractive index of the electron density changing layer 114a (ITO) was 0.8.
  • the thickness of the insulating layer 115 (SiO 2 ) was semi-infinite, and the refractive index of the insulating layer 115 was 1.45.
  • FIG. 7 is a diagram showing a calculation result of the reflectance when light having a wavelength in a vacuum of 800 nm is incident on the metal layer 113 at an incident angle ⁇ from the waveguide 112 side.
  • the phase matching condition between the incident light and the SPP is satisfied at an angle at which the reflectance is minimized.
  • the effective refractive index of the waveguide 112 satisfying the phase matching condition greatly changes from 1.60 to 1.51 depending on the presence or absence of the applied voltage.
  • the distance at which the SPP energy obtained from the calculation of the multilayer film attenuates to 1 / e 2 is 5.1 ⁇ m when no voltage is applied and 8.5 ⁇ m when the voltage is applied. there were. For this reason, after the energy of the guided light is absorbed by the SPP, it is rapidly attenuated, and the energy of the SPP is not coupled to the guided light again. Since the distance at which the SPP attenuates is short, the modulator length can be shortened.
  • a voltage is applied between the metal layer 113 and the conductive layer 116, taking as an example the case where the waveguide 112 is designed so that the effective refractive index of the waveguide 112 is 1.51.
  • the waveguide 112 is designed so that the effective refractive index of the waveguide 112 is 1.51.
  • the waveguide 112 When the waveguide 112 is designed so that the effective refractive index of the waveguide 112 is 1.51, when a voltage is applied, an electron density changing layer 114a is generated in the conductive oxide layer 114, and the guided light and A phase matching condition with the SPP is satisfied.
  • the guided light is coupled to the SPP that propagates through the interface between the metal layer 113 and the conductive oxide layer 114, and the energy of the guided light is absorbed by the SPP. Since SPP is a wave localized on the metal surface, energy is greatly absorbed by the metal. For this reason, the energy transferred from the guided light to the SPP is immediately lost, and the SPP is not coupled to the guided light again.
  • the energy of the guided light is absorbed by the metal layer 113, so that the amount of light output from the waveguide 112 is reduced.
  • the electron density changing layer 114a is not generated. In this case, the phase matching condition between the guided light and the SPP is not satisfied, and the coupling between the guided light and the SPP does not occur. For this reason, when no voltage is applied, the amount of light output from the waveguide 112 increases because the attenuation of the guided light is small.
  • the waveguide 112 when the waveguide 112 is designed so that the effective refractive index of the waveguide 112 is 1.60, the amount of light output from the waveguide 112 when a voltage is applied increases.
  • the output light can be modulated by controlling the presence or absence of the coupling between the guided light and the SPP depending on the presence or absence of the applied voltage.
  • the plasmon modulator 101 of the first embodiment is formed on the conductive oxide layer 114 having conductivity and the conductive oxide layer 114 formed on the metal layer 113. And an insulating layer 115.
  • the interface 11 where the conductive oxide layer 114 and the insulating layer 115 are adjacent is formed at a distance shorter than the wavelength in vacuum of the guided light from the surface of the metal layer 113 that is not adjacent to the waveguide 112.
  • a significant refractive index change occurs in the vicinity of the interface 11 with the insulating layer 115 in the conductive oxide layer 114, so that the degree of modulation can be increased even if the length of the optical modulator is short, It can be modulated at high speed.
  • the plasmon modulator 101 includes an electrically conductive oxide layer 114 formed on the metal layer 113 and an insulating layer 115 formed on the conductive oxide layer 114, whereby an insulating layer is formed. 115 can be increased, parasitic capacitance generated by the conductive layer 116 and the metal layer 113 can be suppressed, and high-speed light modulation can be performed.
  • the wavelength of the guided light propagating through the waveguide 112 in vacuum is 500 nm or more and 800 nm or less. For this reason, the refractive index change amount with respect to the electron density change of the conductive oxide layer 114 becomes large, and a high degree of modulation can be obtained.
  • the guided light propagating through the waveguide 112 is linearly polarized light, and the main polarization direction of the guided light is a direction perpendicular to the metal layer 113. For this reason, waveguide light and SPP can be combined efficiently and a high degree of modulation can be obtained.
  • the width W 2 of the metal layer 113 is larger than the width W 1 of the waveguide 112. For this reason, the heat generated by the energy of the guided light absorbed by the metal layer 113 due to the coupling with the SPP can be efficiently radiated.
  • the wavelength of the guided light propagating through the waveguide 112 is set to 500 nm or more and 800 nm or less, but the electron density of the conductive oxide layer 114 is changed in refractive index with respect to the wavelength used. If the electron density is adjusted so as to occur, the wavelength of the guided light in vacuum may be, for example, a near infrared wavelength.
  • the wavelength of the guided light in vacuum is not particularly limited to the wavelength range of 500 nm to 800 nm.
  • FIG. 8 is a cross-sectional view in the waveguide width direction of the plasmon modulator 121 in the first modification of the first embodiment of the present invention.
  • a clad 111 may be further stacked on the conductive layer 116.
  • the plasmon modulator 121 shown in FIG. 8 further includes a clad 111 formed on the conductive layer 116.
  • FIG. 9 is a cross-sectional view in the waveguide width direction of the plasmon modulator 131 in the second modification of the first embodiment of the present invention.
  • a metal layer 113, a conductive oxide layer 114, an insulating layer 115, and a conductive layer 116 may be disposed on part of the waveguide 112.
  • the length of the metal layer 113, the conductive oxide layer 114, the insulating layer 115, and the conductive layer 116 in the propagation direction of the guided light may be shorter than the length of the waveguide 112 in the propagation direction of the guided light.
  • the length of the metal layer 113, the conductive oxide layer 114, and the insulating layer 115 in the propagation direction of the guided light may be shorter than the length of the waveguide 112 in the propagation direction of the guided light. Since the length of the propagation direction of the guided light of the metal layer 113, the conductive oxide layer 114, the insulating layer 115, and the conductive layer 116 is shorter than the length of the guided light of the waveguide 112, the plasmon modulator 131 is handled. Becomes easy.
  • FIG. 10 is a front view of the plasmon modulator 141 in the third modification of the first embodiment of the present invention
  • FIG. 11 is a cross-sectional view of the plasmon modulator 141 shown in FIG. 10 taken along the line XI-XI.
  • the waveguide 112 may be a ridge waveguide.
  • the waveguide 112 may be a rib waveguide.
  • the metal layer 113, the conductive oxide layer 114, the insulating layer 115, and the conductive layer 116 may not be patterned in the waveguide width direction.
  • a metal layer 113, a conductive oxide layer 114, an insulating layer 115, and a conductive layer 116 are sequentially formed on a waveguide 112 formed on the clad 111. . For this reason, patterning in the waveguide width direction is unnecessary, and the plasmon modulator 141 can be easily manufactured.
  • FIG. 12 is a cross-sectional view of the plasmon modulator 151 formed in the optical fiber 152 in the fourth modification of the first embodiment of the present invention in the waveguide width direction
  • FIG. 13 is a plasmon modulation shown in FIG. 3 is a cross-sectional view of the device 151 taken along line XIII-XIII.
  • the plasmon modulator 151 can be manufactured by film formation by sputtering or vapor deposition without requiring a crystal growth step in the manufacturing process. Therefore, the plasmon modulator 151 can be formed on the optical fiber 152. 12 and 13, a part of the clad 111 of the optical fiber 152 is cut away to form a plasmon modulator 151. Since the plasmon modulator 151 is formed in the optical fiber 152, it is not necessary to couple the guided light to an optical modulator provided outside. For this reason, the coupling loss of guided light can be suppressed. Further, since the optical fiber 152 also serves as an optical modulator, the manufacturing cost of the optical modulator can be suppressed.
  • FIGS. 14 and 15 may be used.
  • FIG. 14 is a cross-sectional view of the plasmon modulator 161 formed in the optical fiber 162 in the fifth modification of the first embodiment of the present invention in the guided light propagation direction.
  • the cross-sectional shape of the plasmon modulator 161 in the optical fiber 162 may be a semicircular shape. That is, the metal layer 113, the conductive oxide layer 114, the insulating layer 115, and the conductive layer 116 having a semicircular cross section may be stacked on the waveguide 112 having a circular cross section.
  • the clad 111 is formed so as to cover the periphery of the waveguide 112, the metal layer 113, the conductive oxide layer 114, the insulating layer 115, and the conductive layer 116.
  • FIG. 15 is a cross-sectional view of the plasmon modulator 171 formed in the optical fiber 172 in the sixth modification of the first embodiment of the present invention in the guided light propagation direction.
  • the cross-sectional shape of the plasmon modulator 171 in the optical fiber 172 may be circular. That is, the metal layer 113, the conductive oxide layer 114, the insulating layer 115, and the conductive layer 116 having a circular cross section may be stacked around the waveguide 112 having a circular cross section.
  • the clad 111 is formed so as to cover the periphery of the conductive layer 116.
  • FIGS. 1 to 3 are diagrams showing a schematic configuration of the light modulation module 201 according to the second embodiment of the present invention. 16 to 18, the same components as those in FIGS. 1 to 3 are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 16 is a top view of the light modulation module 201 according to Embodiment 2 of the present invention.
  • FIG. 17 is a cross-sectional view of the light modulation module 201 shown in FIG. 16 taken along line XVII-XVII.
  • 18 is a cross-sectional view of the light modulation module 201 shown in FIG. 16 taken along line XVIII-XVIII.
  • the light modulation module 201 is formed on the same substrate as the light source 200, the slab type plasmon modulator (light modulator) 202 having a wide waveguide, and the slab type plasmon modulator 202.
  • Spot size converter 203 The light source 200 causes light to enter the slab type plasmon modulator 202.
  • the spot size converter 203 is connected to the slab type plasmon modulator 202 and includes a tapered waveguide 216 whose width gradually decreases in the propagation direction of the guided light.
  • the slab type plasmon modulator 202 is formed on the slab waveguide 212 on which the guided light formed on the clad 211 propagates, the metal layer 213 formed adjacent to the slab waveguide 212, and the metal layer 213.
  • An insulating layer 214 and a conductive oxide layer 215 having conductivity formed over the insulating layer 214 are provided.
  • the conductive oxide layer 215 functions as an electrode for applying a voltage to the insulating layer 214. That is, the conductive oxide layer 215 also functions as the conductive layer 116 in Embodiment 1.
  • the thickness of the insulating layer 214 is thinner than the wavelength of the guided light in vacuum.
  • the interface 21 between the insulating layer 214 and the conductive oxide layer 215 is formed at a distance shorter than the wavelength in vacuum of the guided light from the surface of the metal layer 213 that is not adjacent to the slab waveguide 212.
  • the modulation circuit 102 modulates output light by applying a voltage between the metal layer 213 and the conductive oxide layer 215.
  • SPP can exist at the interface between the metal layer 213 and the insulating layer 214.
  • the energy of the guided light is combined with the SPP and absorbed when the phase matching condition between the guided light and the SPP is satisfied.
  • the wave number of SPP depends on the refractive index around the interface.
  • the modulation circuit 102 applies a voltage between the metal layer 213 and the conductive oxide layer 215 to change the refractive index of the conductive oxide layer 215. As a result, the phase matching condition between the guided light and the SPP changes, and the light is modulated.
  • a mechanism for changing the refractive index of the conductive oxide layer 215 will be described later.
  • a clad 211 is further laminated on the conductive oxide layer 215 to improve the symmetry of guided light. For this reason, the coupling efficiency between the incident light and the guided light and the coupling efficiency between the slab type plasmon modulator 202 and the spot size converter 203 can be increased.
  • the clad 211 is made of a material having a refractive index lower than that of the slab waveguide 212, and is made of, for example, glass or resin.
  • the slab waveguide 212 is a slab waveguide in which light is confined in one dimension.
  • the thickness of the slab waveguide 212 is preferably designed so that the slab waveguide 212 is single mode. Thereby, the effective refractive index of the waveguide mode excited by the slab waveguide 212 is uniquely determined, and the guided light can be efficiently combined with the SPP.
  • the material of the slab waveguide 212 is, for example, SiN having a higher refractive index than glass.
  • the light is collected only in the waveguide thickness direction by the cylindrical lens and is incident on the slab waveguide 212.
  • the slab type plasmon modulator 202 has an advantage that the alignment accuracy of incident light in the waveguide width direction is not required.
  • the width of the slab waveguide 212 may be equal to or greater than the spot size in the width direction of incident light. Incident light has linearly polarized light in the waveguide thickness direction.
  • TM mode waveguide light whose main polarization direction is the waveguide thickness direction is excited by the incident light.
