[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013147015A1 - マルチアーム型ポリエチレングリコール誘導体、その中間体及び製造方法 - Google Patents

マルチアーム型ポリエチレングリコール誘導体、その中間体及び製造方法 Download PDF

Info

Publication number
WO2013147015A1
WO2013147015A1 PCT/JP2013/059243 JP2013059243W WO2013147015A1 WO 2013147015 A1 WO2013147015 A1 WO 2013147015A1 JP 2013059243 W JP2013059243 W JP 2013059243W WO 2013147015 A1 WO2013147015 A1 WO 2013147015A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
bond
polyethylene glycol
compound
Prior art date
Application number
PCT/JP2013/059243
Other languages
English (en)
French (fr)
Inventor
宏樹 吉岡
翠 平居
均 中津原
山本 裕二
Original Assignee
日油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日油株式会社 filed Critical 日油株式会社
Priority to DK13768770.3T priority Critical patent/DK2832765T3/en
Priority to EP13768770.3A priority patent/EP2832765B1/en
Priority to US14/389,459 priority patent/US9428609B2/en
Priority to CN201380018542.5A priority patent/CN104245791B/zh
Priority to KR1020147027529A priority patent/KR101918339B1/ko
Publication of WO2013147015A1 publication Critical patent/WO2013147015A1/ja
Priority to US15/216,573 priority patent/US9908971B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2609Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2696Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the process or apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3322Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33303Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group
    • C08G65/33306Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33331Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing imide group
    • C08G65/33337Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing imide group cyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33365Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing cyano group
    • C08G65/33368Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing cyano group acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33379Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing nitro group
    • C08G65/33386Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing nitro group cyclic
    • C08G65/33389Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing nitro group cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/30Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type branched

