[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013145063A1 - Clothing treatment device - Google Patents

Clothing treatment device Download PDF

Info

Publication number
WO2013145063A1
WO2013145063A1 PCT/JP2012/008450 JP2012008450W WO2013145063A1 WO 2013145063 A1 WO2013145063 A1 WO 2013145063A1 JP 2012008450 W JP2012008450 W JP 2012008450W WO 2013145063 A1 WO2013145063 A1 WO 2013145063A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
steam
storage tank
steam generator
wall
Prior art date
Application number
PCT/JP2012/008450
Other languages
French (fr)
Japanese (ja)
Inventor
毅 福田
淳吾 香月
正尚 瀬川
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP12852445.1A priority Critical patent/EP2662484B1/en
Priority to SI201230772A priority patent/SI2662484T1/en
Priority to CN201280003993.7A priority patent/CN103443345B/en
Priority to US13/990,741 priority patent/US20140053615A1/en
Publication of WO2013145063A1 publication Critical patent/WO2013145063A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/40Steam generating arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F35/00Washing machines, apparatus, or methods not otherwise provided for
    • D06F35/005Methods for washing, rinsing or spin-drying
    • D06F35/007Methods for washing, rinsing or spin-drying for spin-drying only
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/04Heating arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/08Liquid supply or discharge arrangements
    • D06F39/088Liquid supply arrangements

Definitions

  • the present invention relates to a clothing processing apparatus for washing, dehydrating and / or drying clothing.
  • Patent Documents 1 and 2 A washing machine that supplies steam to clothes and sterilizes has been developed (see Patent Documents 1 and 2).
  • the washing machine of Patent Document 1 generates steam using a heater immersed in water.
  • Patent Documents 1 and 2 supply steam to a drum in which clothing is stored.
  • the pressure of the steam supplied to the drum is low, the space in the drum needs to be filled with steam. Therefore, the washing machines of Patent Documents 1 and 2 consume a large amount of power in order to generate steam.
  • An object of the present invention is to provide a clothing processing apparatus having a structure capable of efficiently supplying steam to clothing.
  • a clothing processing apparatus includes a storage tank that stores clothing, a steam supply mechanism that supplies steam to the storage tank, and a water supply valve that supplies water from an external water source to the steam supply mechanism.
  • the steam supply mechanism includes a water storage tank that stores the water supplied from the water supply valve, a steam generator for generating the steam, and a pump that supplies the water in the water storage tank to the steam generator. .
  • the clothing processing apparatus can efficiently supply steam to clothing.
  • FIG. 2 is a schematic perspective view of the washing machine shown in FIG. 1. It is a schematic perspective view of the steam supply mechanism accommodated in the housing of the washing machine shown in FIG. It is a schematic perspective view of the steam generation part of the steam supply mechanism shown by FIG. It is a schematic perspective view of the steam generation part of the steam supply mechanism shown by FIG. It is a schematic perspective view of the attachment structure for connecting the cover part and housing
  • FIG. 6B is a schematic exploded perspective view of the steam generator shown in FIGS. 6A and 6B.
  • FIG. 8 is a schematic plan view of the main piece shown in FIG. 7.
  • It is the schematic of the water supply mechanism of the steam supply mechanism shown by FIG. It is a schematic rear view of the front part of the storage tub of the washing machine shown in FIG. 12 is a graph schematically showing a relationship between intermittent operation of a pump of the water supply mechanism shown in FIG.
  • FIG. 11 It is a graph which represents roughly the change of the temperature of the water supplied to the water tank of the washing machine shown by FIG.
  • FIG. 18 is a schematic perspective view of the steam generator shown in FIG. 17.
  • the principle of the clothing processing apparatus is that a device having a washing function and a drying function for clothes (washing dryer), a device having only a function of drying clothes (dryer), and a device having only a function of washing clothes (washing) It is also applicable to the machine.
  • FIG. 1 is a schematic longitudinal sectional view of the washing machine 100 of the first embodiment. The washing machine 100 will be described with reference to FIG.
  • the washing machine 100 includes a casing 110 and a storage tank 200 that stores clothes in the casing 110.
  • the storage tank 200 includes a rotary drum 210 having a substantially cylindrical peripheral wall 211 that surrounds the rotation axis RX, and a water tank 220 that stores the rotary drum 210.
  • the housing 110 includes a front wall 111 in which an insertion port for putting clothes into the storage tub 200 is formed, and a rear wall 112 on the opposite side of the front wall 111.
  • the rotating drum 210 and the water tank 220 open toward the front wall 111.
  • the washing machine 100 further includes a door 120 attached to the front wall 111.
  • the door body 120 rotates between a closed position that closes the charging port formed in the front wall 111 and an open position that opens the charging port.
  • the user can turn the door 120 to the open position, and put the clothes into the storage tub 200 through the insertion port of the front wall 111. Thereafter, the user can move the door 120 to the closed position and cause the washing machine 100 to wash clothes.
  • the door 120 shown in FIG. 1 is in the closed position.
  • the rotating drum 210 rotates around a rotation axis RX extending between the front wall 111 and the rear wall 112.
  • the clothes put in the storage tank 200 move in the rotary drum 210 as the rotary drum 210 rotates, and are subjected to various processes such as washing, rinsing and / or dehydration.
  • the rotary drum 210 includes a bottom wall 212 that faces the door 120 at the closed position.
  • the water tank 220 includes a bottom 221 that surrounds a part of the bottom wall 212 and the peripheral wall 211 of the rotary drum 210, and a front part 222 that surrounds the other part of the peripheral wall 211 of the rotary drum 210 between the bottom 221 and the door body 120. .
  • the storage tank 200 includes a rotating shaft 230 attached to the bottom wall 212 of the rotating drum 210.
  • the rotation shaft 230 extends toward the rear wall 112 along the rotation axis RX.
  • the rotating shaft 230 passes through the bottom 221 of the water tank 220 and appears between the water tank 220 and the rear wall 112.
  • the washing machine 100 includes a motor 231 installed below the water tank 220, a pulley 232 attached to the rotating shaft 230 exposed outside the water tank 220, and a belt 233 for transmitting the power of the motor 231 to the pulley 232.
  • a motor 231 installed below the water tank 220
  • a pulley 232 attached to the rotating shaft 230 exposed outside the water tank 220
  • a belt 233 for transmitting the power of the motor 231 to the pulley 232.
  • the motor 231 operates, the power of the motor 231 is transmitted to the belt 233, the pulley 232, and the rotating shaft 230.
  • the rotating drum 210 rotates in the water tank 220.
  • the washing machine 100 further includes a packing structure 130 disposed between the front portion 222 of the water tank 220 and the door body 120.
  • the door 120 rotated to the closed position compresses the packing structure 130.
  • the packing structure 130 forms a watertight seal structure between the door body 120 and the front portion 222.
  • the housing 110 includes a housing top wall 113 that extends substantially horizontally between the front wall 111 and the rear wall 112, and a housing bottom wall 114 on the opposite side of the housing top wall 113.
  • the washing machine 100 further includes a water supply port 140 connected to a faucet (not shown), and a distribution unit 141 for distributing water introduced through the water supply port 140.
  • the water supply port 140 appears on the housing top wall 113.
  • the distribution unit 141 is disposed between the housing top wall 113 and the storage tank 200.
  • the faucet is exemplified as an external water source.
  • the washing machine 100 further includes a detergent storage unit (described later) in which the detergent is stored and a steam supply mechanism 300 (described later) that injects steam into the storage tank 200.
  • the distribution unit 141 includes a plurality of water supply valves for selectively supplying water to the storage tank 200, the detergent storage unit, and the steam supply mechanism 300.
  • route to the storage tank 200 and a detergent storage part is not shown.
  • a technique used in a known washing machine is suitably applied to water supply to the storage tank 200 and the detergent storage unit.
  • FIG. 2 is a schematic perspective view of the washing machine 100.
  • FIG. 3 is a schematic perspective view of the steam supply mechanism 300 accommodated in the housing 110. 2 and 3, the housing 110 is represented by a dotted line. In FIG. 3, the storage tank 200 is not shown. The arrows in FIG. 3 schematically represent the water supply path.
  • the steam supply mechanism 300 will be described with reference to FIGS. 1 to 3.
  • the steam supply mechanism 300 includes a water supply valve 310 used as a part of the distribution unit 141 and a water storage tank 320 disposed below the storage tank 200.
  • the water supply valve 310 is used to control water supply to the water storage tank 320.
  • water supply valve 310 is opened, water is supplied from the water supply port 140 to the water storage tank 320.
  • the water supply valve 310 is closed, the water supply to the water storage tank 320 is stopped.
  • the steam supply mechanism 300 further includes a pump 330 attached to the water storage tank 320 and a steam generator 400 that receives water discharged from the pump 330.
  • the pump 330 performs a water supply operation intermittently or continuously to the steam generation unit 400. During the intermittent water supply operation, the pump 330 supplies an appropriate amount of water adjusted so that instantaneous steam generation occurs to the steam generation unit 400. If the pump 330 continuously supplies water to the steam generation unit 400, impurities (scale) contained in the water used for generating steam are washed away from the steam generation unit 400.
  • the steam generator 400 will be described later.
  • the steam supply mechanism 300 further includes a steam conduction pipe 340 extending downward from the steam generation unit 400.
  • the front portion 222 of the water tank 220 includes a peripheral wall portion 223 that surrounds the peripheral wall 211 of the rotating drum 210 and an annular portion 224 that cooperates with the packing structure 130 to form a watertight seal structure.
  • the steam conduction pipe 340 is connected to the peripheral wall part 223.
  • the steam generated by the steam generation unit 400 is supplied to the storage tank 200 through the steam conduction pipe 340.
  • the steam conduction pipe 340 may include a bellows pipe. The bellows pipe can alleviate the transmission of vibration caused by the rotation of the storage tank 200 to the steam generation unit 400.
  • FIG. 4A and 4B are schematic perspective views of the steam generating unit 400.
  • FIG. With reference to FIG. 2 thru
  • the steam generation unit 400 includes a substantially rectangular box-shaped case 410 and a steam generator 420 accommodated in the case 410.
  • the case 410 includes a container part 411 for housing the steam generator 420 and a lid part 412 that covers the container part 411.
  • the steam generator 420 is connected to the pump 330 using a connection pipe 421 and a tube (not shown). Further, the steam generator 420 is connected to the steam conduction pipe 340 using the exhaust pipe 422.
  • the container part 411 includes a bottom wall part 414 in which an opening 413 is formed. The connection pipe 421 and the exhaust pipe 422 protrude downward through the opening 413.
  • the steam generator 420 may be disposed above the water storage tank 320. If water is supplied from the water storage tank to the steam generator without using a pump, the water in the water storage tank needs to be sent to the steam generator using the action of gravity. In this case, the steam generator needs to be disposed below the water tank.
  • the pump 330 is used for supplying water to the steam generator 420. Water is forcibly supplied from the water storage tank 320 to the steam generator 420 by the pressure of the pump 330. Therefore, in the design of the washing machine 100 of this embodiment, there are few restrictions regarding the vertical positional relationship between the steam generator 420 and the water storage tank 320. Since the layout design of the steam generator 420 and the water storage tank 320 has a high degree of freedom, the internal space of the housing 110 is effectively used.
  • the steam generator 420 is disposed above the water storage tank 320.
  • the pump 330 can appropriately supply water from the water tank 320 to the steam generator 420.
  • the water storage tank 320 may be disposed below the steam generator 420. For example, even if the pump 330 fails and the water supply to the steam generator 420 stops, the water staying in the hose connecting the water storage tank 320, the pump 330, and the steam generator 420 hardly flows into the steam generator 420. .
  • the steam generator needs to be disposed below the water storage tank.
  • a control component such as an on-off valve provided to control water supply from the water storage tank to the steam generator fails, water supply control to the steam generator becomes impossible.
  • water flows unnecessarily from the water storage tank to the steam generator.
  • the pump 330 is used to supply water from the water storage tank 320 to the steam generator 420, unnecessary water supply from the water storage tank 320 to the steam generator 420 is unlikely to occur.
  • the housing 110 includes a right wall 115 erected between the front wall 111 and the rear wall 112, and a left wall 116 opposite to the right wall 115.
  • the water storage tank 320 is disposed at a corner corner defined by the housing bottom wall 114, the rear wall 112, and the left wall 116.
  • the steam generator 420 is arranged at a corner corner defined by the right wall 115, the case ceiling wall 113, and the front wall 111. As described above, the steam generator 420 and the water storage tank 320 are disposed at substantially symmetrical positions with respect to the central axis (rotation axis RX) of the storage tank 200.
  • the detergent container 101 is disposed at corners defined by the front wall 111, the case top wall 113, and the left wall 116.
  • the other corners of the casing 110 are effectively used for the arrangement of the water storage tank 320 and the steam generator 420.
  • the water storage tank 320 is disposed at a corner corner defined by the housing bottom wall 114, the rear wall 112, and the left wall 116.
  • the steam generator 420 is arranged at a corner corner defined by the right wall 115, the case ceiling wall 113, and the front wall 111. Since the casing 110 is a substantially rectangular box and the storage tank 200 is cylindrical, a wide space is formed at the corners of the casing 110.
  • each of the wide corner corner spaces is effectively used for the arrangement of the detergent container 101, the water storage tank 320, and the steam generator 420.
  • the water storage tank 320 and the steam generator 420 may be designed to be large according to the corners of the housing 110.
  • the detergent container may be disposed at the corners defined by the front wall, the case top wall, and the right wall.
  • a steam generator may be arrange
  • the water storage tank may be arranged at one of the corners defined by the bottom wall of the housing in accordance with the piping design to the steam generator.
  • the water storage tank is disposed at a substantially rotationally symmetric position of the detergent container with the rotation axis of the storage tank as an axis, and the steam generator is disposed symmetrically with the water storage tank with respect to a horizontal plane including the rotation axis of the storage tank. May be.
  • the internal space of the housing is effectively used as in the layout design shown in FIG.
  • the water storage tank may be disposed below the detergent container disposed at the corners defined by the front wall, the top wall of the casing, and the left or right wall.
  • a steam generator may be arrange
  • the internal space of the housing is effectively used as in the layout design shown in FIG.
  • the rotation axis RX of the storage tank 200 is substantially horizontal.
  • the storage tank may rotate about an inclined rotation axis.
  • the rotation axis may be inclined upward from the rear wall toward the front wall.
  • the water storage tank may be disposed below a plane including the inclined rotation axis, while the steam generator may be disposed above the plane.
  • the steam generator may be arranged on the right or left with respect to the vertical plane. Under such a layout design, the space between the housing and the storage tank is effectively used.
  • FIG. 5 is a schematic perspective view of a mounting structure for connecting the lid portion 412 and the housing 110. With reference to FIG. 3, FIG. 4A, and FIG. 5, the attachment structure between the cover part 412 and the housing
  • the housing 110 further includes a first reinforcement frame 117 disposed along the upper edge of the right wall 115 and a second reinforcement frame 118 disposed along the upper edge of the front wall 111.
  • the lid 412 includes a substantially rectangular upper wall 415, a lid peripheral wall 416 that projects downward from the edge of the upper wall 415, and a projecting piece 417 that projects forward from the lid peripheral wall 416.
  • the washing machine 100 further includes a first attachment piece 151 connected to the first reinforcement frame 117 and the upper wall 415, and a second attachment piece 152 connected to the second reinforcement frame 118 and the protruding piece 417. .
  • the first attachment piece 151 and the second attachment piece 152 protrude upward from the lid portion 412 to separate the casing top wall 113 and the steam generation portion 400. As a result, heat transfer from the steam generation unit 400 to the housing 110 is reduced.
  • the 1st attachment piece 151 and the 2nd attachment piece 152 are illustrated as a holding
  • FIGS. 6A and 6B are schematic perspective views of the steam generator 420.
  • FIG. The steam generator 420 is described with reference to FIGS. 6A and 6B.
  • the steam generator 420 includes a substantially rectangular main piece 423, a lid piece 424 disposed on the main piece 423, and a linear heater 425 disposed on the main piece 423.
  • the main piece 423 and the lid piece 424 are made of aluminum. Therefore, the main piece 423 and the lid piece 424 are appropriately heated by the heater 425.
  • the steam generator 420 further includes a thermistor 426.
  • the thermistor 426 is also attached to the main piece 423.
  • the heater 425 is controlled according to temperature information obtained by the thermistor 426. Therefore, the temperature of the main piece 423 and the lid piece 424 is kept substantially constant. The same effect can be obtained by using a thermostat that controls on / off of the heater 425 at a predetermined temperature instead of the thermistor 426.
  • FIG. 7 is a schematic perspective view of the main piece 423.
  • the main piece 423 will be described with reference to FIGS. 6B and 7.
  • the main piece 423 includes a main piece lower surface 427 to which the connection pipe 421, the exhaust pipe 422 and the thermistor 426 are attached, a peripheral surface 428 on which the heater 425 is disposed, and an upper surface 429 on the opposite side of the main piece lower surface 427. Including.
  • the main piece 423 is erected from the upper surface 429 toward the lid piece 424, and has an outer chamber wall 431 that defines a substantially triangular chamber space 430, and a substantially J-shape that defines a flow path of steam in the chamber space 430. And an inner chamber wall 432.
  • FIG. 8 is a schematic exploded perspective view of the steam generator 420.
  • FIG. 9 is a schematic perspective view of the lid piece 424. The steam generator 420 is described with reference to FIGS. 3 and 6B to 9.
  • the steam generator 420 includes a packing ring 433 attached to the main piece 423 so as to surround the outer chamber wall 431.
  • the packing ring 433 is made of heat resistant rubber.
  • the lid piece 424 includes a lower surface 434 facing the main piece 423, and an outer shield wall 435 having substantially the same shape as the outer chamber wall 431.
  • the lid piece 424 is pressed against the main piece 423.
  • the outer shield wall 435 compresses the packing ring 433 and keeps the chamber space 430 airtight.
  • the main piece 423 is formed with an inlet 437 through which water supplied through the connection pipe 421 flows into the chamber space 430.
  • An inflow port 437 formed substantially at the center of the chamber space 430 is surrounded by the inner chamber wall 432. If the pump 330 supplies a predetermined amount of water to the steam generator 420, the water is injected upward through the connection pipe 421 and the inlet 437. As a result, the water collides with the inner chamber wall 432, the upper surface 429 of the main piece 423 surrounded by the inner chamber wall 432 and / or the lower surface 434 of the lid piece 424 positioned above the inflow port 437.
  • the steam generator 420 is heated by a heater 425 (eg, about 200 ° C.) and has high thermal energy.
  • the pump 330 that performs intermittent water supply operation supplies an appropriate amount of water to the heat energy of the steam generator 420 (for example, about 2 cc / time). As a result, the water emitted upward from the inlet 437 evaporates instantaneously.
  • the chamber space 430 used for generating steam is exemplified as a chamber.
  • the inner chamber wall 432 that the water supplied through the inlet 437 collides with, the upper surface 429 of the main piece 423 surrounded by the inner chamber wall 432 and / or the lower surface 434 of the lid piece 424 positioned above the inlet 437 has a wall surface As an example.
  • the inflow port 437 to which the connection pipe 421 is attached is exemplified as the attachment portion.
  • the water supplied by the pump 330 may contain impurities.
  • impurities in the water may adhere to or deposit on the wall surface forming the chamber space 430.
  • the internal pressure of the chamber space 430 increases rapidly.
  • impurities attached or deposited on the wall surface forming the chamber space 430 receive a strong pressure and are peeled off from the wall surface. As a result, the impurities are easily discharged out of the chamber space 430.
  • FIG. 10 is a schematic plan view of the main piece 423.
  • the main piece 423 will be described with reference to FIGS. 2, 6 ⁇ / b> B, and 10.
  • the heater 425 extends along a substantially U-shaped path in the main piece 423. Therefore, the heater 425 surrounds the inflow port 437 to which the connection pipe 421 is attached. As a result, the inner chamber wall 432 and the region surrounded by the inner chamber wall 432 have the highest temperature in the chamber space 430. Therefore, the water emitted through the inlet 437 evaporates instantaneously.
  • the main piece 423 has an exhaust port 438 formed at the end of the flow path.
  • the vapor generated in the space surrounded by the inner chamber wall 432 moves toward the exhaust port 438 as the internal pressure of the chamber space 430 increases.
  • An exhaust pipe 422 is attached to the exhaust port 438. The steam that has reached the exhaust port 438 is exhausted downward through the exhaust pipe 422.
  • the heater 425 extends in a U shape along the outer path of the spiral flow path. Therefore, the steam generated in the space surrounded by the inner chamber wall 432 moves toward the exhaust pipe 422 while being heated. Therefore, high-temperature steam is exhausted.
  • the steam generator 420 emits water to the heated wall surface and instantly evaporates it, less power is required to generate the same amount of steam compared to the prior art that generates steam with a heater immersed in water. That's it.
  • the steam generator 420 is disposed above the storage tank 200.
  • impurities contained in the water supplied to the steam generator 420 cause wall surfaces (the outer chamber wall 431, the inner chamber wall 432, the upper surface 429 of the main piece 423) to form the chamber space 430. And adheres to or deposits on the lower surface 434) of the lid piece 424. If impurities are deposited on the wall surface forming the chamber space 430, the heat transfer efficiency between the wall surface and the water supplied to the chamber space 430 decreases. As a result, the water is less likely to evaporate in the chamber space 430.
  • the steam generator 420 since the steam generator 420 is disposed above the storage tank 200, the adhered or precipitated impurities are caused by the internal pressure generated by the vaporization of water or the action of gravity. It is discharged or dropped downward. Therefore, the impurities are easily discharged from the chamber space 430 to the storage tank 200. As a result, impurities attached or precipitated in the chamber of the steam generator 420 are difficult to deposit. Therefore, there is almost no reduction in the vaporization ability due to the accumulation of impurities.
  • FIG. 11 is a schematic view of the water supply mechanism 500. With reference to FIG. 11, the water supply mechanism 500 is demonstrated.
  • the water supply mechanism 500 that emits water to the chamber space 430 of the steam generator 420 includes the water supply valve 310, the water storage tank 320, the pump 330, and the connection pipe 421 described above.
  • the water supply mechanism 500 further includes a water level sensor 321 for measuring the water level in the water storage tank 320.
  • the water supply valve 310 may supply water to the water storage tank 320 or stop water supply to the water storage tank 320 according to the water level detected by the water level sensor 321.
  • the water level sensor 321 is exemplified as the first detection element.
  • the water supply valve 310 may be controlled according to the operation time and / or operation pattern of the pump 330 (intermittent water supply operation and / or continuous water supply operation). For example, the amount of water supplied from the water supply valve 310 may be adjusted so that the water storage tank 320 becomes empty when the operation of the pump 330 ends. As a result, the water in the water storage tank 320 is hardly frozen.
  • the pump 330 supplies the water stored in the water storage tank 320 to the chamber space 430 through the connection pipe 421.
  • the intermittent water supply operation of the pump 330 is adjusted so that water emitted into the chamber space 430 is instantly evaporated.
  • impurities contained in water may be deposited in the chamber space 430.
  • the continuous water supply operation of the pump 330 is adjusted so that water flows into the chamber space 430 at a flow rate sufficient to sweep away accumulated impurities.
  • the exhaust pipe 422 is connected to the steam conduction pipe 340.
  • the steam generated in the chamber space 430 by the intermittent water supply operation of the pump 330 and the water flowing into the chamber space 430 by the continuous water supply operation of the pump 330 enter the storage tank 200 through the exhaust pipe 422 and the steam conduction pipe 340. Inflow.
  • FIG. 12 is a schematic rear view of the front portion 222 of the storage tank 200. The supply of steam and water to the storage tank 200 will be described with reference to FIGS. 1, 11, and 12.
  • the annular portion 224 of the front portion 222 includes an inner surface 225 that faces the rotating drum 210 and an outer surface 226 that faces the front wall 111 of the housing 110.
  • FIG. 12 mainly shows the inner surface 225.
  • the steam supply mechanism 300 includes a branch pipe 351 and a nozzle 352 attached to the inner surface 225.
  • the steam supply mechanism 300 further includes a steam tube 353 that connects the branch pipe 351 and the nozzle 352.
  • the steam conduction pipe 340 is connected to the branch pipe 351 through the peripheral wall portion 223.
  • the steam generated in the chamber space 430 flows into the steam conduction pipe 340 through the exhaust pipe 422 as the pressure in the chamber space 430 increases. Thereafter, the steam reaches the branch pipe 351 from the steam conduction pipe 340.
  • the nozzle 352 is disposed above the branch pipe 351.
  • the high-temperature steam reaching the branch pipe 351 is guided to the steam tube 353 and reaches the nozzle 352.
  • the steam is jetted downward from the nozzle 352.
  • the exhaust pipe 422, the steam conduction pipe 340, the branch pipe 351, and the steam tube 353 guide the steam generated in the chamber space 430 to the nozzle 352. Therefore, the exhaust pipe 422, the steam conducting pipe 340, the branch pipe 351, and the steam tube 353 are exemplified as the guide pipe.
  • the pump 330 that performs intermittent water supply operation emits an appropriate amount of water to the high-temperature chamber space 430, so that the water evaporates instantaneously.
  • the internal pressure of the chamber space 430 increases rapidly. Therefore, the steam is injected from the nozzle 352 at a high pressure, and traverses the internal space of the storage tank 200 up and down. Clothing tends to gather near the lower end of the rotating drum 210 due to gravity. Since the vapor
  • the branch pipe 351 includes a parent pipe 354 connected to the steam conducting pipe 340, an upper pipe 355 bent upward from the parent pipe 354, and a lower pipe 356 bent downward from the parent pipe 354. Steam or water flows into the parent pipe 354 through the steam conducting pipe 340.
  • the upper tube 355 is connected to the steam tube 353, and defines an upward path for the steam toward the nozzle 352. In the present embodiment, the upward path defined by the upper tube 355 and the steam tube 353 is exemplified as the first path.
  • the parent pipe 354 is exemplified as the inflow pipe.
  • the upper tube 355 is exemplified as the first tube.
  • the lower tube 356 defines a downward path. While the pump 330 performs a continuous water supply operation, the water that flows into the branch pipe 351 through the steam conducting pipe 340 flows down through the lower pipe 356 by gravity. In the present embodiment, the downward path defined by the lower tube 356 is exemplified as the second path. The lower tube 356 is exemplified as the second tube.
  • FIG. 12 shows the included angle ⁇ 1 between the parent tube 354 and the upper child tube 355.
  • FIG. 12 also shows the included angle ⁇ ⁇ b> 2 between the parent tube 354 and the lower child tube 356.
  • the included angle ⁇ 1 is an obtuse angle
  • the included angle ⁇ 2 is an acute angle. Since the included angle ⁇ 2 is an acute angle, the flow loss from the parent tube 354 to the lower tube 356 is relatively large. Therefore, the steam that has flowed into the parent pipe 354 hardly flows to the lower child pipe 356 and flows mainly to the upper child pipe 355.
  • the upper tube 355 defines an upward flow path, the water flowing into the parent tube 354 hardly flows to the upper tube 355 and mainly flows to the lower tube 356 due to the action of gravity. Therefore, the flow path of steam and the flow path of water are appropriately separated.
  • FIG. 13 is a graph schematically showing the relationship between the intermittent operation of the pump 330 and the temperature in the chamber space 430. The intermittent operation of the pump 330 will be described with reference to FIGS. 8, 11, and 13.
  • the period during which the pump 330 is operating (ON period) is set shorter than the period during which the pump 330 is stopped (OFF period). As a result, an appropriate amount of water is emitted into the chamber space 430.
  • the OFF period a predetermined amount of water is supplied to the chamber space 430.
  • water evaporates and becomes steam.
  • the temperature of the chamber space 430 temporarily decreases due to the heat of vaporization caused by the phase change from water to steam.
  • the heater 425 can sufficiently raise the temperature of the chamber space 430 during the OFF period. Therefore, high-pressure steam continues to be supplied to the storage tank 200 while the pump 330 is intermittently operated.
  • the chamber space 430 is sufficiently heated during the OFF period, and an appropriate amount of water that instantaneously evaporates is supplied to the thermal energy of the steam generator 420 including the chamber space 430 during the ON period. (For example, about 2 cc / time), the high-pressure steam is continuously supplied to the storage tank 200.
  • FIG. 14 is a graph schematically showing a change in the temperature of the water supplied to the water tank 220 in the washing step. The effect of the steam used in the washing process will be described with reference to FIGS.
  • a hot water heater 160 is disposed below the water tank 220.
  • the hot water heater 160 is used to heat the water supplied into the water tank 220.
  • the hot water heater 160 is exemplified as the second heater.
  • the dotted line after stopping the heating represents the change in the temperature of the water contained in the clothing when the heating by the hot water heater 160 is stopped and no steam is supplied.
  • the solid line after stopping the heating represents a change in the temperature of the water contained in the clothing when the heating by the hot water heater 160 is stopped and the steam is supplied to the storage tank 200.
  • the steam supplied to the storage tank 200 has a high temperature and is directly supplied to the clothing, so that the temperature drop of the water contained in the clothing in the water tank 220 is alleviated.
  • the heater 425 used in the steam generator 420 consumes less power than the hot water heater 160 attached to the water tank 220. Therefore, compared with the heat insulation of the water in the water tank 220 using the hot water heater 160, the heat insulation by the steam supply can achieve a small amount of power consumption. Therefore, the pump 330 preferably performs an intermittent water supply operation after the hot water heater 160 is stopped.
  • the rotating drum 210 is rotated at a high speed. As shown in FIG. 1, a large number of small holes 219 are formed in the peripheral wall 211 of the rotary drum 210.
  • the clothing housed in the rotating drum 210 is pressed against the peripheral wall 211 by the centrifugal force generated by the rotation of the rotating drum 210. As a result, moisture contained in the clothing is released out of the rotating drum 210 through the small holes 219. Thus, the garment is properly dehydrated.
  • Dehydrated clothing fibers tend to hydrogen bond with each other.
  • the hydrogen bonds between the fibers result in clothing folds.
  • the steam breaks hydrogen bonds between the fibers.
  • clothing wrinkles are reduced. Therefore, it is preferable that the pump 330 performs an intermittent water supply operation while the garment is undergoing a dehydration process.
  • steam is injected from the nozzle 352 into the rotating drum 210 at a high pressure.
  • the steam sprayed from the nozzle 352 crosses the storage tank 200, so that the steam sticks to the peripheral wall 211 and is uniformly sprayed on the rotating clothing. As a result, wrinkles are less likely to occur over the entire clothing in the rotating drum 210.
  • 15A to 15C are schematic timing charts showing the timing of supplying steam during the dehydration process. The steam supply timing will be described with reference to FIGS. 1 and 15A to 15C.
  • the steam supply mechanism 300 may start supplying steam after a predetermined period (T1) has elapsed from the start of the dehydration step. In this case, since the garment contains less moisture, the garment is efficiently moistened by the heat of steam and moisture. As shown in FIGS. 15B and 15C, the steam supply mechanism 300 may start supplying steam in synchronization with the start of the dehydration process. In this case, since the temperature of the garment is raised at the initial stage of the dehydration process, the garment is effectively wetted at a high temperature. As shown in FIGS. 15A and 15B, the steam supply mechanism 300 may supply steam during a part of the dehydration process. As shown in FIG. 15C, the period during which the steam supply mechanism 300 supplies steam may coincide with the period from the start to the end of the dehydration process.
  • T1 predetermined period
  • the steam generator 420 is cooled with the end of the treatment of clothing using steam. If the steam generator 420 is cooled, unnecessary injection of high temperature steam into the storage tank 200 is prevented.
  • the power supply to the heater 425 is stopped to cool the steam generator 420. Thereafter, the pump 330 starts a continuous water supply operation. As a result, water continuously flows from the water storage tank 320 into the chamber space 430. The water that flows into the chamber space 430 takes heat from the steam generator 420 and flows into the storage tank 200. Therefore, the steam generator 420 is cooled in a short time.
  • FIG. 16 is a block diagram schematically showing control on the door body 120 based on the temperature of the steam generator 420. With reference to FIG. 1, FIG. 6B, and FIG. 16, control with respect to the door body 120 is demonstrated.
  • the washing machine 100 includes a lock mechanism 121 that locks the door 120 in the closed position, and a control unit 122 that controls locking and unlocking of the lock mechanism 121.
  • the mechanical and electrical mechanism of the lock mechanism 121 may be a structure used in a known washing machine.
  • the steam generator 420 includes a thermistor 426.
  • the thermistor 426 detects the temperature of the main piece 423 and outputs a signal corresponding to the detected temperature to the control unit 122.
  • the thermistor 426 is exemplified as the second detection element.
  • the control unit 122 maintains the lock of the door 120 by the lock mechanism 121 until the signal output from the thermistor 426 indicates a temperature equal to or lower than a predetermined value. As a result, the internal space of the storage tank 200 is isolated from the outside until the steam generator 420 becomes a predetermined temperature or lower. Therefore, the washing machine 100 becomes very safe.
  • FIG. 17 is a schematic exploded perspective view of a steam generator 420A used in a washing machine exemplified as a clothing processing apparatus according to the second embodiment.
  • the washing machine of the second embodiment has the same structure as the washing machine 100 of the first embodiment except for the structure of the steam generator 420A. Therefore, differences from the first embodiment will be described below. Except for the following differences, the description of the first embodiment is applied to the washing machine of the second embodiment. Moreover, the same code
  • the steam generator 420A includes a main piece 423A, a lid piece 424A, and a packing ring 433 sandwiched between the main piece 423A and the lid piece 424A. Unlike the main piece 423 described in relation to the first embodiment, no heater is attached to the main piece 423A. On the other hand, a heater 425A is attached to the lid piece 424A.
  • FIG. 18 is a schematic perspective view of the cover piece 424A.
  • the mounting structure of the heater 425A will be described with reference to FIGS.
  • the lid piece 424A includes an inner shield wall 436 surrounded by the outer shield wall 435.
  • the inner shield wall 436 has substantially the same shape as the inner chamber wall 432 of the main piece 423A.
  • the inner shield wall 436 overlaps the inner chamber wall 432.
  • a spiral flow path is formed in the chamber space 430. Since the area of the lower surface 434 surrounded by the inner shield wall 436 faces the inflow port 437 formed in the main piece 423A, it will be referred to as “opposing area 439” in the following description.
  • the heater 425A is attached in the lid piece 424A so as to surround the facing region 439. If the flow rate of the water is adjusted so that the water flowing in from the inflow port 437 reaches the lid piece 424A, the opposing region 439 is particularly hot, so that instantaneous evaporation is achieved.
  • water is emitted upward and becomes steam in the chamber space.
  • the water may be dripped down and vaporized in the chamber space. If necessary, the water may be supplied laterally.
  • the direction of water supply does not limit the principles of the disclosed embodiments in any way.
  • the embodiment described above mainly includes the following configuration.
  • a clothing processing apparatus includes a storage tank that stores clothing, a steam supply mechanism that supplies steam to the storage tank, and a water supply valve that supplies water from an external water source to the steam supply mechanism.
  • the steam supply mechanism includes a water storage tank that stores the water supplied from the water supply valve, a steam generator for generating the steam, and a pump that supplies the water in the water storage tank to the steam generator. It is characterized by providing.
  • the pump supplies the water stored in the water storage tank to the steam generator. Since a properly regulated amount of water is supplied to the steam generator, the water hitting the steam generator evaporates. The pressure in the steam generator increases rapidly due to the vaporization pressure resulting from the evaporation of water, and the steam is injected at a high pressure into the storage tank in which clothing is stored. Therefore, the clothing processing apparatus can efficiently supply steam to the clothing.
  • the steam generator may be disposed above the storage tank.
  • the steam generator may be disposed above the water storage tank.
  • the clothing processing apparatus may further include a rectangular box-shaped housing that houses the storage tank and the steam supply mechanism.
  • the housing may include a front wall in which an input port for inputting the clothing into the storage tub is formed, and a rear wall opposite to the front wall.
  • the storage tank may be a cylindrical body having a central axis extending from the front wall toward the rear wall.
  • the steam generator and the water tank may be arranged symmetrically with respect to the central axis or a plane including the central axis.
  • the clothing processing apparatus further includes a rectangular box-shaped housing that houses the storage tank and the steam supply mechanism.
  • the housing includes a front wall in which an input port for inputting clothes into the storage tub is formed, and a rear wall opposite to the front wall.
  • the storage tank is a cylindrical body having a central axis extending from the front wall toward the rear wall. Since the steam generator and the water storage tank are arranged symmetrically with respect to the central axis or a plane including the central axis, the space in the housing is effectively used.
  • the steam generator may include a wall surface defining a chamber for generating the steam, and a heater for heating the wall surface.
  • the pump may supply water to the wall surface heated by the heater.
  • the steam generator has a wall surface that defines a chamber for generating steam.
  • the pump supplies water to the wall surface heated by the first heater.
  • the supplied water hits the wall surface heated by the first heater and becomes water vapor.
  • the vapor pressure of the water vapor rapidly increases the pressure in the chamber, and the steam is injected into the storage tank in which the clothes are stored.
  • the steam is injected at a high pressure so that the steam is supplied directly to the garment. Therefore, the clothing processing apparatus can supply steam to the clothing with high supply efficiency.
  • the pump may adjust the amount of water so that the water hitting the wall surface evaporates instantaneously.
  • the pump adjusts the amount of water suitable for the amount of heat held by the chamber, so that the water hitting the wall surface instantly vaporizes and the pressure in the chamber increases instantaneously. Therefore, the steam supply mechanism can inject steam into the storage tank in which clothing is stored. Unlike the prior art that leaks steam and places the garment in a steam atmosphere, the steam is injected at a high pressure so that the steam is supplied directly to the garment. Therefore, the clothing processing apparatus can supply steam to the clothing with high supply efficiency. For example, even if the amount of heat held by the chamber is small, the pump adjusts the amount of water so that it evaporates instantaneously, so the steam supply mechanism injects steam at high pressure and supplies steam directly to clothing. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
  • Accessory Of Washing/Drying Machine, Commercial Washing/Drying Machine, Other Washing/Drying Machine (AREA)

Abstract

Disclosed is a clothing treatment device provided with: a housing tank (200) that houses clothing; a vapor supply mechanism (300) that supplies vapor to the housing tank; and a water supply valve (310) that supplies water from an outside water source to the vapor supply mechanism. The vapor supply mechanism is characterized by being provided with: a water storage tank (320) for storing water supplied from the water supply valve; a vapor generator (420) for generating vapor; and a pump (330) for supplying water in the water storage tank to the vapor generator.

Description

衣類処理装置Clothing processing equipment
 本発明は、衣類を洗濯、脱水及び/又は乾燥するための衣類処理装置に関する。 The present invention relates to a clothing processing apparatus for washing, dehydrating and / or drying clothing.
 衣類に蒸気を供給し、殺菌を行う洗濯機が開発されている(特許文献1及び2参照)。特許文献1の洗濯機は、水中に浸されたヒータを用いて、蒸気を発生させる。 A washing machine that supplies steam to clothes and sterilizes has been developed (see Patent Documents 1 and 2). The washing machine of Patent Document 1 generates steam using a heater immersed in water.
 特許文献1及び2の洗濯機は、衣類が収容されたドラムに蒸気を供給する。しかしながら、ドラムへ供給される蒸気の圧力は低いので、ドラム内の空間は、蒸気で満たされる必要がある。したがって、特許文献1及び2の洗濯機は、蒸気を発生させるために、多量の電力を消費する。 The washing machines of Patent Documents 1 and 2 supply steam to a drum in which clothing is stored. However, since the pressure of the steam supplied to the drum is low, the space in the drum needs to be filled with steam. Therefore, the washing machines of Patent Documents 1 and 2 consume a large amount of power in order to generate steam.
欧州特許第2039823号公報European Patent No. 2039823 欧州特許第2044255号公報European Patent No. 2044255
 本発明は、衣類に蒸気を効率的に供給することができる構造を有する衣類処理装置を提供することを目的とする。 An object of the present invention is to provide a clothing processing apparatus having a structure capable of efficiently supplying steam to clothing.
 本発明の一局面に係る衣類処理装置は、衣類を収容する収容槽と、該収容槽へ蒸気を供給する蒸気供給機構と、前記蒸気供給機構に外部水源から水を供給する給水弁と、を備える。前記蒸気供給機構は、前記給水弁から供給される前記水を貯める貯水槽と、前記蒸気を発生させるための蒸気発生器と、前記貯水槽中の前記水を前記蒸気発生器に供給するポンプと、を備える。 A clothing processing apparatus according to an aspect of the present invention includes a storage tank that stores clothing, a steam supply mechanism that supplies steam to the storage tank, and a water supply valve that supplies water from an external water source to the steam supply mechanism. Prepare. The steam supply mechanism includes a water storage tank that stores the water supplied from the water supply valve, a steam generator for generating the steam, and a pump that supplies the water in the water storage tank to the steam generator. .
 本発明に係る衣類処理装置は、衣類に蒸気を効率的に供給することができる。 The clothing processing apparatus according to the present invention can efficiently supply steam to clothing.
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
第1実施形態の衣類処理装置として例示される洗濯機の概略的な縦断面図である。It is a schematic longitudinal cross-sectional view of the washing machine illustrated as a clothing processing apparatus of 1st Embodiment. 図1に示される洗濯機の概略的な透視斜視図である。FIG. 2 is a schematic perspective view of the washing machine shown in FIG. 1. 図1に示される洗濯機の筐体に収容された蒸気供給機構の概略的な斜視図である。It is a schematic perspective view of the steam supply mechanism accommodated in the housing of the washing machine shown in FIG. 図3に示される蒸気供給機構の蒸気発生部の概略的な斜視図である。It is a schematic perspective view of the steam generation part of the steam supply mechanism shown by FIG. 図3に示される蒸気供給機構の蒸気発生部の概略的な斜視図である。It is a schematic perspective view of the steam generation part of the steam supply mechanism shown by FIG. 図4A及び図4Bに示される蒸気発生部の蓋部と筐体とを接続するための取付構造の概略的な斜視図である。It is a schematic perspective view of the attachment structure for connecting the cover part and housing | casing of the steam generation part shown by FIG. 4A and FIG. 4B. 図4A及び図4Bに示される蒸気発生部の蒸気発生器の概略的な斜視図である。It is a schematic perspective view of the steam generator of the steam generation unit shown in FIGS. 4A and 4B. 図4A及び図4Bに示される蒸気発生部の蒸気発生器の概略的な斜視図である。It is a schematic perspective view of the steam generator of the steam generation unit shown in FIGS. 4A and 4B. 図6A及び図6Bに示される蒸気発生器の主片の概略的な斜視図である。It is a schematic perspective view of the main piece of the steam generator shown in FIGS. 6A and 6B. 図6A及び図6Bに示される蒸気発生器の概略的な展開斜視図である。FIG. 6B is a schematic exploded perspective view of the steam generator shown in FIGS. 6A and 6B. 図8に示される蒸気発生器の蓋片の概略的な斜視図である。It is a schematic perspective view of the lid | cover piece of the steam generator shown by FIG. 図7に示される主片の概略的な平面図である。FIG. 8 is a schematic plan view of the main piece shown in FIG. 7. 図3に示される蒸気供給機構の給水機構の概略図である。It is the schematic of the water supply mechanism of the steam supply mechanism shown by FIG. 図1に示される洗濯機の収容槽の前部の概略的な背面図である。It is a schematic rear view of the front part of the storage tub of the washing machine shown in FIG. 図11に示される給水機構のポンプの間欠動作とチャンバ空間内の温度との関係を概略的に表すグラフである。12 is a graph schematically showing a relationship between intermittent operation of a pump of the water supply mechanism shown in FIG. 11 and temperature in a chamber space. 図1に示される洗濯機の水槽に供給された水の温度の変化を概略的に表すグラフである。It is a graph which represents roughly the change of the temperature of the water supplied to the water tank of the washing machine shown by FIG. 脱水工程中における蒸気供給のタイミングを表す概略的なタイミングチャートである。It is a schematic timing chart showing the timing of the vapor | steam supply in a spin-drying | dehydration process. 脱水工程中における蒸気供給のタイミングを表す概略的なタイミングチャートである。It is a schematic timing chart showing the timing of the vapor | steam supply in a spin-drying | dehydration process. 脱水工程中における蒸気供給のタイミングを表す概略的なタイミングチャートである。It is a schematic timing chart showing the timing of the vapor | steam supply in a spin-drying | dehydration process. 図6Bに示される蒸気発生器の温度に基づく、扉体に対する制御を概略的に表すブロック図である。It is a block diagram showing roughly control to a door based on a temperature of a steam generator shown in Drawing 6B. 第2実施形態の衣類処理装置として例示される洗濯機に用いられる蒸気発生器の概略的な展開斜視図である。It is a general | schematic expansion | deployment perspective view of the steam generator used for the washing machine illustrated as a clothing processing apparatus of 2nd Embodiment. 図17に示される蒸気発生器の概略的な斜視図である。FIG. 18 is a schematic perspective view of the steam generator shown in FIG. 17.
 以下、図面を参照しつつ、衣類処理装置として例示される洗濯機が説明される。尚、以下の説明で用いられる「上」、「下」、「左」や「右」などの方向を表す用語は、単に、説明の明瞭化を目的とするものである。したがって、これらの用語は、衣類処理装置の原理を何ら限定するものではない。また、衣類処理装置の原理は、衣類に対する洗濯機能及び乾燥機能を有する装置(洗濯乾燥機)、衣類を乾燥する機能のみを有する装置(乾燥機)や衣類を洗濯する機能のみを有する装置(洗濯機)にも適用可能である。 Hereinafter, a washing machine exemplified as a clothing processing apparatus will be described with reference to the drawings. It should be noted that terms used in the following description, such as “up”, “down”, “left”, “right” and the like, are merely for the purpose of clarifying the description. Therefore, these terms do not limit the principle of the clothing processing apparatus. The principle of the clothing processing apparatus is that a device having a washing function and a drying function for clothes (washing dryer), a device having only a function of drying clothes (dryer), and a device having only a function of washing clothes (washing) It is also applicable to the machine.
 <第1実施形態>
 <洗濯機>
 図1は、第1実施形態の洗濯機100の概略的な縦断面図である。図1を用いて、洗濯機100が説明される。
<First Embodiment>
<Washing machine>
FIG. 1 is a schematic longitudinal sectional view of the washing machine 100 of the first embodiment. The washing machine 100 will be described with reference to FIG.
 洗濯機100は、筐体110と、筐体110内で衣類を収容する収容槽200と、を備える。収容槽200は、回転軸RXを取り囲む略円筒形状の周壁211を有する回転ドラム210と、回転ドラム210を収容する水槽220と、を含む。 The washing machine 100 includes a casing 110 and a storage tank 200 that stores clothes in the casing 110. The storage tank 200 includes a rotary drum 210 having a substantially cylindrical peripheral wall 211 that surrounds the rotation axis RX, and a water tank 220 that stores the rotary drum 210.
 筐体110は、収容槽200へ衣類を投入するための投入口が形成された前壁111と、前壁111とは反対側の後壁112と、を備える。回転ドラム210及び水槽220は、前壁111に向けて開口する。 The housing 110 includes a front wall 111 in which an insertion port for putting clothes into the storage tub 200 is formed, and a rear wall 112 on the opposite side of the front wall 111. The rotating drum 210 and the water tank 220 open toward the front wall 111.
 洗濯機100は、前壁111に取り付けられた扉体120を更に備える。扉体120は、前壁111に形成された投入口を閉塞する閉位置と投入口を開放する開位置との間で回動する。使用者は、扉体120を開位置に回動させ、前壁111の投入口を通じて、衣類を収容槽200へ投入することができる。その後、使用者は、扉体120を閉位置に移動させ、洗濯機100に衣類を洗濯させることができる。尚、図1に示される扉体120は、閉位置に存する。 The washing machine 100 further includes a door 120 attached to the front wall 111. The door body 120 rotates between a closed position that closes the charging port formed in the front wall 111 and an open position that opens the charging port. The user can turn the door 120 to the open position, and put the clothes into the storage tub 200 through the insertion port of the front wall 111. Thereafter, the user can move the door 120 to the closed position and cause the washing machine 100 to wash clothes. Note that the door 120 shown in FIG. 1 is in the closed position.
 回転ドラム210は、前壁111と後壁112との間で延びる回転軸RX周りに回転する。収容槽200に投入された衣類は、回転ドラム210の回転に伴って回転ドラム210内を移動し、洗い、すすぎ及び/又は脱水といった様々な処理を受ける。 The rotating drum 210 rotates around a rotation axis RX extending between the front wall 111 and the rear wall 112. The clothes put in the storage tank 200 move in the rotary drum 210 as the rotary drum 210 rotates, and are subjected to various processes such as washing, rinsing and / or dehydration.
 回転ドラム210は、閉位置にある扉体120に対向する底壁212を含む。水槽220は、回転ドラム210の底壁212及び周壁211の一部を取り囲む底部221と、底部221と扉体120との間で、回転ドラム210の周壁211の他の部分を取り囲む前部222と、を備える。 The rotary drum 210 includes a bottom wall 212 that faces the door 120 at the closed position. The water tank 220 includes a bottom 221 that surrounds a part of the bottom wall 212 and the peripheral wall 211 of the rotary drum 210, and a front part 222 that surrounds the other part of the peripheral wall 211 of the rotary drum 210 between the bottom 221 and the door body 120. .
 収容槽200は、回転ドラム210の底壁212に取り付けられた回転シャフト230を含む。回転シャフト230は、回転軸RXに沿って、後壁112に向けて延びる。回転シャフト230は、水槽220の底部221を貫通し、水槽220と後壁112との間に現れる。 The storage tank 200 includes a rotating shaft 230 attached to the bottom wall 212 of the rotating drum 210. The rotation shaft 230 extends toward the rear wall 112 along the rotation axis RX. The rotating shaft 230 passes through the bottom 221 of the water tank 220 and appears between the water tank 220 and the rear wall 112.
 洗濯機100は、水槽220の下方に据え付けられたモータ231と、水槽220の外に露出した回転シャフト230に取り付けられたプーリ232と、モータ231の動力をプーリ232に伝達するためのベルト233と、を更に備える。モータ231が作動すると、モータ231の動力は、ベルト233、プーリ232及び回転シャフト230に伝達される。この結果、回転ドラム210は、水槽220内で回転する。 The washing machine 100 includes a motor 231 installed below the water tank 220, a pulley 232 attached to the rotating shaft 230 exposed outside the water tank 220, and a belt 233 for transmitting the power of the motor 231 to the pulley 232. Are further provided. When the motor 231 operates, the power of the motor 231 is transmitted to the belt 233, the pulley 232, and the rotating shaft 230. As a result, the rotating drum 210 rotates in the water tank 220.
 洗濯機100は、水槽220の前部222と扉体120との間に配設されたパッキン構造130を更に備える。閉位置に回動された扉体120は、パッキン構造130を圧縮する。この結果、パッキン構造130は、扉体120と前部222との間で水密シール構造を形成する。 The washing machine 100 further includes a packing structure 130 disposed between the front portion 222 of the water tank 220 and the door body 120. The door 120 rotated to the closed position compresses the packing structure 130. As a result, the packing structure 130 forms a watertight seal structure between the door body 120 and the front portion 222.
 筐体110は、前壁111と後壁112との間で略水平に延びる筐体天壁113と、筐体天壁113とは反対側の筐体底壁114と、を含む。洗濯機100は、蛇口(図示せず)に接続される給水口140と、給水口140を介して導入された水を分配するための分配部141と、を更に備える。給水口140は、筐体天壁113上に現れる。分配部141は、筐体天壁113と収容槽200との間に配設される。本実施形態において、蛇口は、外部水源として例示される。 The housing 110 includes a housing top wall 113 that extends substantially horizontally between the front wall 111 and the rear wall 112, and a housing bottom wall 114 on the opposite side of the housing top wall 113. The washing machine 100 further includes a water supply port 140 connected to a faucet (not shown), and a distribution unit 141 for distributing water introduced through the water supply port 140. The water supply port 140 appears on the housing top wall 113. The distribution unit 141 is disposed between the housing top wall 113 and the storage tank 200. In this embodiment, the faucet is exemplified as an external water source.
 洗濯機100は、洗剤が収容される洗剤収容部(後述される)及び収容槽200へ蒸気を噴射する蒸気供給機構300(後述される)を更に備える。分配部141は、収容槽200、洗剤収容部及び蒸気供給機構300に選択的に水を供給するための複数の給水弁を備える。尚、図1において、収容槽200及び洗剤収容部への給水経路は示されていない。収容槽200及び洗剤収容部への給水に対して、既知の洗濯機に用いられている技術が好適に適用される。 The washing machine 100 further includes a detergent storage unit (described later) in which the detergent is stored and a steam supply mechanism 300 (described later) that injects steam into the storage tank 200. The distribution unit 141 includes a plurality of water supply valves for selectively supplying water to the storage tank 200, the detergent storage unit, and the steam supply mechanism 300. In addition, in FIG. 1, the water supply path | route to the storage tank 200 and a detergent storage part is not shown. A technique used in a known washing machine is suitably applied to water supply to the storage tank 200 and the detergent storage unit.
 <蒸気供給機構>
 図2は、洗濯機100の概略的な透視斜視図である。図3は、筐体110に収容された蒸気供給機構300の概略的な斜視図である。図2及び図3において、筐体110は点線で表されている。図3において、収容槽200は、示されていない。図3中の矢印は、給水経路を概略的に表す。図1乃至図3を参照して、蒸気供給機構300が説明される。
<Steam supply mechanism>
FIG. 2 is a schematic perspective view of the washing machine 100. FIG. 3 is a schematic perspective view of the steam supply mechanism 300 accommodated in the housing 110. 2 and 3, the housing 110 is represented by a dotted line. In FIG. 3, the storage tank 200 is not shown. The arrows in FIG. 3 schematically represent the water supply path. The steam supply mechanism 300 will be described with reference to FIGS. 1 to 3.
 蒸気供給機構300は、分配部141の一部として用いられる給水弁310と、収容槽200の下方に配置された貯水槽320と、を備える。給水弁310は、貯水槽320への給水を制御するために用いられる。給水弁310が開くと、給水口140から貯水槽320へ水が供給される。給水弁310が閉じると、貯水槽320への給水は停止される。 The steam supply mechanism 300 includes a water supply valve 310 used as a part of the distribution unit 141 and a water storage tank 320 disposed below the storage tank 200. The water supply valve 310 is used to control water supply to the water storage tank 320. When the water supply valve 310 is opened, water is supplied from the water supply port 140 to the water storage tank 320. When the water supply valve 310 is closed, the water supply to the water storage tank 320 is stopped.
 蒸気供給機構300は、貯水槽320に取り付けられたポンプ330と、ポンプ330から吐出された水を受ける蒸気発生部400と、を更に備える。ポンプ330は、蒸気発生部400に間欠的に或いは連続的に給水動作を行う。間欠的な給水動作の間、ポンプ330は、瞬間的な蒸気発生が生ずるように調整された適量の水を蒸気発生部400に供給する。ポンプ330が蒸気発生部400に連続的に給水を行うならば、蒸気発生のために用いられた水に含まれる不純物(スケール)が蒸気発生部400から洗い流される。蒸気発生部400は、後述される。 The steam supply mechanism 300 further includes a pump 330 attached to the water storage tank 320 and a steam generator 400 that receives water discharged from the pump 330. The pump 330 performs a water supply operation intermittently or continuously to the steam generation unit 400. During the intermittent water supply operation, the pump 330 supplies an appropriate amount of water adjusted so that instantaneous steam generation occurs to the steam generation unit 400. If the pump 330 continuously supplies water to the steam generation unit 400, impurities (scale) contained in the water used for generating steam are washed away from the steam generation unit 400. The steam generator 400 will be described later.
 図2に示される如く、蒸気供給機構300は、蒸気発生部400から下方に延びる蒸気導通管340を更に備える。図1に示される如く、水槽220の前部222は、回転ドラム210の周壁211を取り囲む周壁部223と、パッキン構造130と協働して水密シール構造を形成する環状部224と、を含む。蒸気導通管340は、周壁部223へ接続される。蒸気発生部400が発生させた蒸気は、蒸気導通管340を通じて、収容槽200へ供給される。尚、蒸気導通管340は、ベローズ管を含んでもよい。ベローズ管は、収容槽200の回転に起因する振動の蒸気発生部400への伝達を緩和することができる。 As shown in FIG. 2, the steam supply mechanism 300 further includes a steam conduction pipe 340 extending downward from the steam generation unit 400. As shown in FIG. 1, the front portion 222 of the water tank 220 includes a peripheral wall portion 223 that surrounds the peripheral wall 211 of the rotating drum 210 and an annular portion 224 that cooperates with the packing structure 130 to form a watertight seal structure. The steam conduction pipe 340 is connected to the peripheral wall part 223. The steam generated by the steam generation unit 400 is supplied to the storage tank 200 through the steam conduction pipe 340. Note that the steam conduction pipe 340 may include a bellows pipe. The bellows pipe can alleviate the transmission of vibration caused by the rotation of the storage tank 200 to the steam generation unit 400.
 図4A及び図4Bは、蒸気発生部400の概略的な斜視図である。図2乃至図4Bを参照して、蒸気発生部400の構造及び蒸気発生部400の配置が説明される。 4A and 4B are schematic perspective views of the steam generating unit 400. FIG. With reference to FIG. 2 thru | or FIG. 4B, the structure of the steam generation part 400 and arrangement | positioning of the steam generation part 400 are demonstrated.
 蒸気発生部400は、略矩形箱状のケース410と、ケース410内に収容された蒸気発生器420と、を備える。ケース410は、蒸気発生器420を収容するための容器部411と、容器部411を覆う蓋部412と、を備える。 The steam generation unit 400 includes a substantially rectangular box-shaped case 410 and a steam generator 420 accommodated in the case 410. The case 410 includes a container part 411 for housing the steam generator 420 and a lid part 412 that covers the container part 411.
 蒸気発生器420は、接続管421及びチューブ(図示せず)を用いて、ポンプ330に接続される。また、蒸気発生器420は、排気管422を用いて、蒸気導通管340に接続される。容器部411は、開口部413が形成された底壁部414を含む。接続管421及び排気管422は、開口部413を通じて下方に突出する。 The steam generator 420 is connected to the pump 330 using a connection pipe 421 and a tube (not shown). Further, the steam generator 420 is connected to the steam conduction pipe 340 using the exhaust pipe 422. The container part 411 includes a bottom wall part 414 in which an opening 413 is formed. The connection pipe 421 and the exhaust pipe 422 protrude downward through the opening 413.
 ポンプ330が貯水槽320から蒸気発生部400内の蒸気発生器420に強制的に給水を行うので、蒸気発生器420は貯水槽320より上方に配置されてもよい。ポンプを用いることなく、貯水槽から蒸気発生器への給水が行われるならば、貯水槽の水は、重力の作用を利用して、蒸気発生器に送られる必要がある。この場合、蒸気発生器は、貯水槽の下方に配置される必要がある。本実施形態において、蒸気発生器420への給水にポンプ330が利用される。水は、ポンプ330の圧力で強制的に貯水槽320から蒸気発生器420へ供給されることとなる。したがって、本実施形態の洗濯機100の設計において、蒸気発生器420と貯水槽320との間の垂直方向の位置関係に関する制約は少ない。蒸気発生器420及び貯水槽320の配置設計は、高い自由度を有するので、筐体110の内部空間は、有効に利用される。 Since the pump 330 forcibly supplies water from the water storage tank 320 to the steam generator 420 in the steam generation unit 400, the steam generator 420 may be disposed above the water storage tank 320. If water is supplied from the water storage tank to the steam generator without using a pump, the water in the water storage tank needs to be sent to the steam generator using the action of gravity. In this case, the steam generator needs to be disposed below the water tank. In the present embodiment, the pump 330 is used for supplying water to the steam generator 420. Water is forcibly supplied from the water storage tank 320 to the steam generator 420 by the pressure of the pump 330. Therefore, in the design of the washing machine 100 of this embodiment, there are few restrictions regarding the vertical positional relationship between the steam generator 420 and the water storage tank 320. Since the layout design of the steam generator 420 and the water storage tank 320 has a high degree of freedom, the internal space of the housing 110 is effectively used.
 図2に示される如く、蒸気発生器420は、貯水槽320よりも上方に配置される。ポンプ330は、水を、貯水槽320から蒸気発生器420へ適切に供給することができる。 As shown in FIG. 2, the steam generator 420 is disposed above the water storage tank 320. The pump 330 can appropriately supply water from the water tank 320 to the steam generator 420.
 蒸気発生器が貯水槽より下方に配置されるならば、蒸気発生器への給水経路中の故障によって、蒸気発生器へ偶発的に水が流入することもある。この結果、蒸気が不必要に発生されることもある。 If the steam generator is placed below the reservoir, water may accidentally flow into the steam generator due to a failure in the water supply path to the steam generator. As a result, steam may be generated unnecessarily.
 本実施形態において、ポンプ330が蒸気発生器420への給水に用いられるので、貯水槽320は、蒸気発生器420より下方に配置されてもよい。例え、ポンプ330が故障し、蒸気発生器420への給水が停止しても、貯水槽320、ポンプ330及び蒸気発生器420を繋ぐホース内に滞留する水は、蒸気発生器420にほとんど流入しない。 In this embodiment, since the pump 330 is used for supplying water to the steam generator 420, the water storage tank 320 may be disposed below the steam generator 420. For example, even if the pump 330 fails and the water supply to the steam generator 420 stops, the water staying in the hose connecting the water storage tank 320, the pump 330, and the steam generator 420 hardly flows into the steam generator 420. .
 上述の如く、ポンプなしで貯水槽から蒸気発生器への給水経路が設計されるならば、蒸気発生器は、貯水槽の下方に配設される必要がある。例えば、貯水槽から蒸気発生器への給水を制御するために設けられた開閉弁といった制御部品が故障するならば、蒸気発生器への給水制御は不能となる。この結果、重力の作用により、水は、貯水槽から蒸気発生器へ不必要に流入することとなる。本実施形態において、貯水槽320から蒸気発生器420への給水にポンプ330が用いられるので、貯水槽320から蒸気発生器420への不必要な給水は生じにくくなる。 As described above, if the water supply path from the water storage tank to the steam generator is designed without a pump, the steam generator needs to be disposed below the water storage tank. For example, if a control component such as an on-off valve provided to control water supply from the water storage tank to the steam generator fails, water supply control to the steam generator becomes impossible. As a result, due to the action of gravity, water flows unnecessarily from the water storage tank to the steam generator. In the present embodiment, since the pump 330 is used to supply water from the water storage tank 320 to the steam generator 420, unnecessary water supply from the water storage tank 320 to the steam generator 420 is unlikely to occur.
 図2に示される如く、筐体110は、前壁111と後壁112との間で立設された右壁115と、右壁115とは反対側の左壁116と、を備える。貯水槽320は、筐体底壁114、後壁112及び左壁116によって規定される角隅部に配置される。蒸気発生器420は、右壁115、筐体天壁113及び前壁111によって規定される角隅部に配置される。このように蒸気発生器420及び貯水槽320は、収容槽200の中心軸(回転軸RX)に対して、略対称の位置に配置される。 As shown in FIG. 2, the housing 110 includes a right wall 115 erected between the front wall 111 and the rear wall 112, and a left wall 116 opposite to the right wall 115. The water storage tank 320 is disposed at a corner corner defined by the housing bottom wall 114, the rear wall 112, and the left wall 116. The steam generator 420 is arranged at a corner corner defined by the right wall 115, the case ceiling wall 113, and the front wall 111. As described above, the steam generator 420 and the water storage tank 320 are disposed at substantially symmetrical positions with respect to the central axis (rotation axis RX) of the storage tank 200.
 図2に示される如く、洗剤収容部101は、前壁111、筐体天壁113及び左壁116によって規定される角隅部に配設される。筐体110の他の角隅部は、貯水槽320や蒸気発生器420の配置に有効に利用される。図2に示される如く、貯水槽320は、筐体底壁114、後壁112及び左壁116によって規定される角隅部に配置される。蒸気発生器420は、右壁115、筐体天壁113及び前壁111によって規定される角隅部に配置される。筐体110は、略矩形箱であり、且つ、収容槽200は円筒形であるので、筐体110の角隅部には広い空間が形成される。上述の如く、角隅部の広い空間それぞれは、洗剤収容部101、貯水槽320及び蒸気発生器420の配置に有効に利用される。貯水槽320及び蒸気発生器420は、筐体110の角隅部に応じて、大きく設計されてもよい。 As shown in FIG. 2, the detergent container 101 is disposed at corners defined by the front wall 111, the case top wall 113, and the left wall 116. The other corners of the casing 110 are effectively used for the arrangement of the water storage tank 320 and the steam generator 420. As shown in FIG. 2, the water storage tank 320 is disposed at a corner corner defined by the housing bottom wall 114, the rear wall 112, and the left wall 116. The steam generator 420 is arranged at a corner corner defined by the right wall 115, the case ceiling wall 113, and the front wall 111. Since the casing 110 is a substantially rectangular box and the storage tank 200 is cylindrical, a wide space is formed at the corners of the casing 110. As described above, each of the wide corner corner spaces is effectively used for the arrangement of the detergent container 101, the water storage tank 320, and the steam generator 420. The water storage tank 320 and the steam generator 420 may be designed to be large according to the corners of the housing 110.
 尚、洗剤収容部は、前壁、筐体天壁及び右壁によって規定される角隅部に配設されてもよい。この場合、蒸気発生器は、左壁、筐体天壁及び前壁によって規定される角隅部に配置されてもよい。貯水槽は、蒸気発生器への配管設計に応じて、筐体底壁によって規定される角隅部のうち1つに配置されてもよい。 Note that the detergent container may be disposed at the corners defined by the front wall, the case top wall, and the right wall. In this case, a steam generator may be arrange | positioned at the corner | angular corner prescribed | regulated by the left wall, a housing | casing top wall, and a front wall. The water storage tank may be arranged at one of the corners defined by the bottom wall of the housing in accordance with the piping design to the steam generator.
 例えば、貯水槽が収容槽の回転軸を軸とする洗剤収容部の略回転対称位置に配置され、且つ、蒸気発生器が、収容槽の回転軸を含む水平面に対して貯水槽と対称に配置されてもよい。このようなレイアウト設計においても、図2に示されるレイアウト設計と同様に、筐体の内部空間は有効に利用されることとなる。 For example, the water storage tank is disposed at a substantially rotationally symmetric position of the detergent container with the rotation axis of the storage tank as an axis, and the steam generator is disposed symmetrically with the water storage tank with respect to a horizontal plane including the rotation axis of the storage tank. May be. In such a layout design as well, the internal space of the housing is effectively used as in the layout design shown in FIG.
 貯水槽は、前壁、筐体天壁及び左壁又は右壁によって規定される角隅部に配置された洗剤収容部の下方に配置されてもよい。このとき、蒸気発生器は、収容槽の回転軸を軸とする貯水槽の略回転対称位置に配置されてもよい。このようなレイアウト設計においても、図2に示されるレイアウト設計と同様に、筐体の内部空間は有効に利用されることとなる。 The water storage tank may be disposed below the detergent container disposed at the corners defined by the front wall, the top wall of the casing, and the left or right wall. At this time, a steam generator may be arrange | positioned in the substantially rotationally symmetric position of the water storage tank centering on the rotating shaft of a storage tank. In such a layout design as well, the internal space of the housing is effectively used as in the layout design shown in FIG.
 本実施形態において、収容槽200の回転軸RXは、略水平である。代替的に、収容槽は、傾斜した回転軸周りに回転してもよい。例えば、回転軸は、後壁から前壁に向けて上方に傾斜してもよい。貯水槽は、傾斜した回転軸を含む平面より下方に配設される一方で、蒸気発生器は、当該平面より上方に配設されてもよい。また、貯水槽が傾斜した回転軸を含む鉛直面に対して左又は右に配置されるならば、蒸気発生器は、当該鉛直面に対して右又は左に配置されてもよい。このようなレイアウト設計の下、筐体と収容槽との間の空間は、有効に利用されることとなる。 In this embodiment, the rotation axis RX of the storage tank 200 is substantially horizontal. Alternatively, the storage tank may rotate about an inclined rotation axis. For example, the rotation axis may be inclined upward from the rear wall toward the front wall. The water storage tank may be disposed below a plane including the inclined rotation axis, while the steam generator may be disposed above the plane. Further, if the water storage tank is arranged on the left or right with respect to the vertical plane including the inclined rotation axis, the steam generator may be arranged on the right or left with respect to the vertical plane. Under such a layout design, the space between the housing and the storage tank is effectively used.
 図5は、蓋部412と筐体110とを接続するための取付構造の概略的な斜視図である。図3、図4A及び図5を参照して、蓋部412と筐体110との間の取付構造が説明される。 FIG. 5 is a schematic perspective view of a mounting structure for connecting the lid portion 412 and the housing 110. With reference to FIG. 3, FIG. 4A, and FIG. 5, the attachment structure between the cover part 412 and the housing | casing 110 is demonstrated.
 筐体110は、右壁115の上縁に沿って配設された第1補強フレーム117と、前壁111の上縁に沿って配設された第2補強フレーム118と、を更に備える。 The housing 110 further includes a first reinforcement frame 117 disposed along the upper edge of the right wall 115 and a second reinforcement frame 118 disposed along the upper edge of the front wall 111.
 蓋部412は、略矩形状の上壁415と、上壁415の縁部から下方に突出する蓋部周壁416と、蓋部周壁416から前方に突出する突出片417と、を含む。洗濯機100は、第1補強フレーム117と上壁415とに接続される第1取付片151と、第2補強フレーム118と突出片417とに接続される第2取付片152と、を更に備える。第1取付片151及び第2取付片152は、蓋部412から上方に突出し、筐体天壁113と蒸気発生部400とを離間させる。この結果、蒸気発生部400から筐体110への熱伝達は小さくなる。本実施形態において、第1取付片151及び第2取付片152は、保持部として例示される。 The lid 412 includes a substantially rectangular upper wall 415, a lid peripheral wall 416 that projects downward from the edge of the upper wall 415, and a projecting piece 417 that projects forward from the lid peripheral wall 416. The washing machine 100 further includes a first attachment piece 151 connected to the first reinforcement frame 117 and the upper wall 415, and a second attachment piece 152 connected to the second reinforcement frame 118 and the protruding piece 417. . The first attachment piece 151 and the second attachment piece 152 protrude upward from the lid portion 412 to separate the casing top wall 113 and the steam generation portion 400. As a result, heat transfer from the steam generation unit 400 to the housing 110 is reduced. In this embodiment, the 1st attachment piece 151 and the 2nd attachment piece 152 are illustrated as a holding | maintenance part.
 図6A及び図6Bは、蒸気発生器420の概略的な斜視図である。図6A及び図6Bを参照して、蒸気発生器420が説明される。 6A and 6B are schematic perspective views of the steam generator 420. FIG. The steam generator 420 is described with reference to FIGS. 6A and 6B.
 蒸気発生器420は、略矩形状の主片423と、主片423上に配設される蓋片424と、主片423に配設される線状のヒータ425と、を備える。本実施形態において、主片423及び蓋片424は、アルミニウムから形成される。したがって、主片423及び蓋片424は、ヒータ425によって適切に加熱される。 The steam generator 420 includes a substantially rectangular main piece 423, a lid piece 424 disposed on the main piece 423, and a linear heater 425 disposed on the main piece 423. In the present embodiment, the main piece 423 and the lid piece 424 are made of aluminum. Therefore, the main piece 423 and the lid piece 424 are appropriately heated by the heater 425.
 蒸気発生器420は、サーミスタ426を更に備える。上述の接続管421、排気管422及びヒータ425に加えて、サーミスタ426も主片423に取り付けられる。ヒータ425は、サーミスタ426によって得られる温度情報に応じて制御される。したがって、主片423及び蓋片424の温度は、略一定に保たれる。尚、サーミスタ426の代わりに、所定の温度でヒータ425の入切を制御するサーモスタットを用いても同様の効果が得られる。 The steam generator 420 further includes a thermistor 426. In addition to the connection pipe 421, the exhaust pipe 422 and the heater 425, the thermistor 426 is also attached to the main piece 423. The heater 425 is controlled according to temperature information obtained by the thermistor 426. Therefore, the temperature of the main piece 423 and the lid piece 424 is kept substantially constant. The same effect can be obtained by using a thermostat that controls on / off of the heater 425 at a predetermined temperature instead of the thermistor 426.
 図7は、主片423の概略的な斜視図である。図6B及び図7を参照して、主片423が説明される。 FIG. 7 is a schematic perspective view of the main piece 423. The main piece 423 will be described with reference to FIGS. 6B and 7.
 主片423は、接続管421、排気管422及びサーミスタ426が取り付けられる主片下面427と、ヒータ425が配設される周面428と、主片下面427とは反対側の上面429と、を含む。主片423は、上面429から蓋片424に向けて立設し、略三角形状のチャンバ空間430を規定する外チャンバ壁431と、チャンバ空間430内で蒸気の流動経路を規定する略J字形状の内チャンバ壁432と、を更に備える。 The main piece 423 includes a main piece lower surface 427 to which the connection pipe 421, the exhaust pipe 422 and the thermistor 426 are attached, a peripheral surface 428 on which the heater 425 is disposed, and an upper surface 429 on the opposite side of the main piece lower surface 427. Including. The main piece 423 is erected from the upper surface 429 toward the lid piece 424, and has an outer chamber wall 431 that defines a substantially triangular chamber space 430, and a substantially J-shape that defines a flow path of steam in the chamber space 430. And an inner chamber wall 432.
 図8は、蒸気発生器420の概略的な展開斜視図である。図9は、蓋片424の概略的な斜視図である。図3、図6B乃至図9を参照して、蒸気発生器420が説明される。 FIG. 8 is a schematic exploded perspective view of the steam generator 420. FIG. 9 is a schematic perspective view of the lid piece 424. The steam generator 420 is described with reference to FIGS. 3 and 6B to 9.
 蒸気発生器420は、外チャンバ壁431を取り巻くように主片423に取り付けられるパッキンリング433を備える。パッキンリング433は、耐熱性ゴムから形成される。 The steam generator 420 includes a packing ring 433 attached to the main piece 423 so as to surround the outer chamber wall 431. The packing ring 433 is made of heat resistant rubber.
 蓋片424は、主片423に対向する下面434と、外チャンバ壁431と略同形状の外シールド壁435と、を備える。蓋片424は、主片423に押しつけられる。この結果、外シールド壁435は、パッキンリング433を圧縮し、チャンバ空間430を気密に保つ。 The lid piece 424 includes a lower surface 434 facing the main piece 423, and an outer shield wall 435 having substantially the same shape as the outer chamber wall 431. The lid piece 424 is pressed against the main piece 423. As a result, the outer shield wall 435 compresses the packing ring 433 and keeps the chamber space 430 airtight.
 主片423には、接続管421を通じて供給された水がチャンバ空間430内に流入するための流入口437が形成される。チャンバ空間430の略中央に形成された流入口437は、内チャンバ壁432に取り囲まれる。ポンプ330が所定量の水を蒸気発生器420に供給するならば、接続管421及び流入口437を通じて、水が上向きに射出される。この結果、水は、内チャンバ壁432、内チャンバ壁432によって囲まれた主片423の上面429及び/又は流入口437の上方に位置する蓋片424の下面434に衝突する。蒸気発生器420は、ヒータ425によって加熱され(例えば、約200℃)、高い熱エネルギを有する。間欠的な給水動作を行うポンプ330は、蒸気発生器420が有する熱エネルギに対して、適量の水を供給する(例えば、約2cc/回)。この結果、流入口437から上向きに出射された水は、瞬時に蒸発する。本実施形態において、蒸気を発生させるために用いられるチャンバ空間430は、チャンバとして例示される。流入口437を通じて供給された水が衝突する内チャンバ壁432、内チャンバ壁432によって囲まれた主片423の上面429及び/又は流入口437の上方に位置する蓋片424の下面434は、壁面として例示される。接続管421が取り付けられる流入口437は、取付部として例示される。 The main piece 423 is formed with an inlet 437 through which water supplied through the connection pipe 421 flows into the chamber space 430. An inflow port 437 formed substantially at the center of the chamber space 430 is surrounded by the inner chamber wall 432. If the pump 330 supplies a predetermined amount of water to the steam generator 420, the water is injected upward through the connection pipe 421 and the inlet 437. As a result, the water collides with the inner chamber wall 432, the upper surface 429 of the main piece 423 surrounded by the inner chamber wall 432 and / or the lower surface 434 of the lid piece 424 positioned above the inflow port 437. The steam generator 420 is heated by a heater 425 (eg, about 200 ° C.) and has high thermal energy. The pump 330 that performs intermittent water supply operation supplies an appropriate amount of water to the heat energy of the steam generator 420 (for example, about 2 cc / time). As a result, the water emitted upward from the inlet 437 evaporates instantaneously. In this embodiment, the chamber space 430 used for generating steam is exemplified as a chamber. The inner chamber wall 432 that the water supplied through the inlet 437 collides with, the upper surface 429 of the main piece 423 surrounded by the inner chamber wall 432 and / or the lower surface 434 of the lid piece 424 positioned above the inlet 437 has a wall surface As an example. The inflow port 437 to which the connection pipe 421 is attached is exemplified as the attachment portion.
 ポンプ330が供給する水は、不純物を含んでもよい。水が気化するときに、水中の不純物は、チャンバ空間430を形成する壁面に付着又は析出することもある。水の瞬時の蒸発の結果、チャンバ空間430の内圧は急激に上昇する。チャンバ空間430の内圧の急激な上昇の結果、チャンバ空間430を形成する壁面に付着又は析出した不純物は、強い圧力を受け、壁面から剥離される。この結果、不純物は、チャンバ空間430の外部へ容易に排出される。 The water supplied by the pump 330 may contain impurities. When water is vaporized, impurities in the water may adhere to or deposit on the wall surface forming the chamber space 430. As a result of the instantaneous evaporation of water, the internal pressure of the chamber space 430 increases rapidly. As a result of the rapid increase in the internal pressure of the chamber space 430, impurities attached or deposited on the wall surface forming the chamber space 430 receive a strong pressure and are peeled off from the wall surface. As a result, the impurities are easily discharged out of the chamber space 430.
 図10は、主片423の概略的な平面図である。図2、図6B及び図10を参照して、主片423が説明される。 FIG. 10 is a schematic plan view of the main piece 423. The main piece 423 will be described with reference to FIGS. 2, 6 </ b> B, and 10.
 ヒータ425は、主片423内で略U字状の経路に沿って延びる。したがって、ヒータ425は、接続管421が取り付けられた流入口437を取り囲む。この結果、内チャンバ壁432及び内チャンバ壁432に取り囲まれた領域は、チャンバ空間430内で最も高温となる。したがって、流入口437を介して出射された水は瞬時に蒸発する。 The heater 425 extends along a substantially U-shaped path in the main piece 423. Therefore, the heater 425 surrounds the inflow port 437 to which the connection pipe 421 is attached. As a result, the inner chamber wall 432 and the region surrounded by the inner chamber wall 432 have the highest temperature in the chamber space 430. Therefore, the water emitted through the inlet 437 evaporates instantaneously.
 外チャンバ壁431によって規定されるチャンバ空間430内で略J字形状の内チャンバ壁432が延出するので、チャンバ空間430は渦巻き状の流動経路を描く。主片423には、流動経路の終端に形成された排気口438が形成される。内チャンバ壁432に取り囲まれる空間内で生じた蒸気は、チャンバ空間430の内圧の増加に伴って、排気口438へ向かう。排気口438には、排気管422が取り付けられる。排気口438に到達した蒸気は、排気管422を通じて、下向きに排気される。 Since the substantially J-shaped inner chamber wall 432 extends in the chamber space 430 defined by the outer chamber wall 431, the chamber space 430 draws a spiral flow path. The main piece 423 has an exhaust port 438 formed at the end of the flow path. The vapor generated in the space surrounded by the inner chamber wall 432 moves toward the exhaust port 438 as the internal pressure of the chamber space 430 increases. An exhaust pipe 422 is attached to the exhaust port 438. The steam that has reached the exhaust port 438 is exhausted downward through the exhaust pipe 422.
 ヒータ425は、渦巻き状の流動経路のうち外側の経路に沿って、U字状に延びる。したがって、内チャンバ壁432に取り囲まれる空間内で生じた蒸気は、加熱されながら、排気管422に向かう。したがって、高温の蒸気が排気されることとなる。 The heater 425 extends in a U shape along the outer path of the spiral flow path. Therefore, the steam generated in the space surrounded by the inner chamber wall 432 moves toward the exhaust pipe 422 while being heated. Therefore, high-temperature steam is exhausted.
 蒸気発生器420は、加熱された壁面に水を出射し瞬時に蒸発させるので、水中に浸されたヒータで蒸気を発生させる従来技術に比べ、同じ蒸気量を発生させるに要する消費電力は少なくて済む。 Since the steam generator 420 emits water to the heated wall surface and instantly evaporates it, less power is required to generate the same amount of steam compared to the prior art that generates steam with a heater immersed in water. That's it.
 図2に示される如く、蒸気発生器420は、収容槽200よりも上方に配置される。水がチャンバ空間430内で気化するとき、蒸気発生器420に供給する水に含有される不純物は、チャンバ空間430を形成する壁面(主片423の外チャンバ壁431、内チャンバ壁432、上面429及び蓋片424の下面434)に付着或いは析出する。不純物がチャンバ空間430を形成する壁面で堆積するならば、壁面とチャンバ空間430に供給された水との間での熱伝達効率が下がる。この結果、水は、チャンバ空間430内で蒸発しにくくなる。しかしながら、本実施形態において、蒸気発生器420は、収容槽200よりも上方に配置されるので、付着或いは析出した不純物は、水の気化によって生じた内圧や重力の作用により、蒸気発生器420の下方へ排出或いは落下される。したがって、不純物は、チャンバ空間430内から収容槽200へ容易に排出される。この結果、蒸気発生器420のチャンバ内で付着或いは析出した不純物は、堆積しにくくなる。したがって、不純物の堆積に起因する気化能力の低下はほとんど生じない。 As shown in FIG. 2, the steam generator 420 is disposed above the storage tank 200. When water is vaporized in the chamber space 430, impurities contained in the water supplied to the steam generator 420 cause wall surfaces (the outer chamber wall 431, the inner chamber wall 432, the upper surface 429 of the main piece 423) to form the chamber space 430. And adheres to or deposits on the lower surface 434) of the lid piece 424. If impurities are deposited on the wall surface forming the chamber space 430, the heat transfer efficiency between the wall surface and the water supplied to the chamber space 430 decreases. As a result, the water is less likely to evaporate in the chamber space 430. However, in this embodiment, since the steam generator 420 is disposed above the storage tank 200, the adhered or precipitated impurities are caused by the internal pressure generated by the vaporization of water or the action of gravity. It is discharged or dropped downward. Therefore, the impurities are easily discharged from the chamber space 430 to the storage tank 200. As a result, impurities attached or precipitated in the chamber of the steam generator 420 are difficult to deposit. Therefore, there is almost no reduction in the vaporization ability due to the accumulation of impurities.
 <給水機構>
 図11は、給水機構500の概略図である。図11を参照して、給水機構500が説明される。
<Water supply mechanism>
FIG. 11 is a schematic view of the water supply mechanism 500. With reference to FIG. 11, the water supply mechanism 500 is demonstrated.
 蒸気発生器420のチャンバ空間430へ水を出射する給水機構500は、上述の給水弁310、貯水槽320、ポンプ330及び接続管421を含む。給水機構500は、貯水槽320内の水位を測定するための水位センサ321を更に備える。給水弁310は、水位センサ321によって検出された水位に応じて、貯水槽320へ給水或いは貯水槽320への給水停止を行ってもよい。本実施形態において、水位センサ321は、第1検出素子として例示される。 The water supply mechanism 500 that emits water to the chamber space 430 of the steam generator 420 includes the water supply valve 310, the water storage tank 320, the pump 330, and the connection pipe 421 described above. The water supply mechanism 500 further includes a water level sensor 321 for measuring the water level in the water storage tank 320. The water supply valve 310 may supply water to the water storage tank 320 or stop water supply to the water storage tank 320 according to the water level detected by the water level sensor 321. In the present embodiment, the water level sensor 321 is exemplified as the first detection element.
 ポンプ330の作動時間及び/又は動作パターン(間欠的な給水動作及び/又は連続的な給水動作)に応じて、給水弁310が制御されてもよい。例えば、ポンプ330の動作が終了したときに、貯水槽320が空になるように給水弁310からの給水量が調整されてもよい。この結果、貯水槽320内の水の凍結は生じにくくなる。 The water supply valve 310 may be controlled according to the operation time and / or operation pattern of the pump 330 (intermittent water supply operation and / or continuous water supply operation). For example, the amount of water supplied from the water supply valve 310 may be adjusted so that the water storage tank 320 becomes empty when the operation of the pump 330 ends. As a result, the water in the water storage tank 320 is hardly frozen.
 ポンプ330は、貯水槽320内に貯められた水を、接続管421を通じて、チャンバ空間430に供給する。ポンプ330の間欠的な給水動作は、チャンバ空間430内に出射された水が瞬時に蒸発するように調整される。 The pump 330 supplies the water stored in the water storage tank 320 to the chamber space 430 through the connection pipe 421. The intermittent water supply operation of the pump 330 is adjusted so that water emitted into the chamber space 430 is instantly evaporated.
 チャンバ空間430内での水の蒸発の結果、水に含有する不純物がチャンバ空間430内で堆積することもある。ポンプ330の連続的な給水動作は、堆積した不純物が押し流されるのに十分な流速で水がチャンバ空間430に流入するように調整される。 As a result of evaporation of water in the chamber space 430, impurities contained in water may be deposited in the chamber space 430. The continuous water supply operation of the pump 330 is adjusted so that water flows into the chamber space 430 at a flow rate sufficient to sweep away accumulated impurities.
 排気管422は、蒸気導通管340に接続される。ポンプ330の間欠的な給水動作によってチャンバ空間430内で発生した蒸気及びポンプ330の連続的な給水動作によってチャンバ空間430内に流入した水は、排気管422及び蒸気導通管340を通じて収容槽200に流入する。 The exhaust pipe 422 is connected to the steam conduction pipe 340. The steam generated in the chamber space 430 by the intermittent water supply operation of the pump 330 and the water flowing into the chamber space 430 by the continuous water supply operation of the pump 330 enter the storage tank 200 through the exhaust pipe 422 and the steam conduction pipe 340. Inflow.
 <収容槽への蒸気及び水の供給>
 図12は、収容槽200の前部222の概略的な背面図である。図1、図11及び図12を参照して、収容槽200への蒸気及び水の供給が説明される。
<Supply of steam and water to the storage tank>
FIG. 12 is a schematic rear view of the front portion 222 of the storage tank 200. The supply of steam and water to the storage tank 200 will be described with reference to FIGS. 1, 11, and 12.
 図1に示される如く、前部222の環状部224は、回転ドラム210に対向する内面225と筐体110の前壁111に対向する外面226と、を含む。図12は、内面225を主に示す。 As shown in FIG. 1, the annular portion 224 of the front portion 222 includes an inner surface 225 that faces the rotating drum 210 and an outer surface 226 that faces the front wall 111 of the housing 110. FIG. 12 mainly shows the inner surface 225.
 蒸気供給機構300は、内面225に取り付けられた分岐管351及びノズル352を備える。蒸気供給機構300は、分岐管351とノズル352とを接続する蒸気チューブ353を更に備える。蒸気導通管340は、周壁部223を介して、分岐管351に接続される。 The steam supply mechanism 300 includes a branch pipe 351 and a nozzle 352 attached to the inner surface 225. The steam supply mechanism 300 further includes a steam tube 353 that connects the branch pipe 351 and the nozzle 352. The steam conduction pipe 340 is connected to the branch pipe 351 through the peripheral wall portion 223.
 チャンバ空間430内で発生した蒸気は、チャンバ空間430内での圧力増加に伴い、排気管422を通じて、蒸気導通管340に流入する。その後、蒸気は、蒸気導通管340から分岐管351に至る。ノズル352は、分岐管351より上方に配設される。分岐管351に到達した高温の蒸気は、蒸気チューブ353に案内され、ノズル352に至る。最終的に、蒸気は、ノズル352から下方に噴射される。本実施形態において、排気管422、蒸気導通管340、分岐管351及び蒸気チューブ353は、チャンバ空間430内で発生した蒸気をノズル352へ案内する。したがって、排気管422、蒸気導通管340、分岐管351及び蒸気チューブ353は、案内管として例示される。 The steam generated in the chamber space 430 flows into the steam conduction pipe 340 through the exhaust pipe 422 as the pressure in the chamber space 430 increases. Thereafter, the steam reaches the branch pipe 351 from the steam conduction pipe 340. The nozzle 352 is disposed above the branch pipe 351. The high-temperature steam reaching the branch pipe 351 is guided to the steam tube 353 and reaches the nozzle 352. Eventually, the steam is jetted downward from the nozzle 352. In the present embodiment, the exhaust pipe 422, the steam conduction pipe 340, the branch pipe 351, and the steam tube 353 guide the steam generated in the chamber space 430 to the nozzle 352. Therefore, the exhaust pipe 422, the steam conducting pipe 340, the branch pipe 351, and the steam tube 353 are exemplified as the guide pipe.
 上述の如く、間欠的な給水動作を行うポンプ330は、高温のチャンバ空間430に適量の水を出射するので、水は瞬時に蒸発する。この結果、チャンバ空間430の内圧は急激に増大する。したがって、蒸気は、ノズル352から高圧で噴射され、収容槽200の内部空間を上下に横切ることとなる。回転ドラム210の下端付近には、重力によって衣類が集まりやすい。収容槽200の上部に取り付けられたノズル352から噴射された蒸気は、回転ドラム210の下端付近に到達するので、蒸気は衣類に効率的に供給されることとなる。 As described above, the pump 330 that performs intermittent water supply operation emits an appropriate amount of water to the high-temperature chamber space 430, so that the water evaporates instantaneously. As a result, the internal pressure of the chamber space 430 increases rapidly. Therefore, the steam is injected from the nozzle 352 at a high pressure, and traverses the internal space of the storage tank 200 up and down. Clothing tends to gather near the lower end of the rotating drum 210 due to gravity. Since the vapor | steam sprayed from the nozzle 352 attached to the upper part of the storage tank 200 reaches | attains the lower end vicinity of the rotating drum 210, a vapor | steam will be efficiently supplied to clothing.
 分岐管351は、蒸気導通管340に接続される親管354と、親管354から上方に屈曲する上子管355と、親管354から下方に屈曲する下子管356と、を備える。親管354には、蒸気導通管340を通じて、蒸気又は水が流入する。上子管355は、蒸気チューブ353に接続され、蒸気がノズル352に向かう上向きの経路を規定する。本実施形態において、上子管355及び蒸気チューブ353によって規定される上向きの経路は、第1経路として例示される。親管354は、流入管として例示される。上子管355は、第1管として例示される。 The branch pipe 351 includes a parent pipe 354 connected to the steam conducting pipe 340, an upper pipe 355 bent upward from the parent pipe 354, and a lower pipe 356 bent downward from the parent pipe 354. Steam or water flows into the parent pipe 354 through the steam conducting pipe 340. The upper tube 355 is connected to the steam tube 353, and defines an upward path for the steam toward the nozzle 352. In the present embodiment, the upward path defined by the upper tube 355 and the steam tube 353 is exemplified as the first path. The parent pipe 354 is exemplified as the inflow pipe. The upper tube 355 is exemplified as the first tube.
 下子管356は、上子管355とは異なり、下向きの経路を規定する。ポンプ330が連続的な給水動作を行っている間、蒸気導通管340を通じて分岐管351に流入した水は、重力作用によって、下子管356を通じて、流下する。本実施形態において、下子管356によって規定される下向きの経路は、第2経路として例示される。下子管356は、第2管として例示される。 Unlike the upper tube 355, the lower tube 356 defines a downward path. While the pump 330 performs a continuous water supply operation, the water that flows into the branch pipe 351 through the steam conducting pipe 340 flows down through the lower pipe 356 by gravity. In the present embodiment, the downward path defined by the lower tube 356 is exemplified as the second path. The lower tube 356 is exemplified as the second tube.
 図12には、親管354と上子管355との間の挟角θ1が示されている。また、図12は、親管354と下子管356との間の挟角θ2も示す。挟角θ1は、鈍角である一方で、挟角θ2は鋭角である。挟角θ2は鋭角であるので、親管354から下子管356への流動損失は比較的大きい。したがって、親管354に流入した蒸気は、下子管356へほとんど流れず、上子管355へ主に流れる。一方、上子管355は上向きの流動経路を規定するので、親管354へ流入した水は、重力の作用により、上子管355へほとんど流れず、下子管356へ主に流れる。したがって、蒸気の流動経路と水の流動経路とが適切に分離される。 FIG. 12 shows the included angle θ1 between the parent tube 354 and the upper child tube 355. FIG. 12 also shows the included angle θ <b> 2 between the parent tube 354 and the lower child tube 356. The included angle θ1 is an obtuse angle, while the included angle θ2 is an acute angle. Since the included angle θ2 is an acute angle, the flow loss from the parent tube 354 to the lower tube 356 is relatively large. Therefore, the steam that has flowed into the parent pipe 354 hardly flows to the lower child pipe 356 and flows mainly to the upper child pipe 355. On the other hand, since the upper tube 355 defines an upward flow path, the water flowing into the parent tube 354 hardly flows to the upper tube 355 and mainly flows to the lower tube 356 due to the action of gravity. Therefore, the flow path of steam and the flow path of water are appropriately separated.
 <間欠的なポンプの動作>
 図13は、ポンプ330の間欠動作とチャンバ空間430内の温度との関係を概略的に表すグラフである。図8、図11及び図13を参照して、ポンプ330の間欠動作が説明される。
<Intermittent pump operation>
FIG. 13 is a graph schematically showing the relationship between the intermittent operation of the pump 330 and the temperature in the chamber space 430. The intermittent operation of the pump 330 will be described with reference to FIGS. 8, 11, and 13.
 図13に示される如く、ポンプ330が作動している期間(ON期間)は、ポンプ330が停止している期間(OFF期間)と比べて短く設定される。この結果、適量の水がチャンバ空間430内に出射される。 As shown in FIG. 13, the period during which the pump 330 is operating (ON period) is set shorter than the period during which the pump 330 is stopped (OFF period). As a result, an appropriate amount of water is emitted into the chamber space 430.
 ON期間において、チャンバ空間430に所定量の水が供給される。この結果、水は蒸発し、蒸気となる。水から蒸気への相変化に起因する気化熱によって、チャンバ空間430の温度は一時的に低下する。上述の如く、OFF期間は比較的長く設定されているので、ヒータ425は、OFF期間の間にチャンバ空間430を十分に昇温することができる。したがって、ポンプ330が間欠動作を行っている間、高圧の蒸気が収容槽200に供給され続ける。特に、OFF期間の間にチャンバ空間430が十分に昇温され、ON期間において、チャンバ空間430を含む蒸気発生器420が有する熱エネルギに対して、瞬時に蒸発する適量の水が供給されることで(例えば、約2cc/回)、良好に高圧の蒸気が収容槽200に供給され続けることなる。 During the ON period, a predetermined amount of water is supplied to the chamber space 430. As a result, water evaporates and becomes steam. The temperature of the chamber space 430 temporarily decreases due to the heat of vaporization caused by the phase change from water to steam. As described above, since the OFF period is set to be relatively long, the heater 425 can sufficiently raise the temperature of the chamber space 430 during the OFF period. Therefore, high-pressure steam continues to be supplied to the storage tank 200 while the pump 330 is intermittently operated. In particular, the chamber space 430 is sufficiently heated during the OFF period, and an appropriate amount of water that instantaneously evaporates is supplied to the thermal energy of the steam generator 420 including the chamber space 430 during the ON period. (For example, about 2 cc / time), the high-pressure steam is continuously supplied to the storage tank 200.
 <洗い工程における蒸気の利用>
 図14は、洗い工程において水槽220に供給された水の温度の変化を概略的に表すグラフである。図1、図8、図11及び図14を参照して、洗い工程において用いられる蒸気の効果が説明される。
<Use of steam in the washing process>
FIG. 14 is a graph schematically showing a change in the temperature of the water supplied to the water tank 220 in the washing step. The effect of the steam used in the washing process will be described with reference to FIGS.
 図1に示される如く、水槽220の下部には、温水ヒータ160が配設される。温水ヒータ160は、水槽220内に供給された水を加熱するために用いられる。本実施形態において、温水ヒータ160は、第2ヒータとして例示される。 As shown in FIG. 1, a hot water heater 160 is disposed below the water tank 220. The hot water heater 160 is used to heat the water supplied into the water tank 220. In the present embodiment, the hot water heater 160 is exemplified as the second heater.
 図14に示される如く、洗い工程が開始されると、水槽220に水が供給される。この間、水槽220内の衣類に含まれる水の温度は、略一定である。その後、温水ヒータ160を用いて、水槽220内の水が加熱される。温水ヒータ160は、大きな熱量を発するので、水槽220内の衣類に含まれる水の温度は急速に上昇する。その後、所定の温度に到達すると、水槽220内の水の加熱は停止される。 As shown in FIG. 14, when the washing process is started, water is supplied to the water tank 220. During this time, the temperature of the water contained in the clothes in the water tank 220 is substantially constant. Thereafter, the water in the water tank 220 is heated using the hot water heater 160. Since the hot water heater 160 generates a large amount of heat, the temperature of the water contained in the clothes in the water tank 220 rises rapidly. Thereafter, when a predetermined temperature is reached, heating of water in the water tank 220 is stopped.
 図14において、加熱停止後の点線は、温水ヒータ160による加熱が停止され、且つ、蒸気の供給がないときの衣類に含まれる水の温度の変化を表す。加熱停止後の実線は、温水ヒータ160による加熱が停止され、且つ、蒸気が収容槽200に供給されているときの衣類に含まれる水の温度の変化を表す。 In FIG. 14, the dotted line after stopping the heating represents the change in the temperature of the water contained in the clothing when the heating by the hot water heater 160 is stopped and no steam is supplied. The solid line after stopping the heating represents a change in the temperature of the water contained in the clothing when the heating by the hot water heater 160 is stopped and the steam is supplied to the storage tank 200.
 収容槽200へ供給される蒸気は、上述の如く、高温であり、また、衣類に向けて直接的に供給されるので、水槽220内の衣類に含まれる水の温度低下は緩和される。蒸気発生器420に用いられるヒータ425は、水槽220に取り付けられた温水ヒータ160よりも少ない電力を消費する。したがって、温水ヒータ160を用いた水槽220内の水の保温と比べて、蒸気供給による保温は、少ない消費電力量を達成することができる。したがって、ポンプ330は、温水ヒータ160の停止後、間欠的な給水動作をすることが好ましい。 As described above, the steam supplied to the storage tank 200 has a high temperature and is directly supplied to the clothing, so that the temperature drop of the water contained in the clothing in the water tank 220 is alleviated. The heater 425 used in the steam generator 420 consumes less power than the hot water heater 160 attached to the water tank 220. Therefore, compared with the heat insulation of the water in the water tank 220 using the hot water heater 160, the heat insulation by the steam supply can achieve a small amount of power consumption. Therefore, the pump 330 preferably performs an intermittent water supply operation after the hot water heater 160 is stopped.
 <脱水工程における蒸気の利用>
 図1、図11及び図12を参照して、脱水工程において用いられる蒸気の効果が説明される。
<Use of steam in the dehydration process>
The effect of the steam used in the dehydration process will be described with reference to FIGS.
 脱水工程において、回転ドラム210は、高速で回転される。図1に示される如く、回転ドラム210の周壁211には、多数の小孔219が形成されている。回転ドラム210内に収容された衣類は、回転ドラム210の回転によって生じた遠心力により周壁211に押しつけられる。この結果、衣類に含まれる水分は、小孔219を通じて、回転ドラム210外へ放出される。かくして、衣類は、適切に脱水される。 In the dehydration process, the rotating drum 210 is rotated at a high speed. As shown in FIG. 1, a large number of small holes 219 are formed in the peripheral wall 211 of the rotary drum 210. The clothing housed in the rotating drum 210 is pressed against the peripheral wall 211 by the centrifugal force generated by the rotation of the rotating drum 210. As a result, moisture contained in the clothing is released out of the rotating drum 210 through the small holes 219. Thus, the garment is properly dehydrated.
 脱水された衣類の繊維は、互いに水素結合しやすい。繊維同士の水素結合は、衣類の皺に帰結する。回転ドラム210内に蒸気が供給されるならば、蒸気は繊維間の水素結合を解除する。この結果、衣類の皺が低減される。したがって、衣類が脱水処理を受けている間、ポンプ330が間欠的な給水動作を実行することが好ましい。間欠的な給水動作の結果、ノズル352から高圧で蒸気が回転ドラム210内に噴射される。上述の如く、ノズル352から噴射された蒸気は、収容槽200を横切るので、蒸気は、周壁211に張り付いて回転する衣類に満遍なく吹き付けられる。この結果、回転ドラム210内の衣類全体に亘って、皺が生じにくくなる。 Dehydrated clothing fibers tend to hydrogen bond with each other. The hydrogen bonds between the fibers result in clothing folds. If steam is supplied into the rotating drum 210, the steam breaks hydrogen bonds between the fibers. As a result, clothing wrinkles are reduced. Therefore, it is preferable that the pump 330 performs an intermittent water supply operation while the garment is undergoing a dehydration process. As a result of the intermittent water supply operation, steam is injected from the nozzle 352 into the rotating drum 210 at a high pressure. As described above, the steam sprayed from the nozzle 352 crosses the storage tank 200, so that the steam sticks to the peripheral wall 211 and is uniformly sprayed on the rotating clothing. As a result, wrinkles are less likely to occur over the entire clothing in the rotating drum 210.
 図15A乃至図15Cは、脱水工程中における蒸気供給のタイミングを表す概略的なタイミングチャートである。図1、図15A乃至図15Cを参照して、蒸気供給のタイミングが説明される。 15A to 15C are schematic timing charts showing the timing of supplying steam during the dehydration process. The steam supply timing will be described with reference to FIGS. 1 and 15A to 15C.
 図15Aに示される如く、蒸気供給機構300は、脱水工程の開始から所定期間(T1)を経過した後、蒸気の供給を開始してもよい。この場合、衣類が含む水分が少ないので、衣類は、蒸気の熱量及び水分によって効率的に湿潤される。図15B及び図15Cに示される如く、蒸気供給機構300は、脱水工程の開始に同期して、蒸気の供給を開始してもよい。この場合、衣類は、脱水工程の初期に昇温されるので、衣類は効果的に高温で湿潤されることとなる。図15A及び図15Bに示される如く、蒸気供給機構300は、脱水工程の一部の期間に蒸気を供給してもよい。図15Cに示される如く、蒸気供給機構300が蒸気を供給する期間は、脱水工程の開始から終了までの期間に一致してもよい。 As shown in FIG. 15A, the steam supply mechanism 300 may start supplying steam after a predetermined period (T1) has elapsed from the start of the dehydration step. In this case, since the garment contains less moisture, the garment is efficiently moistened by the heat of steam and moisture. As shown in FIGS. 15B and 15C, the steam supply mechanism 300 may start supplying steam in synchronization with the start of the dehydration process. In this case, since the temperature of the garment is raised at the initial stage of the dehydration process, the garment is effectively wetted at a high temperature. As shown in FIGS. 15A and 15B, the steam supply mechanism 300 may supply steam during a part of the dehydration process. As shown in FIG. 15C, the period during which the steam supply mechanism 300 supplies steam may coincide with the period from the start to the end of the dehydration process.
 <蒸気発生器の冷却>
 図8及び図11を参照して、蒸気発生器420の冷却工程が説明される。
<Cooling of steam generator>
With reference to FIG.8 and FIG.11, the cooling process of the steam generator 420 is demonstrated.
 蒸気を用いた衣類の処理の終了に伴い、蒸気発生器420は冷却されることが好ましい。蒸気発生器420が冷却されるならば、高温蒸気の不必要な収容槽200内への噴射が防止される。 It is preferable that the steam generator 420 is cooled with the end of the treatment of clothing using steam. If the steam generator 420 is cooled, unnecessary injection of high temperature steam into the storage tank 200 is prevented.
 蒸気発生器420の冷却のためにヒータ425への電力供給が停止される。その後、ポンプ330は、連続的な給水動作を開始する。この結果、貯水槽320から水が連続的にチャンバ空間430内へ流入する。チャンバ空間430内へ流入した水は、蒸気発生器420から熱を奪い、収容槽200へ流入する。したがって、蒸気発生器420は、短期間で冷却される。 The power supply to the heater 425 is stopped to cool the steam generator 420. Thereafter, the pump 330 starts a continuous water supply operation. As a result, water continuously flows from the water storage tank 320 into the chamber space 430. The water that flows into the chamber space 430 takes heat from the steam generator 420 and flows into the storage tank 200. Therefore, the steam generator 420 is cooled in a short time.
 図16は、蒸気発生器420の温度に基づく、扉体120に対する制御を概略的に表すブロック図である。図1、図6B及び図16を参照して、扉体120に対する制御が説明される。 FIG. 16 is a block diagram schematically showing control on the door body 120 based on the temperature of the steam generator 420. With reference to FIG. 1, FIG. 6B, and FIG. 16, control with respect to the door body 120 is demonstrated.
 洗濯機100は、扉体120を閉位置でロックするロック機構121と、ロック機構121のロック及びロック解除を制御するための制御部122と、を備える。ロック機構121の機械的及び電気的な機構は、既知の洗濯機に利用される構造であってもよい。 The washing machine 100 includes a lock mechanism 121 that locks the door 120 in the closed position, and a control unit 122 that controls locking and unlocking of the lock mechanism 121. The mechanical and electrical mechanism of the lock mechanism 121 may be a structure used in a known washing machine.
 図6Bに示される如く、蒸気発生器420は、サーミスタ426を備える。サーミスタ426は、主片423の温度を検出し、検出された温度に応じた信号を制御部122へ出力する。本実施形態において、サーミスタ426は、第2検出素子として例示される。 As shown in FIG. 6B, the steam generator 420 includes a thermistor 426. The thermistor 426 detects the temperature of the main piece 423 and outputs a signal corresponding to the detected temperature to the control unit 122. In the present embodiment, the thermistor 426 is exemplified as the second detection element.
 制御部122は、サーミスタ426から出力された信号が所定の値以下の温度を指し示すまで、ロック機構121による扉体120のロックを維持する。この結果、蒸気発生器420が所定の温度以下となるまで、収容槽200の内部空間は外部から隔離される。したがって、洗濯機100は、非常に安全になる。 The control unit 122 maintains the lock of the door 120 by the lock mechanism 121 until the signal output from the thermistor 426 indicates a temperature equal to or lower than a predetermined value. As a result, the internal space of the storage tank 200 is isolated from the outside until the steam generator 420 becomes a predetermined temperature or lower. Therefore, the washing machine 100 becomes very safe.
 <第2実施形態>
 図17は、第2実施形態の衣類処理装置として例示される洗濯機に用いられる蒸気発生器420Aの概略的な展開斜視図である。第2実施形態の洗濯機は、蒸気発生器420Aの構造を除いて、第1実施形態の洗濯機100と同様の構造を有する。したがって、第1実施形態との相違点が、以下に説明される。以下の相違点を除いて、第1実施形態の説明は、第2実施形態の洗濯機に適用される。また、第1実施形態と同一の要素に対して、同一の符号が付されている。したがって、第1実施形態の説明は、同一の符号が付された要素に対しても適用される。
<Second Embodiment>
FIG. 17 is a schematic exploded perspective view of a steam generator 420A used in a washing machine exemplified as a clothing processing apparatus according to the second embodiment. The washing machine of the second embodiment has the same structure as the washing machine 100 of the first embodiment except for the structure of the steam generator 420A. Therefore, differences from the first embodiment will be described below. Except for the following differences, the description of the first embodiment is applied to the washing machine of the second embodiment. Moreover, the same code | symbol is attached | subjected with respect to the element same as 1st Embodiment. Therefore, the description of the first embodiment is also applied to elements having the same reference numerals.
 蒸気発生器420Aは、主片423Aと、蓋片424Aと、主片423Aと蓋片424Aとに挟まれるパッキンリング433と、を備える。第1実施形態に関連して説明された主片423とは異なり、主片423Aには、ヒータは取り付けられていない。一方、蓋片424Aには、ヒータ425Aが取り付けられる。 The steam generator 420A includes a main piece 423A, a lid piece 424A, and a packing ring 433 sandwiched between the main piece 423A and the lid piece 424A. Unlike the main piece 423 described in relation to the first embodiment, no heater is attached to the main piece 423A. On the other hand, a heater 425A is attached to the lid piece 424A.
 図18は、蓋片424Aの概略的な斜視図である。図17及び図18を参照して、ヒータ425Aの取付構造が説明される。 FIG. 18 is a schematic perspective view of the cover piece 424A. The mounting structure of the heater 425A will be described with reference to FIGS.
 蓋片424Aは、外シールド壁435に取り囲まれた内シールド壁436を備える。内シールド壁436は、主片423Aの内チャンバ壁432と略同形状である。内シールド壁436は、内チャンバ壁432に重なりあう。この結果、チャンバ空間430内に渦巻き状の流動経路が形成される。内シールド壁436に取り囲まれた下面434の領域は、主片423Aに形成された流入口437に対向するので、以下の説明において、「対向領域439」と称される。ヒータ425Aは、対向領域439を取り囲むように、蓋片424A内に取り付けられる。流入口437から流入した水が蓋片424Aに到達するように、水の流速が調整されるならば、対向領域439は特に高温となっているので、瞬時の蒸発が達成される。 The lid piece 424A includes an inner shield wall 436 surrounded by the outer shield wall 435. The inner shield wall 436 has substantially the same shape as the inner chamber wall 432 of the main piece 423A. The inner shield wall 436 overlaps the inner chamber wall 432. As a result, a spiral flow path is formed in the chamber space 430. Since the area of the lower surface 434 surrounded by the inner shield wall 436 faces the inflow port 437 formed in the main piece 423A, it will be referred to as “opposing area 439” in the following description. The heater 425A is attached in the lid piece 424A so as to surround the facing region 439. If the flow rate of the water is adjusted so that the water flowing in from the inflow port 437 reaches the lid piece 424A, the opposing region 439 is particularly hot, so that instantaneous evaporation is achieved.
 上述の様々な実施形態において、水は、上方に出射され、チャンバ空間内で蒸気になる。代替的に、水は、下方に滴下され、チャンバ空間内で蒸気化されてもよい。必要に応じて、水は側方に供給されてもよい。水の供給方向は、開示された実施形態の原理を何ら制限しない。 In the various embodiments described above, water is emitted upward and becomes steam in the chamber space. Alternatively, the water may be dripped down and vaporized in the chamber space. If necessary, the water may be supplied laterally. The direction of water supply does not limit the principles of the disclosed embodiments in any way.
 上述された実施形態は、以下の構成を主に備える。 The embodiment described above mainly includes the following configuration.
 上述の実施形態の一局面に係る衣類処理装置は、衣類を収容する収容槽と、該収容槽へ蒸気を供給する蒸気供給機構と、前記蒸気供給機構に外部水源から水を供給する給水弁と、を備える。前記蒸気供給機構は、前記給水弁から供給される前記水を貯める貯水槽と、前記蒸気を発生させるための蒸気発生器と、前記貯水槽中の前記水を前記蒸気発生器に供給するポンプと、を備えることを特徴とする。 A clothing processing apparatus according to one aspect of the above-described embodiment includes a storage tank that stores clothing, a steam supply mechanism that supplies steam to the storage tank, and a water supply valve that supplies water from an external water source to the steam supply mechanism. . The steam supply mechanism includes a water storage tank that stores the water supplied from the water supply valve, a steam generator for generating the steam, and a pump that supplies the water in the water storage tank to the steam generator. It is characterized by providing.
 上記構成によれば、ポンプは、貯水槽に貯められた水を、蒸気発生器に供給する。適切に調整された量の水が、蒸気発生器に向けて供給されるので、蒸気発生器に当たった水が蒸発する。水の蒸発に起因する気化圧によって蒸気発生器内の圧力が急激に増大し、衣類が収容された収容槽へ高い圧力で蒸気が噴射される。したがって、衣類処理装置は、効率的に蒸気を衣類に供給することができる。 According to the above configuration, the pump supplies the water stored in the water storage tank to the steam generator. Since a properly regulated amount of water is supplied to the steam generator, the water hitting the steam generator evaporates. The pressure in the steam generator increases rapidly due to the vaporization pressure resulting from the evaporation of water, and the steam is injected at a high pressure into the storage tank in which clothing is stored. Therefore, the clothing processing apparatus can efficiently supply steam to the clothing.
 ポンプが配置されるので、蒸気発生器と貯水槽との間での上下関係の配置の制約が生じにくくなる。貯水槽と蒸気発生器との配置設計に自由度が増すので、筐体内のスペースは、有効に活用される。 Since the pump is arranged, it is difficult for the restriction of the arrangement of the vertical relationship between the steam generator and the water tank to occur. Since the degree of freedom increases in the layout design of the water storage tank and the steam generator, the space in the housing is effectively utilized.
 上記構成において、前記蒸気発生器は、前記収容槽よりも上方に配置されてもよい。 In the above configuration, the steam generator may be disposed above the storage tank.
 上記構成によれば、蒸気発生器に供給する水に含有される不純物が、蒸気発生器内で気化時に析出しても、この析出物は気化時の圧力や重力の作用により、蒸気発生器から収容槽へ容易に排出されることとなる。したがって、蒸気発生器内で析出した不純物の堆積に起因する気化能力の低下が防止される。 According to the above configuration, even if impurities contained in the water supplied to the steam generator are precipitated at the time of vaporization in the steam generator, the precipitate is separated from the steam generator by the action of pressure and gravity at the time of vaporization. It will be easily discharged to the storage tank. Therefore, the vaporization capability is prevented from being lowered due to the accumulation of impurities deposited in the steam generator.
 上記構成において、前記蒸気発生器は、前記貯水槽よりも上方に配置されてもよい。 In the above configuration, the steam generator may be disposed above the water storage tank.
 上記構成によれば、貯水槽及びポンプと蒸気発生装置との間で滞留する水が、意図せず、蒸気発生器に流入することが防止される。したがって、ポンプの故障や他の不具合が発生しても、偶発的な蒸気の噴射は生じにくくなる。 According to the above configuration, water staying between the water storage tank and the pump and the steam generator is prevented from unintentionally flowing into the steam generator. Therefore, even if a pump failure or other problem occurs, accidental steam injection is less likely to occur.
 上記構成において、衣類処理装置は、前記収容槽及び前記蒸気供給機構を収容する矩形箱状の筐体を更に備えてもよい。該筐体は、前記収容槽へ前記衣類を投入するための投入口が形成された前壁と、該前壁とは反対側の後壁と、を含んでもよい。前記収容槽は、前記前壁から前記後壁に向けて延びる中心軸を有する円筒体であってもよい。前記蒸気発生器及び前記貯水槽は、前記中心軸、又は、該中心軸を含む平面に対して対称的に配置されてもよい。 In the above configuration, the clothing processing apparatus may further include a rectangular box-shaped housing that houses the storage tank and the steam supply mechanism. The housing may include a front wall in which an input port for inputting the clothing into the storage tub is formed, and a rear wall opposite to the front wall. The storage tank may be a cylindrical body having a central axis extending from the front wall toward the rear wall. The steam generator and the water tank may be arranged symmetrically with respect to the central axis or a plane including the central axis.
 上記構成によれば、衣類処理装置は、収容槽及び蒸気供給機構を収容する矩形箱状の筐体を更に備える。筐体は、収容槽へ衣類を投入するための投入口が形成された前壁と、前壁とは反対側の後壁と、を含む。収容槽は、前壁から後壁に向けて延びる中心軸を有する円筒体である。蒸気発生器及び貯水槽は、中心軸、又は、中心軸を含む平面に対して対称的に配置されるので、筐体内の空間は有効に利用される。 According to the above configuration, the clothing processing apparatus further includes a rectangular box-shaped housing that houses the storage tank and the steam supply mechanism. The housing includes a front wall in which an input port for inputting clothes into the storage tub is formed, and a rear wall opposite to the front wall. The storage tank is a cylindrical body having a central axis extending from the front wall toward the rear wall. Since the steam generator and the water storage tank are arranged symmetrically with respect to the central axis or a plane including the central axis, the space in the housing is effectively used.
 上記構成において、前記蒸気発生器は、前記蒸気を発生させるためのチャンバを規定する壁面と、前記壁面を加熱するヒータと、を備えてもよい。前記ポンプは、前記ヒータで加熱した前記壁面に水を供給してもよい。 In the above configuration, the steam generator may include a wall surface defining a chamber for generating the steam, and a heater for heating the wall surface. The pump may supply water to the wall surface heated by the heater.
 上記構成によれば、蒸気発生器は、蒸気を発生させるためのチャンバを規定する壁面を有する。ポンプは、第1ヒータによって加熱された壁面に水を供給する。供給された水は第1ヒータによって加熱された壁面に当たって水蒸気となる。水蒸気の気化圧によってチャンバ内の圧力が急激に増大し、衣類が収容された収容槽へ蒸気が噴射される。蒸気を漏出させ、衣類を蒸気雰囲気下におく従来技術と異なり、高い圧力で蒸気が噴射されるので、蒸気は衣類に直接的に供給される。したがって、衣類処理装置は、高い供給効率で蒸気を衣類に供給することができる。 According to the above configuration, the steam generator has a wall surface that defines a chamber for generating steam. The pump supplies water to the wall surface heated by the first heater. The supplied water hits the wall surface heated by the first heater and becomes water vapor. The vapor pressure of the water vapor rapidly increases the pressure in the chamber, and the steam is injected into the storage tank in which the clothes are stored. Unlike the prior art that leaks steam and places the garment in a steam atmosphere, the steam is injected at a high pressure so that the steam is supplied directly to the garment. Therefore, the clothing processing apparatus can supply steam to the clothing with high supply efficiency.
 上記構成において、前記ポンプは、前記壁面に当たった前記水が瞬時に蒸発するように前記水の量を調整してもよい。 In the above configuration, the pump may adjust the amount of water so that the water hitting the wall surface evaporates instantaneously.
 上記構成によれば、ポンプは、チャンバの保有する熱量に適した水量を調整するので、壁面に当たった水が瞬時に気化し、チャンバ内の圧力が瞬時に増大する。したがって、蒸気供給機構は、衣類が収容された収容槽へ蒸気を噴射することができる。蒸気を漏出させ、衣類を蒸気雰囲気下におく従来技術と異なり、高い圧力で蒸気が噴射されるので、蒸気は衣類に直接的に供給される。したがって、衣類処理装置は、高い供給効率で蒸気を衣類に供給することができる。例えば、チャンバの保有する熱量が小さくとも、ポンプは瞬時に蒸発するように水の量を調整するので、蒸気供給機構は、高い圧力で蒸気を噴射し、蒸気を衣類に直接的に供給することができる。 According to the above configuration, the pump adjusts the amount of water suitable for the amount of heat held by the chamber, so that the water hitting the wall surface instantly vaporizes and the pressure in the chamber increases instantaneously. Therefore, the steam supply mechanism can inject steam into the storage tank in which clothing is stored. Unlike the prior art that leaks steam and places the garment in a steam atmosphere, the steam is injected at a high pressure so that the steam is supplied directly to the garment. Therefore, the clothing processing apparatus can supply steam to the clothing with high supply efficiency. For example, even if the amount of heat held by the chamber is small, the pump adjusts the amount of water so that it evaporates instantaneously, so the steam supply mechanism injects steam at high pressure and supplies steam directly to clothing. Can do.
 上述の様々な実施形態の原理は、蒸気を用いて衣類を処理する装置に好適に利用される。 The principles of the various embodiments described above are preferably used in an apparatus for processing clothing using steam.

Claims (6)

  1.  衣類を収容する収容槽と、
     該収容槽へ蒸気を供給する蒸気供給機構と、
     前記蒸気供給機構に外部水源から水を供給する給水弁と、を備え、
     前記蒸気供給機構は、前記給水弁から供給される前記水を貯める貯水槽と、前記蒸気を発生させるための蒸気発生器と、前記貯水槽中の前記水を前記蒸気発生器に供給するポンプと、を備えることを特徴とする衣類処理装置。
    A storage tank for storing clothing;
    A steam supply mechanism for supplying steam to the storage tank;
    A water supply valve for supplying water from an external water source to the steam supply mechanism,
    The steam supply mechanism includes a water storage tank that stores the water supplied from the water supply valve, a steam generator for generating the steam, and a pump that supplies the water in the water storage tank to the steam generator. A clothing processing apparatus comprising:
  2.  前記蒸気発生器は、前記収容槽よりも上方に配置されることを特徴とする請求項1に記載の衣類処理装置。 The clothing processing apparatus according to claim 1, wherein the steam generator is disposed above the storage tank.
  3.  前記蒸気発生器は、前記貯水槽よりも上方に配置されることを特徴とする請求項1又は2に記載の衣類処理装置。 The clothing processing apparatus according to claim 1 or 2, wherein the steam generator is disposed above the water tank.
  4.  前記収容槽及び前記蒸気供給機構を収容する矩形箱状の筐体を更に備え、
     該筐体は、前記収容槽へ前記衣類を投入するための投入口が形成された前壁と、該前壁とは反対側の後壁と、を含み、
     前記収容槽は、前記前壁から前記後壁に向けて延びる中心軸を有する円筒体であり、
     前記蒸気発生器及び前記貯水槽は、前記中心軸、又は、該中心軸を含む平面に対して対称的に配置されることを特徴とする請求項2又は3に記載の衣類処理装置。
    A rectangular box-shaped housing for housing the storage tank and the steam supply mechanism;
    The housing includes a front wall in which an insertion port for charging the clothing into the storage tub is formed, and a rear wall opposite to the front wall,
    The storage tank is a cylindrical body having a central axis extending from the front wall toward the rear wall,
    The said steam generator and the said water tank are arrange | positioned symmetrically with respect to the said central axis or the plane containing this central axis, The clothing processing apparatus of Claim 2 or 3 characterized by the above-mentioned.
  5.  前記蒸気発生器は、前記蒸気を発生させるためのチャンバを規定する壁面と、前記壁面を加熱するヒータと、を備え、前記ポンプは、前記ヒータで加熱した前記壁面に向けて水を供給することを特徴とする請求項1乃至4のいずれか1項に記載の衣類処理装置。 The steam generator includes a wall surface defining a chamber for generating the steam and a heater for heating the wall surface, and the pump supplies water toward the wall surface heated by the heater. The clothing processing apparatus according to any one of claims 1 to 4, wherein
  6.  前記ポンプは、前記壁面に当たった前記水が瞬時に蒸発するように前記水の量を調整することを特徴とする請求項1乃至5のいずれか1項に記載の衣類処理装置。 The clothing processing apparatus according to any one of claims 1 to 5, wherein the pump adjusts the amount of water so that the water hitting the wall surface evaporates instantaneously.
PCT/JP2012/008450 2012-03-30 2012-12-28 Clothing treatment device WO2013145063A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12852445.1A EP2662484B1 (en) 2012-03-30 2012-12-28 Clothing treatment device
SI201230772A SI2662484T1 (en) 2012-03-30 2012-12-28 Clothing treatment device
CN201280003993.7A CN103443345B (en) 2012-03-30 2012-12-28 Device for clothing processing
US13/990,741 US20140053615A1 (en) 2012-03-30 2012-12-28 Laundry processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012080162A JP2013208247A (en) 2012-03-30 2012-03-30 Clothing processing device
JP2012-080162 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013145063A1 true WO2013145063A1 (en) 2013-10-03

Family

ID=49258433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008450 WO2013145063A1 (en) 2012-03-30 2012-12-28 Clothing treatment device

Country Status (6)

Country Link
US (1) US20140053615A1 (en)
EP (1) EP2662484B1 (en)
JP (1) JP2013208247A (en)
CN (1) CN103443345B (en)
SI (1) SI2662484T1 (en)
WO (1) WO2013145063A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101597104B1 (en) * 2014-12-19 2016-02-24 엘지전자 주식회사 Method for controlling process treatment clothes apparatus
CN106702676B (en) * 2015-07-27 2020-11-10 青岛海尔滚筒洗衣机有限公司 Steam generation device for washing machine and washing machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034498A (en) * 1984-06-22 1985-02-22 松下電器産業株式会社 Steam iron
JP2005058740A (en) * 2003-08-13 2005-03-10 Lg Electronics Inc Drum washing machine and steam generator of drum washing machine
EP2039823A2 (en) 2007-09-21 2009-03-25 LG Electronics Inc. Laundry machine
EP2044255A2 (en) 2006-07-18 2009-04-08 LG Electronics Inc. Laundry treating apparatus
JP2009213693A (en) * 2008-03-11 2009-09-24 Toshiba Corp Drum type washing machine
JP2011092540A (en) * 2009-10-30 2011-05-12 Sharp Corp Washing machine
JP2011092541A (en) * 2009-10-30 2011-05-12 Sharp Corp Washing machine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6803795U (en) * 1968-02-13 1969-02-20 Zanussi A Spa Industrie WASHING MACHINE WITH FIXED WASHBASIN
DE4106668A1 (en) * 1991-03-02 1992-09-03 Heinz Schoenmeyer Automatic washing machine for households and trade - features auxiliary washing soln. tank in machine housing
DE4222945A1 (en) * 1992-07-11 1994-01-13 Licentia Gmbh Program-controlled drum washing machine and spinner - has washing aggregate with washing soln. container having mass equalisation device in form of receptacle connected to fresh water supply
KR101235193B1 (en) * 2005-06-13 2013-02-20 삼성전자주식회사 Washing machine and control method thereof
DE102005051721A1 (en) * 2005-10-27 2007-05-03 Aweco Appliance Systems Gmbh & Co. Kg Household machine, especially washing machine or dishwasher, has steam generator with through pass heating element and pipe and steam nozzle in working space
CN101191612A (en) * 2006-11-20 2008-06-04 游图明 Steam forming method and device for domestic appliances
ATE541980T1 (en) * 2009-06-25 2012-02-15 Miele & Cie STEAM GENERATING DEVICE FOR A LAUNDRY TREATMENT MACHINE AND LAUNDRY TREATMENT MACHINE
JP5377189B2 (en) * 2009-09-24 2013-12-25 シャープ株式会社 Washing machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034498A (en) * 1984-06-22 1985-02-22 松下電器産業株式会社 Steam iron
JP2005058740A (en) * 2003-08-13 2005-03-10 Lg Electronics Inc Drum washing machine and steam generator of drum washing machine
EP2044255A2 (en) 2006-07-18 2009-04-08 LG Electronics Inc. Laundry treating apparatus
EP2039823A2 (en) 2007-09-21 2009-03-25 LG Electronics Inc. Laundry machine
JP2009213693A (en) * 2008-03-11 2009-09-24 Toshiba Corp Drum type washing machine
JP2011092540A (en) * 2009-10-30 2011-05-12 Sharp Corp Washing machine
JP2011092541A (en) * 2009-10-30 2011-05-12 Sharp Corp Washing machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2662484A4

Also Published As

Publication number Publication date
CN103443345B (en) 2016-04-13
EP2662484A1 (en) 2013-11-13
EP2662484B1 (en) 2016-09-14
EP2662484A4 (en) 2014-04-23
CN103443345A (en) 2013-12-11
SI2662484T1 (en) 2016-12-30
US20140053615A1 (en) 2014-02-27
JP2013208247A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
WO2013183256A1 (en) Clothes treatment device
JP6074922B2 (en) Clothing processing equipment
WO2013145063A1 (en) Clothing treatment device
JP2014054400A (en) Clothes processing device
WO2013145064A1 (en) Clothes treatment device
WO2013183259A1 (en) Clothes treatment device
CN103459697B (en) Device for clothing processing
JP2014171561A (en) Clothing processing device
WO2013145067A1 (en) Clothes treatment device
WO2013145068A1 (en) Clothes treatment device
WO2013183258A1 (en) Washing machine
JP2014004054A (en) Clothes treatment apparatus
WO2013145066A1 (en) Clothes treatment device
JP2014042701A (en) Clothing treatment apparatus
WO2013190825A1 (en) Clothing treatment device
WO2013190826A1 (en) Clothing treatment device
WO2014024408A1 (en) Clothes treatment device
JP2017148092A (en) Clothing processing device
JP2014004062A (en) Clothes treatment apparatus
JP2018134263A (en) Clothing processing device
JP2014023674A (en) Clothing treatment apparatus
JP2017029499A (en) Clothing treatment apparatus
JP2014042700A (en) Clothing treatment apparatus
JP2014050506A (en) Clothes treatment device
JP2016158851A (en) Clothing treatment device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13990741

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012852445

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012852445

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE