[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013150669A1 - 合金化溶融亜鉛めっき熱延鋼板およびその製造方法 - Google Patents

合金化溶融亜鉛めっき熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2013150669A1
WO2013150669A1 PCT/JP2012/073163 JP2012073163W WO2013150669A1 WO 2013150669 A1 WO2013150669 A1 WO 2013150669A1 JP 2012073163 W JP2012073163 W JP 2012073163W WO 2013150669 A1 WO2013150669 A1 WO 2013150669A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
less
steel sheet
rolled steel
dip galvanized
Prior art date
Application number
PCT/JP2012/073163
Other languages
English (en)
French (fr)
Inventor
卓史 横山
野村 茂樹
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to ES12873840T priority Critical patent/ES2699996T3/es
Priority to KR1020167027822A priority patent/KR20160121599A/ko
Priority to KR1020147030899A priority patent/KR20150000897A/ko
Priority to JP2013504046A priority patent/JP5339005B1/ja
Priority to PL12873840T priority patent/PL2835440T3/pl
Priority to US14/390,802 priority patent/US10351942B2/en
Priority to MX2014011901A priority patent/MX366776B/es
Priority to IN8590DEN2014 priority patent/IN2014DN08590A/en
Priority to BR112014024879-6A priority patent/BR112014024879B1/pt
Priority to EP12873840.8A priority patent/EP2835440B1/en
Priority to CN201280073741.1A priority patent/CN104364408B/zh
Publication of WO2013150669A1 publication Critical patent/WO2013150669A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a galvannealed hot-rolled steel sheet and a method for producing the same. More specifically, high-strength hot-dip galvanized hot-rolled steel sheets excellent in hole-expandability and suitable for automobile steel sheets, particularly automobile chassis parts that are formed into various shapes by pressing and the like, and methods for producing the same About.
  • Hot rolled steel sheets manufactured at a relatively low cost are widely used in various industrial equipment including automobiles.
  • improvement in automobile fuel efficiency has been demanded, and the application of high-strength hot-rolled steel sheets has been expanded to reduce vehicle weight and ensure collision safety. It's getting on.
  • high-strength galvannealed hot-rolled steel sheet that uses a high-strength hot-rolled steel sheet as a base steel sheet for chassis parts such as suspension arms that particularly require corrosion resistance.
  • high-strength steel sheets may be applied to parts that require impact-resistant characteristics and parts that need to avoid plastic deformation when a large load is input.
  • a high yield ratio is required. Therefore, a high yield hot-rolled steel sheet may be required to have a high yield ratio.
  • the steel structure is a single-phase structure mainly composed of ferrite, bainitic ferrite, bainite, etc. in order to achieve both a high yield ratio and excellent hole expandability. Further, it is intended to uniformly strengthen the main phase by finely depositing carbides such as Ti, Nb, and V, or Cu. Examples of development are shown below.
  • the steel structure is mainly bainite, and in addition to Ti, Nb, and V, the content of P, Cu, Cr, Mo, and Ni is appropriately controlled, so that the fatigue characteristics of the welded part in a corrosive environment are disclosed.
  • this steel sheet is not suitable for mass production from the viewpoint of economy because it requires the addition of a large amount of expensive alloy elements such as Cu, Ni and Mo.
  • the hole expandability may be slightly inferior.
  • Patent Document 2 discloses that a hot rolled original sheet having a ferrite + bainite structure is subjected to an optimal alloying hot dip galvanizing thermal history to appropriately control the structure, carbide shape, and solid solution C.
  • a high-strength alloyed hot-dip galvanized hot-rolled steel sheet said to have improved spreadability is disclosed.
  • this steel sheet when the tensile strength of the product exceeds 650 MPa, sufficient hole expandability is not obtained.
  • Patent Document 3 discloses a hot-dip galvanized hot-rolled steel sheet in which Ti carbide containing Mo and / or W is finely dispersed in a steel structure substantially composed of a single ferrite phase.
  • this steel sheet is not suitable for mass production from an economical viewpoint because it requires the addition of extremely expensive alloy elements such as Mo and W.
  • Patent Document 4 discloses a hot-dip galvanized hot-rolled steel sheet in which the hole expanding property is improved by precipitation strengthening by adding Nb, V and Ti to a ferrite main structure in which the dispersion state of pearlite and cementite is optimally controlled. Is disclosed. However, when the tensile strength is as high as 650 MPa or more, it is difficult to say that this steel plate has sufficient hole expandability.
  • JP-A-5-331596 Japanese Patent Laid-Open No. 5-117835 JP 2003-321736 A JP 2002-12947 A
  • the reduction of Mn content is due to the homogenization of the steel structure associated with the reduction of Mn microsegregation and the expansion of the ferrite region, thereby austenitizing during reheating in a continuous alloying hot dip galvanizing line. It has also been found that it has an effect of suppressing the complex organization that accompanies it, and is extremely effective in increasing hole expansibility. As a result of superimposing the above effects, the present inventors have succeeded in obtaining excellent hole expansibility superior to existing Ti-added high-strength galvannealed hot-rolled steel sheets.
  • the present invention based on the above knowledge is “alloyed hot-dip galvanized hot-rolled steel sheet having an alloyed hot-dip galvanized layer on the surface of the steel sheet, wherein the steel sheet is in mass%, and C: 0.01% or more and 0.0%.
  • the preferred embodiments of the present invention are listed as follows. -From the mass%, Cr: 0.80% or less, Ni: 0.50% or less, Cu: 0.50% or less, Mo: 0.50% or less, and B: 0.0050% or less Further containing one or more selected from the group consisting of:
  • the chemical composition further contains one or two selected from the group consisting of V: 0.5% or less and Nb: 0.1% or less in mass%;
  • the chemical composition further contains one or two selected from the group consisting of Ca: 0.01% or less and Bi: 0.01% or less by mass%;
  • the alloyed hot-dip galvanized hot-rolled steel sheet has a product of the hole expansion ratio and the tensile strength obtained by the hole expansion test method specified by the Japan Iron and Steel Federation Standard JFS T 1001 of 60000 MPa ⁇ % or more, It has mechanical properties such that the yield ratio, which is the ratio of 0.2% proof stress, is 80% or more.
  • the present invention also provides a method for producing a galvannealed hot-rolled steel sheet characterized by comprising the following steps (A) to (C): (A) A slab having the above chemical composition is heated to 1100 ° C. or more and 1350 ° C. or less, and then hot-rolled to complete hot rolling in a temperature range of 850 ° C. or more and 980 ° C. or less to obtain a hot-rolled steel sheet. A primary cooling process in which the steel sheet is cooled to a temperature range of 650 ° C. or more and 800 ° C. or less by a water cooling facility, a residence process for retaining in a temperature range of 650 ° C.
  • Mn in a formula shows Mn content (unit: mass%) in steel
  • B a pickling process for performing a pickling treatment on the hot-rolled steel sheet obtained in the hot rolling process
  • C a temperature of 650 ° C. or higher and 800 ° C.
  • a continuous hot dip galvanizing process in which the steel sheet is heated to a temperature, then cooled and subjected to a hot dip galvanizing treatment, and further subjected to an alloying treatment while being kept in a temperature range of 460 ° C. or higher and 600 ° C. or lower.
  • the alloyed hot-dip galvanized hot-rolled steel sheet according to the present invention has a hole expandability applicable to stretch flange forming and burring forming, and thus can be widely used industrially, particularly in the automobile field.
  • adopted in the Example is shown.
  • adopted in the Example is shown.
  • Chemical composition of steel plate The chemical composition of the steel plate which is the plating base material of the galvannealed hot-rolled steel plate according to the present invention is as follows.
  • Mn has the effect of detoxifying by fixing S that causes hot brittleness as MnS. If the Mn content is less than 0.01%, it is difficult to obtain the effect by the above action. Therefore, the Mn content is set to 0.01% or more. Preferably it is 0.1% or more. On the other hand, if the Mn content exceeds 1.30%, the lowering of the ferrite transformation temperature can improve the hole expansion property by promoting the ferrite transformation in the high temperature region of 650 ° C. or higher in the cooling process after hot rolling. It becomes difficult. Therefore, the Mn content is 1.30% or less. Preferably it is 1.0% or less, More preferably, it is 0.8% or less.
  • Al 0.50% or less
  • Al has the effect
  • the Al content is 0.50% or less.
  • it is 0.20% or less, More preferably, it is 0.10% or less.
  • the Al content is preferably 0.001% or more.
  • the Al content in steel means the content of acid-soluble Al (sol. Al).
  • Ti 0.05% or more and 0.50% or less
  • Ti is an important element in the present invention, and has the effect of uniformly precipitation strengthening ferrite by forming carbides in the steel. If the Ti content is less than 0.05%, the effect by the above action cannot be obtained sufficiently. Therefore, the Ti content is set to 0.05% or more. Preferably it is 0.10% or more. On the other hand, even if Ti is contained in an amount exceeding 0.50%, the effect by the above action is saturated and the cost is unnecessarily increased. Therefore, the Ti content is 0.50% or less. Preferably it is 0.30% or less.
  • Cr 0.80% or less, Ni: 0.50% or less, Cu: 0.50% or less, Mo: 0.50% or less, and B: 0.0050% or less 2 types or more
  • Cr, Ni, Cu, Mo, and B are elements that have an effect of enhancing the hardenability of the steel and are effective for increasing the strength of the steel sheet. Therefore, you may contain 1 type, or 2 or more types of these elements. However, if the content of these elements is excessive, the ferrite transformation temperature is lowered as in the case of Mn, and the hole is formed by promoting ferrite transformation in a high temperature region of 650 ° C. or higher in the cooling process after hot rolling. It becomes difficult to improve spreadability.
  • the content of these elements is as described above.
  • the B content is preferably 0.0009% or less from the viewpoint of productivity.
  • Cr 0.001% or more
  • Ni 0.001% or more
  • Cu 0.001% or more
  • Mo 0.001% or more
  • B 0.00. It is preferable to satisfy any condition of 0001% or more.
  • V and Nb like Ti, form carbides in the steel and have the effect of uniformly precipitation strengthening ferrite. Therefore, although it is an expensive element compared with Ti, you may contain 1 type, or 2 or more types of these elements. However, even if V is contained in an amount exceeding 0.5% and Nb is contained in an amount exceeding 0.1%, the effect of the above action is saturated, and the cost is unnecessarily increased. Therefore, the V content is 0.5% or less and the Nb content is 0.1% or less. In addition, in order to obtain the effect by the above action more reliably, it is preferable to contain 0.001% or more of any element.