  • the only guided light that can be coupled to the SPP is TM mode guided light. Therefore, a high degree of modulation can be obtained by setting the guided light to the TM mode.
  • the material of the metal layer 213 may be any metal that can excite surface plasmon resonance, such as gold or silver.
  • the insulating layer 214 is made of an insulator such as SiO 2 having a refractive index lower than that of the slab waveguide 212. Further, the thickness of the insulating layer 214 is equal to or less than the wavelength of the guided light in vacuum. Furthermore, the thickness of the insulating layer 214 is preferably, for example, 5 nm or more, and more preferably, for example, 10 nm or more.
  • the conductive oxide layer 215 is made of, for example, ITO or IZO.
  • the spot size converter 203 includes a tapered waveguide 216 sandwiched between clads 211.
  • the tapered waveguide 216 is smoothly connected to the slab waveguide 212, and has a shape in which the width gradually decreases in the propagation direction of the guided light. Thereby, the spot size in the waveguide width direction of the light emitted from the slab waveguide 212 can be gradually reduced, and the output light from the slab type plasmon modulator 202 can be efficiently coupled to an optical fiber or the like. .
  • the multilayer structure of the slab type plasmon modulator 202 and the spot size converter 203 is manufactured by using a sputtering method, a vapor deposition method, or a photolithography technique.
  • FIG. 19 is a diagram showing a cross section of the slab type plasmon modulator 202 and the distribution of the refractive index n when no voltage is applied between the metal layer 213 and the conductive oxide layer 215 by the modulation circuit 102.
  • 20 is a diagram showing a cross section of the slab type plasmon modulator 202 and the distribution of the refractive index n when a voltage is applied between the metal layer 213 and the conductive oxide layer 215 by the modulation circuit 102. is there.
  • the SPP phase matching condition greatly depends on the refractive index near the metal surface.
  • the interface 21 between the conductive oxide layer 215 and the insulating layer 214 is formed in a region where the distance from the surface of the metal layer 213 is equal to or less than the wavelength in the vacuum of the guided light.
  • 215a can be formed in the vicinity of the metal layer 213, and the amount of change in the phase matching condition of the SPP due to the change in the refractive index of the electron density change layer 215a can be increased.
  • the thickness of the insulating layer 214 is desirably 100 nm or less.
  • the electron density changing layer 215a is not generated. In this case, the phase matching condition between the guided light and the SPP is not satisfied, and the coupling between the guided light and the SPP does not occur. For this reason, when no voltage is applied, the amount of light output from the slab waveguide 212 increases because attenuation of the guided light is small.
  • the slab waveguide 212 when the slab waveguide 212 is designed so that the guided light and the SPP satisfy the phase matching condition when no voltage is applied, the amount of light output from the slab waveguide 212 when the voltage is applied increases. .
  • the output light can be modulated by controlling the presence or absence of the coupling between the guided light and the SPP depending on the presence or absence of the applied voltage.
  • the slab type plasmon modulator 202 of the second embodiment includes the insulating layer 214 formed on the metal layer 213 and the conductive oxide having conductivity formed on the insulating layer 214.
  • Layer 215. The interface 21 where the insulating layer 214 and the conductive oxide layer 215 are adjacent to each other is formed at a distance shorter than the wavelength in the vacuum of the guided light from the surface of the metal layer 213 that is not adjacent to the waveguide 112. The As a result, a significant refractive index change occurs in the vicinity of the interface 21 with the insulating layer 214 in the conductive oxide layer 215, so that the degree of modulation can be increased even if the length of the optical modulator is short, It can be modulated at high speed.
  • the slab type plasmon modulator 202 includes an insulating layer 214 formed on the metal layer 213 and a conductive oxide layer 215 having conductivity formed on the insulating layer 214, so that conductive oxidation is performed. There is no need to reduce the thickness of the physical layer 215, and the slab type plasmon modulator 202 can be easily manufactured.
  • the conductive oxide layer 215 also functions as an electrode for applying a voltage to the insulating layer 214, a conductive layer is unnecessary, and the slab type plasmon modulator 202 can be easily manufactured.
  • the guided light propagating through the slab waveguide 212 is linearly polarized light, and the main polarization direction of the guided light is a direction perpendicular to the metal layer 213. is there. For this reason, waveguide light and SPP can be combined efficiently and a high degree of modulation can be obtained.
  • the slab type plasmon modulator 202 of the second embodiment includes a wide slab waveguide 212 as a waveguide. For this reason, light can be easily incident on the waveguide. In addition, since the area of the surface of the metal layer 213 in contact with the slab waveguide 212 is large and dispersed in a wide range and absorption of guided light occurs, the influence of heat generation of the metal layer 213 can be suppressed.
  • the slab type plasmon modulator 202 of the second embodiment includes a tapered waveguide 216 that is connected to the slab waveguide 212 and has a width that gradually decreases in the propagation direction of the guided light. Therefore, the output light modulated by the slab type plasmon modulator 202 can be efficiently coupled to an optical fiber or the like.
  • the optical modulators described in the first and second embodiments include a waveguide through which guided light propagates, a metal layer formed adjacent to the waveguide, and a surface of the metal layer not adjacent to the waveguide.
  • a modulation circuit for applying is formed at a distance shorter than the wavelength in vacuum of the guided light from the surface of the metal layer that is not adjacent to the waveguide.
  • the interface between the conductive oxide layer and the insulating layer is separated from the surface of the metal layer not adjacent to the waveguide by a distance shorter than the wavelength of the guided light in vacuum. Formed.
  • the electron density of the conductive oxide layer near the interface between the conductive oxide layer and the insulating layer changes, and the conductive layer A large refractive index change occurs near the interface of the conductive oxide layer.
  • the phase matching condition between the guided light and the SPP changes significantly depending on the presence or absence of the applied voltage, and the difference in attenuation of the guided light due to the presence or absence of the applied voltage due to the coupling with the SPP increases. Since the difference in the amount of attenuation of the guided light depending on the presence or absence of the applied voltage is large, the degree of modulation can be increased and the modulation can be performed at high speed even if the length of the optical modulator is short. Therefore, it is possible to realize a high-modulation optical modulator having a small area, a small parasitic capacitance, and capable of high-speed modulation.
  • FIG. 21 is a diagram showing a schematic configuration of the optical pickup according to the third embodiment of the present invention.
  • the same components as those in FIGS. 1 to 3 are denoted by the same reference numerals, and description thereof is omitted.
  • an optical pickup 300 in the third embodiment is an optical pickup using the plasmon modulator 101 of the first embodiment.
  • the plasmon modulator 101 can output modulated light with a high degree of modulation at a high speed, so that the information transfer rate of the optical pickup 300 can be dramatically increased.
  • An optical pickup 300 shown in FIG. 21 includes a plasmon modulator 101 according to the first embodiment, a semiconductor laser 301 that makes light incident on the plasmon modulator 101, and a condenser that collects light modulated by the plasmon modulator 101. 303.
  • the optical pickup 300 records information on the optical disc 304 that is an information recording medium by the modulated light condensed by the condenser 303.
  • the optical pickup 300 includes a plasmon modulator 101, a semiconductor laser 301, a condenser 303, a light receiving element 305, a drive circuit 306, a lens 311, a lens 312, a lens 313, and a half.
  • a mirror 314 and a lens 318 are provided.
  • the semiconductor laser 301 is driven by the drive circuit 306 to emit light having linearly polarized light in the waveguide thickness direction.
  • the lens 311 collimates the light emitted from the semiconductor laser 301.
  • the lens 312 condenses the light collimated by the lens 311 on the plasmon modulator 101 and excites the TM mode guided light in the plasmon modulator 101.
  • the modulation circuit 102 applies a voltage to the plasmon modulator 101 in accordance with information recorded on the optical disc 304 to modulate the guided light.
  • the plasmon modulator 101 emits modulated light modulated according to information recorded on the optical disk 304.
  • the lens 313 collimates the modulated light emitted from the plasmon modulator 101.
  • the half mirror 314 divides the modulated light collimated by the lens 313.
  • the lens 318 focuses the modulated light reflected by the half mirror 314 on the light receiving element 305.
  • the light receiving element 305 detects the modulated light collected by the lens 318 and outputs a detection signal corresponding to the detected amount of modulated light.
  • the drive circuit 306 adjusts the drive voltage of the semiconductor laser 301 in accordance with the detection signal from the light receiving element 305 to adjust the amount of radiation of the semiconductor laser 301.
  • the condenser 303 condenses the modulated light transmitted through the half mirror 314 on the optical disk 304.
  • the configuration of the condenser 303 will be described later.
  • the optical disk 304 is made of, for example, a phase change material.
  • the phase state of the phase change material changes due to heat generated by the incidence of light.
  • the light collected by the condenser 303 changes the phase state of the phase change material, and information is recorded.
  • the plasmon modulator 101 modulates light collected on the optical disc 304. As a result, information is recorded on the optical disc 304.
  • FIG. 22 is a side view of the condenser 303 shown in FIG. 21, and FIG. 23 is a bottom view of the condenser 303 shown in FIG.
  • the condenser 303 includes a lens 315, a substrate 316, and a metal antenna 317 that generates near-field light formed on the substrate 316.
  • the metal antenna 317 is made of a material that excites localized plasmon resonance with respect to modulated light such as gold, silver, aluminum, or chromium.
  • the metal antenna 317 has a triangular plate structure as shown in FIG. 23, for example.
  • the lens 315 collects the modulated light on the metal antenna 317.
  • the metal antenna 317 is irradiated with light, near-field light enhanced by localized plasmon resonance is generated near the apex of the metal antenna 317.
  • the metal antenna 317 records information by locally heating the optical disc 304 with near-field light.
  • the optical pickup according to the third embodiment collects the light modulated according to the first embodiment, the light source that causes light to enter the light modulator, and the light modulated by the light modulator. And a condenser.
  • the optical modulator has conductivity, which is formed on a waveguide on which guided light propagates, a metal layer formed adjacent to the waveguide, and a surface of the metal layer not adjacent to the waveguide.
  • the interface where the conductive oxide layer and the insulating layer are adjacent to each other is formed at a distance shorter than the wavelength in vacuum of the guided light from the surface of the metal layer that is not adjacent to the waveguide.
  • the electron density of the conductive oxide layer near the interface between the conductive oxide and the insulating layer changes, so that A large refractive index change occurs near the interface of the conductive oxide layer.
  • the phase matching condition between the guided light and the SPP changes significantly depending on the presence or absence of the applied voltage, and the difference in attenuation of the guided light due to the presence or absence of the applied voltage due to the coupling with the SPP increases.
  • the degree of modulation can be increased and the modulation can be performed at high speed even if the length of the optical modulator is short. Moreover, since the modulation degree of the modulated light can be increased with a short modulator length, parasitic capacitance due to the metal layer, the conductive oxide layer, and the insulating layer can be suppressed, and a high modulation degree capable of high-speed modulation can be achieved.
  • An optical modulator can be realized. By using this optical modulator to modulate light and record information, the transfer rate of the optical pickup can be increased.
  • the shape of the metal antenna 317 is a triangular flat plate shape, but is not particularly limited to the triangular flat plate shape.
  • the shape of the metal antenna 317 may be a shape that causes general localized plasmon resonance such as a disk shape or a bow tie shape.
  • the condenser 303 collects the light using the near-field light from the metal antenna 317.
  • the lens 315 is used as employed in the conventional optical pickup. Then, the light may be directly condensed on the optical disk 304.
  • FIGS. 1 to 3 are diagrams showing a schematic configuration of the light modulation module 401 according to the fourth embodiment of the present invention.
  • 24 to 26 the same components as those in FIGS. 1 to 3 are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 24 is a top view of the light modulation module 401 according to Embodiment 4 of the present invention.
  • 25 is a cross-sectional view of the light modulation module 401 shown in FIG. 24 taken along the line XXV-XXV.
  • 26 is a cross-sectional view of the light modulation module 401 shown in FIG. 24 taken along the line XXVI-XXVI.
  • an optical modulation module 401 is an optical modulation module using the plasmon modulator 101 of the first embodiment.