Definitions

  • the present invention relates to a multi-arm type polyethylene glycol derivative having a narrow molecular weight distribution, an intermediate thereof, and a production method.
  • Drug delivery system is an ideal drug administration form, and its therapeutic application is being promoted for various diseases.
  • drugs such as interferon and GCSF modified with polyethylene glycol are also on the market.
  • polyethylene glycol derivatives were generally of the type having one reactive functional group at the end of polyethylene glycol, but in recent years, multi-arms in which multiple functional groups have been introduced in one molecule.
  • Type polyethylene glycol is used. Since this multi-arm type polyethylene glycol has a plurality of reaction points with the drug, there is an advantage that the dose of the drug per unit weight can be increased.
  • the polyethylene glycol derivative contains a different number of functional groups, since the number of drugs modified by one molecule of polyethylene glycol is different, there is a problem that it is not uniform as a pharmaceutical product.
  • polyethylene glycol hydrogels are being studied for various applications in the bio / medical field, such as adhesive / hemostatic agents, anti-adhesion agents, sustained drug carriers, and regenerative medical materials.
  • this polyethylene glycol for hydrogel use a multi-arm type with more reactive sites to form a cross-linked structure with other molecules is useful, especially when hydrogel is used as a simple substance for sustained drug release or as a regenerative medical material Therefore, in order to strictly control the permeation and diffusion rate of a drug or a protein that is a growth factor of a cell from a gel, a quality with a narrower molecular weight distribution is desired.
  • a polyhydric alcohol corresponding to the desired number of functional groups.
  • 3-arm type is ring-opening polymerization of ethylene oxide using glycerin, etc. as a raw material
  • 4-arm type is pentaerythritol, etc.
  • these low-molecular materials contain almost no impurities, so they have a relatively high molecular weight distribution. It is possible to produce high-quality polyethylene glycol with a narrow width.
  • 6-arm and 8-arm type polyethylene glycols are known in which polyglycerol such as tetraglycerin and hexaglycerin is used as a low molecular weight raw material.
  • polyglycerols are usually a mixture containing multiple degrees of polymerization and isomers, but because of the high polarity, it is difficult to purify them into a single component, so when ethylene oxide is added, the molecular weight distribution is low. Quality multi-armed polyethylene glycol is produced.
  • Patent Document 1 6-arm or 8-arm type polyethylene glycol is synthesized using dipentaerythritol and tripentaerythritol obtained by dehydration condensation of pentaerythritol as raw materials.
  • Patent Document 2 6-arm type polyethylene glycol is synthesized using sorbitol as a raw material.
  • multi-arm type polyethylene glycol derivatives with a large number of branches are not only DDS but also important materials in new bio / medical fields.
  • An object of the present invention is to provide a multi-arm type polyethylene glycol derivative having a narrow molecular weight distribution, a production method thereof and an intermediate.
  • the present inventors have found a multi-arm type polyethylene glycol derivative having a novel skeleton, a production method thereof and an intermediate, and completed the present invention.
  • the present invention is as follows.
  • L represents a group selected from linear or branched alkylene, arylene, cycloalkylene groups and combinations thereof having 2 or more carbon atoms which may have an ether bond in the chain, and X represents the number of carbon atoms.
  • 5 or 7 represents a dehydroxylation residue of a linear sugar alcohol
  • m is the number of polyethylene glycol chains bonded to X, 4 or 6
  • n is the average number of moles of oxyethylene groups added
  • n represents an integer of 3 to 600
  • Y represents a single bond or an ester bond, a urethane bond, an amide bond, an ether bond, a carbonate bond, a secondary amino group, a urea bond, a thioether bond or a thioester bond in the chain or at the end.
  • a multi-arm type polyethylene glycol derivative represented by the following formula:
  • L represents a group selected from a linear or branched alkylene having 2 or more carbon atoms which may have an ether bond in the chain, an arylene, a cycloalkylene group, and combinations thereof, and k is 1 or 2 is an average addition mole number of oxyethylene group, n is an integer between 3 and 600, Y is a single bond, or ester bond, urethane bond, amide bond, ether bond, carbonate bond, The secondary amino group, the urea bond, the thioether bond or the thioester bond is an alkylene group which may have a chain or a terminal, and Z represents a chemically reactive functional group. Multi-arm type polyethylene glycol derivative.
  • L represents a group selected from a linear or branched alkylene, arylene, cycloalkylene group and combinations thereof having 2 or more carbon atoms which may have an ether bond in the chain
  • n represents oxyethylene.
  • Average number of moles of the group added n represents an integer of 3 to 600
  • Y represents a single bond, or ester bond, urethane bond, amide bond, ether bond, carbonate bond, secondary amino group, urea bond
  • Z represents a chemically reactive functional group.
  • Z is the following formula (a), formula (b), formula (c), formula (d), formula (e), formula (f), formula (g), formula (h), formula ( i), one or more groups selected from the group consisting of formula (j), formula (k), formula (l), formula (m), formula (n), formula (o) and formula (p)
  • R represents a hydrocarbon group which may contain a fluorine atom having 1 to 10 carbon atoms.
  • k represents 1 or 2.
  • L represents a group selected from a linear or branched alkylene having 2 or more carbon atoms which may have an ether bond in the chain, an arylene, a cycloalkylene group, and combinations thereof, and A is chlorine, A halogen atom selected from bromine or iodine, or a sulfone-based protecting group.
  • L represents a group selected from a linear or branched alkylene having 2 or more carbon atoms which may have an ether bond in the chain, an arylene, a cycloalkylene group, and combinations thereof, and k is 1 or 2 is shown.
  • L represents a group selected from a linear or branched alkylene having 2 or more carbon atoms which may have an ether bond in the chain, an arylene, a cycloalkylene group, and combinations thereof, and k is 1 or 2 is shown.
  • L represents a group selected from a linear or branched alkylene having 2 or more carbon atoms which may have an ether bond in the chain, an arylene, a cycloalkylene group, and combinations thereof, and k is 1 or 2 and n is the average number of moles of oxyethylene group added, and n is an integer between 3 and 600.
  • the novel multi-arm type polyethylene glycol derivative (1) according to the present invention has a hydrophobic linking group having an affinity for an organic solvent in the skeleton. Therefore, when ethylene oxide is added, it is dispersed in an organic solvent in spite of having a large number of hydroxyl groups, so that a polymerization reaction occurs uniformly and a high quality product having an extremely narrow molecular weight distribution can be provided.
  • novel multi-arm type polyethylene glycol derivative (1) according to the present invention can be purified at the stage of a low-polarity and low-viscosity intermediate in which a polyol is protected when a low-molecular raw material used as a raw material is synthesized. . Therefore, purification is simpler, and the purified low molecular weight raw material has almost no impurities having different numbers of functional groups, so that a high quality product having an extremely narrow molecular weight distribution can be provided.
  • L in the formula (1) of the present invention represents a group selected from a linear or branched alkylene having 2 or more carbon atoms which may have an ether bond in the chain, an arylene, a cycloalkylene group, and combinations thereof. .
  • alkylene group examples include 2 to 12 carbon atoms (more preferably 3 to 8 carbon atoms, still more preferably 4 alkylene atoms), and specific examples thereof include, for example, an ethylene group, a propylene group, and an isopropylene group.
  • the arylene group constituting L is a substituted or unsubstituted arylene group having 6 to 12 carbon atoms, and examples thereof include a phenylene group, a naphthylene group, and an anthrylene group.
  • Examples of the cycloalkylene group constituting L include a cycloalkylene group having 5 to 12 carbon atoms, and specific examples thereof include, for example, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, and a cyclooctylene group. , Cyclononylene group, cyclodecylene group and the like.
  • these groups may be combined, and in order to combine them, an ether bond may be included in the chain, and examples thereof include an alkyleneoxyalkylene group and an aryloxyalkylene group.
  • L is preferably a propylene group, isopropylene group, n-butylene group, s-butylene group, t-butylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, more preferably n-butylene. It is a group.
  • X represents a dehydroxylated residue of a linear sugar alcohol having 5 or 7 carbon atoms.
  • One of the carbon atoms of X is bonded to L through an ether bond, and the remaining carbon atoms are bonded to the polyethylene glycol chain through an ether bond.
  • X When synthesizing the raw material for the intermediate of the polyethylene glycol derivative, X must be an odd number, that is, the number of carbon atoms, because the sugar alcohol must protect the polyol structure other than one hydroxyl group to be bonded to L with a cyclic acetal. It must be a dehydroxylated residue of a 5 or 7 linear sugar alcohol.
  • linear sugar alcohol having 5 or 7 carbon atoms examples include D-arabinitol, L-arabinitol, xylitol, ribitol, boremitol, perseitol, and preferably xylitol.
  • m is the number of polyethylene glycol chains bonded to X, and represents 4 or 6, preferably 4.
  • k represents 1 or 2, and is preferably 1.
  • N is the average number of moles of oxyethylene group added, and n is an integer of 3 to 600. Preferably it is 5 to 300, more preferably 13 to 250.
  • the linker Y is a linker between the polyoxyethylene group and the reactive functional group Z.
  • the linker Y may not contain atoms, in which case it is defined as a single bond. These are not particularly limited as long as they are covalent bonds, and may be any bond that is usually used as a linker, but preferably an alkylene group alone, or an ether bond, an ester bond, a urethane bond, an amide bond, a carbonate bond, a secondary bond. Examples include an alkylene group having an amino group, urea bond, thioether bond, or thioester bond in the alkylene chain or at the terminal. The number of carbon atoms of the alkylene group is preferably 1-12.
  • a preferred example of this alkylene group is a structure such as (y1).
  • Preferable examples of the alkylene group having an ether bond include structures such as (y2).
  • Preferable examples of the alkylene group having an ester bond include structures such as (y3).
  • Preferable examples of the alkylene group having a urethane bond include structures such as (y4).
  • Preferable examples of the alkylene group having an amide bond include a structure such as (y5).
  • Preferable examples of the alkylene group having a carbonate bond include a structure such as (y6).
  • Preferable examples of the alkylene group having a secondary amino group include structures such as (y7).
  • Preferable examples of the alkylene group having a urea bond include structures such as (y8).
  • Preferable examples of the alkylene group having a thioether bond include structures such as (y9).
  • Preferable examples of the alkylene group having a thioester bond include
  • s is an integer from 0 to 12.
  • the range of s is 0 to 12.
  • s is preferably larger.
  • s is preferably smaller.
  • S in (y5), (y6), (y7), (y8), (y9), and (y10) may be the same or different.
  • Z is not particularly limited as long as it is a functional group capable of reacting with a hydroxyl group, amino group, mercapto group, aldehyde, carboxyl group, triple bond or azide group to form a chemical bond with another substance.
  • POLY ETYLENE GLYCOL
  • Z is carboxylic acid, active ester, active carbonate, aldehyde, amine, oxyamine, hydrazide, azide, unsaturated bond, thiol, dithiopyridine, sulfone, maleimide, vinyl sulfone, ⁇ -iodoacetyl, acrylate. , Isocyanate, isothiocyanate, epoxide) and the like.
  • Z is the following formula (a), formula (b), formula (c), formula (d), formula (e), formula (f), formula (g), formula (h), formula ( i), one or more groups selected from the group consisting of formula (j), formula (k), formula (l), formula (m), formula (n), formula (o) and formula (p) It is.
  • R represents a hydrocarbon group which may contain a fluorine atom having 1 to 10 carbon atoms
  • Z is a group (i), a group (ii), a group (iii), a group (iv), a group (v), a group (vi), a group (vi ).
  • the substance capable of forming a chemical bond with the compound of the present invention includes a biological substance or a raw material of a biological material.
  • the “biologically relevant substance” in the present invention specifically includes intercellular information transmission substances such as hormones and cytokines, animal cell constituents such as antibodies, enzymes, phospholipids, glycolipids, and body fluid structures such as blood and lymph.
  • Examples of the substance include, but are not limited to, substances existing in various living organisms, or substances converted into them in vivo, analogs thereof, or mimics thereof ( Imitation), or a substance that interacts with a substance present in a living body to express a physiological activity.
  • the “biological material” in the present invention refers to a material that directly contacts a living body or a living cell, and the raw material may be an organic or inorganic material.
  • specific examples include natural polymers such as hyaluronic acid, polyamino acids and polysaccharides, synthetic polymers such as polyester, polymethyl methacrylate and polyurethane, and ceramics such as hydroxyapatite and titanium oxide.
  • the present invention is not limited to this, and a substance having biocompatibility by itself or in combination is also intended.
  • the intermediate (4) of the multi-arm type polyethylene glycol derivative of the present invention can be produced, for example, as follows.
  • step (A) Etherification with 2 molecules of a compound in which a polyol structure other than one hydroxyl group of a sugar alcohol represented by the following formula (6) is protected with a cyclic acetal and a compound having two leaving groups A represented by the formula (7) Reaction is performed, and only the target product (8) is isolated in the purification step (step (A)). Subsequently, it hydrolyzes on acidic conditions, The cyclic acetal structure is deprotected and the compound shown by Formula (9) is obtained (process (B)). Next, 3 to 600 mol of ethylene oxide is polymerized to the newly generated hydroxyl group to obtain a compound represented by the formula (4) (step (C)).
  • the thus obtained hydroxyl group of the compound (4) having a narrow molecular weight distribution is functionalized to a group represented by -YZ that can be chemically reacted, whereby the narrow molecular weight distribution of the present invention is maintained.
  • a multi-arm type polyethylene glycol derivative of the formula (1) can be produced.
  • the molecular weight distribution of the intermediate compound (4) is maintained without significant change for the compound (1) into which the functional group is introduced because of the high stability of the polyether structure of the skeleton.
  • the compound of the formula (1) in which the functional group Z is (a) to (p) can be reacted with a biological material or a raw material of the biological material, but the functional group Z is (a) to (p).
  • the compound of the formula (1) as an intermediate can be further reacted with another compound to obtain the compound (1) of the present invention.
  • a compound having the functional group (a) or (n) can be obtained using the compound having the functional group (f) as an intermediate.
  • step (A) Although the production of compound (8) is not particularly limited, it can be preferably produced by the following step (A).
  • A may be any leaving group, such as a halogen atom such as chlorine, bromine, iodine, or a methanesulfonyl group, p-toluenesulfonyl group, trifluoromethanesulfonyl group. And a sulfone-based leaving group.
  • an alkali metal alkoxide salt may be formed, and examples thereof include t-butoxy potassium, sodium hydride, potassium hydride, metal sodium, hexamethyldisilazane, potassium carbonate and the like.
  • the reaction solvent is not particularly limited as long as it is an aprotic solvent, and examples thereof include tetrahydrofuran, dimethyl ether, methylene chloride, chloroform, dimethylformamide, toluene, benzene, and the like. More preferred are toluene and dimethylformamide.
  • the viscosity of the compound (6) is high, the stirring efficiency is lowered, and the etherification efficiency may be lowered.
  • impurities such as a vinyl base produced by E2 elimination from the compound (6) or compound (7) as a raw material exist. If these impurities are not removed, they are deacetalized in the next step, and the number of hydroxyl groups becomes different from that of the target product. When ethylene oxide is added, the molecular weight distribution is expanded. Therefore, it is preferable to remove and purify at this stage to separate the compound (8).
  • the purification method is not particularly limited, but it is preferable to remove impurities by a purification means such as liquid separation, column chromatography, distillation, supercritical extraction, etc., and further purification by liquid separation and column chromatography is further performed. preferable.
  • Examples of the carrier for purification by column chromatography include silica gel, chemically bonded silica gel, alumina, activated carbon, magnesium silicate, polyamide, and the like, with silica gel being preferred.
  • Examples of the developing solvent include hexane, toluene, diethyl ether, chloroform, dichloromethane, acetone, ethyl acetate, acetonitrile, ethanol, methanol, acetic acid and the like.
  • a mixed solvent thereof may be used, but a mixed solvent of hexane / ethyl acetate is preferable. is there.
  • the deprotection reaction of the cyclic acetal structure following etherification is not particularly limited, but can be preferably produced by the following step (B).
  • an organic solvent for example, methanol, ethanol, acetonitrile and the like can be used.
  • the acid catalyst include organic acids, inorganic acids, solid acids, and the like.
  • organic acids include acetic acid and trifluoroacetic acid
  • inorganic acids include phosphoric acid, sulfuric acid, and hydrochloric acid
  • solid acids include cations.
  • the exchange resin examples include Amberlyst, Diaion, and Dowex, and a solid acid that can be removed from the target product only by filtration after the reaction is preferable.
  • the reaction temperature is usually 20 to 100 ° C., preferably 40 to 90 ° C.
  • the reaction time is preferably 0.5 to 5 hours.
  • the ethylene oxide addition polymerization to the compound (9) having a hydroxyl group newly generated by deprotection of the cyclic acetal structure is not particularly limited, but preferably undergoes the following step (C1) and then step (C2). Can be manufactured.
  • Step (C1) A step of azeotropic dehydration with respect to compound (9) after dissolving in an aqueous solution containing preferably 50 mol% to 250 mol% of an alkali catalyst and adding an organic solvent, preferably at 50 to 130 ° C.
  • Step (C2) A step of obtaining compound (4) by reacting compound (9) with ethylene oxide, preferably at 50 to 130 ° C. in the presence of an organic solvent.
  • an alkali catalyst in a process (C1) Metal sodium, metal potassium, sodium hydride, potassium hydride, sodium hydroxide, potassium hydroxide, sodium methoxide, potassium methoxide, etc. are mentioned.
  • a solvent for dissolving the alkali catalyst in addition to water, a protic polar solvent such as methanol or ethanol can be used.
  • the concentration of the alkali catalyst is preferably 50 mol% to 250 mol% with respect to the compound (9). If it is less than 50 mol%, the polymerization reaction rate of ethylene oxide slows down, the thermal history increases, and impurities such as terminal vinyl ethers are generated.
  • the content of 50 mol% or more is necessary for producing a high-quality high molecular weight product. It is advantageous. If the catalyst exceeds 250 mol%, the viscosity of the reaction solution increases or solidifies during the alcoholation reaction, and the stirring efficiency tends to decrease, and the alcoholation tends not to be promoted.
  • the organic solvent for azeotropic dehydration is not particularly limited as long as it is an aprotic solvent such as toluene, benzene, xylene, acetonitrile, ethyl acetate, tetrahydrofuran, chloroform, methylene chloride, dimethyl sulfoxide, dimethylformamide, and dimethylacetamide.
  • azeotropic temperature is preferably 50 to 130 ° C. When the temperature is lower than 50 ° C., the viscosity of the reaction solution increases and moisture tends to remain.
  • Residual moisture produces a polyethylene glycol compound derived from moisture, so that the molecular weight distribution is widened and the quality may be lowered. On the other hand, if it is higher than 130 ° C, a condensation reaction may occur. When moisture remains, it is preferable to repeat azeotropic dehydration repeatedly.
  • Step (C2) is performed in an organic solvent.
  • the reaction solvent is not particularly limited as long as it is an aprotic solvent such as toluene, benzene, xylene, acetonitrile, ethyl acetate, tetrahydrofuran, chloroform, methylene chloride, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, etc. And toluene that can be easily removed by vacuum drying.
  • the reaction time is preferably 1 to 24 hours. If it is shorter than 1 hour, the catalyst may not be completely dissolved. If it is longer than 24 hours, the above-described decomposition reaction may occur.
  • the reaction temperature is preferably 50 to 130 ° C. When it is lower than 50 ° C., the rate of the polymerization reaction is slow, and the thermal history increases, whereby the quality of the compound (4) tends to be lowered. On the other hand, when the temperature is higher than 130 ° C., side reactions such as terminal vinyl etherification occur during polymerization, and the compound (4) tends to decrease. Since the viscosity of the reaction solution increases as the molecular weight increases during the polymerization, an aprotic solvent, preferably toluene, may be added as appropriate. Step (C2) may be repeated a plurality of times. In that case, ethylene oxide can be added to the reaction mixture remaining in the reaction vessel, and the reaction can be performed in the same manner as described above. By adjusting the number of repetitions, the average added mole number n can be adjusted.
  • the polydispersity Mw / Mn from the elution start point to the elution end point is Mw / Mn ⁇ 1.05 Satisfy the relationship. More preferably Mw / Mn ⁇ 1.03 Is satisfied.
  • the compound of the formula (1) of the present invention synthesized using the compound of the formula (4) as an intermediate is also polydispersity Mw / from the elution start point to the elution end point when gel permeation chromatography is performed in the same manner. Mn Mw / Mn ⁇ 1.05 Satisfy the relationship. More preferably, Mw / Mn ⁇ 1.03 is satisfied.
  • Mw / Mn> 1.05 it means that the compound has a broad molecular weight distribution because it contains polyethylene glycols with different numbers of arms, or ethylene oxide addition has not occurred uniformly. This is because the number of modifications of the bio-related substance in one molecule of polyethylene glycol is different when binding to the bio-related substance, and when used as a raw material for a drug sustained release carrier or a regenerative medical material hydrogel, Since it becomes difficult to strictly control the permeation and diffusion rate, it may cause side effects as pharmaceuticals and biomaterials.
  • the organic base and inorganic base need not be used.
  • the ratio of the organic base and inorganic base used is not particularly limited, but is preferably equimolar or more with respect to the hydroxyl group of the compound (4).
  • An organic base may be used as a solvent.
  • W in (d1) and (m1) is a halogen atom selected from chlorine, bromine and iodine, preferably chlorine.
  • the use ratio of the compounds represented by the general formulas (d1) and (m1) is not particularly limited, but is preferably equimolar or more, more preferably equimolar to 50 molar relative to the hydroxyl group of the compound (4). It is preferable to make it react.
  • the reaction temperature is preferably 0 to 300 ° C, more preferably 20 to 150 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • the produced compound may be purified by a purification means such as extraction, recrystallization, adsorption treatment, reprecipitation, column chromatography, supercritical extraction or the like.
  • W represents a halogen atom selected from chlorine, bromine and iodine.
  • R represents a hydrocarbon group which may contain a fluorine atom having 1 to 10 carbon atoms.
  • the divinyl sulfone (o) can be obtained by reacting the compound (4) with divinyl sulfone in an aprotic solvent such as toluene under a base catalyst.
  • the base catalyst may be either an inorganic base or an organic base, and is not particularly limited. Examples thereof include t-butoxy potassium, sodium hydride, potassium hydride, metallic sodium, hexamethyldisilazane, and potassium carbonate.
  • the ratio of the base catalyst used is not particularly limited, but it is preferably used in the range of 0.1 to 50 mol with respect to the hydroxyl group of the compound (4).
  • the reaction temperature is preferably 0 to 100 ° C, more preferably 20 to 40 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • the produced compound may be purified by a purification means such as extraction, recrystallization, adsorption treatment, reprecipitation, column chromatography, supercritical extraction or the like.
  • the carboxyl body (a) is obtained by reacting the compound (4) or the amine body (f) described below with a dicarboxylic anhydride such as succinic anhydride or glutaric anhydride in the above-mentioned aprotic solvent or without solvent. be able to.
  • a dicarboxylic anhydride such as succinic anhydride or glutaric anhydride in the above-mentioned aprotic solvent or without solvent.
  • the ratio of dicarboxylic acid anhydride used is not particularly limited, but is preferably equimolar or more, more preferably equimolar to 5 molar relative to the hydroxyl group of compound (4).
  • the reaction temperature is preferably 0 to 200 ° C, more preferably 20 to 150 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 12 hours.
  • an organic base such as triethylamine, pyridine, dimethylaminopyridine, or an inorganic base such as sodium carbonate, sodium hydroxide, sodium hydrogen carbonate, sodium acetate, potassium carbonate, potassium hydroxide may be used as a catalyst.
  • the ratio of the catalyst to be used is preferably 0.1 to 50% by mass, more preferably 0.5 to 20% by mass with respect to the compound (4).
  • the compound thus produced may be purified by a purification means such as extraction, recrystallization, adsorption treatment, reprecipitation, column chromatography, supercritical extraction or the like, or when used as a raw material for a condensation reaction. It may be used.
  • the carboxyl form (a) is obtained by reacting the compound (4) with a halogen-substituted carboxylic acid ester such as ethyl 6-bromohexanoate or ethyl 7-bromoheptanoate in the above-mentioned aprotic solvent or without solvent.
  • a halogen-substituted carboxylic acid ester such as ethyl 6-bromohexanoate or ethyl 7-bromoheptanoate in the above-mentioned aprotic solvent or without solvent.
  • the ratio of the halogen-substituted carboxylic acid ester to be used is not particularly limited, but is preferably equimolar or more, more preferably equimolar to 30 molar relative to the hydroxyl group of the compound (4).
  • the reaction temperature is preferably 0 to 200 ° C, more preferably 20 to 150 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 12 hours.
  • an organic base such as triethylamine, pyridine, dimethylaminopyridine, or an inorganic base such as sodium carbonate, sodium hydroxide, sodium hydrogen carbonate, sodium acetate, potassium carbonate, potassium hydroxide may be used as a catalyst.
  • the proportion of the catalyst used is preferably 0.1 to 500% by mass, more preferably 0.5 to 300% by mass, based on the compound (4).
  • hydrolysis of the ester is performed by adding an aqueous solution such as sodium hydroxide or potassium hydroxide in the case of an organic base, and water in the case of an inorganic base.
  • the reaction temperature is preferably 0 to 100 ° C, more preferably 20 to 100 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 12 hours.
  • neutralization is performed with hydrochloric acid or sulfuric acid.
  • the compound may be purified by the aforementioned purification means, or may be used as it is when used as a raw material for the condensation reaction.
  • the succinimide (b) is obtained by subjecting the carboxyl (a) to a condensation reaction with N-hydroxysuccinimide in the presence of a condensing agent such as DCC or EDC in the above-mentioned aprotic solvent or without solvent.
  • a condensing agent such as DCC or EDC
  • DCC condensing agent
  • a condensing agent Preferably it is DCC.
  • the proportion of DCC used is preferably equimolar or more, more preferably equimolar to 5 molar relative to the carboxyl group.
  • the use ratio of N-hydroxysuccinimide is preferably equimolar or more, more preferably equimolar to 5 molar relative to the carboxyl group.
  • the reaction temperature is preferably 0 to 100 ° C, more preferably 20 to 80 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 12 hours.
  • the produced compound may be purified by a purification means such as extraction, recrystallization, adsorption treatment, reprecipitation, column chromatography, supercritical extraction or the like.