  • C * defined by the following formula (2) satisfies the following formula (3).
  • C * C-12.01 ⁇ ⁇ Ti / 47.88 + Nb / 92.91 + 0.5 ⁇ V / 50.94 ⁇ (2) -0.020 ⁇ C * ⁇ 0.050 (3)
  • C * is a carbide (TiC, NbC, VC, (Ti, V) C, (Ti, Nb) C, (Ti, Nb, V) containing Ti, Nb and V from the amount of C in steel. It means the amount of non-fixed C in steel, excluding C present as C).
  • Ti, Nb, and V show each content (unit: mass%) in steel.
  • the hot-rolled steel sheet which is the plating base material of the galvannealed hot-rolled steel sheet according to the present invention, contains 80% by area or more of polygonal ferrite, and the balance is bainitic ferrite, bainite, pearlite, and It has a steel structure consisting of one or more selected from the group consisting of cementite.
  • the steel structure is mainly composed of polygonal ferrite. If the area ratio of polygonal ferrite which is the main phase is less than 80%, it is difficult to ensure excellent hole expansibility. It also becomes difficult to obtain good ductility. Therefore, the area ratio of polygonal ferrite is 80% or more. This area ratio is preferably 90% or more, and more preferably 95% or more. The upper limit of the area ratio of polygonal ferrite is not particularly defined, but is preferably 99.9% or less. More preferably, it is 99.5% or less, and particularly preferably 99% or less.
  • the remaining structure excluding polygonal ferrite shall not contain martensite and retained austenite, and shall consist of one or more selected from the group consisting of bainitic ferrite, bainite, pearlite and cementite. .
  • the proportions of these phases and structures are not particularly limited. In general, the remaining structure contains cementite, and sometimes contains bainitic ferrite. However, it is not limited to such an organization.
  • high-strength alloyed hot-dip galvanized hot-rolled steel sheets are required to have excellent hole-expandability, and therefore are obtained according to the hole-expansion test method defined in Japan Iron and Steel Federation Standard JFSFT 1001. It is preferable that the product of the hole expansion ratio and the tensile strength has mechanical properties of 60000 MPa ⁇ % or more.
  • the product of hole expansion ⁇ tensile strength is an index of strength-formability balance in stretch flange molding.
  • the hole expansion rate itself is preferably 70% or more, and more preferably 75% or more.
  • Alloyed hot-dip galvanized layer The alloyed hot-dip galvanized layer is not particularly limited and may be the same as the plated layer in the conventional alloyed hot-dip galvanized hot-rolled steel sheet.
  • the adhesion amount and Fe concentration of the alloyed hot-dip galvanized layer will be described in the following description of the production method.
  • the alloyed hot-dip galvanized hot-rolled steel sheet according to the present invention is produced by a method comprising (A) a hot rolling step, (B) a pickling step, and (C) a continuous hot-dip galvanizing step. Manufacturing conditions will be described for each process.
  • (A) Hot rolling process [Slab heating temperature: 1100 ° C or higher and 1350 ° C or lower]
  • the heating temperature of the slab when the slab having the above chemical composition is subjected to hot rolling is 1100 ° C. or higher and 1350 ° C. or lower.
  • the carbide-forming elements such as Ti, Nb, and V
  • the slab heating temperature is 1100 ° C. or higher.
  • the slab heating temperature exceeds 1350 ° C., not only is the above effect saturated, but scale loss increases, which is disadvantageous in terms of cost. Therefore, the slab heating temperature is 1350 ° C. or lower.
  • Rolling completion temperature 850 ° C or higher and 980 ° C or lower. If the rolling completion temperature is less than 850 ° C., the deformation resistance becomes excessive and rolling becomes difficult. Therefore, the rolling completion temperature is 850 ° C. or higher. On the other hand, when the rolling completion temperature exceeds 980 ° C., the ferrite grain size after cooling becomes coarse, and it becomes difficult to ensure the intended strength in the final product. Therefore, the rolling completion temperature is 980 ° C. or lower.
  • Primary cooling stop temperature 650 ° C or higher and 800 ° C or lower
  • a primary cooling process is performed by water cooling equipment. If the primary cooling stop temperature is less than 650 ° C., the carbide precipitates in conformity with the ferrite matrix, and it may be difficult to ensure excellent hole expandability in the final product. Therefore, the primary cooling stop temperature is set to 650 ° C. or higher. On the other hand, when the primary cooling stop temperature is higher than 800 ° C., carbides precipitated in the ferrite are excessively coarsened, and it may be difficult to secure a target strength in the final product. Therefore, the primary cooling stop temperature is set to 800 ° C. or less. Although the primary cooling rate is not particularly specified, it is preferably set to 10 ° C./second or more and less than 200 ° C./second because of restrictions on actual equipment.
  • the residence time is less than ⁇ t seconds, the formation of polygonal ferrite may be insufficient, and it may be difficult to ensure excellent hole expansibility in the final product.
  • the upper limit of the residence time is not particularly required, but is preferably 30 seconds or less from the viewpoint of productivity.
  • the secondary cooling treatment is performed by water cooling equipment, and then wound to obtain a hot rolled coil. If the secondary cooling stop temperature and the coiling temperature are higher than 650 ° C., Ti carbide is excessively coarsened during coiling, and it may be difficult to ensure the target strength in the final product. Therefore, the secondary cooling stop temperature and the winding temperature are set to 650 ° C. or lower. On the other hand, when the secondary cooling stop temperature and the coiling temperature are less than 400 ° C., the cooling in the coil becomes uneven, the characteristic variation in the coil becomes remarkable, and the yield may be deteriorated. Therefore, the secondary cooling stop temperature and the coiling temperature are set to 400 ° C. or higher. Although the secondary cooling rate is not particularly specified, it is preferably 10 ° C./second or more and less than 200 ° C./second because of restrictions on actual equipment.
  • the hot rolling process may be performed according to a conventional method.
  • the slab used for hot rolling may be a slab formed by continuous casting or casting and partial rolling after melting steel having the above chemical composition. From the viewpoint of productivity, it is preferable to use continuous casting.
  • continuous casting in order to improve crack resistance by inclusion control, it is preferable to perform molten steel flow by an external magnetic field or mechanical stirring in the mold.
  • the slab thus obtained may be directly subjected to rolling, or may be subjected to hot rolling after being kept warm or reheated.
  • Hot rolling is generally multipass rolling.
  • the rolling reduction per pass is preferably 10% or more and 60% or less.
  • the reduction amount per pass is preferably 10% or more and 60% or less.
  • (B) Pickling process The hot-rolled steel sheet obtained in the hot rolling process is subjected to a pickling process in the pickling process for descaling.
  • the pickling treatment may be performed according to a conventional method.
  • skin pass rolling may be applied to the hot-rolled steel sheet for flattening and promoting scale peeling.
  • the elongation rate in the case of performing the skin pass rolling is not particularly defined, it is preferably 0.1% or more and less than 3.0%.
  • Maximum heating temperature 650 ° C or higher and 800 ° C or lower
  • a general in-line annealing facility includes at least an oxidation furnace (or a weak oxidation non-oxidation furnace) and a reduction furnace. By this annealing, the surface of the steel sheet is activated through oxidation-reduction.
  • the maximum heating temperature is set to 650 ° C. or higher.
  • the maximum heating temperature exceeds 800 ° C.
  • austenitization proceeds and the strength is significantly reduced. Therefore, the maximum heating temperature is 800 ° C. or less.
  • the holding time in the temperature range of 650 ° C. or higher and 800 ° C. or lower is not particularly specified, it is preferable to hold for 10 seconds or longer and 200 seconds or shorter.
  • the cooling rate at this time is not particularly defined, it is preferably set to 1 ° C./second or more and 50 ° C./second or less because of restrictions on actual equipment.
  • the cooling stop temperature is preferably 400 ° C. or higher and 550 ° C. or lower.
  • the basis weight of plating is preferably 25 g / m 2 or more and 75 g / m 2 or less per side.
  • the Fe concentration in the alloyed hot-dip galvanized layer varies depending on the alloying heat treatment conditions and the plating basis weight, but is preferably in the range of 7 to 14% by mass.
  • a hot-rolled steel sheet cooled to room temperature is subjected to pickling treatment using a general hydrochloric acid pickling solution as descaling treatment, and then subjected to surface treatment using a continuous heat treatment simulator without performing cold rolling.
  • pickling treatment using a general hydrochloric acid pickling solution as descaling treatment
  • surface treatment using a continuous heat treatment simulator without performing cold rolling.
  • a JIS No. 5 tensile specimen was taken from the hot-rolled steel sheet that had been subjected to the same thermal history as that of the galvannealed alloy obtained in this way, and a tensile test was conducted by taking a JIS No. 5 tensile specimen in the direction perpendicular to the rolling direction. The tensile strength and total elongation were measured, and the yield ratio (yield strength / tensile strength) was calculated.
  • a hole expansion test was conducted in accordance with the JFS T 1001 hole expansion test method of the Japan Iron and Steel Federation standard, the hole expansion rate until the occurrence of cracks penetrating the plate thickness was measured, and the value of tensile strength x hole expansion rate was calculated. .
  • Test Nos. 1 to 4, 6, 7, 9, 10, and 14 to 26 are invention examples in which the chemical composition, production conditions, and steel structure all meet the ranges specified in the present invention, and desired mechanical properties are obtained. It has been.
  • test No. 5 has insufficient tensile strength because the maximum heating temperature in the continuous hot dip galvanizing process exceeds the temperature specified in the present invention.
  • Test No. 8 is inferior in the strength-hole expansibility balance because the intermediate air cooling time after stopping the primary cooling is less than the time ⁇ t defined by the present invention and the ferrite volume fraction is below the range defined by the present invention.
  • Test Nos. 11 to 13 since the Mn content exceeds the value specified in the present invention, the hole expandability is inferior.
  • Test No. 27 since the Ti content is less than the range specified in the present invention, the tensile strength is insufficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