  • the plasmon modulator 101 can output modulated light with a high degree of modulation at a high speed, so that the information transfer rate of the light modulation module 401 can be dramatically increased.
  • the light modulation module 401 shown in FIGS. 24 to 26 includes a plasmon modulator 101 and a semiconductor laser 402 as a light source that makes light incident on the plasmon modulator 101.
  • the light modulation module 401 modulates light from the light source (semiconductor laser 402) and transmits information.
  • the plasmon modulator 101 and the semiconductor laser 402 are manufactured on the same substrate 404.
  • the exit end of the waveguide 403 in the semiconductor laser 402 and the entrance end of the waveguide 112 in the plasmon modulator 101 are directly coupled.
  • Such a configuration can be realized by manufacturing the plasmon modulator 101 by sputtering, vapor deposition, or photolithography after removing a part of the semiconductor laser 402 by etching. Since the semiconductor laser 402 and the plasmon modulator 101 are integrated, the light modulation module 401 can be downsized. Further, it is not necessary to align the optical axis, and stable modulated light can be output.
  • the semiconductor laser 402 is composed of, for example, a DFB (Distributed Feedback) laser or a DBR (Distributed Bragg Reflector) laser. These lasers are suitable for integration because they function without reflection of light at the waveguide end face.
  • the laser light emitted from the semiconductor laser 402 is incident on the plasmon modulator 101 as guided light.
  • the modulation circuit 102 applies a voltage to the plasmon modulator 101 according to information to be transmitted, and modulates the guided light.
  • the modulated light output from the plasmon modulator 101 is output to an optical fiber or the like and transmitted.
  • the light modulation module includes the light modulator according to the first embodiment and a light source that causes light to enter the light modulator.
  • the optical modulator has conductivity, which is formed on a waveguide on which guided light propagates, a metal layer formed adjacent to the waveguide, and a surface of the metal layer not adjacent to the waveguide.
  • the interface where the conductive oxide layer and the insulating layer are adjacent is formed at a distance shorter than the wavelength in vacuum of the guided light from the surface of the metal layer that is not adjacent to the waveguide.
  • the electron density of the conductive oxide layer near the interface between the conductive oxide and the insulating layer changes, so that A large refractive index change occurs near the interface of the conductive oxide layer.
  • the phase matching condition between the guided light and the SPP changes significantly depending on the presence or absence of the applied voltage, and the difference in the attenuation of the guided light due to the presence or absence of the applied voltage due to the coupling with the SPP increases.
  • the degree of modulation can be increased and the modulation can be performed at high speed even if the length of the optical modulator is short. Moreover, since the modulation degree of the modulated light can be increased with a short modulator length, parasitic capacitance due to the metal layer, the conductive oxide layer, and the insulating layer can be suppressed, and a high modulation degree capable of high-speed modulation can be achieved.
  • An optical modulator can be realized. By modulating light using this optical modulator and transmitting information, the optical modulation module can be reduced in size, and the transfer rate of the optical modulation module can be increased.
  • the semiconductor laser 402 as the light source and the plasmon modulator 101 are arranged on the same substrate. For this reason, the light modulation module 401 can be reduced in size. Further, since alignment between the semiconductor laser 402 and the plasmon modulator 101 is unnecessary, light from the semiconductor laser 402 can be incident on the plasmon modulator 101 stably with high efficiency.
  • FIG. 27 is a cross-sectional view in the waveguide width direction of the light modulation module 501 in the first modification of the fourth embodiment of the present invention.
  • the light modulation module 501 may be configured such that the waveguide 503 of the optical fiber 502 is directly coupled to the emission end of the waveguide 112 of the plasmon modulator 101.
  • the optical fiber 502 includes a waveguide 503 and a clad 504 that covers the periphery of the waveguide 503.
  • the exit end of the waveguide 112 of the plasmon modulator 101 and the entrance end of the waveguide 503 of the optical fiber 502 are directly coupled.
  • FIG. 28 is a cross-sectional view in the waveguide width direction of the light modulation module 601 in the second modification of the fourth embodiment of the present invention.
  • the light modulation module 601 directly couples the waveguide 604 of the first optical fiber 602 to the incident end of the waveguide 112 of the plasmon modulator 101, and the waveguide 112 of the plasmon modulator 101.
  • a configuration may be adopted in which the waveguide 605 of the second optical fiber 603 is directly coupled to the emission end.
  • Light from a light source provided separately from the light modulation module 601 enters the plasmon modulator 101 using the first optical fiber 602, and the modulated light from the plasmon modulator 101 is emitted to the second optical fiber 603. Is done.
  • the 27 includes the plasmon modulator 101 of the first embodiment, a first optical fiber 602, and a second optical fiber 603.
  • the first optical fiber 602 includes a waveguide 604 and a clad 606 that covers the periphery of the waveguide 604.
  • the second optical fiber 603 includes a waveguide 605 and a clad 607 that covers the periphery of the waveguide 605.
  • the incident end of the waveguide 112 of the plasmon modulator 101 and the emission end of the waveguide 604 of the first optical fiber 602 are directly coupled.
  • the exit end of the waveguide 112 of the plasmon modulator 101 and the entrance end of the waveguide 605 of the second optical fiber 603 are directly coupled.
  • FIG. 29 is a block diagram showing an overall configuration of the optical communication system according to the fifth embodiment of the present invention.
  • the same reference numerals are used for the same components as in the first to fourth embodiments, and the description thereof is omitted.
  • the 29 includes an optical transmitter 702, an optical transmission line 703, and an optical receiver 704.
  • the optical transmitter 702 outputs modulated light corresponding to transmission information.
  • the modulated light output from the optical transmitter 702 is input to the optical receiver 704 via the optical transmission path 703.
  • the optical transmitter 702 includes the optical modulation module 401 of Embodiment 4, a transmission control unit 705, a transmission signal processing unit 706, and a modulation control unit 707.
  • the transmission signal processing unit 706 receives transmission information that is information to be transmitted.
  • the transmission signal processing unit 706 that has received the transmission information notifies the transmission control unit 705 that data transmission is to be performed, generates a modulation signal based on the transmission information, and outputs the generated modulation signal to the modulation control unit 707.
  • the transmission control unit 705 controls the semiconductor laser 402 so that light is emitted from the semiconductor laser 402.
  • the transmission light emitted from the semiconductor laser 402 is guided to the plasmon modulator 101.
  • the modulation control unit 707 controls the modulation circuit 102 of the plasmon modulator 101 based on the received modulation signal.
  • the plasmon modulator 101 modulates the guided light passing through the waveguide 112 according to transmission information and emits the modulated light.
  • the emitted modulated light is incident on the optical transmission path 703.
  • the optical transmission line 703 is made of, for example, an optical fiber, and transmits the modulated light output from the optical transmitter 702 to the optical receiver 704.
  • the optical receiver 704 photoelectrically converts the modulated light transmitted through the optical transmission path 703 to detect an electrical signal, demodulates the detected electrical signal, and generates reception information.
  • the optical receiver 704 outputs the generated reception information.
  • An optical modulator includes a waveguide through which guided light propagates, a metal layer formed adjacent to the waveguide, and a surface side of the metal layer not adjacent to the waveguide. Between the formed conductive oxide layer having conductivity, the insulating layer formed adjacent to the conductive oxide layer, the metal layer, and the conductive oxide layer or the insulating layer A modulation circuit that applies a voltage to the conductive oxide layer, and an interface where the conductive oxide layer and the insulating layer are adjacent to each other is a surface of the metal layer that is not adjacent to the waveguide from a wavelength in vacuum of the guided light. Are formed at a short distance.
  • the interface where the conductive oxide layer and the insulating layer are adjacent to each other is formed at a distance shorter than the wavelength in the vacuum of the guided light from the surface of the metal layer that is not adjacent to the waveguide.
  • the phase matching condition between the guided light and the SPP changes significantly depending on the presence or absence of the applied voltage, and the difference in attenuation of the guided light due to the presence or absence of the applied voltage due to the coupling with the SPP increases. Since the difference in the amount of attenuation of the guided light depending on the presence or absence of the applied voltage is large, the degree of modulation can be increased and the modulation can be performed at high speed even if the length of the optical modulator is short.
  • the conductive oxide layer is formed on the metal layer
  • the insulating layer is formed on the conductive oxide layer
  • the conductive layer formed on the insulating layer functions as an electrode for applying a voltage to the insulating layer, the thickness of the insulating layer can be increased, and the conductive layer and the metal layer The generated parasitic capacitance can be suppressed, and high-speed optical modulation is possible.
  • the insulating layer is formed on the metal layer, and the conductive oxide layer is formed on the insulating layer.
  • the insulating layer is formed on the metal layer and the conductive oxide layer is formed on the insulating layer, there is no need to reduce the thickness of the conductive oxide layer. It can be easily manufactured.
  • the conductive oxide layer functions as an electrode for applying a voltage to the insulating layer.
  • the conductive oxide layer functions as an electrode for applying a voltage to the insulating layer, a conductive layer is not necessary, and an optical modulator can be easily manufactured.
  • the wavelength of the guided light in vacuum is preferably 500 nm or more and 800 nm or less.
  • the amount of change in the refractive index with respect to the change in electron density of the conductive oxide layer is increased, and a high degree of modulation can be obtained.
  • the guided light is linearly polarized light, and a main polarization direction of the guided light is a direction perpendicular to the metal layer.
  • the guided light is linearly polarized light, and the main polarization direction of the guided light is a direction perpendicular to the metal layer, the guided light and the SPP can be efficiently combined, and high modulation is achieved. You can get a degree.
  • the waveguide further includes a slab waveguide, and further includes a tapered waveguide connected to the slab waveguide and gradually narrowing in a propagation direction of the guided light. Is preferred.
  • the waveguide includes the slab waveguide, light can be easily incident on the waveguide.
  • the area of the surface of the metal layer in contact with the slab waveguide is wide and dispersed in a wide range to absorb the guided light, the influence of heat generation of the metal layer can be suppressed.
  • the output light modulated by the optical modulator can be efficiently coupled to an optical fiber or the like by the tapered waveguide.
  • the width of the metal layer is preferably larger than the width of the waveguide.
  • the width of the metal layer is larger than the width of the waveguide, it is possible to efficiently dissipate heat generated by the energy of the guided light absorbed in the metal layer by coupling with the SPP.
  • the length of the metal layer, the conductive oxide layer, and the insulating layer in the propagation direction of the guided light is shorter than the length of the waveguide in the propagation direction of the guided light. Is preferred.
  • the length of the guided light in the propagation direction of the metal layer, the conductive oxide layer, and the insulating layer is shorter than the length of the guided light in the propagation direction of the waveguide.
  • An optical pickup includes a light modulator according to any one of the above, a light source that causes light to enter the light modulator, and a light collecting light that is modulated by the light modulator. And an optical device. According to this configuration, the above optical modulator can be applied to an optical pickup.
  • An optical modulation module includes any of the optical modulators described above and a light source that causes light to enter the optical modulator. According to this configuration, the above optical modulator can be applied to the optical modulation module.
  • the optical modulator according to the present invention can increase the degree of modulation even when the length of the optical modulator is short, can be modulated at high speed, and is useful for an optical modulator that modulates light, It is useful as an optical modulator for optical communication or an optical modulation module for optical communication.
  • the optical modulator according to the present invention can be applied to an optical pickup that requires a high transfer rate.
  • Such an optical pickup can be applied to many uses such as an optical disc player, an optical disc recorder, a computer, and a data server.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 光変調器(101)は、導波光が伝搬する導波路(112)と、導波路(112)に隣接して形成された金属層(113)と、金属層(113)の導波路(112)に隣接していない面側に形成された、導電性を有する導電性酸化物層(114)と、導電性酸化物層(114)に隣接して形成された絶縁層(115)と、金属層(113)と、導電性酸化物層(114)又は絶縁層(115)との間に電圧を印加する変調回路(102)とを備え、導電性酸化物層(114)と絶縁層(115)とが隣接する界面(11)は、金属層(113)の導波路(112)に隣接していない面から導波光の真空中の波長よりも短い距離を隔てて形成される。