  • the succinimide carbonate (c) is obtained by using compound (4) and an organic base such as triethylamine, pyridine, 4-dimethylaminopyridine, sodium carbonate, sodium hydroxide, carbonic acid in the above-mentioned aprotic solvent or in the absence of a solvent. It can be obtained by reacting an inorganic base such as sodium hydrogen, sodium acetate, potassium carbonate or potassium hydroxide with N, N′-disuccinimide carbonate. Further, the organic base and inorganic base need not be used.
  • the ratio of the organic base and inorganic base used is not particularly limited, but is preferably equimolar or more with respect to the hydroxyl group of the compound (4).
  • An organic base may be used as a solvent.
  • the proportion of N, N′-disuccinimide carbonate used is preferably equimolar or more, more preferably equimolar to 5 molar relative to the hydroxyl group of compound (4).
  • the reaction temperature is preferably 0 to 100 ° C, more preferably 20 to 80 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 12 hours.
  • the produced compound may be purified by a purification means such as extraction, recrystallization, adsorption treatment, reprecipitation, column chromatography, supercritical extraction or the like.
  • the amine compound (f) was obtained by adding the compound (4) in a solvent such as water or acetonitrile, using an inorganic base such as sodium hydroxide or potassium hydroxide as a catalyst, and adding acrylonitrile or the like to obtain a nitrile compound, and then in an autoclave. It can be obtained by performing a hydrogenation reaction of a nitrile group under a nickel or palladium catalyst.
  • the ratio of the inorganic base used in obtaining the nitrile body is not particularly limited, but is preferably 0.01 to 50% by mass with respect to the compound (4).
  • the proportion of acrylonitrile used is not particularly limited, but is preferably equimolar or more, more preferably equimolar to 50 molar relative to the hydroxyl group of compound (4). Further, acrylonitrile may be used as a solvent.
  • the reaction temperature is preferably ⁇ 50 to 100 ° C., more preferably ⁇ 20 to 60 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • the reaction solvent in the subsequent hydrogenation reaction of the nitrile body is not particularly limited as long as it is a solvent that does not participate in the reaction, but is preferably toluene.
  • the proportion of nickel or palladium catalyst used is not particularly limited, but is 0.05 to 30% by mass, preferably 0.5 to 20% by mass, based on the nitrile body.
  • the reaction temperature is preferably 20 to 200 ° C, more preferably 50 to 150 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • the hydrogen pressure is preferably 2 to 10 MPa, more preferably 3 to 8 MPa.
  • ammonia may be added to the reaction system.
  • the ammonia pressure in the case of adding ammonia is not particularly limited, but is 0.1 to 10 MPa, more preferably 0.3 to 2 MPa.
  • the produced compound may be purified by a purification means such as extraction, recrystallization, adsorption treatment, reprecipitation, column chromatography, supercritical extraction or the like.
  • the amine body (f) can also be obtained by reacting the sulfonate body (m) with aqueous ammonia.
  • the reaction is carried out in ammonia water, and the concentration of ammonia is not particularly limited, but is preferably in the range of 10 to 40% by mass.
  • the usage ratio of the aqueous ammonia is preferably 1 to 300 times the mass of the sulfonate body (m).
  • the reaction temperature is preferably 0 to 100 ° C, more preferably 20 to 80 ° C.
  • the reaction time is preferably 10 minutes to 72 hours, more preferably 1 to 36 hours.
  • the amine body (f) can also be obtained by reacting the sulfonate body (m) with ammonia in an autoclave.
  • the reaction solvent Preferably methanol and ethanol are mentioned.
  • the amount of ammonia is preferably 10 to 300% by mass, more preferably 20 to 200% by mass, based on the sulfonate form (m).
  • the reaction temperature is preferably 50 to 200 ° C, more preferably 80 to 150 ° C.
  • the reaction time is preferably 10 minutes to 24 hours, more preferably 30 minutes to 12 hours.
  • the resulting compound may be purified by the aforementioned purification means.
  • the amine body (f) can also be obtained by bonding the compound (4) and phthalimide using a Mitsunobu reaction in an aprotic solvent and deprotecting with a primary amine.
  • the reaction conditions for the Mitsunobu reaction are not particularly limited, but the reaction solvent is preferably chloroform or dichloromethane.
  • the proportions of triphenylphosphine and azocarboxylic acid ester used are not particularly limited, but are equimolar or more, preferably equimolar to 50 molar relative to the hydroxyl group of compound (4).
  • the reaction temperature is preferably 0 to 100 ° C., more preferably 10 to 50 ° C.
  • the reaction time is preferably 10 minutes to 72 hours, more preferably 30 minutes to 6 hours.
  • the primary amine to be used is not particularly limited, but preferably ammonia, methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, cyclohexylamine, ethanolamine, propanolamine, butanolamine, ethylenediamine. Etc.
  • these primary amines may be used as a solvent.
  • the proportion of primary amine used is not particularly limited, but is preferably equimolar or more, preferably equimolar to 500 molar relative to the hydroxyl group of compound (4).
  • Methanol is preferable.
  • the reaction temperature is preferably 0 to 100 ° C, more preferably 20 to 80 ° C.
  • the reaction time is preferably 10 minutes to 72 hours, more preferably 1 to 10 hours.
  • the resulting compound may be purified by the aforementioned purification means.
  • the oxyamine body (g) is converted to an oxyphthalimide body by reacting the active carbonate body (c) or (d) with a compound (g1) represented by the following general formula in the presence of a base catalyst such as triethylamine or pyridine. It can be obtained by dephthalimidization in the presence of a primary amine.
  • the reaction solvent for oxyphthalimidization is not particularly limited as long as it is a non-solvent or a polar solvent, but is preferably dimethylformamide.
  • the use ratio of the base catalyst is not particularly limited, but is preferably equimolar or more, more preferably equimolar to 20 molar relative to the active carbonate group.
  • the proportion of compound (g1) used is preferably equimolar or more, more preferably equimolar to 20 molar relative to the active carbonate group.
  • the reaction temperature is preferably 0 to 100 ° C, more preferably 20 to 80 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 12 hours.
  • the produced compound may be purified by a purification means such as extraction, recrystallization, adsorption treatment, reprecipitation, column chromatography, supercritical extraction or the like, or may be proceeded to the next step without purification.
  • the reaction solvent for dephthalimidation is not particularly limited, but methanol is preferable.
  • the primary amine to be used is not particularly limited, but preferably ammonia, methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, cyclohexylamine, ethanolamine, propanolamine, butanolamine, ethylenediamine and the like can be mentioned. Of course, these primary amines may be used as a solvent.
  • the use ratio in the presence of the primary amine is not particularly limited, but is preferably equimolar or more, more preferably from equimolar to 50 molar relative to the active carbonate group.
  • the reaction temperature is preferably 0 to 100 ° C, more preferably 20 to 80 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 12 hours.
  • the resulting compound may be purified by the aforementioned purification means.
  • the maleimide body (n) is obtained by reacting the amine body (f) with maleic anhydride in the above-mentioned aprotic solvent or in the absence of a solvent to obtain a maleamide body, followed by a ring-closing reaction using acetic anhydride and sodium acetate as catalysts. Can be obtained.
  • the proportion of maleic anhydride used in the maleamidation reaction is not particularly limited, but is preferably equimolar or more, more preferably equimolar to 5 molar relative to the amino group.
  • the reaction temperature is preferably 0 to 200 ° C, more preferably 20 to 120 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 12 hours.
  • the produced compound may be purified by a purification means such as extraction, recrystallization, adsorption treatment, reprecipitation, column chromatography, supercritical extraction or the like, or may be proceeded to the next step without purification.
  • the reaction solvent in the subsequent ring closure reaction is not particularly limited, but an aprotic solvent or acetic anhydride is preferable.
  • the ratio of sodium acetate used is not particularly limited, but is preferably equimolar or more, more preferably equimolar to 50 molar relative to the maleamide group.
  • the reaction temperature is preferably 0 to 200 ° C, more preferably 20 to 150 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 12 hours.
  • the resulting compound may be purified by the aforementioned purification means.
  • the maleimide body (n) can also be obtained by reacting the compound (n1) represented by the following general formula with the amine body (f) in the above-mentioned aprotic solvent or without a solvent.
  • the use ratio of (n1) is preferably equimolar or more of the amino group (f), more preferably equimolar to 5 molar.
  • the reaction temperature is preferably 0 to 200 ° C, more preferably 20 to 80 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 12 hours. Light may be shielded during the reaction.
  • the resulting compound may be purified by the aforementioned purification means.
  • the aldehyde form (e) is obtained by reacting the sulfonate form (m) with the compound (e1) represented by the following general formula in the above-mentioned aprotic solvent or in the absence of a solvent to obtain an acetal form, and then subjecting to an acidic condition. Can be obtained by hydrolysis.
  • the proportion of (e1) used is preferably equimolar or more of the sulfonate group, more preferably equimolar to 50 molar.
  • (e1) can be prepared from the corresponding alcohol using metal sodium, metal potassium, sodium hydride, potassium hydride, sodium methoxide, potassium-t-butoxide and the like.
  • the reaction temperature is preferably 0 to 300 ° C, more preferably 20 to 150 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • the (e2) When using the compound (e2), after converting the hydroxyl group of the compound (4) to an alcoholate by the above method, the (e2) is converted into the hydroxyl group of the compound (4) in an aprotic solvent or in the absence of a solvent.
  • the acetal compound can be obtained by carrying out the reaction at an equimolar amount or more, preferably equimolar to 100 molar proportions.
  • the reaction temperature is preferably 0 to 300 ° C, more preferably 20 to 150 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, particularly preferably 30 minutes to 24 hours.
  • an acetal body is obtained by reacting the carboxyl body (a), the succinimide body (b), or the activated carbonate body (c), (d) and (e3). Can do.
  • the solvent is not particularly limited, but is preferably carried out in an aprotic solvent.
  • the proportion of soot (e3) used is preferably equimolar or more of the carboxyl group, succinimide group or active carbonate group, more preferably equimolar to 10 molar.
  • the reaction temperature is preferably ⁇ 30 to 200 ° C., more preferably 0 to 150 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • a condensing agent such as DCC or EDC may be used as appropriate.
  • the produced compound may be purified by a purification means such as extraction, recrystallization, adsorption treatment, reprecipitation, column chromatography, supercritical extraction or the like, or may be proceeded to the next step without purification.
  • the subsequent aldehyde reaction can be obtained by converting the acetal form into an aqueous solution of 0.1 to 50% and hydrolyzing it in an aqueous solution adjusted to pH 1 to 4 with an acid such as acetic acid, phosphoric acid, sulfuric acid or hydrochloric acid.
  • the reaction temperature is preferably -20 to 100 ° C, more preferably 0 to 80 ° C.
  • the reaction time is preferably 10 minutes to 24 hours, more preferably 30 minutes to 10 hours.
  • the reaction may be carried out in the dark.
  • the resulting compound may be purified by the aforementioned purification means.
  • R 2 and R 3 are hydrocarbon groups having 1 to 3 carbon atoms, which may be the same or different, and may form a ring with each other.
  • M is sodium. Alternatively, it is potassium, A is a halogen atom selected from chlorine, bromine, or iodine, or a sulfone-based protecting group, and t is an integer of 1 to 12.
  • the mercapto body (k) can be obtained by reacting the sulfonate body (m) with a thialating agent such as thiourea to form a thiazolium salt, followed by hydrolysis under alkaline conditions.
  • a thialating agent such as thiourea
  • the thialation reaction is carried out in water, acetonitrile or an alcohol solvent such as methanol, ethanol, 2-propanol or in the absence of a solvent.
  • the use ratio of the chelating agent is preferably equimolar or more, more preferably in the range of equimolar to 50 molar relative to the sulfonate group.
  • the reaction temperature is preferably 0 to 300 ° C, more preferably 20 to 150 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • Subsequent hydrolysis can be obtained by making 0.1 to 50% aqueous solution of thiazolium salt in an aqueous solution adjusted to pH 10 to 14 with an alkali such as sodium hydroxide, potassium hydroxide or potassium carbonate.
  • the reaction temperature is preferably -20 to 100 ° C, more preferably 0 to 80 ° C.
  • the reaction time is preferably 10 minutes to 24 hours, more preferably 30 minutes to 10 hours.
  • the reaction may be carried out in the dark.
  • the produced compound may be purified by a purification means such as extraction, recrystallization, adsorption treatment, reprecipitation, column chromatography, supercritical extraction or the like.
  • the mercapto form (k) may be obtained by reacting the sulfonate form (m) with the compound (k1) represented by the following general formula in the above-mentioned aprotic solvent or in the absence of a solvent and decomposing it with a primary amine.
  • the proportion of (k1) used is preferably equimolar or more, more preferably equimolar to 50 molar relative to the sulfonate group.
  • the reaction temperature is preferably 0 to 300 ° C., more preferably 20 to 80 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • the subsequent alkaline decomposition with a primary amine is carried out in an aprotic solvent or in the absence of a solvent.
  • the primary amine to be used is not particularly limited, but preferably ammonia, methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, cyclohexylamine, ethanolamine, propanolamine, butanolamine, ethylenediamine and the like can be mentioned.
  • these primary amines may be used as a solvent.
  • the resulting compound may be purified by the aforementioned purification means.
  • the dipyridyl disulfide (l) can be obtained by reacting the mercapto form (k) with 2,2-dipyridyl disulfide.
  • the reaction solvent is not particularly limited, but is preferably performed in an alcohol solvent such as methanol, ethanol, 2-propanol.
  • the use ratio of 2,2-dipyridyl disulfide is preferably equimolar or more of the mercapto group, more preferably equimolar to 50 molar.
  • the reaction temperature is preferably ⁇ 30 to 100 ° C., more preferably 0 to 60 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • the produced compound may be purified by a purification means such as extraction, recrystallization, adsorption treatment, reprecipitation, column chromatography, supercritical extraction or the like.
  • the iodoacetyl form (p) can be obtained by reacting the amine form (f) with iodoacetic anhydride in the above-mentioned aprotic solvent or without solvent.
  • the ratio of iodoacetic anhydride to be used is not particularly limited, but is preferably equimolar or more of amino group, more preferably equimolar to 5 molar.
  • the reaction temperature is preferably 0 to 200 ° C, more preferably 20 to 120 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 12 hours.
  • the produced compound may be purified by a purification means such as extraction, recrystallization, adsorption treatment, reprecipitation, column chromatography, supercritical extraction or the like.
  • the iodoacetyl (p) can also be obtained by subjecting the amine (f) to a condensation reaction with iodoacetic acid in the presence of a condensing agent such as DCC or EDC in the above-mentioned aprotic solvent or in the absence of a solvent. Can do.
  • a condensing agent such as DCC or EDC
  • DCC condensing agent
  • the proportion of DCC used is preferably equimolar or more of amino group, more preferably equimolar to 5 molar.
  • the proportion of iodoacetic acid used is preferably equimolar or more of the amino group, more preferably equimolar to 5 molar.
  • the reaction temperature is preferably 0 to 100 ° C, more preferably 20 to 80 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 12 hours.
  • the resulting compound may be purified by the aforementioned purification means
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 12 hours.
  • the produced compound may be purified by a purification means such as extraction, recrystallization, adsorption treatment, reprecipitation, column chromatography, supercritical extraction or the like.
  • the acetylene isomer (j) is a compound represented by the following general formula (j1) in the aprotic solvent described above or in the absence of a solvent, the succinimide isomer (b), or the activated carbonate isomer (c) or (d) isomer. ).
  • the ratio of (j1) used is not particularly limited, but it is equimolar or more, preferably equimolar to 50 molar (j1) of the succinimide group or the active carbonate group.
  • the reaction temperature is preferably 0 to 300 ° C, more preferably 20 to 150 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • the produced compound may be purified by a purification means such as extraction, recrystallization, adsorption treatment, reprecipitation, column chromatography, supercritical extraction or the like.
  • u is an integer of 1 to 5.
  • R 4 represents a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms.
  • the azide (i) can be obtained by reacting the sulfonate (m) with sodium azide in the above-mentioned aprotic solvent or in the absence of a solvent.
  • the proportion of sodium azide used is equimolar or more, preferably equimolar to 50 molar, of the sulfonate group.
  • the reaction temperature is preferably 0 to 300 ° C, more preferably 20 to 150 ° C.
  • the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • the produced compound may be purified by a purification means such as extraction, recrystallization, adsorption treatment, reprecipitation, column chromatography, supercritical extraction or the like.
  • ⁇ 1 H-NMR analysis method> JNM-ECP400 and JNM-ECP600 manufactured by JEOL Datum Co., Ltd. were used. The integrated value in the NMR measurement value is a theoretical value.
  • GPC analysis method> In GPC analysis, measurement was performed in a system using either DMF, THF, or water as a developing solvent. Each measurement condition is shown below.
  • the GPC measurement value is an analysis value at the main peak obtained by removing high molecular weight impurities and low molecular impurities from the inflection point of the elution curve by vertically cutting the baseline.
  • Fraction% is the ratio of the main peak to the entire peak from the elution start point to the elution end point, M n is the number average molecular weight, M w is the weight average molecular weight, M p is the peak top molecular weight, and Mw / Mn is the polydispersity Show.
  • Example 1-1 After adding 10.3 g of 1,2,3,4-diisopropylidenexylitol 130.3 g (0.56 mol) and dehydrated toluene to a 5000 ml round bottom flask equipped with a thermometer, nitrogen blowing tube, and stirrer and dissolving under a nitrogen atmosphere, 65.4 g (0.58 mol) of t-butoxypotassium was added, and the mixture was stirred at room temperature for 30 minutes. On the other hand, 1,4-butanediol dimethanesulfonate 55.2 g (0.22 mol) was dissolved in dehydrated DMF 660 g and then added dropwise to the reaction solution with stirring at 40 ° C. or lower for 30 minutes.
  • the temperature was raised to 6 hours and reacted for 6 hours. After completion of the reaction, the reaction solution was cooled, 1100 g of ion exchange water was added and stirred for 20 minutes, and then allowed to stand, and the aqueous layer was extracted. Again, 830 g of ion-exchanged water was added, and the water washing operation of standing after stirring was repeated 8 times to remove DMF and unreacted raw materials. After washing with water, the organic layer was concentrated, dehydrated by adding 27.6 g of magnesium sulfate, and filtered.
  • Example 1-2 To a 1000 ml round bottom flask equipped with a thermometer, a nitrogen blowing tube and a stirrer, 76.8 g of 1,1′-butylenebis (2,3,4,5-diisopropylidenexylitol) (V) obtained in Example 1-1 ( 0.15 mol), 456 g of methanol and 45 g of ion-exchanged water were added and dissolved in a nitrogen atmosphere, and then 76.4 g of Dowex 50W-8H (manufactured by Dow Chemical) dispersed in 76 g of methanol was added and heated to reflux to form a by-product Acetone was removed azeotropically.
  • V 1,1′-butylenebis (2,3,4,5-diisopropylidenexylitol)
  • Example 1-3 When the molecular weight is 5,000, 52 g of 1,1′-butylene bisxylitol (VI) obtained in Example 1-2 was heated and charged into a 5 L autoclave while washing with 34 g of methanol. Subsequently, 4.9 g of potassium hydroxide and 10 g of ion-exchanged water were added to a 50 ml beaker to prepare an aqueous potassium hydroxide solution, which was charged into a 5 L autoclave. Next, 500 g of dehydrated toluene was added, and the azeotropic dehydration operation was repeated 3 times at 80 ° C. and slightly reduced pressure.
  • FIG. 1 is a GPC chart of Compound (I).
  • Example 1-4 molecular weight 10,000
  • 370 g (8.40 mol) of ethylene oxide was added at 80 to 150 ° C. and a pressure of 1 MPa or less, and the reaction was further continued for 1 hour.
  • the reaction solution was cooled to 60 ° C.
  • 1045 g of the reaction solution was extracted from the kettle, the pH was adjusted to 7.5 with 85% phosphoric acid aqueous solution, and toluene was distilled off to obtain the following compound (II).
  • Example 1-5 molecular weight 20,000
  • 182 g (4.13 mol) of ethylene oxide was added at 80 to 150 ° C. and a pressure of 1 MPa or less, and the reaction was further continued for 1 hour.
  • the reaction solution was cooled to 60 ° C., 620 g of the reaction solution was extracted from the kettle, the pH was adjusted to 7.5 with 85% aqueous phosphoric acid solution, and toluene was distilled off to obtain the following compound (III).
  • Example 1-6 When the molecular weight is 40,000, the reaction was continued for another hour. After the reaction, the reaction solution was cooled to 60 ° C., and the whole reaction solution was taken out from the kettle. The pH was adjusted to 7.5 with 85% phosphoric acid aqueous solution, and toluene was distilled off to obtain the following compound (IV).
  • Example 2 Synthesis of p-nitrophenyl carbonate body (VII): When the molecular weight is about 5,000) Into a 200 ml round bottom flask equipped with a thermometer, nitrogen blowing tube, stirrer, Dean-stark tube, and condenser tube was charged 20 g (4 mmol) of Compound (I) obtained in Example 1-3 above and 80 g of dehydrated toluene. After dissolving PEG in a nitrogen atmosphere, the mixture was heated to reflux at 110 ° C. to remove moisture.
  • Example 3-1 Synthesis of cyanoethyl compound: molecular weight of about 10,000
  • 30 g (3 mmol) of the compound (II) obtained in Example 1-4 above and 30 g of ion-exchanged water were added to a 500 ml round bottom flask equipped with a thermometer, a nitrogen blowing tube, a stirrer, and a cooling tube, and heated to 40 ° C. Dissolved by warming. After dissolution, the mixture was cooled to 10 ° C. or lower, and 3 g of 50% aqueous potassium hydroxide solution was added. Subsequently, 25.5 g (480 mmol) of acrylonitrile was added dropwise over 2 hours while maintaining 5 to 10 ° C.
  • the concentrated solution was dissolved by adding 90 g of ethyl acetate, and hexane was added until crystals were precipitated.
  • the crystals were collected by filtration, dissolved again with heating in 90 g of ethyl acetate, cooled to room temperature, and hexane was added until crystals were precipitated.
  • the crystals were collected by filtration and dried to obtain the following cyanoethyl compound (VIII).
  • Example 3-2 Synthesis of propylamino compound: molecular weight of about 10,000
  • To a 1 L autoclave were added 13 g of the cyanoethyl compound (VIII) obtained in Example 3-1 above, 560 g of toluene, and 1.2 g of nickel (5136p manufactured by NM Cat), and the temperature was raised to 60 ° C.
  • the pressure was increased with ammonia to an internal pressure of 1 MPa, and then hydrogen was pressurized to an internal pressure of 4.5 MPa and reacted at 130 ° C. for 3 hours.
  • After the reaction the reaction solution was cooled to 80 ° C., and nitrogen purge was repeated until the ammonia odor disappeared.
  • Example 4 Synthesis of NHS body of glutaric acid: when molecular weight is about 20,000
  • PEG was dissolved by heating at 110 ° C., the water was removed.
  • 1.71 g (15.0 mmol) of glutaric anhydride was added and reacted at 110 ° C. for 8 hours.
  • the reaction solution was cooled to 40 ° C., 3.45 g (30.0 mmol) of N-hydroxysuccinimide and 4.33 g (21.0 mmol) of 1,3-dicyclohexylcarbodiimide were added, and the reaction was performed for 3 hours. After 3 hours, the reaction solution was filtered, and hexane was added to the filtrate until crystals precipitated. The crystals were collected by filtration, dissolved in ethyl acetate with heating, hexane was added until crystals were precipitated, and the crystals were collected by filtration and dried to obtain the target compound (X).
  • Example 5-1 Synthesis of hexanoic acid compound: when the molecular weight is about 40,000
  • the compound (IV) obtained in Example 1-6 60 g of flaky potassium hydroxide and 600 g of toluene to a 1000 ml round bottom flask equipped with a thermometer, nitrogen blowing tube and stirrer, the mixture was dissolved in a nitrogen atmosphere. 40.2 g (180 mmol) of ethyl 6-bromohexanoate was added dropwise with stirring at 40 ° C. over 2 hours. After completion of dropping, the reaction was allowed to proceed for 5 hours.
  • the reaction solution was cooled, 210 g of water for injection was added, the temperature was raised to 70 ° C., and a hydrolysis reaction was performed for 2 hours.
  • the reaction solution was cooled, and 96 g of concentrated hydrochloric acid was added dropwise with stirring under ice cooling to carry out protonation.
  • the organic layer was removed, 210 g of ethyl acetate was added, the mixture was stirred for 15 minutes, allowed to stand, and the organic layer was removed again three times. Thereafter, the aqueous layer was extracted twice with 150 g of chloroform, and the combined chloroform layers were dried with 15 g of magnesium sulfate.
  • Example 5-2 Synthesis of NHS hexanoate: when molecular weight is about 40,000
  • PEG was dissolved under a nitrogen atmosphere.
  • N-hydroxysuccinimide 1.23 g (10.5 mmol) and 1,3-dicyclohexylcarbodiimide 2.09 g (10.0 mmol) were added, and the reaction was performed at 40 ° C. for 2 hours.
  • a potassium hydroxide aqueous solution was prepared by adding 6.7 g of potassium hydroxide, 13.4 g of ion-exchanged water, and 46.9 g of methanol to a 100 ml beaker. 100 g of hexaglycerin was charged into a 5 L autoclave, and then the prepared potassium hydroxide aqueous solution was charged into a 5 L autoclave. After substituting the system with nitrogen, the pressure was reduced at 90 ° C., and dehydration was performed for 5 hours. After replacing the system with nitrogen, 886 g (20.1 mol) of ethylene oxide was added at 80 to 150 ° C.
  • FIG. 2 is a GPC chart of the compound (XIII).
  • Comparative Example 1-2 When the molecular weight is about 10,000, To about 582 g of the reaction solution remaining in the reaction kettle in Comparative Example 1-1, 575 g (13.0 mol) of ethylene oxide was added at 80 to 150 ° C. and a pressure of 1 MPa or less, and the reaction was further continued for 1 hour. After the reaction, the mixture was cooled to 60 ° C., 500 g of the reaction solution was extracted from the kettle, and the pH was adjusted to 7.5 with 85% phosphoric acid aqueous solution to obtain compound (XIV).
  • Comparative Example 1-3 When the molecular weight is about 20,000, 655 g (14.9 mol) of ethylene oxide was added at 80 to 150 ° C. and a pressure of 1 MPa or less, and the reaction was further continued for 1 hour. After the reaction, the mixture was cooled to 60 ° C., 600 g of the reaction solution was extracted from the kettle, and the pH was adjusted to 7.5 with 85% aqueous phosphoric acid to obtain compound (XV).
  • the concentrated solution was dissolved by adding 1000 g of ethyl acetate, and hexane was added until crystals were precipitated.
  • the crystals were collected by filtration, dissolved again with heating in 1000 g of ethyl acetate, cooled to room temperature, and hexane was added until crystals were precipitated.
  • the crystals were collected by filtration and dried to obtain a cyanoethyl compound (XVII).
  • reaction solution was cooled to 40 ° C., 13.8 g (120 mmol) of N-hydroxysuccinimide and 17.3 g (84 mmol) of 1,3-dicyclohexylcarbodiimide were added, and the reaction was performed for 3 hours. After 3 hours, the reaction solution was filtered, and hexane was added to the filtrate until crystals precipitated. The crystals were collected by filtration, dissolved with heating in ethyl acetate, hexane was added until crystals precipitated, and the crystals were collected by filtration and dried to obtain the target compound (XIX).
  • the multi-arm type polyethylene glycol derivative of the present invention and its intermediate have a low polydispersity, it was shown that the molecular weight distribution is very narrow.
  • the multi-arm type polyethylene glycol synthesized from hexaglycerin has a very large polydispersity, indicating that it is a polyethylene glycol having a wide molecular weight distribution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyethers (AREA)
  • Medicinal Preparation (AREA)