 伸びフランジ成形に適した、優れた穴広げ性を有し、好ましくは高い降伏比を有する、引張強度が650MPa以上の高強度合金化溶融亜鉛めっき熱延鋼板は、めっき基材の熱延鋼板が、質量%で、C:0.01%以上0.20%以下、Si:0.50%以下、Mn:0.01%以上1.30%以下、P:0.05%以下、S:0.01%以下、N:0.01%以下、Al:0.50%以下、Ti:0.05%以上0.50%以下、を含有する化学組成と、80面積%以上のポリゴナルフェライトを含有し、残部がベイニティックフェライト、ベイナイト、パーライトおよびセメンタイトからなる群から選択される1種または2種以上からなる鋼組織と、を有する。

Description

合金化溶融亜鉛めっき熱延鋼板およびその製造方法
 本発明は、合金化溶融亜鉛めっき熱延鋼板およびその製造方法に関する。より詳しくは、プレス加工等により様々な形状に成形される自動車用鋼板、特に自動車のシャシー(足回り)部品に好適な、穴広げ性に優れた高強度溶融亜鉛めっき熱延鋼板およびその製造方法に関する。
 比較的安価に製造される熱延鋼板は、自動車をはじめとする各種の産業機器に広く使用されている。近年、地球温暖化対策に伴う二酸化炭素排出量規制の観点から、自動車の燃費向上が求められており、車体の軽量化と衝突安全性確保のために、高強度熱延鋼板の適用が拡大しつつある。さらにここ最近、サスペンションアーム等のとりわけ耐食性を必要とするシャシー部品に対して、高強度熱延鋼板を下地鋼板とした、高強度合金化溶融亜鉛めっき熱延鋼板のニーズが高まっている。
 言うまでもなく、自動車用部品に供される鋼板においては、強度だけでなく、プレス成形性や溶接性等、部品成形時に要求される各種施工性が満足されなければならない。シャシー部品のプレス成形に関しては、伸びフランジ成形およびバーリング成形の使用頻度が極めて高いため、同部品の製造に供される高強度合金化溶融亜鉛めっき熱延鋼板には優れた穴広げ性が要求される。
 また、高強度鋼板は、耐衝突特性を要求される部品や大負荷入力時に塑性変形することを避ける必要がある部品に適用される場合があり、このような用途に供される場合には、降伏比が高いことが要求される。したがって、高強度溶融めっき熱延鋼板にも高降伏比であることが要求される場合がある。
 一般に、高強度合金溶融亜鉛めっき熱延鋼板においては、高降伏比および優れた穴広げ性を両立させるため、鋼組織をフェライト、ベイニティックフェライト、ベイナイトなどを主相とする単相系組織とし、さらにTi、Nb、V等の炭化物、あるいはCuを微細析出させることにより、前記主相を均一に強化することが志向される。以下にその開発例を示す。
 特許文献1には、鋼組織をベイナイト主体とし、Ti、Nb、Vに加え、P、Cu、Cr、Mo、Niの含有量を適正に制御することにより、腐食環境下における溶接部の疲労特性を改善したとされる高強度合金化溶融亜鉛めっき熱延鋼板が開示されている。しかし、この鋼板は、Cu、Ni、Moといった高価な合金元素の多量添加が必要であるため、経済性の観点から量産に適さない。また、穴広げ性がやや劣る場合がある。
 特許文献2には、フェライト+ベイナイト組織を有する熱延原板に対して、最適な合金化溶融亜鉛めっきの熱履歴を施して、組織、炭化物形状、固溶Cを適切に制御することにより、穴広げ性を改善したとされる高強度合金化溶融亜鉛めっき熱延鋼板が開示されている。しかし、この鋼板では、製品の引張強度が650MPaを超えると、十分な穴広げ性が得られていない。
 特許文献3には、実質的にフェライト単相からなる鋼組織に、Moおよび/またはWを含むTi炭化物を微細に分散させた、溶融亜鉛系めっき熱延鋼板が開示されている。しかし、この鋼板は、Mo、Wといった極めて高価な合金元素の添加を必要とするため、経済的な観点から量産に適さない。
 特許文献4には、パーライトおよびセメンタイトの分散状態を最適に制御したフェライト主体組織に対して、Nb、V、Tiの添加による析出強化によって穴広げ性を向上させたとされる溶融亜鉛めっき熱延鋼板が開示されている。しかし、引張強度が650MPa以上の高強度になると、この鋼板では十分な穴広げ性が得られているとは言い難い。
特開平5-331596号公報 特開平5-117834号公報 特開2003-321736号公報 特開2002-12947号公報
 本発明の目的は、自動車用部品、特にシャシー部品の成形において多用される伸びフランジ成形に適した、優れた穴広げ性を有し、好ましくは高い降伏比を有する、高強度溶融亜鉛めっき熱延鋼板およびその製造方法を提供することである。
 本発明者らは、優れた穴広げ性、さらには高い降伏比を達成するため、まず鋼組織をフェライト主体組織とすることを前提とした。さらに、比較的安価かつ微量添加で著しい析出強化を発現するTiに着目し、フェライト主体組織からなるTi添加合金化溶融亜鉛めっき熱延鋼板の穴広げ性を向上させる手法について鋭意検討を行った。その結果、以下の知見を得た。
 Tiを添加したフェライト主体組織を有する高強度合金化溶融亜鉛めっき熱延鋼板の穴広げ性は、熱間圧延後のランナウトテーブル上にて、フェライト変態を少なくとも650℃以上の高温域で促進させることにより著しく上昇することを知見した。これは、熱延鋼板の巻取後の低温域で生ずるTi炭化物の整合析出が抑制されるためと思われる。
 また上記現象は、高強度合金化溶融亜鉛めっき熱延鋼板においては、高強度化のために一定量の含有が必須であると考えられていたMnを、既存鋼の含有レベルより大きく低減させることにより達成されることを見出した。
 さらに、Mn含有量の削減は、上記効果に加え、Mnミクロ偏析の軽減に伴う鋼組織の均質化や、フェライト域が拡大することにより、連続合金化溶融亜鉛めっきラインにおける再加熱中のオーステナイト化およびそれに付随して生ずる複合組織化を抑制する、といった効果をも有しており、穴広げ性の上昇に極めて有効であることを知見した。上記の効果が重畳した結果、既存のTi添加高強度合金化溶融亜鉛めっき熱延鋼板を凌駕する優れた穴広げ性を得ることに成功したのである。
 上記知見に基づく本発明は、「鋼板の表面に合金化溶融亜鉛めっき層を有する合金化溶融亜鉛めっき熱延鋼板であって、前記鋼板は、質量%で、C:0.01%以上0.20%以下、Si:0.50%以下、Mn:0.01%以上1.30%以下、P:0.05%以下、S:0.01%以下、N:0.01%以下、Al:0.50%以下、Ti:0.05%以上0.50%以下、を含有する化学組成と、80面積%以上のポリゴナルフェライトを含有し、残部がベイニティックフェライト、ベイナイト、パーライトおよびセメンタイトからなる群から選択される1種または2種以上からなる鋼組織とを有し、前記合金化溶融亜鉛めっき熱延鋼板は、引張強度が650MPa以上である機械特性を有することを特徴とする、合金化溶融亜鉛めっき熱延鋼板」である。
 本発明の好適態様を列挙すると、次の通りである。
 ・前記化学組成が、質量%で、Cr:0.80%以下、Ni:0.50%以下、Cu:0.50%以下、Mo:0.50%以下およびB:0.0050%以下からなる群から選択される1種または2種以上をさらに含有する;
 ・前記化学組成が、質量%で、V:0.5%以下およびNb:0.1%以下からなる群から選択される1種または2種をさらに含有する;
 ・前記化学組成が、質量%で、Ca:0.01%以下およびBi:0.01%以下からなる群から選択される1種または2種をさらに含有する;
 ・前記合金化溶融亜鉛めっき熱延鋼板が、日本鉄鋼連盟規格JFS T 1001で規定される穴拡げ試験方法により求めた穴広げ率と引張強度との積が60000MPa・%以上であり、引張強度に対する0.2%耐力の割合である降伏比が80%以上である機械特性を有する。
[規則91に基づく訂正 04.06.2013] 
 本発明はまた、下記工程(A)~(C)を備えることを特徴とする合金化溶融亜鉛めっき熱延鋼板の製造方法も提供する:
 (A)上記化学組成を有するスラブを1100℃以上1350℃以下とした後に熱間圧延を施し、850℃以上980℃以下の温度域で熱間圧延を完了して熱延鋼板とし、前記熱延鋼板に、水冷設備により650℃以上800℃以下の温度域まで冷却する一次冷却処理、650℃以上800℃以下の温度域に下記式(1)で規定されるΔt秒間以上滞留させる滞留処理、および、水冷設備により400℃以上650℃以下の温度域まで冷却する二次冷却処理を順次施した後に、400℃以上650℃以下の温度域で巻取る熱間圧延工程:
   Δt(秒)=5・Mn4   ・・・   (1)
 ここで、式中のMnは鋼中のMn含有量(単位:質量%)を示す;
 (B)前記熱間圧延工程で得られた熱延鋼板に酸洗処理を施す酸洗工程;および
 (C)前記酸洗工程で得られた熱延鋼板に、650℃以上800℃以下の温度域まで加熱し、次いで冷却して溶融亜鉛めっき処理を施し、さらに460℃以上600℃以下の温度域に保持して合金化処理を施す連続溶融亜鉛めっき工程。
 本発明により、高強度かつ優れた穴広げ性を有し、かつコスト的に量産可能な合金化溶融亜鉛めっき熱延鋼板を得ることができる。本発明に係る合金化溶融亜鉛めっき熱延鋼板は、伸びフランジ成形およびバーリング成形に適用可能な穴広げ性を有しているので、産業上、特に、自動車分野において広範に使用可能である。
実施例で採用した熱間圧延工程におけるヒートパターン(熱履歴)を示す。 実施例で採用した連続溶融亜鉛めっき工程におけるヒートパターンを示す。
 本発明に係る合金化溶融亜鉛めっき熱延鋼板についてより詳しく説明する。本明細書において、鋼の化学組成を規定する「%」は全て「質量%」である。
 1.鋼板の化学組成
 本発明に係る合金化溶融亜鉛めっき熱延鋼板のめっき基材である鋼板の化学組成は次の通りである。
 [C:0.01%以上0.20%以下]
 Cは、鋼板の強度を高める作用を有する。C含有量が0.01%未満では650MPa以上の引張強度を確保することが困難である。したがって、C含有量は0.01%以上とする。好ましくは0.05%以上である。一方、C含有量が0.20%を超えると、穴広げ性や溶接性の劣化が著しくなる。したがって、C含有量は0.20%以下とする。好ましくは0.12%以下である。
 [Si:0.50%以下]
 Siは、固溶強化元素であり、鋼板の強度を高める作用を有する。しかし、Si含有量が0.50%を超えると溶融亜鉛めっきとの濡れ性が著しく劣化する。したがって、Si含有量は0.50%以下とする。好ましくは0.20%以下、さらに好ましくは0.10%以下である。上記作用による効果を得るにはSi含有量を0.001%以上とすることが好ましい。
 [Mn:0.01%以上1.30%以下]
 Mnは、熱間脆性を惹き起こすSをMnSとして固定することにより無害化する作用を有する。Mn含有量が0.01%未満では、上記作用による効果を得ることが困難である。したがって、Mn含有量は0.01%以上とする。好ましくは0.1%以上である。一方、Mn含有量が1.30%を超えると、フェライト変態温度の低温化により、熱間圧延後の冷却過程において650℃以上の高温域でフェライト変態を促進させることによる穴広げ性の向上が困難となる。したがって、Mn含有量は1.30%以下とする。好ましくは1.0%以下、さらに好ましくは0.8%以下である。
 [P:0.05%以下]
 Pは、一般に不純物として含有される元素である。ただし、Pは固溶強化元素であり、鋼板の強度を高める作用を有するので、Pを積極的に含有させてもよい。しかし、P含有量が0.05%を超えると、溶接性および靱性の劣化が著しくなる。したがって、P含有量は0.05%以下とする。さらに好ましくは0.02%以下である。
 [S:0.01%以下]
 Sは、一般に不純物として含有される元素であり、鋼中でMnSを形成して、伸びフランジ性を劣化させる作用を有する。S含有量が0.01%を超えると伸びフランジ性の劣化が著しくなる。したがって、S含有量は0.01%以下とする。好ましくは0.005%以下、さらに好ましくは0.002%以下である。
 [N:0.01%以下]
 Nは、一般に不純物として含有される元素であり、その含有量が0.01%を超えると鋼中に粗大な窒化物を形成して伸びフランジ性を著しく劣化させる。したがって、N含有量は0.01%以下とする。好ましくは0.005%以下である。
 [Al:0.50%以下]
 Alは、鋼を脱酸することにより鋼板を健全にする作用を有する。しかし、0.50%を超えてAlを含有させても、上記作用による効果は飽和してしまい、いたずらにコスト上昇を招く。したがって、Al含有量は0.50%以下とする。好ましくは0.20%以下、さらに好ましくは0.10%以下である。上記作用による効果を得るにはAl含有量を0.001%以上とすることが好ましい。鋼中のAl含有量は、酸可溶性Al(sol.Al)の含有量を意味する。
 [Ti:0.05%以上0.50%以下]
 Tiは、本発明では重要な元素であって、鋼中で炭化物を形成することにより、フェライトを均一に析出強化する作用を有する。Ti含有量が0.05%未満では上記作用による効果が十分に得られない。したがって、Ti含有量は0.05%以上とする。好ましくは0.10%以上である。一方、0.50%を超えてTiを含有させても、上記作用による効果は飽和してしまい、いたずらにコスト上昇を招く。したがって、Ti含有量は0.50%以下とする。好ましくは0.30%以下である。
 以上に説明した元素に加えて、めっき基材である熱延鋼板は、以下に説明する任意元素をさらに含有していてもよい。
 [Cr:0.80%以下、Ni:0.50%以下、Cu:0.50%以下、Mo:0.50%以下およびB:0.0050%以下からなる群から選択される1種または2種以上]
 Cr、Ni、Cu、MoおよびBは、いずれも鋼の焼入性を高める作用を有し、鋼板の高強度化に有効な元素である。したがって、これらの元素の1種または2種以上を含有させてもよい。しかし、これらの元素の含有量が過剰であると、Mnと同様にフェライト変態温度の低温化を招き、熱間圧延後の冷却過程において650℃以上の高温域でフェライト変態を促進させることによる穴広げ性の向上が困難となる。したがって、これらの元素の含有量は上記のとおりとする。ここで、Bは、熱間圧延荷重を上昇させる作用が特に強いため、生産性の観点からはB含有量を0.0009%以下とすることが好ましい。なお、上記作用による効果をより確実に得るには、Cr:0.001%以上、Ni:0.001%以上、Cu:0.001%以上、Mo:0.001%以上およびB:0.0001%以上のいずれかの条件を満足させることが好ましい。
 [V:0.5%以下およびNb:0.1%以下からなる群から選択される1種または2種]
 VおよびNbは、Tiと同様に鋼中で炭化物を形成し、フェライトを均一に析出強化する作用を有する。したがって、Tiと比較して高価な元素ではあるが、これらの元素の1種または2種以上を含有させてもよい。しかし、Vについては0.5%を超えて含有させても、Nbについては0.1%を超えて含有させても、上記作用による効果は飽和してしまい、いたずらにコストの上昇を招く。したがって、V含有量は0.5%以下、Nb含有量は0.1%以下とする。なお、上記作用による効果をより確実に得るには、いずれかの元素を0.001%以上含有させることが好ましい。
 [Ca:0.01%以下およびBi:0.01%以下からなる群から選択される1種または2種]
 Caは、鋼中介在物を微細に分散させることにより、Biは、鋼中におけるMnやSi等の置換型合金元素のミクロ偏析を軽減させることにより、いずれも鋼板の穴広げ性を向上させる作用を有する。したがって、CaおよびBiの1種または2種を含有させてもよい。しかし、いずれの元素も0.01%を超えて含有させると、延性の劣化を招く。したがって、いずれの元素の含有量も0.01%以下とする。なお、上記作用による効果をより確実に得るには、いずれかの元素の含有量を0.0001%以上とすることが好ましい。
 なお、下記式(2)により規定されるC*を、下記式(3)を満足するようにすることが好ましい。このようにすることにより、より一層優れた穴広げ性を具備させることが可能となる。
  C*=C-12.01×{Ti/47.88+Nb/92.91+
     0.5×V/50.94}       ・・・  (2)
  -0.020≦C*≦0.050    ・・・  (3)
 ここで、C*は、鋼中C量から、Ti、NbおよびVを含有する炭化物(TiC、NbC、VC、(Ti,V)C、(Ti,Nb)C、(Ti,Nb,V)C)として存在するCを除いた、鋼中の非固定C量を意味する。また、式(2)中、Ti、Nb、およびVは鋼中の各々の含有量(単位:質量%)を示す。
 C*を-0.020以上とすることで、フェライト粒界におけるCが枯渇することを抑制し、穴広げ性を向上させることができる。C*は-0.010以上とすることがさらに好ましい。一方、C*を0.050以下とすることで、セメンタイトやパーライトといった第二相の生成を抑制し、穴広げ性を向上させることができる。C*は0.030以下とすることがさらに好ましい。
 2.鋼板の鋼組織
 本発明に係る合金化溶融亜鉛めっき熱延鋼板のめっき基材である熱延鋼板は、80面積%以上のポリゴナルフェライトを含有し、残部がベイニティックフェライト、ベイナイト、パーライトおよびセメンタイトからなる群から選択される1種または2種以上からなる鋼組織を有する。
 優れた穴広げ性と高い降伏比を確保するためにポリゴナルフェライト主体の鋼組織とする。主相であるポリゴナルフェライトの面積率が80%未満では、優れた穴広げ性を確保することが困難となる。また、良好な延性を得ることも困難となる。したがって、ポリゴナルフェライトの面積率は80%以上とする。この面積率は好ましくは90%以上、さらに好ましくは95%以上である。ポリゴナルフェライトの面積率の上限は特に規定されないが、99.9%以下とすることが好ましい。さらに好ましくは99.5%以下であり、特に好ましくは99%以下である。
 マルテンサイトおよび残留オーステナイトは、穴広げ性を著しく劣化させる作用を有し、また、降伏比を低下させる作用をも有する。したがって、ポリゴナルフェライトを除く残部組織は、マルテンサイトおよび残留オーステナイトを含有しないものとし、ベイニティックフェライト、ベイナイト、パーライトおよびセメンタイトからなる群から選択される1種または2種以上からなるものとする。これらの相および組織の割合は特に制限されない。一般に、残部組織はセメンタイトを含み、さらに場合によりベイニティックフェライトを含む場合が多い。ただし、そのような組織に制限されるものではない。
 鋼組織の面積率は、鋼板の代表的な組織を示す鋼板表面から板厚の1/4深さ位置で鋼板断面を観察することにより求める。
 3.合金化溶融亜鉛めっき熱延鋼板の機械特性
 鋼板の引張強度が650MPa未満では、近年の高強度化のニーズに応えることは困難である。したがって、本発明に係る合金化溶融亜鉛めっき熱延鋼板は、引張強度が650MPa以上である機械特性を有するものとする。引張強度は好ましくは680MPa以上であり、より好ましくは700MPa以上、さらに好ましくは750MPa以上である。
 なお、上述したように、高強度合金化溶融亜鉛めっき熱延鋼板には優れた穴広げ性が要求されることから、日本鉄鋼連盟規格JFS T 1001で規定される穴拡げ試験方法にしたがって求められる穴広げ率と引張強度との積が60000MPa・%以上である機械特性を有することが好ましい。穴広げ×引張強度の積は、伸びフランジ成形における強度-成形性バランスの指標となる。穴広げ率それ自体は、70%以上であることが好ましく、75%以上であることがより好ましい。
 さらには、上述したように、塑性変形することを避ける必要がある部品に適用される場合、高強度合金化溶融亜鉛めっき熱延鋼板には高降伏比が要求される場合もあることから、引張強度に対する0.2%耐力の割合である降伏比が80%以上である機械特性を有することがさらに好ましい。降伏比は、特に好ましくは85%以上である。
 4.合金化溶融亜鉛めっき層
 合金化溶融亜鉛めっき層については、特段の制限はなく、従来の合金化溶融亜鉛めっき熱延鋼板におけるめっき層と同様でよい。合金化溶融亜鉛めっき層の付着量およびFe濃度については、下記の製造方法に関する説明において述べる。
 5.製造方法
 本発明に係る合金化溶融亜鉛めっき熱延鋼板は、(A)熱間圧延工程、(B)酸洗工程、および(C)連続溶融亜鉛めっき工程を備える方法により製造される。製造条件を工程ごとに説明する。
 (A)熱間圧延工程
 [スラブ加熱温度:1100℃以上1350℃以下]
 上記化学組成を有するスラブを熱間圧延に供する際のスラブの加熱温度は1100℃以上1350℃以下とする。最終製品の強度および穴広げ性を確保するには、Ti、Nb、V等の炭化物形成元素を固溶状態のまま熱間圧延に供することが必要である。スラブ加熱温度が1100℃未満では、固溶状態が確保されないために、粗大な炭化物が形成され、最終製品において強度を確保することが困難となる。したがって、スラブ加熱温度は1100℃以上とする。一方、スラブ加熱温度が1350℃を超えると、上記効果が飽和するだけでなく、スケールロスが増大するため、コスト的に不利となる。したがって、スラブ加熱温度は1350℃以下とする。
 [圧延完了温度:850℃以上980℃以下]
 圧延完了温度が850℃未満では、変形抵抗が過大となって圧延が困難となる。したがって、圧延完了温度は850℃以上とする。一方、圧延完了温度が980℃を超えると、冷却後のフェライト粒径が粗大化してしまい、最終製品において目的とする強度を確保することが困難となる。したがって、圧延完了温度は980℃以下とする。
 [一次冷却停止温度:650℃以上800℃以下]
 上記熱間圧延の後、水冷設備により一次冷却処理を施す。一次冷却停止温度が650℃未満では、炭化物がフェライト母相に対して整合析出してしまい、最終製品において優れた穴広げ性を確保することが困難となる場合がある。したがって、一次冷却停止温度は650℃以上とする。一方、一次冷却停止温度が800℃超では、フェライト中に析出する炭化物が過度に粗大化してしまい、最終製品において目的とする強度を確保することが困難となる場合がある。したがって、一次冷却停止温度は800℃以下とする。なお、一次冷却速度については特に規定はしないが、実設備の制約上、10℃/秒以上200℃/秒未満とすることが好ましい。
[規則91に基づく訂正 04.06.2013] 
 [650℃以上800℃以下の温度域における滞留時間:Δt(秒)以上]
   Δt(秒)=5・Mn4 (Mnは鋼中のMn含有量(質量%))
 上記一次冷却により得られた熱延鋼板に対して、650℃以上800℃以下の温度域に、Mnの含有量の関数として規定される時間Δt秒以上の間、滞留させる。滞留の具体的態様としては、保温や加熱を行ってもよいが、生産性の観点からは空冷とすることが好ましい。したがって、以下では滞留時間を「中間空冷時間」ともいう。
 滞留時間がΔt秒未満では、ポリゴナルフェライトの生成が不十分となる場合があり、最終製品において優れた穴広げ性を確保することが困難となる場合がある。滞留時間の上限は特に規定する必要はないが、生産性の観点からは30秒間以下とすることが好ましい。
 [二次冷却停止温度・巻取温度:400℃以上650℃以下]
 上記滞留処理の後、水冷設備により二次冷却処理を施した後、巻き取って熱延コイルとする。二次冷却停止温度および巻取温度が650℃超では、巻取中にTi炭化物が過度に粗大化してしまい、最終製品において目的とする強度を確保することが困難となる場合がある。したがって、二次冷却停止温度および巻取温度は650℃以下とする。一方、二次冷却停止温度および巻取温度が400℃未満では、コイル内の冷却が不均一となり、コイル内の特性変動が顕著となり、歩留りが劣化する場合がある。したがって、二次冷却停止温度および巻取温度は400℃以上とする。なお、二次冷却速度については特に規定はしないが、実設備の制約上、10℃/秒以上200℃/秒未満とすることが好ましい。
 以上の条件を除いて、熱間圧延工程は常法に従って実施すればよい。例えば、熱間圧延に供するスラブは、上記化学組成を有する鋼を溶製した後、連続鋳造または鋳造および分塊圧延によってスラブとしたものでよい。生産性の観点からは、連続鋳造を用いることが好ましい。また、連続鋳造を用いる場合には、介在物制御により耐割れ性を向上させるために、鋳型内で外部磁場あるいは機械撹拌による溶鋼流動を行うことが好ましい。このようにして得られたスラブは、直接圧延に供してもよく、保温あるいは再加熱を行ったのちに熱間圧延に供してもよい。
 熱間圧延は一般的には多パス圧延とするのが普通である。1パス当たりの圧下量は10%以上60%以下とすることが好ましい。1パス当たりの圧下量を10%以上とすることにより、オーステナイトに多くの歪みを導入させることができるので、その後の変態によって生成するフェライトの結晶粒が微細化され、熱延鋼板の組織が微細化され、延性や穴広げ性が一層向上する。また、1パス当たりの圧下量を60%以下とすることにより、未再結晶オーステナイトに起因する集合組織の発達を抑制することができるので、延性や穴広げ性が一層向上する。熱延鋼板の板厚は用途に応じて設定すればよいが、一般には1.6~4.5mmの範囲内である。
 (B)酸洗工程
 熱間圧延工程で得られた熱延鋼板に、脱スケールのために酸洗工程において酸洗処理を施す。酸洗処理は常法に従って行えばよい。酸洗前または酸洗後に、平坦矯正やスケール剥離促進のためにスキンパス圧延を熱延鋼板に施してもよい。スキンパス圧延を施す場合の伸び率は特に規定しないが、0.1%以上3.0%未満とすることが好ましい。
 (C)連続溶融亜鉛めっき工程
 酸洗工程で得られた熱延鋼板に、加熱、溶融亜鉛めっき、および合金化処理を順次行う連続溶融亜鉛めっきを施して、合金化溶融亜鉛めっき熱延鋼板とする。
 [最高加熱温度:650℃以上800℃以下]
 連続溶融亜鉛めっきラインでは、めっき性を確保するために、溶融めっき前に鋼板に焼鈍を施す。一般的なライン内焼鈍設備は酸化炉(または弱酸化性の無酸化炉)と還元炉とを少なくとも備える。この焼鈍により鋼板表面は酸化-還元を経て活性化される。最高加熱温度が650℃未満では、鋼板表面の酸化-還元が不足し、めっき性が劣化する。したがって、最高加熱温度は650℃以上とする。一方、最高加熱温度が800℃を超えると、オーステナイト化が進行し、強度が著しく低下する。したがって、最高加熱温度は800℃以下とする。650℃以上800℃以下の温度域における保持時間は特に規定しないが、10秒間以上200秒間以下保持することが好ましい。
 前記最高加熱温度までの加熱後、溶融亜鉛めっき処理を施すために、溶融亜鉛めっき浴の浴温度近傍の温度域まで冷却する。この時の冷却速度は特に規定しないが、実設備の制約上、1℃/秒以上50℃/秒以下とすることが好ましい。また、冷却停止温度は、400℃以上550℃以下とすることが好ましい。
 冷却された鋼板に溶融亜鉛めっき浴の浸漬することにより溶融亜鉛めっき処理を施す。溶融亜鉛めっき処理は常法に従って行えばよい。例えば、めっき浴温:420℃以上500℃以下、侵入板温:420℃以上500℃以下、浸漬時間:5秒間以下とすればよい。溶融亜鉛めっき浴は、Alを0.08質量%以上0.2質量%以下含有する組成とすることが好ましい。その他、不可避的不純物であるFe、Si、Mg、Mn、Cr、TiおよびPb等がめっき浴中に含有されていても本発明に影響を及ぼさない。溶融亜鉛めっき浴への浸漬後にガスワイピング等の公知の方法によりめっきの目付量を制御することが好ましい。目付量は片面あたり25g/m2以上75g/m2以下とすることが好ましい。
 [合金化処理温度:460℃以上600℃以下]
 合金化処理温度が460℃未満では、合金化速度が過度に遅くなってしまい、生産性が損なわれる。さらに、合金化処理むらが発生する場合がある。したがって、合金化処理温度は460℃以上とする。一方、合金化処理温度が600℃を超えると、合金化が過度に進行し、鋼板のパウダリング性の劣化が著しくなる場合がある。したがって、合金化処理温度は600℃以下とする。合金化処理時間は特に規定しないが、通常は5~60秒とすることが好ましい。
 合金化溶融亜鉛めっき層中のFe濃度は、合金化熱処理条件およびめっき目付量によっても異なるが、好ましくは7~14質量%の範囲内である。
 合金化溶融亜鉛めっきラインの通板後は、鋼板の平坦矯正、表面粗度の調整のために、調質圧延を行ってもよい。この場合、延性の劣化を避けるため、伸び率を2%以下とすることが好ましい。
 表1に示す化学組成を有する鋼を実験室で溶製して鋼塊を鋳造し、この鋼塊から鍛造により鋼片を得た。次に、得られた鋼片に、試験用の熱間圧延設備にて、表2に示す加熱および冷却条件で熱間圧延を実施し、板厚が3.2mmの熱延鋼板を得た。この熱間圧延におけるヒートパターンを図1に示す。各時点での温度は、放射温度計により測定した表面温度である。水冷により行われた一次冷却および二次冷却における冷却速度は約40℃/秒であった。
 室温まで冷却された熱延鋼板に対して、脱スケール処理として一般的な塩酸酸洗液を用いた酸洗処理を施した後、冷間圧延を施すことなく、連続熱処理シミュレーターを用いて、表2に示す条件にて、図2に示す合金化溶融亜鉛めっきラインを模擬した熱処理を実施した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 こうして得られた、合金化溶融亜鉛めっきと同じ熱履歴を受けた熱延鋼板から、圧延方向直角方向にJIS5号引張試験片を採取して引張試験を行い、降伏強度(0.2%耐力)、引張強度、全伸びを測定し、降伏比(降伏強度/引張強度)を算出した。また、日本鉄鋼連盟規格のJFS T 1001穴拡げ試験方法に準じて穴広げ試験を行い、板厚を貫通する割れ発生までの穴広げ率を測定し、引張強度×穴広げ率の値を算出した。
 鋼組織観察は、鋼板圧延方向断面をナイタール液により腐食後、板厚の1/4深さ位置にて、光学顕微鏡あるいは走査型電子顕微鏡を用いて断面を撮影し、得られた組織写真から、ポイントカウンティング法によって各組織の面積率を算出した。以上の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 試験No.1~4、6、7、9、10、14~26は化学組成、製造条件、鋼組織の全てが本発明で規定する範囲に合致する発明例であり、所望の機械特性が得られている。
 これに対し、試験No.5は、連続溶融亜鉛めっき工程における最高加熱温度が本発明で規定する温度を超えるため、引張強度が不足する。試験No.8は、一次冷却停止後の中間空冷時間が本発明が規定する時間Δtに満たず、フェライト体積率が本発明で規定する範囲を下回るため、強度-穴広げ性バランスに劣る。試験No.11~13は、Mn含有量が本発明で規定する値を超えるため、穴広げ性が劣る。試験No.27は、Ti含有量が本発明で規定する範囲に満たないため、引張強度が不足する。

Claims (6)

  1.  熱延鋼板の表面に合金化溶融亜鉛めっき層を有する合金化溶融亜鉛めっき熱延鋼板であって、
     前記鋼板は、質量%で、C:0.01%以上0.20%以下、Si:0.50%以下、Mn:0.01%以上1.30%以下、P:0.05%以下、S:0.01%以下、N:0.01%以下、Al:0.50%以下、Ti:0.05%以上0.50%以下、を含有する化学組成と、80面積%以上のポリゴナルフェライトを含有し、残部がベイニティックフェライト、ベイナイト、パーライトおよびセメンタイトからなる群から選択される1種または2種以上からなる鋼組織とを有し、かつ
     前記合金化溶融亜鉛めっき熱延鋼板は、引張強度が650MPa以上である機械特性を有する
     ことを特徴とする合金化溶融亜鉛めっき熱延鋼板。
  2.  前記化学組成が、質量%で、Cr:0.80%以下、Ni:0.50%以下、Cu:0.50%以下、Mo:0.50%以下およびB:0.0050%以下からなる群から選択される1種または2種以上をさらに含有する、請求項1に記載の合金化溶融亜鉛めっき熱延鋼板。
  3.  前記化学組成が、質量%で、V:0.5%以下およびNb:0.1%以下からなる群から選択される1種または2種をさらに含有する、請求項1または請求項2に記載の合金化溶融亜鉛めっき熱延鋼板。
  4.  前記化学組成が、質量%で、Ca:0.01%以下およびBi:0.01%以下からなる群から選択される1種または2種をさらに含有する、請求項1~請求項3のいずれかに記載の合金化溶融亜鉛めっき熱延鋼板。
  5.  日本鉄鋼連盟規格JFS T 1001で規定される穴拡げ試験方法にしたがって求めた穴広げ率と引張強度との積が60000MPa・%以上であり、引張強度に対する0.2%耐力の割合である降伏比が80%以上である機械特性を有する、請求項1~4のいずれかに記載の合金化溶融亜鉛めっき熱延鋼板。
  6. [規則91に基づく訂正 04.06.2013] 
     下記工程(A)~(C)を備えることを特徴とする合金化溶融亜鉛めっき熱延鋼板の製造方法:
     (A)請求項1~請求項4のいずれかに記載の化学組成を有するスラブを1100℃以上1350℃以下とした後に熱間圧延を施し、850℃以上980℃以下の温度域で熱間圧延を完了して熱延鋼板とし、前記熱延鋼板に、水冷設備により650℃以上800℃以下の温度域まで冷却する一次冷却処理、650℃以上800℃以下の温度域に下記式(1)で規定されるΔt秒間以上滞留させる滞留処理、および、水冷設備により400℃以上650℃以下の温度域まで冷却する二次冷却処理を順次施した後に、400℃以上650℃以下の温度域で巻取る熱間圧延工程:
       Δt(秒)=5・Mn4   ・・・   (1)
     ここで、式中のMnは鋼中のMn含有量(単位:質量%)を示す;
     (B)前記熱間圧延工程で得られた熱延鋼板に酸洗処理を施す酸洗工程;および
     (C)前記酸洗工程で得られた熱延鋼板に、650℃以上800℃以下の温度域まで加熱し、次いで冷却して溶融亜鉛めっき処理を施し、さらに460℃以上600℃以下の温度域に保持して合金化処理を施す連続溶融亜鉛めっき工程。
PCT/JP2012/073163 2012-04-06 2012-09-11 合金化溶融亜鉛めっき熱延鋼板およびその製造方法 WO2013150669A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
ES12873840T ES2699996T3 (es) 2012-04-06 2012-09-11 Chapa de acero laminada en caliente galvano-recocida por inmersión en caliente y procedimiento para producir la misma
KR1020167027822A KR20160121599A (ko) 2012-04-06 2012-09-11 합금화 용융 아연 도금 열연 강판 및 그 제조 방법
KR1020147030899A KR20150000897A (ko) 2012-04-06 2012-09-11 합금화 용융 아연 도금 열연 강판 및 그 제조 방법
JP2013504046A JP5339005B1 (ja) 2012-04-06 2012-09-11 合金化溶融亜鉛めっき熱延鋼板およびその製造方法
PL12873840T PL2835440T3 (pl) 2012-04-06 2012-09-11 Blacha stalowa cienka walcowana na gorąco i cynkowana z przeżarzaniem zanurzeniowo na gorąco oraz sposób jej wytwarzania
US14/390,802 US10351942B2 (en) 2012-04-06 2012-09-11 Hot-dip galvannealed hot-rolled steel sheet and process for producing same
MX2014011901A MX366776B (es) 2012-04-06 2012-09-11 Lamina de acero, laminada en caliente, recocida y galvanizada por inmersion en caliente, y proceso para producir la misma.
IN8590DEN2014 IN2014DN08590A (ja) 2012-04-06 2012-09-11
BR112014024879-6A BR112014024879B1 (pt) 2012-04-06 2012-09-11 chapa de aço laminada a quente galvanizada por imersão a quente e processo para produzir a mesma
EP12873840.8A EP2835440B1 (en) 2012-04-06 2012-09-11 Hot-dip galvannealed hot-rolled steel sheet and process for producing same
CN201280073741.1A CN104364408B (zh) 2012-04-06 2012-09-11 合金化热浸镀锌热轧钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012087539 2012-04-06
JP2012-087539 2012-04-06

Publications (1)

Publication Number Publication Date
WO2013150669A1 true WO2013150669A1 (ja) 2013-10-10

Family

ID=49300186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073163 WO2013150669A1 (ja) 2012-04-06 2012-09-11 合金化溶融亜鉛めっき熱延鋼板およびその製造方法

Country Status (11)

Country Link
US (1) US10351942B2 (ja)
EP (1) EP2835440B1 (ja)
JP (1) JP5339005B1 (ja)
KR (2) KR20150000897A (ja)
CN (1) CN104364408B (ja)
BR (1) BR112014024879B1 (ja)
ES (1) ES2699996T3 (ja)
IN (1) IN2014DN08590A (ja)
MX (1) MX366776B (ja)
PL (1) PL2835440T3 (ja)
WO (1) WO2013150669A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017115212A (ja) * 2015-12-25 2017-06-29 Jfeスチール株式会社 表面外観及びめっき密着性に優れた高強度溶融めっき熱延鋼板およびその製造方法
CN107858497A (zh) * 2017-12-19 2018-03-30 温州市研制阀门厂 一种能够提高锻件质量的热处理工艺
US20180209007A1 (en) * 2015-07-31 2018-07-26 Nippon Steel & Sumitomo Metal Corporation High strength hot rolled steel sheet
CN116507751A (zh) * 2020-11-17 2023-07-28 浦项股份有限公司 高强度热轧钢板、热轧镀覆钢板及它们的制造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014017274A1 (de) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Höchstfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
KR101839227B1 (ko) * 2016-09-12 2018-03-16 주식회사 포스코 피로저항성이 우수한 파이프용 강재, 이의 제조방법 및 이를 이용한 용접강관
US11111568B2 (en) * 2016-09-30 2021-09-07 Nippon Steel Corporation Steel for cold forging and manufacturing method thereof
KR101889174B1 (ko) * 2016-12-13 2018-08-16 주식회사 포스코 저온역 버링성이 우수한 고항복비형 고강도강 및 그 제조방법
KR101977489B1 (ko) * 2017-11-03 2019-05-10 주식회사 포스코 저온인성이 우수한 용접강관용 강재, 용접후열처리된 강재 및 이들의 제조방법
KR102098478B1 (ko) * 2018-07-12 2020-04-07 주식회사 포스코 고강도, 고성형성, 우수한 소부경화성을 갖는 열연도금강판 및 그 제조방법
CN111690869A (zh) * 2019-03-11 2020-09-22 上海梅山钢铁股份有限公司 一种冷弯钢板桩用热轧钢板及其制造方法
CN110983196A (zh) * 2019-12-17 2020-04-10 首钢集团有限公司 一种600MPa级热轧镀锌高扩孔钢及其生产方法
EP3925771A1 (en) * 2020-06-16 2021-12-22 SSAB Technology AB High strength steel product and method of manufacturing the same
CN113215485B (zh) * 2021-04-15 2022-05-17 首钢集团有限公司 一种780MPa级热基镀层双相钢及其制备方法
CN113957337A (zh) * 2021-09-24 2022-01-21 河钢股份有限公司承德分公司 一种含钒热基镀锌板及其制备方法
EP4180544A1 (en) * 2021-11-11 2023-05-17 SSAB Technology AB A hot-rolled steel strip product and method for its production

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117834A (ja) 1991-10-25 1993-05-14 Kobe Steel Ltd 伸びフランジ性の優れた高強度熱延原板合金化溶融亜鉛めつき鋼板の製造方法
JPH05331596A (ja) 1992-05-27 1993-12-14 Kobe Steel Ltd 溶接部の疲労特性が優れた高強度熱延原板合金化溶融亜鉛めっき鋼板及びその製造方法
JP2002012947A (ja) 2000-06-28 2002-01-15 Nkk Corp 伸びフランジ性に優れた溶融亜鉛めっき鋼板およびその製造方法
JP2002322539A (ja) * 2001-01-31 2002-11-08 Nkk Corp プレス成形性に優れた薄鋼板およびその加工方法
JP2003321736A (ja) 2002-04-30 2003-11-14 Jfe Steel Kk 溶接性に優れた溶融亜鉛系めっき高張力熱延鋼板ならびにその製造方法および加工方法
WO2009118945A1 (ja) * 2008-03-26 2009-10-01 新日本製鐵株式会社 疲労特性と伸びフランジ性に優れた熱延鋼板およびその製造方法
WO2010131303A1 (ja) * 2009-05-11 2010-11-18 新日本製鐵株式会社 打抜き加工性と疲労特性に優れた熱延鋼板、溶融亜鉛めっき鋼板、およびそれらの製造方法
WO2011122030A1 (ja) * 2010-03-31 2011-10-06 Jfeスチール株式会社 加工性に優れた高張力溶融亜鉛めっき鋼板およびその製造方法
WO2011162418A1 (ja) * 2010-06-25 2011-12-29 Jfeスチール株式会社 加工性に優れた高張力熱延鋼板およびその製造方法
WO2011162412A1 (ja) * 2010-06-25 2011-12-29 Jfeスチール株式会社 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2783809B2 (ja) * 1988-06-28 1998-08-06 川崎製鉄株式会社 冷間加工性および溶接性に優れた引張り強さが55▲kg▼f/▲mm▼▲上2▼以上の高張力熱延鋼帯
JPH0826433B2 (ja) 1992-12-28 1996-03-13 株式会社神戸製鋼所 伸びフランジ性に優れた高強度熱延鋼板
JP3577987B2 (ja) * 1999-04-08 2004-10-20 Jfeスチール株式会社 プレス成形用熱延鋼板およびその製造方法
JP2001234282A (ja) * 2000-02-21 2001-08-28 Kawasaki Steel Corp 温間プレス成形性に優れた高張力熱延鋼板およびその製造方法
US20030015263A1 (en) * 2000-05-26 2003-01-23 Chikara Kami Cold rolled steel sheet and galvanized steel sheet having strain aging hardening property and method for producing the same
EP1176217B1 (en) 2000-07-24 2011-12-21 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. High-strength hot-rolled steel sheet superior in strech flange formability and method for production thereof
JP2004043978A (ja) * 2001-02-20 2004-02-12 Jfe Steel Kk 加工性に優れた高張力鋼板ならびにその製造方法および加工方法
US6669789B1 (en) * 2001-08-31 2003-12-30 Nucor Corporation Method for producing titanium-bearing microalloyed high-strength low-alloy steel
JP3760888B2 (ja) * 2002-04-30 2006-03-29 Jfeスチール株式会社 加工性に優れた高張力冷延鋼板ならびにその製造方法および加工方法
JP4649868B2 (ja) * 2003-04-21 2011-03-16 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
EP1681362B1 (en) * 2003-10-17 2012-08-22 Nippon Steel Corporation High strength thin steel sheet excellent in hole expansibility and ductility
WO2007018246A1 (ja) 2005-08-05 2007-02-15 Jfe Steel Corporation 高張力鋼板およびその製造方法
JP4853075B2 (ja) * 2006-03-28 2012-01-11 住友金属工業株式会社 ハイドロフォーム加工用熱延鋼板及びその製造法と、ハイドロフォーム加工用電縫鋼管
JP5142141B2 (ja) * 2008-01-24 2013-02-13 新日鐵住金株式会社 ハイドロフォーム加工用鋼管素材熱延鋼板およびハイドロフォーム加工用鋼管ならびにそれらの製造方法
ES2578952T3 (es) * 2008-03-27 2016-08-03 Nippon Steel & Sumitomo Metal Corporation Chapa de acero laminada en frío, chapa de acero galvanizado de alta resistencia y chapa de acero galvanizado por inmersión en caliente aleada de alta resistencia que tiene excelente conformabilidad y soldabilidad, y métodos para fabricar las mismas

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117834A (ja) 1991-10-25 1993-05-14 Kobe Steel Ltd 伸びフランジ性の優れた高強度熱延原板合金化溶融亜鉛めつき鋼板の製造方法
JPH05331596A (ja) 1992-05-27 1993-12-14 Kobe Steel Ltd 溶接部の疲労特性が優れた高強度熱延原板合金化溶融亜鉛めっき鋼板及びその製造方法
JP2002012947A (ja) 2000-06-28 2002-01-15 Nkk Corp 伸びフランジ性に優れた溶融亜鉛めっき鋼板およびその製造方法
JP2002322539A (ja) * 2001-01-31 2002-11-08 Nkk Corp プレス成形性に優れた薄鋼板およびその加工方法
JP2003321736A (ja) 2002-04-30 2003-11-14 Jfe Steel Kk 溶接性に優れた溶融亜鉛系めっき高張力熱延鋼板ならびにその製造方法および加工方法
WO2009118945A1 (ja) * 2008-03-26 2009-10-01 新日本製鐵株式会社 疲労特性と伸びフランジ性に優れた熱延鋼板およびその製造方法
WO2010131303A1 (ja) * 2009-05-11 2010-11-18 新日本製鐵株式会社 打抜き加工性と疲労特性に優れた熱延鋼板、溶融亜鉛めっき鋼板、およびそれらの製造方法
WO2011122030A1 (ja) * 2010-03-31 2011-10-06 Jfeスチール株式会社 加工性に優れた高張力溶融亜鉛めっき鋼板およびその製造方法
WO2011162418A1 (ja) * 2010-06-25 2011-12-29 Jfeスチール株式会社 加工性に優れた高張力熱延鋼板およびその製造方法
WO2011162412A1 (ja) * 2010-06-25 2011-12-29 Jfeスチール株式会社 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180209007A1 (en) * 2015-07-31 2018-07-26 Nippon Steel & Sumitomo Metal Corporation High strength hot rolled steel sheet
JP2017115212A (ja) * 2015-12-25 2017-06-29 Jfeスチール株式会社 表面外観及びめっき密着性に優れた高強度溶融めっき熱延鋼板およびその製造方法
WO2017110030A1 (ja) * 2015-12-25 2017-06-29 Jfeスチール株式会社 高強度溶融めっき熱延鋼板およびその製造方法
CN108474092A (zh) * 2015-12-25 2018-08-31 杰富意钢铁株式会社 高强度熔融镀敷热轧钢板及其制造方法
US11066721B2 (en) 2015-12-25 2021-07-20 Jfe Steel Corporation High-strength hot-dip coated hot-rolled steel sheet and method for manufacturing the same
CN107858497A (zh) * 2017-12-19 2018-03-30 温州市研制阀门厂 一种能够提高锻件质量的热处理工艺
CN116507751A (zh) * 2020-11-17 2023-07-28 浦项股份有限公司 高强度热轧钢板、热轧镀覆钢板及它们的制造方法

Also Published As

Publication number Publication date
US10351942B2 (en) 2019-07-16
KR20160121599A (ko) 2016-10-19
CN104364408A (zh) 2015-02-18
US20150140358A1 (en) 2015-05-21
BR112014024879B1 (pt) 2019-01-22
CN104364408B (zh) 2016-10-26
MX366776B (es) 2019-07-23
ES2699996T3 (es) 2019-02-13
IN2014DN08590A (ja) 2015-05-22
EP2835440A1 (en) 2015-02-11
PL2835440T3 (pl) 2019-02-28
JPWO2013150669A1 (ja) 2015-12-17
KR20150000897A (ko) 2015-01-05
EP2835440A4 (en) 2016-01-13
MX2014011901A (es) 2015-05-08
EP2835440B1 (en) 2018-08-29
JP5339005B1 (ja) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5339005B1 (ja) 合金化溶融亜鉛めっき熱延鋼板およびその製造方法
CA3133435C (en) High strength and high formability steel sheet and manufacturing method
JP6052471B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6052472B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
TWI464296B (zh) 加工性優異之高強度熔融鍍鋅鋼板及其製造方法
JP6179461B2 (ja) 高強度鋼板の製造方法
CA2762935C (en) High-strength galvannealed steel sheet having excellent formability and fatigue resistance and method for manufacturing the same
US20120175028A1 (en) High strength steel sheet and method for manufacturing the same
KR101264574B1 (ko) 딥 드로잉성이 우수한 고강도 강판의 제조 방법
US11332804B2 (en) High-strength cold-rolled steel sheet, high-strength coated steel sheet, and method for producing the same
JP5532088B2 (ja) 深絞り性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2013160928A1 (ja) 高強度鋼板およびその製造方法
WO2012105126A1 (ja) 加工性に優れた高降伏比を有する高強度冷延鋼板およびその製造方法
JP5817671B2 (ja) 熱延鋼板およびその製造方法
WO2012043420A1 (ja) 深絞り性および伸びフランジ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP6384623B2 (ja) 高強度鋼板およびその製造方法
US20230295761A1 (en) Steel sheet and steel sheet manufacturing method
JP2005120472A (ja) 高強度鋼板およびその製造方法
JP4265152B2 (ja) 伸びおよび伸びフランジ性に優れた高張力冷延鋼板およびその製造方法
JP2002241897A (ja) 降伏強さと破断伸びの変動が小さく高成形性と低降伏比とを有する鋼板およびその製造方法
JP4265153B2 (ja) 伸びおよび伸びフランジ性に優れた高張力冷延鋼板およびその製造方法
JP6492869B2 (ja) 溶接性と加工性に優れた高強度冷延鋼板とその製造方法
JP5870825B2 (ja) 合金化溶融亜鉛めっき熱延鋼板およびその製造方法
JP2023071938A (ja) 延性及び加工性に優れた高強度鋼板、及びその製造方法
KR20120121810A (ko) 고강도 강판 및 그 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013504046

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873840

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/011901

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147030899

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012873840

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014024879

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 14390802

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112014024879

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141006