Description

光変調器、光ピックアップ及び光変調モジュール
 本発明は、光を変調する光変調器、当該光変調器を備える光ピックアップ、及び当該光変調器を備える光変調モジュールに関するものである。
 光記録又は光通信に用いる光変調方法としては、駆動電流を変調して光源を直接変調する直接変調方式と、一定量で発光する光源からの光を別に設けた光変調器を用いて変調する間接変調方式とがある。
 直接変調方式は、光源の閾値電流と静電容量との存在により変調の高速化に限界がある。そのため、光ピックアップ又は光通信の転送レートの高速化に伴い、変調を高速化することができる間接変調方式が必要とされている。
 高速変調が期待される間接変調方式の光変調器としては、LiNbO又はKTPなどの電気光学結晶を利用して位相変調した光の干渉により強度変調を行う位相変調型と、表面プラズモンポラリトン(以下、SPPと略記する)と導波光との結合を利用して透過光量を変調するプラズモン結合型とがある。
 位相変調型は、現在光通信用光変調器として広く普及している。しかしながら、電気光学効果による屈折率変化量は小さく、十分な位相変調を得るためには数mmの光路に渡って電界を印加する必要がある。このため、位相変調型の変調器の小型化は難しい。また、電界印加用の電極が大きいために、電極の寄生容量が大きく高速変調の妨げとなるという課題がある。
 プラズモン結合型としては、金属と電気光学ポリマーとの界面に局在するSPPと、導波路を伝搬する導波光との結合を利用して透過光を変調する光変調器がある(例えば、特許文献1参照)。この光変調器では、電気光学ポリマーに電界を印加することによりSPPの励起条件を操作して、導波光とSPPとの結合の強弱により透過光を変調する。
 図30は、特許文献1に記載された従来のプラズモン変調器の断面図である。
 プラズモン変調器801は、導波路部と、導波路部に隣接して配置されたプラズモン励起部とにより構成されている。導波路部は、2つの被覆材料803に挟まれたウェーブガイド802により構成されている。また、プラズモン励起部は、2つの金属電極805a及び805bに挟まれた光電材料806により構成されている。特許文献1では、光電材料806として電気光学ポリマーが紹介されている。導波路部とプラズモン励起部とは、バッファ層804を介して隣接している。
 プラズモン変調器801内には、ウェーブガイド802を伝搬する導波光と、金属電極805aと光電材料806との界面に局在するSPPとが存在する。導波光のエネルギは、導波光とSPPとの位相整合条件が満たされたときにSPPと結合し、吸収される。SPPの波数は界面周辺の屈折率に依存する。このため、プラズモン変調器801は、光電材料806に電界を印加して電気光学効果により光電材料806の屈折率を変化させることで、SPPの波数を制御して、SPPと導波光との結合度を制御することができる。プラズモン変調器801は、SPPとの結合による導波光の減衰量を制御することで、プラズモン変調器801を透過した出力光の強度変調を行うことができる。
 また、特許文献2では、金属電極に2次元周期構造を形成することが提案されている。これにより、特許文献1の構成では屈折率が高くて利用することのできなかった電気光学効果の顕著なLiNbO又はKTPなどの電気光学結晶を用いることができる。
 しかしながら、電気光学ポリマーの電気光学効果による屈折率変化量は、30V/umの電界印加時において0.001程度であり、非常に小さい。このため、導波光とSPPとの印加電界の有無による位相整合条件の変化が小さく、SPPとの結合に起因する導波光の減衰量の差が小さい。従来、印加電界の有無による、導波光の減衰量の差が小さいため、変調光の変調度が低いという課題があった。また、変調器長を長くすることで変調度を上げることも可能ではあるが、この場合、変調器の挿入ロスが大きくなるという問題がある。
 また、特許文献2で提案されているようなLiNbO又はKTPが用いられる構成であっても屈折率変化は小さい。例えば、LiNbOが用いられる場合、電気光学効果による屈折率変化は、LiNbO結晶の絶縁破壊電界である10V/umの電界印加時において0.0016程度である。このため、特許文献2の変調器では、導波光とSPPとの位相整合条件の変化が小さく、導波光とSPPとの結合度が変わらないので、高変調度を実現することは難しいという課題を有している。
特開平5-313108号公報 特開2008-112151号公報
 本発明は、上記の問題を解決するためになされたもので、光変調器の長さが短くても、変調度を高くすることができるとともに、高速に変調することができる光変調器、光ピックアップ及び光変調モジュールを提供することを目的とするものである。
 本発明の一局面に係る光変調器は、導波光が伝搬する導波路と、前記導波路に隣接して形成された金属層と、前記金属層の前記導波路に隣接していない面側に形成された、導電性を有する導電性酸化物層と、前記導電性酸化物層に隣接して形成された絶縁層と、前記金属層と、前記導電性酸化物層又は前記絶縁層との間に電圧を印加する変調回路とを備え、前記導電性酸化物層と前記絶縁層とが隣接する界面は、前記金属層の導波路に隣接していない面から前記導波光の真空中の波長よりも短い距離を隔てて形成される。
 この構成によれば、導電性酸化物層と絶縁層とが隣接する界面は、金属層の導波路に隣接していない面から導波光の真空中の波長よりも短い距離を隔てて形成される。
 本発明によれば、金属層と導電性酸化物層と絶縁層とに電圧が印加されると、導電性酸化物層と絶縁層との界面付近の導電性酸化物層の電子密度が変化して、導電性酸化物層の界面付近に大きな屈折率変化が生じる。このため、印加電圧の有無により導波光とSPPとの位相整合条件が顕著に変化し、SPPとの結合に起因する、印加電圧の有無による導波光の減衰量の差が大きくなる。印加電圧の有無による導波光の減衰量の差が大きいため、光変調器の長さが短くても、変調度を高くすることができるとともに、高速に変調することができる。
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の実施の形態1における光変調器の上面図である。 図1に示す光変調器のII-II線断面図である。 本発明の実施の形態1における光変調器の正面図である。 変調回路によって金属層と導電層との間に電圧が印加されていない時のプラズモン変調器の断面と屈折率の分布とを示す図である。 変調回路によって金属層と導電層との間に電圧が印加されている時のプラズモン変調器の断面と屈折率の分布とを示す図である。 電子密度変化層の有無による多層膜の反射率変化を計算するための反射率計算モデルを示す図である。 真空中の波長が800nmである光が導波路側から入射角度θで金属層に入射した場合の反射率の計算結果を示す図である。 本発明の実施の形態1の第1の変形例におけるプラズモン変調器の導波路幅方向の断面図である。 本発明の実施の形態1の第2の変形例におけるプラズモン変調器の導波路幅方向の断面図である。 本発明の実施の形態1の第3の変形例におけるプラズモン変調器の正面図である。 図10に示すプラズモン変調器のXI-XI線断面図である。 本発明の実施の形態1の第4の変形例におけるプラズモン変調器の導波路幅方向の断面図である。 図12に示すプラズモン変調器のXIII-XIII線断面図である。 本発明の実施の形態1の第5の変形例におけるプラズモン変調器の導波光伝搬方向の断面図である。 本発明の実施の形態1の第6の変形例におけるプラズモン変調器の導波光伝搬方向の断面図である。 本発明の実施の形態2における光変調モジュールの上面図である。 図16に示す光変調モジュールのXVII-XVII線断面図である。 図16に示す光変調モジュールのXVIII-XVIII線断面図である。 変調回路によって金属層と導電性酸化物層との間に電圧が印加されていない時のスラブ型プラズモン変調器の断面と屈折率の分布とを示す図である。 変調回路によって金属層と導電性酸化物層との間に電圧が印加されている時のスラブ型プラズモン変調器の断面と屈折率の分布とを示す図である。 本発明の実施の形態3における光ピックアップの概略構成を示す図である。 図21に示す集光器の側面図である。 図21に示す集光器の底面図である。 本発明の実施の形態4における光変調モジュールの上面図である。 図24に示す光変調モジュールのXXV-XXV線断面図である。 図24に示す光変調モジュールのXXVI-XXVI線断面図である。 本発明の実施の形態4の第1の変形例における光変調モジュールの導波路幅方向の断面図である。 本発明の実施の形態4の第2の変形例における光変調モジュールの導波路幅方向の断面図である。 本発明の実施の形態5における光通信システムの全体構成を示すブロック図である。 従来のプラズモン変調器の断面図である。
 以下本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。
 (実施の形態1)
 図1~図3は、本発明の実施の形態1におけるプラズモン変調器(光変調器)101の概略構成を示す図である。図1は、本発明の実施の形態1におけるプラズモン変調器101の上面図である。図2は、図1に示すプラズモン変調器101のII-II線断面図である。図3は、本発明の実施の形態1におけるプラズモン変調器101の正面図である。
 図1~図3において、プラズモン変調器101は、クラッド111上に形成された導波光が伝搬する導波路112と、導波路112に隣接して形成された金属層113と、金属層113上に形成された導電性を有する導電性酸化物層114と、導電性酸化物層114上に形成された絶縁層115と、絶縁層115上に形成された導電層116とを備える。なお、図1~図3において、x方向は、導波路幅方向を示し、y方向は、導波路厚さ方向を示し、z方向は、導波光伝搬方向を示す。また、y方向は、各層が積層される方向であり、x方向は、z方向(導波光伝搬方向)及びy方向(各層が積層される方向)に垂直な方向である。また、他の図におけるx方向、y方向及びz方向についても、上記と同様である。
 導電性酸化物層114の厚さは、導波光の真空中の波長よりも薄い。導電性酸化物層114と絶縁層115との界面11は、金属層113の導波路112に隣接していない面からに導波光の真空中の波長よりも短い距離を隔てて形成される。変調回路102は、金属層113と導電層116との間に電圧を印加して出力光を変調する。
 なお、導電性酸化物層114は、金属層113の導波路に隣接していない面側に形成される。絶縁層115は、導電性酸化物層114に隣接して形成される。導電層116は、絶縁層115に電圧を印加するための電極として機能する。変調回路102は、金属層113と、導電性酸化物層114又は絶縁層115との間に電圧を印加する。
 金属層113と導電性酸化物層114との界面にはSPPが存在できる。導波光のエネルギは、導波光とSPPとの位相整合条件が満たされたときにSPPと結合し、吸収される。SPPの波数は界面周辺の屈折率に依存する。変調回路102は、金属層113と導電層116との間に電圧を印加して導電性酸化物層114の屈折率を変化させる。これにより、導波光とSPPとの位相整合条件が変化し、光が変調される。導電性酸化物層114の屈折率変化のメカニズムについては後で説明する。
 クラッド111は、導波路112よりも屈折率の低い物質で構成され、例えばガラス又は樹脂で構成される。導波路112は、2次元的に光が閉じ込められるチャネル導波路である。導波路112の厚さ及び幅は、導波路112がシングルモードとなるように設計されることが好ましい。これにより、導波路112に励起される導波モードの実効屈折率が一意に決定され、効率よく導波光をSPPと結合させることができる。導波路112の材料は、例えばガラスに比べて屈折率の高いSiNなどである。入射光の真空中波長は、500nm以上800nm以下の可視光域であり、導波路厚さ方向の直線偏光を有する。導波路112を伝搬する導波光は直線偏光である。導波路112を伝搬する導波光の主な偏光方向は、金属層113に対して垂直な方向である。なお、導波光の主な偏光方向とは、導波路112を通過する例えば50%以上の導波光の偏光方向である。
 入射光により、導波路112において、主な偏光方向が導波路厚さ方向であるTMモードの導波光が励振される。SPPと結合可能な導波光は、金属層113の表面に対して垂直な成分の偏光を有するTMモードの導波光のみである。そのため、導波光をTMモードとすることで高い変調度を得ることができる。
 金属層113の材料は、金又は銀などの表面プラズモン共鳴を励起できる金属であればよい。また、図3に示すように、金属層113の幅Wは、導波路112の幅Wよりも大きい(W>W)。このような構成により、SPPと結合した後に熱として金属層113に吸収される導波光のエネルギを効率よく放熱することができる。
 導電性酸化物層114は、例えばITO又はIZOにより構成される。また、導電性酸化物層114の厚さは、導波光の真空中の波長以下である。さらに、導電性酸化物層114の厚さは、例えば5nm以上であることが好ましく、例えば10nm以上であることがより好ましい。絶縁層115は、導波路112の屈折率よりも屈折率の低い例えばSiOなどの絶縁体により構成される。導電層116の材料は、導電性を有する物質であればよく、金属であっても導電性酸化物であってもよい。
 このようなプラズモン変調器101の多層構造は、スパッタ法、蒸着法又はフォトリソグラフィ技術を用いて作製される。
 ここで、変調回路102により、金属層113と導電層116との間に電圧が印加されることによって生じる導電性酸化物層114における屈折率の変化について図4及び図5を用いて説明する。図4は、変調回路102によって金属層113と導電層116との間に電圧が印加されていない時のプラズモン変調器101の断面と屈折率nの分布とを示す図であり、図5は、変調回路102によって金属層113と導電層116との間に電圧が印加されている時のプラズモン変調器101の断面と屈折率nの分布とを示す図である。
 図5において、金属層113と導電層116との間に電圧が印加されると、導電性酸化物層114内の導電性酸化物層114と絶縁層115との界面11近傍の領域において、電子密度が増大又は減少する電子密度変化層114aが生成される。
 非特許文献(Eyal Feigenbaum、Kenneth Diest及びHarry A.Atwater、“Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies”、Nano Letters、2010年10月、2111-2116)によると、電子密度が1019cm-3以上1021cm-3以下である導電性酸化膜は、波長500nm以上800nm以下の可視光域において電子密度変化による屈折率変化が大きく、かつ良好な透過性を示す。
 上記の非特許文献では、金属電極、導電性酸化物層、絶縁層及び金属電極が積層され、導電性酸化物としてITOを用いた場合の屈折率変化が報告されている。また、上記の非特許文献では、絶縁層に25V/umの電界が印加されることによって、導電性酸化物層と絶縁層との界面から5nm程度のごく狭い範囲において、ITOの屈折率が1.95から0.55まで変化したと報告されている。
 一般に、SPPは、金属表面からの距離が光の波長以下となる領域に局在しているため、SPPの位相整合条件は金属表面近傍の屈折率に大きく依存する。このため、導電性酸化物層114と絶縁層115との界面11が、金属層113の表面からの距離が導波光の真空中の波長以下となる領域に形成されることで、電子密度変化層114aを金属層113近傍に形成でき、電子密度変化層114aの屈折率変化によるSPPの位相整合条件の変化量を大きくすることができる。電子密度変化層114aの影響を大きくするために、導電性酸化物層114の厚さは100nm以下であることが望ましい。
 図6及び図7を用いて、電子密度変化層114aの有無によるSPPと導波光との位相整合条件の変化について説明する。図6は、電子密度変化層114aの有無による多層膜の反射率変化を計算するための反射率計算モデルを示す図である。反射率計算モデルは、SiNで構成された導波路112上に、Agで構成された金属層113と、ITOで構成された導電性酸化物層114と、導電性酸化物層114内に生成された電子密度変化層114aと、SiOで構成された絶縁層115とが順に積層された多層構造によりモデル化されている。
 導波路112(SiN)の厚さは半無限とし、導波路112の屈折率は2.01とした。金属層113(Ag)の厚さは40nmとし、金属層113の屈折率は0.169+4.878iとした。導電性酸化物層114(ITO)の厚さは20nmとし、電圧印加時に生成される電子密度変化層114aの厚さは5nmとした。導電性酸化物層114(ITO)の屈折率は1.95とし、電子密度変化層114a(ITO)の屈折率は0.8とした。絶縁層115(SiO)の厚さは半無限とし、絶縁層115の屈折率は1.45とした。
 図7は、真空中の波長が800nmである光が導波路112側から入射角度θで金属層113に入射した場合の反射率の計算結果を示す図である。図7において、反射率が最小となる角度において、入射光とSPPとの位相整合条件が満たされている。
 図7中の実線は、電圧が印加されていない場合の反射率の入射角度依存性を示している。電圧が印加されていない場合は、入射角度θ=52.7度において反射率が最小となり、位相整合条件が満たされる。入射角度θ=52.7度に対応する導波路112の実効屈折率は1.60である。一方、図7中の破線は、電圧が印加されている場合の反射率の入射角度依存性を示している。電圧が印加されている場合は、入射角度θ=48.7度において反射率が最小となり、位相整合条件が満たされる。入射角度θ=48.7度に対応する導波路112の実効屈折率は1.51である。
 これらの結果から、印加電圧の有無により、位相整合条件を満たす導波路112の実効屈折率が1.60から1.51へと大きく変化していることがわかる。
 また、多層膜の計算から求められたSPPのエネルギが1/eに減衰する距離は、電圧が印加されていない場合で5.1umであり、電圧が印加されている場合で8.5umであった。このため、導波光のエネルギはSPPに吸収された後、急激に減衰し、SPPのエネルギが再度導波光に結合することはない。SPPが減衰する距離が短いので、変調器長を短くすることができる。
 図6の反射率計算モデルにおいて、導波路112の実効屈折率が1.51となるように導波路112を設計した場合を例に、金属層113と導電層116との間に電圧を印加することによって出力光を変調するメカニズムを説明する。
 導波路112の実効屈折率が1.51となるように導波路112が設計された場合、電圧が印加されると導電性酸化物層114内に電子密度変化層114aが生成され、導波光とSPPとの位相整合条件が満たされる。導波光は、金属層113と導電性酸化物層114との界面を伝搬するSPPに結合し、導波光のエネルギは、SPPに吸収される。SPPは、金属表面に局在した波であるため、エネルギは金属によって大きく吸収される。このため、導波光からSPPに移ったエネルギはすぐに失われてしまい、SPPが再び導波光に結合することはない。このように、電圧が印加された時、導波光のエネルギは金属層113に吸収されるので、導波路112から出力される光の量は小さくなる。
 一方、電圧が印加されない場合、電子密度変化層114aは生成されない。この場合、導波光とSPPとの位相整合条件が満たされることがなく、導波光とSPPとの結合は起こらない。このため、電圧が印加されていない時、導波光の減衰は少ないので、導波路112から出力される光の量は大きくなる。
 また、導波路112の実効屈折率が1.60となるように導波路112が設計された場合、電圧が印加された時に導波路112から出力される光の量は大きくなる。
 以上のように、印加電圧の有無により、導波光とSPPとの結合の有無を制御することで、出力光を変調することができる。
 以上に説明したように、本実施の形態1のプラズモン変調器101は、金属層113上に形成された導電性を有する導電性酸化物層114と、導電性酸化物層114上に形成された絶縁層115とを備える。また、導電性酸化物層114と絶縁層115とが隣接する界面11は、金属層113の導波路112に隣接していない面から導波光の真空中の波長よりも短い距離を隔てて形成される。これにより、導電性酸化物層114内の絶縁層115との界面11近傍に顕著な屈折率変化が生じるので、光変調器の長さが短くても、変調度を高くすることができるとともに、高速に変調することができる。
 また、プラズモン変調器101は、金属層113上に形成された導電性を有する導電性酸化物層114と、導電性酸化物層114上に形成された絶縁層115とを備えることで、絶縁層115の厚さを厚くすることができ、導電層116と金属層113とにより発生する寄生容量を抑制することができ、高速な光変調が可能となる。
 また、実施の形態1のプラズモン変調器101において、導波路112を伝搬する導波光の真空中における波長は、500nm以上800nm以下である。このため、導電性酸化物層114の電子密度変化に対する屈折率変化量が大きくなり、高い変調度を得ることができる。
 また、実施の形態1のプラズモン変調器101において、導波路112を伝搬する導波光は、直線偏光であり、導波光の主な偏光方向は、金属層113に対して垂直な方向である。このため、導波光とSPPとを効率よく結合させることができ、高い変調度を得ることができる。
 また、実施の形態1のプラズモン変調器101において、金属層113の幅Wは、導波路112の幅Wよりも大きい。このため、SPPとの結合によって金属層113に吸収された導波光のエネルギによって発生する熱を効率よく放熱することができる。
 なお、実施の形態1では、導波路112を伝搬する導波光の真空中における波長を500nm以上800nm以下としているが、導電性酸化物層114の電子密度を、利用する波長に対して屈折率変化が起こるような電子密度に調節すれば、導波光の真空中における波長は例えば近赤外波長であってもよい。導波光の真空中における波長は、特に波長500nm以上800nm以下の範囲に限定されない。
 図8は、本発明の実施の形態1の第1の変形例におけるプラズモン変調器121の導波路幅方向の断面図である。図8に示すように、導電層116上にさらにクラッド111が積層されてもよい。図8に示すプラズモン変調器121は、導電層116上に形成されたクラッド111をさらに備える。導電層116上にクラッド111が積層されることで導波路112の対称性が良くなり、導波光とSPPとの結合効率を向上させることができる。
 図9は、本発明の実施の形態1の第2の変形例におけるプラズモン変調器131の導波路幅方向の断面図である。図9に示すように、導波路112上の一部に、金属層113、導電性酸化物層114、絶縁層115及び導電層116を配置しても良い。すなわち、金属層113、導電性酸化物層114、絶縁層115及び導電層116の導波光の伝搬方向の長さは、導波路112の導波光の伝搬方向の長さよりも短くしてもよい。また、金属層113、導電性酸化物層114及び絶縁層115の導波光の伝搬方向の長さは、導波路112の導波光の伝搬方向の長さよりも短くしてもよい。金属層113、導電性酸化物層114、絶縁層115及び導電層116の導波光の伝搬方向の長さが導波路112の導波光の伝搬方向の長さよりも短いため、プラズモン変調器131の取り扱いが容易となる。
 図10は、本発明の実施の形態1の第3の変形例におけるプラズモン変調器141の正面であり、図11は、図10に示すプラズモン変調器141のXI-XI線断面図である。図10及び図11に示すように、導波路112は、リッジ導波路であってもよい。もしくは、導波路112は、リブ導波路であってもよい。
 また、図10及び図11に示すように、金属層113、導電性酸化物層114、絶縁層115及び導電層116は、導波路幅方向に対してパターニングされていなくても良い。図10及び図11において、プラズモン変調器141では、クラッド111上に形成された導波路112上に、金属層113、導電性酸化物層114、絶縁層115及び導電層116が順次成膜される。このため、導波路幅方向に対するパターニングが不要であり、プラズモン変調器141の作製が容易になる。
 また、プラズモン変調器は光ファイバに形成されても良い。図12は、本発明の実施の形態1の第4の変形例における光ファイバ152に形成されたプラズモン変調器151の導波路幅方向の断面図であり、図13は、図12に示すプラズモン変調器151のXIII-XIII線断面図である。
 プラズモン変調器151は、作製プロセスにおいて結晶成長工程を必要とせず、スパッタ又は蒸着による成膜で作製することができる。このため、プラズモン変調器151は、光ファイバ152に形成することができる。図12及び図13において、光ファイバ152のクラッド111の一部が削られて、プラズモン変調器151が形成されている。光ファイバ152内にプラズモン変調器151が形成されることで、導波光を外部に設けられた光変調器に結合する必要がない。このため、導波光の結合損失を抑えることができる。また、光ファイバ152が光変調器を兼ねることで、光変調器の作製コストを抑えることができる。
 なお、光ファイバにプラズモン変調器を形成する構成の更に別の例として、図14及び図15のような構成としてもよい。
 図14は、本発明の実施の形態1の第5の変形例における光ファイバ162に形成されたプラズモン変調器161の導波光伝搬方向の断面図である。
 図14に示すように、光ファイバ162内のプラズモン変調器161の断面形状は、半円形状であってもよい。すなわち、円形状の断面を有する導波路112上に、半円形状の断面を有する金属層113、導電性酸化物層114、絶縁層115及び導電層116が積層されてもよい。また、導波路112、金属層113、導電性酸化物層114、絶縁層115及び導電層116の周囲を覆うようにクラッド111が形成される。
 図15は、本発明の実施の形態1の第6の変形例における光ファイバ172に形成されたプラズモン変調器171の導波光伝搬方向の断面図である。
 図15に示すように、光ファイバ172内のプラズモン変調器171の断面形状は、円形状であってもよい。すなわち、円形状の断面を有する導波路112の周りに、円形状の断面を有する金属層113、導電性酸化物層114、絶縁層115及び導電層116が積層されてもよい。また、導電層116の周囲を覆うようにクラッド111が形成される。
 (実施の形態2)
 図16~図18は、本発明の実施の形態2における光変調モジュール201の概略構成を示す図である。図16~図18において、図1~図3と同じ構成要素については同じ符号を用い、説明を省略する。図16は、本発明の実施の形態2における光変調モジュール201の上面図である。図17は、図16に示す光変調モジュール201のXVII-XVII線断面図である。図18は、図16に示す光変調モジュール201のXVIII-XVIII線断面図である。
 図16~図18において、光変調モジュール201は、光源200と、幅が広い導波路を有するスラブ型プラズモン変調器(光変調器)202と、スラブ型プラズモン変調器202と同一基板上に形成されたスポットサイズコンバータ203とを備える。光源200は、スラブ型プラズモン変調器202に光を入射させる。スポットサイズコンバータ203は、スラブ型プラズモン変調器202に接続され、導波光の伝搬方向に向かって幅が徐々に細くなるテーパ導波路216を備える。
 スラブ型プラズモン変調器202は、クラッド211上に形成された導波光が伝搬するスラブ導波路212と、スラブ導波路212に隣接して形成された金属層213と、金属層213上に形成された絶縁層214と、絶縁層214上に形成された導電性を有する導電性酸化物層215とを備える。スラブ型プラズモン変調器202において、導電性酸化物層215は、絶縁層214に電圧を印加するための電極として機能する。すなわち、導電性酸化物層215は、実施の形態1の導電層116の機能を兼ねている。
 絶縁層214の厚さは、導波光の真空中の波長よりも薄い。絶縁層214と導電性酸化物層215との界面21は、金属層213のスラブ導波路212に隣接していない面から導波光の真空中の波長よりも短い距離を隔てて形成される。変調回路102は、金属層213と導電性酸化物層215との間に電圧を印加して出力光を変調する。
 金属層213と絶縁層214との界面にはSPPが存在できる。導波光のエネルギは、導波光とSPPとの位相整合条件が満たされたときにSPPと結合し、吸収される。SPPの波数は界面周辺の屈折率に依存する。変調回路102は、金属層213と導電性酸化物層215との間に電圧を印加して導電性酸化物層215の屈折率を変化させる。これにより、導波光とSPPとの位相整合条件が変化し、光が変調される。導電性酸化物層215の屈折率変化のメカニズムについては後で説明する。