Abstract

 狭い分子量分布を有するマルチアーム型ポリエチレングリコール誘導体を提供する。 式(1)で表されるマルチアーム型ポリエチレングリコール誘導体 (式中、Lはエーテル結合を鎖中に有していてもよい炭素数2以上の直鎖又は分岐アルキレン、アリーレン、シクロアルキレン基及びそれらの組み合わせから選択される基を示し、Xは炭素数5または7の直鎖の糖アルコールの脱水酸基残基を示し、mはXと結合したポリエチレングリコール鎖の数であり、4または6を示し、nはオキシエチレン基の平均付加モル数であり、nは3~600の整数を示し、Yは単結合、またはエステル結合、ウレタン結合、アミド結合、エーテル結合、カーボネート結合、2級アミノ基、ウレア結合、チオエーテル結合もしくはチオエステル結合を鎖中または末端に有していてもよいアルキレン基を示し、Zは化学反応可能な官能基を示す)。

Description

マルチアーム型ポリエチレングリコール誘導体、その中間体及び製造方法
 本発明は、分子量分布の狭いマルチアーム型ポリエチレングリコール誘導体、その中間体及び製造方法に関する。
 ドラッグデリバリーシステム(DDS)は、理想的な薬剤の投与形態として様々な疾患に対する治療応用が進められている。中でも、ポリエチレングリコールによって薬剤を修飾することにより、血中滞留性を向上させる開発は幅広く為されており、インターフェロンやGCSFといったサイトカインをポリエチレングリコール修飾した薬剤も上市されている。これまで、ポリエチレングリコール誘導体においては、ポリエチレングリコールの末端に反応性官能基を1個有するタイプの誘導体が一般的であったが、近年では、1分子中に複数の官能基が導入されたマルチアーム型ポリエチレングリコールが用いられるようになっている。このマルチアーム型ポリエチレングリコールは薬物との反応点が複数あるため、単位重量当たりの薬物の投与量を増やすことができるといった利点が挙げられる。しかし、ポリエチレングリコール誘導体が官能基数の異なるものを含む場合は、1分子のポリエチレングリコールに修飾された薬剤の数が異なるものが含まれるため、医薬品として均一でないという問題点が生じる。
 また、ポリエチレングリコールの水溶性の高さと生体適合性を活かし、ポリエチレングリコールと他の分子とを組み合わせた水膨潤性のポリエチレングリコールハイドロゲルの開発も進んでいる。ポリエチレングリコールハイドロゲルは、接着・止血剤、癒着防止剤、薬物徐放用担体、再生医療材料など、バイオ・医療分野において様々な応用が検討されている。このハイドロゲル用途のポリエチレングリコールとしても、他の分子と架橋構造を形成するためにより多い反応点を持つマルチアーム型が有用であり、特にハイドロゲルを薬物徐放用単体や再生医療材料として用いる場合は、薬物や細胞の成長因子であるタンパク質のゲルからの透過や拡散速度を厳密に制御するために、より分子量分布の狭い品質が望まれている。
 マルチアーム型ポリエチレングリコールの原料としては、希望の官能基数に応じた多価アルコールを使用することが一般的である。例えば、3-アーム型はグリセリン等、4-アーム型はペンタエリスリトール等を原料としてエチレンオキサイドを開環重合しており、これらの低分子原料は不純物をほとんど含有していないため、比較的分子量分布が狭い高品質のポリエチレングリコールの生成が可能である。
 一方、6-アームや8-アーム型のポリエチレングリコールは、テトラグリセリンやヘキサグリセリンのようなポリグリセロールを低分子原料としたものが知られている。これらのポリグリセロールは通常、複数の重合度や異性体を含む混合物であるが、極性の高さから単一の成分に精製することが困難なため、エチレンオキサイドが付加すると、分子量分布の広い低品質のマルチアーム型ポリエチレングリコールが生成してしまう。
 このような問題に対して、純度の高い低分子化合物を原料とし、エチレンオキサイドを付加することで解決しようという試みがなされている。特許文献1では、ペンタエリスリトールを脱水縮合させたジペンタエリスリトール及びトリペンタエリスリトールを原料として、6-アームや8-アーム型のポリエチレングリコールを合成している。また、特許文献2では、ソルビトールを原料として6-アーム型のポリエチレングリコールを合成している。
欧州特許第2360203号公報 米国特許第6858736号公報
 しかし、これらポリペンタエリスリトールやソルビトール、そして前述したポリグリセロールはいずれも6~8個と多くの水酸基を持つ極性の非常に高い固体であるため、エチレンオキサイド付加の際に、反応釜中での攪拌が不十分となり、触媒やエチレンオキサイドと均一な分散ができないことから、均一な重合反応がおこらず、分子量分布の広いポリエチレングリコールが生成する恐れがある。
 このように、分岐数の多いマルチアーム型ポリエチレングリコール誘導体は、DDSに限らず新しいバイオ・医療分野において重要な素材となってきているにも関わらず、分子量分布が極めて狭い品質で且つ、工業的に製造容易な方法では得られておらず、かかるマルチアーム型ポリエチレングリコール誘導体の出現が待望されている。
 本発明の目的は、狭い分子量分布を有するマルチアーム型ポリエチレングリコール誘導体、その製造方法及び中間体を提供することである。
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、新規な骨格を持つマルチアーム型ポリエチレングリコール誘導体、その製造方法及び中間体を見いだし、本発明を完成させた。
 即ち、本発明は以下のものである。
[1] 下記式(1)
Figure JPOXMLDOC01-appb-C000012
(式中、Lはエーテル結合を鎖中に有していてもよい炭素数2以上の直鎖又は分岐アルキレン、アリーレン、シクロアルキレン基及びそれらの組み合わせから選択される基を示し、Xは炭素数5または7の直鎖の糖アルコールの脱水酸基残基を示し、mはXと結合したポリエチレングリコール鎖の数であり、4または6を示し、nはオキシエチレン基の平均付加モル数であり、nは3~600の整数を示し、Yは単結合、またはエステル結合、ウレタン結合、アミド結合、エーテル結合、カーボネート結合、2級アミノ基、ウレア結合、チオエーテル結合もしくはチオエステル結合を鎖中または末端に有していてもよいアルキレン基を示し、Zは化学反応可能な官能基を示す)で表されるマルチアーム型ポリエチレングリコール誘導体。
[2] 下記式(2)
Figure JPOXMLDOC01-appb-C000013
(式中、Lはエーテル結合を鎖中に有していてもよい炭素数2以上の直鎖又は分岐アルキレン、アリーレン、シクロアルキレン基及びそれらの組み合わせから選択される基を示し、kは1または2を示し、nはオキシエチレン基の平均付加モル数であり、nは3~600の間の整数を示し、Yは単結合、またはエステル結合、ウレタン結合、アミド結合、エーテル結合、カーボネート結合、2級アミノ基、ウレア結合、チオエーテル結合もしくはチオエステル結合を鎖中または末端に有していてもよいアルキレン基を示し、Zは化学反応可能な官能基を示す)で表される[1]に記載のマルチアーム型ポリエチレングリコール誘導体。
[3] 下記式(3)
Figure JPOXMLDOC01-appb-C000014
(式中、Lはエーテル結合を鎖中に有していてもよい炭素数2以上の直鎖又は分岐アルキレン、アリーレン、シクロアルキレン基及びそれらの組み合わせから選択される基を示し、nはオキシエチレン基の平均付加モル数であり、nは3~600の間の整数を示し、Yは単結合、またはエステル結合、ウレタン結合、アミド結合、エーテル結合、カーボネート結合、2級アミノ基、ウレア結合、チオエーテル結合もしくはチオエステル結合を鎖中または末端に有していてもよいアルキレン基を示し、Zは化学反応可能な官能基を示す)で表される[2]に記載のマルチアーム型ポリエチレングリコール誘導体。
[4] Lが炭素数3~8のアルキレン基である[1]~[3]のいずれかに記載のマルチアーム型ポリエチレングリコール誘導体。
[5] Lがn-ブチレン基である[4]に記載のマルチアーム型ポリエチレングリコール誘導体。
[6] Zが、以下の式(a)、式(b)、式(c)、式(d)、式(e)、式(f)、式(g)、式(h)、式(i)、式(j)、式(k)、式(l)、式(m)、式(n)、式(o)および式(p)の基からなる群より選ばれた一種以上の基である、[1]~[5]のいずれかに記載のマルチアーム型ポリエチレングリコール誘導体。
Figure JPOXMLDOC01-appb-C000015
(式中、Rは炭素数1~10のフッ素原子を含んでも良い炭化水素基を示す。)
[7] ゲル浸透クロマトグラフィーにおいて多分散度Mw/Mnが、Mw/Mn≦1.05なる関係を満足する、[1]~[6]のいずれかに記載のマルチアーム型ポリエチレングリコール誘導体。
[8] Xと結合したポリエチレングリコール鎖の数mが4である、[1]~[7]のいずれかに記載のマルチアーム型ポリエチレングリコール誘導体。
[9]下記式(4)
Figure JPOXMLDOC01-appb-C000016
(式中、Lはエーテル結合を鎖中に有していてもよい炭素数2以上の直鎖又は分岐アルキレン、アリーレン、シクロアルキレン基及びそれらの組み合わせから選択される基を示し、kは1または2を示し、nはオキシエチレン基の平均付加モル数であり、nは3~600の間の整数を示す。)で表される、[2]記載のマルチアーム型ポリエチレングリコール誘導体の中間体。
[10] 下記式(5)
Figure JPOXMLDOC01-appb-C000017
(式中、Lはエーテル結合を鎖中に有していてもよい炭素数2以上の直鎖又は分岐アルキレン、アリーレン、シクロアルキレン基及びそれらの組み合わせから選択される基を示し、nはオキシエチレン基の平均付加モル数であり、nは3~600の間の整数を示す。)で表される、[9]記載の中間体。
[11] マルチアーム型ポリエチレングリコール誘導体の中間体のゲル浸透クロマトグラフィーにおいて、多分散度Mw/Mnが、Mw/Mn≦1.05なる関係を満足する、[9]または[10]記載のポリエチレングリコール誘導体の中間体、
[12] 下記(A)、(B)、(C)全ての工程を順番に含むことを特徴とする、[9]~[11]のいずれかに記載のマルチアーム型ポリエチレングリコール誘導体の中間体の製造方法。
 工程(A): 下記式(6)で示される化合物2分子と下記式(7)で示される化合物をエーテル化反応により連結し、下記式(8)で示される化合物を得る工程、
Figure JPOXMLDOC01-appb-C000018
(式中、kは1または2を示す。)
Figure JPOXMLDOC01-appb-C000019
(式中、Lはエーテル結合を鎖中に有していてもよい炭素数2以上の直鎖又は分岐アルキレン、アリーレン、シクロアルキレン基及びそれらの組み合わせから選択される基を示し、Aは塩素、臭素、またはヨウ素から選ばれるハロゲン原子、またはスルホン系保護基を示す。)
Figure JPOXMLDOC01-appb-C000020
(式中、Lはエーテル結合を鎖中に有していてもよい炭素数2以上の直鎖又は分岐アルキレン、アリーレン、シクロアルキレン基及びそれらの組み合わせから選択される基を示し、kは1または2を示す。)
 工程(B): 上記式(8)で示される化合物を酸加水分解することにより、下記式(9)の化合物を得る工程
Figure JPOXMLDOC01-appb-C000021
(式中、Lはエーテル結合を鎖中に有していてもよい炭素数2以上の直鎖又は分岐アルキレン、アリーレン、シクロアルキレン基及びそれらの組み合わせから選択される基を示し、kは1または2を示す。)
 工程(C):水酸化カリウム、水酸化ナトリウム、ナトリウムメトキシド、金属ナトリウム、金属カリウムおよびt-ブトキシカリウムからなる群より選ばれた一種以上の化合物を触媒に用いて、上記式(9)で示される化合物に有機溶剤存在下でエチレンオキサイドを付加し、下記式(4)のポリエチレングリコール誘導体の中間体を得る工程
Figure JPOXMLDOC01-appb-C000022
(式中、Lはエーテル結合を鎖中に有していてもよい炭素数2以上の直鎖又は分岐アルキレン、アリーレン、シクロアルキレン基及びそれらの組み合わせから選択される基を示し、kは1または2を示し、nはオキシエチレン基の平均付加モル数であり、nは3~600の間の整数を示す。)
 本発明による新規なマルチアーム型ポリエチレングリコール誘導体(1)は、骨格中に有機溶剤と親和性のある疎水性の連結基を有している。よって、エチレンオキサイド付加の際に、多くの水酸基を持つにも関わらず有機溶剤中に分散するため、重合反応が均一に起こり、分子量分布の極めて狭い高品質なものが提供できる。
 また、本発明による新規なマルチアーム型ポリエチレングリコール誘導体(1)は、原料となる低分子原料を合成する際、ポリオールを保護した極性及び粘性の低い中間体の段階で精製することが可能である。そのため、精製がより簡便であり、精製した低分子原料は異なる官能基数を持つ不純物がほとんどないため、分子量分布の極めて狭い高品質なものが提供できる。
化合物(I)のGPCチャートである。 化合物(XIII)のGPCチャートである。
 本発明の式(1)におけるLは、エーテル結合を鎖中に有していてもよい炭素数2以上の直鎖又は分岐アルキレン、アリーレン、シクロアルキレン基及びそれらの組み合わせから選択される基を示す。
 アルキレン基としては、炭素数2~12(より好ましくは炭素数3~8、更に好ましくは炭素数4のアルキレン基)が挙げられ、その具体例としては、例えば、エチレン基、プロピレン基、イソプロピレン基、n-ブチレン基、s-ブチレン基、t-ブチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基などが挙げられる。
 Lを構成するアリーレン基としては、炭素数6~12の置換または無置換のアリーレン基であり、例えばフェニレン基、ナフチレン基、アントリレン基などが挙げられる。また、Lを構成するシクロアルキレン基としては、炭素数5~12のシクロアルキレン基が挙げられ、その具体例としては、例えば、シクロペンチレン基、シクロへキシレン基、シクロヘプチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基などが挙げられる。さらに、これらの基を組み合わせてもよく、組み合わせるためにエーテル結合を鎖中に有していてもよく、例えば、アルキレンオキシアルキレン基、アリールオキシアルキレン基などが挙げられる。
 Lの炭素数が2より小さい場合は疎水基としての効果が出ないため、エチレンオキサイドを付加する際に有機溶剤に分散せず、分子量分布が広くなる恐れがある。また、Lの炭素数が12より大きい場合は分子の界面活性能が増大するため、医薬品修飾剤への応用を考えた場合に、期待される性能が発揮されない恐れがある。Lとして好ましくはプロピレン基、イソプロピレン基、n-ブチレン基、s-ブチレン基、t-ブチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基であり、より好ましくはn-ブチレン基である。
 Xは、炭素数5または7の直鎖の糖アルコールの脱水酸基残基を示す。Xの炭素原子のうち1つはエーテル結合を介してLと結合しており、残りの炭素原子はエーテル結合を介してポリエチレングリコール鎖と結合している。ポリエチレングリコール誘導体の中間体の原料を合成する際に、糖アルコールはLと結合させる1つのヒドロキシル基以外のポリオール構造を環状アセタールで保護しておく必要があることから、Xは奇数、つまり炭素数5または7の直鎖の糖アルコールの脱水酸基残基である必要がある。
 炭素数5または7の直鎖の糖アルコールとしては、例えばD-アラビニトール、L-アラビニトール、キシリトール、リビトール、ボレミトール、ペルセイトール等が挙げられ、好ましくはキシリトールである。mはXと結合したポリエチレングリコール鎖の数であり、4または6を示し、好ましくは4である。kは1または2を示し、好ましくは1である。
 nは、オキシエチレン基の平均付加モル数であり、nは3~600の整数を示す。好ましくは5~300であり、更に好ましくは13~250である。
 Yは、ポリオキシエチレン基と反応性官能基Zとの間のリンカーである。当該リンカーYは原子を含まない場合もあり、その場合は単結合と定義される。これらは共有結合であれば特に制限は無く、リンカーとして通常用いられる結合であればいずれでもよいが、好ましくはアルキレン基単独、またはエーテル結合、エステル結合、ウレタン結合、アミド結合、カーボネート結合、2級アミノ基、ウレア結合、チオエーテル結合、もしくはチオエステル結合をアルキレン鎖中又は末端に有するアルキレン基が挙げられる。アルキレン基の炭素数は、好ましくは1~12である。
 このアルキレン基の好ましい例としては、(y1)のような構造が挙げられる。エーテル結合を有するアルキレン基の好ましい例としては、(y2)のような構造が挙げられる。エステル結合を有するアルキレン基の好ましい例としては、(y3)のような構造が挙げられる。ウレタン結合を有するアルキレン基の好ましい例としては、(y4)のような構造が挙げられる。アミド結合を有するアルキレン基の好ましい例としては、(y5)のような構造が挙げられる。カーボネート結合を有するアルキレン基の好ましい例としては、(y6)のような構造が挙げられる。2級アミノ基を有するアルキレン基の好ましい例としては、(y7)のような構造が挙げられる。ウレア結合を有するアルキレン基の好ましい例としては、(y8)のような構造が挙げられる。チオエーテル結合を有するアルキレン基の好ましい例としては、(y9)のような構造が挙げられる。チオエステル結合を有するアルキレン基の好ましい例としては、(y10)のような構造が挙げられる。
Figure JPOXMLDOC01-appb-C000023
 各式において、sは0~12の整数である。sの範囲は、0~12であり、例えばタンパク質内部のような疎水性環境で結合させたい場合は、sは大きい方が好ましく、親水性環境で結合させたい場合は、sは小さい方が好ましい。
(y5)、(y6)、(y7)、(y8)、(y9)、(y10)におけるsは同一であっても異なっていても良い。
 Zは、水酸基、アミノ基、メルカプト基、アルデヒド、カルボキシル基、三重結合またはアジド基と反応して他の物質と化学結合を形成することが可能な官能基であれば特に制限されない。例えば、J. Milton Harris著 “POLY(ETYLENE GLYCOL)CHEMISTRY”や、Greg T. Hermanson著“BioconjugateTechniques second edition”(2008)や、Francesco M. Veronese著“Pegylated ProteinDrug:basic Science and Clinical Application”(2009)などに記載されている官能基が挙げられる。
 更に具体的には、Zは、カルボン酸、活性エステル、活性カーボネート、アルデヒド、アミン、オキシアミン、ヒドラジド、アジド、不飽和結合、チオール、ジチオピリジン、スルホン、マレイミド、ビニルスルホン、α―ヨードアセチル、アクリレート、イソシアネート、イソチオシアネート、エポキシド)などを含む官能基が挙げられる。
 好ましくは、Zが、以下の式(a)、式(b)、式(c)、式(d)、式(e)、式(f)、式(g)、式(h)、式(i)、式(j)、式(k)、式(l)、式(m)、式(n)、式(o)および式(p)の基からなる群より選ばれた一種以上の基である。
Figure JPOXMLDOC01-appb-C000024
 (式中、Rは炭素数1~10のフッ素原子を含んでも良い炭化水素基を示す。)
 本発明の化合物と他の物質との反応における、好ましい実施形態においては、Zは、群(i)、群(ii)、群(iii)、群(iv)、群(v)、群(vi)で示される基である。
群(i) 他の物質の水酸基と反応可能な官能基
  前記の(a),(b),(c),(m)
群(ii) 他の物質のアミノ基と反応可能な官能基
   前記の(a), (b), (c), (d), (e), (m), (n)
群(iii) 他の物質のメルカプト基と反応可能な官能基
   前記の(a), (b), (c), (d), (e), (j), (k), (l), (m), (n), (o), (p)
群(iv) 他の物質のアルデヒド、またはカルボキシル基と反応可能な官能基
   前記の(f), (g), (h), (k)
群(v) 他の物質の三重結合と反応可能な官能基
   前記の(f), (g), (h), (i), (k)
群(vi) 他の物質のアジド基と反応可能な官能基
   前記の(j)
 本発明の化合物と化学結合を形成させる物質としては、生体関連物質または生体材料の原料が挙げられる。本発明における「生体関連物質」とは、具体的には、ホルモンやサイトカインなどの細胞間情報伝達物質、抗体、酵素、リン脂質、糖脂質などの動物細胞構成物質、血液、リンパ等の体液構成物質などに例示される物質が挙げられるが、これに限定されず、種々の生物の生体中に存在する物質、または生体内でそれらに変換される物質、それらの類縁体、もしくはそれらのミミック(模造)、あるいは生体内に存在する物質と相互作用して生理活性を発現する物質等をも意図する。
 本発明における「生体材料」とは生体に直接接触する、或いは生きている細胞に接触する材料のことであり、その原料としては有機或いは無機材料であってもよい。具体的には、ヒアルロン酸、ポリアミノ酸、多糖類などの天然高分子、ポリエステル、ポリメタクリル酸メチル、ポリウレタンなどの合成高分子、ハイドロキシアパタイト、酸化チタンなどのセラミックスなどに例示させる物質が挙げられるが、これに限定されず、単独又は組み合わせることで生体適合性を持つ物質をも意図する。
(中間体の製造)
 本発明のマルチアーム型ポリエチレングリコール誘導体の中間体(4)は、例えば次のようにして製造することができる。
 下記式(6)で示される糖アルコールの1つのヒドロキシル基以外のポリオール構造を環状アセタールで保護した化合物2分子と式(7)で示される脱離基Aを2つ末端に持つ化合物でエーテル化反応を行い、精製工程において目的物(8)のみを単離する(工程(A))。次いで、酸性条件にて加水分解して、環状アセタール構造を脱保護して式(9)で示される化合物を得る(工程(B))。次いで、新たに生成したヒドロキシル基へエチレンオキサイドを3~600モル重合させて式(4)で示される化合物を得ることができる(工程(C))。
 化合物(4)の反応経路を下記に示す。
Figure JPOXMLDOC01-appb-C000025
(式中、各記号は前記と同じである。)
 一般に水酸基が5個もしくは7個の糖アルコールを環状アセタール化する場合、残存する水酸基が1位以外の、式(6)の異性体も生成される可能性がある。しかし、このように1位以外の水酸基が残存した化合物を原料に使用した場合、式(7)の化合物を用いたエーテル化の効率が低い。よって、選択的に1位に水酸基を有した式(6)の構造の糖アルコール誘導体をこのエーテル化反応の原料として用いることがより好ましい。
 この様に、糖アルコールから誘導体化した高純度な低分子原料を合成し、エチレンオキサイド重合反応を用いることで、工業的に適した方法で、分子量分布の極めて狭い高品質なマルチアーム型のポリエチレングリコール誘導体の中間体(4)を製造することができる。
 このようにして得られた分子量分布の狭い化合物(4)の水酸基を用いて、化学反応可能な-Y-Zで示される基へ官能基化することで、この狭い分子量分布の保持された本発明の式(1)のマルチアーム型ポリエチレングリコール誘導体を製造することができる。このとき、中間体である化合物(4)の分子量分布は、その骨格のポリエーテル構造の高い安定性から、官能基を導入した化合物(1)についても大きな変化無く保たれる。
 また、官能基Zが(a)~(p)である式(1)の化合物は、生体関連物質または生体材料の原料と反応させることができるが、官能基Zが(a)~(p)である式(1)の化合物を中間体として、更に他の化合物と反応させて、本発明の化合物(1)を得ることもできる。例えば、(f)の官能基を有する化合物を中間体として、(a)や(n)の官能基を有する化合物を得ることができる。
 化合物(8)の製造は、特に制限されないが、好ましくは、以下の工程(A)にて製造することができる。
 工程(A):化合物(6)2分子と化合物(7)をウィリアムソン反応によりエーテル化する工程。
 当該反応の化合物(7)において、Aは、脱離基であればよく、例えば塩素、臭素、ヨウ素のようなハロゲン原子、または、メタンスルホニル基、p-トルエンスルホニル基、トリフルオロメタンスルホニル基のようなスルホン系脱離基等が挙げられる。エーテル化の塩基としては、アルカリ金属アルコキシド塩を形成させればよく、t-ブトキシカリウム、水素化ナトリウム、水素化カリウム、金属ナトリウム、ヘキサメチルジシラザン、炭酸カリウム等が挙げられる。反応溶媒は、非プロトン性溶剤であれば特に制限はなく、テトラヒドロフラン,ジメチルエーテル、塩化メチレン、クロロホルム、ジメチルホルムアミド、トルエン、ベンゼンなどが挙げられるが、より好ましくはトルエン、ジメチルホルムアミドである。無溶媒中では、化合物(6)の粘性が高く、攪拌効率が低下し、エーテル化の効率が低下してしまう恐れがある。
 反応後の粗生成物には原料である化合物(6)や化合物(7)がE2脱離を起こして生成したビニル基体などの不純物が存在する。これらの不純物が除去されない場合、次工程で脱アセタール化され、水酸基の数が目的物と異なる不純物となり、エチレンオキサイドを付加させた場合に分子量分布が広がる原因となる。従って、この段階で除去精製して化合物(8)を分離するのが好ましい。精製する方法は、特に制限はないが、分液、カラムクロマトグラフィー、蒸留、超臨界抽出等の精製手段にて不純物を除去するのが好ましく、分液及びカラムクロマトグラフィーにて精製するのがさらに好ましい。カラムクロマトグラフィーにて精製する場合の担体としては、シリカゲル、化学結合型シリカゲル、アルミナ、活性炭、ケイ酸マグネシウム、ポリアミドなどが挙げられるが、好ましくはシリカゲルである。展開溶剤としては、ヘキサン、トルエン、ジエチルエーテル、クロロホルム、ジクロロメタン、アセトン、酢酸エチル、アセトニトリル、エタノール、メタノール、酢酸などが挙げられ、これらの混合溶媒でもよいが、好ましくはヘキサン・酢酸エチル混合溶媒である。
 エーテル化に続く環状アセタール構造の脱保護反応は、特に制限されないが、好ましくは、以下の工程(B)にて製造することができる。
 工程(B):化合物(8)の環状アセタール構造を酸触媒存在下、水溶液中で反応させて酸加水分解に反応により脱保護し、化合物(9)を製造する工程
 当該反応は、水または水溶性溶媒と水の混合溶媒中で行うことができる。水溶性溶媒としては、例えば、メタノール、エタノール、アセトニトリルなどを用いることができる。酸触媒としては、有機酸、無機酸、或いは固体酸などが挙げられ、例えば有機酸としては、酢酸、トリフルオロ酢酸等、無機酸としてはリン酸、硫酸、塩酸等、固体酸としては陽イオン交換樹脂であるアンバーリスト、ダイヤイオン、Dowexが挙げられるが、好ましくは反応後ろ過のみで目的物から除去できる固体酸である。反応温度は、通常20~100℃、好ましくは、40~90℃である。反応時間は、0.5~5時間が好ましい。
 環状アセタール構造の脱保護により新たに生成したヒドロキシル基を有する化合物(9)へのエチレンオキサイド付加重合は、特に制限されないが、好ましくは、以下の工程(C1)、次いで工程(C2)を経ることで製造することができる。
 工程(C1):化合物(9)に対し、アルカリ触媒を好ましくは50モル%~250モル%含む水溶液に溶解後、有機溶剤を加えて好ましくは50~130℃で共沸脱水を行う工程
 工程(C2):化合物(9)に対し、有機溶剤存在下でエチレンオキサイドを好ましくは50~130℃で反応させ、化合物(4)を得る工程
 工程(C1)におけるアルカリ触媒としては、特に制限はないが、金属ナトリウム、金属カリウム、水素化ナトリウム、水素化カリウム、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド、カリウムメトキシド等が挙げられる。アルカリ触媒を溶解させる溶媒としては、水の他にメタノール、エタノール等のプロトン性極性溶媒を用いることができる。アルカリ触媒の濃度については、化合物(9)に対して50モル%~250モル%が好ましい。50モル%未満だとエチレンオキサイドの重合反応速度が遅くなり、熱履歴が増して末端ビニルエーテル体等の不純物が生じるため、50モル%以上とすることが高品質の高分子量体を製造する上で有利である。触媒が250モル%を超えると、アルコラート化反応の際に反応液の粘性が高まり、あるいは固化してしまい、攪拌効率が低下し、アルコラート化が促進されない傾向がある。
 共沸脱水用の有機溶剤には、トルエン、ベンゼン、キシレン、アセトニトリル、酢酸エチル、テトラヒドロフラン、クロロホルム、塩化メチレン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド等の非プロトン性溶媒であれば特に制限はないが、沸点が水と近似しているトルエンが好ましい。共沸温度としては、50~130℃が好ましい。温度が50℃より低いと反応液の粘性が高まり、水分が残存する傾向がある。水分の残存は、水分由来のポリエチレングリコール化合物を生成させるため、分子量分布が広がり、品質が低下する恐れがある。また130℃より高いと、縮合反応が起きる恐れがある。水分の残存がある場合は、繰り返し共沸脱水を繰り返し行うのが好ましい。
 工程(C2)は有機溶媒中で行われる。反応溶媒としては、トルエン、ベンゼン、キシレン、アセトニトリル、酢酸エチル、テトラヒドロフラン、クロロホルム、塩化メチレン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド等の非プロトン性溶媒であれば特に制限はないが、反応後に晶析及び真空乾燥により容易に除けるトルエンが好ましい。反応時間については、1~24時間が好ましい。1時間より短いと触媒が完全に溶解しない恐れがある。24時間より長いと、前述の分解反応が起きる恐れがある。
