[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013145617A1 - 情報処理装置、情報処理方法及び情報記憶媒体 - Google Patents

情報処理装置、情報処理方法及び情報記憶媒体 Download PDF

Info

Publication number
WO2013145617A1
WO2013145617A1 PCT/JP2013/001791 JP2013001791W WO2013145617A1 WO 2013145617 A1 WO2013145617 A1 WO 2013145617A1 JP 2013001791 W JP2013001791 W JP 2013001791W WO 2013145617 A1 WO2013145617 A1 WO 2013145617A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
recording
information
area
raid
Prior art date
Application number
PCT/JP2013/001791
Other languages
English (en)
French (fr)
Inventor
宜久 高橋
健次 高内
敦 清村
臼井 誠
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380001202.1A priority Critical patent/CN103502927B/zh
Priority to JP2013549625A priority patent/JP5999603B2/ja
Priority to US14/114,834 priority patent/US9377969B2/en
Publication of WO2013145617A1 publication Critical patent/WO2013145617A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0683Plurality of storage devices
    • G06F3/0689Disk arrays, e.g. RAID, JBOD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0706Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
    • G06F11/0727Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment in a storage system, e.g. in a DASD or network based storage system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0766Error or fault reporting or storing
    • G06F11/0787Storage of error reports, e.g. persistent data storage, storage using memory protection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/08Error detection or correction by redundancy in data representation, e.g. by using checking codes
    • G06F11/10Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
    • G06F11/1076Parity data used in redundant arrays of independent storages, e.g. in RAID systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1446Point-in-time backing up or restoration of persistent data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0614Improving the reliability of storage systems
    • G06F3/0619Improving the reliability of storage systems in relation to data integrity, e.g. data losses, bit errors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0662Virtualisation aspects
    • G06F3/0665Virtualisation aspects at area level, e.g. provisioning of virtual or logical volumes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1833Error detection or correction; Testing, e.g. of drop-outs by adding special lists or symbols to the coded information
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2211/00Indexing scheme relating to details of data-processing equipment not covered by groups G06F3/00 - G06F13/00
    • G06F2211/10Indexing scheme relating to G06F11/10
    • G06F2211/1002Indexing scheme relating to G06F11/1076
    • G06F2211/1057Parity-multiple bits-RAID6, i.e. RAID 6 implementations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2211/00Indexing scheme relating to details of data-processing equipment not covered by groups G06F3/00 - G06F13/00
    • G06F2211/10Indexing scheme relating to G06F11/10
    • G06F2211/1002Indexing scheme relating to G06F11/1076
    • G06F2211/1059Parity-single bit-RAID5, i.e. RAID 5 implementations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2211/00Indexing scheme relating to details of data-processing equipment not covered by groups G06F3/00 - G06F13/00
    • G06F2211/10Indexing scheme relating to G06F11/10
    • G06F2211/1002Indexing scheme relating to G06F11/1076
    • G06F2211/1076RAIP, i.e. RAID on platters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • G06F3/0674Disk device
    • G06F3/0677Optical disk device, e.g. CD-ROM, DVD