 導電性酸化物層215上にはさらにクラッド211が積層されており、導波光の対称性が良くなる。このため、入射光と導波光との結合効率、及び、スラブ型プラズモン変調器202とスポットサイズコンバータ203との結合効率を高めることができる。
 クラッド211は、スラブ導波路212よりも屈折率の低い物質で構成され、例えばガラス又は樹脂で構成される。スラブ導波路212は、1次元的に光が閉じ込められるスラブ導波路である。スラブ導波路212の厚さは、スラブ導波路212がシングルモードとなるように設計されることが好ましい。これにより、スラブ導波路212に励起される導波モードの実効屈折率が一意に決定され、効率よく導波光をSPPと結合させることができる。スラブ導波路212の材料は、例えばガラスに比べて屈折率の高いSiNなどである。
 光は、シリンドリカルレンズによって導波路厚さ方向にのみ集光されてスラブ導波路212に入射される。このため、スラブ型プラズモン変調器202は、導波路幅方向に対する入射光のアライメント精度が必要ないという利点を有する。スラブ導波路212の幅は、入射光の幅方向のスポットサイズ以上であればよい。入射光は、導波路厚さ方向の直線偏光を有する。
 入射光により、スラブ導波路212において、主な偏光方向が導波路厚さ方向であるTMモードの導波光が励振される。SPPと結合可能な導波光は、TMモードの導波光のみである。そのため、導波光をTMモードとすることで高い変調度を得ることができる。
 金属層213の材料は、金又は銀など表面プラズモン共鳴を励起できる金属であればよい。絶縁層214は、スラブ導波路212の屈折率よりも屈折率の低い例えばSiOなどの絶縁体により構成される。また、絶縁層214の厚さは、導波光の真空中の波長以下である。さらに、絶縁層214の厚さは、例えば5nm以上であることが好ましく、例えば10nm以上であることがより好ましい。導電性酸化物層215は、例えばITO又はIZOにより構成される。
 スポットサイズコンバータ203は、クラッド211に挟まれたテーパ導波路216を備える。テーパ導波路216は、スラブ導波路212と滑らかに接続されており、導波光の伝搬方向に向かって徐々に幅が細くなる形状を有している。これにより、スラブ導波路212を出射した光の導波路幅方向のスポットサイズを徐々に小さくすることができ、スラブ型プラズモン変調器202からの出力光を効率よく光ファイバなどに結合させることができる。
 スラブ型プラズモン変調器202及びスポットサイズコンバータ203の多層構造は、スパッタ法、蒸着法又はフォトリソグラフィ技術を用いて作製される。
 ここで、変調回路102により、金属層213と導電性酸化物層215との間に電圧が印加されることによって生じる導電性酸化物層215における屈折率の変化について図19及び図20を用いて説明する。図19は、変調回路102によって金属層213と導電性酸化物層215との間に電圧が印加されていない時のスラブ型プラズモン変調器202の断面と屈折率nの分布とを示す図であり、図20は、変調回路102によって金属層213と導電性酸化物層215との間に電圧が印加されている時のスラブ型プラズモン変調器202の断面と屈折率nの分布とを示す図である。
 図20において、金属層213と導電性酸化物層215との間に電圧が印加されると、導電性酸化物層215内の絶縁層214と導電性酸化物層215との界面近傍の領域において、電子密度が増大又は減少する電子密度変化層215aが生成される。実施の形態1で前述したのと同様の原理により、電子密度変化により、電子密度変化層215aの屈折率は大きく変化する。
 実施の形態1で前述したように、SPPの位相整合条件は金属表面近傍の屈折率に大きく依存する。このため、導電性酸化物層215と絶縁層214との界面21が、金属層213の表面からの距離が導波光の真空中の波長以下となる領域に形成されることで、電子密度変化層215aを金属層213近傍に形成でき、電子密度変化層215aの屈折率変化によるSPPの位相整合条件の変化量を大きくすることができる。電子密度変化層215aの影響を大きくするために、絶縁層214の厚さは100nm以下であることが望ましい。
 以下、電圧印加時に導波光とSPPとが位相整合条件を満たすようにスラブ導波路212を設計した場合を例に、金属層213と導電性酸化物層215との間に電圧を印加することによって出力光を変調するメカニズムを説明する。
 金属層213と導電性酸化物層215との間に電圧が印加されると、導電性酸化物層215内に屈折率が変化した電子密度変化層215aが生成される。このとき、導波光とSPPとの位相整合条件が満たされる。導波光は、金属層213と絶縁層214との界面を伝搬するSPPに結合し、導波光のエネルギは、SPPに吸収される。SPPは、金属表面に局在した波であるため、エネルギは金属によって大きく吸収される。このため、導波光からSPPに移ったエネルギはすぐに失われてしまい、SPPが再び導波光に結合することはない。このように、電圧が印加された時、導波光のエネルギは金属層213に吸収されるので、スラブ導波路212から出力される光の量は小さくなる。
 一方、電圧が印加されない場合、電子密度変化層215aは生成されない。この場合、導波光とSPPとの位相整合条件が満たされることがなく、導波光とSPPとの結合は起こらない。このため、電圧が印加されていない時、導波光の減衰は少ないので、スラブ導波路212から出力される光の量は大きくなる。
 また、電圧が印加されない時に導波光とSPPとが位相整合条件を満たすようにスラブ導波路212が設計された場合、電圧が印加された時にスラブ導波路212から出力される光の量は大きくなる。
 以上のように、印加電圧の有無により、導波光とSPPとの結合の有無を制御することで、出力光を変調することができる。
 以上に説明したように、本実施の形態2のスラブ型プラズモン変調器202は、金属層213上に形成された絶縁層214と、絶縁層214上に形成された導電性を有する導電性酸化物層215とを備える。また、絶縁層214と導電性酸化物層215とが隣接する界面21は、金属層213の導波路112に隣接していない面から導波光の真空中の波長よりも短い距離を隔てて形成される。これにより、導電性酸化物層215内の絶縁層214との界面21近傍に顕著な屈折率変化が生じるので、光変調器の長さが短くても、変調度を高くすることができるとともに、高速に変調することができる。
 また、スラブ型プラズモン変調器202は、金属層213上に形成された絶縁層214と、絶縁層214上に形成された導電性を有する導電性酸化物層215とを備えることで、導電性酸化物層215の厚さを薄くする必要がなく、スラブ型プラズモン変調器202を容易に作製することができる。
 また、導電性酸化物層215が絶縁層214に電圧を印加するための電極としての機能を兼ねるので、導電層が不要となり、スラブ型プラズモン変調器202を容易に作製することができる。
 また、実施の形態2のスラブ型プラズモン変調器202において、スラブ導波路212を伝搬する導波光は、直線偏光であり、導波光の主な偏光方向は、金属層213に対して垂直な方向である。このため、導波光とSPPとを効率よく結合させることができ、高い変調度を得ることができる。
 また、実施の形態2のスラブ型プラズモン変調器202は、導波路として幅の広いスラブ導波路212を備える。このため、導波路に容易に光を入射させることができる。また、金属層213のスラブ導波路212に接する面の面積が広く、広範囲に分散して導波光の吸収が起こるため、金属層213の発熱による影響を抑制することができる。
 また、実施の形態2のスラブ型プラズモン変調器202は、スラブ導波路212に接続され、導波光の伝搬方向に向かって幅が徐々に細くなるテーパ導波路216を備える。このため、スラブ型プラズモン変調器202で変調された出力光を効率よく光ファイバなどに結合させることができる。
 以上、実施の形態1及び実施の形態2において説明した光変調器の主な構成を下記に示す。
 実施の形態1及び実施の形態2において説明した光変調器は、導波光が伝搬する導波路と、導波路に隣接して形成された金属層と、金属層の導波路に隣接していない面側に形成された、導電性を有する導電性酸化物層と、導電性酸化物層に隣接して形成された絶縁層と、金属層と、導電性酸化物層又は絶縁層との間に電圧を印加する変調回路とを備える。導電性酸化物層と絶縁層とが隣接する界面は、金属層の導波路に隣接していない面から導波光の真空中の波長よりも短い距離を隔てて形成される。
 以上のように、光変調器において、導電性酸化物層と絶縁層とが隣接する界面は、金属層の導波路に隣接していない面から導波光の真空中の波長よりも短い距離を隔てて形成される。これにより、金属層と導電性酸化物層と絶縁層とに電圧が印加されると、導電性酸化物層と絶縁層との界面付近の導電性酸化物層の電子密度が変化して、導電性酸化物層の界面付近に大きな屈折率変化が生じる。このため、印加電圧の有無により導波光とSPPとの位相整合条件が顕著に変化し、SPPとの結合に起因する、印加電圧の有無による導波光の減衰量の差が大きくなる。印加電圧の有無による導波光の減衰量の差が大きいため、光変調器の長さが短くても、変調度を高くすることができるとともに、高速に変調することができる。このため、小面積で寄生容量が小さく、高速変調可能な高変調度の光変調器を実現することができる。
 (実施の形態3)
 図21は、本発明の実施の形態3における光ピックアップの概略構成を示す図である。図21において、図1~図3と同じ構成要素については同じ符号を用い、説明を省略する。
 図21において、実施の形態3における光ピックアップ300は、実施の形態1のプラズモン変調器101を用いた光ピックアップである。実施の形態1で前述したように、プラズモン変調器101は、変調度の高い変調光を高速に出力することができるので、光ピックアップ300の情報の転送レートを飛躍的に高めることができる。図21に示す光ピックアップ300は、実施の形態1のプラズモン変調器101と、プラズモン変調器101に光を入射させる半導体レーザ301と、プラズモン変調器101により変調された光を集光する集光器303とを備える。光ピックアップ300は、集光器303により集光された変調光によって情報記録媒体である光ディスク304に情報を記録する。
 より具体的に、光ピックアップ300は、プラズモン変調器101と、半導体レーザ301と、集光器303と、受光素子305と、駆動回路306と、レンズ311と、レンズ312と、レンズ313と、ハーフミラー314と、レンズ318とを備える。
 半導体レーザ301は、駆動回路306によって駆動され、導波路厚さ方向の直線偏光を有する光を放射する。レンズ311は、半導体レーザ301から放射された光をコリメートする。レンズ312は、レンズ311によってコリメートされた光をプラズモン変調器101に集光し、プラズモン変調器101内でTMモード導波光を励振させる。変調回路102は、光ディスク304に記録する情報に応じて、プラズモン変調器101に電圧を印加して導波光を変調する。
 プラズモン変調器101は、光ディスク304に記録する情報に応じて変調した変調光を出射する。レンズ313は、プラズモン変調器101から出射された変調光をコリメートする。ハーフミラー314は、レンズ313によってコリメートされた変調光を分割する。レンズ318は、ハーフミラー314によって反射された変調光を受光素子305に集光する。受光素子305は、レンズ318によって集光された変調光を検出し、検出した変調光の光量に応じた検出信号を出力する。駆動回路306は、受光素子305からの検出信号に応じて、半導体レーザ301の駆動電圧を調整して、半導体レーザ301の放射光量を調節する。
 集光器303は、ハーフミラー314を透過した変調光を光ディスク304に集光する。集光器303の構成については後で述べる。光ディスク304は、例えば相変化材料により構成される。相変化材料は、光の入射による発熱によって相状態が変化する。集光器303によって集光された光によって、相変化材料の相状態が変化して、情報が記録される。プラズモン変調器101は、光ディスク304に集光される光を変調する。これにより、光ディスク304に情報が記録される。
 ここで、集光器303について説明する。図22は、図21に示す集光器303の側面図であり、図23は、図21に示す集光器303の底面図である。集光器303は、レンズ315と、基板316と、基板316上に形成された近接場光を発生させる金属アンテナ317とを備える。金属アンテナ317は、金、銀、アルミニウム又はクロムなどの変調光に対して局在プラズモン共鳴を励振する材料で構成される。金属アンテナ317の構造は、例えば図23に示すような三角平板構造である。
 レンズ315は、変調光を金属アンテナ317に集光する。金属アンテナ317に光が照射されると、金属アンテナ317の頂点近傍には、局在プラズモン共鳴により増強された近接場光が発生する。金属アンテナ317は、近接場光によって光ディスク304を局所的に加熱して、情報を記録する。
 以上に説明したように、本実施の形態3の光ピックアップは、実施の形態1の光変調器と、光変調器に光を入射させる光源と、光変調器により変調された光を集光する集光器とを備える。そして、光変調器は、導波光が伝搬する導波路と、導波路に隣接して形成された金属層と、金属層の導波路に隣接していない面側に形成された、導電性を有する導電性酸化物層と、導電性酸化物層に隣接して形成された絶縁層と、金属層と、導電性酸化物層又は絶縁層との間に電圧を印加する変調回路とを備える。導電性酸化物層と絶縁層とが隣接する界面は、金属層の導波路に隣接していない面から導波光の真空中の波長よりも短い距離を隔てて形成される。
 上記構成により、金属層と導電性酸化物層と絶縁層とに電圧が印加されると、導電性酸化物と絶縁層との界面付近の導電性酸化物層の電子密度が変化して、導電性酸化物層の界面付近に大きな屈折率変化が生じる。このため、印加電圧の有無により導波光とSPPとの位相整合条件が顕著に変化し、SPPとの結合に起因する、印加電圧の有無による導波光の減衰量の差が大きくなる。印加電圧の有無による導波光の減衰量の差が大きいため、光変調器の長さが短くても、変調度を高くすることができるとともに、高速に変調することができる。また、短い変調器長で変調光の変調度を高くすることができるため、金属層と導電性酸化物層と絶縁層とによる寄生容量を抑制することができ、高速変調可能な高変調度の光変調器が実現できる。この光変調器を用いて光を変調し、情報を記録することで、光ピックアップの転送レートを高速化することができる。
 なお、実施の形態3では、金属アンテナ317の形状は、三角平板形状であるが、特に三角平板形状に限定されない。金属アンテナ317の形状は、例えば円盤型又はボウタイ型などの一般的な局在プラズモン共鳴を起こす形状であればよい。
 また、実施の形態3では、集光器303は、金属アンテナ317からの近接場光を用いて光を集光しているが、従来の光ピックアップに採用されているように、レンズ315を用いて光ディスク304に直接光を集光しても良い。
 (実施の形態4)
 図24~図26は、本発明の実施の形態4における光変調モジュール401の概略構成を示す図である。図24~図26において、図1~図3と同じ構成要素については同じ符号を用い、説明を省略する。
 図24は、本発明の実施の形態4における光変調モジュール401の上面図である。図25は、図24に示す光変調モジュール401のXXV-XXV線断面図である。図26は、図24に示す光変調モジュール401のXXVI-XXVI線断面図である。
 図24~図26において、光変調モジュール401は、実施の形態1のプラズモン変調器101を用いた光変調モジュールである。実施の形態1で前述したように、プラズモン変調器101は、変調度の高い変調光を高速に出力することができるので、光変調モジュール401の情報の転送レートを飛躍的に高めることができる。図24~図26に示す光変調モジュール401は、プラズモン変調器101と、プラズモン変調器101に光を入射する光源としての半導体レーザ402とを備える。光変調モジュール401は、光源(半導体レーザ402)からの光を変調して情報を送信する。
 プラズモン変調器101と半導体レーザ402とは同一の基板404上に作製される。半導体レーザ402内の導波路403の出射端と、プラズモン変調器101内の導波路112の入射端とは直接結合されている。このような構成は、半導体レーザ402の一部をエッチングにより除去した後に、スパッタ、蒸着又はフォトリソグラフィ技術によってプラズモン変調器101を作製することにより実現できる。半導体レーザ402とプラズモン変調器101とが一体化されているため、光変調モジュール401の小型化が可能である。また、光軸のアライメントが必要なく、安定した変調光を出力することができる。半導体レーザ402は、例えばDFB(分布帰還型:Distributed Feedback)レーザ又はDBR(分布反射型:Distributed Bragg Reflector)レーザで構成される。これらのレーザは、導波路端面における光の反射がなくても機能するため、集積化に適している。
 半導体レーザ402から出射されたレーザ光は、導波光としてプラズモン変調器101に入射される。変調回路102は、送信する情報に応じてプラズモン変調器101に電圧を印加し、導波光を変調する。プラズモン変調器101から出力された変調光は、光ファイバなどに出力され、送信される。
 以上に説明したように、本実施の形態4の光変調モジュールは、実施の形態1の光変調器と、光変調器に光を入射させる光源とを備える。そして、光変調器は、導波光が伝搬する導波路と、導波路に隣接して形成された金属層と、金属層の導波路に隣接していない面側に形成された、導電性を有する導電性酸化物層と、導電性酸化物層に隣接して形成された絶縁層と、金属層と、導電性酸化物層又は絶縁層との間に電圧を印加する変調回路とを備える。導電性酸化物層と絶縁層とが隣接する界面は、金属層の導波路に隣接していない面から導波光の真空中の波長よりも短い距離を隔てて形成される。
 上記構成により、金属層と導電性酸化物層と絶縁層とに電圧が印加されると、導電性酸化物と絶縁層との界面付近の導電性酸化物層の電子密度が変化して、導電性酸化物層の界面付近に大きな屈折率変化が生じる。このため、印加電圧の有無により導波光とSPPとの位相整合条件が顕著に変化し、SPPとの結合に起因する、印加電圧の有無による導波光の減衰量の差が大きくなる。印加電圧の有無による導波光の減衰量の差が大きいため、光変調器の長さが短くても、変調度を高くすることができるとともに、高速に変調することができる。また、短い変調器長で変調光の変調度を高くすることができるため、金属層と導電性酸化物層と絶縁層とによる寄生容量を抑制することができ、高速変調可能な高変調度の光変調器が実現できる。この光変調器を用いて光を変調し、情報を送信することで、光変調モジュールを小型化することができ、光変調モジュールの転送レートを高速化することができる。
 また、実施の形態4の光変調モジュール401では、光源である半導体レーザ402とプラズモン変調器101とが同一基板上に配置されている。このため、光変調モジュール401を小型化することができる。さらに、半導体レーザ402とプラズモン変調器101とのアライメントが不要であるため、半導体レーザ402からの光を高効率に安定してプラズモン変調器101に入射させることができる。
 図27は、本発明の実施の形態4の第1の変形例における光変調モジュール501の導波路幅方向の断面図である。図27に示すように、光変調モジュール501は、プラズモン変調器101の導波路112の出射端に光ファイバ502の導波路503を直接結合する構成にしてもよい。
 図27に示す光変調モジュール501は、実施の形態1のプラズモン変調器101と、半導体レーザ402と、光ファイバ502とを備える。光ファイバ502は、導波路503と、導波路503の周囲を被覆するクラッド504とを備える。プラズモン変調器101の導波路112の出射端と、光ファイバ502の導波路503の入射端とは直接結合されている。
 図28は、本発明の実施の形態4の第2の変形例における光変調モジュール601の導波路幅方向の断面図である。図28に示すように、光変調モジュール601は、プラズモン変調器101の導波路112の入射端に第1の光ファイバ602の導波路604を直接結合するとともに、プラズモン変調器101の導波路112の出射端に第2の光ファイバ603の導波路605を直接結合する構成にしてもよい。光変調モジュール601とは別に設けた光源からの光は、第1の光ファイバ602を用いてプラズモン変調器101に入射し、プラズモン変調器101からの変調光は、第2の光ファイバ603に出射される。
 図27に示す光変調モジュール601は、実施の形態1のプラズモン変調器101と、第1の光ファイバ602と、第2の光ファイバ603とを備える。第1の光ファイバ602は、導波路604と、導波路604の周囲を被覆するクラッド606とを備える。第2の光ファイバ603は、導波路605と、導波路605の周囲を被覆するクラッド607とを備える。プラズモン変調器101の導波路112の入射端と、第1の光ファイバ602の導波路604の出射端とは直接結合されている。また、プラズモン変調器101の導波路112の出射端と、第2の光ファイバ603の導波路605の入射端とは直接結合されている。
 (実施の形態5)
 次に、本発明の実施の形態5における光通信システムについて説明する。
 図29は、本発明の実施の形態5における光通信システムの全体構成を示すブロック図である。なお、本実施の形態5について、実施の形態1~4と同じ構成要素については同じ符号を用い、説明を省略する。
 図29に示す光通信装置701は、光送信器702と、光伝送路703と、光受信器704とを備える。光送信器702は、送信情報に応じた変調光を出力する。光送信器702から出力された変調光は、光伝送路703を介して、光受信器704に入力される。
 光送信器702は、実施の形態4の光変調モジュール401と、送信制御部705と、送信信号処理部706と、変調制御部707とを備える。
 送信信号処理部706は、送信すべき情報である送信情報を受け取る。送信情報を受け取った送信信号処理部706は、送信制御部705にデータ送信を行うことを伝え、送信情報を基にして変調信号を生成し、生成した変調信号を変調制御部707に出力する。送信制御部705は、半導体レーザ402から光を出射するように半導体レーザ402を制御する。半導体レーザ402から出射された送信光は、プラズモン変調器101に導かれる。
 変調制御部707は、受け取った変調信号に基づいて、プラズモン変調器101の変調回路102を制御する。プラズモン変調器101は、導波路112を通過する導波光を送信情報に応じて変調し、変調光を出射する。出射された変調光は、光伝送路703に入射する。
 光伝送路703は、例えば光ファイバで構成され、光送信器702から出力された変調光を光受信器704へ伝送する。
 光受信器704は、光伝送路703によって伝送された変調光を光電変換して電気信号を検出し、検出した電気信号を復調して、受信情報を生成する。光受信器704は、生成した受信情報を出力する。
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
 本発明の一局面に係る光変調器は、導波光が伝搬する導波路と、前記導波路に隣接して形成された金属層と、前記金属層の前記導波路に隣接していない面側に形成された、導電性を有する導電性酸化物層と、前記導電性酸化物層に隣接して形成された絶縁層と、前記金属層と、前記導電性酸化物層又は前記絶縁層との間に電圧を印加する変調回路とを備え、前記導電性酸化物層と前記絶縁層とが隣接する界面は、前記金属層の導波路に隣接していない面から前記導波光の真空中の波長よりも短い距離を隔てて形成される。
 この構成によれば、導電性酸化物層と絶縁層とが隣接する界面は、金属層の導波路に隣接していない面から導波光の真空中の波長よりも短い距離を隔てて形成される。
 したがって、金属層と導電性酸化物層と絶縁層とに電圧が印加されると、導電性酸化物層と絶縁層との界面付近の導電性酸化物層の電子密度が変化して、導電性酸化物層の界面付近に大きな屈折率変化が生じる。このため、印加電圧の有無により導波光とSPPとの位相整合条件が顕著に変化し、SPPとの結合に起因する、印加電圧の有無による導波光の減衰量の差が大きくなる。印加電圧の有無による導波光の減衰量の差が大きいため、光変調器の長さが短くても、変調度を高くすることができるとともに、高速に変調することができる。
 また、上記の光変調器において、前記導電性酸化物層は、前記金属層上に形成され、前記絶縁層は、前記導電性酸化物層上に形成され、前記絶縁層上に形成された、前記絶縁層に電圧を印加するための電極として機能する導電層をさらに備えることが好ましい。
 この構成によれば、絶縁層上に形成された導電層が絶縁層に電圧を印加するための電極として機能するので、絶縁層の厚さを厚くすることができ、導電層と金属層とにより発生する寄生容量を抑制することができ、高速な光変調が可能となる。
 また、上記の光変調器において、前記絶縁層は、前記金属層上に形成され、前記導電性酸化物層は、前記絶縁層上に形成されることが好ましい。
 この構成によれば、絶縁層が金属層上に形成され、導電性酸化物層が絶縁層上に形成されるので、導電性酸化物層の厚さを薄くする必要がなく、光変調器を容易に作製することができる。
 また、上記の光変調器において、前記導電性酸化物層は、前記絶縁層に電圧を印加するための電極として機能することが好ましい。
 この構成によれば、電性酸化物層が、絶縁層に電圧を印加するための電極として機能するので、導電層が不要となり、光変調器を容易に作製することができる。
 また、上記の光変調器において、前記導波光の真空中の波長は、500nm以上800nm以下であることが好ましい。
 この構成によれば、導電性酸化物層の電子密度変化に対する屈折率変化量が大きくなり、高い変調度を得ることができる。
 また、上記の光変調器において、前記導波光は直線偏光であり、前記導波光の主な偏光方向は、前記金属層に対して垂直な方向であることが好ましい。
 この構成によれば、導波光が直線偏光であり、導波光の主な偏光方向が金属層に対して垂直な方向であるので、導波光とSPPとを効率よく結合させることができ、高い変調度を得ることができる。
 また、上記の光変調器において、前記導波路は、スラブ導波路を含み、前記スラブ導波路に接続され、前記導波光の伝搬方向に向かって徐々に幅が細くなるテーパ導波路をさらに備えることが好ましい。
 この構成によれば、導波路がスラブ導波路を含むので、導波路に容易に光を入射させることができる。また、金属層のスラブ導波路に接する面の面積が広く、広範囲に分散して導波光の吸収が起こるため、金属層の発熱による影響を抑制することができる。さらに、テーパ導波路により、光変調器で変調された出力光を効率よく光ファイバなどに結合させることができる。
 また、上記の光変調器において、前記金属層の幅は、前記導波路の幅より大きいことが好ましい。
 この構成によれば、金属層の幅が導波路の幅より大きいので、SPPとの結合によって金属層に吸収された導波光のエネルギによって発生する熱を効率よく放熱することができる。
 また、上記の光変調器において、前記金属層、前記導電性酸化物層及び前記絶縁層の前記導波光の伝搬方向の長さは、前記導波路の前記導波光の伝搬方向の長さより短いことが好ましい。
 この構成によれば、金属層、導電性酸化物層及び絶縁層の導波光の伝搬方向の長さは、導波路の導波光の伝搬方向の長さより短いので、光変調器の取り扱いが容易となる。
 本発明の他の局面に係る光ピックアップは、上記のいずれかに記載の光変調器と、前記光変調器に光を入射させる光源と、前記光変調器により変調された光を集光する集光器とを備える。この構成によれば、上記の光変調器を光ピックアップに適用することができる。
 本発明の他の局面に係る光変調モジュールは、上記のいずれかに記載の光変調器と、前記光変調器に光を入射させる光源とを備える。この構成によれば、上記の光変調器を光変調モジュールに適用することができる。
 なお、発明を実施するための形態の項においてなされた具体的な実施態様または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と特許請求事項との範囲内で、種々変更して実施することができるものである。
 本発明に係る光変調器は、光変調器の長さが短くても、変調度を高くすることができるとともに、高速に変調することができ、光を変調する光変調器に有用であり、光通信用光変調器又は光通信用光変調モジュールとして有用である。
 また、本発明に係る光変調器は、高い転送レートが必要とされる光ピックアップにも応用できる。このような光ピックアップは、光ディスクプレーヤ、光ディスクレコーダ、コンピュータ及びデータサーバなど多くの用途に応用できる。

Claims (11)

  1.  導波光が伝搬する導波路と、
     前記導波路に隣接して形成された金属層と、
     前記金属層の前記導波路に隣接していない面側に形成された、導電性を有する導電性酸化物層と、
     前記導電性酸化物層に隣接して形成された絶縁層と、
     前記金属層と、前記導電性酸化物層又は前記絶縁層との間に電圧を印加する変調回路とを備え、
     前記導電性酸化物層と前記絶縁層とが隣接する界面は、前記金属層の導波路に隣接していない面から前記導波光の真空中の波長よりも短い距離を隔てて形成されることを特徴とする光変調器。
  2.  前記導電性酸化物層は、前記金属層上に形成され、
     前記絶縁層は、前記導電性酸化物層上に形成され、
     前記絶縁層上に形成された、前記絶縁層に電圧を印加するための電極として機能する導電層をさらに備えることを特徴とする請求項1に記載の光変調器。
  3.  前記絶縁層は、前記金属層上に形成され、
     前記導電性酸化物層は、前記絶縁層上に形成されることを特徴とする請求項1に記載の光変調器。
  4.  前記導電性酸化物層は、前記絶縁層に電圧を印加するための電極として機能することを特徴とする請求項3に記載の光変調器。
  5.  前記導波光の真空中の波長は、500nm以上800nm以下であることを特徴とする請求項1~4のいずれかに記載の光変調器。
  6.  前記導波光は直線偏光であり、
     前記導波光の主な偏光方向は、前記金属層に対して垂直な方向であることを特徴とする請求項1~5のいずれかに記載の光変調器。
  7.  前記導波路は、スラブ導波路を含み、
     前記スラブ導波路に接続され、前記導波光の伝搬方向に向かって徐々に幅が細くなるテーパ導波路をさらに備えることを特徴とする請求項1~6のいずれかに記載の光変調器。
  8.  前記金属層の幅は、前記導波路の幅より大きいことを特徴とする請求項1~7のいずれかに記載の光変調器。
  9.  前記金属層、前記導電性酸化物層及び前記絶縁層の前記導波光の伝搬方向の長さは、前記導波路の前記導波光の伝搬方向の長さより短いことを特徴とする請求項1~8のいずれかに記載の光変調器。
  10.  請求項1~9のいずれかに記載の光変調器と、
     前記光変調器に光を入射させる光源と、
     前記光変調器により変調された光を集光する集光器とを備えることを特徴とする光ピックアップ。
  11.  請求項1~9のいずれかに記載の光変調器と、
     前記光変調器に光を入射させる光源とを備えることを特徴とする光変調モジュール。
PCT/JP2013/002106 2012-04-05 2013-03-28 光変調器、光ピックアップ及び光変調モジュール WO2013150748A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380001508.7A CN103582842B (zh) 2012-04-05 2013-03-28 光调制器、拾光器以及光调制模块
JP2013550057A JP5979509B2 (ja) 2012-04-05 2013-03-28 光変調器、光ピックアップ及び光変調モジュール
US14/123,156 US8909002B2 (en) 2012-04-05 2013-03-28 Light modulator, optical pickup, and light modulation module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-086121 2012-04-05
JP2012086121 2012-04-05

Publications (1)

Publication Number Publication Date
WO2013150748A1 true WO2013150748A1 (ja) 2013-10-10

Family

ID=49300252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002106 WO2013150748A1 (ja) 2012-04-05 2013-03-28 光変調器、光ピックアップ及び光変調モジュール

Country Status (4)

Country Link
US (1) US8909002B2 (ja)
JP (1) JP5979509B2 (ja)
CN (1) CN103582842B (ja)
WO (1) WO2013150748A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975925A (zh) * 2017-12-27 2019-07-05 瑞萨电子株式会社 半导体器件及其制造方法
JP7500055B2 (ja) 2019-06-25 2024-06-17 株式会社パルミオン 光変調素子及び光変調方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201313592D0 (en) * 2013-07-30 2013-09-11 Univ St Andrews Optical modulator with plasmon based coupling
DE102016202765A1 (de) 2016-02-23 2017-08-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Schaltkreisanordnung und Verfahren zum Herstellen einer Schaltkreisanordnung
US10996379B2 (en) * 2017-04-07 2021-05-04 The Research Foundation for the State University New York Plasmonic phase modulator and method of modulating an SPP wave
CN108279511A (zh) * 2017-12-28 2018-07-13 宁波大学 一种基于相变材料的电光调制器
US11448820B2 (en) * 2019-02-04 2022-09-20 Baylor University Integrated optical fiber and epsilon-near-zero material
EP3980750B1 (en) * 2019-06-07 2023-12-27 QinetiQ Limited Method and apparatus for imaging a biological sample by total internal reflection of light in the ghz range

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112151A (ja) * 2006-10-06 2008-05-15 Matsushita Electric Ind Co Ltd 光変調器および光変調方法
US20100103495A1 (en) * 2008-10-28 2010-04-29 Boise State University Surface plasmon optical modulator

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5067788A (en) 1990-03-21 1991-11-26 Physical Optics Corporation High modulation rate optical plasmon waveguide modulator
JP2002250905A (ja) * 2000-12-22 2002-09-06 Nec Corp 光導波路デバイス及びその製造方法
US20030133638A1 (en) * 2002-01-16 2003-07-17 Sungho Jin Ion implanted lithium niobate modulator with reduced drift
US6885781B2 (en) * 2002-05-03 2005-04-26 Fujitsu Limited Thin film electro-optical deflector device and a method of fabrication of such a device
EP1400835B1 (en) * 2002-09-17 2011-11-16 Nippon Telegraph And Telephone Corporation Semiconductor optical modulator and laser with such optical modulator
JP4095527B2 (ja) * 2003-09-29 2008-06-04 株式会社日立製作所 磁化情報記録再生方法及び装置
CN100410733C (zh) * 2006-07-20 2008-08-13 上海交通大学 应用自由空间耦合技术调制光的方法及调制器
US7471852B2 (en) 2006-10-06 2008-12-30 Panasonic Corporation Optical modulator and optical modulation method
US9008467B2 (en) * 2008-03-20 2015-04-14 Hewlett-Packard Development Company, L.P. Nanoparticle-based quantum confined stark effect modulator
WO2009119145A1 (ja) * 2008-03-28 2009-10-01 日本電気株式会社 導波路型半導体光変調器及びその製造方法
US8218226B2 (en) * 2008-08-15 2012-07-10 Corning Incorporated Surface-plasmon-based optical modulator
US8107325B2 (en) * 2008-12-16 2012-01-31 Tdk Corporation Near-field light generating element comprising surface plasmon antenna with surface or edge opposed to waveguide
US8014636B2 (en) * 2009-02-20 2011-09-06 Oracle America Electrical contacts on top of waveguide structures for efficient optical modulation in silicon photonic devices
US9002144B2 (en) * 2009-09-10 2015-04-07 Nec Corporation Electro-optical modulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112151A (ja) * 2006-10-06 2008-05-15 Matsushita Electric Ind Co Ltd 光変調器および光変調方法
US20100103495A1 (en) * 2008-10-28 2010-04-29 Boise State University Surface plasmon optical modulator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Surface plasmon polariton absorption modulator", OPTICS EXPRESS, vol. 19, no. 9, 25 April 2011 (2011-04-25), pages 8855 - 8869 *
"Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies", NANO LETTERS, October 2010 (2010-10-01), pages 2111 - 2116 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975925A (zh) * 2017-12-27 2019-07-05 瑞萨电子株式会社 半导体器件及其制造方法
CN109975925B (zh) * 2017-12-27 2023-06-06 瑞萨电子株式会社 半导体器件及其制造方法
JP7500055B2 (ja) 2019-06-25 2024-06-17 株式会社パルミオン 光変調素子及び光変調方法

Also Published As

Publication number Publication date
US8909002B2 (en) 2014-12-09
CN103582842B (zh) 2017-04-05
CN103582842A (zh) 2014-02-12
JPWO2013150748A1 (ja) 2015-12-17
US20140099052A1 (en) 2014-04-10
JP5979509B2 (ja) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5979509B2 (ja) 光変調器、光ピックアップ及び光変調モジュール
US9182541B2 (en) Graphene photonic device
US8755662B2 (en) Optical waveguide
JP5363679B2 (ja) 光変調素子
US8116600B2 (en) Optical phase modulation element and optical modulator using the same
WO2010021073A1 (ja) 半導体受光素子、光通信デバイス、光インターコネクトモジュール、光電変換方法
Babicheva et al. Plasmonic modulator optimized by patterning of active layer and tuning permittivity
US20130037721A1 (en) Terahertz wave generation element, terahertz wave detection element, and terahertz time domain spectroscope device
US20070189688A1 (en) Waveguide photodetector
US7065271B2 (en) Optical grating coupler
WO2010040303A1 (zh) 表面等离子体激元可调谐光学谐振环滤波器
US20170017098A1 (en) Optical device and transmitter
US7471852B2 (en) Optical modulator and optical modulation method
JP2020512585A (ja) テラヘルツを生成および/または検出するための装置およびその製造方法
CN112013975A (zh) 一种小型化的上转换单光子探测器
KR101129223B1 (ko) 표면 플라즈몬 공명 현상을 이용한 전광 논리소자 및 광변조기
WO2021124440A1 (ja) 光デバイス
WO2008038795A1 (fr) Dispositif optique et procédé de fabrication de dispositif optique
CN113885227A (zh) 光器件及光通信装置
US11372271B2 (en) Optical modulator, method for forming the same, and method for controlling the same
JP2011123272A (ja) 光デバイス
JP2018112593A (ja) 光制御デバイス及びその製造方法、光集積回路並びに電磁波検出装置
JP4987335B2 (ja) 光デバイス
KR20140075404A (ko) 그래핀 광소자
JP2020052066A (ja) テラヘルツ波検出装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013550057

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772449

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14123156

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13772449

Country of ref document: EP

Kind code of ref document: A1