 反応温度については、50~130℃が好ましい。50℃より低いと、重合反応の速度が遅く、熱履歴が増すことで、化合物(4)の品質が低下する傾向がある。また、130℃より高いと、重合中に末端のビニルエーテル化等の副反応が起き、化合物(4)が低下する傾向がある。重合中、分子量が大きくなるにつれ、反応液の粘度が上がるため、適宜非プロトン性溶剤、好ましくはトルエンを加えても良い。
 工程(C2)は、複数回繰り返し行っても良い。その場合は、反応容器に残った反応混合物にエチレンオキサイドを加えて上記条件と同様に行うことができる。繰返し回数を調整することにより、平均付加モル数nを調整することができる。
 本発明の式(4)の化合物は、ゲル浸透クロマトグラフィーを行った際、溶出開始点から溶出終了点までの多分散度Mw/Mnが、
Mw/Mn≦1.05
なる関係を満足する。より好ましくは
Mw/Mn≦1.03
を満足する場合である。
 この式(4)の化合物を中間体として合成される本発明の式(1)の化合物も、同様にゲル浸透クロマトグラフィーを行った際、溶出開始点から溶出終了点までの多分散度Mw/Mnが、
Mw/Mn≦1.05
なる関係を満足する。より好ましくはMw/Mn≦1.03を満足する場合である。
 Mw/Mn>1.05である場合、アーム数の異なるポリエチレングリコールを含有していたり、エチレンオキサイド付加が均一に起こっていなかったりすることにより、分子量分布の広い化合物であることを意味する。これは、生体関連物質と結合させる場合、ポリエチレングリコール1分子中の生体関連物質の修飾数が異なるため、また、薬物徐放用担体や再生医療材料のハイドロゲルの原料として用いた場合、物質の透過や拡散速度の厳密な制御が困難になるため、医薬品及び生体材料として副作用を引き起こすおそれがある。
 続いて、化合物(4)の水酸基への反応性基の導入について詳細に説明する。以下の記載において、官能基Zが(a)~(p)である式(1)の化合物を、それぞれ、(a)体…(p)体、又は官能基名を付して「アミン体(f)」等と表記することがある。
[Zが(d)または(m)である化合物(1)の製造方法]
 p-ニトロフェニルカーボネート体(d)またはスルホネート体(m)は、化合物(4)をトルエン、ベンゼン、キシレン、アセトニトリル、酢酸エチル、ジエチルエーテル、t-ブチル-メチルエーテル、テトラヒドロフラン、クロロホルム、塩化メチレン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド等の非プロトン性溶媒、もしくは無溶媒中、トリエチルアミン、ピリジン、4-ジメチルアミノピリジン等の有機塩基、もしくは炭酸ナトリウム、水酸化ナトリウム、炭酸水素ナトリウム、酢酸ナトリウム、炭酸カリウム、水酸化カリウム等の無機塩基と下記一般式(d1)、(m1)で示される化合物のいずれかと反応させることで得ることができる。また、上記有機塩基、無機塩基は用いなくとも良い。有機塩基、無機塩基の使用割合は、特に制限はないが、化合物(4)のヒドロキシル基に対して等モル以上が好ましい。また、有機塩基を溶媒として用いてもよい。(d1)、(m1)におけるWは塩素、臭素、ヨウ素より選択されるハロゲン原子であり、好ましくは塩素である。一般式(d1)、(m1)で示される化合物の使用割合は、特に制限はないが、化合物(4)のヒドロキシル基に対して等モル以上が好ましく、更に好ましくは等モル~50モルの範囲で反応させるのが好ましい。反応温度としては、0~300℃が好ましく、更に好ましくは、20~150℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~24時間である。生成した化合物は、抽出、再結晶、吸着処理、再沈殿、カラムクロマトグラフィー、超臨界抽出等の精製手段にて精製してもよい。
Figure JPOXMLDOC01-appb-C000026
(Wは塩素、臭素、ヨウ素より選択されるハロゲン原子を示す。Rは炭素数1~10のフッ素原子を含んでも良い炭化水素基を示す。)
[Zが(o)である化合物(1)の製造方法]
 ジビニルスルホン体(o)は化合物(4)をトルエンなどの非プロトン性溶媒中、塩基触媒下でジビニルスルホンを反応させることで得ることができる。塩基触媒としては、無機塩基、有機塩基いずれでも良く、特に制限はないが、例えばt-ブトキシカリウム、水素化ナトリウム、水素化カリウム、金属ナトリウム、ヘキサメチルジシラザン、炭酸カリウム等が挙げられる。塩基触媒の使用割合は特に制限はないが、化合物(4) のヒドロキシル基に対して0.1~50モルの範囲で用いるのが好ましい。ジビニルスルホンの使用割合に特に制限はないが、化合物(4)のヒドロキシル基に対して等モル以上が好ましく、ダイマーの副生を防止するため、10当量以上の過剰量を用いるのが好ましい。反応温度としては、0~100℃が好ましく、更に好ましくは、20~40℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~24時間である。生成した化合物は、抽出、再結晶、吸着処理、再沈殿、カラムクロマトグラフィー、超臨界抽出等の精製手段にて精製してもよい。
[Zが(a)である化合物(1)の製造方法]
 カルボキシル体(a)は上述の非プロトン性溶媒、もしくは無溶媒中で化合物(4)や後述するアミン体(f)を無水コハク酸や無水グルタル酸等のジカルボン酸無水物と反応させることで得ることができる。ジカルボン酸無水物の使用割合は、特に制限はないが、化合物(4)のヒドロキシル基に対して等モル以上が好ましく、更に好ましくは等モル~5モルである。反応温度としては、0~200℃が好ましく、更に好ましくは、20~150℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~12時間である。
 反応にはトリエチルアミン、ピリジン、ジメチルアミノピリジン等の有機塩基や炭酸ナトリウム、水酸化ナトリウム、炭酸水素ナトリウム、酢酸ナトリウム、炭酸カリウム、水酸化カリウム等の無機塩基を触媒として用いてもよい。触媒の使用割合は化合物(4)に対して0.1~50質量%が好ましく、さらに好ましくは0.5~20質量%である。このようにして生成した化合物は、抽出、再結晶、吸着処理、再沈殿、カラムクロマトグラフィー、超臨界抽出等の精製手段にて精製してもよいし、縮合反応の原料として用いる場合は、そのまま用いても良い。
 また、カルボキシル体(a)は上述の非プロトン性溶媒、もしくは無溶媒中で化合物(4)を6-ブロモヘキサン酸エチルや7-ブロモヘプタン酸エチル等のハロゲン置換カルボン酸エステルと反応させることで得ることができる。ハロゲン置換カルボン酸エステルの使用割合は、特に制限はないが、化合物(4)のヒドロキシル基に対して等モル以上が好ましく、更に好ましくは等モル~30モルである。反応温度としては、0~200℃が好ましく、更に好ましくは、20~150℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~12時間である。反応にはトリエチルアミン、ピリジン、ジメチルアミノピリジン等の有機塩基や炭酸ナトリウム、水酸化ナトリウム、炭酸水素ナトリウム、酢酸ナトリウム、炭酸カリウム、水酸化カリウム等の無機塩基を触媒として用いてもよい。触媒の使用割合は化合物(4)に対して0.1~500質量%が好ましく、さらに好ましくは0.5~300質量%である。エーテル化後、有機塩基の場合は水酸化ナトリウムや水酸化カリウム等の水溶液を、無機塩基の場合は、水を追加してエステルの加水分解を行う。反応温度としては、0~100℃が好ましく、更に好ましくは、20~100℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~12時間である。反応後、塩酸や硫酸等で中和を行う。このようにして化合物は、前述の精製手段にて精製してもよいし、縮合反応の原料として用いる場合は、そのまま用いても良い。
[Zが(b)である化合物(1)の製造方法]
 コハク酸イミド体(b)は上述の非プロトン性溶媒中、もしくは無溶媒中でカルボキシル体(a)を、DCC、EDC等の縮合剤存在下、N-ヒドロキシコハク酸イミドと縮合反応させることで得ることができる。縮合剤としては特に制限は無いが、好ましくはDCCである。DCCの使用割合はカルボキシル基に対して等モル以上が好ましく、更に好ましくは等モル~5モルである。N-ヒドロキシコハク酸イミドの使用割合はカルボキシル基に対して等モル以上が好ましく、更に好ましくは等モル~5モルである。反応温度としては、0~100℃が好ましく、更に好ましくは、20~80℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~12時間である。生成した化合物は抽出、再結晶、吸着処理、再沈殿、カラムクロマトグラフィー、超臨界抽出等の精製手段にて精製してもよい。
[Zが(c)である化合物(1)の製造方法]
 コハク酸イミドカーボネート体(c)は化合物(4)と上述の非プロトン性溶媒中、もしくは無溶媒中でトリエチルアミン、ピリジン、4-ジメチルアミノピリジン等の有機塩基、もしくは炭酸ナトリウム、水酸化ナトリウム、炭酸水素ナトリウム、酢酸ナトリウム、炭酸カリウム、水酸化カリウム等の無機塩基とN,N’-ジスクシンイミドカーボネートと反応させることで得ることができる。また、上記有機塩基、無機塩基は用いなくとも良い。有機塩基、無機塩基の使用割合は、特に制限はないが、化合物(4)のヒドロキシル基に対して等モル以上が好ましい。また、有機塩基を溶媒として用いてもよい。N,N’-ジスクシンイミドカーボネートの使用割合は化合物(4)のヒドロキシル基に対して等モル以上が好ましく、更に好ましくは等モル~5モルである。反応温度としては、0~100℃が好ましく、更に好ましくは、20~80℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~12時間である。生成した化合物は抽出、再結晶、吸着処理、再沈殿、カラムクロマトグラフィー、超臨界抽出等の精製手段にて精製してもよい。
[Zが(f)である化合物(1)の製造方法]
 アミン体(f)は化合物(4)を水、アセトニトリル等の溶媒中、水酸化ナトリウム、水酸化カリウム等の無機塩基を触媒とし、アクリロニトリル等を付加させてニトリル体を得たあと、オートクレーブ中でニッケルやパラジウム触媒下でニトリル基の水添反応を行うことで得ることができる。ニトリル体を得る際の無機塩基の使用割合は、特に制限はないが、化合物(4)に対して0.01~50質量%が好ましい。アクリロニトリル等の使用割合は、特に制限はないが、化合物(4)のヒドロキシル基に対して等モル以上が好ましく、更に好ましくは等モル~50モルの範囲である。また、アクリロニトリルを溶媒として用いても良い。反応温度としては、-50~100℃が好ましく、更に好ましくは、-20~60℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~24時間である。続くニトリル体の水添反応における反応溶媒は、反応に関与しない溶媒であれば特に制限は無いが、好ましくはトルエンである。ニッケル、もしくはパラジウム触媒の使用割合は、特に制限は無いが、ニトリル体に対して0.05~30質量%であり、好ましくは0.5~20質量%である。反応温度は20~200℃が好ましく、更に好ましくは、50~150℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~24時間である。水素圧は2~10MPaが好ましく、更に好ましくは3~8MPaである。また、2量化を防ぐために反応系中にアンモニアを加えてもよい。アンモニアを加える場合のアンモニア圧は特に制限はないが、0.1~10MPaであり、更に好ましくは0.3~2MPaである。生成した化合物は抽出、再結晶、吸着処理、再沈殿、カラムクロマトグラフィー、超臨界抽出等の精製手段にて精製してもよい。
 また、アミン体(f)は、スルホネート体(m)をアンモニア水と反応させることでも得ることができる。反応は、アンモニア水中で行い、アンモニアの濃度は特に制限は無いが、好ましくは10~40質量%の範囲である。アンモニア水の使用割合は、スルホネート体(m)の質量に対して1~300倍であるのが好ましい。反応温度としては、0~100℃が好ましく、更に好ましくは、20~80℃である。反応時間は10分~72時間が好ましく、更に好ましくは1~36時間である。
 また、アミン体(f)は、オートクレーブ中、スルホネート体(m)をアンモニアと反応させても得ることができる。反応溶剤については、特に制限はないが、好ましくはメタノール、エタノールが挙げられる。アンモニア量はスルホネート体(m)に対して10~300質量%が好ましく、更に好ましくは20~200質量%である。反応温度としては、50~200℃が好ましく、80~150℃が更に好ましい。反応時間については、10分~24時間が好ましく、更に好ましくは30分~12時間である。生成した化合物は前述の精製手段にて精製してもよい。
 また、アミン体(f)は非プロトン性溶媒中、光延反応を用いて化合物(4)とフタルイミドを結合させ、1級アミンで脱保護することで得ることもできる。光延反応の反応条件は特に制限は無いが、反応溶媒としては、クロロホルム、ジクロロメタンが好ましい。また、トリフェニルホスフィン及びアゾカルボン酸エステルの使用割合は、特に制限はないが、化合物(4)のヒドロキシル基に対して等モル以上、好ましくは等モル~50モルである。反応温度としては、0~100℃が好ましく、更に好ましくは、10~50℃である。反応時間は10分~72時間が好ましく、更に好ましくは30分~6時間である。
 脱保護については、用いる1級アミンとしては特に制限は無いが、好ましくはアンモニア、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、エタノールアミン、プロパノールアミン、ブタノールアミン、エチレンジアミン等が挙げられる。当然、これらの1級アミンを溶媒として用いても良い。1級アミンの使用割合は特に制限はないが、化合物(4)のヒドロキシル基に対して等モル以上、好ましくは等モル~500モル使用するのが好ましい。反応溶媒としては特に制限は無いが、メタノールが好ましい。反応温度としては、0~100℃が好ましく、更に好ましくは、20~80℃である。反応時間は10分~72時間が好ましく、更に好ましくは1~10時間である。生成した化合物は前述の精製手段にて精製してもよい。
[Zが(g)である化合物(1)の製造方法]
 オキシアミン体(g)は活性カーボネート体(c)または(d)を、トリエチルアミンやピリジン等の塩基触媒存在下、下記一般式で示される化合物(g1)と反応させることで、オキシフタルイミド体に変換し、1級アミン存在下で脱フタルイミド化させることで得ることができる。オキシフタルイミド化の反応溶媒は、無溶媒もしくは極性溶剤であれば特に制限はないが、好ましくはジメチルホルムアミドである。塩基触媒の使用割合は、特に制限はないが、活性カーボネート基に対して等モル以上が好ましく、更に好ましくは等モル~20モルの範囲である。化合物(g1)の使用割合は、活性カーボネート基に対して等モル以上が好ましく、更に好ましくは等モル~20モルである。反応温度としては、0~100℃が好ましく、更に好ましくは、20~80℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~12時間である。生成した化合物は抽出、再結晶、吸着処理、再沈殿、カラムクロマトグラフィー、超臨界抽出等の精製手段にて精製してもよいし、精製せず次の工程に進めても良い。
 脱フタルイミド化の反応溶媒には特に制限はないが、メタノールが好ましい。用いる1級アミンとしては特に制限は無いが、好ましくはアンモニア、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、エタノールアミン、プロパノールアミン、ブタノールアミン、エチレンジアミン等が挙げられる。当然、これらの1級アミンを溶媒として用いても良い。1級アミン存在下の使用割合は、特に制限はないが、活性カーボネート基に対して等モル以上が好ましく、更に好ましくは等モル~50モルの範囲である。反応温度としては、0~100℃が好ましく、更に好ましくは、20~80℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~12時間である。生成した化合物は前述の精製手段にて精製してもよい。
Figure JPOXMLDOC01-appb-C000027
(Qは炭素数1~7の直鎖のアルキレン基を示す。)
[Zが(n)である化合物(1)の製造方法]
 マレイミド体(n)は、アミン体(f)を上述の非プロトン性溶媒、もしくは無溶媒中、無水マレイン酸と反応させてマレアミド体を得たあと、無水酢酸及び酢酸ナトリウムを触媒として、閉環反応させることで得ることができる。マレアミド化反応における無水マレイン酸の使用割合は、特に制限はないが、アミノ基に対して等モル以上が好ましく、更に好ましくは等モル~5モルである。反応温度としては、0~200℃が好ましく、更に好ましくは、20~120℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~12時間である。生成した化合物は抽出、再結晶、吸着処理、再沈殿、カラムクロマトグラフィー、超臨界抽出等の精製手段にて精製してもよいし、精製せず次の工程に進めても良い。
 続く閉環反応における反応溶媒は特に限定されないが、非プロトン性溶媒又は無水酢酸が好ましい。酢酸ナトリウムの使用割合は、特に制限はないが、マレアミド基に対して等モル以上が好ましく、更に好ましくは等モル~50モルである。反応温度としては、0~200℃が好ましく、更に好ましくは、20~150℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~12時間である。生成した化合物は前述の精製手段にて精製してもよい。
 また、マレイミド体(n)は上述の非プロトン性溶媒、もしくは無溶媒中で下記一般式で表される化合物(n1)と、アミン体(f)を反応させることでも得ることができる。(n1)の使用割合はアミノ基(f)の等モル以上が好ましく、更に好ましくは等モル~5モルである。反応温度としては、0~200℃が好ましく、更に好ましくは、20~80℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~12時間である。反応時は遮光してもよい。生成した化合物は前述の精製手段にて精製してもよい。
Figure JPOXMLDOC01-appb-C000028
(Qは炭素数1~7の直鎖のアルキレン基を示す。)
[Zが(e)である化合物(1)の製造方法]
 アルデヒド体(e)はスルホネート体(m)を上述の非プロトン性溶媒中、もしくは無溶媒中で、下記一般式で示される化合物(e1)と反応させてアセタール体を得た後、酸性条件にて加水分解を行うことで得ることができる。(e1)の使用割合はスルホネート基の等モル以上が好ましく、更に好ましくは等モル~50モルである。(e1)は相当するアルコールから、金属ナトリウム、金属カリウム、水素化ナトリウム、水素化カリウム、ナトリウムメトキシド、カリウム-t-ブトキシド等を用いて調製することができる。反応温度としては、0~300℃が好ましく、更に好ましくは、20~150℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~24時間である。
 また、化合物(e2)を用いる場合は、化合物(4)のヒドロキシル基を上述の方法でアルコラートとした後、非プロトン性溶媒中、もしくは無溶媒中、(e2)を化合物(4)のヒドロキシル基の等モル以上、好ましくは等モル~100モルの割合で反応を行うことでアセタール体を得ることができる。反応温度としては、0~300℃が好ましく、更に好ましくは、20~150℃である。反応時間は10分~48時間が好ましく、特に好ましくは30分~24時間である。
 また、化合物(e3)を用いる場合は、カルボキシル体(a)、コハク酸イミド体(b)、もしくは活性カーボネート体(c)、(d)と(e3)を反応させることでアセタール体を得ることができる。 (e3)との反応では、溶媒は特に制限されないが、好ましくは非プロトン性溶媒中で行う。 (e3)の使用割合は、カルボキシル基、コハク酸イミド基、もしくは活性カーボネート基の等モル以上が好ましく、更に好ましくは等モル~10モルである。反応温度としては、-30~200℃が好ましく、更に好ましくは、0~150℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~24時間である。カルボキシル体(a)を用いる場合は、適宜DCC、EDC等の縮合剤を用いても良い。生成した化合物は抽出、再結晶、吸着処理、再沈殿、カラムクロマトグラフィー、超臨界抽出等の精製手段にて精製してもよいし、精製せず次の工程に進めても良い。
 続くアルデヒド化反応は、アセタール体を0.1~50%の水溶液とし、酢酸、リン酸、硫酸、塩酸等の酸にてpH1~4に調整した水溶液中で加水分解させて得ることができる。反応温度としては、-20~100℃が好ましく、更に好ましくは、0~80℃である。反応時間は10分~24時間が好ましく、更に好ましくは30分~10時間である。反応は遮光して行っても良い。生成した化合物は前述の精製手段にて精製してもよい。
Figure JPOXMLDOC01-appb-C000029
 (式中、R2、R3は炭素数1~3の炭化水素基であり、それぞれ同一であっても、異なっていても良い。また相互に環を形成していても良い。Mはナトリウムもしくはカリウムであり、Aは塩素、臭素、またはヨウ素から選ばれるハロゲン原子、またはスルホン系保護基であり、tは1~12の整数である。)
[Zが(k)である化合物(1)の製造方法]
 メルカプト体(k)は、スルホネート体(m)とチオウレア等のチア化剤と反応させてチアゾリウム塩とした後、引き続くアルカリ性条件での加水分解を行うことで得ることができる。チア化反応は水、アセトニトリルまたはメタノール、エタノール、2-プロパノール等のアルコール溶媒中もしくは無溶媒中で行う。チア化剤の使用割合は、スルホネート基に対して等モル以上が好ましく、更に好ましくは等モルから50モルの範囲である。反応温度としては、0~300℃が好ましく、更に好ましくは、20~150℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~24時間である。続く加水分解は、チアゾリウム塩体の0.1~50%の水溶液とし、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリにてpH10~14に調整した水溶液中で加水分解させて得ることができる。反応温度としては、-20~100℃が好ましく、更に好ましくは、0~80℃である。反応時間は10分~24時間が好ましく、更に好ましくは30分~10時間である。反応は遮光して行っても良い。生成した化合物は抽出、再結晶、吸着処理、再沈殿、カラムクロマトグラフィー、超臨界抽出等の精製手段にて精製してもよい。
 また、メルカプト体(k)は上述の非プロトン性溶媒中、もしくは無溶媒中でスルホネート体(m)を下記一般式で示される化合物(k1)と反応させ、1級アミンにて分解させることでも得ることができる。(k1)の使用割合は、スルホネート基に対して等モル以上が好ましく、更に好ましくは等モルから50モルの範囲である。反応温度としては、0~300℃が好ましく、更に好ましくは、20~80℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~24時間である。続く1級アミンによるアルカリ分解は、非プロトン性溶媒、もしくは無溶媒中で行う。用いる1級アミンとしては特に制限は無いが、好ましくはアンモニア、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、エタノールアミン、プロパノールアミン、ブタノールアミン、エチレンジアミン等が挙げられる。当然、これらの1級アミンを溶媒として用いても良い。生成した化合物は前述の精製手段にて精製してもよい。
Figure JPOXMLDOC01-appb-C000030
[Zが(l)である化合物(1)の製造方法]
 ジピリジルジスルフィド体(l)は、メルカプト体(k)を2,2-ジピリジルジスルフィドと反応させることで得ることができる。反応溶媒は特に制限されないが、好ましくはメタノール、エタノール、2-プロパノール等のアルコール溶媒中で行う。2,2-ジピリジルジスルフィドの使用割合は、メルカプト基の等モル以上が好ましく、更に好ましくは等モル~50モルである。反応温度としては、-30~100℃が好ましく、更に好ましくは、0~60℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~24時間である。生成した化合物は抽出、再結晶、吸着処理、再沈殿、カラムクロマトグラフィー、超臨界抽出等の精製手段にて精製してもよい。
[Zが(p)である化合物(1)の製造方法]
 ヨードアセチル体(p)はアミン体(f)を上述の非プロトン性溶媒、もしくは無溶媒中、ヨード酢酸無水物と反応させることで得ることができる。ヨード酢酸無水物の使用割合は、特に制限はないが、アミノ基の等モル以上が好ましく、更に好ましくは等モル~5モルである。反応温度としては、0~200℃が好ましく、更に好ましくは、20~120℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~12時間である。生成した化合物は抽出、再結晶、吸着処理、再沈殿、カラムクロマトグラフィー、超臨界抽出等の精製手段にて精製してもよい。
 また、ヨードアセチル体(p)はアミン体(f)を、上述の非プロトン性溶媒中、もしくは無溶媒中で、DCC、EDC等の縮合剤存在下、ヨード酢酸と縮合反応させることでも得ることができる。縮合剤としては、特に制限は無いが、好ましくはDCCである。DCCの使用割合はアミノ基の等モル以上が好ましく、更に好ましくは等モル~5モルである。ヨード酢酸の使用割合はアミノ基の等モル以上が好ましく、更に好ましくは等モル~5モルである。反応温度としては、0~100℃が好ましく、更に好ましくは、20~80℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~12時間である。生成した化合物は前述の精製手段にて精製してもよい。
[Zが(h)である化合物(1)の製造方法]
 ヒドラジド体(h)は上述の非プロトン性溶媒、もしくは無溶媒中で、コハク酸イミド体(b)、または活性カーボネート体(c)、(d)体を、カルバジン酸t-ブチルと反応させた後に、t-ブチルカルボニル基を脱保護することで得ることができる。カルバジン酸t-ブチルの使用割合は、特に制限はないが、コハク酸イミド基、または活性カーボネート基の等モル以上が好ましく、更に好ましくは等モル~10モルである。反応温度としては、0~200℃が好ましく、更に好ましくは、20~80℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~12時間である。生成した化合物は抽出、再結晶、吸着処理、再沈殿、カラムクロマトグラフィー、超臨界抽出等の精製手段にて精製してもよい。
[Zが(j)である化合物(1)の製造方法]
 アセチレン体(j)は、上述の非プロトン性溶媒、もしくは無溶媒中で、コハク酸イミド体(b)、または活性カーボネート体(c)、(d)体を 下記一般式で示される化合物(j1)と反応させることで得ることができる。(j1)の使用割合は、特に制限はないが、コハク酸イミド基または活性カーボネート基の等モル以上、好ましくは等モル~50モルの(j1)である。反応温度としては、0~300℃が好ましく、更に好ましくは、20~150℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~24時間である。生成した化合物は抽出、再結晶、吸着処理、再沈殿、カラムクロマトグラフィー、超臨界抽出等の精製手段にて精製してもよい。
Figure JPOXMLDOC01-appb-C000031
(式中、uは1~5の整数である。R4は水素原子又は炭素数1~5の炭化水素基を示す。)
[Zが(i)である化合物(1)の製造方法]
 アジド体(i)は上述の非プロトン性溶媒中、もしくは無溶媒中で、スルホネート体(m)をアジド化ナトリウムで反応させることで得ることができる。アジド化ナトリウムの使用割合はスルホネート基の等モル以上、好ましくは等モル~50モルである。反応温度としては、0~300℃が好ましく、更に好ましくは、20~150℃である。反応時間は10分~48時間が好ましく、更に好ましくは30分~24時間である。生成した化合物は抽出、再結晶、吸着処理、再沈殿、カラムクロマトグラフィー、超臨界抽出等の精製手段にて精製してもよい。
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれに限定されるものではない。なお、例中の化合物の同定にはH-NMR、分子量分布に関してはGPC、分子量に関してはTOF-MSまたは水酸基価の測定により決定した。
1H-NMRの分析方法>
 H-NMR分析では、日本電子データム(株)製JNM-ECP400、JNM-ECP600を用いた。NMR測定値における積分値は理論値である。
<GPCの分析方法>
 GPC分析では、展開溶媒としてDMF、THFまたは水のいずれかを用いての系で測定を行った。それぞれの測定条件を下記に示す。
 DMF系…GPCシステム: SHIMADZU LC-10Avp  展開溶媒:DMF  流速:0.7ml / min  カラム:PL gel MIXED-D×2(ポリマーラボラトリー)  カラム温度:65℃  検出器:RI  サンプル量:1mg/g、100μl
 THF系…GPCシステム:SHODEX GPC STSTEM-11  展開溶媒:THF  流速:1ml/ min   カラム:SHODEX KF-801,KF-803, KF-804(I.D. 8mm×30cm)  カラム温度:40℃  検出器:RI   サンプル量:1mg/g、100μl
 水系…GPCシステム:alliance(Waters)  展開溶媒:100mM酢酸ナトリウム、0.02%NaN3緩衝液(pH5.2)  流速:0.5ml / min   カラム:ultrahydrogel500+ultrahydrogel250 (Waters)  カラム温度:30℃  検出器:RI  サンプル量:5mg/g, 20μl
 GPC測定値とは、高分子量不純物と低分子不純物を溶出曲線の変曲点からベースラインを垂直に切って除いたメインピークでの解析値である。フラクション%とはメインピークの溶出開始点から溶出終了点までのピーク全体に対する割合、Mは数平均分子量、Mは重量平均分子量、Mはピークトップ分子量、Mw/Mnは多分散度を示す。
<TOF-MSによる分子量測定>
 TOF-MS(Bruker製、autoflexIII)を用い、マトリクスとしてDithranol、塩としてトリフルオロ酢酸ナトリウムを用いて測定を行った。解析はFlexAnalysisを用い、Polytoolsにて分子量分布解析を行った。得られた重心値を分子量の値として記載した。
<水酸基価測定による分子量測定>
 JIS K1557-1に従い、A法(無水酢酸/ピリジン)にて水酸基価を測定した。測定した水酸基価から分子量を以下の式によって算出した。
(分子量)=56.1×1,000×8/(水酸基価)
 なお、ポリエチレングリコール誘導体の場合は中間体であるヒドロキシル体の分子量から算出した理論値である。
(実施例1)
 化合物(I)、(II)、(III)、(IV)の合成(L=n-ブチレン基、k=1、分子量約5,000、10,000、20,000、40,000の場合)
Figure JPOXMLDOC01-appb-C000032
(実施例1-1)
 温度計、窒素吹き込み管、攪拌機を付した5000ml丸底フラスコに1,2,3,4-ジイソプロピリデンキシリトール130.3g(0.56mol)、脱水トルエン1650gを加えて窒素雰囲気下で溶解させた後、t-ブトキシカリウム65.4g(0.58mol)を加え、室温で30分攪拌した。一方、1,4-ブタンジオールジメタンスルホネート55.2g(0.22mol)は脱水DMF660gに溶解させた後、反応溶液中に40℃以下で30分かけて攪拌しながら滴下し、滴下終了後は50℃に昇温し6時間反応させた。反応終了後に反応溶液を冷却し、イオン交換水1100gを加えて20分攪拌した後静置し、水層を抜き取った。再びイオン交換水830gを加えて、攪拌後静置する水洗作業を8回繰り返し、DMFや未反応の原料を除去した。水洗後、有機層を濃縮して硫酸マグネシウム27.6gを加えて脱水し、ろ過した。ろ液は再び濃縮し、シリカゲルカラムクロマトグラフィー(Wakogel C-200、展開溶媒 酢酸エチル:ヘキサン=10:3(v/v))により精製し、下記構造の1,1’-ブチレンビス(2,3,4,5-ジイソプロピリデンキシリトール)(V)を76.9g得た(0.15mol;収率66%)。
1H-NMR(CDCl3、内部標準TMS)
δ(ppm):
1.39、1.41、1.42、1.44 (24H, s, -O-C-CH 3 )、1.65 (4H, quint, -OCH2CH 2 CH 2 CH2-O-)、3.49 (4H, m, -OCH 2 CH2CH2CH 2 -O-)、3.54- 3.58(4H, m, -CH 2 -O-)、3.85 (2H, t, -CH-O-)、3.89 (2H, dd, -CH-O-)、4.02-4.07 (4H, m, -CH 2 -O-)、4.17 (2H, dd, -CH-O-)
Figure JPOXMLDOC01-appb-C000033
(実施例1-2)
 温度計、窒素吹き込み管、攪拌機を付した1000ml丸底フラスコに実施例1-1で得た1,1’-ブチレンビス(2,3,4,5-ジイソプロピリデンキシリトール)(V)76.8g(0.15mol)、メタノール456g、イオン交換水45gを加えて窒素雰囲気下で溶解させた後、メタノール76gに分散させたDowex 50W-8H(Dow Chemical社製)76.4gを加え、加熱還流させて副生するアセトンを共沸除去した。反応液をろ過し、ろ液を濃縮して、下記構造の1,1’-ブチレンビスキシリトール(VI)を53.6g得た(収率66%)。1H-NMR(D2O、内部標準TMS)
δ(ppm):
1.66(4H, quint, -OCH2CH 2 CH 2 CH2-O-)、3.56-3.75 (14H,m, -OCH 2 CH2CH2CH 2 -O-,-CH 2 -O-, -CH-O-)、3.79-3.82 (2H,m, -CH-O-)、3.91-3.93 (2H, m, -CH-O-)
Figure JPOXMLDOC01-appb-C000034
(実施例1-3:分子量5,000の場合)
 実施例1-2で得た1,1’-ブチレンビスキシリトール(VI)52gを加温し、メタノール34gで洗いこみながら、5Lオートクレーブへ仕込んだ。続いて、50mlビーカーに水酸化カリウム4.9gとイオン交換水10gを加えて水酸化カリウム水溶液を調製し、5Lオートクレーブに仕込んだ。次に脱水トルエン500gを加えて、80℃、微減圧下で共沸脱水操作を3回繰り返した。共沸脱水後、脱水トルエン1423gを加えて系内を窒素置換後、80~150℃、1MPa以下の圧力でエチレンオキサイド654g(14.85mol)を加えた後、更に1時間反応を続けた。反応後、60℃に冷却して釜内から反応液を945g抜き取り85%リン酸水溶液にてpHを7.5に調整し、下記化合物(I)を得た。図1は化合物(I)のGPCチャートである。
1H-NMR(CDCl3、内部標準TMS)
 δ(ppm):
 1.57 (4H, br, -OCH2CH 2 CH 2 CH2-O-)、2.66 (8H, br, -OH)、3.40 (4H, br, -OCH 2 CH2CH2CH 2 -O-)、3.50-3.81 (430H, m, -CH 2 O (CH 2 CH 2 O)nH,CHO(CH 2 CH 2 O)nH, -CH 2 -OCH2CH2CH2CH2O-CH 2 -)
GPC分析(THF系)…メインフラクション:100%、Mn:3,502、 Mw:3,556 、Mw/Mn:1.015、Mp:3,631
分子量(TOF-MS);4,991
分子量(水酸基価);5,097
Figure JPOXMLDOC01-appb-C000035
(実施例1-4:分子量10,000の場合)
 実施例1-3にて反応釜に残存した反応液約1345gに、80~150℃、1MPa以下の圧力でエチレンオキサイド370g(8.40mol)を加えた後、更に1時間反応を続けた。反応後、60℃に冷却して釜内から反応液を1045g抜き取り85%リン酸水溶液にてpHを7.5に調整し、トルエンを留去して、下記化合物(II)を得た。
1H-NMR(CDCl3、内部標準TMS)
δ(ppm):
1.57(4H, br, -OCH2CH 2 CH 2 CH2-O-)、2.365(8H, br, -OH)、3.40 (4H, s, -OCH 2 CH2CH2CH 2 -O-)、3.50-3.81 (878H, m, -CH 2 O (CH 2 CH 2 O)nH,CHO(CH 2 CH 2 O)nH, -CH 2 -OCH2CH2CH2CH2O-CH 2 -)
GPC分析(THF系)…メインフラクション:99.7%、Mn:6,846、Mw:6,956、Mw/Mn:1.016、Mp:7,115
分子量(TOF-MS);10,033
分子量(水酸基価);10,158
Figure JPOXMLDOC01-appb-C000036
(実施例1-5:分子量20,000の場合)
 実施例1-4にて反応釜に残存した反応液約524gに、80~150℃、1MPa以下の圧力でエチレンオキサイド182g(4.13mol)を加えた後、更に1時間反応を続けた。反応後、60℃に冷却して釜内から反応液を620g抜き取り85%リン酸水溶液にてpHを7.5に調整し、トルエンを留去して、下記化合物(III)を得た。
1H-NMR(CDCl3、内部標準TMS)
δ(ppm):
1.57(4H, br, -OCH2CH 2 CH 2 CH2-O-)、2.57(8H, br, -OH)、3.40 (4H, s, -OCH 2 CH2CH2CH 2 -O-)、3.50-3.81 (1774H, m, -CH 2 O (CH 2 CH 2 O)nH,CHO(CH 2 CH 2 O)nH, -CH 2 -OCH2CH2CH2CH2O-CH 2 -)
GPC分析(THF系)…メインフラクション:99.6%、Mn:13,064、Mw:13,245、Mw/Mn:1.014、Mp:13,589
分子量(TOF-MS);20,083
分子量(水酸基価);20,225
Figure JPOXMLDOC01-appb-C000037
(実施例1-6:分子量40,000の場合)
 実施例1-5にて反応釜に残存した反応液約221gに、80~150℃、1MPa以下の圧力でエチレンオキサイド138g(3.13mol)を加えた後、更に1時間反応を続けた。反応後、60℃に冷却して釜内から反応液を全量抜き取り、85%リン酸水溶液にてpHを7.5に調整し、トルエンを留去して、下記化合物(IV)を得た。
1H-NMR(CDCl3、内部標準TMS)
δ(ppm):
1.57(4H, br, -OCH2CH 2 CH 2 CH2-O-)、2.589(8H, br, -OH)、3.40 (4H, s, -OCH 2 CH2CH2CH 2 -O-)、3.50-3.81 (3598H, m, -CH 2 O (CH 2 CH 2 O)nH,CHO(CH 2 CH 2 O)nH, -CH 2 -OCH2CH2CH2CH2O-CH 2 -)
GPC分析(THF系):メインフラクション:97.3%、Mn:24,050、Mw:24,469、Mw/Mn:1.017、Mp:25,545
分子量(TOF-MS);41,450
分子量(水酸基価);38,590
Figure JPOXMLDOC01-appb-C000038
(実施例2: p-ニトロフェニルカーボネート体の合成(VII)の合成: 分子量約5,000の場合)
 温度計、窒素吹き込み管、攪拌機、Dean-stark管、及び冷却管を付した200ml丸底フラスコへ上記実施例1―3で得られた化合物(I)20g(4mmol)、および脱水トルエン80gを仕込み、窒素雰囲気下でPEGを溶解させた後、110℃で加熱還流させ、水分を除去した。冷却後、トリエチルアミン4.9g(48mmol)、p-ニトロフェニルクロロホルメート8.4g(41.6mmol)を加え、80℃で5時間反応させた。反応終了後、反応液をろ過、濃縮した。濃縮液に40℃で酢酸エチル60gを加えた後、ヘキサン40gを加えて15分間攪拌した。静置後分離した有機層を除去し、再び酢酸エチル及びヘキサンを加えて分層させ、低分子不純物を除去する作業を4回繰り返した。最後に減圧下で脱溶剤を行い、下記p-ニトロフェニルカーボネート体
(VII)を得た。
1H-NMR(CDCl3、内部標準TMS)
δ(ppm):
1.57(4H, br, -OCH2CH 2 CH 2 CH2-O-)、3.40 (4H, br,-OCH 2 CH2CH2CH 2 -O-)、3.50-3.81 (414H, m, -CH 2 O (CH 2 CH 2 O)n-,CHO(CH 2 CH 2 O)n-, -CH 2 -OCH2CH2CH2CH2O-CH 2 -)、4.44(16H, t, -OCH2CH 2 OCOO PhNO2)、7.40(16H, d, -PhNO2)、8.28(16H, d, -PhNO2)、
GPC分析(DMF系)…メインフラクション:99.2%、Mn:3,853、Mw:3,929、Mw/Mn:1.020、Mp:4,005
分子量(TOF-MS);6,291
Figure JPOXMLDOC01-appb-C000039
(実施例3-1: シアノエチル体の合成: 分子量約10,000の場合)
 温度計、窒素吹き込み管、攪拌機、及び冷却管を付した500ml丸底フラスコへ上記実施例1-4で得られた化合物(II)30g (3mmol)とイオン交換水30gを加え、40℃に加温して溶解した。溶解後、10℃以下に冷却し、50%水酸化カリウム水溶液3gを加えた。続いて5~10℃を保ちながらアクリロニトリル25.5g(480mmol)を2時間かけて滴下した。滴下終了後、更に4時間反応させ、イオン交換水30gを加えた後に、85%リン酸水溶液1.8gを滴下して中和した。酢酸エチル45gを加えて攪拌後、静置し、上層の酢酸エチル層を廃棄した。この酢酸エチル抽出を、9回繰り返した。抽出終了後、クロロホルム150gを用いて抽出した。得られたクロロホルム層を硫酸マグネシウム15gで乾燥し、ろ過後、濃縮した。濃縮液に酢酸エチル90gを加えて溶解し、ヘキサンを結晶が析出するまで加えた。結晶をろ取し、再度酢酸エチル90gに加温溶解し、室温に冷却後、結晶が析出するまでヘキサンを加えた。結晶をろ取、乾燥し、下記シアノエチル体(VIII)を得た。
1H-NMR(CDCl3、内部標準TMS)
δ(ppm):
1.57(4H, br, -OCH2CH 2 CH 2 CH2-O-)、2.63(16H, t, -CH 2 CH2CN)、3.39 (4H, br, -OCH 2 CH2CH2CH 2 -O-)、3.50-3.80 (894H, m, -CH 2 O (CH 2 CH 2 O)nH,CHO(CH 2 CH 2 O)nH-CH 2 -OCH2CH2CH2CH2O-CH 2 -, -CHCH 2 CN)
Figure JPOXMLDOC01-appb-C000040
(実施例3-2: プロピルアミノ体の合成: 分子量約10,000の場合)
 1Lオートクレーブに上記実施例3-1で得られた化合物(VIII)のシアノエチル体13g、トルエン560g、およびニッケル(エヌ・イー・エムキャット社製5136p)1.2gを加え、60℃まで昇温した。アンモニアで内圧1MPaになるまで加圧し、その後、水素を内圧4.5MPaとなるまで加圧し、130℃で3時間反応させた。反応後、反応液を80℃に冷却し、アンモニア臭が消えるまで窒素パージを繰り返した。反応液を全量抜き取り、ろ過し、ろ液を室温まで冷却後、ヘキサンを結晶が析出するまで加えた。結晶をろ取、乾燥し、下記アミン体(IX)を得た。
1H-NMR(CDCl3、内部標準TMS)
δ(ppm):
1.57(4H, br, -OCH2CH 2 CH 2 CH2-O-)、1.72(16H, quint,-CH2CH 2 CH2NH2)、2.79(16H, t, -CH2CH2CH 2 NH2)、3.39 (4H, br, -OCH 2 CH2CH2CH 2 -O-)、3.50-3.80 (894H, m, -CH 2 O (CH 2 CH 2 O)nH,CHO(CH 2 CH 2 O)n H, -CH 2 -OCH2CH2CH2CH2O-CH 2 -,-CH 2 CH2CH2NH2
GPC分析(水系)…メインフラクション:97.9%、Mn:6,334、Mw:6,477、Mw/Mn:1.022、Mp:6,571
分子量(TOF-MS);10,510
Figure JPOXMLDOC01-appb-C000041
(実施例4: グルタル酸NHS体の合成: 分子量約20,000の場合)
 温度計、窒素吹き込み管、攪拌機を付した200ml丸底フラスコに実施例1-5で得られた化合物(III)25g(1.25mmol)、BHT 25mg、酢酸ナトリウム125mg、トルエン60gを加えて窒素雰囲気下でPEGを溶解させた後、110℃で加熱還流させ、水分を除去した。冷却後、グルタル酸無水物1.71g(15.0mmol)を加え、110℃で8時間反応させた。次に反応液を40℃まで冷却し、N-ヒドロキシスクシンイミド3.45g(30.0mmol)、1,3-ジシクロヘキシルカルボジイミド4.33g(21.0mmol)を加えて3時間反応を行った。3時間後、反応液をろ過し、ろ液にヘキサンを結晶が析出するまで加えた。結晶を濾取し、酢酸エチルに加温溶解後、ヘキサンを結晶が析出するまで加え、結晶を濾取し、乾燥させ、目的化合物(X)を得た。
1H-NMR(CDCl3、内部標準TMS)
δ(ppm):
1.57(4H, br, -OCH2CH 2 CH 2 CH2-O-)、2.07  (16H,quint, -CH2CH 2 CH2C(O)O-)、2.50 (16H, t, -CH 2 CH2CH2C(O)O-)、2.72 (16H, t, -CH2CH2CH 2 C(O)O-)、2.84(32H, br, -C(O)CH 2 CH 2 C(O)-)、3.40 (4H, br, -OCH 2 CH2CH2CH 2 -O-)、3.51-3.64(1758H, m, -CH 2 O (CH 2 CH 2 O)nH, CHO (CH 2 CH 2 O)nH, -CH 2 -OCH2CH2CH2CH2O-CH 2 -,)、4.25 (16H, t, -OCH2CH 2 OC(O) -)
GPC分析(DMF系)…メインフラクション:97.5%、Mn:14,711、Mw:15,116、Mw/Mn:1.028、Mp:15,635
分子量(TOF-MS);21,926
Figure JPOXMLDOC01-appb-C000042
(実施例5-1: ヘキサン酸体の合成: 分子量約40,000の場合)
 温度計、窒素吹き込み管、攪拌機を付した1000ml丸底フラスコに実施例1-6で得られた化合物(IV)、フレーク状水酸化カリウム60g、トルエン600gを加えて窒素雰囲気下で溶解させた後、6-ブロモヘキサン酸エチル40.2g(180mmol)を40℃で2時間かけて攪拌しながら滴下した。滴下終了後、5時間反応させた。反応液を冷却し、注射用水210gを加えて70℃まで昇温し、2時間加水分解反応を行った。反応液を冷却し、氷冷下で濃塩酸を96g攪拌しながら滴下しプロトン化を行った。静置後に有機層を除去し、酢酸エチル210gを加え、15分攪拌後静置し、有機層を再び除去する工程を3回繰り返した。その後、水層をクロロホルム150gにて2回抽出し、合わせたクロロホルム層を硫酸マグネシウム15gで乾燥させた。溶液をろ過後、クロロホルムを濃縮し、酢酸エチル210gを加えて加温溶解後、ヘキサン120gを加えて結晶を析出させた。得られた結晶をろ取し、酢酸エチル210gを加えて加温溶解後、ヘキサン120gを加えて再度結晶を析出させた。得られた結晶をろ取し、ヘキサン120gを加えて攪拌した後にろ取し、真空乾燥し、下記化合物を(XI)26g得た。1H-NMR(CDCl3、内部標準TMS)
δ(ppm):
1.42(16H, quint, - OCH2CH2CH 2  CH2CH2C(O)O-)、1.58-1.68 (36H,m, - OCH2CH 2 CH2CH 2 CH2C(O)O-、-OCH2CH 2 CH 2  CH2-O-)、2.32  (16H, t, - OCH2CH2CH2CH2CH2C(O)O-、)、3.40 (4H, br, -OCH 2 CH2 CH2CH 2 -O-)、3.51-3.84(3614H,m, -CH 2 O (CH 2 CH 2 O)nH, CHO(CH 2 CH 2 O)nH, -CH 2 -OCH2CH2CH2CH2O-CH 2 -,-OCH 2 CH2CH2CH2CH2C(O)O-、)
Figure JPOXMLDOC01-appb-C000043
(実施例5-2: ヘキサン酸NHS体の合成: 分子量約40,000の場合)
 温度計、窒素吹き込み管、攪拌機を付した200ml丸底フラスコに実施例1-5で得られた化合物(XI)25g(0.625mmol)、トルエン75gを加えて窒素雰囲気下でPEGを溶解させた後、N-ヒドロキシスクシンイミド1.23g(10.5mmol)、1,3-ジシクロヘキシルカルボジイミド2.09g(10.0mmol)を加えて40℃で2時間反応を行った。2時間後、反応液をろ過し、ろ液にヘキサンを結晶が析出するまで加えた。結晶を濾取し、酢酸エチルに加温溶解後、ヘキサンを結晶が析出するまで加え、結晶を濾取し、乾燥させ、目的化合物(XII)を得た。
1H-NMR(CDCl3、内部標準TMS)
δ(ppm):
1.47(16H, quint, -OCH2CH2CH 2 CH2CH2C(O)O-)、1.57 (4H, br, -OCH2CH 2 CH 2 CH2-O-)、1.62 (16H, quint, -OCH2 CH 2 CH2CH2CH2C(O)O-)、1.77 (16H, quint, -OCH2 CH2CH2CH 2 CH2C(O)O-)、2.61 (16H, t, -OCH2CH2CH2CH2CH 2 C(O)O-)、2.84(32H, br, -C(O)CH 2 CH 2 C(O)-)、3.40 (4H, br, -OCH 2 CH2CH2CH 2 -O-)、3.51-3.64(3614H, m, -CH 2 O (CH 2 CH 2 O)n, CHO(CH 2 CH 2 O)n, -CH 2 -OCH2CH2CH2CH2O-CH 2 -, -OCH 2 CH2CH2CH2CH2C(O)O-)
GPC分析(DMF系)…メインフラクション:92.5%、Mn:28,303、Mw:29,013、Mw/Mn:1.025、Mp:29,898
分子量(TOF-MS);43,248
Figure JPOXMLDOC01-appb-C000044
(比較例1: ヘキサグリセロールポリエチレングリコールエーテル(XIII)、(XIV)、(XV)、(XVI)の合成: 分子量約5,000、10,000、20,000、40,000の場合)
(比較例1-1: 分子量約5,000の場合)
 水酸化カリウム6.7g、イオン交換水13.4g、メタノール46.9gを100mlビーカーに加えて水酸化カリウム水溶液を調製した。ヘキサグリセリン100gを5Lオートクレーブへ仕込み、続いて、調製した水酸化カリウム水溶液を5Lオートクレーブに仕込んだ。系内を窒素置換後、90℃で減圧し、脱水操作を5hrかけて行った。系内を窒素置換後、80~150℃、1MPa以下の圧力でエチレンオキサイド886g(20.1mol)を加えた後、更に1時間反応を続けた。反応後、60℃に冷却して釜内から反応液を400g抜き取り、85%リン酸水溶液にてpHを7.5に調整し、化合物(XIII)を得た。
図2は化合物(XIII)のGPCチャートである。1H-NMR(CDCl3、内部標準TMS)
δ(ppm):
3.45-3.90(446H, m, -CH 2 O (CH 2 CH 2 O)nH,-OCH 2 CHO(CH 2 CH 2 O)nH,)
GPC分析(THF系)…メインフラクション:99.4%、Mn:2,936、Mw:3,218、Mw/Mn:1.096、Mp:3,085
分子量測定(水酸基価);4,847
(比較例1-2: 分子量約10,000の場合)
 比較例1-1にて反応釜に残存した反応液約582gに、80~150℃、1MPa以下の圧力でエチレンオキサイド575g(13.0mol)を加えた後、更に1時間反応を続けた。反応後、60℃に冷却して釜内から反応液を500g抜き取り、85%リン酸水溶液にてpHを7.5に調整し、化合物(XIV)を得た。
1H-NMR(CDCl3、内部標準TMS)
δ(ppm):
3.45-3.90(894H, m, -CH 2 O (CH 2 CH 2 O)nH,-OCH 2 CHO(CH 2 CH 2 O)nH,)
GPC分析(THF系)…メインフラクション:98.8%、Mn:5,864、Mw:6,257、Mw/Mn:1.067、Mp:6,192
分子量測定(水酸基価);10,074
(比較例1-3: 分子量約20,000の場合)
 比較例1-2にて反応釜に残存した反応液約657gに、80~150℃、1MPa以下の圧力でエチレンオキサイド655g(14.9mol)を加えた後、更に1時間反応を続けた。反応後、60℃に冷却して釜内から反応液を600g抜き取り、85%リン酸水溶液にてpHを7.5に調整し、化合物(XV)を得た。
1H-NMR(CDCl3、内部標準TMS)
δ(ppm):
3.45-3.90(1790H, m, -CH 2 O (CH 2 CH 2 O)nH,-OCH 2 CHO(CH 2 CH 2 O)nH,)
GPC分析(THF系)…メインフラクション:96.7%、Mn:11,188、Mw:11,898、Mw/Mn:1.064、Mp:11,429
分子量測定(水酸基価);19,598
(比較例1-4:分子量約40,000の場合)
 比較例1-3にて反応釜に残存した反応液約712gに、80~150℃、1MPa以下の圧力でエチレンオキサイド708g(16.1mol)を加えた後、更に1時間反応を続けた。反応後、60℃に冷却して釜内から反応液を全量抜き取り85%リン酸水溶液にてpHを7.5に調整し、下記化合物(XVI)を得た。
1H-NMR(CDCl3、内部標準TMS)
δ(ppm):
3.45-3.90(3614H, m, -CH 2 O (CH 2 CH 2 O)nH,-OCH 2 CHO(CH 2 CH 2 O)nH,)
GPC分析(THF系)…メインフラクション:98.6%、Mn:20,303、Mw:21,342、Mw/Mn:1.051、Mp:22,076
分子量測定(水酸基価);35,900
(比較例2-1: シアノエチル体の合成(分子量約10,000の場合)
 温度計、窒素吹き込み管、攪拌機、及び冷却管を付した3000ml丸底フラスコへ上記比較例1-2で得られた化合物(XIV)400g (40mmol)とイオン交換水400gを加え、40℃に加温して溶解した。溶解後、10℃以下に冷却し、50%水酸化カリウム水溶液40gを加えた。続いて5~10℃を保ちながらアクリロニトリル255g(4.8mol)を2時間かけて滴下した。滴下終了後、更に4時間反応させ、イオン交換水400gを加えた後に、85%リン酸水溶液24gを滴下して中和した。酢酸エチル720gを加えて攪拌後、静置し、上層の酢酸エチル層を廃棄した。この酢酸エチル抽出を、9回繰り返した。抽出終了後、クロロホルム530gを用いて抽出した。得られたクロロホルム層を硫酸マグネシウム80gで乾燥し、ろ過後、濃縮した。濃縮液に酢酸エチル1000gを加えて溶解し、ヘキサンを結晶が析出するまで加えた。結晶をろ取し、再度酢酸エチル1000gに加温溶解し、室温に冷却後、結晶が析出するまでヘキサンを加えた。結晶をろ取、乾燥し、シアノエチル体(XVII)を得た。
1H-NMR(CDCl3、内部標準TMS)
δ(ppm):
2.63(16H,t, -CH2CH 2 CN)、3.45-3.83 (910H, m, -CH 2 O(CH 2 CH 2 O)nH, -OCH 2 CHO(CH 2 CH 2 O)nH,-CH 2 CH2CN)
分子量測定(水酸基価);10,498
(比較例2-2: プロピルアミノ体の合成(分子量約10,000の場合)
 1Lオートクレーブに上記比較例2-1で得られた化合物(XVII)のシアノエチル体75g、トルエン510g、およびニッケル(エヌ・イー・エムキャット社製5136p)6.8gを加え、60℃まで昇温した。アンモニアで内圧1MPaになるまで加圧し、その後、水素を内圧4.5MPaとなるまで加圧し、130℃で3時間反応させた。反応後、反応液を80℃に冷却し、アンモニア臭が消えるまで窒素パージを繰り返した。反応液を全量抜き取り、ろ過し、ろ液を室温まで冷却後、ヘキサンを結晶が析出するまで加えた。結晶をろ取、乾燥し、アミン体(XVIII)を得た。
1H-NMR(CDCl3、内部標準TMS)
δ(ppm):
1.77(16H,quint, -CH2CH 2 CH2NH2)、2.74(16H, t, -CH2CH2CH 2 NH2)、3.62-3.90 (910H, m, -CH 2 O (CH 2 CH 2 O)nH,-OCH 2 CHO(CH 2 CH 2 O)nH,-CH 2 CH2CH2NH2
GPC分析(水系)…メインフラクション:96.8%、Mn:5,832、Mw:6,387、Mw/Mn:1.095、Mp:5,821
分子量測定(水酸基価);10,530
(比較例3: グルタル酸NHS体の合成(分子量約20,000の場合)
 温度計、窒素吹き込み管、攪拌機を付した200ml丸底フラスコに比較例1-3で得られた化合物(XV)100g(5mmol)、BHT 100mg、酢酸ナトリウム500mg、トルエン150gを加えて窒素雰囲気下でPEGを溶解させた後、110℃で加熱還流させ、水分を除去した。冷却後、グルタル酸無水物6.8g(60mmol)を加え、110℃で8時間反応させた。次に反応液を40℃まで冷却し、N-ヒドロキシスクシンイミド13.8g(120mmol)、1,3-ジシクロヘキシルカルボジイミド17.3g(84mmol)を加えて3時間反応を行った。3時間後、反応液をろ過し、ろ液にヘキサンを結晶が析出するまで加えた。結晶を濾取し、酢酸エチルに加温溶解後、ヘキサンを結晶が析出するまで加え、結晶を濾取し、乾燥させ、目的化合物(XIX)を得た。
1H-NMR(CDCl3、内部標準TMS)
δ(ppm):
2.07 (16H, quint, -CH2CH 2 CH2C(O)O-)、2.48 (16H, t, -CH 2 CH2CH2C(O)O-)、2.72 (16H, t, -CH2CH2CH 2 C(O)O-)、2.84(32H, br, -C(O)CH 2 CH 2 C(O)-)、3.51-3.64(1774H, m, -CH 2 O (CH 2 CH 2 O)nH,-OCH 2 CHO(CH 2 CH 2 O)nH,)、4.25 (16H, t, -OCH2CH 2 OC(O) -)
GPC分析(DMF系)…メインフラクション:97.7%、Mn:16,386、Mw:18,001、Mw/Mn:1.099、Mp:16,701
分子量測定(水酸基価);21,286
 実施例1-3で得られた化合物(I)及び比較例1-1で得られた化合物(VIII)をGPCで分析した結果を図1及び2に示した。また、実施例1-3~6、3-2、4及び比較例1-1~4、2-2、3でのGPC分析から得られたメインフラクションの多分散度(Mw/Mn)の結果を表1にまとめた。
 図1、2及び表1に示すように、本発明のマルチアーム型ポリエチレングリコール誘導体及びその中間体は多分散度が小さいことから、分子量分布が非常に狭いことが示された。一方、ヘキサグリセリンから合成したマルチアーム型ポリエチレングリコールは多分散度が非常に大きいため、分子量分布の広いポリエチレングリコールであることが示された。
Figure JPOXMLDOC01-appb-T000045
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2012年3月30日付で出願された日本国特許出願(特願2012-079941)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。

Claims (12)

  1.  下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Lはエーテル結合を鎖中に有していてもよい炭素数2以上の直鎖又は分岐アルキレン、アリーレン、シクロアルキレン基及びそれらの組み合わせから選択される基を示し、Xは炭素数5または7の直鎖の糖アルコールの脱水酸基残基を示し、mはXと結合したポリエチレングリコール鎖の数であり、4または6を示し、nはオキシエチレン基の平均付加モル数であり、nは3~600の整数を示し、Yは単結合、またはエステル結合、ウレタン結合、アミド結合、エーテル結合、カーボネート結合、2級アミノ基、ウレア結合、チオエーテル結合もしくはチオエステル結合を鎖中または末端に有していてもよいアルキレン基を示し、Zは化学反応可能な官能基を示す)で表される、マルチアーム型ポリエチレングリコール誘導体。
  2.  下記式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Lはエーテル結合を鎖中に有していてもよい炭素数2以上の直鎖又は分岐アルキレン、アリーレン、シクロアルキレン基及びそれらの組み合わせから選択される基を示し、kは1または2を示し、nはオキシエチレン基の平均付加モル数であり、nは3~600の間の整数を示し、Yは単結合、またはエステル結合、ウレタン結合、アミド結合、エーテル結合、カーボネート結合、2級アミノ基、ウレア結合、チオエーテル結合もしくはチオエステル結合を鎖中または末端に有していてもよいアルキレン基を示し、Zは化学反応可能な官能基を示す)で表される、請求項1記載のマルチアーム型ポリエチレングリコール誘導体。
  3.  下記式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Lはエーテル結合を鎖中に有していてもよい炭素数2以上の直鎖又は分岐アルキレン、アリーレン、シクロアルキレン基及びそれらの組み合わせから選択される基を示し、nはオキシエチレン基の平均付加モル数であり、nは3~600の間の整数を示し、Yは単結合、またはエステル結合、ウレタン結合、アミド結合、エーテル結合、カーボネート結合、2級アミノ基、ウレア結合、チオエーテル結合もしくはチオエステル結合を鎖中または末端に有していてもよいアルキレン基を示し、Zは化学反応可能な官能基を示す)で表される、請求項2記載のマルチアーム型ポリエチレングリコール誘導体。
  4.  Lが炭素数3~8のアルキレン基である、請求項1~3のいずれか一つの請求項に記載のマルチアーム型ポリエチレングリコール誘導体。
  5.  Lがn-ブチレン基である、請求項4記載のマルチアーム型ポリエチレングリコール誘導体。
  6.  Zが、以下の式(a)、式(b)、式(c)、式(d)、式(e)、式(f)、式(g)、式(h)、式(i)、式(j)、式(k)、式(l)、式(m)、式(n)、式(o)および式(p)の基からなる群より選ばれた一種以上の基である、請求項1~5のいずれか一つの請求項に記載のマルチアーム型ポリエチレングリコール誘導体。
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは炭素数1~10のフッ素原子を含んでも良い炭化水素基を示す。)
  7.  ゲル浸透クロマトグラフィーにおいて多分散度Mw/Mnが、Mw/Mn≦1.05なる関係を満足する、請求項1~6のいずれか一つの請求項に記載のマルチアーム型ポリエチレングリコール誘導体。
  8.  Xと結合したポリエチレングリコール鎖の数mが4である、請求項1~7のいずれか一つの請求項に記載のマルチアーム型ポリエチレングリコール誘導体。
  9.  下記式(4)
    Figure JPOXMLDOC01-appb-C000005
    (式中、Lはエーテル結合を鎖中に有していてもよい炭素数2以上の直鎖又は分岐アルキレン、アリーレン、シクロアルキレン基及びそれらの組み合わせから選択される基を示し、kは1または2を示し、nはオキシエチレン基の平均付加モル数であり、nは3~600の間の整数を示す。)で表される、請求項2記載のマルチアーム型ポリエチレングリコール誘導体の中間体。
  10.  下記式(5)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Lはエーテル結合を鎖中に有していてもよい炭素数2以上の直鎖又は分岐アルキレン、アリーレン、シクロアルキレン基及びそれらの組み合わせから選択される基を示し、nはオキシエチレン基の平均付加モル数であり、nは3~600の間の整数を示す。)で表される、請求項9記載の中間体。
  11.  ゲル浸透クロマトグラフィーにおいて多分散度Mw/Mnが、Mw/Mn≦1.05なる関係を満足する、請求項9または10記載の中間体。
  12.  下記(A)、(B)、(C)全ての工程を順番に含むことを特徴とする、請求項9~11のいずれか一つの請求項に記載の中間体の製造方法。
     工程(A): 式(6)で示される化合物2分子と式(7)で示される化合物をエーテル化反応により連結し、式(8)で示される化合物を得る工程
    Figure JPOXMLDOC01-appb-C000007
    (式中、kは1または2を示す。)
    Figure JPOXMLDOC01-appb-C000008
    (式中、Lはエーテル結合を鎖中に有していてもよい炭素数2以上の直鎖又は分岐アルキレン、アリーレン、シクロアルキレン基及びそれらの組み合わせから選択される基を示し、Aは塩素、臭素、またはヨウ素から選ばれるハロゲン原子、またはスルホン系保護基を示す。)
    Figure JPOXMLDOC01-appb-C000009
    (式中、Lはエーテル結合を鎖中に有していてもよい炭素数2以上の直鎖又は分岐アルキレン、アリーレン、シクロアルキレン基及びそれらの組み合わせから選択される基を示し、kは1または2を示す。)
     工程(B): 式(8)で示される化合物を酸加水分解することにより、式(9)の化合物を得る工程
    Figure JPOXMLDOC01-appb-C000010
    (式中、Lはエーテル結合を鎖中に有していてもよい炭素数2以上の直鎖又は分岐アルキレン、アリーレン、シクロアルキレン基及びそれらの組み合わせから選択される基を示し、kは1または2を示す。)
     工程(C) :水酸化カリウム、水酸化ナトリウム、ナトリウムメトキシド、金属ナトリウム、金属カリウムおよびt-ブトキシカリウムからなる群より選ばれた一種以上の化合物を触媒に用いて、式(9)の化合物に有機溶剤存在下でエチレンオキサイドを付加し、式(4)で示されるポリエチレングリコール誘導体の中間体を得る工程
    Figure JPOXMLDOC01-appb-C000011
    (式中、Lはエーテル結合を鎖中に有していてもよい炭素数2以上の直鎖又は分岐アルキレン、アリーレン、シクロアルキレン基及びそれらの組み合わせから選択される基を示し、kは1または2を示し、nはオキシエチレン基の平均付加モル数であり、nは3~600の間の整数を示す。)
     