Definitions

  • the present invention relates to an information processing apparatus and information processing method for recording data on a disk array composed of a plurality of portable information storage media such as an optical disk, and a portable information storage medium for recording data. is there.
  • a disk array device as an external storage device that is used in a large-scale business server or other computer system and realizes large capacity, high-speed processing, and improved fault tolerance.
  • a disk array device is a system that bundles a plurality of disks and uses them as one disk (one volume).
  • one virtual disk obtained by bundling a plurality of disks realized by a disk array is referred to as a logical disk.
  • the level of RAID Redundant Arrays of Independent Disks
  • RAID levels often used include RAID0, which has only the striping function to record one piece of data on multiple disks, RAID1, which has a mirroring function, and parity data calculated in units of blocks (striping) together with user data.
  • a method combining these RAID levels for example, RAID 10 for striping a mirrored group is also used.
  • RAID 6 that is often used in a scene where speed and usage efficiency are required while ensuring redundancy will be described.
  • FIG. 17 is a diagram for explaining a conventional RAID 6 system.
  • FIG. 17 shows an example of a P + Q RAID 6 system composed of four disk devices 201-204.
  • the first disk device 201, the second disk device 202, the third disk device 203, and the fourth disk device 204 are RAID # 0 and RAID, respectively. It is defined as # 1, RAID # 2, and RAID # 3.
  • the logical addresses seen from the host are RAID # 1, RAID # 2, and RAID # 3 in order from RAID # 0, excluding parity data. Will be allocated in this order.
  • each disk device In RAID, the storage area of each disk device is managed by being divided into blocks having the same size as the logical sector size or a multiple of the logical sector size.
  • the blocks Pi and Qi are parity blocks.
  • the block Pi stores the calculation result of the exclusive OR of the data at the same byte positions of the blocks Ai and Bi.
  • the block Qi stores the calculation result (RS Stored as syndrome or Galois parity). That is, the stripe is composed of data blocks such as blocks Ai and Bi and parity blocks such as blocks Pi and Qi.
  • the RAID6 parity generation method includes a 2D-XOR method for generating diagonal parity.
  • a P + Q method will be described as an example of a parity generation method for RAID6.
  • RAID 6 can restore stripe data even when two or fewer disk devices fail and data cannot be reproduced. Even if one disk device cannot be recorded or reproduced due to a failure or the like, it is possible to continue recording or reproducing at a redundancy level equivalent to RAID 5 having one parity block. For example, if it is assumed in FIG. 17 that the first disk device 201 has failed and cannot be reproduced, the block A1 is restored by calculating the exclusive OR of the data at the same byte positions of the blocks B1 and P1. it can.
  • a system using a portable storage device as an external storage device is also used.
  • a storage body for storing a large number of information storage media one or more recording / reproducing devices (drive devices) for reading and writing data, and the storage body and recording
  • a library apparatus including a transport body such as a changer that transports an information storage medium to and from a playback apparatus is used.
  • a system in which a plurality of such recording / reproducing apparatuses are combined to form an array is also called RAIL (Redundant Arrays of Inexpensive Libraries).
  • a portable medium type library device that can reduce power consumption and is suitable for long-term storage has attracted attention as a device for archiving such data with a small number of references.
  • optical discs such as a DVD (Digital Versatile Disc) or a Blu-ray Disc.
  • Optical discs are roughly classified into rewritable information storage media such as DVD-RAM and BD-RE and write-once information storage media such as DVD-R, DVD + R, and BD-R.
  • the optical disc has an area for alternative recording called a spare area, and the recording / reproducing apparatus also has a mechanism for recording the data of defective blocks alternately in the blocks in the spare area. Yes.
  • a RAID is constituted by an information storage medium set mounted on a plurality of recording / reproducing apparatuses (drive apparatuses) provided in the library array apparatus, and an information storage medium mounted on a plurality of drive apparatuses is provided. By exchanging, a larger number of information storage medium sets than the number of drive devices can be used.
  • the array device includes a spare drive device (hot spare) in which a spare information storage medium is mounted.
  • a spare device is provided.
  • the conventional disk array device does not sufficiently consider a disk array device that uses an information storage medium such as an optical disk as a disk array (for example, RAID 6).
  • the area corresponding to the stripe recorded after the failure has occurred in both the unrecorded state (rewritable and write-once information storage media). Or data before recording remains as it is (can only occur in the case of a rewritable information storage medium).
  • an optical disc recording / reproducing device such as BD-RE or BD-R reports (transfers) “00” data (dummy data) to the host in response to a reproduction request to an unrecorded area.
  • drive device such as BD-RE or BD-R reports (transfers) “00” data (dummy data) to the host in response to a reproduction request to an unrecorded area.
  • Many of them have a function to do this (see, for example, paragraph 0006 of Patent Document 3). That is, unintended data different from the original recording data is correctly read from an area where recording is not performed (such as an unrecorded area) in the information storage medium where recording is no longer performed.
  • “00” data since “00” data may actually be recorded, simple control of handling “00” data as invalid data is not possible.
  • HDDs hard disk drives
  • the like that are widely used in conventional disk array apparatuses perform preformat recording for detecting defective blocks at the time of product shipment. Therefore, in the case of a magnetic disk, the problem about the unrecorded state that can occur in the case of an optical disk cannot occur in the first place.
  • the information storage medium mounted on the recording / reproducing apparatus in the failed state is recorded or reproduced at least until the data restoration is completed after the information storage medium is in the failed state. It is conceivable that the method is not used for the case. This is the same control method as in the case of a disk (media) / drive integrated HDD that is widely used in conventional disk array devices.
  • the information storage medium (media) is not used even though it can be used in a normal state.
  • the information storage medium (media) attached to the recording / reproducing apparatus in the failed state is not used even when reproducing the correctly recorded area with the redundancy of RAID 6 maintained. Therefore, the redundancy at the time of reproduction is always in a state corresponding to RAID 5 having one parity block. In this state, if reproduction from two or more other information storage media fails in the same stripe, data cannot be reproduced (data is lost), and high reliability is required. It is not preferable as a disk array device.
  • the information storage medium manufactured in the same lot has defects at the same position, and can be recorded or reproduced at the same position. Cases that fail are also envisaged. For this reason, it is desired to continue to use it while ensuring high redundancy (data reliability) during recording or reproduction as much as possible.
  • the information storage medium on which data is recorded is often taken off the disk array apparatus and managed offline, such as shelf management.
  • shelf management it is expected that there are many cases where it is physically difficult to immediately restore data. In such a case, there is a high possibility that the period in which the data of the block that has not been correctly recorded remains as it is without being restored is also increased.
  • the order of the optical disk sets constituting the RAID may be switched at the timing of failure repair or maintenance. Conceivable.
  • the RAID number is configured by fixing and assigning a RAID number for each recording / reproducing apparatus, the RAID number of the information storage medium may change from the middle, and there is a possibility that the recording control or reproduction control becomes very complicated. is there.
  • the present invention has been made to solve the above-described problem, and can maintain high data reliability, high availability and high transfer rate even before missing data is repaired. It is an object of the present invention to provide an information processing apparatus, an information processing method, and an information storage medium that can record data.
  • An information processing apparatus is an information processing apparatus that records data on a disk array including a plurality of portable information storage media, and the data is stored in each of the plurality of information storage media.
  • a user area that records the data in units of the data block, and a management information area that records recording illegal area information indicating information related to the recording illegal area in which the data is missing, and the recording illegality Area information includes the information storage medium in which the recording illegal area exists, and the information storage medium among the plurality of information storage media constituting the disk array.
  • control unit records the data in a plurality of data blocks of the plurality of information storage media in a distributed manner, and among the plurality of data blocks
  • an area information recording unit that records the recording illegal area information in the management information area of at least one information storage medium.
  • the plurality of drive devices record data in each of the plurality of information storage media.
  • the control unit controls a plurality of drive devices in order to distribute and record data on the disk array.
  • Each of the plurality of information storage media has a plurality of data blocks, and records the user area in which data is recorded in units of data blocks, and the recording illegal area information indicating information related to the recording illegal area in which data is missing. And an information area.
  • the illegal recording area information includes, among a plurality of information storage media constituting the disk array, an information storage medium where the illegal recording area exists, and a position where the illegal recording area exists in the information storage medium.
  • the data recording unit distributes and records data in a plurality of data blocks of a plurality of information storage media, and at least one parity data for repairing data of a data block in which data is missing among the plurality of data blocks Are recorded in at least one parity block.
  • the area information recording unit records the improper recording area information in the management information area of at least one information storage medium when recording fails in at least one drive device during data recording.
  • an information storage medium in which there is an illegal recording area lacking data, and a position in which there is an illegal recording area in the information storage medium Since the recording illegal area information including is recorded, high data reliability, high availability and high transfer rate can be secured even before missing data is repaired, and data is continuously recorded. can do.
  • FIG. 6 is an explanatory diagram showing a recording state of a logical disk in the disk array in the state of FIG. It is a flowchart which shows the reproduction
  • FIG. 6 is an explanatory diagram illustrating an example of a disk state when data in RAID 6 is continuously recorded on a RAID (disk array) in which an optical disk including an unrecordable area in the state of FIG. 5 exists.
  • an array system using a write-once optical disc such as a BD-R as an information storage medium will be described as an example.
  • optical disk recording / reproducing devices As an array system, four optical disk recording / reproducing devices (drive devices) are operated in parallel, and two drive devices out of the four drive devices are parity-operated in order to improve system and data reliability.
  • RAID 6 used as a drive device as an example.
  • FIG. 1 is a block diagram showing a configuration of an optical disc array system 100 according to an embodiment of the present invention.
  • the optical disk array system 100 records data on a disk array composed of a plurality of portable optical disks 1a to 1d.
  • the optical disk array system 100 is connected to a host apparatus 101 as a host via an interface cable such as SAS (Serial Attached SCSI) or FC (Fiber Channel).
  • the host device 101 is, for example, a server computer.
  • the optical disk array system 100 includes a controller 110, a memory 140, and a plurality of optical disk drives 150a to 150d.
  • the controller 110, the memory 140, and the plurality of optical disk drives 150a to 150d are connected by an I / O bus such as SATA (Serial ATA).
  • the memory 140 is used as a cache memory that temporarily holds recording data transmitted to the host apparatus (host) 101 or reproduction data received from the host apparatus (host) 101.
  • the memory 140 is used to store other information (such as management information on the optical discs 1a to 1d or management information related to RAID).
  • the memory 140 is basically composed of a volatile memory such as a DRAM (Dynamic Random Access Memory).
  • the optical disk drives 150a to 150d record data on each of the plurality of optical disks 1a to 1d.
  • the optical disk drives 150a to 150d reproduce data from each of the plurality of optical disks 1a to 1d.
  • the optical disk drives 150a to 150d are recording / reproducing apparatuses that record or reproduce data requested by the host apparatus (host) 101 with respect to the optical disks 1a to 1d.
  • four optical disk drives 150a to 150d (four optical disks 1a to 1d) constitute a disk array. Therefore, four optical disk drives 150a to 150d are connected to the controller 110 as shown in FIG.
  • one optical disk 1a to 1d is loaded in each of the optical disk drives 150a to 150d.
  • the optical disk 1a is loaded into the optical disk drive 150a
  • the optical disk 1b is loaded into the optical disk drive 150b
  • the optical disk 1c is loaded into the optical disk drive 150c
  • the optical disk 1d is loaded into the optical disk drive 150d.
  • These four optical disks 1a to 1d constitute a disk array, and data is recorded or reproduced by a RAID 6 system.
  • Each of the plurality of optical discs 1a to 1d has a plurality of data blocks, and includes a user area for recording data in units of data blocks, and a recording illegal area information representing information related to a recording illegal area in which data is missing. And a management information area for recording information.
  • the illegal recording area information includes, among the plurality of optical disks 1a to 1d constituting the disk array, the optical disk where the illegal recording area exists and the position where the illegal recording area exists in the optical disk.
  • the illegal recording area includes at least either a data block in which a recording error has occurred or a data block in which no data has been recorded.
  • each of the optical disk drives 150a to 150d is loaded with one optical disk 1a to 1d, but the present invention is not particularly limited to this, and a disk changer capable of simultaneously loading a plurality of optical disks.
  • a recording / reproducing apparatus of a format may be used.
  • the four optical disks 1a to 1d constituting the disk array may be stored and managed in one magazine (not shown), for example.
  • the magazine is a cartridge capable of storing a plurality of optical discs together.
  • an additional information memory such as RFID (Radio Frequency IDentification) or a barcode to the magazine.
  • RFID Radio Frequency IDentification
  • a barcode reader it is possible to attach an additional information memory such as RFID (Radio Frequency IDentification) or a barcode to the magazine.
  • the optical disk array system 100 may be capable of mounting a plurality of magazines. Furthermore, the optical disk array system 100 switches a plurality of magazines, and transports a plurality of optical disks stored in each magazine to / from a plurality of optical disk drives 150a to 150d, that is, a changer mechanism (see FIG. (Not shown) may be provided.
  • the controller 110 controls the optical disk drives 150a to 150d in order to record data by striping (dispersing) data on the disk array.
  • the controller 110 also controls the plurality of optical disk drives 150a to 150d in order to reproduce data from the disk array.
  • the controller 110 includes a host control unit 111, a drive control unit 112, and a RAID control unit 120.
  • the controller 110 is composed of, for example, a CPU (Central Processing Unit).
  • the host control unit 111 performs control on a processing request (command) from the host apparatus (host) 101, protocol control according to an interface such as SAS or FC, or data transfer control.
  • the drive control unit 112 controls the plurality of optical disk drives 150a to 150d provided in the optical disk array system 100.
  • the RAID control unit 120 performs control for handling a plurality of optical disk drives 150a to 150d provided in the optical disk array system 100 as a disk array (RAID).
  • the RAID control unit 120 includes a recording control unit 121, a reproduction control unit 122, a restoration control unit 123, a parity calculation unit 124, a management information update unit 125, a management information acquisition unit 126, a drive status management unit 127, a buffer management unit 128, a recording A state determination unit 129 and an address conversion unit 130 are provided.
  • the recording control unit 121 distributes and records data in a plurality of data blocks of the optical discs 1a to 1d, and at least one parity data used for data restoration of a data block in which data is missing among the plurality of data blocks. Record in at least one parity block.
  • the recording control unit 121 mainly controls recording processing as RAID.
  • the recording control unit 121 distributes the data requested to be recorded from the host apparatus 101 to appropriate optical disk drives 150a to 150d (optical disks 1a to 1d) according to a RAID level (for example, RAID 6 having two parity blocks in a stripe). Record.
  • the address conversion unit 130 calculates data recording positions on the optical discs 1a to 1d.
  • the buffer management unit 128 manages recording data for the memory 140.
  • the parity calculation unit 124 calculates and calculates RAID parity data.
  • the reproduction control unit 122 invalidates the data read from the recording illegal area based on the recording illegal area information, and reproduces the data in the recording illegal area using at least one parity data.
  • the playback control unit 122 mainly controls playback processing as RAID.
  • the reproduction control unit 122 reproduces the data requested to be reproduced from the higher-level device from appropriate optical disk drives 150a to 150d (optical disks 1a to 1d) according to the RAID level (for example, RAID 6 having two parity blocks in the stripe).
  • the address conversion unit 130 calculates the data reproduction position from the optical discs 1a to 1d.
  • the buffer management unit 128 manages reproduction data for the memory 140.
  • the repair control unit 123 performs data repair using parity data.
  • the parity block is a block for making it possible to recover the data of the missing data block even if the data of any data block of the plurality of data blocks is missing.
  • the parity block includes parity data used for data restoration.
  • the repair control unit 123 controls data repair using parity data corresponding to the RAID level of the degraded optical disk when the optical disk having a redundant configuration by RAID is in a degraded state, that is, when data repair is necessary. To do.
  • the restoration control unit 123 is described as a processing unit that performs data restoration on the degraded optical disk itself.
  • the repair control unit 123 may perform processing such as repairing data for another (new) optical disk by using, for example, the memory 140 included in the optical disk array system 100 or the memory included in the host apparatus 101.
  • the optical disc array system 100 that records or reproduces data does not necessarily include the repair control unit 123.
  • the parity calculation unit 124 calculates and generates parity data corresponding to the RAID level.
  • the management information update unit 125 records the illegal recording area information in the RAID management information area (management information area) of at least one optical disk when recording fails in at least one optical disk drive during data recording. It is preferable that the management information update unit 125 records the record illegal area information in the RAID management information areas (management information areas) of all the plurality of optical disks 1a to 1d at a predetermined timing.
  • the management information update unit 125 generates RAID management information (array management information) and updates the RAID management information. More specifically, when an unused optical disk is set, the management information update unit 125 is triggered by an instruction from the user or the like as a trigger according to the RAID level selected by the user or the like. Management information (RAID management information) is generated, and the generated RAID management information is recorded on at least one optical disk constituting the RAID. For example, the management information update unit 125 records the RAID management information on all the optical disks constituting the RAID. The RAID management information is recorded in a RAID management information area 21 (array management information area) described later.
  • the management information update unit 125 updates and records the RAID management information at an appropriate timing.
  • the optical disk used is a write-once optical disk.
  • a write-once optical disc information is continuously recorded on a track, and information cannot be physically rewritten.
  • the management information update unit 125 can realize logical rewrite recording by alternately recording the updated data using a function called pseudo-overwrite (POW). .
  • POW pseudo-overwrite
  • the recording of the RAID management information in the RAID management information area 21 is performed, for example, immediately before the optical disk is ejected from the optical disk drive or immediately after a recording error occurs. At this time, the RAID management information recorded on the optical disc is stored in the memory 140, for example.
  • the RAID management information will be described in “(2) Area structure of optical disc” described later, and therefore detailed description thereof will be omitted.
  • the management information acquisition unit 126 acquires (reads out) RAID management information from the RAID management information area 21 of the optical disc loaded in the optical disc drive. That is, the management information acquisition unit 126 acquires the recording illegal area information from the RAID management information area.
  • the management information acquisition unit 126 has a function of acquiring RAID management information from all optical disks on which the RAID management information is recorded, and restoring the RAID management information to appropriate RAID management information when there is a mismatch.
  • the management information acquisition unit 126 acquires RAID management information from the RAID management information area 21 of at least one optical disc loaded in at least one optical disc drive. Reading of the RAID management information from the RAID management information area 21 is performed, for example, immediately after the optical disk is loaded into the optical disk drive and started, and the RAID management information read from the optical disk is stored in the memory 140, for example.
  • the drive state management unit 127 includes the states of the plurality of optical disk drives 150a to 150d constituting the disk array (RAID) included in the optical disk array system 100, and the optical disks attached to the plurality of optical disk drives 150a to 150d. Each state of 1a to 1d is managed.
  • the state of the optical disk is, for example, “normal state” in which recording and reproduction are normally performed, “degraded state” in which data is missing because recording has failed for some reason, and data restoration is necessary.
  • the RAID control unit 120 determines an optical disk drive and an optical disk that can be used as a disk array (RAID).
  • the buffer management unit 128 manages recording data or reproduction data temporarily stored in the cache memory of the memory 140.
  • the buffer management unit 128 also performs control such as discarding (invalidating) recording data stored on the buffer, triggered by successful data recording on the optical disc.
  • the recording state discriminating unit 129 discriminates whether or not there is an illegal recording area where recording failed due to an optical disk drive failure or the like, and determines the position of the illegal recording area. Details of the operation in the recording state determination unit 129 will be described in “(3) Method for determining recording improper area”, which will be described later, and thus detailed description thereof will be omitted.
  • the illegal recording area is a block in which a recording error has occurred on the optical disk or a block on which recording has not been performed due to either the optical disk drive serving as a recording / reproducing apparatus or the optical disk serving as an information storage medium. In other words, it is a block with missing data.
  • the address conversion unit 130 converts the address information of the logical disk requested to be recorded or reproduced from the host device (host) 101 into the address information on the corresponding optical disk.
  • the start position of a later-described RAID data area 22 is shifted (offset) for each optical disk and recorded. Such a method is also effective.
  • the address conversion unit 130 also supports address conversion in consideration of the offset size in each of the optical disks 1a to 1d when the data recording start position is shifted for each of the optical disks 1a to 1d.
  • the memory 140 is a volatile memory
  • the memory 140 may be a non-volatile memory such as an SSD (Solid State Drive) as well as the volatile memory.
  • SSD Solid State Drive
  • the memory 140 can also be used as an area for storing an OS (Operating System) operated by the optical disk array system 100.
  • the optical disks 1a to 1d correspond to an example of a plurality of portable information storage media
  • the optical disk array system 100 corresponds to an example of an information processing apparatus
  • the optical disk drives 150a to 150d include a plurality of drives.
  • the controller 110 corresponds to an example of a control unit
  • the recording control unit 121 corresponds to an example of a data recording unit
  • the management information update unit 125 corresponds to an example of an area information recording unit
  • reproduction control is performed.
  • the unit 122 corresponds to an example of a reproduction control unit
  • the management information acquisition unit 126 corresponds to an example of an information acquisition unit.
  • FIG. 2 is an area configuration diagram of the optical disc in the embodiment of the present invention.
  • a disk-shaped optical disk 1 has a large number of tracks 2 formed in a spiral shape, and each track 2 has a large number of finely divided clusters 3.
  • the cluster 3 is a unit for error correction, is a minimum unit for performing a recording operation and a reproducing operation, and may be called an ECC block or simply a block.
  • ECC block or simply a block.
  • the size of cluster 3 is 32 sectors. Since one sector is 2 Kbytes, one cluster is 64 Kbytes.
  • the optical disc 1 is formed by laminating a plurality of layers including a recording layer on which data is recorded or reproduced.
  • the recording layer of the optical disc 1 includes a lead-in area 4, a data area 5, and a lead-out area 6. Recording or reproduction of user data is performed on the data area 5.
  • the lead-in area 4 and the lead-out area 6 can follow the track 2 even if the optical head overruns when an optical head (not shown) in the optical disk drive accesses the end of the data area 5.
  • the lead-in area 4 and the lead-out area 6 are areas that cannot be directly accessed by the user, and are provided with an area for recording management information of the optical disc 1 called DMA (Disc Management Area) or TDMA (Temporary Disc Management Area). ing.
  • DMA Disc Management Area
  • TDMA Temporary Disc Management Area
  • the inner peripheral area corresponding to the lead-in area 4 is called an inner zone
  • the outer peripheral area corresponding to the lead-out area 6 is called an outer zone.
  • FIG. 3 is a diagram showing a detailed configuration of the data area 5 in an arbitrary optical disc among a plurality of optical discs constituting a RAID as a disk array.
  • the data area 5 includes a user data area 10, an inner spare area 11, and an outer spare area 12.
  • the user data area 10 is an area where user data is recorded or reproduced.
  • the inner spare area 11 and the outer spare area 12 are spare areas (spare areas) prepared in advance as areas for assigning replacement clusters (also referred to as replacement clusters) used in place of defective clusters in the user data area 10. Area).
  • An inner spare area (hereinafter also referred to as ISA) 11 is arranged on the inner circumference side of the optical disk 1
  • an outer spare area (hereinafter also called OSA) 12 is arranged on the outer circumference side of the optical disk 1.
  • the ISA 11 and the OSA 12 may be assigned not only as an area for replacing a defective cluster but also an area for recording management information such as TDMA.
  • the sizes of the ISA 11 and the OSA 12 can be set arbitrarily by the user, and the data area 5 does not include the ISA 11 and the OSA 12, that is, the sizes of the ISA 11 and the OSA 12 can be set to 0. is there.
  • the user data area 10 further includes an FS area 20, a RAID management information area 21, and a RAID data area 22.
  • An FS (file system) area 20 is used to make it easy to read recorded data even when the optical disk 1 is mounted alone on a standard recording / reproducing apparatus (optical disk drive) connected to a PC (personal computer). This is an area for recording file system information. Since the FS area 20 has file system information, for example, each of the RAID management information area 21 and the RAID data area 22 is handled as one file. As the file system information, for example, UDF (Universal Design Format) is used.
  • UDF Universal Design Format
  • the RAID data area 22 is an area where user data is recorded or reproduced.
  • the RAID data area 22 is an area in which data is recorded by constituting a predetermined RAID (for example, RAID 6 having two parity blocks in a stripe) together with a plurality of other optical disks.
  • a predetermined RAID for example, RAID 6 having two parity blocks in a stripe
  • data is recorded as RAID only in the RAID data area 22, but the FS area 20 and the RAID management information area 21 are not in the RAID format but are areas where data is recorded independently on each optical disc 1.
  • the RAID management information area (array management information area) 21 is an area for recording RAID management information (array management information) relating to the RAID used for recording in the RAID data area 22.
  • the RAID management information (array management information) includes RAID configuration information 30, recording illegal area management information 31, and magazine management information 32.
  • FIG. 4 is a diagram showing a detailed configuration of the RAID management information recorded in the RAID management information area 21.
  • the RAID configuration information 30 includes a header 40, a RAID level 41, a RAID configuration number 42, a stripe size 43, a RAID number 44, and RAID information 45.
  • the header 40 is information given to the top of the RAID configuration information 30.
  • the header 40 includes an identifier indicating the RAID configuration information 30 and information on the size of the RAID configuration information 30.
  • the RAID level (array type information) 41 is information relating to a recording method to the disk array, that is, a RAID method (level). That is, the RAID level (array type) 41 is information for the optical disk array system 100 and the like to identify the recording method of the disk array. In other words, this recording method is information on the number of parity data included in a stripe, a method for generating parity data, and a method for restoring user data using parity data. Specifically, for example, in the embodiment of the present invention, the RAID level 41 is a numerical value corresponding to “RAID6” or information that can identify RAID6.
  • the RAID configuration number (array configuration number information) 42 is information relating to the number of optical disk drives constituting one disk array (RAID) (or the number of optical disks constituting the RAID). That is, the RAID configuration number (array configuration number information) 42 is information indicating the number of optical disks constituting the disk array. In the embodiment of the present invention, the RAID configuration number 42 is “4”. In other words, the RAID configuration number (array configuration number information) 42 is information representing the number of information storage media (optical disks) constituting the disk array, for example.
  • the stripe size 43 may be the size of a data block in which only user data is recorded without including parity data. In other words, when RAID 6 is configured with four optical disks, the stripe size 43 is the size of the data blocks of the remaining two optical disks (128 Kbytes) excluding the parity data blocks of the two optical disks. good.
  • the RAID number (array number information) 44 is a value indicating what number optical disk of the plurality of optical disks that constitutes the RAID (disk array). That is, the RAID number 44 is information indicating the configuration order of the optical disk in the RAID (disk array). Specifically, for example, as shown in FIG. 1, the optical disk 1a loaded in the optical disk drive 150a is “RAID # 0”, that is, the first optical disk constituting the RAID, and therefore the RAID number 44 of the optical disk 1a. Is a subscript “0” following “#”, or a numerical value “1” that purely indicates the number of the optical disc. Further, the RAID number 44 of the optical disk 1b of “RAID # 1” is “1” (or “2”).
  • the optical disk is a portable medium. For this reason, even if the optical disks are mounted in the magazine in the order of RAID disks, it is not uncommon for the order to be changed due to repair of the optical disk array system 100, maintenance, or a user operation error. That is, there may be a case where the optical disk 1d constituting the fourth RAID is mounted on the optical disk drive 150a. In such a case, if the optical disk 1d loaded in the optical disk drive 150a is treated as the first RAID disk (RAID # 0), the data reproduction order is out of order, and data corruption occurs during data reproduction. Cause problems. In order to solve this problem, the RAID configuration information 30 includes a RAID number 44.
  • the RAID configuration information 30 includes the RAID number 44, even if the combination of the optical disk drive and the optical disk constituting the RAID (disk array) is changed, as long as the optical disks constituting the same RAID set are mounted. Can correctly record and reproduce data continuously as RAID.
  • the RAID information 45 is information related to each optical disk drive and optical disk constituting the RAID, and includes information related to the optical disk drive and optical disk having the corresponding RAID number.
  • the RAID configuration information 30 includes RAID information 45 corresponding to the number of optical disk drives (number of optical disks) constituting the RAID. In the embodiment of the present invention, since the RAID (disk array) is configured by the four optical disk drives 150a to 150d, the RAID configuration information 30 includes four RAID information (RAID # 0 information 45 to RAID # 3). Information 45).
  • the RAID information 45 includes a RAID (array number) in which a RAID number (array number) is associated with information (for example, a device serial number or a medium serial number) that can identify an optical disk drive or an optical disk constituting the RAID number.
  • This is table information (array configuration information table) related to all optical disk drives or optical disks constituting the (disk array).
  • the RAID information 45 is an array configuration information table relating to all information storage media constituting the disk array, in which the array number of the optical disk constituting the disk array is associated with the medium identification number for uniquely identifying the optical disk. .
  • the optical disk array system 100 can detect an illegal state in which optical disks recorded as different RAID sets are mixed.
  • the management information acquisition unit 126 acquires RAID configuration information (array management information) recorded in the RAID management information area.
  • the management information acquisition unit 126 acquires RAID configuration information (array management information) recorded in the RAID management information area at least at the timing when the optical disk drive loaded with the optical disk is activated.
  • the playback control unit 122 controls the plurality of optical disk drives 150a to 150d based on the acquired RAID configuration information (array management information).
  • RAID information 45 includes a drive unique ID 70, a drive state 71, a disk unique ID 72, and a disk state 73.
  • the drive unique ID 70 is information for identifying the optical disk drive corresponding to the corresponding RAID number.
  • the drive unique ID 70 is, for example, a unique ID (for example, a serial number) assigned to each optical disk drive, and is, for example, the serial number of the optical disk drive that recorded data on the optical disk first or immediately before.
  • the drive status 71 is information indicating the latest status of the optical disc drive that has recorded or reproduced data on the optical disc corresponding to the corresponding RAID number.
  • the information related to the drive status 71 is equivalent to the information related to the optical disc drive managed by the drive status management unit 127 in the optical disc array system 100.
  • the disk unique ID 72 is information for identifying the optical disk corresponding to the corresponding RAID number.
  • the disk unique ID 72 is, for example, a unique ID assigned to each optical disk (for example, a serial number included in a BCA (Burst Cutting Area) included in a BD-R, or a serial number included in an RFID of an optical disk with an RFID tag). It is.
  • the BCA is an area in which unique information is formed in a barcode form for each disc using a special apparatus in the optical disc manufacturing stage.
  • the BCA is formed, for example, by removing the reflective film with a laser.
  • each optical disk in the present embodiment may have an identification information area (for example, BCA) in which a medium serial number that can uniquely identify the optical disk is recorded in advance.
  • the disk state 73 is information indicating the latest state of the optical disk corresponding to the corresponding RAID number.
  • the state of the optical disk is, for example, “normal state” in which recording and reproduction are normally performed, “degraded state” in which data is missing because recording has failed for some reason, and data restoration is necessary. ”,“ Recording impossible ”where the spare area is exhausted and recording is not possible, or“ Disk failure (unusable) ”where recording and playback itself cannot be performed because management information cannot be read, etc. That is.
  • the disk state 73 is the same as the information related to the state of the optical disk managed by the drive state management unit 127 of the optical disk array system 100.
  • the recording illegal area management information 31 includes a header 50, a recording illegal area total number 51, and recording illegal area information 52.
  • the header 50 is information added to the head of the recording illegal area management information 31 in the same manner as the header 40 described above.
  • the header 50 includes an identifier indicating the recording illegal area management information 31 and information on the size of the recording illegal area management information 31.
  • the recording illegal area information 52 is information relating to the recording illegal area. More specifically, the recording illegal area information 52 includes an optical disk in which a recording illegal area consisting of at least one block in which data is missing among a plurality of optical disks constituting a RAID (disk array), This is information that can specify the position of the recording irregular area in the optical disc. Note that the minimum unit of the recording illegal area is at least one block in which a recording error has occurred or at least one block in which no data is recorded.
  • the recording illegal area information 52 includes a recording illegal RAID number 75, a recording illegal area head position 76, a recording illegal area size 77, and the like.
  • the recording illegal RAID number 75 represents the number (RAID number) in the RAID where the recording illegal area exists, and is information corresponding to the RAID number 44 described above.
  • the record illegal RAID number 75 may be information that can identify the optical disk in which the record illegal area exists, and may be information corresponding to the disk unique ID 72 related to the optical disk, for example.
  • the recording illegal area head position 76 is information regarding the head position (head address) in the optical disc where the recording illegal area exists.
  • the illegal recording area start position 76 may be a logical address (LBA) virtually allocated to the user data area 10 (or RAID data area 22) of the corresponding optical disc, for example.
  • the recording illegal area head position 76 may be a physical address (PBA) such as ADIP (Address In Pre-groove) physically given on the corresponding optical disc.
  • LBA logical address
  • ADIP Address In Pre-groove
  • the recording illegal area size 77 is information on the size of the recording illegal area starting from the recording illegal area head position 76.
  • the unit of the illegal recording area size 77 is, for example, a block size (that is, a 64 Kbyte cluster) unit in each optical disk constituting the stripe.
  • the unit of the illegal recording area size 77 may be an arbitrary unit, and may be, for example, a 2 Kbyte sector unit that is the minimum unit of access on the optical disc.
  • the magazine management information 32 is information regarding a magazine (cartridge) in which a plurality of optical disks constituting a RAID (disk array) are stored together.
  • the magazine management information 32 is information used when a plurality of optical disks constituting a RAID are stored and managed in one magazine as shown in the description of FIG.
  • the magazine management information 32 includes a header 60, a magazine ID 61, a magazine type 62, and a storage disk total number 63.
  • the header 60 is information added to the head of the magazine management information 32, like the header 40 and the header 50 described above.
  • the header 60 includes an identifier indicating the magazine management information 32, information on the size of the magazine management information 32, and the like.
  • the magazine ID 61 is a unique ID assigned to each magazine (for example, information such as a barcode attached to the magazine or a serial number recorded on the RFID). As described above, since the magazine ID 61 is recorded on the optical disc, the magazine in which the optical disc is stored can be specified based on the magazine ID 61 when the correspondence between the magazine and the optical disc is unknown.
  • the magazine type 62 is information indicating the type of magazine. More specifically, the magazine type 62 is information indicating the type of optical disk stored in the magazine, the total capacity of the optical disk, or whether or not the optical disk in the magazine is replaceable.
  • the information indicating the type of the optical disk is information indicating whether the optical disk is a rewritable BD-RE or a write-once BD-R.
  • the total capacity of the optical disk is information indicating whether the optical disk is an optical disk with a total capacity of 25 GByte including only one recording layer or an optical disk with a total capacity of 50 GByte including two recording layers.
  • the total number of stored disks 63 is information indicating the total number of a plurality of optical disks stored in the magazine.
  • the RAID management information recorded in the RAID management information area 21 may be recorded on the same information on all optical disks constituting the RAID (disk array) except for the RAID number 44 included in the RAID configuration information 30. .
  • the RAID management information area 21 cannot record information by a RAID system including parity data.
  • RAID management information having the same information other than the RAID number 44 is multiplexed and recorded on a plurality of optical discs as described above, thereby increasing the redundancy of the RAID management information and improving the reliability.
  • the RAID management information is recorded on all the optical disks constituting the RAID (disk array), but the RAID management information may be recorded on a predetermined number or more of optical disks. More specifically, for example, when the RAID level of the disk array is RAID 6, even if two or less optical disk drives or optical disks are defective and data cannot be read, the disk array reproduces the data. Is possible. Therefore, if the same data is multiplexed and recorded on at least three optical disks, the RAID management information can always be acquired. However, considering the risk that the reproduced RAID management information is not necessarily the latest RAID management information, it is preferable that two or more pieces of the same data can be read.
  • the RAID management information can be multiplexed and recorded on at least four of the plurality of optical disks constituting the disk array.
  • a disk array is configured by four optical disk drives 150a to 150d (four optical disks 1a to 1d) is shown. Therefore, substantially the same RAID management information is multiplexed and recorded on all the optical disks 1a to 1d constituting the disk array.
  • the RAID number 44 is very important information indicating the RAID-numbered optical disk on which the information is recorded, but it seems to lack redundancy because it is not recorded in multiple.
  • the RAID management information (particularly, the RAID number 44) fails to be acquired for two or more of the four optical disks constituting the RAID, the RAID numbers 44 of all the optical disks are determined. Will not be able to.
  • the RAID information 45 in the RAID configuration information 30 includes a disk unique ID 72.
  • the BCA or RFID in which the unique ID of the optical disc is recorded has very good reproduction characteristics because data is recorded by a recording method different from that of the normal recording / reproduction area.
  • the RAID management information (particularly, the RAID number 44) of the optical disk cannot be acquired, there is a high possibility that the unique ID of the optical disk can be acquired from the BCA.
  • the same RAID information 45 is multiplexed and recorded on all the optical disks constituting the RAID (disk array). If redundancy is ensured in the RAID information 45, even if RAID management information (particularly, the RAID number 44) of two or more optical disks cannot be acquired, it is recorded in the RAID management information area 21.
  • the RAID management information can be provided with redundancy sufficient to correctly grasp the RAID number 44 of each optical disk.
  • the RAID number 44 is recorded as information included in the RAID configuration information 30 in the RAID management information area 21 of the optical disc. As a result, even if the combination of the optical disk drive and the optical disk constituting the RAID (disk array) is changed due to repair or maintenance of the optical disk array system 100 or a user's operation mistake, data is continuously recorded or reproduced as RAID. I can do it.
  • the RAID management information area 21 of the optical disk includes, as information included in the RAID configuration information 30, RAID information 45 that can grasp the optical disk corresponding to each RAID number in the RAID, and the number of optical disk drives constituting the RAID (optical disk Only the number of sheets).
  • RAID management information particularly, RAID number 44
  • a magazine ID 61 is recorded as information included in the magazine management information 32.
  • the magazine ID 61 is read from the RAID management information area 21 of the optical disk. , It becomes possible to identify the corresponding magazine. Thereby, even if a situation occurs in which optical disks constituting different RAID sets (magazines) are mixed, it is possible to detect the unauthorized state.
  • a drive unique ID 70 is recorded as information included in the RAID information 45 in the RAID management information area 21 of the optical disc.
  • the drive unique ID 70 is information that can identify the optical disk drive used for recording or reproduction immediately before.
  • the optical disk array system 100 includes the nonvolatile memory, and adjustment information related to the magazine such as the optimum recording power is secured in the nonvolatile memory. Then, the adjustment information is applied to subsequent recording or reproduction, so that the activation time can be shortened.
  • adjustment information such as optimum recording power is information that can change depending on the combination of the optical disc drive and the optical disc.
  • the adjustment information cannot be used when the combination of the optical disk drive and the optical disk changes.
  • the drive unique ID 70 is recorded in the optical disc, so that the optical disc drive in which the optical disc is currently mounted is the same as the optical disc drive that has calculated the adjustment information stored in the nonvolatile memory. It is possible to determine whether or not adjustment information stored in the nonvolatile memory can be used.
  • the RAID management information is described as being composed of three types of information, that is, RAID configuration information 30, recording unauthorized area management information 31, and magazine management information 32. May not necessarily be composed of three types of information.
  • the magazine management information 32 is information necessary when a plurality of optical disks constituting a RAID (disk array) are stored in one magazine, and the plurality of optical disks constituting the RAID (disk array) are managed by the magazine. If not, the information is not necessarily required.
  • the header 40 of the RAID configuration information 30 may include update number information indicating the number of times of update recording (rewriting) and date / time information indicating the recorded date and time.
  • the update count information and date / time information can be used, for example, when it is desired to search for the latest RAID configuration information 30 when an abnormality occurs during the update of the RAID management information. More specifically, since the RAID configuration information 30 includes, for example, update count information, the update count is the largest among the RAID configuration information 30 recorded in the RAID management information areas 21 of the four optical disks 1a to 1d.
  • the RAID configuration information 30 can be used as the latest RAID configuration information 30. It should be noted that the same effect can be obtained even if the recording illegal area management information 31 or the magazine management information 32 includes the update count information and the date / time information.
  • the recording illegal area information 52 included in the recording illegal area management information 31 includes a recording illegal area head position 76 that is the start position of the recording illegal area and a recording illegal area size 77 that is a continuous size of the recording illegal area.
  • the information is not necessarily limited to the above as long as it is information that can grasp the area where data has failed due to recording failure. More specifically, for example, the same effect as described above can be obtained even by a method of managing recording illegal areas (blocks) in a bitmap format in block units in which 1 bit is allocated to one block (cluster). Needless to say.
  • the RAID management information is shown as an example of being recorded in a predetermined area on the optical disk constituting the RAID (disk array).
  • the nonvolatile memory provided in the optical disk array system 100 It goes without saying that the same effect can be realized even if it is stored in the (memory 140) or the RFID provided in the magazine.
  • the nonvolatile memory provided in the optical disk array system 100 stores the RAID management information, it cannot cope with the case where the optical disk is replaced with another optical disk array system. Therefore, it is preferable to record the RAID management information on an optical disc or an RFID of a magazine in which the optical disc constituting the RAID is stored.
  • the defect list is information in which information about the defect position in each information storage medium is recorded only on each information storage medium. Further, since the defect list is information for managing defective clusters on the information storage medium, recording failure occurs when a recording / reproducing apparatus (drive) that records data on the information storage medium fails and recording fails. Information about is not recorded.
  • the recording illegal area management information 31 is information on blocks (clusters) in which data is missing in the entire RAID (disk array) constructed by bundling a plurality of information storage media.
  • RAID disk array
  • the same information is recorded with respect to a plurality of information storage media constituting the.
  • recording illegal area management is performed for a plurality of information storage media constituting the disk array (RAID).
  • Information 31 is recorded.
  • the recording improper area management information 31 including information on a block (cluster) in which recording has failed due to a failure of the recording / reproducing apparatus (drive) and data is lost is information that is attached to a normal recording / reproducing apparatus (drive). It is recorded in the RAID management information area 21 in the storage medium.
  • the disk array in which the data missing area is included in the optical disk constituting the disk array is used.
  • FIG. 5 is an explanatory diagram showing a recording state of a plurality of optical disks 1a to 1d in a RAID (disk array) including an illegal recording area.
  • a RAID 6 disk array is configured by the four optical disk drives 150a to 150d and the four optical disks 1a to 1d shown in FIG.
  • the optical disk drive 150b becomes in a state where data cannot be recorded due to a failure or the like (recording impossible state), and the optical disk 1b constituting the RAID # 1 attached to the optical disk drive 150b is recorded.
  • the illegal recording area in FIG. 5 is blocks from lba3 to lba5 of the optical disc 1b of RAID # 1.
  • logical block addresses are assigned to the blocks constituting the stripe for the sake of simplicity.
  • the logical block address is position information virtually allocated to a space accessible by the host (user) to the optical disc.
  • the logical block address of a logical disk that is bundled with four optical disks 1a to 1d and shown on one optical disk (one volume) is “LBA”, and the logical block address for each physical optical disk is The block address is “lba”, and the two logical block addresses are distinguished and described.
  • the recording has failed due to the optical disk drive 150b or the optical disk 1b before recording into the lba3 block or during recording into the lba3 block.
  • the RAID 6 disk array composed of the four optical disks 1a to 1d loses redundancy corresponding to one parity and becomes a disk array equivalent to RAID 5 having only one parity block. Even in this state, the remaining three optical disk drives 150a, 150c, and 150d are normal and the redundancy equivalent to RAID 5 is ensured, so that data can be recorded with reliability still maintained.
  • the remaining three optical disk drives 150a, 150c, and 150d that can be normally recorded can continuously record data.
  • data up to LBA11 is recorded as the logical disk.
  • lba0 to lba2 are normally recorded areas
  • lba3 to lba5 are illegal recording areas.
  • lba3 may have an error during verification during recording or after recording (confirmation of whether or not recording was successful). Therefore, lba3 is in a recorded state, a partially recorded state, or an unrecorded state, but lba4 and lba5 are in an unrecorded state.
  • whether or not to continue recording in a state where one parity is lost may be selectable by a user instruction, for example.
  • the degraded optical disk 1b in which recording fails and data is lost restores data at the earliest possible timing.
  • the optical disk on which the data is recorded is often removed from the optical disk drive and managed off-line as a shelf.
  • the recording state determination unit 129 determining the recording illegal area, i.e., (i) a method using the recording illegal area management information 31 and (ii) a method using the track information 80 will be described. To do.
  • FIGS. 6 and 7 are diagrams showing specific examples of RAID management information recorded in the RAID management information area 21 of the optical disc.
  • FIG. 6 is a diagram showing a specific example of the recording illegal area management information 31 recorded in the RAID management information area 21 of the optical disc.
  • the RAID disk array
  • the RAID management information recorded in the RAID management information area 21 of the optical discs 1a to 1d is read into the memory 140 by the management information acquisition unit 126 when the optical discs 1a to 1d are activated. Thereafter, whenever the contents of the RAID management information are changed, the RAID management information stored in the memory 140 is updated to the latest state.
  • the RAID management information is updated and recorded again in the RAID management information area 21 of the optical discs 1a to 1d by the management information updating unit 125 at an arbitrary timing.
  • the recording illegal area management information 31 is information for managing a recording illegal area in which data is not correctly recorded due to failed recording or data is missing. From the recording illegal area management information 31, how many recording illegal areas are present on the RAID (disk array), the number of the optical disk constituting the RAID, and the recording illegal area is the position of the optical disk. It is possible to grasp at a glance whether it is.
  • the recording unauthorized area management information 31 shown in FIG. 6 there is one recording unauthorized area on the RAID (disk array), and the recording unauthorized area is an optical disk (that is, the optical disk 1b) constituting RAID # 1.
  • the leading logical block address of the illegal recording area is lba3, and the size of the illegal recording area is three consecutive blocks (that is, an area between lba3 and lba5).
  • the repair control unit 123 repairs the missing data from the parity data or the like in units of stripes, and writes the repaired data back to the recording illegal area of the corresponding optical disc 1b.
  • the repair control unit 123 treats the portion of the improper recording area as a defective area, and records the repaired data in the spare area by replacement.
  • the method described in (i) is a method that can be directly applied to a rewritable optical disc as well as the write-once optical disc described in the embodiment of the present invention.
  • the rewritable optical disc may be recorded at random as compared with the write-once optical disc that guarantees the write-once recording. Therefore, it is preferable that the recording illegal area is managed in a bitmap format in units of blocks (clusters).
  • FIG. 7 is a diagram showing the RAID information 45 included in the RAID configuration information 30.
  • the disc state 73 of the degraded optical disc 1b including the recording irregular area is recorded as being in an abnormal state. Therefore, by confirming the information of the disk state 73, it is possible to identify the optical disk 1b in the degraded state including the recording invalid area.
  • the control method similar to that of the conventional HDD that is, without using the optical disk drive 150b or the optical disk 1b in which a failure such as a recording error has occurred for reproduction, the data is always obtained from the parity data. It goes without saying that a control method for restoration and reproduction can be realized.
  • FIGS. 8 and 9 are diagrams for explaining track information related to an optical disc. Again, the RAID (disk array) state is the state shown in FIG.
  • the optical disk drives 150a to 150d have a function of notifying the controller 110 of track information 80 regarding the tracks (SRR: Sequential Recording Range) of the mounted optical disks 1a to 1d.
  • SRR Sequential Recording Range
  • SRRI SRR Information
  • DMA Disc Management Area
  • TDMA Temporal DMA
  • SRRI is information indicating whether or not the corresponding SRR is additionally writable (Open) for all tracks (SRR) on the optical disc, and the start position and the recording end of the physical block address that is the actual address on the optical disc. Includes information about location and so on.
  • the optical disk drives 150a to 150d notify the track information 80 in the form of logical block addresses that can be grasped by the controller 110 that controls the optical disk drives 150a to 150d. More specifically, the optical disk drives 150a to 150d return the track information 80 in response to a Read Track Information command defined by the MMC (Multi Media Command) standard.
  • MMC Multi Media Command
  • FIG. 8 is an explanatory diagram showing the data structure of the track information 80.
  • the track information 80 includes a track number 81, a track state 82, a head address 83, an LRA (Last Recorded Address) 84, an NWA (Next Writable Address) 85, and a remaining size 86.
  • LRA Last Recorded Address
  • NWA Next Writable Address
  • the track number 81 is information indicating a serial number assigned to a track (SRR) existing on the optical disc.
  • the track state 82 is information indicating whether the track can be additionally written (Open state) or cannot be additionally written (Close state).
  • the start address 83 is information on the start position where the track is arranged, and is notified by the logical block address (lba).
  • the LRA 84 is information indicating the final position where valid user data is recorded in the track, and is notified by a logical block address (lba).
  • the NWA 85 is information indicating a position where user data can be recorded (added) next in the track, and is notified by a logical block address (lba).
  • the remaining size 86 is information related to the size of an area that can be recorded (unused) in the track.
  • FIG. 9 is a diagram showing a specific example of the track information 80 in each of the four optical disks 1a to 1d in the state of FIG.
  • the track information 80 of the optical disc 1b in which a recording error has occurred differs from the track information 80 of other optical discs 1a, 1c, and 1d that have been normally recorded, such as LRA 84 and NWA 85. More specifically, when all the optical discs 1a to 1d have the same track start position (start address 83), the optical disc having the largest LRA84 value or NWA85 value is an optical disc that has been successfully recorded. Can be judged. Further, it is possible to determine that an optical disk having an LRA84 value or NWA85 value smaller than the LRA84 value or NWA85 value of another optical disk includes a recording irregular area. This is the same even when the optical disc includes a plurality of tracks.
  • the arrangement of tracks in which blocks constituting the same stripe exist also differs for each optical disc.
  • the corresponding track start address 83 is also different.
  • the same method as described above can be obtained by determining the corresponding track using the offset information and the track information 80 and calculating from the LRA value or the NWA value. It is possible to calculate the illegal recording area.
  • the method described in (ii) is applicable only to the write-once optical disc described in the embodiment of the present invention, and is not applicable to a general rewritable optical disc. I can't. This is because a general rewritable optical disc has no concept of a track (SRR). In other words, the method described in (ii) can be applied to a rewritable optical disc having the concept of a track as with a write-once optical disc.
  • FIG. 10 is an explanatory diagram showing a recording state of a logical disk in the disk array in the state of FIG. Note that it is assumed that the recording state determination unit 129 in the RAID control unit 120 has already grasped which region is the recording unauthorized region by the recording unauthorized region determination method shown in (3) above.
  • the drive and the disk are integrated. Therefore, when an error occurs due to one of the drive and the disk, the HDD in which the error has occurred becomes unusable. As a result, if a disk array is configured as RAID 6 with four HDDs and one HDD fails, the disk array loses redundancy for one parity in all areas. . That is, all data recorded on the HDD in error is lost. As a result, the control method is also simple. Basically, in the reproduction of all stripes, specifically, stripes in which user data is recorded on the HDD in which an error has occurred, the data is repaired and reproduced based on the parity. It will be.
  • the drive and the disk can be separated as shown in FIG. Therefore, even if the optical disk drive 150b fails and recording is impossible, the optical disk 1b can be used continuously by replacing only the optical disk drive 150b or using a hot spare drive. Further, even if a recording error occurs due to a local defect such as a scratch, dirt or a defect on the optical disc, the area other than the recording error area can be basically used. For this reason, at least the data in the area where recording was normally performed is not lost, and can basically be used for reproduction.
  • the areas from LBA0 to LBA5 are areas that can be normally recorded while maintaining redundancy equivalent to RAID6.
  • the areas from LBA6 to LBA11 are areas recorded with redundancy equivalent to RAID5 that has lost redundancy for one parity block.
  • the area after LBA12 is an unused (unrecorded) area, and when the next recording is performed, recording is resumed from LBA12, which is the additional recording position (NWA), in a state where the redundancy for one parity block is also lost.
  • NWA additional recording position
  • the normal reproduction is performed for the areas from LBA0 to LBA5 which are normally recorded with redundancy equivalent to RAID6. More specifically, when viewed in units of stripes, user data is reproduced from an optical disk having a data block in which at least user data (non-parity data) is recorded, so that user data can be reproduced correctly. Is possible. Also, if the data block cannot be read normally, it is possible to restore the data of the data block that could not be read normally by using the parity block. In other words, even if the recording illegal area is included in the disk array, the areas from LBA0 to LBA5 that have been normally recorded can be maintained with very high reliability due to the redundancy equivalent to RAID6. Data can be played back.
  • This control method is a control method that was not possible with a disk array using an HDD or SSD in which a drive and a disk are integrated.
  • the parity is basically used as in the conventional HDD. It is necessary to restore and replay the stored data. Also, when data is newly recorded from the additional recording position (LBA12), data recording can be continued in a state where redundancy for one parity block is lost (equivalent to RAID 5), as in the case of the conventional HDD. .
  • the restoration control unit 123 reproduces data from the stripes LBA8 to LBA9, it uses at least the user data of LBA9 scheduled to be recorded on the optical disc 1b by using the parity data recorded in the parity block. Control to repair and play.
  • the reproduction control unit 122 performs control so that data is not reproduced from a block in the recording illegal area of the optical disc 1b.
  • the reproduction control unit 122 performs control so as to invalidate the reproduced data after reproducing the data from the block in the illegal recording area of the optical disc 1b.
  • an unrecorded area often remains unrecorded.
  • the optical disk drive operates as if “00” data was read in response to a reproduction request for an unrecorded area.
  • the optical disk drive may return an error response instead of returning “00” data in response to a reproduction request to an unrecorded area.
  • FIG. 11 is a flowchart showing the reproduction processing of the optical disk array system 100 in the embodiment of the present invention.
  • the data reproduction size requested from the host device (host) 101 is in units of blocks.
  • the data reproduction size is a stripe unit.
  • the RAID (disk array) configured in the optical disk array system 100 is in the state shown in FIG.
  • step S1 when the optical discs 1a to 1d are loaded into the optical disc drives 150a to 150d and activated, the management information acquisition unit 126 starts the RAID management information area of the optical discs 1a to 1d loaded in the optical disc drives 150a to 150d. 21 to obtain RAID management information.
  • the management information acquisition unit 126 stores the acquired RAID management information in the memory 140.
  • step S2 the host control unit 111 receives information (reproduction parameters) regarding the reproduction position and transfer size. More specifically, the host control unit 111 in the optical disk array system 100 reproduces the logical block logical block address (first LBA) of the logical disk related to the first position from which data is requested, and the data requested from the host apparatus (host) 101. And a playback parameter such as a block size to be transferred (remaining transfer size). Note that playback parameters such as the head LBA and the remaining transfer size are stored in the memory 140, respectively. The head LBA and the remaining transfer size stored in the memory 140 are updated as necessary in the subsequent processing.
  • first LBA logical block logical block address
  • a playback parameter such as a block size to be transferred
  • the recording state determination unit 129 determines whether or not an illegal recording area is included in the stripe to which the head LBA belongs. More specifically, first, the address conversion unit 130 converts the stripe to which the head LBA 90 that has received the reproduction request belongs to a logical block address lba in each optical disc 1. Then, the recording state determination unit 129 determines whether or not an illegal recording area exists in the data block in which user data is recorded among the blocks constituting the reproduction target stripe. In other words, the recording state determination unit 129 determines whether or not there is an optical disc 1 that needs to be subjected to reproduction restriction such as not reproducing or invalidating reproduction data.
  • the recording state discriminating unit 129 is based on the recording illegal area discriminating method described in (3) above, and among the blocks constituting the reproduction target stripe, the recording illegal area is included in the data block in which user data is recorded. It is determined whether or not exists.
  • the recording state determination unit 129 determines whether there is a block included in the illegal recording area in the blocks constituting the stripe to be reproduced. good.
  • the recording state discriminating unit 129 only records illegally the data block including the user data in the blocks constituting the stripe that has received the reproduction request. An example of determining whether or not an area is included will be shown.
  • the recording state discriminating unit 129 determines that it is necessary to perform reproduction restriction when a recording illegal area exists in a data block in which user data is recorded among the blocks constituting the stripe to be reproduced. This process is the same as when a reproduction error occurs in a certain optical disc. If it is determined that it is necessary to perform playback restriction, the process proceeds to step S4. If it is determined that there is no need to restrict playback, the process proceeds to step S5.
  • step S4 the reproduction control unit 122 Restore and replay user data. More specifically, the reproduction control unit 122 obtains user data of a data block excluding a data block included in a recording illegal area and parity data of at least one parity block among blocks constituting a reproduction target stripe. Requests the corresponding optical disk drive to read. The read data is temporarily stored in the memory 140, for example. Then, the reproduction control unit 122 uses the parity data to restore the user data originally scheduled to be recorded in the data block included in the unauthorized recording area.
  • the playback control unit 122 uses the host control unit 111 to transfer the playback requested user data including the repaired user data to the host device (host) 101.
  • the playback control unit 122 can act on the host (higher-level device) 101 as if the data was correctly read from the data block.
  • step S4 the playback control unit 122 performs control so that data is not read from the blocks included in the illegal recording area, but the present invention is not limited to this control method.
  • the reproduction control unit 122 causes all the optical disk drives to read data of all blocks constituting the stripe, and the block data corresponding to the recording illegal area in the read data is It is invalidated as data that could not be read correctly. Then, the reproduction control unit 122 restores and reproduces the invalidated data using the parity data.
  • the reproduction control unit 122 may control the optical disk drive so that an error occurs in the data read result from the optical disk drive that reproduces the optical disk in which the block included in the illegal recording area exists. Such a control method can also be realized.
  • step S5 when it is determined that there is no illegal recording area in the data block in which user data is recorded among the blocks constituting the stripe to be reproduced (NO in step S3), in step S5, the reproduction control unit 122 reproduces user data as usual. More specifically, the playback control unit 122 requests the optical disc drive to read data of all blocks constituting the stripe to be played. The read data is temporarily stored in the memory 140. Then, the reproduction control unit 122 transfers user data among the read data to the higher-level device (host) 101.
  • the reproduction control unit 122 uses the parity data in the same manner as in the process of step S4. Restore and replay user data.
  • step S6 the playback control unit 122 updates the remaining transfer size. More specifically, the playback control unit 122 subtracts the size of the transfer completed in step S4 or step S5 (that is, 2 blocks) from the remaining transfer size stored in the memory 140, and creates a new remaining transfer. The value of the remaining transfer size in the memory 140 is updated as the size.
  • step S7 the playback control unit 122 determines whether or not the remaining transfer size remains. That is, the playback control unit 122 determines whether or not to continue transferring the next user data. More specifically, the playback control unit 122 determines whether or not the remaining transfer size stored in the memory 140 updated in step S6 is 1 or more. If it is determined that the remaining transfer size is 1 or more, that is, it is determined that there is data that has not been transferred (YES in step S7), the process proceeds to step S8. On the other hand, if the remaining transfer size is 0, that is, it is determined that there is no remaining transfer size and the transfer of user data for the size requested from the host apparatus (host) 101 has been completed (NO in step S7), the process is performed. finish.
  • step S8 the playback control unit 122 updates the head LBA. Specifically, the playback control unit 122 adds the size of the transfer completed in step S4 or step S5 (that is, 2 blocks) to the value of the start LBA stored in the memory 140, and creates a new start LBA. As a result, the value of the head LBA in the memory 140 is updated. Then, the process returns to step S3.
  • step S1 described above may be read at the time when the optical disk is set (started up) in the optical disk drive, for example, not at the timing when the reproduction request is received from the host apparatus (host) 101.
  • the reproduction control unit 122 may restore data from parity data in units of stripes in which the block exists.
  • the illegal recording area is not necessarily unrecorded.
  • RAID disk array
  • an area where data is not recorded due to an optical disk drive failure or the like may be in an unrecorded state. Some other data may be recorded.
  • the optical disk drive is controlled so as to make an error in response to a reproduction request to an unrecorded area, it cannot be handled.
  • it is possible to provide a highly reliable data reproduction method that does not cause garbled data by using the same control method not only for write-once optical discs but also for rewritable optical discs.
  • the track (SRR) # 0 in which user data has been recorded becomes a case where additional writing is not possible (Close) while usable blocks remain.
  • the LRA that is the recording end position is LBA11, but the block (area) between LBA12 and LBA17 that is the end position of track # 0 remains unrecorded.
  • this area is not a recording illegal area in which recording data is missing, there is no need to handle it as a recording illegal area, for example, there is no need to record it as recording illegal area information 52.
  • an unrecorded area may remain on the optical disk in a normal state (intended state).
  • the illegal recording area is an area where data has been lost due to recording failure.
  • an optical disk on which data is recorded can be used even if a failure occurs in the optical disk drive. That is, the previous data including management information remains valid in the optical disc.
  • the optical disk by mounting the optical disk in the replaced optical disk drive or hot spare drive, it is possible to continue using the data of the optical disk that has been deteriorated due to the lack of recording data, without necessarily restoring it.
  • the recordable position is limited to the write-once position (NWA). Therefore, new data cannot be continuously recorded on the degraded optical disk without restoring the data.
  • This problem can be solved by using a method of newly creating a postscript position (dividing a track).
  • the track division can be realized by a Reserve Track command defined in the MMC standard.
  • FIG. 13 is an explanatory diagram showing an example of a disk state when data in RAID 6 is continuously recorded with respect to a RAID (disk array) in which the optical disk 1b including the recording illegal area in the state of FIG. 5 exists. is there.
  • the optical disk 1b that constitutes RAID # 1 includes an illegal recording area, and data from LBA6 to LBA11 continues with a redundancy equivalent to RAID5 in which only one parity drive exists. Assume that it is in a recorded state. In this state, consider a case where the RAID # 1 optical disk drive 150b in which a problem has occurred is replaced, and data can be recorded and reproduced.
  • a new track is divided at the position of the LBA 12 which is a recordable position (NWA) as a logical disk, and the LBA 12 A region up to the next track start position (that is, LBA 17) is set as a new track (track # 1). That is, for all the optical disks 1a to 1d constituting the RAID, the track is divided before the block of lba6 which is the NWA of each optical disk. By doing this, it becomes possible to record data with RAID 6 using all four optical disks 1a to 1d from the LBA 12 which is the head of the logical disk of the newly divided track # 1.
  • the redundancy is equivalent to RAID 5 in which only one parity drive exists thereafter. Only data can be recorded continuously.
  • the optical disk drive is replaced even if, for example, one optical disk that is the cause of the failure of the optical disk drive is in use and includes a recording illegal area. If the other optical disk array system 100 in a normal state is used, data can be continuously recorded with the maximum redundancy secured.
  • the optical disk array system 100 according to the embodiment of the present invention can realize an effect not found in a disk array system using a conventional HDD.
  • FIG. 14 is a diagram showing a recording state of the logical disk in the disk array of FIG. Compared to the description using FIG. 10, the difference is that the track is newly divided at the position of the LBA 12. Therefore, the track # 0 from LBA0 to LBA11 is the same as the playback control method described in FIG. 10 as the playback control method, but the track # 0 is logically in the Close state. On the other hand, the additional recording position (NWA) of track # 1 from LBA 12 is the same as in FIG. 10, except that data can be recorded with RAID 6 in track # 1.
  • NWA additional recording position
  • RAID 6 disk array having an optical disk 1b including an illegal recording area
  • RAID 6 having two parities for a continuous recording request even before data in the illegal recording area is restored.
  • the data can be recorded in a state where a high redundancy is secured.
  • FIG. 15 is a diagram showing a specific example of the track information 80 relating to each of the four optical disks 1a to 1d in the state of FIG.
  • the track status of the track # 0 from lba0 to lba5 is the remaining three optical discs 1a, 1c, and 1d excluding the optical disc 1b constituting the RAID # 1.
  • a Close state is entered.
  • the track state of the track # 0 from lba0 to lba5 remains in the Open state.
  • the tracks of the optical discs having different track states 82 (in the Open state) among the plurality of optical discs 1a to 1d constituting the RAID with respect to the tracks constituting the same stripe are the tracks including the recording incorrect area (the open state). That is, it is possible to determine that the area needs to be restored.
  • the newly generated track # 1 all the track states 82 of the four optical disks 1a to 1d are in the same state, and all the NWA 85 and the remaining size 86 of the four optical disks 1a to 1d are the same. It becomes a state. Therefore, it is possible to record data in RAID 6 across these four optical disks 1a to 1d.
  • the RAID management information may further include RAID number 44 of the optical disk into which the track is divided and position information (that is, track division information) at which the track on the optical disk is divided.
  • the RAID management information includes the track division information indicating the position where the optical disk array system 100 automatically divides the track. Further, it may be included.
  • FIG. 16 is a flowchart showing a recording process of the optical disc array system 100 according to the embodiment of the present invention.
  • the data recording size requested from the host device (host) 101 is a block unit. If the cache processing is valid, the completion of receipt of the recording data may be waited and a completion response may be made to the recording request from the host apparatus (host) 101. However, in the present embodiment, the actual optical disk is actually used. An example of performing a completion response to a recording request from the higher-level device (host) 101 after performing recording on the device will be described.
  • step S11 when the management information acquisition unit 126 is activated after the optical discs 1a to 1d are loaded in the optical disc drives 150a to 150d, the RAID management information area of the optical discs 1a to 1d loaded in the optical disc drives 150a to 150d is displayed. 21 to obtain RAID management information.
  • the management information acquisition unit 126 stores the acquired RAID management information in the memory 140.
  • the management information update unit 125 When an unused optical disk on which no RAID management information is recorded is loaded into the optical disk drive, the management information update unit 125 generates RAID management information and records the generated RAID management information on the unused optical disk. May be.
  • step S12 the host control unit 111 receives information (recording parameters) regarding the recording position and the recording data size. More specifically, the host control unit 111 in the optical disk array system 100 requests the logical block logical block address (first LBA) of the logical disk related to the first position where data is recorded and the recording data size requested from the host apparatus (host) 101. Receive recording parameters such as:
  • the recording control unit 121 determines whether or not data recording is possible based on the recording parameter received by the host control unit 111. More specifically, the recording control unit 121 determines whether or not the start LBA to start recording satisfies the condition of a recordable position (NWA) as a logical disk, or in a state where a plurality of optical disks can be recorded as RAID. Judge whether or not there is.
  • NWA recordable position
  • the optical disk array system 100 may be provided with a function of accepting a setting of a recording continuation error level from a user that does not continue recording (that is, treats it as a recording error). Specifically, the optical disk array system 100 accepts the setting of the number of error drives (disks) allowed by the user and treats it as recordable unless the set number is exceeded.
  • the optical disk array system 100 accepts the setting of the number of error drives (disks) allowed by the user and treats it as recordable unless the set number is exceeded.
  • the track dividing process as shown in FIG. 13 is not necessarily performed. In the case where the recording continuation error level is 0 (one error drive is not allowed), the track dividing process as shown in FIG. 13 is performed.
  • step S14 the host control unit 111 responds to the recording request from the host apparatus (host) 101 with an error response indicating that recording is not possible.
  • step S15 the RAID control unit 120 performs a data recording process. More specifically, the recording control unit 121 receives recording data from the host apparatus (host) 101 and temporarily stores the recording data in the memory 140 (buffer). Further, the parity calculation unit 124 generates parity data based on the received recording data, and temporarily stores the generated parity data in the memory 140. Further, the address conversion unit 130 converts the stripe to which the head LBA that received the recording request belongs to the logical block address lba in each of the optical disks 1a to 1d.
  • the recording control unit 121 outputs the received recording data and the generated parity data stored in the memory 140 to the corresponding optical disk drives 150a to 150d.
  • the optical disk drives 150a to 150d record the input recording data or parity data on the optical disks 1a to 1d.
  • step S16 the recording control unit 121 determines whether or not a recording error has occurred during recording of the recording data and the parity data. If it is determined that no recording error has occurred (NO in step S16), the process proceeds to step S18.
  • step S17 the management information update unit 125 updates the recording illegal area information included in the RAID management information stored in the memory 140. . Specifically, the management information update unit 125 records invalid area information for specifying the unauthorized record area, that is, an invalid record area including a record invalid RAID number 75, a record invalid area start position 76, and a record invalid area size 77. Information 52 is updated.
  • step S18 the recording control unit 121 determines whether or not the recording of the data received from the host device (host) 101 has been completed. If it is determined that data recording has not been completed (NO in step S18), the process returns to step S15, and the recording control unit 121 continuously records the remaining recording data and parity data.
  • the recording control unit 121 determines that the recording request has been completed normally, and proceeds to the process of step S19. Transition. On the other hand, when the set recording continuation error level condition is not satisfied, the recording control unit 121 responds with an error as a recording failure to the recording request from the host apparatus (host) 101 as recording failed. .
  • step S19 the recording control unit 121 updates the recordable position (NWA). More specifically, the recording control unit 121 updates the additionally writable position (NWA) information as a logical disk by the size for which recording has been completed.
  • step S20 the management information update unit 125 records the RAID management information stored in the memory 140 on the optical discs 1a to 1d. At this time, the management information update unit 125 records the updated record illegal area information on the optical discs 1a to 1d.
  • the management information update unit 125 outputs the RAID management information stored in the memory 140 to the optical disk drives 150a to 150d.
  • the optical disk drives 150a to 150d record the input RAID management information on the optical disks 1a to 1d.
  • the host control unit 111 sends a completion response to the recording request from the higher-level device (host) 101.
  • the recording process is realized by the above procedure.
  • the parity calculation unit 124 in order to generate the parity data by the parity calculation unit 124 in the above-described step S15, it is necessary that the recording data is prepared in units of stripes. However, the recording data size requested from the host apparatus (host) 101 is not always required in units of stripes. If data is recorded on the disk array in a state where the recording data size is less than the stripe unit, the parity calculation unit 124 sets the unreceived data in the stripe as fixed data (for example, null data of all 0). Parity data may be generated by treating
  • the recording control unit 121 logically rewrites the parity data using a function called pseudo-overwrite (POW) described above.
  • PW pseudo-overwrite
  • RAID 6 has at least one parity block in the stripe, such as RAID 5 having one parity block in the stripe, and data from the parity If the disk array recording method is capable of repairing the above, the same effect as described above can be obtained.
  • the optical disk array system 100 describes an example in which a RAID is configured by only four optical disk drives, but the number of optical disk drives to be connected is not limited to this.
  • the optical disk array system 100 may be configured with, for example, 10 or 12 optical disk drives, as long as the number is the minimum necessary for the RAID level to be used.
  • the optical disk array system 100 configures a RAID (disk array) using all four connected optical disk drives 150a to 150d. It is not necessary to configure a RAID using all the optical disk drives. Specifically, for example, when six optical disk drives are connected, RAID 6 may be configured with five optical disk drives, and the remaining one optical disk drive may be used as a hot spare drive. Note that these are not limited to the optical disk drive, and the same applies to the optical disk. That is, one optical disk among a plurality of optical disks may be used as a spare optical disk.
  • An information processing apparatus is an information processing apparatus that records data on a disk array including a plurality of portable information storage media, and the data is stored in each of the plurality of information storage media.
  • a user area that records the data in units of the data block, and a management information area that records recording illegal area information indicating information related to the recording illegal area in which the data is missing, and the recording illegality Area information includes the information storage medium in which the recording illegal area exists, and the information storage medium among the plurality of information storage media constituting the disk array.
  • control unit records the data in a plurality of data blocks of the plurality of information storage media in a distributed manner, and among the plurality of data blocks
  • an area information recording unit that records the recording illegal area information in the management information area of at least one information storage medium.
  • the plurality of drive devices record data in each of the plurality of information storage media.
  • the control unit controls a plurality of drive devices in order to distribute and record data on the disk array.
  • Each of the plurality of information storage media has a plurality of data blocks, and records the user area in which data is recorded in units of data blocks, and the recording illegal area information indicating information related to the recording illegal area in which data is missing. And an information area.
  • the illegal recording area information includes, among a plurality of information storage media constituting the disk array, an information storage medium where the illegal recording area exists, and a position where the illegal recording area exists in the information storage medium.
  • the data recording unit distributes and records data in a plurality of data blocks of a plurality of information storage media, and at least one parity data for repairing data of a data block in which data is missing among the plurality of data blocks Are recorded in at least one parity block.
  • the area information recording unit records the improper recording area information in the management information area of at least one information storage medium when recording fails in at least one drive device during data recording.
  • each of the plurality of information storage media is preferably a write-once information storage medium.
  • each of the plurality of information storage media is a write-once information storage medium
  • the disk array can be configured by a write-once information storage medium instead of a rewritable information storage medium.
  • the area information recording unit records the recording illegal area information in the management information areas of all the plurality of information storage media at a predetermined timing.
  • control unit controls the plurality of drive devices to reproduce the data from the disk array, and the plurality of drive devices are connected to each of the plurality of information storage media.
  • the data is reproduced, and the control unit invalidates the data read from the recording illegal area based on the recording illegal area information, and reproduces the data in the recording illegal area using the at least one parity data. It is preferable to further include a reproduction control unit.
  • control unit controls a plurality of drive devices in order to reproduce data from the disk array.
  • the plurality of drive devices reproduce data from each of the plurality of information storage media.
  • the reproduction control unit invalidates the data read from the recording illegal area based on the recording illegal area information, and reproduces the data in the recording illegal area using at least one parity data.
  • the data read from the recording illegal area is invalidated based on the recording illegal area information, and the data in the recording illegal area is reproduced using at least one parity data. Therefore, there is a failure in the drive device or the information storage medium. Even if data in a given area of any information storage medium is lost, high data reliability, high availability and high transfer rate can be secured without repairing the lost data, and continuously Data can be played back.
  • a disk array including an information storage medium including a recording illegal area when data is reproduced from an area recorded with a predetermined redundancy without including the recording illegal area, the predetermined redundancy is ensured. Since the data is reproduced, the reliability of the data as the disk array can be improved.
  • the management information area further includes array management information for managing a recording state related to the disk array, and the array management information identifies a recording method of the disk array.
  • array type information, array configuration number information indicating the number of the information storage media constituting the disk array, array number information indicating the configuration order of the information storage media in the disk array, and the disk array An array configuration information table for all information storage media constituting the disk array, wherein the array number of the information storage medium to be associated with a medium identification number for uniquely identifying the information storage medium is included.
  • the area information recording unit performs initialization processing for constructing the disk array. In timing, it is desirable to record the array management information into the management information area.
  • array management information for managing the recording state related to the disk array is further recorded in the management information area.
  • the array management information indicates array type information for identifying the recording method of the disk array, array configuration number information indicating the number of information storage media constituting the disk array, and the configuration order of the information storage media in the disk array.
  • the area information recording unit records the array management information in the management information area at the timing of performing the initialization process for constructing the disk array.
  • the drive device and the information storage medium are changed based on the array number information. Correspondence can be correctly identified, and data can be continuously recorded. Even if the array number information cannot be acquired from the information storage medium, the configuration order of the information storage medium in the disk array can be accurately grasped based on the array configuration information table.
  • the array type information is information that can identify the number of parity data, a method for generating the parity data, and a method for restoring data in the illegal recording area using the parity data. Preferably there is.
  • the management information area further includes array management information for managing a recording state related to the disk array, and the array management information identifies a recording method of the disk array.
  • Array type information, array configuration number information indicating the number of the information storage media constituting the disk array, array number information indicating the configuration order of the information storage media in the disk array, and the disk array An array configuration information table for all information storage media constituting the disk array, wherein the array number of the information storage medium to be associated with a medium identification number for uniquely identifying the information storage medium is included.
  • the control unit starts up at least the drive device in which the information storage medium is mounted.
  • An information acquisition unit that acquires the array management information recorded in the management information area at the timing, and the reproduction control unit controls the plurality of drive devices based on the acquired array management information It is preferable.
  • array management information for managing the recording state related to the disk array is further recorded in the management information area.
  • the array management information indicates array type information for identifying the recording method of the disk array, array configuration number information indicating the number of information storage media constituting the disk array, and the configuration order of the information storage media in the disk array.
  • the information acquisition unit acquires the array management information recorded in the management information area at least when the drive device loaded with the information storage medium is activated.
  • the reproduction control unit controls the plurality of drive devices based on the acquired array management information.
  • the drive device and the information storage medium are changed based on the array number information. Correspondence can be correctly identified, and data can be reproduced continuously. Even if the array number information cannot be acquired from the information storage medium, the configuration order of the information storage medium in the disk array can be accurately grasped based on the array configuration information table.
  • control unit further includes an information acquisition unit that acquires the recording illegal area information from the management information area.
  • the information acquisition unit acquires the recording illegal area information from the management information area. Therefore, when recording data, the recording illegal area information acquired from the management information area is temporarily stored in the memory, and when recording fails in at least one drive device, the recording illegal area information in the memory is updated. Thereby, it is not necessary to record the illegal recording area information on the information storage medium every time recording fails, and the number of accesses to the information storage medium can be reduced.
  • the illegal recording area includes at least either a data block in which a recording error has occurred or a data block in which the data has not been recorded.
  • An information processing method is an information processing method for recording data on a disk array including a plurality of portable information storage media, and each of the plurality of information storage media includes a plurality of information storage media.
  • the record illegal area information includes the information storage medium in which the record illegal area exists and the record illegal area in the information storage medium among the plurality of information storage media constituting the disk array.
  • the data is distributed and recorded in the plurality of data blocks of the plurality of information storage media, and the data of the plurality of data blocks
  • each of the plurality of information storage media has a plurality of data blocks, a user area in which data is recorded in units of data blocks, and a recording fraud that represents information regarding a recording fraud area in which data is missing.
  • a management information area for recording area information includes, among a plurality of information storage media constituting the disk array, an information storage medium where the illegal recording area exists, and a position where the illegal recording area exists in the information storage medium.
  • the data recording step at least one parity data for recording and distributing data in a plurality of data blocks of a plurality of information storage media and repairing data of a data block in which data is missing among the plurality of data blocks Are recorded in at least one parity block, and a plurality of drive devices for recording data in each of the plurality of information storage media are controlled.
  • the recording illegal area information recording step when recording fails in at least one drive device at the time of data recording, the recording illegal area information is recorded in the management information area of at least one information storage medium.
  • An information storage medium is a portable information storage medium for recording data, and has a plurality of data blocks, and a user area for recording the data in units of the data blocks; And a management information area for recording illegal recording area information representing information relating to the illegal recording area in which the data is missing, the disk array is composed of a plurality of portable information storage media, and the user area is Recording the data distributed in the plurality of information storage media, and parity data for repairing data of the data block in which the data is missing among a plurality of data blocks, the recording illegal area information is Among the plurality of information storage media constituting the disk array, the information storage medium in which the illegal recording area exists, and the front of the information storage medium And a position where the recording unauthorized area exists.
  • the user area has a plurality of data blocks and records data in units of data blocks.
  • the management information area records recording illegal area information representing information related to the recording illegal area where data is missing.
  • the disk array is composed of a plurality of portable information storage media.
  • the user area records data distributed in a plurality of information storage media and parity data for repairing data of a data block in which data is missing among the plurality of data blocks.
  • the illegal recording area information includes, among a plurality of information storage media constituting the disk array, an information storage medium where the illegal recording area exists, and a position where the illegal recording area exists in the information storage medium.
  • the information processing apparatus, information processing method, and information storage medium according to the present invention can ensure high data reliability, high availability, and a high transfer rate even after missing data is recovered, and continue. Therefore, the present invention is useful for an information processing apparatus, an information processing method, and an information storage medium that record data on a disk array composed of a plurality of portable information storage media.
  • the information processing apparatus, information processing method, and information storage medium according to the present invention can be applied to, for example, an archive apparatus in a computer system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

 記録不正領域情報は、ディスクアレイを構成する複数の光ディスクの中で、データが欠落している記録不正領域が存在する光ディスクと、光ディスクの中の記録不正領域が存在する位置とを含み、コントローラ(110)は、複数の光ディスクの複数のデータブロックにデータを分散して記録するとともに、複数のデータブロックのうちのデータが欠落したデータブロックのデータを修復するための少なくとも1つのパリティデータを少なくとも1つのパリティブロックに記録する記録制御部(121)と、データの記録時に少なくとも1つの光ディスクドライブでデータが欠落した場合に、少なくとも1つの光ディスクの管理情報領域に記録不正領域情報を記録する管理情報更新部(125)とを含む。

Description

情報処理装置、情報処理方法及び情報記憶媒体
 本発明は、光ディスクなどの複数の可搬型の情報記憶媒体で構成されるディスクアレイにデータを記録する情報処理装置及び情報処理方法、及びデータを記録するための可搬型の情報記憶媒体に関するものである。
 大規模な業務用サーバ又はその他のコンピュータシステムにおいて用いられる、大容量、高速処理及び耐障害性の向上を実現するための外部記憶装置としてディスクアレイ装置がある。ディスクアレイ装置とは、複数のディスクを束ねて1つのディスク(1ボリューム)のように利用するシステムのことである。以下、ディスクアレイによって実現される、複数のディスクを束ねた仮想的な1つのディスクのことを、論理ディスクと呼ぶ。
 ディスクアレイ装置では、要求される信頼性、速度及び使用効率に応じて使用するRAID(Redundant Arrays of Inexpensive Disks)のレベルが選択される。よく使用されるRAIDレベルには、1つのデータを複数のディスクに分けて記録するストライピング機能のみを有するRAID0、ミラーリング機能を有するRAID1、ブロック単位に算出したパリティデータをユーザデータとともに分散(ストライピング)して記録するRAID5、ブロック単位に算出した2種類のパリティデータをユーザデータとともに分散(ストライピング)して記録するRAID6がある。また、これらのRAIDレベルを組み合わせた方式、例えば、ミラーリングしたグループをストライピングするRAID10なども使用されている。
 ここで、冗長度を確保しつつ速度及び使用効率が要求される場面で使用されることの多いRAID6について説明する。
 図17は、従来のRAID6システムについて説明するための図である。図17は、4台のディスク装置201~204で構成したP+Q方式のRAID6システムの例である。RAIDを構成する4台のディスク装置201~204のうち、第1のディスク装置201、第2のディスク装置202、第3のディスク装置203及び第4のディスク装置204が、それぞれRAID#0、RAID#1、RAID#2及びRAID#3と定義する。この場合、4台のディスク装置をまとめて1つのボリュームとするディスクアレイにおいては、ホストから見える論理アドレスは、パリティデータを除いて、RAID#0から順にRAID#1、RAID#2及びRAID#3の順で割り振られることになる。
 RAIDでは、各ディスク装置の記憶領域は、論理セクタサイズと同じサイズ、又は論理セクタサイズの倍数のサイズのブロックに分割して管理される。図17において、ブロックAi、Bi、Pi、Qi(i=1、2、3、…)が1つのストライプを構成している。ブロックPi及びQiはパリティブロックであり、ブロックPiには、ブロックAi及びBiの同じバイト位置にあるデータの排他的論理和の計算結果が格納され、ブロックQiには、生成多項式による計算結果(RSシンドローム又はガロアパリティなどと言われる)が格納される。つまり、ストライプは、ブロックAi及びBiのようなデータブロックと、ブロックPi及びQiのようなパリティブロックとから構成される。
 なお、RAID6のパリティ生成方式としては、上述したP+Q方式の他に、対角方向のパリティを生成する2D-XOR方式などもある。以下、本明細書において、RAID6のパリティ生成方式としてP+Q方式を例に説明をする。
 RAID6では、2つ以下のディスク装置に障害などが発生してデータが再生できなくなったときでも、ストライプデータの復元が可能である。また、1つのディスク装置が障害などで記録又は再生できなくなったとしても、パリティブロックを1つ備えたRAID5と同等の冗長レベルで継続して記録又は再生することも可能である。例えば、図17において第1のディスク装置201に障害が発生して再生できなくなったと仮定すると、ブロックA1は、ブロックB1及びP1の同じバイト位置にあるデータの排他的論理和を計算することで復元できる。
 このようなディスクアレイ装置において、外部記憶装置に可搬媒体型の記憶装置を用いたシステムも使用されている。可搬媒体型の記憶装置を用いたシステムでは、多数枚の情報記憶媒体を格納する収納体、データの読み出し及び書き込みを行う1つ又は複数の記録再生装置(ドライブ装置)、及び収納体と記録再生装置との間で情報記憶媒体を搬送するチェンジャなどの搬送体などを備えるライブラリ装置が使用される。このような記録再生装置を複数組み合わせてアレイ構成としたシステムはRAIL(Redundant Arrays of Inexpensive Libraries)とも呼ばれる。
 近年、大型データセンターに記憶されるデータ量は急激に増大しており、それに伴い参照されることが少ないデータ量も増える傾向にある。このような参照回数が少ないデータをアーカイブする装置として消費電力を低減でき、長期保存にも適した可搬媒体型のライブラリ装置が注目されている。
 可搬型の情報記憶媒体の代表としてDVD(Digital Versatile Disc)又はBlu-ray Discなどの光ディスクがある。光ディスクには、大別して、DVD-RAM及びBD-REなどの書き換え型の情報記憶媒体と、DVD-R、DVD+R及びBD-Rなどの追記型の情報記憶媒体とがある。
 近年の光ディスクの大容量化に伴い参照回数が少ないデータのアーカイブに安価な追記型の情報記憶媒体が使用される機会が増えてきている。光ディスクは、データの信頼性を高めるために、スペア領域と呼ばれる代替記録用の領域を備えており、記録再生装置は、欠陥ブロックのデータをスペア領域内のブロックに交替記録するといった仕組みも備えている。
 可搬媒体型のライブラリアレイ装置では、ライブラリアレイ装置内に備えた複数の記録再生装置(ドライブ装置)に装着した情報記憶媒体セットによりRAIDが構成され、複数のドライブ装置に装着する情報記憶媒体が交換されることにより、複数のドライブ装置の台数よりも多い情報記憶媒体セットが利用できる。
 任意の記録再生装置(ドライブ装置)又は情報記憶媒体(ディスク)に障害が発生して、記録再生装置又は情報記憶媒体を継続して記録又は再生に利用できなくなった場合でも、アレイ装置として記録再生装置又は情報記憶媒体を継続して記録又は再生に利用できるようにするため(つまり可用性を高めるため)の様々な方法が提案されている。例えば、アレイ装置は、スペア情報記憶媒体を装着したスペアドライブ装置(ホットスペア)を備え、あるドライブ装置に障害が発生した場合、又はドライブ装置に装着されたディスクに障害が発生した場合には、スペアドライブ装置を用いてデータ修復する方法が提案されている。更に、ドライブ装置に障害が発生したことを識別できた場合には、障害が発生したドライブ装置に装着されていたディスクをスペアドライブ装置に移動させることで、データ修復なしに記録又は再生を継続させる方法も提案されている(例えば、特許文献1参照)。
 また、可用性を保持すると共に再生時の転送レートを確保するための方法として、光ディスクのような可搬型の情報記憶媒体を用いたアレイ装置において、交替記録された欠陥ブロックに対して交替処理を行わず、ダミーデータを返送しておいて、パリティを利用したデータ修復を行うことで、再生時の転送レートを安定化させるといった方法も提案されている(例えば、特許文献2参照)。
 しかしながら、故障したドライブ装置又はディスクの予備としてホットスペアを備えることを前提とした場合、ディスクアレイ装置自体が大きくなってしまい、コンパクトな装置が求められるデータセンターなどの用途には、必ずしも最適とはいえない。
 更に、従来のディスクアレイ装置は、ディスクアレイ(例えばRAID6)として光ディスクのような情報記憶媒体を利用するディスクアレイ装置に関する考慮が十分になされていない。
 例えば、RAID6を構成する複数の記録再生装置の1つに障害が発生したような場合を考えてみる。RAID6の場合であれば、1台が障害状態となっても、パリティブロックを1つ備えたRAID5に相当する冗長性は保たれているため、可用性の観点からも、継続してデータが記録又は再生されることが好ましいケースもある。このような状態で継続利用される場合、障害が発生した記録再生装置に格納された情報記憶媒体への記録は実行されない。そのため、障害が発生した記録再生装置に格納された情報記憶媒体では、障害発生以降に記録されたストライプに相当する領域は、未記録状態(書き換え型及び追記型の情報記憶媒体のいずれの場合も発生しうる)、もしくは記録前のデータがそのまま残った状態(書き換え型の情報記憶媒体の場合のみ発生しうる)になってしまう。
 ここで、BD-RE又はBD-Rのような光ディスクの記録再生装置(ドライブ装置)は、未記録領域への再生要求に対して、“00”データ(ダミーデータ)をホストへ報告(転送)する機能を備えるものが多い(例えば、特許文献3の第0006段落参照)。つまり、記録が実行されなくなった情報記憶媒体における、記録が実行されなかった領域(未記録領域など)からは、本来の記録データとは異なる意図しないデータが正しく読み出されてしまうことになる。もちろん、“00”データが実際に記録されている場合もあるため、“00”データを無効データとして扱うといった単純な制御は出来ない。また、従来のディスクアレイ装置で多く利用されているHDD(ハードディスクドライブ)などは、商品出荷時点で欠陥ブロックを検出するためのプリフォーマット記録が行われる。そのため、磁気ディスクの場合には、光ディスクの場合に発生しうる未記録状態についての課題はそもそも発生しえなかった。
 このような問題に対する1つの対策方法としては、障害状態となった記録再生装置に装着されていた情報記憶媒体は、障害状態となって以降、少なくともデータ修復が完了するまでの間は記録又は再生には使用しないといった方法が考えられる。これは、従来のディスクアレイ装置で多く利用されていたディスク(メディア)/ドライブ一体型のHDDの場合と同じ制御方法である。
 しかし、この方法を用いると、情報記憶媒体(メディア)としては正常な状態で使用可能であるにも関わらず、使用されない状態になってしまう。こうなると、RAID6の冗長性を保った状態で正しく記録された領域に対する再生を行う際にも、障害状態となった記録再生装置に装着されていた情報記憶媒体(メディア)は使用されなくなる。そのため、再生時の冗長度は、常に、パリティブロックが1つであるRAID5に相当する状態になってしまう。この状態で、同一ストライプにおいて更に他の2つ以上の情報記憶媒体からの再生に失敗してしまった場合、データが再生出来なくなってしまう(データが消失してしまう)ため、高信頼性が求められるディスクアレイ装置としては好ましくない。
 特に、光ディスクのような情報記憶媒体では、同じロット(製造工程)で製造された情報記憶媒体は同じような位置に欠陥(ディフェクト)などが存在しており、同じような位置で記録又は再生に失敗するようなケースも想定される。そのため、出来るだけ記録又は再生時には高い冗長度(データ信頼性)を確保した状態で使い続けることが望まれる。
 また、光ディスクのような可搬型の情報記憶媒体を用いたディスクアレイ装置の場合、データが記録された情報記憶媒体は、ディスクアレイ装置から取り出されて棚管理などオフライン管理されることが多い。このような用途を踏まえると、即座にデータを修復することが物理的に困難な場合も多いと予想される。そのような場合、正しく記録されなかったブロックのデータが修復されずにそのまま残っている期間も長くなる可能性が高い。
 さらに別の課題として、光ディスクのような情報記憶媒体を利用するディスクアレイ装置の場合、故障の修理又はメンテナンス等のタイミングで、RAID(ディスクアレイ)を構成する光ディスクセットの順番が入れ替わってしまうことも考えられる。この場合、記録再生装置ごとにRAID番号を固定化して割り当ててRAIDを構成すると、途中から情報記憶媒体のRAID番号が変わってしまう恐れもあり、記録制御又は再生制御が非常に複雑になる恐れがある。このような課題も踏まえた上で、仮に情報記憶媒体の順番が入れ替わってしまっても、RAIDとして継続して利用できることが望まれる。
特開平7-36632号公報 特開2012-14761号公報 特開2007-328831号公報
 本発明は、上記の問題を解決するためになされたもので、欠落したデータが修復される前であっても、高いデータ信頼性、高い可用性及び高い転送レートを確保することができ、継続してデータを記録することができる情報処理装置、情報処理方法及び情報記憶媒体を提供することを目的とするものである。
 本発明の一局面に係る情報処理装置は、複数の可搬型の情報記憶媒体で構成されるディスクアレイにデータを記録する情報処理装置であって、前記複数の情報記憶媒体の各々に前記データを記録する複数のドライブ装置と、前記ディスクアレイに前記データを分散して記録するために前記複数のドライブ装置を制御する制御部とを備え、前記複数の情報記憶媒体の各々は、複数のデータブロックを有し、前記データブロック単位で前記データを記録するユーザ領域と、前記データが欠落している記録不正領域に関する情報を表す記録不正領域情報を記録する管理情報領域とを有し、前記記録不正領域情報は、前記ディスクアレイを構成する前記複数の情報記憶媒体の中で、前記記録不正領域が存在する前記情報記憶媒体と、前記情報記憶媒体の中の前記記録不正領域が存在する位置とを含み、前記制御部は、前記複数の情報記憶媒体の前記複数のデータブロックに前記データを分散して記録するとともに、前記複数のデータブロックのうちの前記データが欠落した前記データブロックのデータを修復するための少なくとも1つのパリティデータを少なくとも1つのパリティブロックに記録するデータ記録部と、前記データの記録時に少なくとも1つの前記ドライブ装置で記録に失敗した場合に、少なくとも1つの情報記憶媒体の前記管理情報領域に前記記録不正領域情報を記録する領域情報記録部とを含む。
 この構成によれば、複数のドライブ装置は、複数の情報記憶媒体の各々にデータを記録する。制御部は、ディスクアレイにデータを分散して記録するために複数のドライブ装置を制御する。複数の情報記憶媒体の各々は、複数のデータブロックを有し、データブロック単位でデータを記録するユーザ領域と、データが欠落している記録不正領域に関する情報を表す記録不正領域情報を記録する管理情報領域とを有する。記録不正領域情報は、ディスクアレイを構成する複数の情報記憶媒体の中で、記録不正領域が存在する情報記憶媒体と、情報記憶媒体の中の記録不正領域が存在する位置とを含む。データ記録部は、複数の情報記憶媒体の複数のデータブロックにデータを分散して記録するとともに、複数のデータブロックのうちのデータが欠落したデータブロックのデータを修復するための少なくとも1つのパリティデータを少なくとも1つのパリティブロックに記録する。領域情報記録部は、データの記録時に少なくとも1つのドライブ装置で記録に失敗した場合に、少なくとも1つの情報記憶媒体の管理情報領域に記録不正領域情報を記録する。
 本発明によれば、ディスクアレイを構成する複数の情報記憶媒体の中で、データが欠落している記録不正領域が存在する情報記憶媒体と、情報記憶媒体の中の記録不正領域が存在する位置とを含む記録不正領域情報が記録されるので、欠落したデータが修復される前であっても、高いデータ信頼性、高い可用性及び高い転送レートを確保することができ、継続してデータを記録することができる。
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の実施の形態における光ディスクアレイシステムの構成を示すブロック図である。 本発明の実施の形態における光ディスクの領域構成図である。 ディスクアレイとしてRAIDを構成する複数の光ディスクのうち、任意の光ディスクにおけるデータ領域の詳細な構成を示す図である。 RAID管理情報領域に記録されるRAID管理情報の詳細な構成を示す図である。 記録不正領域を含んだRAID(ディスクアレイ)における、複数の光ディスクの記録状態を示す説明図である。 光ディスクのRAID管理情報領域に記録される記録不正領域管理情報の具体例を示す図である。 RAID構成情報に含まれるRAID情報を示す図である。 トラック情報のデータ構造を示す説明図である。 図5の状態にある4枚の光ディスクのそれぞれにおけるトラック情報の具体例を示す図である。 図5の状態のディスクアレイにおける、論理ディスクの記録状態を示す説明図である。 本発明の実施の形態における光ディスクアレイシステムの再生処理を示すフローチャートである。 RAID(ディスクアレイ)を構成する光ディスク内に未記録領域が存在する例について説明するための図である。 図5の状態の記録不正領域を含んだ光ディスクが存在するRAID(ディスクアレイ)に対して、継続してRAID6でのデータを記録する場合のディスク状態の例を示す説明図である。 図13のディスクアレイにおける、論理ディスクの記録状態を示す図である。 図13の状態にある4枚の光ディスクそれぞれに関するトラック情報の具体例を示す図である。 本発明の実施の形態における光ディスクアレイシステムの記録処理を示すフローチャートである。 従来のRAID6システムについて説明するための図である。
 以下本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。
 なお、本発明の実施の形態では、情報記憶媒体として、BD-Rのような追記型の光ディスクを利用したアレイシステムを例に説明を行う。
 また、アレイシステムとしては、4台の光ディスク記録再生装置(ドライブ装置)を並列動作させると共に、システム及びデータの信頼性を高めるために、4台のドライブ装置のうちの2台のドライブ装置をパリティドライブ装置として用いるRAID6を例に説明する。
 (1)光ディスクアレイシステムの構成
 始めに、本発明の実施の形態における光ディスクアレイシステム100の構成について簡単に説明する。
 図1は、本発明の実施の形態における光ディスクアレイシステム100の構成を示すブロック図である。光ディスクアレイシステム100は、複数の可搬型の光ディスク1a~1dで構成されるディスクアレイにデータを記録する。
 光ディスクアレイシステム100は、SAS(Serial Attached SCSI)又はFC(Fiber Chanel)などのインタフェースケーブルを介して、ホストである上位装置101と接続される。上位装置101は、例えば、サーバ用コンピュータなどである。
 光ディスクアレイシステム100は、コントローラ110と、メモリ140と、複数の光ディスクドライブ150a~150dとを備える。コントローラ110とメモリ140と複数台の光ディスクドライブ150a~150dとは、SATA(Serial ATA)のようなI/Oバスで接続される。
 メモリ140は、上位装置(ホスト)101に送信される記録データ又は上位装置(ホスト)101から受信される再生データを一時的に保持するキャッシュメモリとして使用される。また、メモリ140は、その他の情報(光ディスク1a~1dの管理情報又はRAIDに関する管理情報など)を格納するのに使用される。メモリ140は、基本的にDRAM(Dynamic Random Access Memory)のような揮発性メモリで構成される。
 光ディスクドライブ150a~150dは、複数の光ディスク1a~1dの各々にデータを記録する。また、光ディスクドライブ150a~150dは、複数の光ディスク1a~1dの各々からデータを再生する。光ディスクドライブ150a~150dは、光ディスク1a~1dに対して、上位装置(ホスト)101から要求を受けたデータを記録又は再生する記録再生装置である。上述した通り、本発明の実施の形態では、4台の光ディスクドライブ150a~150d(4枚の光ディスク1a~1d)がディスクアレイを構成する。そのため、図1に示す通り4台の光ディスクドライブ150a~150dがコントローラ110に接続されている。
 また、それぞれの光ディスクドライブ150a~150dには、光ディスク1a~1dが1枚ずつ装着される。例えば、図1に示すように、光ディスクドライブ150aには光ディスク1aが装着され、光ディスクドライブ150bには光ディスク1bが装着され、光ディスクドライブ150cには光ディスク1cが装着され、光ディスクドライブ150dには光ディスク1dが装着される。そして、これら4枚の光ディスク1a~1dでディスクアレイが構成され、RAID6の方式でデータが記録又は再生される。
 複数の光ディスク1a~1dの各々は、複数のデータブロックを有し、データブロック単位でデータを記録するユーザ領域と、データが欠落している記録不正領域に関する情報を表す記録不正領域情報を含む管理情報を記録する管理情報領域とを有している。記録不正領域情報は、ディスクアレイを構成する複数の光ディスク1a~1dの中で、記録不正領域が存在する光ディスクと、光ディスクの中の記録不正領域が存在する位置とを含む。また、記録不正領域は、少なくとも記録エラーが発生したデータブロック又はデータが記録されなかったデータブロックのいずれかを含む。
 なお、本実施の形態では、光ディスクドライブ150a~150dは、それぞれ1枚の光ディスク1a~1dが装着されるが、本発明は特にこれに限定されず、同時に複数枚の光ディスクが装着可能なディスクチェンジャ形式の記録再生装置であっても良い。
 なお、ディスクアレイ(RAID)を構成する4枚の光ディスク1a~1dは、例えば1つのマガジン(図示せず)に格納されて管理されても良い。ここで、マガジンとは、複数の光ディスクをまとめて格納することが出来るカートリッジのことである。同一のマガジンに格納されている複数の光ディスクに対してRAIDとしてデータを記録又は再生することで、ユーザが取り扱いやすくなるとともに、例えば、RAIDを構成する複数の光ディスクを無くしてしまうリスクを低減出来るといったメリットがある。或いは、光ディスクアレイシステム100を長期間使用して、データが記録された光ディスクの数が非常に多くなった場合であっても、RAIDを構成する複数の光ディスクの組み合わせが分散して分からなくなってしまうといった事態を防ぐことが出来るというメリットもある。
 更には、例えばマガジンにRFID(Radio Frequency IDentification)又はバーコードなどの付帯情報メモリを貼り付けておくことも可能になる。こうすることで、例えばマガジンが光ディスクアレイシステム100の外部にオフラインで棚管理されるような場合に、マガジン内の複数の光ディスクで構成されるディスクアレイのRAIDのレベル、データが記録された日付、又はデータ(ファイル)のリストなどをRFIDリーダ又はバーコードリーダにより把握することが可能になるといったメリットもある。
 なお、光ディスクアレイシステム100は、複数のマガジンを装着可能であっても良い。更に、光ディスクアレイシステム100は、複数のマガジンを切り替え、各マガジン内に格納されている複数の光ディスクを、それぞれ複数の光ディスクドライブ150a~150dに装着又は取り出しするための搬送体、即ちチェンジャメカニズム(図示せず)を備えていても良い。
 以下、本発明の実施の形態では、光ディスクアレイシステム100においてRAIDを構成する複数(4枚)の光ディスク1a~1dは、同一のマガジンに格納されて管理されているとして説明する。
 コントローラ110は、ディスクアレイにデータをストライピング(分散)して記録するために光ディスクドライブ150a~150dを制御する。また、コントローラ110は、ディスクアレイからデータを再生するために複数の光ディスクドライブ150a~150dを制御する。コントローラ110は、ホスト制御部111、ドライブ制御部112及びRAID制御部120を備える。コントローラ110は、例えばCPU(中央演算処理装置)などで構成される。
 ホスト制御部111は、上位装置(ホスト)101からの処理要求(コマンド)に対する制御、SAS又はFCなどのインタフェースに応じたプロトコル制御、又はデータ転送制御などを行う。
 ドライブ制御部112は、光ディスクアレイシステム100に備えられる複数の光ディスクドライブ150a~150dを制御する。
 RAID制御部120は、光ディスクアレイシステム100に備えられる複数の光ディスクドライブ150a~150dをディスクアレイ(RAID)として扱うための制御を行う。RAID制御部120は、記録制御部121、再生制御部122、修復制御部123、パリティ演算部124、管理情報更新部125、管理情報取得部126、ドライブ状態管理部127、バッファ管理部128、記録状態判別部129及びアドレス変換部130を備える。
 記録制御部121は、光ディスク1a~1dの複数のデータブロックにデータを分散して記録するとともに、複数のデータブロックのうちのデータが欠落したデータブロックのデータ修復に用いられる少なくとも1つのパリティデータを少なくとも1つのパリティブロックに記録する。
 記録制御部121は、主にRAIDとしての記録処理を制御する。記録制御部121は、上位装置101から記録要求されたデータを、RAIDレベル(例えばストライプ内にパリティブロックを2つ備えたRAID6など)に従って適切な光ディスクドライブ150a~150d(光ディスク1a~1d)に振り分けて記録する。この際、アドレス変換部130は、光ディスク1a~1dにおけるデータ記録位置を算出する。また、バッファ管理部128は、メモリ140に対する記録データの管理を実施する。また、パリティ演算部124は、RAIDのパリティデータを演算し算出する。
 再生制御部122は、記録不正領域情報に基づいて、記録不正領域から読み出されるデータを無効化し、少なくとも1つのパリティデータを用いて記録不正領域のデータを再生する。
 再生制御部122は、主にRAIDとしての再生処理を制御する。再生制御部122は、上位装置から再生要求されたデータを、RAIDレベル(例えばストライプ内にパリティブロックを2つ備えたRAID6など)に従って適切な光ディスクドライブ150a~150d(光ディスク1a~1d)から再生する。この際、アドレス変換部130は、光ディスク1a~1dからのデータ再生位置を算出する。また、バッファ管理部128は、メモリ140に対する再生データの管理を実施する。また、修復制御部123は、パリティデータを用いたデータ修復を実施する。
 ここで、パリティブロックは、複数のデータブロックのうちの任意のデータブロックのデータが欠落しても、欠落したデータブロックのデータを修復可能にするためのブロックである。パリティブロックは、データ修復に用いられるパリティデータを含んでいる。
 修復制御部123は、RAIDによる冗長化構成を有する光ディスクがデグレード状態になった場合、つまりデータ修復が必要な場合に、デグレード状態の光ディスクに対するRAIDレベルに応じたパリティデータを用いたデータ修復を制御する。
 なお、本発明の実施の形態において、修復制御部123は、デグレード状態となった光ディスクそのものに対してデータ修復を行う処理部として説明している。しかし、修復制御部123の機能はこれに限定されるものではない。修復制御部123は、例えば光ディスクアレイシステム100が備えたメモリ140又は上位装置101が備えるメモリなどを利用して、別の(新品の)光ディスクに対してデータを修復するといった処理を行っても良い。また、データの記録又は再生を行う光ディスクアレイシステム100としては、必ずしも修復制御部123を備えていなくとも良い。
 パリティ演算部124は、RAIDのレベルに応じたパリティデータを演算して生成する。
 管理情報更新部125は、データの記録時に少なくとも1つの光ディスクドライブで記録に失敗した場合に、少なくとも1つの光ディスクのRAID管理情報領域(管理情報領域)に記録不正領域情報を記録する。管理情報更新部125は、所定のタイミングで全ての複数の光ディスク1a~1dのRAID管理情報領域(管理情報領域)に記録不正領域情報を記録することが好ましい。
 管理情報更新部125は、RAID管理情報(アレイ管理情報)を生成するとともに、RAID管理情報を更新する。より具体的には、未使用(Blank)状態の光ディスクがセットされた場合に、管理情報更新部125は、ユーザ等からの指示をトリガに、ユーザ等から選択されたRAIDレベルに従い、ディスクアレイ(RAID)に関する管理情報(RAID管理情報)を生成し、生成したRAID管理情報を、RAIDを構成する少なくとも1つの光ディスクに記録する。例えば、管理情報更新部125は、RAIDを構成する全ての光ディスクにRAID管理情報を記録する。RAID管理情報は、後述のRAID管理情報領域21(アレイ管理情報領域)にRAID管理情報を記録する。
 また、既にRAIDを構築済みの光ディスクに対して、RAID管理情報の内容が変更された場合に、管理情報更新部125は、適切なタイミングでRAID管理情報を更新記録する。ここで、使用される光ディスクは追記型の光ディスクである。追記型の光ディスクでは、情報がトラック上に連続的に記録され、物理的に情報を書き換えることは出来ない。このような場合、管理情報更新部125は、擬似オーバーライト(POW)と呼ばれる機能などを用いて、更新後のデータを交替記録させることで、論理的な書き換え記録を実現することも可能である。
 RAID管理情報領域21へのRAID管理情報の記録は、例えば光ディスクドライブから光ディスクが排出(Eject)される直前、又は記録エラーが発生した直後などに実施される。この時、光ディスクに記録されるRAID管理情報は、例えばメモリ140中に記憶されている。なお、RAID管理情報については、後述の「(2)光ディスクの領域構造」にて説明するため、ここでの詳細な説明は割愛する。
 管理情報取得部126は、光ディスクドライブに装着された光ディスクのRAID管理情報領域21から、RAID管理情報を取得する(読み出す)。すなわち、管理情報取得部126は、RAID管理情報領域から記録不正領域情報を取得する。
 更に、管理情報取得部126は、RAID管理情報が記録された全ての光ディスクからRAID管理情報を取得し、不整合があった場合には適切なRAID管理情報に修復する機能も有する。管理情報取得部126は、少なくとも1つの光ディスクドライブに装着された少なくとも1つの光ディスクのRAID管理情報領域21から、RAID管理情報を取得する。RAID管理情報領域21からのRAID管理情報の読み出しは、例えば光ディスクドライブに光ディスクが装着され、起動した直後などに実施され、光ディスクから読み出されたRAID管理情報は例えばメモリ140中に記憶される。
 ドライブ状態管理部127は、光ディスクアレイシステム100に備えられたディスクアレイ(RAID)を構成する複数の光ディスクドライブ150a~150dのそれぞれの状態、及び複数の光ディスクドライブ150a~150dのそれぞれに装着された光ディスク1a~1dのそれぞれの状態を管理する。
 ここで、光ディスクドライブの状態とは、例えば、記録及び再生が可能な“正常状態”、光ピックアップなどの光ディスクドライブの一部の部品の劣化又は故障などの影響で記録のみが出来ない“記録不可状態”、又は記録及び再生がともに出来ない状態であり、光ディスクドライブの交換が必要である“記録再生不可状態(=ドライブ故障状態)”などのことである。
 また、光ディスクの状態とは、例えば、正常に記録及び再生が行われている“正常状態”、何らかの理由により記録に失敗したためにデータが欠落しており、データ修復が必要である“デグレード状態”、スペア領域などが枯渇して記録が出来ない“記録不可状態”、又は管理情報などが読み出せないために記録及び再生自体を行うことが出来ない“ディスク故障状態”などのことである。これらの情報を用いて、RAID制御部120は、ディスクアレイ(RAID)として使用可能な光ディスクドライブ及び光ディスクを判断する。
 バッファ管理部128は、メモリ140のキャッシュメモリ上に一時的に格納される記録データ又は再生データを管理する。また、バッファ管理部128は、光ディスクへのデータ記録成功をトリガに、バッファ上に格納された記録データを破棄(無効化)するなどの制御も行う。
 記録状態判別部129は、光ディスクドライブの故障などの影響で記録に失敗し、データが欠落した記録不正領域の有無を判別するとともに、記録不正領域の位置を判別する。記録状態判別部129における動作の詳細については、後述の「(3)記録不正領域の判別方法」にて説明するため、ここでの詳細な説明は割愛する。ここで、記録不正領域とは、記録再生装置である光ディスクドライブ又は情報記憶媒体である光ディスクのいずれかの原因により、光ディスク上の記録エラーとなったブロック又は記録がなされなかったブロックのことであり、言い換えるとデータが欠落しているブロックのことである。
 アドレス変換部130は、上位装置(ホスト)101から記録要求又は再生要求された論理ディスクのアドレス情報を、対応する光ディスク上のアドレス情報に変換する。なお、同一種類の光ディスクでは、特定の位置又は領域に欠陥(ディフェクト)などが偏ってしまうリスクを考慮し、後述のRAIDデータ領域22の開始位置を光ディスクごとにずらして(オフセットさせて)記録するといった方法も有効である。アドレス変換部130は、データの記録開始位置を光ディスク1a~1d毎にずらした場合の各光ディスク1a~1dにおけるオフセットサイズを勘案したアドレス変換にも対応する。
 なお、メモリ140は揮発性メモリであるとしているが、揮発性メモリだけでなく、メモリ140はSSD(Solid State Drive)のような不揮発性メモリであっても良い。例えば、光ディスクアレイシステム100が複数のマガジンを装着可能な場合、マガジンに関連する調整情報(ディスクの状態、又は光ディスクドライブと光ディスクとの組み合わせにおける最適記録パワーのような調整値など)が、マガジンと対応付けられて不揮発性メモリ(メモリ140)に保存される。これにより、マガジンを交換して光ディスクを入れ替えるための交換時間(光ディスクの起動時間)などを短縮することが出来る。また、メモリ140は、光ディスクアレイシステム100にて動作させるOS(Operating System)などを保存する領域としても使用できる。
 なお、本実施の形態において、光ディスク1a~1dが複数の可搬型の情報記憶媒体の一例に相当し、光ディスクアレイシステム100が情報処理装置の一例に相当し、光ディスクドライブ150a~150dが複数のドライブ装置の一例に相当し、コントローラ110が制御部の一例に相当し、記録制御部121がデータ記録部の一例に相当し、管理情報更新部125が領域情報記録部の一例に相当し、再生制御部122が再生制御部の一例に相当し、管理情報取得部126が情報取得部の一例に相当する。
 (2)光ディスクの領域構造
 図2は、本発明の実施の形態における光ディスクの領域構成図である。円盤状の光ディスク1には、スパイラル状に多数のトラック2が形成されており、各トラック2には細かく分けられた多数のクラスタ(Cluster)3が形成されている。クラスタ3は、エラー訂正の単位であり、記録動作及び再生動作が行われる最小の単位であり、ECCブロック又は単にブロックと呼ばれることもある。例えば、BD(Blu-ray Disc)の場合、クラスタ3のサイズは32セクタである。1セクタは2KByteであるので、1クラスタは64KByteである。
 光ディスク1には、データの記録又は再生が行われる記録層を含む複数の層が積層されて形成される。光ディスク1の記録層は、リードイン領域4とデータ領域5とリードアウト領域6とを含む。ユーザデータの記録又は再生はデータ領域5に対して行われる。リードイン領域4及びリードアウト領域6は、光ディスクドライブにおける光ヘッド(図示せず)がデータ領域5の端部へアクセスする場合に、光ヘッドがオーバーランしてもトラック2に追随できるようにするための役割を果たす。リードイン領域4及びリードアウト領域6は、ユーザからは直接アクセスできない領域であり、DMA(Disc Management Area)又はTDMA(Temporary Disc Management Area)と呼ばれる、光ディスク1の管理情報が記録される領域などを備えている。
 なお、光ディスク1が複数の記録層を備える場合、リードイン領域4に相当する内周側の領域をインナーゾーンと呼び、リードアウト領域6に相当する外周側の領域をアウターゾーンと呼んだりもする。
 図3は、ディスクアレイとしてRAIDを構成する複数の光ディスクのうち、任意の光ディスクにおけるデータ領域5の詳細な構成を示す図である。
 データ領域5は、ユーザデータ領域10、内周スペア領域11及び外周スペア領域12を含む。
 ユーザデータ領域10は、ユーザデータが記録又は再生される領域である。
 内周スペア領域11及び外周スペア領域12は、ユーザデータ領域10の中の欠陥クラスタの代わりに用いられる交替クラスタ(又は交替先クラスタとも呼ぶ)を割り当てるための領域として予め用意された予備領域(スペア領域)である。内周スペア領域(以下、ISAとも呼ぶ)11は、光ディスク1の内周側に配置され、外周スペア領域(以下、OSAとも呼ぶ)12は、光ディスク1の外周側に配置される。ここで、ISA11及びOSA12は、欠陥クラスタの交替用領域としてだけでなく、TDMAなどの管理情報を記録するための領域が割り当てられることもある。また、ISA11及びOSA12のサイズは、ユーザによって任意のサイズに設定することが可能であり、データ領域5がISA11及びOSA12を備えない、すなわちISA11及びOSA12のサイズは、0に設定することも可能である。
 ユーザデータ領域10は、さらに、FS領域20とRAID管理情報領域21とRAIDデータ領域22とを含む。
 FS(ファイルシステム)領域20は、PC(パーソナルコンピュータ)に接続された標準的な記録再生装置(光ディスクドライブ)に当該光ディスク1を単独で装着した場合でも、記録されているデータを読み出しやすくするためにファイルシステム情報を記録する領域である。FS領域20がファイルシステム情報を有することで、例えば、RAID管理情報領域21又はRAIDデータ領域22は、それぞれ1つのファイルとして扱われる。ファイルシステム情報としては、例えばUDF(Universal Designe Format)が使用される。
 RAIDデータ領域22は、ユーザデータが記録又は再生される領域である。RAIDデータ領域22は、他の複数の光ディスクとともに所定のRAID(例えばストライプ内にパリティブロックを2つ備えたRAID6など)を構成してデータが記録される領域である。言い換えると、RAIDデータ領域22だけはRAIDとしてデータが記録されるが、FS領域20及びRAID管理情報領域21はRAID形式ではなく、それぞれの光ディスク1で単独でデータが記録される領域である。
 RAID管理情報領域(アレイ管理情報領域)21は、RAIDデータ領域22への記録で使用されているRAIDに関するRAID管理情報(アレイ管理情報)を記録するための領域である。RAID管理情報(アレイ管理情報)は、RAID構成情報30、記録不正領域管理情報31及びマガジン管理情報32を含む。
 図4は、RAID管理情報領域21に記録されるRAID管理情報の詳細な構成を示す図である。
 RAID構成情報30は、ヘッダ40、RAIDレベル41、RAID構成台数42、ストライプサイズ43、RAID番号44及びRAID情報45を含む。
 ヘッダ40は、RAID構成情報30の先頭に付与される情報である。ヘッダ40は、RAID構成情報30であることを示す識別子及びRAID構成情報30のサイズに関する情報などを含む。
 RAIDレベル(アレイ種別情報)41は、ディスクアレイへの記録方式、つまりRAIDの方式(レベル)に関する情報である。すなわち、RAIDレベル(アレイ種別)41は、ディスクアレイの記録方式を光ディスクアレイシステム100などが識別するための情報である。この記録方式とは、言い換えると、ストライプに含まれるパリティデータの個数、パリティデータの生成方法、及びパリティデータを用いたユーザデータの修復方法に関する情報のことである。具体的には、例えば本発明の実施の形態では、RAIDレベル41は、“RAID6”に相当する数値又はRAID6を識別可能な情報である。
 RAID構成台数(アレイ構成数情報)42は、1つのディスクアレイ(RAID)を構成する光ディスクドライブの台数(或いはRAIDを構成する光ディスクの枚数)に関する情報である。すなわち、RAID構成台数(アレイ構成数情報)42は、ディスクアレイを構成する光ディスクの数を表す情報である。本発明の実施の形態では、RAID構成台数42は“4”となる。すなわち、RAID構成台数(アレイ構成数情報)42は、例えば、ディスクアレイを構成する情報記憶媒体(光ディスク)の数を表す情報である。
 ストライプサイズ43は、RAIDとしての記録又は再生の単位であるストライプのサイズに関する情報である。例えば、ストライプを構成する各光ディスクのブロックサイズが1クラスタ(64KByte)であるとすると、4枚の光ディスクでストライプを構成するため、ストライプサイズ43は、64KByte×4=256KByteとなる。なお、ストライプサイズ43は、パリティデータを含まない純粋にユーザデータのみが記録されるデータブロックのサイズであっても良い。つまり、4枚の光ディスクでRAID6が構成される場合は、ストライプサイズ43は、2枚の光ディスクのパリティデータブロック分を除いた残り2枚分の光ディスクのデータブロックのサイズ(128KByte)であっても良い。
 RAID番号(アレイ番号情報)44は、当該光ディスクがRAID(ディスクアレイ)を構成する複数の光ディスクのうちの何番目の光ディスクであるかを示す値である。つまり、RAID番号44は、RAID(ディスクアレイ)における当該光ディスクの構成順番を示す情報である。具体的には、例えば図1に示すように、光ディスクドライブ150aに装着された光ディスク1aは、“RAID#0”、つまり、RAIDを構成する1番目の光ディスクであるため、光ディスク1aのRAID番号44は、“#”に続く添え字の“0”、又は、何番目の光ディスクであるかを純粋に示す数値の“1”となる。また、“RAID#1”である光ディスク1bのRAID番号44は、“1”(又は“2”)となる。
 なお、光ディスクは可搬型の媒体である。そのため、光ディスクが例えマガジンの中にRAIDのディスク順に装着されていたとしても、光ディスクアレイシステム100の修理、メンテナンス又はユーザの操作ミスなどによって順番が入れ替わってしまうことは珍しくない。つまり、光ディスクドライブ150aに4番目のRAIDを構成する光ディスク1dが装着されるような場合もあり得る。このような場合、光ディスクドライブ150aに装着された光ディスク1dが1番目のRAIDのディスク(RAID#0)であるとして扱ってしまうと、データの再生順番が狂ってしまい、データ再生時にデータ化けが発生するといった問題を引き起こしてしまう。この問題を解消するために、RAID構成情報30は、RAID番号44を備える。言い換えると、RAID構成情報30がRAID番号44を備えることで、RAID(ディスクアレイ)を構成する光ディスクドライブと光ディスクとの組み合わせが変わったとしても、同じRAIDセットを構成する光ディスクが装着される限りにおいては、正しくRAIDとして継続してデータを記録又は再生することが出来る。
 RAID情報45は、RAIDを構成する各光ディスクドライブ及び光ディスクに関する情報であり、対応するRAID番号の光ディスクドライブ及び光ディスクに関する情報を含む。RAID構成情報30は、RAIDを構成する複数の光ディスクドライブの台数(光ディスクの枚数)分のRAID情報45を含む。本発明の実施の形態では、4台の光ディスクドライブ150a~150dでRAID(ディスクアレイ)が構成されるため、RAID構成情報30は、4つ分のRAID情報(RAID#0情報45~RAID#3情報45)を含む。
 言い換えると、RAID情報45は、RAID番号(アレイ番号)とそのRAID番号を構成する光ディスクドライブ又は光ディスクを識別可能な情報(例えば、装置シリアル番号又は媒体シリアル番号)とが対応付けられた、RAID(ディスクアレイ)を構成する全ての光ディスクドライブ又は光ディスクに関するテーブル情報(アレイ構成情報テーブル)である。RAID情報45は、ディスクアレイを構成する光ディスクのアレイ番号と光ディスクを一意に識別するための媒体識別番号とが対応付けられた、ディスクアレイを構成する全ての情報記憶媒体に関するアレイ構成情報テーブルである。この情報を用いることで、例えば、光ディスクアレイシステム100は、異なるRAIDセットとして記録された光ディスクが混在しているような不正な状態を検知することが可能になる。
 管理情報取得部126は、RAID管理情報領域に記録されたRAID構成情報(アレイ管理情報)を取得する。また、管理情報取得部126は、少なくとも光ディスクが装着された光ディスクドライブが起動されたタイミングにおいて、RAID管理情報領域に記録されたRAID構成情報(アレイ管理情報)を取得する。再生制御部122は、取得したRAID構成情報(アレイ管理情報)に基づいて複数の光ディスクドライブ150a~150dを制御する。
 RAID情報45は、ドライブ固有ID70、ドライブ状態71、ディスク固有ID72及びディスク状態73を含む。
 ドライブ固有ID70は、対応するRAID番号に対応する光ディスクドライブを識別するための情報である。ドライブ固有ID70は、例えば各光ディスクドライブに付与されているユニークなID(例えばSerial番号など)であり、例えば光ディスクに最初に又は直前にデータを記録した光ディスクドライブのSerial番号などである。
 ドライブ状態71は、対応するRAID番号に対応する光ディスクにデータを記録又は再生した光ディスクドライブの最新の状態を示す情報である。ここで、光ディスクドライブの状態とは、例えば、記録又は再生が可能な“正常状態”、光ディスクドライブの一部の部品の劣化又は故障などの影響で記録のみが出来ない“記録不可状態”、又は、記録及び再生がともに出来ない状態であり、光ディスクドライブの交換が必要な“記録再生不可状態(=ドライブ故障状態)”などのことある。なお。ドライブ状態71に関する情報は、光ディスクアレイシステム100におけるドライブ状態管理部127において管理される光ディスクドライブに関する情報と同等である。
 ディスク固有ID72は、対応するRAID番号に対応する光ディスクを識別するための情報である。ディスク固有ID72は、例えば各光ディスクに付与されているユニークなID(例えばBD-Rが備えるBCA(Burst Cutting Area)に含まれるSerial番号、又はRFIDタグ付き光ディスクのRFID内に備えられるSerial番号など)である。ここで、BCAとは、より詳細には、光ディスクの製造段階において、特殊な装置を用いてディスクごとに固有の情報がバーコード状に形成される領域である。BCAは、例えばレーザで反射膜を除去することにより形成される。このように、本実施の形態における各々の光ディスクは、光ディスクを一意に識別可能な媒体シリアル番号があらかじめ記録されている識別情報領域(例えば、BCA)を有していても良い。
 ディスク状態73は、対応するRAID番号に対応する光ディスクの最新の状態を示す情報である。ここで、光ディスクの状態とは、例えば、正常に記録及び再生が行われている“正常状態”、何らかの理由により記録に失敗したためにデータが欠落しており、データ修復が必要である“デグレード状態”、スペア領域などが枯渇して記録が出来ない“記録不可状態”、又は管理情報などが読み出せないために記録及び再生自体を行うことが出来ない“ディスク故障(使用不能)状態”などのことである。なお、ディスク状態73は、光ディスクアレイシステム100のドライブ状態管理部127において管理される光ディスクの状態に関する情報と同じである。
 記録不正領域管理情報31は、ヘッダ50、記録不正領域総数51及び記録不正領域情報52を含む。
 ヘッダ50は、前述のヘッダ40と同様に、記録不正領域管理情報31の先頭に付与される情報である。ヘッダ50は、記録不正領域管理情報31であることを示す識別子及び記録不正領域管理情報31のサイズに関する情報などを含む。
 記録不正領域総数51は、RAIDを構成する複数の光ディスクの中で、光ディスクドライブが故障したなどの理由によりデータが正常に記録されずに、データが欠落してしまっている領域(=以降、記録不正領域と呼ぶ)の総数を示す情報である。具体的には、記録不正領域総数51は、後述の記録不正領域情報52の個数を示す。
 記録不正領域情報52は、記録不正領域に関する情報である。より詳細には、記録不正領域情報52は、RAID(ディスクアレイ)を構成する複数の光ディスクの中で、データが欠落している少なくとも1つのブロックからなる記録不正領域が存在している光ディスクと、その光ディスクの中の記録不正領域が存在する位置とを特定可能な情報である。なお、記録不正領域の最小単位は、記録エラーが発生した少なくとも1つのブロック又はデータが記録されなかった少なくとも1つのブロックである。記録不正領域情報52は、記録不正RAID番号75、記録不正領域先頭位置76及び記録不正領域サイズ77などを含む。
 記録不正RAID番号75は、記録不正領域が存在しているRAID内の番号(RAID番号)を表し、前述のRAID番号44に対応した情報である。なお、記録不正RAID番号75は、記録不正領域が存在している光ディスクが識別できる情報であれば良く、例えば光ディスクに関するディスク固有ID72に対応した情報などであっても良い。
 記録不正領域先頭位置76は、記録不正領域が存在する光ディスク内における先頭位置(先頭アドレス)に関する情報である。記録不正領域先頭位置76は、例えば該当する光ディスクのユーザデータ領域10(もしくはRAIDデータ領域22)に対して仮想的に割り当てられる論理アドレス(LBA)であっても良い。また、記録不正領域先頭位置76は、該当する光ディスク上に物理的に付与されているADIP(Address In Pre-groove)のような物理アドレス(PBA)であっても良い。
 記録不正領域サイズ77は、記録不正領域先頭位置76を先頭とした記録不正領域のサイズに関する情報である。記録不正領域サイズ77の単位は、例えば、ストライプを構成する各光ディスクにおけるブロックサイズ(つまり64KByteのクラスタ)単位である。なお、記録不正領域サイズ77の単位は任意の単位で良く、例えば光ディスクにおけるアクセスの最小単位である2KByteのセクタ単位などであっても良い。
 なお、以下では、説明の簡素化のため、記録不正領域(記録に失敗してデータが欠落した領域)が存在し、本来の冗長度を満足するためにはパリティを用いたデータ修復が必要な光ディスクの状態のことを“デグレード状態”と呼ぶこととする。
 マガジン管理情報32は、RAID(ディスクアレイ)を構成する複数の光ディスクがまとめて格納されるマガジン(カートリッジ)に関する情報のことである。マガジン管理情報32は、上述の図1の説明において示した通り、RAIDを構成する複数の光ディスクが1つのマガジンに格納されて管理されるような場合に用いられる情報である。マガジン管理情報32は、ヘッダ60、マガジンID61、マガジン種別62及び格納ディスク総数63を含む。
 ヘッダ60は、前述のヘッダ40及びヘッダ50と同様に、マガジン管理情報32の先頭に付与される情報である。ヘッダ60は、マガジン管理情報32であることを示す識別子及びマガジン管理情報32のサイズに関する情報などを含む。
 マガジンID61は、各マガジンに付与されているユニークなID(例えばマガジンに貼り付けられるバーコード又はRFIDに記録されたSerial番号のような情報)である。このように、マガジンID61が光ディスクに記録されているので、マガジンと光ディスクとの対応関係が分からなくなった場合に、マガジンID61に基づいて光ディスクが格納されるマガジンを特定することができる。
 マガジン種別62は、マガジンの種類を示す情報である。より具体的には、マガジン種別62は、マガジンに格納されている光ディスクの種類、光ディスクの総容量、又はマガジン内の光ディスクが交換可能であるか否かなどを示す情報である。なお、光ディスクの種類を示す情報は、光ディスクが書き換え型のBD-REであるか、追記型のBD-Rであるかを示す情報である。また、光ディスクの総容量は、光ディスクが記録層を1層のみ備えた総容量25GByteの光ディスクであるか、記録層を2層備えた総容量50GByteの光ディスクであるかを示す情報である。
 格納ディスク総数63は、マガジンに格納されている複数の光ディスクの総数を表す情報である。
 なお、RAID管理情報領域21に記録されるRAID管理情報は、RAID構成情報30に含まれるRAID番号44を除いて、RAID(ディスクアレイ)を構成する全ての光ディスクに同じ情報が記録されても良い。RAID管理情報領域21は、パリティデータを含むRAID方式により、情報を記録することが出来ない。そこで、このように、RAID番号44以外の情報がそれぞれ同じであるRAID管理情報が複数の光ディスクに多重記録されることで、RAID管理情報の冗長性を高め、信頼性を向上させることができる。
 ここで、RAID管理情報は、RAID(ディスクアレイ)を構成する全ての光ディスクに記録されると説明しているが、RAID管理情報は、所定数以上の光ディスクに記録されれば良い。より具体的には、例えばディスクアレイのRAIDレベルがRAID6である場合、2つ以下の光ディスクドライブ又は光ディスクが不良でありデータの読みだしが出来ない場合であっても、ディスクアレイとしてはデータを再生することが可能である。よって、少なくとも3枚の光ディスクに同じデータが多重記録されていれば、必ずRAID管理情報が取得可能になる。しかし、再生できたRAID管理情報が必ずしも最新のRAID管理情報であるとは限らないリスクも考慮すると、2つ以上の同じデータが読み出せる方が好ましい。以上から、ディスクアレイを構成する複数の光ディスクのうちの少なくとも4枚の光ディスクにRAID管理情報を多重記録できれば良い。本発明の実施の形態では、4台の光ディスクドライブ150a~150d(4枚の光ディスク1a~1d)でディスクアレイが構成される例を示している。そのため、実質的には、ディスクアレイを構成する全ての光ディスク1a~1dに同じRAID管理情報が多重記録されることになる。
 一方、RAID番号44は、情報が記録された光ディスクがRAIDの何番目の光ディスクなのかを示す非常に重要な情報であるが、多重記録されないため冗長性に欠けるように見える。
 しかし、例えばRAIDを構成する4枚の光ディスクのうち、1枚の光ディスクのRAID管理情報の取得(再生)に失敗したような場合を考えてみる。このような場合であれば、他の3枚の光ディスクのRAID管理情報に記載されたRAID番号44から、RAID管理情報の取得に失敗した光ディスクのRAID番号44を補間することが出来る。そのため、1枚の光ディスクのRAID管理情報の取得(再生)に失敗した場合であっても、冗長性としては問題無いといえる。
 但し、RAIDを構成する4枚の光ディスクのうちの2枚以上の光ディスクについて、RAID管理情報(特に、RAID番号44)の取得に失敗してしまうと、全ての光ディスクのRAID番号44を判断することは出来なくなってしまう。
 この問題は、RAID構成情報30におけるRAID情報45により解決することができる。RAID情報45は、ディスク固有ID72を含む。つまり、光ディスクの固有IDを取得することが出来れば、取得した固有IDを持つ光ディスクがRAIDの何番目の光ディスクであるのかを導き出すことが出来る。光ディスクの固有IDが記録されるBCA又はRFIDは、通常の記録再生領域とは異なる記録方式でデータが記録されているため、非常に再生特性が良い。つまり、仮に、光ディスクのRAID管理情報(特に、RAID番号44)が取得できなくても、BCAから光ディスクの固有IDを取得できる可能性は高い。このとき、RAID(ディスクアレイ)を構成する全ての光ディスクには、同じRAID情報45が多重記録されている。RAID情報45に冗長性が確保されていれば、仮に2枚以上の光ディスクのRAID管理情報(特に、RAID番号44)が取得できなかったような場合であっても、RAID管理情報領域21に記録されるRAID管理情報は、各光ディスクのRAID番号44を正しく把握することが出来るだけの冗長性を備えることができる。
 以上述べたように、光ディスクのRAID管理情報領域21には、RAID構成情報30に含まれる情報としてRAID番号44が記録される。これにより、光ディスクアレイシステム100の修理、メンテナンス又はユーザの操作ミスなどによりRAID(ディスクアレイ)を構成する光ディスクドライブと光ディスクとの組み合わせが変わったとしても、RAIDとして継続的に正しくデータを記録又は再生することが出来る。
 また、光ディスクのRAID管理情報領域21は、RAID構成情報30に含まれる情報として、RAIDにおける各RAID番号に対応する光ディスクを把握可能なRAID情報45を、RAIDを構成する光ディスクドライブの台数(光ディスクの枚数)分だけ備えている。これにより、仮に、RAIDを構成するある光ディスクからRAID管理情報(特に、RAID番号44)が取得できなかったとしても、当該光ディスクがRAIDの何番目の光ディスクであるのかを正確に把握することが出来る。
 また、光ディスク1のRAID管理情報領域21には、マガジン管理情報32に含まれる情報としてマガジンID61が記録される。これにより、仮に、光ディスクアレイシステム100に備えられるチェンジャ(図示せず)の異常などにより光ディスクがマガジンに正しく格納できなかったような場合でも、光ディスクのRAID管理情報領域21からマガジンID61を読み出すことで、対応するマガジンを識別することが可能になる。これにより、異なるRAIDセット(マガジン)を構成する光ディスクが混在してしまったような事態が起きても、その不正状態を検出することも出来る。
 また、光ディスクのRAID管理情報領域21には、RAID情報45に含まれる情報としてドライブ固有ID70が記録される。例えば、ドライブ固有ID70が、直前に記録又は再生に使用した光ディスクドライブを識別可能な情報である場合を考えてみる。前述したように、光ディスクアレイシステム100は不揮発メモリを備え、不揮発メモリ中に最適記録パワーなどのマガジンに関連する調整情報などが確保される。そして、調整情報が以降の記録又は再生に適用されることで起動時間の短縮が図られる。
 しかし、最適記録パワーなどの調整情報は、光ディスクドライブと光ディスクとの組み合わせによって変わりうる情報である。言い換えると、光ディスクドライブと光ディスクとの組み合わせが変わった場合には、調整情報は使用出来ない。このような状況に対して、光ディスク中にドライブ固有ID70が記録されることで、現在光ディスクが装着されている光ディスクドライブが、不揮発メモリに記憶されている調整情報を算出した光ディスクドライブと同一であるか否かを判断することができ、不揮発メモリに記憶されている調整情報を使用することが可能であるか否かを判断することができる。
 なお、本発明の実施の形態では、RAID管理情報は、RAID構成情報30、記録不正領域管理情報31及びマガジン管理情報32という3種類の情報から構成されるとして説明しているが、RAID管理情報は、必ずしも3種類の情報から構成されなくても良い。
 例えば、RAID構成情報30、記録不正領域管理情報31及びマガジン管理情報32の全てをまとめて1つのRAID管理情報として構成しても同様の効果を得ることが出来ることは言うまでも無い。なお、マガジン管理情報32は、RAID(ディスクアレイ)を構成する複数の光ディスクが1つのマガジンに格納される場合に必要な情報であり、RAID(ディスクアレイ)を構成する複数の光ディスクがマガジンで管理されていない場合には必ずしも必要の無い情報である。
 なお、図4には示さなかったが、例えばRAID構成情報30のヘッダ40は、更新記録(書き換え)された回数を示す更新回数情報、及び記録された日時である日時情報などを含んでも良い。更新回数情報及び日時情報は、例えば、RAID管理情報の更新途中に異常が発生した場合など、最新のRAID構成情報30を探したい場合などに使用することが出来る。より具体的には、RAID構成情報30が例えば更新回数情報を含むことで、4つの光ディスク1a~1dのそれぞれのRAID管理情報領域21に記録されたRAID構成情報30のうち、最も更新回数が大きいRAID構成情報30を、最新のRAID構成情報30として使用することが可能になる。なお、これらの情報は、もちろん記録不正領域管理情報31又はマガジン管理情報32などが、更新回数情報及び日時情報を含んでも同様の効果を得ることが出来る。
 なお、記録不正領域管理情報31に含まれる記録不正領域情報52は、記録不正領域の先頭位置である記録不正領域先頭位置76と、記録不正領域の連続したサイズである記録不正領域サイズ77とを含むと説明したが、記録に失敗してデータが欠落している領域を把握することが出来る情報であれば、必ずしも上記の情報に限らない。より具体的には、例えば、1つのブロック(クラスタ)に対して1ビットを割り当てるブロック単位のビットマップ形式で記録不正領域(ブロック)を管理するという方法などでも上記と同様の効果を得ることは言うまでも無い。
 なお、本発明の実施の形態では、RAID管理情報は、RAID(ディスクアレイ)を構成する光ディスク上の所定の領域に記録される例を示しているが、例えば光ディスクアレイシステム100に備えられる不揮発メモリ(メモリ140)、又はマガジンが備えるRFIDなどに記憶されても同様の効果を実現できることは言うまでもない。但し、例えば光ディスクアレイシステム100に備えられる不揮発メモリがRAID管理情報を記憶する場合、光ディスクを別の光ディスクアレイシステムに入れ替えた場合に対応できない。そのため、RAID管理情報は、光ディスク、又はRAIDを構成する光ディスクが格納されるマガジンのRFIDなどに記録する方が好ましい。
 なお、本発明の実施の形態で説明した記録不正領域管理情報31と特許文献2に記載されている欠陥リストとでは大きな違いがある。
 欠陥リストは、それぞれの情報記憶媒体の中の欠陥位置に関する情報を、それぞれの情報記憶媒体に対してのみ記録される情報である。また、欠陥リストは、情報記憶媒体上の欠陥クラスタを管理するための情報であるため、情報記憶媒体にデータを記録する記録再生装置(ドライブ)が故障して記録に失敗した場合に、記録失敗に関する情報は記録されない。
 一方、記録不正領域管理情報31は、複数の情報記憶媒体を束ねて構築されるRAID(ディスクアレイ)全体の中での、データが欠落したブロック(クラスタ)に関する情報であり、RAID(ディスクアレイ)を構成する複数の情報記憶媒体に対して同じ情報が記録される。また、例え情報記憶媒体にデータを記録する任意の記録再生装置(ドライブ)が故障して記録に失敗した場合でも、ディスクアレイ(RAID)を構成する複数の情報記憶媒体に対して記録不正領域管理情報31が記録される。そのため、記録再生装置(ドライブ)の故障が原因で記録に失敗しデータが欠落したブロック(クラスタ)に関する情報を含む記録不正領域管理情報31が、正常な記録再生装置(ドライブ)に装着された情報記憶媒体の中のRAID管理情報領域21に記録される。
 言い換えれば、欠陥リストという情報を用いる方法では、光ディスクのような可搬型の情報記憶媒体を用いた光ディスクアレイシステムにおいて、ディスクアレイを構成する光ディスクの中にデータ欠落領域を含んだ状態のディスクアレイに対して、高いデータ信頼性、高い可用性及び高い転送レートを確保することができ、継続してデータを記録又は再生することができるという本発明の実施の形態で説明したような効果を得ることは出来ない。
 (3)記録不正領域の判別方法
 ここでは、光ディスクアレイシステム100のコントローラ110が備える記録状態判別部129の動作について、一例を述べる。
 図5は、記録不正領域を含んだRAID(ディスクアレイ)における、複数の光ディスク1a~1dの記録状態を示す説明図である。より詳細には、図1に示す4台の光ディスクドライブ150a~150dと4枚の光ディスク1a~1dとによりRAID6のディスクアレイが構成される。図5では、データの記録中に、光ディスクドライブ150bが故障などによりデータを記録することが出来ない状態(記録不可状態)になり、光ディスクドライブ150bに装着されたRAID#1を構成する光ディスク1bに対して記録が継続出来なくなった例を示している。なお、図5における記録不正領域とは、RAID#1である光ディスク1bのlba3からlba5までのブロックとなる。
 なお、図5では、説明簡略化のため、ストライプを構成するブロック単位に論理ブロックアドレスが割り振られている。ここで、論理ブロックアドレスとは、光ディスクに対してホスト(ユーザ)がアクセス可能な空間に対して仮想的に割り振られた位置情報のことである。また、説明簡略化のため、4枚の光ディスク1a~1dを束ねて1枚の光ディスク(1ボリューム)に見せる論理ディスクにおける論理ブロックアドレスは“LBA”とし、物理的な1枚の光ディスク毎における論理ブロックアドレスは“lba”とし、2つの論理ブロックアドレスを区別して記載する。本明細書の実施の形態における以降の説明においても、図5と同様に論理ブロックアドレスの記載を分けて説明する。
 図5では、論理ディスクのLBA6にデータを記録している際に、光ディスクドライブ150bが記録に失敗し記録不可状態になったが、1つのパリティブロックを有するRAID5に相当するRAIDレベルでの冗長度を保った記録が可能であるため、ディスクアレイとしての記録は継続され、LBA11までデータが記録された状態を示す。図5において、ハッチングで示したブロックが記録済みブロックであり、ハッチングしていないブロックが未使用(未記録)ブロックである。
 光ディスク1bにおいては、lba3のブロックへの記録前又はlba3のブロックへの記録中に光ディスクドライブ150b又は光ディスク1bが原因で記録に失敗したとする。この結果、4枚の光ディスク1a~1dで構成されるRAID6のディスクアレイは、1つのパリティに対応する冗長性が失われてパリティブロックを1つのみ有するRAID5相当のディスクアレイになる。この状態でも、残りの3台の光ディスクドライブ150a,150c,150dは正常であり、RAID5相当の冗長度は確保されているため、まだ信頼性を保ってデータを記録することができる。
 そのため、正常に記録可能な残りの3台の光ディスクドライブ150a,150c,150dは、継続してデータを記録することができる。その結果、論理ディスクとしてはLBA11までデータが記録される。なお、記録不可となった光ディスクドライブ150bに装着された光ディスク1bにおいて、lba0からlba2までは正常に記録が出来た領域となり、lba3からlba5までは記録不正領域となる。また、記録不正領域のうち、lba3は、記録中又は記録後のVerify(正常に記録できたか否かの確認)でエラーとなった可能性もある。そのため、lba3は、記録済み状態、一部記録済み状態又は未記録状態のいずれかであるが、lba4及びlba5は未記録状態である。
 なお、1つのパリティが失われた状態で記録を継続するか否かは、例えばユーザの指示により選択可能であっても良い。
 ここで、記録に失敗しデータが欠落したデグレード状態の光ディスク1bは、出来るだけ早いタイミングでデータを修復することが好ましい。しかし、光ディスクのような可搬型の情報記憶媒体にデータをアーカイブする場合、データが記録された光ディスクは、光ディスクドライブから取り外されてオフラインで棚管理される場合も多い。また、システムの使用状況によっては即座にデータを修復できない場合も多い。言い換えると、データが修復される前でも、より高い信頼性で記録又は再生が行えることが求められる。そこで、後述の「(4)記録不正領域を含むRAIDからのデータ再生方法」に示すような方法を用いてデータを再生し、記録不正領域を正確に判別することが重要となる。
 以下、記録状態判別部129が記録不正領域を判別する方法として、(i)記録不正領域管理情報31を利用する方法と、(ii)トラック情報80を利用する方法との2つの具体例について説明する。
 (i)記録不正領域管理情報31を利用する方法
 図6及び図7は、光ディスクのRAID管理情報領域21に記録される、RAID管理情報の具体例を示す図である。
 図6は、光ディスクのRAID管理情報領域21に記録される記録不正領域管理情報31の具体例を示す図である。ここで、RAID(ディスクアレイ)の状態は、図5に示す状態であるとする。また、光ディスク1a~1dのRAID管理情報領域21に記録されたRAID管理情報は、光ディスク1a~1dの起動時に管理情報取得部126によってメモリ140に読み出されている。以降、RAID管理情報の内容が変更されるたびにメモリ140内に記憶されたRAID管理情報が最新の状態として更新される。そして、RAID管理情報は、任意のタイミングで管理情報更新部125によって再び光ディスク1a~1dのRAID管理情報領域21に更新記録される。
 記録不正領域管理情報31は、記録に失敗するなどして正しくデータが記録されていない、データが欠落した記録不正領域を管理するための情報である。記録不正領域管理情報31から、記録不正領域がRAID(ディスクアレイ)上に何箇所存在するのか、記録不正領域はRAIDを構成する何番目の光ディスクであるのか、及び記録不正領域は光ディスクのどの位置であるのかを一目瞭然で把握することが出来る。
 例えば、図6に示す記録不正領域管理情報31では、RAID(ディスクアレイ)上に存在する記録不正領域は1箇所であり、記録不正領域は、RAID#1を構成する光ディスク(つまり、光ディスク1b)に存在する。また、記録不正領域の先頭の論理ブロックアドレスはlba3であり、記録不正領域のサイズは、連続した3ブロック(つまり、lba3からlba5の間の領域)であることを示している。
 なお、記録に失敗しデータが欠落したデグレード状態の光ディスクは、出来るだけ早いタイミングでデータを修復することが好ましい。ここで、例えば、光ディスクドライブ150bが故障したなどの理由でデータが記録出来なくなってデータの記録に失敗した光ディスク1bの場合、光ディスクドライブ150bを交換すれば、光ディスク1bは継続して記録又は再生に利用可能である。この際、修復制御部123は、ストライプ単位でパリティデータなどから欠落したデータを修復して、修復したデータを対応する光ディスク1bの記録不正領域に書き戻す。或いは、修復制御部123は、記録不正領域の部分は欠陥領域として扱い、修復したデータをスペア領域に交替記録する。これらの方法により、記録不正領域のデータのみを修復するだけで正常な状態の光ディスク1bに修復させることが出来る。
 これは、ドライブが故障してデグレード状態になった場合に、必ず交換した新たなHDD(ハードディスクドライブ)に対して全てのデータを修復しなければならなかった従来のHDDシステムと比べて、可搬型の情報記憶媒体でRAIDを構成する場合の1つの大きな特徴である。もちろん、ドライブの故障ではなく、ディスクアレイを構成する光ディスク自体に問題が生じた場合にデータを修復するためには、従来のHDDと同様に、別のディスクセットに対してデータをコピーする必要がある。
 なお、(i)で説明した方法は、本発明の実施の形態で説明している追記型の光ディスクだけでなく、書き換え型の光ディスクに対してもそのまま適用可能な方法である。但し、追記記録が保証される追記型光ディスクと比べて、書き換え型光ディスクはランダムに記録がなされる可能性がある。そのため、記録不正領域は、ブロック(クラスタ)単位のビットマップ形式で管理されることが好ましい。
 なお、記録不正領域管理情報31以外の情報を用いても、記録不正領域を含んだ光ディスク1bを特定することが出来る。図7は、RAID構成情報30に含まれるRAID情報45を示す図である。図7に示すように、記録不正領域を含んだデグレード状態の光ディスク1bのディスク状態73は、異常(Fatal)状態であるとして記録されている。そのため、ディスク状態73の情報を確認することで、記録不正領域を含んだデグレード状態にある光ディスク1bを特定することが可能である。少なくともディスク状態73の情報を用いることで、従来のHDDと同様の制御方法、つまり、記録エラーなどの障害が発生した光ディスクドライブ150b又は光ディスク1bを再生に使用せずに、必ずパリティデータからデータを修復して再生する制御方法を実現することが出来ることは言うまでも無い。
 (ii)トラック情報80を利用する方法
 図8及び図9は、光ディスクに関するトラック情報について説明するための図である。ここでも、RAID(ディスクアレイ)の状態は、図5に示す状態であるとする。
 光ディスクドライブ150a~150dは、装着された光ディスク1a~1dのトラック(SRR:Sequential Recording Rangeとも呼ぶ)に関するトラック情報80をコントローラ110に通知する機能を備えている。光ディスクには、DMA(Disc Management Area)又はTDMA(Temporary DMA)と呼ばれる管理情報領域にSRRI(SRR Information)と呼ばれる情報が記録されている。SRRIは、光ディスク上の全てのトラック(SRR)に関して、該当するSRRが追記可能(Open)であるか否かを示す情報と、光ディスク上の実アドレスである物理ブロックアドレスでの先頭位置と記録終端位置とに関する情報などを含む。SRRIに基づいて、光ディスクドライブ150a~150dは、光ディスクドライブ150a~150dを制御するコントローラ110などが把握可能な論理ブロックアドレスの形式で、トラック情報80を通知する。より詳細には、光ディスクドライブ150a~150dは、MMC(Multi Media Command)規格で規定されたRead Track Informationコマンドに対して、トラック情報80を返送する。
 図8は、トラック情報80のデータ構造を示す説明図である。
 図8に示すように、トラック情報80は、トラック番号81、トラック状態82、先頭アドレス83、LRA(Last Recorded Address)84、NWA(Next Writable Address)85及び残サイズ86を含む。
 トラック番号81は、光ディスク上に存在するトラック(SRR)に割り振られる通し番号を示す情報である。
 トラック状態82は、当該トラックが追記可能な状態(Open状態)であるか、追記不能な状態(Close状態)であるかを示す情報である。
 先頭アドレス83は、当該トラックが配置される先頭位置に関する情報であり、論理ブロックアドレス(lba)で通知される。
 LRA84は、当該トラックにおいて有効なユーザデータが記録されている最終位置を示す情報であり、論理ブロックアドレス(lba)で通知される。
 NWA85は、当該トラックにおいて次にユーザデータを記録(追記)可能な位置を示す情報であり、論理ブロックアドレス(lba)で通知される。
 残サイズ86は、当該トラックにおいて記録可能な(未使用状態の)領域のサイズに関する情報である。
 図9は、図5の状態にある4枚の光ディスク1a~1dのそれぞれにおけるトラック情報80の具体例を示す図である。
 図9に示すように、記録エラーが発生した光ディスク1bのトラック情報80は、正常に記録された他の光ディスク1a,1c,1dのトラック情報80と比べて、LRA84及びNWA85などが異なる。より具体的には、全ての光ディスク1a~1dにおいてトラック開始位置(先頭アドレス83)が同じ場合である場合、LRA84の値又はNWA85の値が最も大きい光ディスクは、正常に記録できた光ディスクであると判断することが出来る。また、LRA84の値又はNWA85の値が、他の光ディスクのLRA84の値又はNWA85の値よりも小さい光ディスクは、記録不正領域を含んでいると判断することが出来る。これは、光ディスクが複数のトラックを備える場合であっても同様である。
 なお、LRA84が指す値は、例え正常にデータが記録された場合でも、記録されるデータの内容(ユーザデータ、又はパディングデータのような非ユーザデータ)によって同じRAIDを構成する光ディスク1a~1dの間で異なる可能性がある。そのため、NWA85を用いて記録不正領域を判断することによって、より確実かつ容易に記録不正領域を判断することができる。つまり、図9の場合、NWA85の最大値が“6”であり、RAID#1を構成する光ディスク1bのNWA85の値は、他の光ディスクと異なる“3”であるため、光ディスク1bにおけるlba3からlba5(=NWA85が示すlba6の手前のブロック)までの領域が記録不正領域であると判断することが出来る。
 なお、RAIDデータ領域22の開始位置を光ディスクごとにずらして(オフセットさせて)データを記録する方法が採用される場合は、同一ストライプを構成するブロックが存在するトラックの配置も光ディスクごとに異なり、また対応するトラックの先頭アドレス83なども異なる。しかし、このような場合であっても、オフセット情報とトラック情報80とを用いて対応するトラックを確定させ、そのLRAの値又はNWAの値から演算することで、上記に示した方法と同じ方法で記録不正領域を算出することが可能である。
 なお、(ii)で説明した方法は、本発明の実施の形態で説明している追記型の光ディスクに対してのみ適用可能であり、一般的な書き換え型の光ディスクに対しては適用することは出来ない。何故ならば、一般的な書き換え型の光ディスクには、トラック(SRR)という概念が無いためである。言い換えれば、追記型の光ディスクと同様にトラックの概念を持った書き換え型の光ディスクに対してであれば、(ii)で説明した方法を適用することは可能である。
 (4)記録不正領域を含むディスクアレイからのデータ再生方法
 図10は、図5の状態のディスクアレイにおける、論理ディスクの記録状態を示す説明図である。なお、上記(3)に示す記録不正領域判別方法により、RAID制御部120における記録状態判別部129は、既にどの領域が記録不正領域であるのかが把握できている状態であるとする。
 従来、ディスクアレイ装置で多く利用されたHDD又はSSDの場合、ドライブとディスクとが一体である。そのため、ドライブ及びディスクのいずれか一方が原因でエラーが発生した場合には、エラーが発生したHDDは利用不能状態になる。その結果、仮に4台のHDDでRAID6としてディスクアレイが構成される状態で、1つのHDDがエラーとなった場合、ディスクアレイは全ての領域において1つのパリティ分の冗長度を失った状態となる。つまり、エラーとなったHDDに記録されたデータは全て失われることになる。その結果、制御方法も単純であり、基本的に全てのストライプ、詳細には、エラーが発生したHDDに対してユーザデータが記録されたストライプの再生において、パリティに基づいてデータを修復し再生することになる。
 一方、光ディスクのような可搬型情報記憶媒体を用いたディスクアレイの場合には、図10に示すように、ドライブとディスクとは分離可能である。そのため、例え光ディスクドライブ150bが故障して記録出来ない状態になったとしても、光ディスクドライブ150bだけを交換する又はホットスペアドライブを利用することで光ディスク1bは継続して利用可能である。また、仮に、光ディスクの傷、汚れ又はディフェクトなどの局所的な欠陥が原因で記録エラーとなったとしても、記録エラーになった領域以外の領域は基本的に利用可能である。そのため、少なくとも正常に記録できた領域のデータは失われることは無く、基本的に再生に利用することが出来る。
 図10に示すように、LBA0からLBA5までの領域は、RAID6相当の冗長性を保った状態で正常に記録できた領域である。また、LBA6からLBA11までの領域は、1つのパリティブロック分の冗長度を失ったRAID5相当の冗長性で記録された領域である。LBA12以降の領域は、未使用(未記録)領域であり、次回の記録実施時には、追記位置(NWA)であるLBA12から、同じく1つのパリティブロック分の冗長度を失った状態で記録が再開される。
 ここで、RAID6相当の冗長性を保って正常に記録されたLBA0からLBA5までの領域に対しては、通常通り再生が行われる。より具体的には、各ストライプ単位で見た場合に、少なくともユーザデータ(非パリティデータ)が記録されたデータブロックを有する光ディスクからユーザデータが再生されることで、正しくユーザデータを再生することが可能である。また、仮に、データブロックが正常に読み出せなかった場合には、パリティブロックを用いて、正常に読み出せなかったデータブロックのデータを修復することが可能である。つまり、ディスクアレイの中に記録不正領域が含まれているとしても、正常に記録できているLBA0からLBA5までの領域については、RAID6相当の冗長性により、非常に高い信頼性を保った状態でデータを再生することが出来る。この制御方法は、ドライブとディスクとが一体であるHDD又はSSDを用いたディスクアレイでは出来なかった制御方法である。
 一方で、1つのパリティブロック分の冗長性を失った状態で記録された領域、つまり記録不正領域を含むLBA6からLBA11までの領域においては、従来のHDDの場合と同様、基本的にパリティを用いたデータの修復及び再生が必要である。また、追記位置(LBA12)から新たにデータが記録される場合についても、従来のHDDの場合と同様、1つのパリティブロック分の冗長性を失った状態(RAID5相当)でデータの記録が継続できる。
 具体的な例について説明する。図5に示すLBA8からLBA9のストライプの場合、ユーザデータが記録される予定の光ディスク1bのブロックは、記録不正状態であるため、正しくデータが記録されていない。あるいは、光ディスク1bのLBA8からLBA9のブロックは、未記録状態である。そのため、修復制御部123は、LBA8からLBA9のストライプからデータを再生する際には、少なくとも光ディスク1bに記録される予定であったLBA9のユーザデータを、パリティブロックに記録されたパリティデータを用いて修復して再生するように制御する。
 より詳細には、再生制御部122は、光ディスク1bの記録不正領域内のブロックからはデータを再生しないように制御する。もしくは、再生制御部122は、光ディスク1bの記録不正領域内のブロックからデータを再生した後、再生したデータを無効化するように制御する。特に、(追記型の)光ディスクを用いたディスクアレイシステムでは、記録されなかった領域は未記録状態のままとなることが多い。光ディスクドライブは、未記録領域への再生要求に対して“00”データが読み出されたかのように動作する。言い換えると、LBA8を先頭としたストライプからデータを再生する際に、LBA9に相当する光ディスク1bからデータを再生し、再生したデータをデータブロックのデータとして扱ってしまうと、LBA9のデータブロックに記録されたデータは“00”データであると誤って判断される。その結果、データ化けが発生してしまう。
 仮に、ストライプからデータを再生する際に、パリティデータを含む全てのストライプデータを読み出したとしても、ストライプから読み出されたデータに異常なデータが含まれていることを検出することは可能である。しかしながら、ストライプ中のどのブロックから再生されたデータが異常なデータであるかは判断できない。つまり、記録不正領域を正しく把握して再生を制御することが出来なければ、記録不正領域を含むディスクアレイからのデータ再生においてデータ化けが発生する。しかしながら、記録不正領域を正しく把握して再生を制御することが出来れば、データ化けが発生するおそれは無い。
 なお、この課題に対する解決策の1つとして、当然、未記録領域への再生要求に対して光ディスクドライブは“00”データを返すのではなく、エラー応答させても良い。
 一方、LBA0から始まるストライプの場合、記録不正領域を含む光ディスク1bにもユーザデータが記録されている。しかし、記録不正領域を含む光ディスク1bも再生可能であるため、このストライプでは、光ディスク1a及び光ディスク1bのデータを再生すれば良い。この場合、2つのパリティブロックが残っている。そのため、仮に、光ディスク1a及び光ディスク1bからのデータ再生が失敗したとしても、パリティデータP0及びQ0が記録された光ディスク1c及び光ディスク1dのデータ再生が出来れば、ストライプに記録されたユーザデータは修復して再生することが可能である。
 このように、記録エラーが発生した光ディスク1bを含むディスクアレイにおいて、記録不正領域を正しく把握して、記録不正領域を含むストライプと記録不正領域を含まないストライプとで再生方法を切替えることが可能となる。これにより、従来のHDDを用いたディスクアレイシステムと比べて、より高い信頼性を保った状態での再生が可能となる。これは、特にデータ消失が許されないビジネス用途又はデータセンター用途などにおいて、非常に大きな効果である。
 図11は、本発明の実施の形態における光ディスクアレイシステム100の再生処理を示すフローチャートである。ここでは、光ディスクアレイシステム100が上位装置(ホスト)101からの再生要求を受けた場合を例に説明する。また、上位装置(ホスト)101から要求されるデータ再生サイズは、ブロック単位である。なお、ここでは、説明簡略化のため、データ再生サイズがストライプ単位である場合を例に説明する。また、光ディスクアレイシステム100において構成されるRAID(ディスクアレイ)の状態は、図5に示す状態とする。
 まず、ステップS1において、管理情報取得部126は、光ディスクドライブ150a~150dに光ディスク1a~1dが装着されて起動されると、光ディスクドライブ150a~150dに装着された光ディスク1a~1dのRAID管理情報領域21から、RAID管理情報を取得する。管理情報取得部126は、取得したRAID管理情報をメモリ140に記憶する。
 次に、ステップS2において、ホスト制御部111は、再生位置及び転送サイズに関する情報(再生パラメータ)を受領する。より具体的には、光ディスクアレイシステム100におけるホスト制御部111は、上位装置(ホスト)101から要求された、データを再生する先頭位置に関する論理ディスクの論理ブロックアドレス(先頭LBA)、及びデータを再生及び転送するブロックサイズ(残転送サイズ)などの再生パラメータを受領する。なお、先頭LBA及び残転送サイズなどの再生パラメータは、それぞれメモリ140に格納される。メモリ140に格納された先頭LBA及び残転送サイズは、以降の処理において必要に応じて更新される。
 次に、ステップS3において、記録状態判別部129は、先頭LBAが属するストライプに記録不正領域が含まれているか否かを判断する。より具体的には、まず、アドレス変換部130は、再生要求を受けた先頭LBA90が属するストライプを、各光ディスク1における論理ブロックアドレスlbaに変換する。そして、記録状態判別部129は、再生対象のストライプを構成するブロックのうち、ユーザデータが記録されたデータブロックの中に記録不正領域が存在するか否かを判断する。言い換えると、記録状態判別部129は、再生させない又は再生データを無効化するといった再生制限を行う必要のある光ディスク1が存在するか否かを判断する。
 なお、記録状態判別部129は、上記(3)で説明した記録不正領域判別方法に基づいて、再生対象のストライプを構成するブロックのうち、ユーザデータが記録されたデータブロックの中に記録不正領域が存在するか否かを判別する。
 ここで、RAIDにおける再生の動作においては、ストライプ単位でデータが再生される場合、RAIDとしての並列動作が可能なため、データブロックのユーザデータだけでなくパリティブロックのパリティデータも合わせて読み出すのが一般的である。仮に、データブロックのユーザデータの読み出しに失敗した場合には、同時に読み出したパリティブロックのパリティデータからユーザデータを修復して再生することが出来る。つまり、本質的には、ユーザデータだけでなく、パリティデータについても不正なデータでないかを正しく把握しておくことが必要である。そのため、記録状態判別部129は、データブロック及びパリティブロックのいずれであるかに関わらず、再生するストライプを構成するブロックの中に記録不正領域に含まれるブロックが存在するか否かを判断すれば良い。しかし、本発明の実施の形態においては、説明簡素化のため、記録状態判別部129は、再生要求を受けたストライプを構成するブロックの中のユーザデータを含むデータブロックに対してのみ、記録不正領域が含まれているか否かを判断する例を示す。
 記録状態判別部129は、再生対象のストライプを構成するブロックのうち、ユーザデータが記録されているデータブロックの中に記録不正領域が存在する場合には再生制限を行う必要があると判断する。この処理は、ある光ディスクにおいて再生エラーが発生した場合と同様の処理となる。そして、再生制限を行う必要があると判断された場合には、ステップS4の処理へ移行する。再生制限を行う必要が無いと判断された場合には、ステップS5の処理へ移行する。
 再生対象のストライプを構成するブロックのうち、ユーザデータが記録されているデータブロックの中に記録不正領域が存在すると判断された場合(ステップS3でYES)、ステップS4において、再生制御部122は、ユーザデータを修復して再生する。より具体的には、再生制御部122は、再生対象のストライプを構成するブロックのうち、記録不正領域に含まれるデータブロックを除くデータブロックのユーザデータと、少なくとも1つのパリティブロックのパリティデータとを読み出すように、対応する光ディスクドライブに要求する。読み出されたデータは、例えばメモリ140に一時的に格納される。そして、再生制御部122は、パリティデータを用いて、記録不正領域に含まれるデータブロックに本来記録される予定であったユーザデータを修復する。そして、再生制御部122は、ホスト制御部111を用いて、修復されたユーザデータを含む再生要求されたユーザデータを上位装置(ホスト)101へ転送する。これにより、再生制御部122は、あたかもデータブロックから正しくデータが読み出せたかのようにホスト(上位装置)101に対して振る舞うことが出来る。
 なお、ステップS4では、再生制御部122は、記録不正領域に含まれるブロックに対してはデータを読み出さないように制御しているが、この制御方法に限るものではない。具体的には、例えば、再生制御部122は、ストライプを構成する全てのブロックのデータを全ての光ディスクドライブに読み出させ、読み出されたデータのうち記録不正領域に相当するブロックのデータを、正しく読み出せなかったデータとして無効化させる。そして、再生制御部122は、パリティデータを用いて無効化したデータを修復して再生する。このような制御方法でも実現可能である。或いは、再生制御部122は、記録不正領域に含まれるブロックが存在する光ディスクを再生する光ディスクドライブからのデータ読み出し結果が強制的にエラーになるように光ディスクドライブを制御しても良い。このような制御方法でも実現可能である。
 一方、再生対象のストライプを構成するブロックのうち、ユーザデータが記録されているデータブロックの中に記録不正領域が存在しないと判断された場合(ステップS3でNO)、ステップS5において、再生制御部122は、通常通りユーザデータを再生する。より具体的には、再生制御部122は、再生対象のストライプを構成する全てのブロックのデータを読み出すように光ディスクドライブに要求する。読み出されたデータは、メモリ140に一時的に格納される。そして、再生制御部122は、読み出されたデータのうちユーザデータを上位装置(ホスト)101へ転送する。
 なお、仮に、ユーザデータが含まれるデータブロックのうち、ユーザデータを正しく読み出せなかったデータブロックが存在した場合には、再生制御部122は、ステップS4の処理と同様に、パリティデータを用いてユーザデータを修復して再生する。
 次に、ステップS6において、再生制御部122は、残転送サイズを更新する。より具体的には、再生制御部122は、メモリ140に格納されている残転送サイズから、ステップS4又はステップS5で転送が完了したサイズ(つまり2ブロック)分を減算して、新たな残転送サイズとしてメモリ140内の残転送サイズの値を更新する。
 次に、ステップS7において、再生制御部122は、残転送サイズが残っているか否かを判断する。すなわち、再生制御部122は、続けて次のユーザデータを転送するか否かを判断する。より具体的には、再生制御部122は、ステップS6で更新したメモリ140中に格納された残転送サイズが1以上であるか否かを判断する。残転送サイズが1以上である、つまり転送が完了していないデータが残っていると判断された場合(ステップS7でYES)、ステップS8の処理へ移行する。一方、残転送サイズが0である、つまり残転送サイズがなく上位装置(ホスト)101から要求されたサイズ分のユーザデータの転送が完了したと判断された場合(ステップS7でNO)、処理を終了する。
 次に、ステップS8において、再生制御部122は、先頭LBAを更新する。具体的には、再生制御部122は、メモリ140に格納されている先頭LBAの値に、ステップS4又はステップS5で転送が完了したサイズ(つまり2ブロック)分を加算して、新たな先頭LBAとしてメモリ140内の先頭LBAの値を更新する。そして、ステップS3の処理へ戻る。
 以上が、再生処理における制御フローである。
 以上説明したように、記録不正領域を含むストライプからデータが再生される際には、記録不正領域に含まれるブロックからデータが再生されない、又は読み出されたデータが無効として扱われる。これにより、未記録領域であるにも関わらず再生要求に対してデータ(“00”データ)が正しく読み出せたように振舞う光ディスクドライブを備えた光ディスクアレイシステム100においても、再生時にデータ化けが発生するという問題を解消することが出来る。更に、記録不正領域を含んだ光ディスクを有するRAID(ディスクアレイ)において、正しくRAIDとしての冗長度を保って記録できた記録不正領域を含まない領域に対してデータが再生される場合には、正しくRAIDとしての冗長度を確保してデータが再生される。そのため、RAID(ディスクアレイ)としてのデータ信頼性を向上させることが出来る。
 なお、上述のステップS1は、上位装置(ホスト)101から再生要求を受け付けたタイミングではなく、例えば光ディスクが光ディスクドライブにセット(起動)された時点で読み出しておいても良い。
 なお、上述の図11では、上位装置(ホスト)101から要求されたデータ再生サイズがストライプ単位の場合を例に説明しているが、例えばデータ再生サイズがブロック(クラスタ)単位の場合には、少なくとも該当するブロックのデータが記録された光ディスクからのデータが再生されれば良い。仮に、該当するブロックが記録不正領域である場合には、例えば上述のステップS4において、再生制御部122は、当該ブロックが存在するストライプ単位でパリティデータからデータを修復すればよい。
 なお、記録不正領域は必ずしも未記録状態であるとは限らない。具体的には、例えば書き換え型の光ディスクを用いたRAID(ディスクアレイ)の場合は、光ディスクドライブの故障の影響等で記録されずデータが欠落した領域は、未記録状態である場合もあるが、何らかの別のデータが記録されている場合もある。このような場合、仮に未記録領域への再生要求に対してエラーとするように光ディスクドライブを制御したとしても、対応することは出来ない。本発明の実施の形態で示したように、記録不正領域を判別し、記録不正領域であるブロックからデータを再生しない、又は記録不正領域であるブロックから読み出されたデータを無効として扱うことが好ましい。これにより、追記型の光ディスクだけでなく、書き換え型の光ディスクに対しても同じ制御方法により、データ化けが発生しない信頼性の高いデータ再生方法を提供することが出来る。
 なお、記録に失敗した領域(つまり記録不正領域)以外にも、RAID(ディスクアレイ)を構成する光ディスク内に未記録領域が存在する場合があり得る。具体的には、図12に示すように、ユーザデータが記録されていたトラック(SRR)#0が、使用可能なブロックが残っている状態で追記不可(Close)となった場合である。例えば、図12の場合、記録終端位置であるLRAはLBA11であるが、LBA12と、トラック#0の終端位置であるLBA17との間のブロック(領域)は、未記録のままとなる。しかし、この領域は、記録データが欠落した記録不正領域では無いため、記録不正領域として扱う必要は無く、例えば記録不正領域情報52として記録する必要は無い。言い換えれば、追記型の光ディスクを用いたディスクアレイの場合、正常な状態(意図した状態)で未記録領域が光ディスク上に残ったままになることもある。つまり、記録不正領域とは、あくまで記録に失敗するなどの理由でデータが欠落してしまった領域のことである。
 また、一般的には、LBA12とLBA17との間のブロックには有効なデータが記録されている訳ではないので、データ再生が要求されることは無い。しかし、光ディスクアレイシステム100としては、仮に、上位装置(ホスト)101等からデータ再生要求を受けた場合には、“00”データを読み出す光ディスクドライブの機能を用いてRAIDとしてデータが再生されれば良い。この際、LBA12とLBA17との間のブロックは記録不正領域ではないため、LBA0とLBA5との間のブロックと同様にRAID6としての通常の再生が行われればよい。
 なお、このような場合においても、仮に未記録領域への再生要求に対してエラーとするように光ディスクドライブを制御するだけでは、対応することは出来ない。本発明の実施の形態で示したように、記録不正領域を判別し、記録不正領域であるブロックからデータを再生しない、又は記録不正領域であるブロックから読み出されたデータを無効として扱う方法が最良の方法であると言える。
 (5)記録不正領域を含むRAIDへの冗長度を確保した記録継続方法
 上述したとおり、RAID6のディスクアレイを構成することで、1台の光ディスクドライブ(又は1枚の光ディスク)に異常が発生(故障)したとしても、RAID5相当の冗長度を確保した状態でならば、記録を継続することが出来る。しかし、出来るだけ早く元のRAID6の冗長度を保った状態に復帰し、RAID6の冗長度でデータが記録されることが望ましい。
 従来のHDDを用いたディスクアレイの場合、故障したドライブを正常なドライブに交換する又はホットスペアドライブを用いることにより、パリティデータを用いて、故障したドライブ内のデータを修復した後、記録を継続することが出来た。
 一方、光ディスクを用いたアレイシステムの場合、光ディスクドライブに故障等が発生しても、データが記録されている光ディスクは使用可能である。つまり、光ディスク内には、管理情報を含む以前のデータが有効な状態で残っている。このような場合、交換された光ディスクドライブ又はホットスペアドライブに光ディスクが装着されることで、記録データが欠落してデグレード状態となった光ディスクのデータを必ずしも修復せずに、そのまま使い続けることが出来る。
 しかし、特に、追記型の光ディスクの場合、記録可能な位置は追記位置(NWA)に限定されてしまう。そのため、デグレード状態の光ディスクに対しては、データを修復せずにそのまま新たなデータを継続して記録することは出来ない。
 この問題については、追記位置を新たに作成する(トラックを分割する)という方法を用いることで解決できる。なお、トラックの分割については、MMC規格で規定されたReserve Trackコマンドによって実現できる。
 図13は、図5の状態の記録不正領域を含んだ光ディスク1bが存在するRAID(ディスクアレイ)に対して、継続してRAID6でのデータを記録する場合のディスク状態の例を示す説明図である。
 図13に示すように、RAID#1を構成する光ディスク1bは記録不正領域を含んでおり、LBA6からLBA11までの間はパリティドライブが1つのみ存在するRAID5相当の冗長度で継続してデータが記録された状態であるとする。この状態で、問題が生じたRAID#1の光ディスクドライブ150bが交換され、データの記録及び再生が可能になった場合を考える。
 前述のような状態の光ディスク1a~1dで構成されたRAID(ディスクアレイ)に対しては、論理ディスクとしての追記可能位置(NWA)であるLBA12の位置で新たにトラックを分割して、LBA12から次のトラック開始位置の手前(つまりLBA17)までの領域を新たなトラック(トラック#1)とする。つまり、RAIDを構成する全ての光ディスク1a~1dに対して、各光ディスクのNWAであるlba6のブロックの手前でトラックを分割する。こうすることで、新たに分割したトラック#1の論理ディスクの先頭であるLBA12から、4枚の光ディスク1a~1d全てを用いたRAID6でデータを記録することが可能になる。
 より具体的に、従来のHDDを用いたディスクアレイシステムでは、ある1台のHDDが使用途中で記録不正領域を含む状態になると、以降はパリティドライブが1つのみ存在するRAID5相当の冗長度でしかデータを継続して記録できない。一方、本発明の実施の形態の光ディスクアレイシステム100の場合は、例えば光ディスクドライブの故障などの原因である1つの光ディスクが使用途中で記録不正領域を含む状態になったとしても、光ディスクドライブを交換する、或いは他の正常な状態の光ディスクアレイシステム100を用いれば、最大限の冗長性を確保した状態でデータを継続して記録することが可能になる。このように、本発明の実施の形態の光ディスクアレイシステム100は、従来のHDDを用いたディスクアレイシステムには無い効果を実現できる。
 図14は、図13のディスクアレイにおける、論理ディスクの記録状態を示す図である。図10を用いた説明と比べて、LBA12の位置で新たにトラックが分割されている点が異なっている。そのため、LBA0からLBA11までのトラック#0は、再生制御方法としては図10で説明した再生制御方法と同じであるが、トラック#0は論理的にはClose状態となる。一方、LBA12からのトラック#1の追記位置(NWA)がLBA12である点は図10の場合と同じであるが、トラック#1においてRAID6でデータが記録出来る点が異なっている。つまり、記録不正領域を含む光ディスク1bを備えたRAID(ディスクアレイ)については、記録不正領域のデータが修復される前であっても、継続した記録要求に対して、パリティを2つ備えたRAID6の高い冗長度を確保した状態でデータを記録することが出来る。
 図15は、図13の状態にある4枚の光ディスク1a~1dそれぞれに関するトラック情報80の具体例を示す図である。
 それぞれの光ディスク1a~1dのトラック情報80を見ると、RAID#1を構成する光ディスク1bを除いた残り3枚の光ディスク1a,1c,1dについては、lba0からlba5までのトラック#0のトラック状態はClose状態となる。しかし、光ディスク1bについては、NWA(追記可能位置)でトラックが分割されていないので、lba0からlba5までのトラック#0のトラック状態はOpen状態のままとなることも想定される。言い換えると、同一のストライプを構成するトラックに関して、RAIDを構成する複数の光ディスク1a~1dのうちのトラック状態82が異なる(Open状態である)光ディスクのトラックは、記録不正領域を含んでいるトラック(つまり、データの修復が必要な領域)であると判断することが可能になる。なお、新たに生成されたトラック#1については、4枚の光ディスク1a~1dの全てのトラック状態82が同じ状態になり、さらに4枚の光ディスク1a~1dの全てのNWA85及び残サイズ86も同じ状態となる。そのため、これら4枚の光ディスク1a~1dを跨いだRAID6でのデータの記録が可能となる。
 なお、図13及び図14では、RAIDを構成する全ての光ディスク1a~1dに対してトラックを分割する例を示している。しかしながら、少なくとも記録不正領域を含む光ディスクに対してのみ、他の光ディスクのNWA位置と同じ位置でトラックを分割することで、上述した効果を得ることが出来る。但し、このような方法を用いると、他の光ディスクとトラックの分割位置が変わってくるため、論理ディスクにおけるトラック情報の算出が困難になる。そこで、RAID管理情報は、トラックが分割された光ディスクのRAID番号44と、その光ディスクにおけるトラックが分割された位置情報(つまり、トラック分割情報)とを更に含んでも良い。
 また、図13及び図14で示した方法で全ての光ディスク1a~1dに対してトラックが分割された場合でも、光ディスクアレイシステム100で自動的に分割したトラックに関する情報は、上位装置(ホスト)101に対して報告しないことが好ましい。そこで、RAIDを構成する全ての光ディスク1a~1dに対してトラックが分割される場合であっても、RAID管理情報は、光ディスクアレイシステム100で自動的にトラックを分割した位置を示すトラック分割情報を更に含んでも良い。
 図16は、本発明の実施の形態における光ディスクアレイシステム100の記録処理を示すフローチャートである。ここでは、光ディスクアレイシステム100が上位装置(ホスト)101から記録要求を受けた場合を例に説明する。また、上位装置(ホスト)101から要求されるデータ記録サイズは、ブロック単位である。また、キャッシュ処理が有効である場合は、記録データの受領完了を待って、上位装置(ホスト)101からの記録要求に対して完了応答しても良いが、本実施の形態では、実際に光ディスクへの記録を行ってから上位装置(ホスト)101からの記録要求に対して完了応答する例について説明する。
 まず、ステップS11において、管理情報取得部126は、光ディスクドライブ150a~150dに光ディスク1a~1dが装着されて起動されると、光ディスクドライブ150a~150dに装着された光ディスク1a~1dのRAID管理情報領域21から、RAID管理情報を取得する。管理情報取得部126は、取得したRAID管理情報をメモリ140に記憶する。なお、RAID管理情報が記録されていない未使用の光ディスクが光ディスクドライブに装着された場合、管理情報更新部125は、RAID管理情報を生成し、生成したRAID管理情報を未使用の光ディスクに記録しても良い。
 次に、ステップS12において、ホスト制御部111は、記録位置及び記録データサイズに関する情報(記録パラメータ)を受領する。より具体的には、光ディスクアレイシステム100におけるホスト制御部111は、上位装置(ホスト)101から要求された、データを記録する先頭位置に関する論理ディスクの論理ブロックアドレス(先頭LBA)、及び記録データサイズなどの記録パラメータを受領する。
 次に、ステップS13において、記録制御部121は、ホスト制御部111によって受領された記録パラメータに基づき、データの記録が可能であるか否かを判断する。より具体的には、記録制御部121は、記録開始する先頭LBAが、論理ディスクとしての追記可能位置(NWA)の条件を満たしているか否か、又は複数の光ディスクがRAIDとして記録可能な状態であるか否かなどを判断する。
 ここで、厳密な意味では、パリティドライブへの記録が出来なくても、複数の光ディスクがRAIDとして記録可能な状態であるということも出来る。例えば、RAID6の場合、ストライプを構成する2台の光ディスクドライブ(2枚の光ディスク)への記録が同時に出来ない状態であっても、冗長ドライブ無しのRAID0相当の記録を行うことが可能であるといえる。しかし、ユーザによっては、RAID6でデータを記録する際に、パリティドライブが1台でも欠如することを認めないといった場合も想定される。
 そこで、光ディスクアレイシステム100は、記録を継続させない(すなわち、記録エラーとして扱う)記録継続エラーレベルの設定をユーザから受け付ける機能を備えても良い。具体的には、光ディスクアレイシステム100は、ユーザが許容するエラードライブ(ディスク)の数の設定を受け付け、設定された数を超えない限りは記録可能として扱う。このような方法を用いる場合、例えばRAID6において、記録継続エラーレベルが1(1台のエラードライブまでは許容)である場合には、図13に示したようなトラックの分割処理が必ずしも行われなくとも良く、記録継続エラーレベルが0(1台のエラードライブも許容しない)である場合には、図13に示したようなトラックの分割処理が行われる。
 ここで、記録可能ではないと判断された場合(ステップS13でNO)、ステップS14において、ホスト制御部111は、上位装置(ホスト)101からの記録要求に対して、記録できないとしてエラー応答する。
 一方、記録可能であると判断された場合(ステップS13でYES)、ステップS15において、RAID制御部120は、データの記録処理を行う。より具体的には、記録制御部121は、上位装置(ホスト)101から記録データを受領し、記録データをメモリ140(バッファ)に一時的に格納する。さらに、パリティ演算部124は、受領した記録データに基づいてパリティデータを生成し、生成したパリティデータをメモリ140に一時的に格納する。さらに、アドレス変換部130は、記録要求を受けた先頭LBAが属するストライプを各光ディスク1a~1dにおける論理ブロックアドレスlbaに変換する。そして、記録制御部121は、メモリ140に格納されている受領した記録データ及び生成したパリティデータを、対応する光ディスクドライブ150a~150dに出力する。光ディスクドライブ150a~150dは、入力された記録データ又はパリティデータを光ディスク1a~1dに記録する。
 次に、ステップS16において、記録制御部121は、記録データ及びパリティデータの記録中に記録エラーが発生したか否かを判断する。ここで、記録エラーが発生していないと判断された場合(ステップS16でNO)、ステップS18の処理へ移行する。
 一方、記録エラーが発生したと判断された場合(ステップS16でYES)、ステップS17において、管理情報更新部125は、メモリ140に記憶されているRAID管理情報に含まれる記録不正領域情報を更新する。具体的には、管理情報更新部125は、記録不正領域を特定するための記録不正領域情報、すなわち、記録不正RAID番号75、記録不正領域先頭位置76及び記録不正領域サイズ77を含む記録不正領域情報52を更新する。
 次に、ステップS18において、記録制御部121は、上位装置(ホスト)101から受領したデータの記録が完了したか否かを判断する。ここで、データの記録が完了していないと判断された場合(ステップS18でNO)、ステップS15の処理に戻り、記録制御部121は、残りの記録データ及びパリティデータを継続して記録する。
 なお、上述した記録継続エラーレベルが設定されており、設定された記録継続エラーレベルの条件を満たす場合には、記録制御部121は、記録要求は正常終了したと判断し、ステップS19の処理へ移行する。一方、設定された記録継続エラーレベルの条件を満たさない場合には、記録制御部121は、記録に失敗したものとして上位装置(ホスト)101からの記録要求に対して、記録失敗としてエラー応答する。
 データの記録が完了したと判断された場合(ステップS18でYES)、ステップS19において、記録制御部121は、追記可能位置(NWA)を更新する。より具体的には、記録制御部121は、論理ディスクとしての追記可能位置(NWA)情報を、記録が完了したサイズ分だけ更新する。
 次に、ステップS20において、管理情報更新部125は、メモリ140に記憶されているRAID管理情報を光ディスク1a~1dに記録する。この際、管理情報更新部125は、更新された記録不正領域情報を光ディスク1a~1dに記録する。管理情報更新部125は、メモリ140に記憶されているRAID管理情報を光ディスクドライブ150a~150dに出力する。光ディスクドライブ150a~150dは、入力されたRAID管理情報を光ディスク1a~1dに記録する。そして、ホスト制御部111は、上位装置(ホスト)101からの記録要求に対して完了応答する。
 以上の手順により、記録処理が実現される。
 ここで、上述のステップS15において、パリティ演算部124によりパリティデータが生成されるためには、ストライプ単位で記録データが揃っていることが必要である。しかし、上位装置(ホスト)101から要求される記録データサイズが必ずストライプ単位で要求されるとは限らない。仮に、記録データサイズがストライプ単位に満たない状態でディスクアレイにデータが記録される場合には、パリティ演算部124は、ストライプにおける未受領分のデータを固定データ(例えば、全て0のNullデータ)として扱うことにより、パリティデータを生成すれば良い。
 このような場合、当該ストライプにおいて記録要求を受けたデータに相当する光ディスク、及びパリティデータに相当する光ディスクに対してのみ実際に記録が行われ、未受領分のデータに相当する光ディスクに対しては、記録は行われない。また、このような状態で記録されているストライプに対して新たに追記データを受領した場合には、以前記録したパリティデータが変わってしまうことになる。このような場合は、記録制御部121は、上述した擬似オーバーライト(POW)と呼ばれる機能などを用いて、論理的にパリティデータを書き換える。これにより、追記型光ディスクを用いたディスクアレイにおいても、ストライプ単位に満たないデータ単位での記録又は再生を行うことが可能である。言い替えると、複数の追記型光ディスクで構成されるディスクアレイに対し、上位装置(ホスト)101は、従来の単一の光ディスクに対してアクセスするのと同様のセクタ単位で記録要求又は再生要求を行うことが可能である。
 なお、本発明の実施の形態において、RAIDレベルとしてRAID6を用いて説明しているが、ストライプ中に1つのパリティブロックを有するRAID5など、ストライプ中に少なくとも1つのパリティブロックを有し、パリティからデータの修復が可能なディスクアレイの記録方式であれば、上記と同様の効果を得ることが出来る。
 なお、本発明の実施の形態において、光ディスクアレイシステム100は4台の光ディスクドライブのみでRAIDを構成する例を説明しているが、接続される光ディスクドライブの台数はこれに限定されない。使用するRAIDレベルに最低限必要な台数以上であれば、光ディスクアレイシステム100は、例えば10台又は12台などの光ディスクドライブで構成されても良い。
 なお、本発明の実施の形態では、光ディスクアレイシステム100は、接続された4台全ての光ディスクドライブ150a~150dを使ってRAID(ディスクアレイ)を構成する例を説明しているが、必ずしも接続された全ての光ディスクドライブを使ってRAIDを構成しなくても良い。具体的には、例えば、6台の光ディスクドライブが接続されている場合、5台の光ディスクドライブでRAID6を構成し、残りの1台の光ディスクドライブをホットスペアドライブとして用いても良い。なお、これらは、光ディスクドライブだけに限ったことではなく、光ディスクについても同様である。つまり、複数の光ディスクのうちの1枚の光ディスクをスペア用の光ディスクとして用いても良い。
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
 本発明の一局面に係る情報処理装置は、複数の可搬型の情報記憶媒体で構成されるディスクアレイにデータを記録する情報処理装置であって、前記複数の情報記憶媒体の各々に前記データを記録する複数のドライブ装置と、前記ディスクアレイに前記データを分散して記録するために前記複数のドライブ装置を制御する制御部とを備え、前記複数の情報記憶媒体の各々は、複数のデータブロックを有し、前記データブロック単位で前記データを記録するユーザ領域と、前記データが欠落している記録不正領域に関する情報を表す記録不正領域情報を記録する管理情報領域とを有し、前記記録不正領域情報は、前記ディスクアレイを構成する前記複数の情報記憶媒体の中で、前記記録不正領域が存在する前記情報記憶媒体と、前記情報記憶媒体の中の前記記録不正領域が存在する位置とを含み、前記制御部は、前記複数の情報記憶媒体の前記複数のデータブロックに前記データを分散して記録するとともに、前記複数のデータブロックのうちの前記データが欠落した前記データブロックのデータを修復するための少なくとも1つのパリティデータを少なくとも1つのパリティブロックに記録するデータ記録部と、前記データの記録時に少なくとも1つの前記ドライブ装置で記録に失敗した場合に、少なくとも1つの情報記憶媒体の前記管理情報領域に前記記録不正領域情報を記録する領域情報記録部とを含む。
 この構成によれば、複数のドライブ装置は、複数の情報記憶媒体の各々にデータを記録する。制御部は、ディスクアレイにデータを分散して記録するために複数のドライブ装置を制御する。複数の情報記憶媒体の各々は、複数のデータブロックを有し、データブロック単位でデータを記録するユーザ領域と、データが欠落している記録不正領域に関する情報を表す記録不正領域情報を記録する管理情報領域とを有する。記録不正領域情報は、ディスクアレイを構成する複数の情報記憶媒体の中で、記録不正領域が存在する情報記憶媒体と、情報記憶媒体の中の記録不正領域が存在する位置とを含む。データ記録部は、複数の情報記憶媒体の複数のデータブロックにデータを分散して記録するとともに、複数のデータブロックのうちのデータが欠落したデータブロックのデータを修復するための少なくとも1つのパリティデータを少なくとも1つのパリティブロックに記録する。領域情報記録部は、データの記録時に少なくとも1つのドライブ装置で記録に失敗した場合に、少なくとも1つの情報記憶媒体の管理情報領域に記録不正領域情報を記録する。
 したがって、ディスクアレイを構成する複数の情報記憶媒体の中で、データが欠落している記録不正領域が存在する情報記憶媒体と、情報記憶媒体の中の記録不正領域が存在する位置とを含む記録不正領域情報が記録されるので、欠落したデータが修復される前であっても、高いデータ信頼性、高い可用性及び高い転送レートを確保することができ、継続してデータを記録することができる。
 また、上記の情報処理装置において、前記複数の情報記憶媒体の各々は、追記型の情報記憶媒体であることが好ましい。
 この構成によれば、複数の情報記憶媒体の各々は、追記型の情報記憶媒体であるので、書き換え型の情報記憶媒体ではなく、追記型の情報記憶媒体によりディスクアレイを構成することができる。
 また、上記の情報処理装置において、前記領域情報記録部は、所定のタイミングで全ての前記複数の情報記憶媒体の前記管理情報領域に前記記録不正領域情報を記録することが好ましい。
 この構成によれば、同じ記録不正領域情報を複数の情報記憶媒体に記録することで、記録不正領域情報の冗長性を高め、信頼性を向上させることができる。
 また、上記の情報処理装置において、前記制御部は、前記ディスクアレイから前記データを再生するために前記複数のドライブ装置を制御し、前記複数のドライブ装置は、前記複数の情報記憶媒体の各々から前記データを再生し、前記制御部は、前記記録不正領域情報に基づいて、前記記録不正領域から読み出されるデータを無効化し、前記少なくとも1つのパリティデータを用いて前記記録不正領域のデータを再生する再生制御部をさらに含むことが好ましい。
 この構成によれば、制御部は、ディスクアレイからデータを再生するために複数のドライブ装置を制御する。複数のドライブ装置は、複数の情報記憶媒体の各々からデータを再生する。再生制御部は、記録不正領域情報に基づいて、記録不正領域から読み出されるデータを無効化し、少なくとも1つのパリティデータを用いて記録不正領域のデータを再生する。
 したがって、記録不正領域情報に基づいて、記録不正領域から読み出されるデータが無効化され、少なくとも1つのパリティデータを用いて記録不正領域のデータが再生されるので、ドライブ装置又は情報記憶媒体に障害が発生し、任意の情報記憶媒体の所定の領域のデータが欠落したとしても、欠落したデータを修復することなく、高いデータ信頼性、高い可用性及び高い転送レートを確保することができ、継続してデータを再生することができる。
 すなわち、例えば、未記録領域にも関わらず再生要求に対してデータが正しく読み出せたように振舞うドライブ装置を備えた情報処理装置においても、記録不正領域から読み出されるデータが無効化されるので、再生時にデータ化けが発生するような問題を解消することができる。
 さらに、記録不正領域を含む情報記憶媒体を含むディスクアレイにおいて、記録不正領域を含まずに所定の冗長度を保って記録された領域からデータが再生される場合には、所定の冗長度を確保してデータが再生されるので、ディスクアレイとしてのデータの信頼性を向上させることができる。
 また、上記の情報処理装置において、前記管理情報領域には、前記ディスクアレイに関する記録状態を管理するためのアレイ管理情報がさらに記録され、前記アレイ管理情報は、前記ディスクアレイの記録方式を識別するためのアレイ種別情報と、前記ディスクアレイを構成する前記情報記憶媒体の数を表すアレイ構成数情報と、前記ディスクアレイにおける当該情報記憶媒体の構成順番を示すアレイ番号情報と、前記ディスクアレイを構成する前記情報記憶媒体の前記アレイ番号と前記情報記憶媒体を一意に識別するための媒体識別番号とが対応付けられた、前記ディスクアレイを構成する全ての情報記憶媒体に関するアレイ構成情報テーブルとを含み、前記領域情報記録部は、前記ディスクアレイを構築するための初期化処理を行うタイミングにおいて、前記管理情報領域に前記アレイ管理情報を記録することが好ましい。
 この構成によれば、管理情報領域には、ディスクアレイに関する記録状態を管理するためのアレイ管理情報がさらに記録される。アレイ管理情報は、ディスクアレイの記録方式を識別するためのアレイ種別情報と、ディスクアレイを構成する情報記憶媒体の数を表すアレイ構成数情報と、ディスクアレイにおける当該情報記憶媒体の構成順番を示すアレイ番号情報と、ディスクアレイを構成する情報記憶媒体のアレイ番号と情報記憶媒体を一意に識別するための媒体識別番号とが対応付けられた、ディスクアレイを構成する全ての情報記憶媒体に関するアレイ構成情報テーブルとを含む。領域情報記録部は、ディスクアレイを構築するための初期化処理を行うタイミングにおいて、管理情報領域にアレイ管理情報を記録する。
 したがって、例えば、ディスクアレイを構成する情報記憶媒体の順番が入れ替わり、ドライブ装置と情報記憶媒体との対応関係が変わってしまった場合でも、アレイ番号情報に基づいて、ドライブ装置と情報記憶媒体との対応関係を正しく識別することができ、継続してデータを記録することができる。また、仮に、情報記憶媒体からアレイ番号情報が取得できなかったとしても、アレイ構成情報テーブルに基づいて、情報記憶媒体のディスクアレイにおける構成順番を正確に把握することが出来る。
 また、上記の情報処理装置において、前記アレイ種別情報は、前記パリティデータの数、前記パリティデータの生成方法、及び前記パリティデータを用いた前記記録不正領域のデータの修復方法を識別可能な情報であることが好ましい。
 この構成によれば、アレイ種別情報に基づいて、パリティデータの数、パリティデータの生成方法、及びパリティデータを用いた記録不正領域のデータの修復方法を識別することができる。
 また、上記の情報処理装置において、前記管理情報領域には、前記ディスクアレイに関する記録状態を管理するためのアレイ管理情報がさらに記録され、前記アレイ管理情報は、前記ディスクアレイの記録方式を識別するためのアレイ種別情報と、前記ディスクアレイを構成する前記情報記憶媒体の数を表すアレイ構成数情報と、前記ディスクアレイにおける当該情報記憶媒体の構成順番を示すアレイ番号情報と、前記ディスクアレイを構成する前記情報記憶媒体の前記アレイ番号と前記情報記憶媒体を一意に識別するための媒体識別番号とが対応付けられた、前記ディスクアレイを構成する全ての情報記憶媒体に関するアレイ構成情報テーブルとを含み、前記制御部は、少なくとも前記情報記憶媒体が装着された前記ドライブ装置が起動されたタイミングにおいて、前記管理情報領域に記録された前記アレイ管理情報を取得する情報取得部をさらに備え、前記再生制御部は、取得した前記アレイ管理情報に基づいて前記複数のドライブ装置を制御することが好ましい。
 この構成によれば、管理情報領域には、ディスクアレイに関する記録状態を管理するためのアレイ管理情報がさらに記録される。アレイ管理情報は、ディスクアレイの記録方式を識別するためのアレイ種別情報と、ディスクアレイを構成する情報記憶媒体の数を表すアレイ構成数情報と、ディスクアレイにおける当該情報記憶媒体の構成順番を示すアレイ番号情報と、ディスクアレイを構成する情報記憶媒体のアレイ番号と情報記憶媒体を一意に識別するための媒体識別番号とが対応付けられた、ディスクアレイを構成する全ての情報記憶媒体に関するアレイ構成情報テーブルとを含む。情報取得部は、少なくとも情報記憶媒体が装着された前記ドライブ装置が起動されたタイミングにおいて、管理情報領域に記録されたアレイ管理情報を取得する。再生制御部は、取得したアレイ管理情報に基づいて複数のドライブ装置を制御する。
 したがって、例えば、ディスクアレイを構成する情報記憶媒体の順番が入れ替わり、ドライブ装置と情報記憶媒体との対応関係が変わってしまった場合でも、アレイ番号情報に基づいて、ドライブ装置と情報記憶媒体との対応関係を正しく識別することができ、継続してデータを再生することができる。また、仮に、情報記憶媒体からアレイ番号情報が取得できなかったとしても、アレイ構成情報テーブルに基づいて、情報記憶媒体のディスクアレイにおける構成順番を正確に把握することが出来る。
 また、上記の情報処理装置において、前記制御部は、前記管理情報領域から前記記録不正領域情報を取得する情報取得部をさらに備えることが好ましい。
 この構成によれば、情報取得部は、管理情報領域から記録不正領域情報を取得する。したがって、データ記録時において、管理情報領域から取得した記録不正領域情報をメモリに一時的に記憶し、少なくとも1つのドライブ装置で記録に失敗した場合に、メモリ内の記録不正領域情報を更新する。これにより、記録に失敗する毎に、情報記憶媒体に記録不正領域情報を記録する必要がなくなり、情報記憶媒体にアクセスする回数を低減することができる。
 また、上記の情報処理装置において、前記記録不正領域は、少なくとも記録エラーが発生したデータブロック又は前記データが記録されなかったデータブロックのいずれかを含むことが好ましい。
 この構成によれば、少なくとも記録エラーが発生したデータブロック又はデータが記録されなかったデータブロックのいずれかに関する情報を情報記憶媒体に記録することができる。
 本発明の他の局面に係る情報処理方法は、複数の可搬型の情報記憶媒体で構成されるディスクアレイにデータを記録する情報処理方法であって、前記複数の情報記憶媒体の各々は、複数のデータブロックを有し、前記データブロック単位で前記データを記録するユーザ領域と、前記データが欠落している記録不正領域に関する情報を表す記録不正領域情報を記録する管理情報領域とを有し、前記記録不正領域情報は、前記ディスクアレイを構成する前記複数の情報記憶媒体の中で、前記記録不正領域が存在する前記情報記憶媒体と、前記情報記憶媒体の中の前記記録不正領域が存在する位置とを含み、前記複数の情報記憶媒体の前記複数のデータブロックに前記データを分散して記録するとともに、前記複数のデータブロックのうちの前記データが欠落した前記データブロックのデータを修復するための少なくとも1つのパリティデータを少なくとも1つのパリティブロックに記録するように、前記複数の情報記憶媒体の各々に前記データを記録する複数のドライブ装置を制御するデータ記録ステップと、前記データの記録時に少なくとも1つの前記ドライブ装置で記録に失敗した場合に、少なくとも1つの情報記憶媒体の前記管理情報領域に前記記録不正領域情報を記録する記録不正領域情報記録ステップとを含む。
 この構成によれば、複数の情報記憶媒体の各々は、複数のデータブロックを有し、データブロック単位でデータを記録するユーザ領域と、データが欠落している記録不正領域に関する情報を表す記録不正領域情報を記録する管理情報領域とを有している。記録不正領域情報は、ディスクアレイを構成する複数の情報記憶媒体の中で、記録不正領域が存在する情報記憶媒体と、情報記憶媒体の中の記録不正領域が存在する位置とを含む。データ記録ステップにおいて、複数の情報記憶媒体の複数のデータブロックにデータを分散して記録するとともに、複数のデータブロックのうちのデータが欠落したデータブロックのデータを修復するための少なくとも1つのパリティデータを少なくとも1つのパリティブロックに記録するように、複数の情報記憶媒体の各々にデータを記録する複数のドライブ装置が制御される。記録不正領域情報記録ステップにおいて、データの記録時に少なくとも1つのドライブ装置で記録に失敗した場合に、少なくとも1つの情報記憶媒体の管理情報領域に記録不正領域情報が記録される。
 したがって、ディスクアレイを構成する複数の情報記憶媒体の中で、データが欠落している記録不正領域が存在する情報記憶媒体と、情報記憶媒体の中の記録不正領域が存在する位置とを含む記録不正領域情報が記録されるので、欠落したデータが修復される前であっても、高いデータ信頼性、高い可用性及び高い転送レートを確保することができ、継続してデータを記録することができる。
 本発明の他の局面に係る情報記憶媒体は、データを記録するための可搬型の情報記憶媒体であって、複数のデータブロックを有し、前記データブロック単位で前記データを記録するユーザ領域と、前記データが欠落している記録不正領域に関する情報を表す記録不正領域情報を記録する管理情報領域とを備え、ディスクアレイは、複数の可搬型の情報記憶媒体で構成され、前記ユーザ領域は、前記複数の情報記憶媒体に分散された前記データと、複数のデータブロックのうちの前記データが欠落した前記データブロックのデータを修復するためのパリティデータとを記録し、前記記録不正領域情報は、前記ディスクアレイを構成する複数の情報記憶媒体の中で、前記記録不正領域が存在する前記情報記憶媒体と、前記情報記憶媒体の中の前記記録不正領域が存在する位置とを含む。
 この構成によれば、ユーザ領域は、複数のデータブロックを有し、データブロック単位でデータを記録する。管理情報領域は、データが欠落している記録不正領域に関する情報を表す記録不正領域情報を記録する。ディスクアレイは、複数の可搬型の情報記憶媒体で構成される。ユーザ領域は、複数の情報記憶媒体に分散されたデータと、複数のデータブロックのうちのデータが欠落したデータブロックのデータを修復するためのパリティデータとを記録する。記録不正領域情報は、ディスクアレイを構成する複数の情報記憶媒体の中で、記録不正領域が存在する情報記憶媒体と、情報記憶媒体の中の記録不正領域が存在する位置とを含む。
 したがって、ディスクアレイを構成する複数の情報記憶媒体の中で、データが欠落している記録不正領域が存在する情報記憶媒体と、情報記憶媒体の中の記録不正領域が存在する位置とを含む記録不正領域情報が記録されるので、欠落したデータが修復される前であっても、高いデータ信頼性、高い可用性及び高い転送レートを確保することができ、継続してデータを記録することができる。
 以上、本発明の特定の実施の形態について説明されてきたが、当業者にとっては他の多くの変形例、修正、及び他の利用が本発明に含まれることは明らかである。それゆえ、本発明は、ここでの特定の実施の形態に限定されず、請求項によってのみ限定され得る。
 すなわち、発明を実施するための形態の項においてなされた具体的な実施態様又は実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と特許請求事項との範囲内で、種々変更して実施することができるものである。
 本発明に係る情報処理装置、情報処理方法及び情報記憶媒体は、欠落したデータが修復される前であっても、高いデータ信頼性、高い可用性及び高い転送レートを確保することができ、継続してデータを記録することができ、複数の可搬型の情報記憶媒体で構成されるディスクアレイにデータを記録する情報処理装置、情報処理方法及び情報記憶媒体に有用である。また、本発明に係る情報処理装置、情報処理方法及び情報記憶媒体は、例えば、コンピュータシステムにおけるアーカイブ装置に適用できる。

Claims (11)

  1.  複数の可搬型の情報記憶媒体で構成されるディスクアレイにデータを記録する情報処理装置であって、
     前記複数の情報記憶媒体の各々に前記データを記録する複数のドライブ装置と、
     前記ディスクアレイに前記データを分散して記録するために前記複数のドライブ装置を制御する制御部とを備え、
     前記複数の情報記憶媒体の各々は、複数のデータブロックを有し、前記データブロック単位で前記データを記録するユーザ領域と、前記データが欠落している記録不正領域に関する情報を表す記録不正領域情報を記録する管理情報領域とを有し、
     前記記録不正領域情報は、前記ディスクアレイを構成する前記複数の情報記憶媒体の中で、前記記録不正領域が存在する前記情報記憶媒体と、前記情報記憶媒体の中の前記記録不正領域が存在する位置とを含み、
     前記制御部は、
     前記複数の情報記憶媒体の前記複数のデータブロックに前記データを分散して記録するとともに、前記複数のデータブロックのうちの前記データが欠落した前記データブロックのデータを修復するための少なくとも1つのパリティデータを少なくとも1つのパリティブロックに記録するデータ記録部と、
     前記データの記録時に少なくとも1つの前記ドライブ装置で記録に失敗した場合に、少なくとも1つの情報記憶媒体の前記管理情報領域に前記記録不正領域情報を記録する領域情報記録部とを含むことを特徴とする情報処理装置。
  2.  前記複数の情報記憶媒体の各々は、追記型の情報記憶媒体であることを特徴とする請求項1記載の情報処理装置。
  3.  前記領域情報記録部は、所定のタイミングで全ての前記複数の情報記憶媒体の前記管理情報領域に前記記録不正領域情報を記録することを特徴とする請求項1又は2記載の情報処理装置。
  4.  前記制御部は、前記ディスクアレイから前記データを再生するために前記複数のドライブ装置を制御し、
     前記複数のドライブ装置は、前記複数の情報記憶媒体の各々から前記データを再生し、
     前記制御部は、前記記録不正領域情報に基づいて、前記記録不正領域から読み出されるデータを無効化し、前記少なくとも1つのパリティデータを用いて前記記録不正領域のデータを再生する再生制御部をさらに含むことを特徴とする請求項1~3のいずれかに記載の情報処理装置。
  5.  前記管理情報領域には、前記ディスクアレイに関する記録状態を管理するためのアレイ管理情報がさらに記録され、
     前記アレイ管理情報は、前記ディスクアレイの記録方式を識別するためのアレイ種別情報と、前記ディスクアレイを構成する前記情報記憶媒体の数を表すアレイ構成数情報と、前記ディスクアレイにおける当該情報記憶媒体の構成順番を示すアレイ番号情報と、前記ディスクアレイを構成する前記情報記憶媒体の前記アレイ番号と前記情報記憶媒体を一意に識別するための媒体識別番号とが対応付けられた、前記ディスクアレイを構成する全ての情報記憶媒体に関するアレイ構成情報テーブルとを含み、
     前記領域情報記録部は、前記ディスクアレイを構築するための初期化処理を行うタイミングにおいて、前記管理情報領域に前記アレイ管理情報を記録することを特徴とする請求項1~3のいずれかに記載の情報処理装置。
  6.  前記アレイ種別情報は、前記パリティデータの数、前記パリティデータの生成方法、及び前記パリティデータを用いた前記記録不正領域のデータの修復方法を識別可能な情報であることを特徴とする請求項4記載の情報処理装置。
  7.  前記管理情報領域には、前記ディスクアレイに関する記録状態を管理するためのアレイ管理情報がさらに記録され、
     前記アレイ管理情報は、前記ディスクアレイの記録方式を識別するためのアレイ種別情報と、前記ディスクアレイを構成する前記情報記憶媒体の数を表すアレイ構成数情報と、前記ディスクアレイにおける当該情報記憶媒体の構成順番を示すアレイ番号情報と、前記ディスクアレイを構成する前記情報記憶媒体の前記アレイ番号と前記情報記憶媒体を一意に識別するための媒体識別番号とが対応付けられた、前記ディスクアレイを構成する全ての情報記憶媒体に関するアレイ構成情報テーブルとを含み、
     前記制御部は、少なくとも前記情報記憶媒体が装着された前記ドライブ装置が起動されたタイミングにおいて、前記管理情報領域に記録された前記アレイ管理情報を取得する情報取得部をさらに備え、
     前記再生制御部は、取得した前記アレイ管理情報に基づいて前記複数のドライブ装置を制御することを特徴とする請求項4記載の情報処理装置。
  8.  前記制御部は、前記管理情報領域から前記記録不正領域情報を取得する情報取得部をさらに備えることを特徴とする請求項1~6のいずれかに記載の情報処理装置。
  9.  前記記録不正領域は、少なくとも記録エラーが発生したデータブロック又は前記データが記録されなかったデータブロックのいずれかを含むことを特徴とする請求項1~8のいずれかに記載の情報処理装置。
  10.  複数の可搬型の情報記憶媒体で構成されるディスクアレイにデータを記録する情報処理方法であって、
     前記複数の情報記憶媒体の各々は、複数のデータブロックを有し、前記データブロック単位で前記データを記録するユーザ領域と、前記データが欠落している記録不正領域に関する情報を表す記録不正領域情報を記録する管理情報領域とを有し、
     前記記録不正領域情報は、前記ディスクアレイを構成する前記複数の情報記憶媒体の中で、前記記録不正領域が存在する前記情報記憶媒体と、前記情報記憶媒体の中の前記記録不正領域が存在する位置とを含み、
     前記複数の情報記憶媒体の前記複数のデータブロックに前記データを分散して記録するとともに、前記複数のデータブロックのうちの前記データが欠落した前記データブロックのデータを修復するための少なくとも1つのパリティデータを少なくとも1つのパリティブロックに記録するように、前記複数の情報記憶媒体の各々に前記データを記録する複数のドライブ装置を制御するデータ記録ステップと、
     前記データの記録時に少なくとも1つの前記ドライブ装置で記録に失敗した場合に、少なくとも1つの情報記憶媒体の前記管理情報領域に前記記録不正領域情報を記録する記録不正領域情報記録ステップとを含むことを特徴とする情報処理方法。
  11.  データを記録するための可搬型の情報記憶媒体であって、
     複数のデータブロックを有し、前記データブロック単位で前記データを記録するユーザ領域と、
     前記データが欠落している記録不正領域に関する情報を表す記録不正領域情報を記録する管理情報領域とを備え、
     ディスクアレイは、複数の可搬型の情報記憶媒体で構成され、
     前記ユーザ領域は、前記複数の情報記憶媒体に分散された前記データと、複数のデータブロックのうちの前記データが欠落した前記データブロックのデータを修復するためのパリティデータとを記録し、
     前記記録不正領域情報は、前記ディスクアレイを構成する複数の情報記憶媒体の中で、前記記録不正領域が存在する前記情報記憶媒体と、前記情報記憶媒体の中の前記記録不正領域が存在する位置とを含むことを特徴とする情報記憶媒体。
PCT/JP2013/001791 2012-03-29 2013-03-15 情報処理装置、情報処理方法及び情報記憶媒体 WO2013145617A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380001202.1A CN103502927B (zh) 2012-03-29 2013-03-15 信息处理装置、信息处理方法
JP2013549625A JP5999603B2 (ja) 2012-03-29 2013-03-15 情報処理装置、情報処理方法及び情報記憶媒体
US14/114,834 US9377969B2 (en) 2012-03-29 2013-03-15 Information processing device, information processing method, and information storage medium, including storage of information indicating which medium among plural media has a recording failure area and a position in the medium of the recording failure area

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-075751 2012-03-29
JP2012075751 2012-03-29

Publications (1)

Publication Number Publication Date
WO2013145617A1 true WO2013145617A1 (ja) 2013-10-03

Family

ID=49258931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001791 WO2013145617A1 (ja) 2012-03-29 2013-03-15 情報処理装置、情報処理方法及び情報記憶媒体

Country Status (4)

Country Link
US (1) US9377969B2 (ja)
JP (1) JP5999603B2 (ja)
CN (1) CN103502927B (ja)
WO (1) WO2013145617A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032566A (ja) * 2012-08-03 2014-02-20 Fujitsu Ltd 制御装置,ストレージ装置,制御方法,及び制御プログラム
JP2017045500A (ja) * 2015-08-28 2017-03-02 パナソニックIpマネジメント株式会社 データ消去方法
WO2022195855A1 (ja) * 2021-03-19 2022-09-22 パイオニアデジタルデザインアンドマニュファクチャリング株式会社 光ディスクアレイ、コンピュータプログラム及び記録媒体

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054216A1 (ja) * 2012-10-01 2014-04-10 パナソニック株式会社 記録再生装置
JP2016110686A (ja) 2014-12-02 2016-06-20 パナソニックIpマネジメント株式会社 光ディスクライブラリ装置、光ディスク、および光ディスクライブラリシステム
US10042582B2 (en) * 2015-08-28 2018-08-07 Panasonic Intellectual Property Management Co., Ltd. Data erasing method
US10353777B2 (en) * 2015-10-30 2019-07-16 Pure Storage, Inc. Ensuring crash-safe forward progress of a system configuration update
US10191673B2 (en) * 2015-12-15 2019-01-29 Spectra Logic Corporation Forming optical disk set of different capacities from factory rejected optical disks
CN106124812B (zh) * 2016-06-12 2020-04-07 宁波迦南智能电气股份有限公司 一种单相费控智能电能表生产管理系统
CN106124813B (zh) * 2016-06-12 2019-10-11 宁波迦南智能电气股份有限公司 一种单相费控智能电能表生产管理方法
CN111736760B (zh) * 2020-05-11 2022-05-13 瑞芯微电子股份有限公司 一种动态随机存储方法及系统
KR20220023476A (ko) * 2020-08-21 2022-03-02 에스케이하이닉스 주식회사 레이드 데이터 저장 장치 및 이를 포함하는 데이터 저장 시스템

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018562A (ja) * 2005-07-05 2007-01-25 Hitachi Maxell Ltd 光記録再生装置
JP2013054792A (ja) * 2011-09-02 2013-03-21 Panasonic Corp 追記型情報記録媒体、情報記録装置、情報再生装置、情報記録方法、および情報再生方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736632A (ja) 1993-07-16 1995-02-07 Toshiba Corp ディスク装置
US5913927A (en) * 1995-12-15 1999-06-22 Mylex Corporation Method and apparatus for management of faulty data in a raid system
US6732244B2 (en) * 2002-01-22 2004-05-04 International Business Machines Corporation Instant virtual copy technique with expedited creation of backup dataset inventory from source dataset inventory
US7149846B2 (en) * 2002-04-17 2006-12-12 Lsi Logic Corporation RAID protected external secondary memory
CN100350371C (zh) * 2003-10-07 2007-11-21 普安科技股份有限公司 磁盘阵列一致性初始化方法
JP4401305B2 (ja) * 2005-02-09 2010-01-20 富士通株式会社 デイスクアレイ装置の構成定義設定方法及びデイスクアレイ装置
JP4435705B2 (ja) * 2005-03-14 2010-03-24 富士通株式会社 記憶装置、その制御方法及びプログラム
JP2007328831A (ja) 2006-06-06 2007-12-20 Hitachi-Lg Data Storage Inc 情報再生装置及び情報再生方法
TW200807258A (en) * 2006-07-28 2008-02-01 Qnap Systems Inc Data recovery method and system when redundant array of independent disks (RAID) is damaged
JP2008123132A (ja) * 2006-11-09 2008-05-29 Hitachi Ltd 記憶制御装置及び記憶制御装置の論理ボリューム形成方法
US8370715B2 (en) * 2007-04-12 2013-02-05 International Business Machines Corporation Error checking addressable blocks in storage
US7788541B2 (en) * 2008-04-15 2010-08-31 Dot Hill Systems Corporation Apparatus and method for identifying disk drives with unreported data corruption
JP2012014761A (ja) 2010-06-30 2012-01-19 Hitachi Consumer Electronics Co Ltd 光ディスク装置、再生方法、記録方法及び光ディスク

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018562A (ja) * 2005-07-05 2007-01-25 Hitachi Maxell Ltd 光記録再生装置
JP2013054792A (ja) * 2011-09-02 2013-03-21 Panasonic Corp 追記型情報記録媒体、情報記録装置、情報再生装置、情報記録方法、および情報再生方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032566A (ja) * 2012-08-03 2014-02-20 Fujitsu Ltd 制御装置,ストレージ装置,制御方法,及び制御プログラム
JP2017045500A (ja) * 2015-08-28 2017-03-02 パナソニックIpマネジメント株式会社 データ消去方法
WO2022195855A1 (ja) * 2021-03-19 2022-09-22 パイオニアデジタルデザインアンドマニュファクチャリング株式会社 光ディスクアレイ、コンピュータプログラム及び記録媒体

Also Published As

Publication number Publication date
US20140075116A1 (en) 2014-03-13
US9377969B2 (en) 2016-06-28
JP5999603B2 (ja) 2016-09-28
CN103502927A (zh) 2014-01-08
JPWO2013145617A1 (ja) 2015-12-10
CN103502927B (zh) 2016-12-28

Similar Documents

Publication Publication Date Title
JP5999603B2 (ja) 情報処理装置、情報処理方法及び情報記憶媒体
US6529458B1 (en) Method for managing defective area of optical recording medium
JP2010244683A (ja) ドライブ装置、およびそれを備えたシステム
EP1550123A1 (en) High density write-once recording medium allowing defect management, and method and apparatus for managing defects
US20080175112A1 (en) Automatic Backup System
WO2013038618A1 (ja) 情報記憶媒体ライブラリアレイ装置、情報記録方法及び情報記録プログラム
JP2013054792A (ja) 追記型情報記録媒体、情報記録装置、情報再生装置、情報記録方法、および情報再生方法
KR100936027B1 (ko) 호환성을 고려한 결함 관리 방법, 그 디스크 드라이브 및그 디스크
JP5914885B2 (ja) 記録再生装置および記録再生方法
JP2016110686A (ja) 光ディスクライブラリ装置、光ディスク、および光ディスクライブラリシステム
JP4740354B2 (ja) ディスク制御装置およびディスク制御方法
JP4405421B2 (ja) ストレージ装置およびプログラム。
KR100930239B1 (ko) 갱신가능한 결함 관리 영역을 사용한 결함 관리 방법, 그장치 및 그 디스크
WO2022195855A1 (ja) 光ディスクアレイ、コンピュータプログラム及び記録媒体
JP2005107676A (ja) アレイコントローラ及びディスクアレイ再構築方法
EP2240932B1 (en) Recording/reproducing apparatus and recording/reproducing method
KR100896683B1 (ko) 갱신가능한 결함 관리 영역을 사용한 결함 관리 방법, 그장치 및 그 디스크
KR100888601B1 (ko) 디스크 및 결함 관리 장치
KR100958587B1 (ko) 결함 관리 방법
JP2011248956A (ja) データ記録再生システム及び方法
KR100896687B1 (ko) 기록 및/또는 재생 장치 및 디스크
JP2010191762A (ja) ディスクアレイ装置及びリアサイン方法
KR20050075125A (ko) 광 기록 정보 저장 매체, 기록/재생 장치, 기록/재생 방법및 그 방법을 수행하는 프로그램이 기록된 컴퓨터판독가능한 기록매체
KR20070093387A (ko) 결함 관리를 수행하는 기록 장치 및 그 디스크

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013549625

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14114834

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767909

Country of ref document: EP

Kind code of ref document: A1