PCT/JP2013/059243 2012-03-30 2013-03-28 マルチアーム型ポリエチレングリコール誘導体、その中間体及び製造方法 WO2013147015A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DK13768770.3T DK2832765T3 (en) 2012-03-30 2013-03-28 Multi-arm polyethylene glycol derivative, its intermediate and process for its preparation.
EP13768770.3A EP2832765B1 (en) 2012-03-30 2013-03-28 Multi-arm polyethylene glycol derivative, intermediate thereof and method for producing same
US14/389,459 US9428609B2 (en) 2012-03-30 2013-03-28 Multi-arm polyethylene glycol derivative, intermediate thereof, and method for producing same
CN201380018542.5A CN104245791B (zh) 2012-03-30 2013-03-28 多臂聚乙二醇衍生物、其中间体以及它们的制造方法
KR1020147027529A KR101918339B1 (ko) 2012-03-30 2013-03-28 다중-아암 폴리에틸렌 글리콜 유도체, 그 유도체의 중간체, 및 그 유도체의 제조방법
US15/216,573 US9908971B2 (en) 2012-03-30 2016-07-21 Multi-arm polyethylene glycol derivative, intermediate thereof, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-079941 2012-03-30
JP2012079941 2012-03-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/389,459 A-371-Of-International US9428609B2 (en) 2012-03-30 2013-03-28 Multi-arm polyethylene glycol derivative, intermediate thereof, and method for producing same
US15/216,573 Division US9908971B2 (en) 2012-03-30 2016-07-21 Multi-arm polyethylene glycol derivative, intermediate thereof, and method for producing same

Publications (1)

Publication Number Publication Date
WO2013147015A1 true WO2013147015A1 (ja) 2013-10-03

Family

ID=49260263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059243 WO2013147015A1 (ja) 2012-03-30 2013-03-28 マルチアーム型ポリエチレングリコール誘導体、その中間体及び製造方法

Country Status (7)

Country Link
US (2) US9428609B2 (ja)
EP (1) EP2832765B1 (ja)
JP (1) JP6051998B2 (ja)
KR (1) KR101918339B1 (ja)
CN (1) CN104245791B (ja)
DK (1) DK2832765T3 (ja)
WO (1) WO2013147015A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104530417A (zh) * 2014-10-01 2015-04-22 厦门赛诺邦格生物科技有限公司 一种多官能化h型聚乙二醇衍生物及其制备方法
WO2016050208A1 (zh) * 2014-10-01 2016-04-07 厦门赛诺邦格生物科技有限公司 一种多官能化聚乙二醇衍生物修饰的生物相关物质
WO2016050210A1 (zh) * 2014-10-01 2016-04-07 厦门赛诺邦格生物科技有限公司 一种多官能化聚乙二醇衍生物及其制备方法
JP2016065202A (ja) * 2014-03-31 2016-04-28 日油株式会社 環状ベンジリデンアセタールリンカーを有する親水性ポリマー誘導体

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015023596A1 (en) 2013-08-12 2015-02-19 Genentech, Inc. Compositions and method for treating complement-associated conditions
EP3137503A1 (en) 2014-05-01 2017-03-08 Genentech, Inc. Anti-factor d antibody variants and uses thereof
CN108289951A (zh) 2015-10-30 2018-07-17 豪夫迈·罗氏有限公司 抗-因子d抗体和缀合物
CN108472382A (zh) 2015-10-30 2018-08-31 豪夫迈·罗氏有限公司 抗-因子d抗体变体缀合物及其用途
KR102247701B1 (ko) 2016-02-26 2021-05-03 한미정밀화학주식회사 폴리에틸렌글리콜 디알데히드 유도체의 제조방법
US11905366B2 (en) 2018-03-27 2024-02-20 Nof Corporation Method for producing multi-arm type polyethylene glycol derivative
WO2020050205A1 (ja) * 2018-09-03 2020-03-12 富士フイルム株式会社 ゲル形成キット、ゲルおよびゲルの製造方法
CR20220489A (es) 2020-03-24 2022-10-31 Genentech Inc Agentes de fijación a tie2 y métodos de uso.
JP2023138437A (ja) * 2022-03-17 2023-10-02 日油株式会社 ポリエチレングリコール誘導体の製造方法
CN115109248B (zh) * 2022-06-30 2024-04-19 北京诺康达医药科技股份有限公司 四臂聚乙二醇戊二酸琥珀酰亚胺酯及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6858736B2 (en) 2002-11-08 2005-02-22 Sunbio, Inc. Hexa-arm polyethylene glycol and its derivatives and the methods of preparation thereof
WO2008105514A1 (ja) * 2007-02-28 2008-09-04 Nof Corporation 多分岐鎖ポリオキシアルキレン誘導体
WO2010114073A1 (ja) * 2009-03-31 2010-10-07 日油株式会社 高分子量ポリオキシアルキレン誘導体の精製方法
JP2010235450A (ja) * 2009-03-30 2010-10-21 Nof Corp 脂質誘導体
JP2010254986A (ja) * 2009-03-31 2010-11-11 Nof Corp 多分岐鎖ポリオキシアルキレン化合物、その製造方法および中間体
EP2360203A1 (en) 2008-11-03 2011-08-24 Beijing Jenkem Technology Co., Ltd. Novel multi-arm polyethylene glycol, preparation method and uses thereof
WO2011162252A1 (ja) * 2010-06-25 2011-12-29 日油株式会社 分岐型ヘテロポリエチレングリコールおよび中間体
WO2012133490A1 (ja) * 2011-03-30 2012-10-04 日油株式会社 末端に複数の水酸基を有するポリオキシエチレン誘導体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4572907A (en) * 1984-03-22 1986-02-25 Abbott Laboratories High caloric product for I.V. administration
TW308598B (ja) * 1994-01-14 1997-06-21 Hoffmann La Roche
US7291713B2 (en) * 2001-01-30 2007-11-06 Kyowa Hakko Kogyo Co., Ltd. Branched polyalkylene glycols
WO2011093508A1 (ja) * 2010-02-01 2011-08-04 日油株式会社 ポリアルキレングリコール誘導体およびこれを配合してなる化粧料
US10040761B2 (en) 2010-06-25 2018-08-07 Nof Corporation Branched hetero polyethylene glycol and intermediate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6858736B2 (en) 2002-11-08 2005-02-22 Sunbio, Inc. Hexa-arm polyethylene glycol and its derivatives and the methods of preparation thereof
WO2008105514A1 (ja) * 2007-02-28 2008-09-04 Nof Corporation 多分岐鎖ポリオキシアルキレン誘導体
EP2360203A1 (en) 2008-11-03 2011-08-24 Beijing Jenkem Technology Co., Ltd. Novel multi-arm polyethylene glycol, preparation method and uses thereof
JP2010235450A (ja) * 2009-03-30 2010-10-21 Nof Corp 脂質誘導体
WO2010114073A1 (ja) * 2009-03-31 2010-10-07 日油株式会社 高分子量ポリオキシアルキレン誘導体の精製方法
JP2010254986A (ja) * 2009-03-31 2010-11-11 Nof Corp 多分岐鎖ポリオキシアルキレン化合物、その製造方法および中間体
WO2011162252A1 (ja) * 2010-06-25 2011-12-29 日油株式会社 分岐型ヘテロポリエチレングリコールおよび中間体
WO2012133490A1 (ja) * 2011-03-30 2012-10-04 日油株式会社 末端に複数の水酸基を有するポリオキシエチレン誘導体

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FRANCESCO M. VERONESE, PEGYLATED PROTEIN DRUG: BASIC SCIENCE AND CLINICAL APPLICATION, 2009
GREG T. HERMANSON: "Bioconjugate Techniques", 2008
J. MILTON HARRIS, POLY (ETHYLENE GLYCOL) CHEMISTRY
See also references of EP2832765A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065202A (ja) * 2014-03-31 2016-04-28 日油株式会社 環状ベンジリデンアセタールリンカーを有する親水性ポリマー誘導体
US11530295B2 (en) 2014-03-31 2022-12-20 Nof Corporation Hydrophilic polymer derivative having cyclic benzylidene acetal linker
CN104530417A (zh) * 2014-10-01 2015-04-22 厦门赛诺邦格生物科技有限公司 一种多官能化h型聚乙二醇衍生物及其制备方法
WO2016050208A1 (zh) * 2014-10-01 2016-04-07 厦门赛诺邦格生物科技有限公司 一种多官能化聚乙二醇衍生物修饰的生物相关物质
WO2016050210A1 (zh) * 2014-10-01 2016-04-07 厦门赛诺邦格生物科技有限公司 一种多官能化聚乙二醇衍生物及其制备方法
US11324827B2 (en) 2014-10-01 2022-05-10 Xiamen Sinopeg Biotech Co., Ltd. Multifunctionalized polyethylene glycol derivative and preparation method therefor

Also Published As

Publication number Publication date
JP6051998B2 (ja) 2016-12-27
US20160326317A1 (en) 2016-11-10
EP2832765B1 (en) 2017-02-15
EP2832765A1 (en) 2015-02-04
US20150073155A1 (en) 2015-03-12
EP2832765A4 (en) 2016-01-06
JP2013227543A (ja) 2013-11-07
DK2832765T3 (en) 2017-04-10
US9428609B2 (en) 2016-08-30
CN104245791A (zh) 2014-12-24
KR101918339B1 (ko) 2018-11-13
CN104245791B (zh) 2017-03-08
KR20140148403A (ko) 2014-12-31
US9908971B2 (en) 2018-03-06

Similar Documents

Publication Publication Date Title
JP6051998B2 (ja) マルチアーム型ポリエチレングリコール誘導体、その中間体及び製造方法
JP5949037B2 (ja) 末端に複数の水酸基を有するポリオキシエチレン誘導体
KR20040096016A (ko) 신규한 폴리에틸렌글리콜-말레이미드 유도체의 합성방법
KR20080036236A (ko) 말단에 아민기를 갖는 중합체의 제조방법
JP5866789B2 (ja) 多官能性ポリオキシアルキレン化合物、その製造方法及び中間体
KR102580547B1 (ko) 멀티 암형 폴리에틸렌 글리콜 유도체의 제조 방법
JP5945896B2 (ja) 分岐型ヘテロ多官能性ポリオキシアルキレン化合物、及びその中間体
CN102037056B (zh) 制备高纯度聚乙二醇醛衍生物的方法
JP6935060B2 (ja) 末端に複数の水酸基を有するポリオキシエチレン誘導体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147027529

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013768770

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14389459

Country of ref document: US

Ref document number: 2013768770

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE