WO2013143369A1 - 线型离子束缚装置及其阵列结构 - Google Patents
线型离子束缚装置及其阵列结构 Download PDFInfo
- Publication number
- WO2013143369A1 WO2013143369A1 PCT/CN2013/071877 CN2013071877W WO2013143369A1 WO 2013143369 A1 WO2013143369 A1 WO 2013143369A1 CN 2013071877 W CN2013071877 W CN 2013071877W WO 2013143369 A1 WO2013143369 A1 WO 2013143369A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ion
- electrode
- linear ion
- mass
- electrodes
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/42—Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
- H01J49/4205—Device types
- H01J49/422—Two-dimensional RF ion traps
- H01J49/423—Two-dimensional RF ion traps with radial ejection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/0027—Methods for using particle spectrometers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/06—Electron- or ion-optical arrangements
- H01J49/062—Ion guides
- H01J49/063—Multipole ion guides, e.g. quadrupoles, hexapoles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/42—Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
- H01J49/4205—Device types
- H01J49/4255—Device types with particular constructional features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/42—Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
- H01J49/426—Methods for controlling ions
- H01J49/427—Ejection and selection methods
Definitions
- the present invention relates to an ion storage device which can be used as a mass analyzer, and more particularly to a linear ion tethering device which can be used as a linear ion trap mass analyzer and an array structure thereof.
- Mass spectrometry is one of the most important analytical methods in the current chemical and life sciences.
- mass spectrometers As the main analytical device for mass spectrometry, mass spectrometers have seen a trend in recent years from benchtop instruments to portable in-vehicle instruments and even portable instruments. The development of these new mobile devices has placed new demands on the miniaturization of the major components of the mass spectrometer, especially the mass analyzer that is the core of the mass spectrometer's work. The main goal is to ensure the basic analytical performance of the mass analyzer while miniaturizing and simplifying the structure.
- the ion trap mass analyzer has the characteristics of simple structure and small size.
- the quality of this type of mass analyzer is the lowest of the current mass analyzers. Therefore, in the application of portable mass spectrometers, instruments with the ion trap mass analyzer as the core component occupy a major role.
- the analysis of the ions to be measured by the ion trap mass analyzer and the quadrupole mass analyzer as the mainstream mass spectrometer is based on the trajectory stability of the different ions in the quadrupole RF-bound electric field.
- the spatial structure characteristics of the quadrupole-bound electric field it can be divided into a three-dimensional four-pole bound electric field with axis rotation and a two-dimensional four-pole bundle electric field with axis translational symmetry.
- these two internal electric field structures correspond to two basic types of three-dimensional ion traps and linear ion traps.
- the ion trap structure that first appeared was a three-dimensional ion trap.
- the structure of the ion trap of this type was mainly composed of a rotating body, which made its processing process possible by lathe processing.
- the realization of the three-dimensional structure only needs to be determined by the displacement of the turning tool on the two-dimensional rz plane passing through the z-rotation axis.
- Even if the surface of the ideal three-dimensional ion trap is a rotating hyperboloid, it can be conveniently realized by numerically controlled lathe machining.
- the processing precision can easily reach about 1 micron, which is in line with the current basic level of precision machining technology in China.
- a portable mass spectrometer with a three-dimensional ion trap as a mass analyzer has appeared in China.
- ions are concentrated at the center of their structure in a punctiform distribution before being analyzed. Due to the space charge effect caused by the Coulomb repulsion between the ions and ions, the number of ions that can be stored in the three-dimensional ion trap is relatively limited. At the same time, in the ion analysis, the accumulation of a large amount of ions in the space causes the trapped electric field in the trap to change, especially the large concentration of ions in the central portion of the well will have a greater influence on the potential distribution of the portion.
- the upper limit of ion storage in a three-dimensional ion trap is no more than 10 6 to 10 7 .
- the mass resolution of the 3D ion trap will be seriously reduced, which greatly affects the ion trap as a quantitative analysis tool. Dynamic range. Moreover, the introduction efficiency of different mass-to-charge ratio ions in the three-dimensional ion trap has a significant relationship with the introduction of the radio frequency phase, which also leads to When the external ion source structure is used, its sensitivity is significantly reduced. At the same time, when the fragmentation ion abundance spectrum is used as the qualitative standard, the analytical structure is also less reliable due to the above-mentioned quality discrimination process.
- a typical linear ion trap has a "quadrupole" symmetry as shown in FIG.
- the output voltages of a set of RF power sources 101, 102 that are mutually inverted are respectively applied to the electrode pairs 12, 14 and the electrode pairs 11, 13 to provide a radially bound RF quadrupole electric field, and the axial movement of the trapped ions is grouped The terminal electrodes 15, 16 are bound.
- the ion trap requires a pair of RF voltage sources 101, 102 that are opposite in phase.
- the electrode body of the linear ion trap needs to use a high-precision surface grinder for processing, which is much more difficult to process than the three-dimensional ion trap.
- the assembly between the electrode bodies 1 1 , 12 , 13 , 14 cannot use the rotating insulator structure of the three-dimensional ion trap, but the profiled groove and the key structure are processed on the inner cylinder surface of the supporting insulator, which makes it The overall process is more complicated, exceeding the current level of precision machining in China.
- the spatial potential is distributed as a quadratic function with the distance from the center of the field. Therefore, the restoring force of the ion vibrating in the electric field satisfies Hooke's law, that is, it exhibits a simple harmonic trait.
- the final step in the analysis process of the linear ion trap is that the ions resonate sequentially with the auxiliary excitation voltage according to their mass-to-charge ratio, so that the groove-shaped slit processed on the linear ion trap electrode is separated from the ion trap and detected by the ion detecting device. Mass spectrometry.
- the space potential potential near the slit is deficient from the space potential formed by the structure of the complete hyperboloid electrode, that is, the field strength near the extraction groove is lowered.
- the change of the spatial electric field can be expressed by the harmonic progression of the potential in the well, ⁇ A n Re(x+yi) n , where x is the ion ejecting direction, y is the ion trap axis and the ejecting In the other direction orthogonal to the direction, the A 2 term is a quadrupole field component, and the A n term is a 2 ⁇ pole field component.
- the ions will be subjected to a negative radio frequency high-order field generated by the loss of the radio frequency electric field near the trough in the ion ejecting direction.
- the direct effect of the negative high-order field on the ion motion is that the resonance frequency of the ion will red-shift as its vibration amplitude becomes larger. Since the mass scan is usually performed from a low mass to charge ratio to a high mass to charge ratio, the ion motion frequency will shift blue with the scanning process. The above redshift process detunes the ion motion resonance and slows the eviction process, resulting in loss of mass resolution.
- the inventors of the linear ion trap employ a so-called tensile structure, that is, the distance between the counter electrodes located in the ion ejection direction X is outwardly symmetrically stretched with respect to the boundary position of the ideal quadrupole field. Produces a positive-order high-order electric field in the ion ejecting direction. Because of the normal mass scanning process, any special The ion motion frequency of the mass-to-charge ratio continues to occur in the blue shift process, that is, the motion frequency moves toward the high frequency direction.
- Introducing the positive high-order field can have the following advantages in the mass analysis process of the ion trap: First, when the ion establishes resonance in the well center, The blue shift of the resonant frequency occurs due to the increased amplitude at the time of resonance establishment; subsequently, this blue shift effect is synchronized with the natural blue shifting process of the ion motion frequency during mass scanning at a suitable scanning speed, so that the ions In the process of eviction motion frequency shift, it always resonates effectively to accelerate its exit, and finally improves the mass resolution of the linear ion trap as a mass analyzer.
- the stretching ratio of the electrode structure is set at about 3% to 10% of the original hyperbolic quadrupole field radius, wherein the field radius refers to the saddle point of the quasi-quaternary electric field, also called the electric field center to the boundary electrode. the distance.
- the linearized ion trap scheme designed by Jae Schwartz et al. which was finally commercialized, has an xy plane symmetry structure, and the probability of occurrence of the ion eviction process in the X direction is uniform, so in their commercial instruments, A set of detectors placed on either side of the linear ion trap was used to acquire the mass spectrum for maximum ion detection efficiency.
- This technique utilizes the RF edge field at one end of the quadrupole-like structure and the DC electrode 15 at the end of the quadrupole structure to cause the depressing electric field to eject and block the ions. The combined action occurs as the ion radial coordinate becomes larger.
- a non-integer frequency division dipole excitation auxiliary radio frequency located in the octapole field nonlinear resonance band is used.
- the ion emission probability of the mass analyzer in the ejecting direction X is still the same.
- a pair of detector groups disposed on both sides of the linear ion trap are still needed. Get the mass spectrum.
- an array of ion storage and analysis devices comprising two or more rows of electrodes placed in parallel with each other is further proposed in Chinese Patent Application No. 200610001017.4 and U.S. Patent Application No. 2009/0294655 A1.
- the strip electrodes in the electrode array are parallel to each other.
- the application of high-frequency voltages of different phases on adjacent electrode strips causes a high-frequency electric field to be generated in the space between the two electrode arrays, thereby forming a plurality of juxtaposed linear ion-bonding regions in this space.
- the linear ion trap array can still be obtained after saving the surrounding electrode in the orthogonal direction (y direction) of each storage unit.
- the simple stacking of rectangular ion trap arrays has the same mass resolution and a more compact structure.
- the electrode units in the orthogonal direction are omitted, the mechanical structural errors that may be caused by the original electrode units are also avoided.
- Cooks research group of Purdue University in US Pat. No. 6,762,406 and the micro-mechanical and micro-machining technology produced by Ramsy et al. MEMS) cylindrical ion trap array mass analyzer chip, etc. the above-mentioned devices proposed by Ding Chuanfan et al. have the characteristics of large ion storage capacity unique to linear ion storage devices. It should be noted that the detector required area of the ion trap array is still similar in design to the previous ion trap array and needs to occupy an area similar to that of the ion trap array body.
- One of the technical problems to be solved by the present invention is to provide a simplified linear ion binding device for overcoming the complicated assembly structure of the conventional quadrupole-type linear ion trap and the difficulty in processing the insulating positioning member, and at the same time providing a relatively good Internal compensation of the RF electric field improves the mass resolution of the device as a mass analyzer.
- One aspect of the present invention provides a linear ion tethering apparatus comprising a pair of axially extending main RF electrodes disposed opposite each other along a central axis of the linear ion tethering device, provided on at least one main RF electrode Ion extraction slot.
- the cross-sectional pattern of each of the main RF electrodes in each of the cross-sectional planes perpendicular to the central axis is symmetric with respect to a principal symmetry plane passing through the central axis, wherein the pair of main RF electrodes are attached
- the RF voltages are in the same phase.
- the device further includes at least one pair of auxiliary electrodes disposed on opposite sides of the pair of main RF electrodes and placed in the main plane of symmetry, wherein at least one of the auxiliary electrodes has a finite plane of symmetry, and each of the planes of symmetry and the pair of main RF electrodes Among the angles between the symmetry planes, there is a minimum angle greater than 0 degrees and less than 90 degrees.
- two pairs of auxiliary electrode pairs placed in the main plane of symmetry are included.
- the central axis is a curve located in a principal plane of symmetry of the pair of primary RF electrodes.
- the ion extraction slot is formed by a gap between a pair of main RF electrode components that are symmetric about the main plane of symmetry.
- the linear ion tethering device is symmetrical with respect to a plane passing through the central axis and perpendicular to the main plane of symmetry.
- the linear ion tethering device does not have other symmetry planes in a direction perpendicular to the main plane of symmetry.
- the linear static potential distribution of the linear ion tethering device on a section perpendicular to the central axis has a six-pole field in a harmonic progression series centered on the electric field saddle point.
- the center of the electric field saddle point of the linear ion binding device is offset to the side of the pair of main RF electrodes, wherein the offset accounts for 0.5% to 20% of the field radius of the ion binding device.
- the offset is from 0.5% to 10% of the field radius of the ion binding device.
- the linear ion tethering device further includes two end electrode structures for reflecting ions disposed at both ends of the linear ion tethering device along the central axis.
- At least one of the main RF electrodes or the auxiliary electrodes is a planar electrode structure or a thin layer electrode structure attached to the plane of the insulator.
- each of the auxiliary electrodes has the same structure as the main RF electrode on the same side of the central axis.
- the linear ion binding device may further include an operating power source and an adjustment device.
- the adjusting device is configured to adjust a ratio of the amplitude of the RF voltage or the biased DC applied between the pair of main RF electrodes and the auxiliary electrode, and thereby change the dominant exit direction during the mass scanning process.
- the linear ion tethering device may further include a field adjustment electrode and a power source.
- the field adjustment electrode is located at one end of the ion tethering device along the central axis and is symmetrical about the main plane of symmetry.
- the power source is configured to apply a pure DC bias voltage to the field conditioning electrode or to add a DC bias voltage to the field conditioning electrode based on a radio frequency binding voltage applied to a primary RF electrode of the field conditioning electrode To adjust the dominant exit direction or improve the mass resolution during the quality scanning process.
- the present invention also provides a mass spectrometry method for binding a target ion using at least one linear ion tethering device as described above, and using the following means to adjust the product of the bound target ion or the bound target ion in the mass selection eviction process
- Mass Axis Offset Adjusts the ratio of the amplitude of the RF voltage or bias DC that is added between the main RF electrode and the auxiliary electrode.
- the present invention also provides a mass spectrometry method for binding a target ion using at least one linear ion tethering device as described above, and using the following means to adjust the product of the bound target ion or the bound target ion in the mass selection eviction process
- Mass Axis Offset Adjusts the magnitude of the bias DC voltage attached to the field adjustment electrode.
- the present invention further provides a linear ion tethering device array structure comprising a plurality of linear ion tethering devices as described above, wherein at least a portion of the auxiliary electrodes are multiplexed between adjacent linear ion tethering devices.
- At least a portion of the multiplexed auxiliary electrodes are also adjacent linear ion binding The main RF electrode of the device.
- the linear ion binding device is periodically replicated outside the direction of the primary symmetry plane of the linear ion binding device to form an array of ion tethering device cells.
- the principal plane of symmetry of the centerline of each of the linear ion tethering devices substantially intersects the same axis.
- each of the linear ion tethering devices is circumferentially distributed about the same axis.
- the central axis of each of the linear ion tethering devices presents a conical distribution with one end gathering and one end diverging around the same axis.
- a multilayer ion-bonding device unit array is formed on the outside of the one-line ion tethering device along the outer side of the central axis by multiplexing the primary RF electrode and the auxiliary electrode.
- the linear ion tethering device array structure is an ion mass analyzer capable of separating ions of different mass-to-charge ratios in time or space.
- the linear ion binding device array structure is a linear ion trap mass analyzer.
- the present invention further provides an ion analysis and detection apparatus comprising the linear ion trapping device array structure as described above; a common ion detector having at least one primary ion contact surface disposed at the same axis on the same axis.
- the invention finally proposes a mass spectrometry method comprising the steps of: binding a target ion using at least one linear ion tethering device as described above; adding a bound RF voltage of the same phase of 5 KHz to 20 MHz to the main RF electrode;
- the auxiliary electrode is additionally used to adjust the auxiliary DC or RF voltage of the quadrupole electric field and the multipole electric field component between the main RF electrodes; and scan the amplitude or frequency of the bound RF voltage attached to the main RF electrode to make one or more mass loads
- the ions in the range are away from the storage space of the linear ion tethering device; leaving at least a portion of the ions remaining in the linear ion tethering device out of the linear ion tethering device; and leaving the linear ion in at least a portion of the time period
- the ions of the tethering device are detected by a detector to obtain an electrical signal of a mass spectrometric signal representing ions within at
- an array structure formed by a plurality of said linear ion-binding devices is used to bind ions, and a combination of electrical signals representative of mass spectrometry signals obtained by at least one linear ion-binding device is used to form a mass spectrum signal.
- Figure 1 shows the basic principle diagram of a four-hyperbolic electrode linear ion trap.
- Figure 2 shows the spatial equipotential diagram between the double-hyperbolic electrode pairs system.
- Figure 3 shows a spatial equipotential diagram in a standard four-hyperbolic electrode system.
- Figures 4A, 4B show a four-hyperbolic electrode system (Figure 4A) and a double-hyperbolic electrode system ( Figure 4B) A comparison of the instantaneous potential wells.
- Figure 5A shows the effect of the prior art parallel placement of the auxiliary hyperboloid electrodes on the isoelectric lines of the space electric field between the main hyperboloid RF electrodes.
- Fig. 5B shows the effect of the symmetrical inner corner (the inner corner of the figure is 24 degrees) placing the auxiliary hyperboloid electrode on the space electric field equipotential between the main hyperboloid RF electrodes according to the embodiment 1 of the present invention.
- Figure 6 shows the effect of the symmetry inward angle of different auxiliary hyperboloid electrodes on the four-pole field and high-order field composition of the four-pole bundled electric field between the main hyperboloid RF electrodes.
- Fig. 7A is a block diagram showing the circuit connection when the ion binding device including the rotated auxiliary electrode pair of the embodiment 1 of the present invention is used as a mass analyzer.
- FIG. 7B, 7C respectively show an analog mass spectrum comparison of the ion tethering device shown in FIG. 7A at a corner angle of 0 degrees (prior art) and an inner symmetric angle of 16 degrees, by introducing an inner symmetric corner feature, the ion binding device
- the mass spectroscopic resolution performance of the mass analyzer was increased by a factor of 1.5.
- FIG. 8A and FIG. 8B show the ion emission characteristics of the ion-coupling device of the straight center axis and the ion emission characteristics of the ion tethering device after the central axis is bent. After the central axis is bent by the arc in the plane of symmetry of the RF electrode, The outgoing ions are focused to the center of the arc.
- Figure 9 shows the effect of an auxiliary hyperboloid electrode placed at an asymmetrical angle of 24 degrees on the spatially equivalent electric line between the main hyperboloid RF electrodes.
- Figure 10 shows the effect of the asymmetric corner angles of the different auxiliary hyperboloid electrodes on the four-pole field and the high-order field component strength of the four-pole bound electric field between the main hyperboloid RF electrodes.
- Figure 1 1 shows the effect of the angle of the asymmetric corners of the different auxiliary hyperboloid electrodes on the efficiency of the ion detection at the right side of Figure 9.
- Figure 12A shows a schematic of the apparatus for adjusting the additional RF and DC voltages on the RF and auxiliary electrodes in an ion-binding device containing a pair of rotated auxiliary electrodes.
- Fig. 12B shows the effect of the offset of the ion-bonded potential saddle point and the geometric center in the device by the above-mentioned voltage adjustment on the unilateral ion detection efficiency in the mass scanning ejecting process.
- 13A and 13B show a linear ion bonding apparatus with two pairs of auxiliary electrodes constructed using solid planar electrodes and a process of constructing the linear ion binding apparatus with surface thin layer electrodes.
- Fig. 14 is a circuit diagram showing a linear ion binding device for driving an adjustment band with a second auxiliary electrode, wherein the first auxiliary electrode pair is driven by the in-phase RF voltage division with the intermediate electrode, and the second auxiliary electrode pair is driven by the inverted voltage.
- Figure 15 shows a circuit schematic of a linear ion binding device that drives a field adjustment electrode.
- Figure 16A shows the effect of mass axis relative drift of each ion analysis unit in the array on the resolution of the total mass spectral signal.
- FIG. 16B shows that the peak height and resolution of the total mass spectrum signal are improved after the relative drift of the mass axis between the analysis units is removed by the field adjustment electrode and the RF operating voltage adjustment.
- Figure 16C shows the degradation of the total mass spectral signal when there is an analytical unit with poor mass resolution in the array.
- 17A and 17B are views showing a sector array structure formed by multiplexing an auxiliary electrode as an auxiliary electrode of an adjacent side ion tether unit.
- 17C and 17D are views showing a zigzag array structure formed by multiplexing the auxiliary electrode as an auxiliary electrode of the adjacent side ion tether unit.
- Fig. 17E shows a structural diagram of a prior art planar ion trap array and its detecting unit.
- 18A and 18B are views showing a zigzag array structure formed by multiplexing the auxiliary electrode as a radio frequency electrode of the adjacent side ion tether unit.
- 18C, 18D show a circular sector array structure diagram formed by multiplexing the auxiliary electrode as a radio frequency electrode of the adjacent side ion tethering unit.
- Fig. 19A shows a three-dimensional structural view of a cylindrical ion trap array.
- Fig. 19B shows a shaft section and an internal electric field structure diagram of a cylindrical ion trap array.
- Figure 20A shows a schematic diagram of a cylindrical ion trap array using a peripheral multi-channel detector to detect ion signals in each channel in parallel.
- Figure 20B shows a schematic diagram of a cylindrical ion trap array using a central detector to simultaneously detect all channel ion signals in parallel.
- Figure 21A shows a three-dimensional structure of a truncated-type ion trap array and detector assembly.
- Figure 21B shows a schematic cross-sectional view of a truncated-type ion trap array in combination with a coaxial with a dynode detector assembly.
- Figure 22 shows a cylindrical ion trap array as an example of how to transform the array into a large cylindrical ion trap that is bound to the internal ion cloud barrel by changing the voltage configuration.
- Figure 23 is a timing diagram showing the principle of selective ion monitoring analysis of ions of an ion-binding device array in an embodiment of the present invention by using an isolated storage-pulse ejection mode for multiple channels.
- Figure 24A shows a three-dimensional view of an array of three-stage axially-type ion-clamping devices with angular auxiliary electrodes.
- Figure 24B shows a three-dimensional view of a two-dimensional array of cylindrical ion traps in two axial directions.
- Figure 25A shows a cross-sectional view of an array of asymmetric series linear ion tethering devices with three layers of electrodes in the radial direction.
- Figure 25B shows a cross-sectional view of a cylindrical ion trap two-dimensional array array with three layers of electrodes in the radial direction.
- Figure 2 shows a two-dimensional quasi-quadrupole electric field cross section of a two-electrode structure formed perpendicular to the axial direction.
- the structure of the electrode pairs 21, 22 is formed on the cross-section of the equipotential electric field contour diagram 23, and the overall structure is closer to the ideal quadrupole field structure equipotential line 31 shown in Fig. 3, both of which are It has a space electric field strength saddle point 24 and 32 unique to a quasi-quadrupole electric field.
- FIG. 4 shows the double-hyperbolic electrode and the quadruple-curved electrode structure with the same field radius in the ion ejecting direction, ie, the X direction. Normalize the relationship between potential changes.
- the potential depth of the two-electrode structure in the X direction that is, the potential difference from the deepest to the edge of the hyperbolic-like potential well, is only an ideal four-electrode hyperboloid structure. About 2.3%.
- the binding strength and ion storage limit of the ions in the ion-binding device of this structure are quite disadvantageous.
- the electric field component in the electrode system can be linearly expanded by a complex space multi-lobed harmonic basis function Re(x+yi) n , where Re is the real part Operator, i is an imaginary unit.
- Re is the real part Operator
- i is an imaginary unit.
- the pattern distribution of the harmonic function in the complex plane space of the Cartesian coordinate system represented by the x, y coordinates appears as a multi-lobed pattern with alternating positive and negative polarities around the origin, and a function term corresponding to a specific parameter n, the flap
- the number is twice the parameter n, so it is called a multipole field.
- n when n is taken as 2, the basis function degenerates to x 2 -y 2 , that is, the hyperbolic quadrupole field.
- a n Re(x+yi) n where the linear expansion coefficient A n before each multipole field term is the multipole field component of this particular electrode system, where A 2 is a quadrupole field component and A 3 is six The polar field component, A 4 is the octapole field component, and so on.
- a simple way to obtain the multipole field coefficient of the actual electrode system is to use the polynomial expansion of the electrode system on the X-axis with the coordinates of the potential in the range of the positive and negative field radius with ⁇ ( ⁇ ).
- the series of electric field function (x, y) of the actual electrode system and the expression ⁇ A n Re(x+yi) n are degenerated into power series ⁇ ⁇ ⁇ ⁇ , using a simple matrix polynomial expansion algorithm
- the multipole field parameters ⁇ ⁇ can be obtained.
- Table 1 below shows the difference in multipole field coefficients between the two electrode systems calculated in this way.
- One of the methods for improving the quadrupole electric field in a two-electrode pair structure is to provide an auxiliary electrode around the pair of two electrodes. Different from the main two-electrode pair, because these auxiliary electrodes are far away from the quadrupole electric field ion-binding region between the main two-electrode pairs, the influence of structural characteristics such as positioning, size and surface roughness on the quadrupole electric field in the ion-bound region is affected. They are small, so their processing accuracy can be much lower than that of the main two-electrode pair, thereby increasing the quadrupole electric field strength in the two-electrode pair structure and suppressing the bad multi-pole field parameter effect with less cost increase.
- the author proposes to improve the radio frequency by using the same electrode structure as the auxiliary electrode in the horizontal direction of the radio frequency electrode of each plane as the auxiliary electrode.
- the auxiliary electrode is located on the same horizontal surface of the main RF electrode in the solution, the correction of the quadrupole field between the auxiliary electrode and the main RF electrode can only achieve 50% electric field strength of the standard four-electrode structure, so the prior art solution In practical applications, the ion binding ability is weak, and the mass spectrometry resolution is poor.
- Embodiments of the present invention provide a simplified linear ion tethering device that corrects problems in the oversimplification of prior devices by introducing a symmetrical plane deflection angle of the auxiliary electrodes, while retaining the plate type
- the structure linear ion trap has the advantages of simple structure, convenient assembly, and the like, and provides a solution for the problem of mass spectrometry mass drift caused by low-precision machining process.
- a compact array of ion trap mass analyzers can be formed, each of which can be used as a separate mass analyzer or a common Synchronize quality scans for greater analytical throughput.
- the apparatus can avoid the use of a high-pressure ion multiplier device that cannot be used at a lower vacuum, and thus the working pressure thereof Only limited by the working temperature of the ion trap, the design difficulty of the auxiliary vacuum pump system can be greatly reduced, and the design cost and weight of the mass spectrometer can be reduced, making the instrument small and portable easy to carry out.
- Example 1
- the auxiliary electrode is angled with respect to the radio frequency electrode to further improve the intensity of the quasi-quaternary electric field between the pair of radio frequency electrodes and suppress the multipole field parameter effect.
- the proposed linear ion binding device includes a pair of double-radius pole main RF electrodes 501, 502 and two pairs of auxiliary electrodes on both sides of the main RF electrodes 501, 502. Correct 503, 505 and 504, 506 electrode system.
- the position indicated by 506 in Figure 5B is the central axis of the ion tethering device and 506 is the principal symmetry plane through the central axis.
- a pair of main RF electrodes 501, 502 are disposed opposite each other along the central axis and extend in the axial direction.
- each of the primary RF electrodes 501, 502 in each of the planes perpendicular to the central axis remains symmetric about a principal plane of symmetry through the central axis.
- Two pairs of auxiliary electrode pairs 503, 505 and 504, 506 are placed in pairs with respect to the main plane of symmetry 506.
- each pair of auxiliary electrode pairs 503, 505 or 504, 506 can be placed symmetrically with respect to the main plane of symmetry 506.
- at least one auxiliary electrode in the system of the embodiment such as the working surface normal direction of the auxiliary electrode 503, has a greater than 0 degree relative to the normal direction of the working surface of the main RF electrode 501, 502.
- the angle of rotation can be defined by the angle 53 between the plane of symmetry 506 of the pair of primary RF electrodes and the plane of symmetry 507 of the auxiliary electrode 503.
- the minimum of the angle formed by the symmetry plane of the main RF electrode pair, such as 506 and the symmetry planes of the auxiliary electrode can be used to define the angle of rotation. If the auxiliary electrode has an infinite symmetry plane, such as a case where the cross section is circular, the angle cannot be defined.
- the system needs to contain at least one other auxiliary electrode having a finite symmetry plane, and the minimum symmetry plane rotation angle of the auxiliary electrode is used.
- FIG. 5B shows the improvement of the quadrupole bound electric field between the main RF electrode pairs 501, 502 by the auxiliary electrode rotation angle 53.
- Figure 5B shows the effect of the four-pole bound electric field between the RF electrodes after the auxiliary electrodes of the same structure on both sides of the RF electrode are angled 24 degrees inward.
- the zero potential surface 52 corresponding to the structure provided by the embodiment of the present invention shown in FIG. 5B is opposite to the zero potential surface 51 of the prior art corresponding structure with respect to the no-corner case corresponding to the prior art shown in FIG. 5A.
- the contraction space shrinks, so it is more in line with the four-pole electric field equipotential line structure corresponding to the ideal quadruple electrode.
- FIG. 6 shows the binding of the RF electrodes between the symmetrical inner corners 53 from 0 degrees (prior art) to 28 degrees.
- the variation curve 61 of the quadrupole field coefficient shown in FIG. 6 it can be seen that, when the prior art is used, the auxiliary electrode of the same structure as the main RF electrode is arranged on the left and right horizontal sides, and the quadrupole electric field between the main RF electrodes.
- the coefficient increased from about 2.3% without an auxiliary electrode to about 44.5%, still less than 50%.
- the quadrupole electric field coefficient of the device is about 44.5% when the deflection angle 53 is raised from 0 to 30 degrees. It further rose to 57.6%, exceeding the theoretical limit of 50% of the original method.
- the apparatus principle of the ion tethering apparatus of the present embodiment as a mass analyzer is as shown in Fig. 7A, in which a pair of main RF electrodes 71, 72 are connected together to the non-inverting end 741 of the main RF power source 74 through the intermediate end of the coupling transformer 73.
- the dipole excitation signals outputted by the auxiliary RF power source 75 are respectively added to the main RF electrodes 71, 72 by differential inversion form through the coupling transformer 73, and the pair of auxiliary electrodes 77, 78 are connected to the output of the main RF power source 74.
- the inverting terminal 742 of the voltage Two auxiliary electrodes 77, 78 are opposite to the main RF electrode pair 71, 72 A corner is formed which is represented by an angle 712 between the main electrode pair symmetry plane 710 and the symmetry plane 711 of one of the auxiliary electrodes.
- sample ions generated by ionization of the sample gas phase molecules to be analyzed in the ion tethering device, or sample ions generated by ionization outside the device and subsequently introduced into the device can be The quadrupole electric field between the main RF electrode pairs 71, 72 induced by the RF voltage output by the main RF power source 74 is effectively trapped in the well. Typically, the sample ions and their possible reaction products are effectively bound.
- the RF voltage typically ranges from 5 kHz to 20 MHz and ranges from a few volts to tens of thousands of volts. Subsequently, the radial dimension of the bound ion cloud can be effectively reduced by collision of ions with buffered neutral gases introduced in the tethering device, such as helium, nitrogen, argon, and the like.
- buffered neutral gases introduced in the tethering device, such as helium, nitrogen, argon, and the like.
- the frequency of movement of the sample ions after being spatially bound and collided and cooled can be changed in one direction by the amplitude or frequency of the scanning RF voltage.
- the target ions When the moving frequency of the sample ions passes through the excitation band set by the auxiliary RF power source 75, the target ions The kinetic energy and vibration frequency will increase rapidly, eventually exiting from a slit set up on a central RF electrode, and the detector detects the formation of an ion current signal. Since the mass-to-charge ratio of the exiting ions is proportional to the amplitude of the main RF voltage output or the square of the radio frequency period of the main RF power source 74 under the determined resonance condition, the output amplitude or the RF frequency of the scanning main RF power source 74 can be generated by the mass-to-charge ratio. A varying sample ion current, ie a mass spectrometric signal reflecting the ion abundance of different mass-to-charge ratio samples.
- the device was improved as a performance of the mass spectrometer.
- the ion exit working conditions under different deflection angles 712 are compared, wherein the field radius of the mass spectrometer is 5 mm, the truncated electrode cut position is 10 mm from the center of the field, and the slit width is 0.6 mm, and the main RF frequency is 1.3MHz, the excitation voltage frequency is 433.3KHz.
- the deflection angle is 0 degrees
- the ion-to-charge ratio of 609 Thomson is 799 V
- the deflection angle is 16 degrees
- the ion-output voltage with a mass-to-charge ratio of 609 Thomson drops to about 738 V.
- the exit voltage of the 609 mass ion can be reduced to less than 700V. It can be seen that after the deflection angle of the auxiliary electrode is introduced, the RF operating voltage required to obtain the same mass range is significantly reduced.
- One of the important parameters for evaluating the performance of a mass analyzer is the mass resolution of the device, that is, the ability to distinguish between the peaks of mass spectra produced by ions between adjacent masses.
- the ratio of the center point of the mass spectrum to the half-peak width or the peak-to-bottom width of the mass spectrum are usually represented.
- FIG. 7B shows the ion pair of the mass spectrometer with respect to the mass-to-charge ratio 609, 610 Thom SOn when the deflection angle is 0.
- the outgoing ion beam tends to have a large axial broadening. This is because when the ions are emitted radially, the driving force is generated along the radial direction of the restraining device.
- the RF electric field distribution As shown in Figures 8A and 8B, this causes the orientation of the ions to exit generally on their axis vertical section 803. Since the ions typically undergo a cooling process before the mass spectrometry scan, the ion cloud 801 to be analyzed is bound to a wide range on the central axis 802 of the storage unit in the middle of the main RF electrode before the mass selective excitation process.
- the detector 85 for detecting ions radially exiting the linear ion binding device must be of a larger size to ensure that all of the ejected ions are received.
- FIG. 8B shows the ion exit focusing effect by bending the central axis of the storage unit.
- the central axis 802 of the storage unit has a circular arc shape, and the ions will exit in the normal direction of the central axis when the ions are emitted according to the force characteristics when the ions are radially emitted.
- the primary RF electrode set remains symmetrical with respect to plane 803.
- the main ions will exit on the symmetry plane in the normal direction of the central axis. Therefore, ions ejected toward the inside of the curved ion-binding device will eventually focus on the ion detector 86 located at the center of the arc. Therefore, the structure can easily obtain a smaller detector allowable size, which is advantageous for miniaturization of the mass spectrometer apparatus as a whole.
- each of the primary RF electrode pairs in the apparatus of the present embodiment does not require a complete structure. Therefore, the slit 84 (i.e., the ion extraction groove) required for the ion radial exit detection can also be formed by the gap between the two components of the main RF electrodes 81, 82 (81.1 and 81.2, or 82.1 and 82.2). .
- the advantage of this design is that the variation of the radial bound electric field in the device along the axial direction is further reduced at the axial edge of the electrode, thereby increasing the identity of the radial exit delay between ions at different positions on the axis, Improve the resolving power of the device as a mass analyzer.
- the in-line ion binding device should generally be used.
- the shaft end is provided with a structure that reflects ions.
- a circular aperture lens that blocks the DC potential can be used, or the device can be split at the shaft end into a small portion with a DC potential added to suppress the leakage of ions along the axial direction.
- the barrier structure can be configured as a mesh electrode with a suitable DC blocking potential and an axially excited AC signal.
- Embodiment 1 it can be seen from the results shown in Embodiment 1 that after the auxiliary electrode is rotated at a corner with respect to the symmetry plane of the main RF electrode, the quadrupole field coefficient of the device and the resolving power as a mass analyzer are both increased.
- the main RF electrode portions have xy symmetry at the same time, that is, these linear ion tethering devices are at any axis perpendicular to their straight or curved axis. In the cross section, not only the symmetry of the left and right sides of the ion ejecting direction, but also the direction perpendicular to the ion ejection It has symmetry.
- the main RF voltage and the excitation voltage are balanced alternating signals, they have no effect on the average coordinates of a large number of ion groups on a long time scale. Therefore, for these symmetrical ion mass analyzer structures, in order to obtain all ion signals, the detector must be placed on both the positive and negative sides of the ion exit direction, which increases the cost and size of the instrument. At the same time, since the response and saturation limit of the two detectors are not exactly the same, for the case of large ion current, the dynamic range limit of the mass spectrometer will be determined by the detector with poor performance, which also limits the quality to some extent. The comprehensive performance of the analyzer.
- the mass analyzer structure has no symmetry on both sides in the vertical direction of ion ejection, it is only symmetrical on both sides of the ion ejection direction. Then, the slit transmittance of the ions in the radial eviction process can still be maintained by the symmetry, and at the same time, the asymmetry of the positive and negative sides of the eviction direction can occur.
- the detector device can be omitted in the non-ejecting direction, thereby avoiding a series of problems caused by the dual detector discussed above, and also reducing the cost and required size of the instrument.
- asymmetric main RF electrode structures are generally not seen in commercial instruments. This is mainly due to the fact that the parameters affecting the accuracy of mechanical assembly become more and more in the asymmetric structure.
- the cost of producing a set of high-precision primary RF electrodes of different sizes or morphologies is high.
- the yield is the inevitable factors in the processing of high-precision devices. If used as the main RF electrode, the electrode structure will have a quality error resolution if it has an error of more than 5 microns.
- the error of the electrode structure if the error of the electrode structure is large, it can also be used as a guide rod, a collision chamber, or the like.
- the main electrode structure of the linear ion binding device operating as the ion trap mass analyzer since the structure needs to be opened and pulled out on the device, the error can be discarded only when the error is large.
- an electrode structural member having substantially the same structure as that of the main RF electrode as an auxiliary electrode, by using an asymmetrical angle on both sides of the main RF electrode pair 901, 902.
- the orientation of the ions is ejected.
- the two pairs of auxiliary electrodes 903, 905 and 904, 906 on both sides are deflected by an angle 92 toward the same side of the main RF electrode symmetry plane 907 around their closest corners of the main RF electrodes 901, 902.
- Figure 10 shows the binding of a quasi-quadrupole between the main RF electrodes as the asymmetric internal corner 92 is gradually increased from 0 degrees (prior art) to 30 degrees.
- the influence of the multi-pole field component coefficients of the electric field Through the variation curve 1001 of the quadrupole field coefficient shown in FIG. 10, it can be seen that even if the asymmetric corner mode is adopted, when the deflection angle 92 is gradually increased from 0 degrees (prior art), the four of the restraining device The intensity of the polar field is also gradually increasing. When the deflection angle 92 reaches 30 degrees, the quadrupole field strength of the system The degree has exceeded 50%.
- the one-way eviction rate of the device quality analysis has exceeded 75%.
- the rotation angle reaches 16 degrees, the one-way eviction rate of the device quality analysis is almost 100%. Therefore, it can be preliminarily believed that the lower limit of the relative weight of the six-pole field to achieve better one-way eviction efficiency should be greater than 0.5%.
- the pair of auxiliary electrodes 904, 906 can be omitted, thereby reducing the complexity of the system, by adjusting the symmetrical plane deflection angle 92 of the remaining pair of auxiliary electrode pairs 903, 905 with respect to the plane of symmetry of the main RF electrode.
- Electric field strength and orientation the purpose of varying ion trap mass spectrometry performance.
- the deflection angle 92 of the auxiliary electrode 903 is further changed without changing the deflection angle of the auxiliary 905 electrode, a similar purpose can be achieved, but due to the asymmetry of the deflection angles of the 903 and 905 electrodes, the efficiency of the ion orientation eviction will be Affected.
- the ion trap only serves as a filter to retain selected mass ions and does not focus on ejecting ion characteristics, this method of adjusting the electric field can also be used to improve the mass resolution of the filter.
- FIG. 12A shows a circuit schematic for implementing this scheme.
- the divided electrical signal can be applied to the main RF electrode pair 71, 72 through an adjustable voltage dividing capacitor network such as 710, and the RF voltage of the main RF electrode pair 71, 72 The amplitude can be adjusted separately through different voltage divider capacitor networks.
- the ratio of the auxiliary electrodes to the RF ratio between 771 and 772, 781 and 782 can also be adjusted.
- the RF amplitude of a beam of the main RF electrode pair, for example, 71 increases, the saddle point of the quadrupole bound electric field between the main RF electrodes moves on a line having a maximum field radius r Q of the maximum RF range, and is away from the main RF electrode. This results in a decrease in ion ejection rate in this direction.
- the increase in the radio frequency amplitude is similar to the case where the deflection angle 92 is increased. , will cause the eviction rate of ions to the left side to increase.
- the method provides a method of modifying the dominant ion eviction direction without changing the symmetry of the electrode structure. However, it may sometimes be necessary to switch the dominant eviction direction of the ions during the time measurement of the mass spectrometry process. At this point, it is not suitable to use the capacitor to adjust the speed. Another method is shown in Fig.
- the position of the saddle point 1201 can be modified by modifying the DC bias supply of the auxiliary electrode, such as 791, 792, or the DC bias supply 71 1 , 712 of the primary RF electrode.
- These DC bias voltages are applied to each of the working electrodes by a large value resistor such as 793. Compared with the RF voltage regulation, the adjustment of the DC voltage is more intuitive for the four-pole field saddle point and the ejecting orientation efficiency.
- the DC bias coupling resistor 793 can be replaced with a diode in the method described in Chinese Patent Application No. 2009102531 12.7 when the RF operating voltage is a square wave, thereby achieving lower switching resistance and switching time.
- Figure 12B shows the different initial quadrupole field saddle point positions under the simulation conditions and the right side (ie, X positive direction) ions in the structure of Figure 9. The relationship of efficiency.
- a hyperbolic-like structure is used as the main RF electrode, when the voltage configuration is changed so that the saddle point is shifted to 0.5% to 10% of the field radius rO, a one-way eviction efficiency higher than 75% can be achieved.
- the unidirectional emission effect of the ion can be arranged only on one side of the ion trap to arrange the detector to detect the ions, thus avoiding the statistical error of the ion current caused by the fluctuation of the ion emission efficiency on both sides, and simplifying the ion The structure of the detection device.
- the above embodiments are mainly directed to a solution of a high-precision main RF electrode structure such as a hyperboloid electrode.
- a planar electrode technique is used to process the main RF electrode structure or the auxiliary electrode structure, since the planar electrode is easy to process to micrometer precision, the field is Additional requirements such as asymmetry do not necessarily need to be achieved with a fully symmetrical primary RF electrode structure. This brings more flexibility.
- the disadvantage of the planar electrode structure is that the negative high-order field components near the slit are more serious than the hyperboloid and the round surface structure. To solve this problem, it is usually necessary to compare the ion trap to the hyperboloid or the round surface in the ejecting direction.
- the electrode is stretched at the radius of the field, usually between 1.15 and 1.35.
- the processing of the planar electrodes, especially the auxiliary electrodes is relatively simple, in order to further improve the mass resolving power of such structures, as shown in FIG. 13A, it is conceivable to add 1 to both sides of the auxiliary electrode 1301 of the original main RF electrode 1300. 2 pairs of secondary auxiliary electrodes such as 1302.
- a high-precision hard insulating material such as a ceramic substrate (not shown) may be fabricated, and then a layer is grown on the substrate.
- a thin layer of metal working electrode 1304 is used to form a plurality of pairs of auxiliary electrodes using a pattern 1305 of thin metal.
- these auxiliary electrodes can also serve as adjustment electrodes for the main RF electrode, such as 71.2, 72.2, and add a part of the voltage applied to the main RF center electrode such as 71.1, 72.1, and the phases are the same, so that the ions are ejected from the slit.
- the nearby potential is higher, thus offsetting the plane electricity
- the negative high-order field component near the slit is originally removed, which improves the resolution of the device as a mass analyzer.
- the field adjusting electrode 1501 in this embodiment is located outside the main RF electrode 71 on one side of the axis of the ion tethering device, and is symmetric with respect to the plane of symmetry of the main RF electrode, and the symmetry ensures that the field adjusting electrode is The additional electric field does not significantly produce motion perturbations perpendicular to the exit direction for ions moving on the plane of symmetry of the linear ion binding device shown.
- a power supply 1502 is further included for adding a pure DC bias voltage to the field adjusting electrode 1501, or a DC bias voltage is added to the RF bias voltage adjacent to the RF electrode when the coupling resistance is large, and is added to the field. Adjust the electrode 1501.
- the DC bias of the adjustment field adjustment electrode 1501 only has a strong depressing effect on ions ejected from the slit on the RF electrode 71. However, there is less influence on the ion storage regulation at the axis of the linear ion tethering device.
- the suppressing DC voltage of the field adjusting electrode 1501 can be used to improve the resonance frequency and phase of the ion to be ejected from the ion trap, in addition to selectively blocking the exit of the ion in the direction of the ion, thereby adjusting the dominant exit direction during the mass scanning process. Detuning, avoiding the delayed emission of ions and improving the mass spectrometry resolving power of the ion binding device as a mass analyzer.
- the field-regulating electrode also has a special function of adjusting the electrode voltage by changing the field, and also adjusting the mass axis shift relationship of the trapped target ion or its product in the ion trap mass selection eviction process.
- the effect of the voltage of the field-regulating electrode on the mass resolution of the ion trap mass analyzer is a sudden platform, that is, after the field-regulating electrode voltage exceeds a limit value, usually within a range of 1.5 times the limit value, mass analysis
- the resolution of the device is kept at a high level, and the mass resolution change is usually less than 15%. In this range, the mass range adjustment of the maximum range of one thousandth can be achieved by adjusting the field regulation voltage, and the adjustment accuracy is usually up to 5 ppm per volt.
- the common commercial quadrupole mass analyzer has a field radius of about 5 mm, and the variation of the field radius caused by various machining errors usually does not exceed 5 micrometers. Therefore, the method can effectively correct the ion trap quality from the hardware.
- the mass axis of the analyzer is the mass axis of the analyzer.
- the mass axis of the ion tethering device can also be coarsely adjusted by directly modifying the ratio of the RF voltages applied to the main RF electrode and the auxiliary electrode. This means can be achieved by adjusting the variable capacitance divider bridge of each electrode in Figure 15 and the RF power supply.
- the mass axis conversion relationship in the mass analyzer mode can be changed by changing the DC bias of each RF electrode and the auxiliary electrode by the influence of the quadrupole DC electric field in the binding device. Since these changes are directly applied to the working electrode, the mass axis scaling ratio per volt DC or RF offset is typically about 1000 ppm.
- mass axis drift between the linear ion tethering devices of the same design structure due to machining errors can be corrected to match each other.
- the drift of these mass axes can also be removed by simple software correction, but for an array mass analyzer consisting of a single channel mass analyzer, this drift affects the storage of ions in multiple ion traps, The quality of the combined mass spectral information obtained by the analytical process selectively exiting the same mass axis.
- the defects in the above-mentioned synchronous analysis method can be solved by adjusting the DC bias of the field adjustment electrode for each unit, or by adjusting the ratio of the RF voltage on the main RF electrode and the auxiliary electrode.
- the different mass analyzer units can be adjusted separately so that the mass axes of the various analysis units are synchronized on the time axis in hardware.
- the degradation of the total mass spectrum due to the differential mass spectrometry resolution caused by the processing difference of the specific analysis unit can also be avoided by the independent mass resolution optimization of each member analysis unit by each unit field adjustment electrode, which ultimately makes these two disadvantages
- the peak broadening of the mass spectrum caused by the difference in each well is suppressed, and a high-quality superimposed spectrum is obtained as shown in Fig. 16C, thereby improving the overall mass resolution of the mass analyzer array.
- the characteristics of the ion trap mass analyzer array are quite suitable for these three requirements: When each channel of the mass analyzer array is operated separately, the process of screening suspects can be accelerated exponentially; the mass analyzer array can also work in parallel And the cumulative spectrum is output on the same detector, combined with the pre-enrichment characteristics of the ion trap mass analysis, an extremely low detection limit can be obtained.
- a vacuum-sensitive electron multiplier can be avoided, thereby reducing a bulky and expensive high-vacuum acquisition device such as a molecular pump, and reducing the number of ions.
- the working conditions of the mass spectrometer are required.
- a method of constructing a compact ion trap mass analyzer array based on multiplexing partial electrodes of adjacent linear ion storage cells is shown, as shown in Figs. 17A-17D.
- An auxiliary electrode of the ion-binding device unit forms an array of a plurality of linear ion-binding device units separated by an auxiliary electrode region, as shown in FIGS. 17B and 17D, thereby reducing the fabrication complexity of the linear ion-binding device array analysis device .
- each cell well ie, the inter-hollow electrode region
- each cell well can be separately RF-transmitted under the condition that the auxiliary electrode is grounded.
- Amplitude or frequency sweep the method of applying the additional dipole excitation voltage required to improve the resolution of the cell well is consistent with the basic method of Figure 7, that is, by attaching a secondary intermediate tapped isolation transformer, making the opposite center
- the RF electrodes are the same as the RF voltages added between 171.3 and 171.4, and the dipole excitation voltages are opposite to each other.
- the ion trap array can have two RF voltage addition modes.
- the first mode the auxiliary electrodes between each cell well are grounded, and the RF electrode voltages of adjacent cell wells can be in phase. It can also be an inverted signal of exactly the same amplitude.
- the second mode the RF electrode voltages of adjacent cell wells are in phase with each other, and the auxiliary electrode between the cell wells is supplemented with an inverted RF signal having the same voltage amplitude as that of the main RF electrode.
- the advantage of this method is that each cell well is The potential well is doubled, allowing the trapped ions to cool better, resulting in higher mass resolution.
- Figure 17B also shows two basic modes of the array mass spectrometer constructed by the ion trap array.
- the method of Embodiment 3 can be used to adjust the ion bias by adjusting the DC bias attached to the auxiliary electrode.
- the discrete detectors in the outer periphery are oriented out, and as a single-channel detecting device, the ions can be focused and emitted toward the central unified detector by a similar method, since the symmetry plane of each discrete ion trap unit is approximately at a point, The collector's collection area requirements can be the same as for a normal detector and are easy to select. This is not available in other ion trap arrays.
- noise due to transient response fluctuations of different detectors can also be avoided.
- the manner of multiplexing the auxiliary electrodes between the ion trap units 171 can also be performed as shown in Fig. 17D.
- the multiplexing of the auxiliary electrodes in Fig. 17B employs a zigzag type structure, which can be made in the figure.
- the array has an infinitely extended space in the horizontal direction. Since the auxiliary electrode of the main RF electrode pair is formed with a certain folding angle with the main RF electrode, the ion trap units can be emitted in one direction, and the channels are enlarged under the same horizontal spacing of the ion trap. The spacing between the detectors.
- the ion trap array mass spectrometer designed in the embodiment of the embodiment has a larger installation space for each of the analysis channels, which is more difficult to miniaturize, and is easier to implement. Designed and reduced interference with high voltage electric field interactions between adjacent detector units.
- the synchronous parallel mode of the ion trap mass analyzer array is more important, as shown in FIGS. 18A-18B, as a further preferred embodiment of the present invention, at least a portion of the adjacent linear ion binding devices may be reused.
- Auxiliary electrodes such as 182.1, 182.2, 183.1, 183, 2, 184.1, 184.2, etc. serve as the RF electrodes of the adjacent side ion-binding device unit, forming an array of directly adjacent plurality of linear ion-binding device units. Thereby, the fabrication complexity of the linear ion binding device array analysis device is further reduced.
- the RF voltage additional mode of the ion trap array is:
- the RF electrode voltages of adjacent cell wells are opposite to each other but have the same amplitude, which is the same as the second voltage application mode of the device of FIG. 17B, in each unit.
- the depth of the well in the well is reinforced by the adjacent inversion region, and the structure of the trapped electric field between adjacent cells is ensured to be identical. Since there is no auxiliary electrode with low processing precision, the identity of each unit in synchronous scanning can be ensured.
- Fig. 18D Another feature of the Fig. 18D scheme is that the plane of symmetry of the central axis of each unit can be designed to substantially intersect the same axis 186.
- the radial exit directions of the plurality of ion tethering device analysis units in the array are approximately focused in a small area to reduce the first collector area in the multi-channel simultaneous sampling mode of operation.
- This has great advantages when the ion current acquisition system uses the Faraday cage structure 187.
- the collector area is reduced, its parasitic capacitance is also reduced, which means that a lower ion current can also obtain a larger voltage signal response.
- 19A, 19B show a further preferred embodiment, in which the ion-bonding device units in the array have a complete circumferential distribution around the same axis as compared to the solution of Figure 18D, which can be made from the array
- the ions emitted by the plurality of ion-binding device analysis units are further focused out on the central axis of the device.
- a common ion detector 2000 for detecting the separation of the total ion current by each of the separation element tethering devices may be disposed at the same axis, and the detector may also pass a first through the axis.
- the dynodes are substituted so that the detector body can be arranged in other suitable locations.
- the central ion detection system thus designed can be used to receive ion currents that are directed out of the central axis of the device and further enhanced prior to being sent to the analog to digital conversion acquisition device.
- a plurality of ion detectors can be arranged on the axis. a body or a plurality of first dynodes thereof, wherein each ion detector corresponds to a certain range of detection axes The ions ejected in the radial direction by each of the separation sub-analytical units.
- the axial exit ion detectors 1903, 1904, etc. may be respectively set up at the outlets 1901, 1902, etc. on the end caps shown in Figs. 19A and 19B, respectively, using the axial mass selection and exit principle proposed by Hager et al. Detecting ions ejected by each ion analysis unit, or detecting all ions with a large receiving area detector such as microchannel plate 1905
- the ion-binding device unit in the array should typically contain 2N cells, since this solution is based on the design of a radio frequency electrode that multiplexes at least a portion of the auxiliary electrode as an adjacent ion-binding device unit. . Therefore, as shown in Fig. 19B, generally, the RF voltage applied between adjacent cells should be an inverse correlation system. If the device includes only an odd number of cells, then in the simultaneous mass spectrometry analysis, there must be two adjacent cell wheels per scan, because their RF electrodes are connected with in-phase RF signals, so they cannot effectively bind and cool the ions.
- FIG. 20A, 20B also compare two basic modes of operation of the cylindrical ion trap mass analyzer array.
- Fig. 20A by the phase adjustment of the excitation voltage, the main analysis ions are directed to the outer plurality of lane detectors 2001, In 2002, 2003, etc., the monitoring mass spectrum of each analysis unit is obtained.
- FIG. 20B by applying a DC voltage difference between the external electrode and the internal electrode, the quadrupole electric field balance saddle point of each unit of the ion trap can be moved inward, thereby generating a The aggregated ions of the heart are emitted. This signal can be uniformly detected by a detector 2000 located in the center of the cylindrical structure.
- a truncated-type linear ion-binding device array structure as shown in FIGS. 21A and 21B may be employed, wherein each ion-binding device
- the central axes of the units such as 2111, 2115, etc. all have a conical distribution at one end around the same axis 2100, and a divergent distribution at one end makes it easy to introduce the shunt from the same analytical ion source, while leaving more space at the opening.
- a coaxial dynode 2101, a coaxial detector 2102, and the like as shown in FIG. 21B.
- the cylindrical, truncated ion trapping device array has another mode of operation.
- all of the inner electrode arrays are supplemented with the in-phase radio frequency signal from the power source 2201, and the DC signal is additionally compensated by the power source 2202 on the outer electrode array, and the entire annular space can be reconstructed by the balance between the two.
- the trapped ions Into an ultra-large capacity ion storage device, visible from the shape of the ion cloud exhibited in the cross section, the trapped ions exhibit a cylindrical distribution within the storage device.
- the RF signal on the external electrode array can be quickly removed, and a high voltage pulse is applied to expel all ions at once. In this way, a more accurate intensity analysis can be performed on the ion current with an average intensity below the electronic noise limit, which can be used in conjunction with the ion mobility spectrometry method.
- the usual ion-binding device mass analyzer ie, the ion trap mass analyzer
- the duty cycle of the two series is poor, and an additional ion current time modulation device is usually required to place the two to achieve the best analytical process time efficiency.
- the linear ion binding device described in the present scheme has a large ion storage capacity, a mass selective continuous ion storage method and The fast ion DC pulse eviction method can obtain a higher ion utilization time duty cycle. To match this type of continuous ion selection device.
- Figure 23 illustrates how these two approaches can be combined to achieve the above-described analysis of multi-channel positive ion currents in the multi-channel linear ion-binding device array described in this embodiment.
- the timing of this mode of operation is divided into two phases.
- the RF voltage 2301 attached to each channel is turned on, and the threshold voltage 2302 of the ion gate 2304 is set to a lower value, so that the ion is bound from the ion at this stage.
- the ion current injected into each channel at the front end of the device can be injected into the ion trapping device array.
- the duty cycle of the RF voltage on the ion binding device can be adjusted to an asymmetric value, for example, the internal quadrupole electric field component is relatively pure.
- the ion-binding device structure when the binding RF voltage is a square wave, the duty ratio is 38 ⁇ 39%, and only ions having a width in the range of 5 ⁇ 10 Th can be stored while introducing ions, and Other ions are discarded at the front end of the tethered device channel.
- this mode generally achieves higher mass isolation selectivity, but at a slower rate, with an operating cycle of the order of milliseconds.
- this phase can be continued such that ions of the target mass or mass range are enriched in one channel, while the remaining channels can enrich ions of other target mass ranges.
- the RF voltage 2301 on each channel can be quickly removed and the ions can be lifted simultaneously as shown in the second timing stage of FIG.
- the threshold voltage 2302 of the gate 2304 turns off the positive ion implantation path, and at the same time or a few microseconds, the DC potential difference 2303 between the outer group and the inner group radio frequency and the auxiliary electrode is 0 volt from the original normal introduction.
- the stored target ions of the channel are substantially linear.
- ions in the target mass range in a continuous ion stream can be sampled at a sampling rate of 1 Hz to 1 kHz. Since the ions are pulsed out, the second timing phase usually only takes a few microseconds to a dozen microseconds, and the time of the method can be seen relative to the millisecond duration of the first timing phase.
- the empty ratio can generally be more than 99%.
- target ions 2306 of the same or different mass ranges selected in the other channels can also be stored and then pulsed.
- the method can also be modified.
- the RF voltage 2301 is not required to fall to 0 in the second timing phase.
- the egress voltage difference 2303 is only attached to a pair of main RF electrodes of a certain channel.
- the target ions stored in other channels are not lost, so that the pulse-extraction analysis of different bound ion channels can be dispersed to different periods, and the selected mass ion spectrum of multiple channels can be obtained by using only one detector. .
- micro-area scanning can also be used, ie, a resonance mass scan is performed over a small mass range to obtain a spectrum of the stored target ions. Compared to the pulse mode, this micro-area scan mode is at the target of acquisition.
- the total amount of ions can also be used to obtain abundance spectrum distributions adjacent to multiple mass numbers for obtaining additional chemical information such as isotope ratios.
- Figures 24A, 24B show an axial series one-dimensional/two-dimensional array structure of a larger linear ion binding device of this type, and Figure 24A shows a three-stage axial series basic binding device unit array, Figure 24B.
- a two-dimensional array of two-stage cylindrical ion traps is shown, in which positive and negative ions can be stored separately between different sections of the array structure, and by appropriate voltages of axially adjacent sections are set The same value stores both positive and negative ions and reacts with each other.
- the device can be used to study the charge transfer dissociation process and produce a fragmentation dissociation mode that is different from the normal collision induced dissociation process.
- ions can obtain axial acceleration kinetic energy through the potential difference between the sections, and can be used to obtain a cascade spectrum similar to a spatial cascade mass spectrometer such as a triple quadrupole instrument.
- 25A, 25B respectively show cross-sectional views of a one-dimensional/two-dimensional array structure of such a linear ion tethering device constructed in a radial stack, the structure multiplexing the side RF and auxiliary electrodes to form a multi-layer ion binding device In the cell array, ions can be effectively stored between the respective RF electrodes of each layer, which can further increase the ion storage capacity of the device.
- the upstream ion optics of the device can be continuous ion optics such as ion guides, quadrupole mass analyzers and arrays thereof, ion funnels, traveling wave ion transport devices, magnetic fan mass analyzers, electrostatic sectors Energy analyzers, differential mobility spectrometers, etc., can also be pulsed optics, such as pulsed ion mobility spectrometers, other ion traps, and the like.
- the device's ion detector is in addition to an electron multiplier tube, or an electron multiplier with a dynode, a microchannel plate, a Faraday cage, or other mass analyzer that can accept pulsed or quasi-continuous ion currents, such as a quadrupole.
- the ions to be analyzed may not only be from an ion source operating under vacuum conditions, such as an electron bombardment source, a matrix-assisted laser desorption ionization source, or an ion source under atmospheric pressure, such as an electrospray ionization source, an atmospheric pressure photoionization source, Atmospheric pressure chemical ionization source, etc.
- an ion source operating under vacuum conditions such as an electron bombardment source, a matrix-assisted laser desorption ionization source, or an ion source under atmospheric pressure, such as an electrospray ionization source, an atmospheric pressure photoionization source, Atmospheric pressure chemical ionization source, etc.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electron Tubes For Measurement (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
一种线型离子束缚装置及其阵列结构,包含沿该线型离子束缚装置的中轴线两侧相对设置的一对沿轴向伸展的主射频电极(501,502),每一个主射频电极(501,502)在垂直于该中轴线的各截平面上的截面图形都通过该中轴线的一主对称平面(506)保持对称,其中该主射频电极(501,502)上附加的射频电压相位相同。在至少一个主射频电极(501,502)上设有离子引出槽(84),并且在该对主射频电极(501,502)两侧设置至少一对辅助电极(503,505),这些辅助电极(503,505)对偶于该主对称平面(506)放置。其中至少一个辅助电极(503,505)具有有限个对称平面(507),且各对称平面(507)与该对主射频电极(501,502)的对称平面(506)之间存在一大于0度并且小于90度的最小夹角。通过这种方式,离子束缚装置内的离子束缚射频电场的四极场成分可以得到加强。
Description
线型离子束缚装置及其阵列结构 技术领域
本发明涉及一种可作为质量分析器的离子储存装置, 尤其涉及一种可作为线型 离子阱质量分析器的线型离子束缚装置及其阵列结构。 背景技术
质谱分析方法是目前主流的化学及生命科学领域的重要分析方法中的一种。 作 为质谱分析方法的主要分析装置, 质谱仪近年来已出现从台式仪器向便携式车载仪 器,甚至是手提式仪器发展的趋势。这些新的移动设备的发展对质谱仪的各主要部件, 尤其是作为质谱仪工作核心的质量分析器的小型化提出了新的需求。最主要的目标就 是如何在结构小型化、 简单化的同时, 保证质量分析器的基本分析性能。
同时, 诸如真空腔体及获取系统等外周部件也对便携式质谱分析方法的发展造 成了诸多限制。 在各种质量分析器种类之中, 离子阱质量分析器具有结构简单, 体积 小巧的特点。 同时, 这类质量分析器对工作真空度的要求是目前各种质量分析器中最 低的。 因此, 在便携式质谱仪的应用中, 以离子阱质量分析器为核心部件的仪器占据 了主要角色。
离子阱质量分析器与作为主流质谱仪器的四极杆质量分析器对待测离子的分析 都是基于不同离子在四极射频束缚电场中的轨迹稳定性来进行的。按四极束缚电场的 空间结构特点,可以分为轴旋转对称的三维四极束缚电场和轴平移对称的二维四极束 缚电场。对于离子阱质量分析器, 这两种内部电场结构对应于三维离子阱和线型离子 阱两种基本种类。 最初出现的离子阱结构是三维离子阱, 由于电场结构特性, 使得该 类型离子阱的结构主要均由旋转体构成, 这使得它的加工工艺可以采用车床加工。 由 于在车加工中,三维结构的实现仅需车刀在通过 z旋转轴的二维 r-z平面上位移确定, 即使理想三维离子阱的表面为旋转双曲面, 也可以方便地通过数控车床加工来实现, 其加工精度可容易地到达 1微米左右, 符合国内目前精密加工工艺的基本水平。 目前 国内已出现了以三维离子阱为质量分析器的便携式质谱仪器。
然而在三维离子阱中, 离子在被分析之前以类点状分布聚集在其结构中心处。 由于离子-离子之间库伦排斥力造成的空间电荷效应, 使得三维离子阱能够存储的离 子数量相对有限。 同时, 在作离子分析时, 大量离子在空间中的聚集使得阱内束缚电 场发生变化,尤其是离子在阱中心部分中的大量聚集对该部分的电位分布将造成更大 的影响。 通常三维离子阱中离子储存的上限不超过 106〜107个。 同时当储存离子超过 5xl04个, 或包含的同质荷比离子超过 5xl03个时, 三维离子阱的质量分辨能力就会 发生严重下降, 这很大程度上影响了离子阱作为定量分析工具时的动态范围。 并且, 不同质荷比离子在三维离子阱中的引入效率与其引入射频相位存在明显关系,这也导
致了使用外离子源结构时, 其灵敏度明显下降, 同时, 利用碎裂离子丰度谱作定性标 准时, 其分析结构也因上述的质量歧视过程发生而较不可靠。
90年代中期, 美国 Finnigan公司的 John EP Syka等人针对上述问题提出了二维 直线型离子阱结构。在直线型离子阱中, 离子被准二维四极射频电场聚集在一个中心 轴附近, 因此, 在同样空间电荷密度下, 它能够容纳的离子数量大大增加, 二维直线 形离子阱可以存储比三维离子阱多至少一个量级的离子,并可以避免明显的空间电荷 效应影响。 近年来的文献报道指出, 直线离子阱在存储上百万个离子时, 仍能使其质 谱分辨能力不受影响。 在最初专利文件 US5420425中, Syka等人指出该结构最少需 要两个在轴向延长的电极来实现。 然而, 由于构建理想二维四极场的需要, 通常的直 线型离子阱具有如图 1所示的 "四极杆"对称性结构。相互反相的一组射频电源 101、 102的输出电压分别附加到电极对 12、 14和电极对 11、 13上, 提供径向束缚的射频 四极电场, 被捕获离子的轴向运动被一组端电极 15,16所束缚。 与四极杆质量分析器 类似, 该离子阱需要一对相位相反的射频电压源 101、 102驱动。 与四极杆不同的是, 为束缚离子沿轴向的运动, 需要在阱的中轴前、 后端设置端电极结构 15、 16, 通过 其上电压限制离子的运动。在加工特点上, 直线型离子阱的电极体加工时需要使用高 精度的曲面磨床, 加工难度较三维离子阱远高。 同时, 电极体 1 1、 12、 13、 14间的 装配也不能采用三维离子阱的旋转绝缘体结构,而是要在支持绝缘体的内柱面上加工 异型配合槽、 键结构来实现, 这使其整体工艺更为复杂, 超出了目前国内一般精密加 工水平。
四极束缚电场的一个重要特征是其空间电位随距场中心的距离分布为二次函 数, 因此离子在电场中振动时所受的回复力满足胡克定律, 即呈现出简谐振动特质。 通常直线离子阱的分析过程的最后一步是离子按其质量电荷比依次与辅助激发电压 发生共振,从而在直线离子阱电极上加工出的槽状狭缝离开离子阱而被离子探测装置 检测而形成质谱。但由于槽状狭缝的存在, 狭缝附近的空间电位势相对完整双曲面电 极的结构形成的空间电位势将发生缺失, 即在引出槽附近的场强发生下降。 这种空间 电场的变化可以用阱内空间赝势的谐函数级数展开∑AnRe(x+yi)n来表示, 其中 x为 离子逐出方向, y为与离子阱轴及该逐出方向正交的另一方向, A2项为四极场成分, An项为 2η极场成分。 在加入引出槽结构 17后, 在离子逐出方向上离子将受到由槽 附近射频电场的损失所产生的负射频高阶场的作用。负高阶场对离子运动的直接影响 是, 离子在其振动幅度变大时, 其共振频率会发生红移。 由于通常质量扫描是从低质 荷比向高质荷比方向进行的, 离子运动频率将随扫描过程发生蓝移。上述红移过程就 会使离子运动共振失谐而使逐出过程变得缓慢, 造成质量分辨率的损失。
为克服上述问题, 直线型离子阱的发明者采用了所谓的拉伸结构, 即将位于离 子逐出方向 X上的对电极间距相对理想四极场的边界位置向外对称拉伸,这一操作会 在离子逐出方向上产生正 „值的高阶电场。 由于在正常的质量扫描过程中, 任一特
定质荷比的离子运动频率持续发生蓝移过程, 即运动频率向高频方向移动, 引入正高 阶场可以对离子阱的质量分析过程产生如下优势: 首先, 离子在阱中心建立共振时, 会由于共振建立时的振幅加大产生共振频率的蓝移; 随后, 这一蓝移效应会在合适的 扫描速度下, 同质量扫描过程中离子运动频率了的自然蓝移过程发生同步作用, 使得 离子在逐出运动频移过程中始终有效共振而加速其出射,最终提高直线型离子阱作为 质量分析器时的质量分辨力。 通常, 为达到这一目的, 这一电极结构拉伸比率设定在 3%〜10%原始双曲四极场半径左右, 其中场半径指准四极电场的鞍点, 又称电场中心 到边界电极的距离。 值得指出的是, 最终商业化的 Jae Schwartz等人设计的直线离子 阱方案具有 x-y平面对称性的结构, 其离子逐出过程在 X方向的发生几率是一致的, 因此在他们的商用仪器中,设计了同时使用一对安置于直线型离子阱两侧的检测器组 来获取质谱, 以达到最大的离子检测效率。
Sciex公司的 J.Hager在稍后提出了另一种轴向逐出的线型离子阱技术, 这种技 术中, 离子是从类四极杆结构的轴端方向质量选择性地离开直线离子阱。 由于离子不 需从径向离开, 也不必在杆型电极上开槽, 因此回避了负高阶场等不利因素对场型和 器件性能的影响。这种技术利用类四极杆结构一端射频边缘场和四极杆结构末端直流 电极 15造成阻抑电场对离子逐出和阻挡的过程中, 其组合作用随离子径向坐标变大 而发生的从阻挡到逐出的变化特性, 完成离子在轴端的逐出的质量选择过程。该技术 的优点是该离子阱没有引出槽造成的边界电场缺陷,因此还可以做普通的四极质量滤 质器来使用, 而缺点是由于离子只有运动到阱的末端才能发生轴向边缘场逐出的过 程, 因此在快扫描速度调节下, 储存在阱中的离子只有当其处于阱末端时才有机会逐 出, 否则将损失在杆电极上, 这就导致其极限扫描速度与离子探测效率落后于 Schwartz等人在先提出的径向逐出过程。
以上是目前已知的两种基本的线型离子阱工作方式。 而作为对阱电极结构的简 化改进, Purdue (普度) 大学的欧阳证、 RG.Cooks教授等在 2003年所预申请的美国 专利 US6838666提出了在原直线离子阱的类四极杆结构中, 用平面电极取代原先商 用仪器中的双曲面或圆杆电极结构, 形成了矩形线型离子阱质量分析器。 由于平面柱 面电极结构加工相对容易, 因此该质量分析器在同等加工精度下更易实现。 这一结构 的缺点在于, 矩形平面电极组成的离子阱截面结构使得该阱引入了大量的高阶场效 应。 同时, 由于该阱仍采用了 x-y平面对称的结构, 并使用了位于八极场非线性共振 带的非整数分频偶极激发辅助射频。 从原理来说, 该质量分析器逐出方向 X上的离子 出射几率仍是相同的, 为得到最高的离子检测效率, 仍需使用了一对安置于直线型离 子阱两侧的检测器组来获取质谱。
作为进一步的工作, 针对矩形平面电极结构相对于双曲面结构所带来的电场缺 陷, 2004年复旦大学丁传凡等人在中国专利 200410024946.8提出了用普通印刷线路 板加工制作离子阱,并提出了利用印刷线路板表面电极附加不同射频电压幅度的方法
来调整阱内场型。相比较于矩形离子阱设计, 印刷线路板离子阱拥有较少的高阶场成 分, 其四极场成分可高达 98%, 在同等射频幅度下可使阱中央的电场强度相比矩形离 子阱更强, 使束缚的离子云获得更好的碰撞聚焦效果。该设计中的离子阱有四块完全 合围的 PCB平板电极和两片带支承脚的薄片电极端盖形成。
作为该设计的更进一步简化, 丁传凡等人在中国专利申请 200610001017.4及美 国专利申请 2009/0294655 A1中又进一步提出了一种离子存储与分析装置阵列, 包含 两排或两排以上相互平行放置的电极阵列, 电极阵列中的条状电极相互平行。相邻电 极条上施加不同相位的高频电压, 使得在两电极阵列之间的空间里产生高频电场, 进 而在此空间构成多个并列的直线型离子束缚区域。 从发明人等在美国分析化学 (Analytical Chemistry)杂志上发表的结果来看, 该直线型离子阱阵列在节省了每个储 存单元出射正交方向 (y向) 的围绕电极后, 仍能获得与简单堆砌矩形离子阱阵列结 构相同的质量分辨效果, 而结构更为紧凑。 同时, 由于省去了出射正交方向的电极单 元, 由原先这些电极单元所带来的可能存在的机械结构误差也被一并回避了。
相对于之前他人提出的多层同心圆式离子阱阵列结构,例如美国专利 US6762406 中普度大学 RG. Cooks研究组提出的圆柱型离子阱阵列及之后 Ramsy等人制作的基 于微机械与微加工技术 (MEMS ) 的圆柱型离子阱阵列质量分析器芯片等, 丁传凡等 人提出的上述器件具有直线型离子储存装置所特有的离子储存容量大等特点。需要指 出的是, 该离子阱阵列的探测器所需面积仍与之前的离子阱阵列设计类似, 需占据近 似于离子阱阵列本体的所占面积。这一点对离子阱阵列的多通道同步检测, 即多个离 子阱分别储存离子, 然后按同一质量轴选择性出射的分析过程是相当不利的。这是由 于较大的检测器面积在库伦检测中意味着更大的收集极电容,因此相对于检测单个离 子阱时的检测器设计情况, 相同离子电流所造成的瞬时电压响应就会下降。解决这一 问题固然可以通过设立多个独立的检测器单元来解决,然而由于多个检测器单元需要 多套后级放大和模数转换电路配合, 在实际应用中增加了其复杂性。
在中国专利申请 200910054963.9中, 复旦大学潘鑫渊等人从电极结构上进一步 简化了上述丁传凡等人所设计的 PCB电极平行阵列结构离子阱。 在其结构中运用了 两片平行放置的 PCB电路板, 其上各有一块相互对应的射频平面电极, 用于在这对 射频平面电极间的空间内形成准四极束缚电场。 为改善结构场型, 在每个射频电极的 平面两侧设计了两块位于同一平面上的端盖电极。 利用同侧两片端盖电极的共同作 用, 起到替代原先 "类四极杆" 结构出射正交方向 Y电极的作用。 然而这种设计结 果的质量分辨性能较不理想, 从已显示的关于全氟三丁胺的电子轰击电离源谱图来 看, 其仅能在 200ThomSOn以下质量范围获得单位质量分辨。
以上用于做质量分析器的线型离子束缚装置设计均建立在 X-Y双对称的几何结 构上, 在这些结构中, 质量分析器在逐出方向 X上两侧的离子出射几率是相同的。 为 改进类四极杆线型离子束缚装置的逐出特性, Fnmzen等人在美国专利 US6831275中
提出在类四极杆离子阱中,在离子逐出方向上在原有四极场上通过结构或电压修正获 取六极场, 十极场等不对称高阶多极场成分附加, 利用其非线性共振在 X方向正负不 对称的特点, 改善其在轴端的离子质量选择性及逐出效率。 这些特点也在 DJ Douglas 等人的美国专利 US7141789中被再次提及, 并指出 1%〜10%的六极场附加可以通过 x 方向的不对称非线性共振使离子选择性地损失在杆状电极上,用于改善轴端逐出的离 子选择特性。但这些在先技术中均只涉及类四极杆结构, 且并未讨论离子径向质量选 择逐出过程中离子出射取向特性的设置。
Varian公司的 Gregory J. Wells在美国专利 US7034293中提出了另一种方法, 通 过改变附加在类四极杆结构上的直流电压配置来使阱的离子束缚中心与几何中心偏 移, 用于改善离子阱径向逐出的不对称特性。 然而从基本的四极束缚装置理论可见, 附加直流偏置后, 离子阱截面上会附加一定的四极直流电场, 从而产生高质量丢失现 象而造成引入离子时的质量歧视, 并影响全质量扫描的性能。
丁力等人在中国专利申请 2009102531 12.7中提出了用置于离子束缚装置外的场 调节电极来改善此类装置的逐出方向选择性,该方法同样通过一个直流偏置对离子的 逐出特性加以调节。 由于该方案中电极位于束缚装置外侧, 其电压变化对束缚装置中 心影响较小, 相对 Varian专利中的方案质量歧视等问题大为改善。 不过该专利申请 的实施例中仍只描述了普通的类四极杆结构直线离子阱系统。 发明内容
本发明所要解决的技术问题之一是提供一种简化的线型离子束缚装置, 用于克 服传统类四极杆型直线离子阱组装结构复杂、绝缘定位件加工困难的问题, 同时提供 较为良好的内部补偿射频电场, 提高该装置作为质量分析器时的质量分辨能力。
本发明的一个方面提出一种线型离子束缚装置, 包括沿该线型离子束缚装置的 中轴线两侧相对设置的一对沿轴向伸展的主射频电极,在至少一个主射频电极上设有 离子引出槽。其中该对主射频电极中的每一个主射频电极在垂直于该中轴线的各截平 面上的截面图形, 都对通过该中轴线的一主对称平面保持对称, 其中该对主射频电极 上附加的射频电压相位相同。该装置还包括分别位于该对主射频电极两侧且对偶于该 主对称平面放置的至少一对辅助电极对, 其中至少一个辅助电极具有有限个对称平 面, 且各对称平面与该对主射频电极的对称平面之间的各个夹角中, 存在一大于 0度 并小于 90度的最小夹角。
在本发明的一实施例中, 包括两对对偶于该主对称平面放置的辅助电极对。 在本发明的一实施例中, 该中轴线为位于该对主射频电极的主对称平面内的曲 线。
在本发明的一实施例中, 该离子引出槽是由关于该主对称平面对称的一对主射 频电极组成部分间的间隙构成。
在本发明的一实施例中, 该线型离子束缚装置相对于经过该中轴线且垂直于该 主对称平面的平面对称。
在本发明的一实施例中, 该线型离子束缚装置在垂直于该主对称平面的方向上 不存在其他对称面。
在本发明的一实施例中, 该线型离子束缚装置在垂直于该中轴线的截面上的瞬 时静态电势分布,在以电场鞍点为中心的谐函数级数展开项中具有以六极场为主的不 对称成分, 其中六极场与四极场的成分系数比的绝对值在 0.5%〜10%之间。
在本发明的一实施例中, 该线型离子束缚装置的电场鞍点中心相对该对主射频 电极正中位置向一侧偏移, 其中该偏移占该离子束缚装置场半径的 0.5%〜20%。
在本发明的一实施例中, 该偏移占该离子束缚装置场半径的 0.5%〜10%。
在本发明的一实施例中, 该线型离子束缚装置还包括用于反射离子的两个端电 极结构, 设在该线型离子束缚装置的沿该中轴线的两端。
在本发明的一实施例中, 至少一个该主射频电极或该辅助电极为平面电极结构, 或是附着在绝缘体平面上的薄层电极结构。
在本发明的一实施例中, 该偶数对辅助电极中, 各辅助电极的结构与其位于中 轴线同侧的主射频电极相同。
在本发明的一实施例中, 该线型离子束缚装置还可包括工作电源以及调整装置。 调整装置用于调整附加在该对主射频电极与该辅助电极间的射频电压或偏置直流的 幅度比例, 并依此改变质量扫描过程中的优势出射方向。
在本发明的一实施例中, 该线型离子束缚装置还可包括场调节电极和电源。 该 场调节电极位于该离子束缚装置沿该中轴线的一端, 并关于该主对称平面对称。该电 源用于向该场调节电极施加纯直流偏置电压,或在邻近该场调节电极的一主射频电极 上所施加的射频束缚电压的基础上附加直流偏置电压并施加到该场调节电极,用以调 节质量扫描过程中的优势出射方向或提高质量分辨率。
本发明还提出一种质谱分析方法, 使用至少一个如上所述的线型离子束缚装置 来束缚目标离子,并使用以下手段来调节被束缚目标离子或被束缚目标离子的产物在 质量选择逐出过程中的质量轴偏移:调整附加在主射频电极与辅助电极间的射频电压 或偏置直流的幅度比例。
本发明还提出一种质谱分析方法, 使用至少一个如上所述的线型离子束缚装置 来束缚目标离子,并使用以下手段来调节被束缚目标离子或被束缚目标离子的产物在 质量选择逐出过程中的质量轴偏移: 调整该场调节电极上所附的偏置直流电压的幅 度。
本发明另提出一种线型离子束缚装置阵列结构, 包括多个如上所述的线型离子 束缚装置, 其中相邻的线型离子束缚装置之间, 复用至少一部分辅助电极。
在本发明的一实施例中, 至少一部分被复用的辅助电极也是相邻线型离子束缚
装置的主射频电极。
在本发明的一实施例中, 在一线型离子束缚装置的垂直于该主对称平面的方向 外侧周期性复制该线型离子束缚装置形成离子束缚装置单元阵列。
在本发明的一实施例中, 各线型离子束缚装置的中轴线所在的主对称平面基本 交于同一轴线。
在本发明的一实施例中, 各线型离子束缚装置围绕该同一轴线呈圆周型分布。 在本发明的一实施例中, 各线型离子束缚装置的中轴线围绕该同一轴线呈现一 端聚集, 一端发散的锥型分布。
在本发明的一实施例中, 在一线型离子束缚装置的沿该中轴线的外侧通过复用 主射频电极及辅助电极形成多层离子束缚装置单元阵列。
在本发明的一实施例中, 所述的线型离子束缚装置阵列结构是能够在时间或空 间上分离不同质荷比离子的离子质量分析器。
在本发明的一实施例中, 所述的线型离子束缚装置阵列结构为线型离子阱质量 分析器。
本发明另提出一种离子分析及检测装置, 包括如上所述的线型离子束缚装置阵 列结构;在该同一轴线处设置的至少一个初级离子接触面在该同一轴线上的共同离子 检测器。
本发明最后提出一种质谱分析方法, 包括以下步骤: 使用至少一个如上所述的 线型离子束缚装置束缚目标离子; 对该主射频电极上附加相位相同的 5KHz〜20MHz 的束缚射频电压;对各辅助电极附加用于调整主射频电极间的四极电场与多极电场组 分的辅助直流或射频电压; 扫描附加在主射频电极上的束缚射频电压的幅度或频率, 使一个或多个质荷比范围中的离子离开该线型离子束缚装置的储存空间;使残留在该 线型离子束缚装置内的至少一部分离子离开该线型离子束缚装置; 以及将至少一部分 时间段中离开该线型离子束缚装置的离子用检测器检测,获得按逐出时间变化的代表 被束缚目标离子中至少一部分质荷比范围内的离子的质谱信号的电信号。
在本发明的一实施例中, 使用多个所述线型离子束缚装置形成的阵列结构来束 缚离子,并使用其中至少一个线型离子束缚装置所得的代表质谱信号的电信号组合来 形成质谱信号。 附图概述
本发明的特征、 性能由以下的实施例及其附图进一步描述。
图 1示出四 -双曲面电极直线离子阱的基本原理图。
图 2示出双 -双曲面电极对系统间的空间等势线图。
图 3示出标准四-双曲面电极系统内的空间等势线图。
图 4A、 4B示出四-双曲面电极系统 (图 4A) 与双-双曲面电极系统 (图 4B) 内
瞬时势阱的对比图。
图 5A示出在先技术的平行放置辅助双曲面电极对主双曲面射频电极间空间电 场等位线的影响。
图 5B示出根据本发明实施例 1的对称内转角 (图示内转角为 24度) 放置辅助 双曲面电极对主双曲面射频电极间空间电场等位线的影响。
图 6示出不同辅助双曲面电极对称向内转角角度对主双曲面射频电极间四极束 缚电场的四极场与高阶场组分强度的影响。
图 7A示出本发明实施例 1的含被旋转的辅助电极对的离子束缚装置作为质量分 析器时的电路连接框图。
图 7B、 7C分别示出图 7A所示离子束缚装置在转角 0度 (在先技术) 与内对称 转角 16度结构下所得的模拟质谱图对比, 通过引入一个内对称转角特征, 该离子束 缚装置作质量分析器时的质谱分辨性能提高了 1.5倍。
图 8A、 图 8B示出直中轴线的离子束缚装置的离子出射特性与中轴线弯曲后该 离子束缚装置的离子出射特性的对比, 中轴线在射频电极对对称面内按圆弧弯曲后, 逐出的离子出射聚焦至圆弧圆心处。
图 9示出两侧非对称转角 24度放置的辅助双曲面电极对主双曲面射频电极间空 间电场等位线的影响。
图 10示出不同辅助双曲面电极非对称转角角度对主双曲面射频电极间四极束缚 电场的四极场与高阶场组分强度的影响。
图 1 1示出不同辅助双曲面电极非对称转角角度对向图 9右侧处逐出离子探测效 率的影响。
图 12A示出用于调节含被旋转的辅助电极对的离子束缚装置中射频电极与辅助 电极上附加射频与直流电压的装置原理图。
图 12B示出通过上述电压调节造成的装置内离子束缚势阱鞍点与几何中心的偏 移对质量扫描逐出过程中单侧离子探测效率的影响。
图 13A、 图 13B示出用实体平面电极构建的带两对辅助电极的线型离子束缚装 置与用表面薄层电极构建该线型离子束缚装置的过程。
图 14示出驱动调节带第二辅助电极的线型离子束缚装置的电路原理图, 其中第 一辅助电极对采用与中间电极同相射频电压分压驱动,第二辅助电极对采用反相电压 驱动。
图 15示出驱动带场调节电极的线型离子束缚装置的电路原理图。
图 16A示出阵列中各离子分析单元的质量轴相对漂移对总质谱信号分辨率的影 响。
图 16B示出通过场调节电极和射频工作电压调节去除分析单元间质量轴相对漂 移后, 总质谱信号峰高及分辨得到提升。
图 16C示出阵列中存在一质量分辨能力较差的分析单元时对总质谱信号的劣 化。
图 17A、 17B示出通过复用辅助电极作为邻侧离子束缚装置单元的辅助电极所 形成的扇形阵列结构图。
图 17C、 17D示出通过复用辅助电极作为邻侧离子束缚装置单元的辅助电极所 形成的锯齿状阵列结构图。
图 17E示出在先技术的平面离子阱阵列及其检测单元结构图。
图 18A、 18B示出通过复用辅助电极作为邻侧离子束缚装置单元的射频电极所 形成的锯齿状阵列结构图。
图 18C、 18D示出通过复用辅助电极作为邻侧离子束缚装置单元的射频电极所 形成的圆扇形阵列结构图。
图 19A示出圆柱形离子阱阵列的三维结构图。
图 19B示出圆柱形离子阱阵列的轴截面及内部电场结构图。
图 20A示出圆柱形离子阱阵列使用外周多道检测器平行检测各通道离子信号的 示意图。
图 20B示出圆柱形离子阱阵列使用中央检测器并行同步检测全部通道离子信号 的示意图。
图 21A示出圆台型离子阱阵列与检测器组件的三维结构图。
图 21B示出圆台型离子阱阵列与共轴含打拿极检测器组件联用的原理截面图。 图 22以圆柱型离子阱阵列为例, 说明如何通过改变电压配置将该阵列转变为一 个大型的对内部离子云筒形束缚的类圆筒型离子阱。
图 23示出用隔离储存-脉冲逐出模式对多通道连续输入本发明实施例中的离子 束缚装置阵列的离子做选择离子监测分析的原理时序图。
图 24A示出轴向分三段的含转角辅助电极的串联线型离子束缚装置阵列的三维 图。
图 24B示出轴向分两段的圆柱形离子阱二维阵列的三维图。
图 25A示出径向含三层电极的非对称串联线型离子束缚装置阵列的截面图。 图 25B示出径向含三层电极的圆柱形离子阱二维阵列阵列的截面图。 本发明的具体实施方式
如在背景技术中所提到的, 当用轴向延长电极构建二维直线离子阱装置时, 最 少需要两个电极来予以实现。图 2显示了双电极结构在垂直于轴方向所形成的二维准 四极电场截面。 从图 2中可见, 电极对 21、 22的结构在该截面上所形成的束缚电场 等势线图 23, 整体结构较为接近图 3所示的理想四极场结构等势线 31, 两者均具有 准四极电场所特有的空间电场强度鞍点 24与 32。 而在无电极封闭的垂直方向 Y上,
该等势线图结构与理想四极场差异较大, 为进一步揭示其差别, 图 4显示了场半径相 同的双 -双曲面电极与四-双曲面电极结构在离子逐出方向即 X方向的归一化电势变化 关系。 从图 4中可见, 相对于理想四电极双曲面结构, 双电极结构在 X方向上的势 阱深度, 即显示的类双曲面势阱最深处到边缘的电势差, 仅为理想四电极双曲面结构 的约 2.3%。 这对离子在这种结构的离子束缚装置中的束缚强度及离子储存限都是相 当不利的。
为进一步揭示这两种电极系统的电场组分差别, 可以对电极系统内的电场组分 用复数空间多瓣谐正交基函数 Re(x+yi)n做线性展开, 其中 Re为取实部算符, i为虚 数单位。这类谐函数的在 x,y坐标所表示的笛卡尔坐标系复平面空间中图案分布呈现 为正负极性交替的绕原点分布的多瓣图形, 对特定参数 n对应的函数项, 其瓣数为参 数 n的 2倍, 因此称为多极场。作为特例之一, 当 n取 2时,该项基函数退化至 x2-y2, 即双曲四极场。 当 n更大时, 如 n=3,4,5等即分别对应六极场, 八极场, 十极场成分 等。 对于实际电极系统电场函数 (x,y), 用该定义展开可以得到 (x,y)= ∑
AnRe(x+yi)n, 其中各多极场项前的线性展开系数 An即为这一特定电极系统的各多极 场成分, 其中 A2为四极场成分, A3为六极场成分, A4为八极场成分, 依次类推。
得到实际电极系统的多极场系数的一种简单方法是对该电极系统在 X轴上, 坐 标在正负场半径范围内电势坐标关系用 Φ (χ)用多项式展开。 在 X轴上, 实际电极系 统电场函数 (x,y)的级数和表达式∑AnRe(x+yi)n退化为幂级数∑Αηχη,运用简单的矩 阵多项式展开算法即可得到各多极场参数 Αη。 下表 1显示了运用这种方式计算出的 该两种电极系统间的多极场系数的差别。
四电极结构 双电极结构 (无辅助电极) 四极场系数 Α2 1.00000000 0.02354484 八极场系数 Α4 - 0.00014922 十二极场系数 Α6 - -0.000051 1 1 十六极场系数 Α8 - -0.00000257 二十极场系数 Α1 () - 0.0000001 1 二十四极场系数 Α12 ― -0.00000023 表 1 四双曲面电极系统与双双曲面电极系统内
四极场与高阶场组分强度的对比表
从对图 4及表 1的分析可以看到, 由于一对射频电极的缺失, 双电极射频束缚 系统内的准四极场强度比标准四电极结构明显下降,同时在电极方向出现了较强的高 阶负多极场成分。 根据在先技术如美国专利 US6831275等中指出的的多极场系数对
线型四极离子束缚装置中离子运动特性的描述可以推知,对于通常的正向扫描质量分 析过程, 这些负高阶多极场成分会导致离子在电极方向的出射发生延迟, 影响其分辨 能力。 因此有必要采用其他手段来改善双电极对结构内的四极电场强度, 并抑制不良 的多极场参数效应。
改善双电极对结构内的四极电场的方法之一是在双电极对周围设置辅助电极。 与主双电极对不同, 由于这些辅助电极远离主双电极对间的四极电场离子束缚区, 其 电极表面特征, 如定位、尺寸及表面粗糙度等结构误差对离子束缚区四极电场的影响 很小, 因此它们的加工精度可以远低于主双电极对的加工精度, 从而以较少的成本增 加代价提升双电极对结构内的四极电场强度, 并抑制不良的多极场参数效应。 例如, 在在先技术文献中国专利申请 200910054963.9中, 对于平面电极的特殊情况, 其作 者提出了采用在每一平面射频电极的水平方向采用与平面射频电极相同的电极结构 作为辅助电极, 来改善射频电极对间的准四极电场的强度并抑制多极场参数效应。然 而由于该方案中辅助电极位于主射频电极的同一水平面上,辅助电极对主射频电极间 四极场的修正最多只能做到标准四电极结构的 50%电场强度,因此该在先技术方案在 实际应用中的离子束缚能力较弱, 质谱分辨能力较差。
本发明的实施例提出一种简化的线型离子束缚装置, 该装置通过引入辅助电极 的对称平面偏转角, 对在先装置中的过度简化中所存在的问题进行了修正, 而保留了 平板式结构线型离子阱组装时具有的结构简单, 组装方便等特点, 同时针对采用低精 度加工工艺造成的质谱质量轴漂移等问题提供了解决方案。通过复用该线型离子阱装 置中的部分电极结构, 可以形成一组紧凑的离子阱质量分析器阵列, 该装置中的每个 离子阱单元都可以作为单独的质量分析器使用, 也可以共同同步进行质量扫描, 以获 取更大的分析通量。 同时, 由于该装置结构作为阵列使用时多个离子阱的出射方向近 似聚焦在一个小区域, 在多通道同步采样工作模式中可以采用极小的收集极面积, 这 使得即使直接利用库伦分析也可以得到较高的离子流电压信号,从而只使用一套预放 大器-模数转换采集装置就可以获得高质量的质谱信号。 由于分析离子流强在本发明 实施例的阵列结构中也可以通过并联多个离子储存单元来增强,该装置可避免使用无 法在较低真空度时使用的高压离子倍增器装置,因此其工作气压仅受离子阱工作气压 限制, 从而可以大幅减少辅助真空泵系统的设计难度, 并减少质谱仪的设计成本和重 量, 使得仪器的小型与便携化易于进行。 实施例 1
根据本发明的实施例, 将辅助电极相对射频电极做一转角, 以进一步改善射频 电极对间的准四极电场的强度并抑制多极场参数效应。
作为本发明的实施例 1, 参照图 5B所示, 所提出的线型离子束缚装置包括一对 双曲面杆的主射频电极 501、 502及位于主射频电极 501、 502两侧的两对辅助电极对
503、 505与 504、 506组成的电极系统。 作为对照, 示出了如图 5A的在先技术的对 应结构。 图 5B中 506所标示位置为离子束缚装置的中轴线, 而 506为通过该中轴线 的主对称面。 一对主射频电极 501、 502沿该中轴线两侧相对设置, 并沿轴向伸展。 主射频电极 501、 502中的每一个主射频电极在垂直于中轴线的各截平面上的截面图 形, 都对通过该中轴线的一主对称平面保持对称。 两对辅助电极对 503、 505与 504、 506对偶于主对称平面 506放置。作为举例, 每一对辅助电极对 503、 505或 504、 506 都可对称于主对称平面 506放置。与在先技术的结构不同的是, 本实施例的系统内至 少一个辅助电极, 如辅助电极 503的工作表面法向指向相对于主射频电极 501、 502 的工作表面法向指向存在一个大于 0度并小于 90度的旋转角。为进一步定义该转角, 当辅助电极也存在对称面时,可以用主射频电极对的对称面 506与该辅助电极 503的 对称面 507间的夹角 53来定义该旋转角度。 当辅助电极存在有限的多个对称面时, 主射频电极对的对称面如 506与该辅助电极的各对称面的所形成的多个夹角的最小 值可用于定义该旋转角度。 若辅助电极存在无限对称面, 如截面为圆形的情况, 则无 法定义此角度, 此时系统中需含有至少一个具有有限个对称面的其他辅助电极, 用该 辅助电极的最小对称面旋转角度来调节系统内的四极场强度,并优化其参数来抑制多 极场参数效应。
图 5A、 5B展示的电极与空间电场等位线截面结构还显示了该辅助电极旋转角 53对主射频电极对 501、 502间的四极束缚电场的改善。 例如, 图 5B显示了将射频 电极两侧的相同结构的辅助电极均向内转角 24度之后对射频电极间四极束缚电场的 影响。 可以看到, 相对于图 5A显示的在先技术对应的无转角情况, 图 5B所示的本 发明实施例所提供的结构对应的 0电势面 52相对在先技术对应结构的 0电势面 51向 束缚空间内收縮, 因此更符合理想四双曲面电极所对应的四极电场等势线结构。
为进一步说明本发明中所涉技术特征对四极束缚电场的改善, 图 6展示了在该 对称内转角 53从 0度(在先技术)逐渐增大至 28度时对射频电极间束缚准四极电场 的各多极场组分系数的影响。 通过图 6中展示的四极场系数的变化规律曲线 61, 可 见,采用在先技术时,即将与主射频电极相同结构的辅助电极安排在左右水平两侧后, 主射频电极间的四极电场系数从无辅助电极的 2.3%左右上升到 44.5%左右, 仍不足 50%。 然而采用本技术方案, 即将四个辅助电极均向内旋转一个特定偏转角度 53后, 可发现当偏转角 53从 0度上升至 30度的区间内, 该装置的四极电场系数从约 44.5% 进一步上升到 57.6%, 超过了原有方法的理论极限 50%。
本实施例的离子束缚装置作为质量分析器时的装置原理如图 7A所示,其中一对 主射频电极 71、 72通过耦合变压器 73的中间端一同连接到主射频电源 74的同相端 741。 同时, 辅助射频电源 75输出的偶极激发信号通过耦合变压器 73以差分反相形 式分别附加到主射频电极 71、 72上, 而一对辅助电极 77、 78均连接到输出为主射频 电源 74输出电压的反相端 742。 两个辅助电极 77、 78相对主射频电极对 71、 72均
做一转角,该转角以主电极对对称面 710与辅助电极之一的对称面 711的夹角 712来 表示。
由于在先技术文献中已对线型离子阱模式的多种工作方式均有介绍, 这里仅以 质量不稳定扫描模式为例来介绍该装置用于离子质量分析的工作原理。在最常见的射 频电压扫幅模式中, 待分析的样品气相分子在该离子束缚装置内电离产生的样品离 子, 或是通过在装置外电离产生的、 随后被引入该装置内的样品离子都可以通过主射 频电源 74输出的射频电压所诱导出的主射频电极对 71、 72间的四极电场被有效束缚 在阱内。通常为有效束缚样品离子及其可能反应产物, 这一射频电压的频率范围通常 在 5KHz〜20MHz之间, 幅度在几伏至上万伏特不等。 随后, 束缚离子云的径向尺寸 可以通过离子与该束缚装置内引入的缓冲中性气体如氦气、氮气、氩气等碰撞而有效 縮减。被空间束缚及碰撞冷却后的样品离子的运动频率可以通过扫描射频电压的幅度 或频率被单方向的改变, 当样品离子的运动频率通过由辅助射频电源 75所设定的激 发频带时, 目标离子的动能及振动频率将迅速增加, 最终从设立在某一中央射频电极 上的狭缝中出射, 被检测器探测到形成离子电流信号。 由于在确定共振条件下, 出射 离子的质荷比同主射频电源 74输出主射频电压幅度或其射频周期的平方成正比, 扫 描主射频电源 74的输出幅度或射频频率都可以产生按质荷比变化的样品离子流, 即 反映不同质荷比样品离子丰度的质谱信号。
为验证本实施方案中辅助电极转角 712对该装置作为质量分析装置性能的改进。 在此对比了不同偏转角 712下的离子出射工作条件,其中该质量分析装置的的场半径 为 5mm, 双曲面电极截断位置距场中心 10mm, 逐出狭缝宽为 0.6mm, 主射频频率为 1.3MHz, 激发电压频率为 433.3KHz。 当偏转角为 0度时, 质荷比为 609Thomson的 离子出射电压为 799V, 而偏转角为 16度时, 质荷比为 609Thomson的离子出射电压 则下降至为 738V左右。 当偏转角增加至 24度时, 609质量数离子的出射电压可以降 至 700V以下。 可以看到, 引入辅助电极偏转角后, 获得相同质量范围时所需的射频 工作电压明显下降。
评价质量分析器性能的重要参数之一是该器件的质量分辨, 即相邻质量数间离 子所产生质谱峰间的区分能力,通常用质谱峰中心点对质谱半高峰宽或峰底宽的比来 表示。 图 7B、 7C显示了施加偏转角度前后时的质量分辨性能的对比的仿真结果, 其 中图 7B显示了在先技术,即偏转角为 0时该质量分析装置对质荷比 609、610ThomSOn 的离子对的质量分辨,而图 7C展示了偏转角为 16度时该质量分析装置对质荷比 609、 610ThomSOn的离子对的质量分辨。 可以看到, 由于四极场分量的增强对离子冷却状 态的改善, 以及逐出方向上最低阶高阶场成分即八极场 A4向正方向逐步增长对逐出 狭缝附近负高阶场的补偿两种效应的结合,使得具有较大偏转角的结构可获得较好的 质量分辨率, 无论从半高峰宽还是底峰宽定义来看, 质量分辨率相对于在先技术都有 超过 50%的提高。
通常线型离子束缚装置在做径向质量选择逐出时, 出射的离子束往往有一个较 大的轴向展宽, 这是由于离子在径向出射时, 其驱动力来源是沿束缚装置径向的射频 电场分布。 如图 8A和 8B所示, 这使得离子在出射时的指向一般落在其轴线垂直截 面 803上。 由于通常质谱扫描前离子都会经历一个冷却过程, 因此在质量选择激发过 程前,待分析的离子云 801会被束缚在主射频电极中间的储存单元的中轴线 802上的 一个较宽的范围内, 这就导致从作为离子引出槽的狭缝 84逐出的离子几乎沿平行方 式逐出, 如图 8A所示。 因此, 当储存单元的中轴线 802为直线时, 用于检测线型离 子束缚装置径向出射的离子的检测器 85必须有较大的尺寸, 这样才能保证接受到全 部逐出离子。
为解决此问题, 图 8B展示了将储存单元中轴线弯曲带来的离子出射聚焦效果。 在该实例中, 储存单元的中轴线 802呈一圆弧形, 根据离子径向出射时的受力性质, 离子出射时将按中轴线的法向出射。 同时, 由于主射频电极组仍关于平面 803保持对 称。 根据对称性原则, 主要的离子都会在对称平面上按中轴线的法向出射。 因此, 对 于向该线型离子束缚装置弯曲内侧出射的离子,最终都会聚焦到位于圆弧圆心处的离 子探测器 86。 因此, 该结构很容易得到较小的检测器容许尺寸, 有利于质谱设备整 体的小型化。
此外必须要指出的是, 本实施例的装置中主射频电极对中的每一个射频电极并 不需要一个完整的结构。 因此, 离子径向出射检测所需要的狭缝 84 (即离子引出槽) 也可以用主射频电极 81、 82各自的两个组成部分 (81.1与 81.2, 或 82.1与 82.2 ) 之 间的间隙来形成。采用这种设计方式的优点是使装置中径向束缚电场沿轴向的变化在 电极的轴向边缘处的缺陷进一步减少,从而提高离子在轴上不同位置间径向出射延时 的同一性, 提高该器件作为质量分析器时的分辨能力。
此外, 虽然由于本实施例的装置射频电极对轴端存在边缘场效应, 可以在无端 盖的条件下束缚离子, 然而为了尽可能改善离子在轴向的束缚条件, 通常都应该在线 型离子束缚装置的的轴端设置反射离子的结构。最简单的结构中可采用附加阻挡直流 电位的圆孔透镜, 或者将该装置在轴端分割出一个整体附加有直流电位的小段, 用于 阻抑离子沿轴向的泄露逸出。如果需要做轴向质量选择出射操作, 可以将该阻挡结构 设置为一片加有合适直流阻挡电位和轴向激发交流信号的网状电极。 实施例 2
在实施例 1所展示的结果中可以看到对辅助电极相对主射频电极对称面做一转 角后, 该器件的四极场系数和作为质量分析器时的分辨能力都有所上升。 然而, 对于 通常的线型离子束缚装置, 包括实施例 1中展示的设计结构, 其主射频电极部分都同 时具有 xy对称性, 即这些线型离子束缚装置在任何垂直于其直线或弯曲中轴的截面 上, 不但对于离子逐出方向的左右两侧具有对称性, 在垂直于离子逐出的方向上同样
具有对称性。 在对称性的结构中, 由于主射频电压和激发电压都是平衡交变信号, 它 们在较长的时间尺度上的对大量离子群的平均坐标是没有影响的。因此对这些对称的 离子质量分析器结构, 为得到全部离子信号, 就必须在离子出射方向的正反两侧都安 放检测器, 这会增加仪器的成本与尺寸。 同时由于两个检测器的响应及饱和极限都不 可能完全相同, 对于大离子流的情况, 质谱仪的动态范围极限会由性能较差的那个检 测器决定, 这也在一定程度上限制了质量分析器的综合性能。
同样从对称性原理可以获知, 如果质量分析器结构在离子逐出的垂直方向的两 侧没有对称性, 而仅仅是在离子逐出方向的两侧具有对称性。 那么, 离子在径向逐出 过程中的狭缝透过率仍能由于对称性而保持,同时又可以出现逐出方向正反两侧的不 对称现象。 作为一种极限情况, 例如对于理想双曲面电极结构, 当逐出方向上的一对 电极采用不等场半径的同中心双曲面结构时, 离子将始终从场半径较小的一侧逐出。 因此, 在非逐出方向上就可以不设立检测器装置, 从而避免了上面说讨论的双检测器 所带来的一系列问题, 同时也减少了仪器的成本及所需尺寸。
然而, 在商业化仪器中一般并不会看到非对称的主射频电极结构。 这主要是由 于非对称结构中, 影响机械组装精度的参量变多了。 同时, 处于生产成本的考虑, 除 平面, 圆杆等简单几何结构外, 生产一套不同尺寸或形貌的高精度主射频电极的代价 是高昂的。 同时, 加工高精度器件时不可避免的一个因素是成品率, 如果作为主射频 电极使用, 电极结构出现 5微米以上的误差时就会严重影响其质量分辨性能。对于四 极杆质量分析器,如果电极结构件的误差较大,还可以作为导引杆,碰撞腔室等使用。 而对于作为离子阱质量分析器工作的线型离子束缚装置主电极结构件, 由于器件上需 要开引出狭缝等结构, 误差较大时就只能报废了。
为解决上述这些问题, 在本实施例中, 提出使用误差较大的与主射频电极基本 上相同结构的电极结构件作为辅助电极, 通过在主射频电极对 901、 902两侧的非对 称转角来实现离子的取向逐出。 如图 9所示, 两侧的两对辅助电极 903、 905和 904、 906围绕其距主射频电极 901、 902最近角点, 均向同侧的主射频电极对称面 907偏 转一个角度 92。 事实上, 只要辅助电极中引入在离子逐出方向的非对称结构, 作为 整体效应, 对称的主射频电极间的四极束缚电场也会被辅助电极结构影响, 出现六极 场 A3、十极场 A5等非双偶数阶高阶电场展开项 Re(x+yi)nAn, 从而使得该离子束缚装 置的质量选择径向弹出过程出现选择特性。 从电场线 91的外侧分布也可以看出这一 非对称性质。
为揭示采用这种结构修正对该离子束缚装置的影响, 图 10展示了在该非对称内 转角 92从 0度(在先技术)逐渐增大至 30度时对主射频电极间束缚准四极电场的各 多极场组分系数的影响。 通过图 10中展示的四极场系数的变化规律曲线 1001, 可以 看到, 即使采取了非对称的转角方式, 当偏转角 92从 0度 (在先技术)逐步增长时, 该束缚装置的四极场强度也逐步上升。 当偏转角 92到达 30度时, 该系统的四极场强
度已经超过了 50%。 另一点值得注意的是, 采用这种方式可以引入最大到 3%的六极 场相对权重 A3/A2。 由于六极场的正负逐出方向上存在结构非对称性, 对于图 9中右 侧而言, 作为质量分析器时, 该离子束缚装置中的离子在正向扫描时将感受正的高阶 场成分, 从而加速逐出; 与此相反, 对于图 9中左侧方向, 离子在正向扫描时将感受 负的高阶场成分, 从而不易从该方向逐出。
在在先技术文献中, Franzen及 Douglas等人都解释过这一现象, 并指出一般 <10%的六极场相对权重可以明显提高线型离子束缚装置的单向逐出特性, 但这些结 果都是建立在四电极系统上的。在此采用离子光学仿真手段来验证在本实施例所涉的 双主射频电极系统的单向逐出特性。 从图 1 1中可见, 随着非对称内转角 92大小的上 升及随之带来的六极场相对权重 A3/A2的上升, 当转角大于 8度, 即六极场相对权重 大于 0.5%以后,该装置质量分析时的单向逐出率已超过了 75%,当转角到达 16度后, 该装置质量分析时的单向逐出率几乎接近 100%。 因此, 可以初步认为取得较佳单向 逐出效率的六极场相对权重下限应大于 0.5%。
在这里要特别指出的是, 若按图 9所示的方法偏转辅助电极的放置角度来调节 阱内电场, 但进一步增加该偏转角度 92, 使其接近于垂直角 90度时, 这一方案便类 似于传统的封闭四电极结构, 其中仅直接面对封闭空间的电极对 903,905会对阱内电 场产生较大左右, 而位于封闭离子束缚区域外侧的偏转辅助电极 904,906对阱内电场 仅产生较少的影响。 因此, 这一对辅助电极 904,906可以被省略, 从而减少系统的复 杂性, 通过调节仅剩的一对辅助电极对 903, 905相对主射频电极对称平面的对称平 面偏转角 92, 即可达到调节内部电场强度与取向性, 变化离子阱质谱性能的目的。 同样, 若是进一步仅只改变辅助电极 903的偏转角度 92, 而不改变辅助 905电极的 偏转角, 也可达成类似目的, 但由于 903与 905电极偏转角的不对称性, 离子取向逐 出的效率会受到一定影响。然而若离子阱只作为筛选器保留选择质量的离子而并不关 注逐出离子特性时, 这一调节电场方法也可用于提高筛选器的质量分辨能力。
采用对称电极结构情况下获取单向逐出效率的另一方法是改变电极对两侧的电 压分布, 包括改变附加在主射频电极和辅助电极上的射频电压幅度与直流偏置差异。 图 12A展示了实现这一方案的电路原理图。对于射频电源 74输出的正弦波射频电压, 可以通过可调分压电容网络如 710将被分压后的电信号加载到主射频电极对 71、 72 上, 主射频电极对 71、 72的射频电压幅度可以通过不同的分压电容网络被分别调节。 与此类似, 使用分压电容网络, 还可以调节辅助电极对如 771与 772, 781与 782间 的射频比率。 当主射频电极对的一支例如 71的射频幅度增加时, 主射频电极间四极 束缚电场的鞍点就会在 2倍场半径 rQ为最大范围的直线上发生移动,并远离该主射频 电极, 导致向这一方向的离子逐出率下降。 类似地, 当某一辅助电极对称组如 771, 781上的射频幅度上升时, 由于辅助电极 771、 781转向离子束缚装置的内侧, 该射 频幅度的升高即类似于偏转角 92增大的情况, 会造成离子向左侧的逐出率增强。 上
述方法提供了在不改变电极结构对称性的情况下修改优势离子逐出方向的方法,然而 有时可能需要在一次质谱分析过程的时间量度下, 切换离子的优势逐出方向。此时采 用电容调节速度就不太合适了。 图 12A中还展示了另一种方法, 即通过修正各电极 上的附加直流偏置来改变四极场鞍点平衡位置 1201, 进而改变离子的优势逐出方向。 图 12A中, 可以通过修改辅助电极的直流偏置电源如 791、 792, 或主射频电极的直 流偏置电源 71 1、 712来修改鞍点 1201的位置。 这些直流偏置电压通过大阻值电阻如 793附加到各工作电极上。 相对于射频电压调节, 直流电压的调节对四极场鞍点及逐 出取向效率的作用更为直观。对于正离子, 当对应侧射频或辅助电极被附加正直流偏 置时, 四极场鞍点会远离该侧电极, 从而增加反侧的离子逐出效率。 作为一种改进, 直流偏置耦合电阻 793在射频工作电压为方波时也可按中国专利申请 2009102531 12.7 中所述的方法用二极管代替, 从而实现较低的切换电阻和切换时间。
修改电压改变离子逐出取向方法的本质事实上是对四极场鞍点的调节, 图 12B 展示了仿真条件下不同初始四极场鞍点位置与图 9结构中右侧 (即 X正方向) 离子 逐出效率的关系。 从图 12B中可见, 当采用类双曲面结构作为主射频电极, 当改变电 压配置使鞍点偏移为场半径 rO的 0.5%到 10%时,可以达到高于 75%的单向逐出效率。 当电压配置使鞍点移动距离过大时, 由于高阶场的 X-Y耦合会使离子在逐出过程中 过多的损失在狭缝处, 然而即使当鞍点偏移达到场半径 rO的 20%时, 离子的单向选 择出射率仍可达 30%以上, 此时, 离子在相反方向的出射几乎都可以忽略不计, 因此 利用采用上述方法调节鞍点偏移在场半径 rO的 0.5%〜20%之间造成的离子单向出射效 应, 可以仅在离子阱的一侧出射狭缝安排检测器以探测离子, 这样就避免了可能存在 的两侧离子出射效率涨落造成的离子流统计误差, 也简化了离子探测装置的结构。
以上实施例主要针对的是双曲面电极等高精度主射频电极结构的解决方案, 如 果采用平面电极技术来加工主射频电极结构或辅助电极结构, 由于平面电极易于加工 到微米级精度,因此其场不对称性等附加要求并不一定需要采用完全对称的主射频电 极结构来实现。这样就带来了更多的灵活性。平面电极结构的缺点主要是逐出狭缝附 近负高阶场成分较双曲面及圆面结构都更严重, 为解决这一问题, 通常需要将离子阱 在逐出方向上相对双曲面或圆面电极所在场半径位置进行拉伸, 通常这一比率在 1.15〜1.35之间。 此外, 由于平面电极, 尤其是辅助电极的加工较为简单, 为进一步 改善这类结构的质量分辨能力, 如图 13A所示, 可以考虑在原有主射频电极 1300的 辅助电极 1301两侧再附加 1至 2对次级辅助电极如 1302等。 同时, 由于电极附近空 间电场事实上仅受电极表面形貌影响,也可以如图 13B所示,制作高精度的硬质绝缘 材料如陶瓷基底 (图未示出) , 然后在基底上生长一层薄层金属工作电极 1304, 并 利用薄层金属的图案 1305制作多对辅助电极。 如图 14所示, 这些辅助电极也可作为 主射频电极的调整电极如 71.2、 72.2, 并附加主射频中央电极如 71.1、 72.1所附加电 压的一部分, 而相位相同, 从而使得离子逐出狭缝附近的电势较高, 从而抵消平面电
极原有逐出狭缝附近的负高阶场成分, 提高该器件作为质量分析器的分辨能力。 实施例 3
直接修改阱内各电极的直流电压可以方便地调整离子阱类质量分析器的优势逐 出方向, 然而, 这一修改也使得该分析器的电场中混入了较高的直流成分, 从而导致 对质荷比高低两端的离子的质量歧视。 为解决这一问题, 可以引入场调节电极结构。 如图 15所示,本实施例中的场调节电极 1501位于离子束缚装置轴线的一侧主射频电 极 71的外侧, 并关于主射频电极的对称平面对称, 该对称性保证了场调节电极上的 附加电场不会对在所示线型离子束缚装置对称面上运动的离子明显产生垂直于出射 方向的运动扰动。 同时进一步包括一个电源 1502, 用于给场调节电极 1501附加纯直 流偏置电压, 或当耦合电阻较大时, 在邻近射频电极所附加射频束缚电压的基础上附 加直流偏置电压, 并附加到场调节电极上 1501。 由于场调节电极 1501的主要部分都 被屏蔽在主射频电极 71之后, 因此, 调节场调节电极 1501的直流偏置仅会对将从射 频电极 71上狭缝逐出的离子产生强阻抑作用, 而对线型离子束缚装置轴心处的离子 储存调节影响较少。 场调节电极 1501的阻抑直流电压除了可以通过选择性阻挡所在 方向离子的出射, 从而调节质量扫描过程中的优势出射方向外, 还可以用于改善离子 即将逐出离子阱时的共振频率与相位失谐,避免离子延时出射而提高该离子束缚装置 作为质量分析器时的质谱分辨能力。
场调节电极还具有一个特殊的作用, 即通过改变场调节电极电压, 还可以对被 束缚目标离子或其产物在离子阱质量选择逐出过程中的质量轴偏移关系做一定的调 节。通常, 场调节电极的电压对离子阱质量分析器的质量分辨力的影响是一个突跃平 台, 即当场调节电极电压超过一个限定值之后,通常在直到限定值的 1.5倍的范围内, 质量分析器的分辨能力都保持在一个较高的水平, 且质量分辨率变化通常小于 15%。 在这个范围内, 通过调节场调节电压可以做到最大范围千分之一的质量范围调节, 通 常调节精度可达 5ppm每伏。 普通商用四极质量分析器的场半径均在 5mm左右, 而 各种加工误差所导致的相当于场半径的变化通常不超过 5个微米, 因此, 该方法可从 硬件上有效校正离子阱类质量分析器的质量轴。
除了场调节电极偏置电压这一精细调节方法, 也可以通过直接修改附加在主射 频电极与辅助电极上的射频电压比例来对该离子束缚装置的质量轴做一粗调。这一手 段可以通过调节图 15中各电极与射频电源端的可变电容分压桥来实现。 此外, 也可 以通过改变对各射频电极与辅助电极直流偏置,通过束缚装置内四极直流电场的影响 改变质量分析器模式下的质量轴转换关系。 由于这些改变是直接作用于工作电极的, 因此通常每伏特直流或射频偏移量的质量轴放縮比约为 lOOOppm左右。
这些方法的另一个重要作用是可以使得相同设计结构的线型离子束缚装置间由 于机械加工误差所导致的质量轴漂移得到矫正, 从而相互匹配。通常对于单质量分析
器系统, 这些质量轴的漂移还可以通过简单的软件校正而得到去除, 但是对于由单通 道质量分析器所组成的阵列质量分析器,这种漂移就会影响在多个离子阱分别储存离 子, 然后按同一质量轴选择性出射的分析过程所得到的组合质谱信息质量。
例如, 美国专利 US7157699中设想在矩形离子阱简单复用阵列中可通过上述的 多通道同步采样, 将 N个简单组合排列的低成本矩形离子阱所得的质量选择出射的 离子电流叠加后用同一微通道板离子检测器采集,组成一个高分析通量的质谱检测通 道, 在理想情况下在组合通道上本可以得到 N倍峰高的质谱信号, 然而, 考虑到低 成本矩形离子阱的加工误差 (0.01mm) 与场半径 (约 5mm) 之比。 对于 500Thomson 左右的离子, 该组合通道中不同分析单元的质量标最大可能偏差 +/-1个单位质量数。 这样, 如图 16A所示, 由于各离子阱典型机械加工误差所导致的质量轴漂移, 不但 最终组合信号高度达不到 N倍于单通道的效果, 还会使得最终所得的叠加质谱峰被 展宽而失去单位质量分辨, 导致定性分析准确度严重下降。 此外, 简单阵列低成本质 量分析器的同步扫描工作模式中还存在着所谓 "水桶效应", 即如图 16B所示, 各单 元同步扫谱累加时, 总谱图的最高分辨受质量分辨力最差的分析单元限制的现象。
通过对各单元附加场调节电极直流偏置的调节, 或是主射频电极与辅助电极上 的射频电压比例的调节, 都可以解决上述同步分析方法中的缺陷。 首先, 不同质量分 析器单元可被分开调节,使各分析单元的质量轴进行硬件上在时间轴上的同步。此外, 由于特定分析单元加工差异所导致的极差质谱分辨对总质谱图的劣化也可以通过各 单元场调节电极对各成员分析单元的独立质量分辨优化而被避免,最终使得这两种不 利于各阱差异导致的质谱峰展宽都得到抑制, 如图 16C所示得到高质量的叠加谱图, 从而提高了该质量分析器阵列的整体质量分辨性能。 实施例 4
随着分析技术的发展, 高通量, 低检测限, 工作条件易于满足已成为对各种分 析方法的共同要求。离子阱质量分析器阵列的自身特点相当适合这三个要求: 当质量 分析器阵列的每个通道分开工作时, 可以成倍地加快待测嫌疑物筛选的过程; 质量分 析器阵列也可以并行工作并在同一探测器上输出累计谱图,结合离子阱质量分析的预 富集特点, 可以得到极低的检测限。 此外, 由于多个离子阱并行工作时可采取到较强 的离子电流, 因此对真空度敏感的电子倍增器等就可避免使用, 从而减少了分子泵等 笨重昂贵的高真空获取设备, 降低了质谱仪器的工作条件需求。
由于柱面加工通常难于旋转体, 因此在加工线型离子束缚装置阵列时, 应尽量 避免加工高精度的异型柱面电极。在之前的实施例 2和 3中我们已经看到如何通过较 易加工的平面电极实现具有较好质量分辨性能的离子阱单元,并通过外周电路来改善 各单元的同一性。 然而, 仅仅每一单元重复加工本发明中的离子束缚装置, 并通过机 械加工水平提高阵列中各单元的同一性并不可取。这是由于虽然辅助电极的高精度结
构对于本单元的质谱性能影响不大, 但其尺寸误差仍会影响到各单元的有效场半径, 起始激发电压等参数。 因此, 在阵列系统中, 如何减少误差较大的辅助电极的数量及 其影响是控制阵列系统质谱性能, 尤其是各单元并行同步采样模式下的重要问题。
在本实施例中展示了一种基于复用相邻线型离子储存单元的部分电极构建紧凑 的离子阱质量分析器阵列的方法, 如图 17A-17D所示。 首先, 可以通过在相邻该线 型离子束缚装置如结构 171 (图 17A或 17C所示)之间, 通过复用至少一部分辅助电 极如 172.1、 172.2、 173.1、 173.2、 174.1、 174.2等作为邻侧离子束缚装置单元的辅助 电极,形成被辅助电极区域隔开的多个线型离子束缚装置单元的阵列,如图 17B、 17D 所示, 从而减少该线型离子束缚装置阵列分析器件的制作复杂度。
在这种离子阱质量分析阵列中, 由于各单元阱 (即空心电极间区域) 之间都被 较长的辅助电极所隔开,每个单元阱都可在辅助电极接地的条件下分开进行射频幅度 或频率的扫描, 为提高单元阱的分辨能力所需附加的偶极激发电压的施加方法与图 7 中的基本方法一致, 即通过一个次级有中间抽头的隔离变压器附加, 使得相对的中央 射频电极如 171.3、 171.4间所附加的射频电压相同, 而偶极激发电压相互反相。
当各单元需要同步扫描时, 该离子阱阵列可以有两种射频电压附加方式, 在第 一种方式下,每个单元阱间的辅助电极均接地,相邻单元阱的射频电极电压可以同相, 也可以是幅度完全相同的反相信号。在第二种方式下, 相邻单元阱的射频电极电压相 互同相, 而单元阱间的辅助电极附加与主射频电极电压幅度相同的反相射频信号, 这 种方式的优势在于各单元阱内的势阱深度提升一倍, 使得被束缚的离子能更好的冷 却, 从而获得较高的质量分辨能力。
图 17B还展示了该离子阱阵列构建的阵列质谱分析器的两种基本模式, 作为多 道检测器时, 可以采用实施例 3中的方法, 通过调节附加在辅助电极上的直流偏置使 得离子向外周的分立检测器取向出射, 而作为单道检测装置时, 也可以通过类似方法 使离子向中央的统一检测器聚焦出射, 由于每个分立离子阱单元的对称面都近似交于 一点, 该检测器的收集区要求可以和普通检测器相同, 易于选择。 这是其他离子阱阵 列所不具备的。 此外, 由于采用了单一检测器, 由于不同检测器瞬时响应涨落造成的 噪音也可以得到避免。
这种复用离子阱单元 171间辅助电极的方式也可以按图 17D进行, 与图 17B展 示的扇形阵列不同, 图 17B中辅助电极的复用中采用了锯齿型结构,这样可以使得在 图中水平方向上阵列拥有无限延伸的空间。由于主射频电极对组成的离子阱单元间设 计了与主射频电极呈一定折转角的辅助电极, 使得各离子阱单元可以单向出射, 在离 子阱水平间距不变的情况下增大了各通道检测器间的间距。该实施例方案中所设计的 离子阱阵列质量分析装置, 与 17E中所示的在先技术方案比较, 各分析通道间给较难 微型化的检测器所留的安装空间更大, 更易实现机械设计, 并减少了临近检测器单元 间高压电场相互作用的干扰。
当离子阱质量分析器阵列的同步并行模式更受重视时, 如图 18A- 18B所示, 作 为本发明的进一步优选方案, 在相邻该线型离子束缚装置之间, 可以将复用至少一部 分辅助电极如 182.1、 182.2、 183.1、 183,2、 184.1、 184.2等作为邻侧离子束缚装置单 元的射频电极, 形成直接相邻的多个线型离子束缚装置单元的阵列。从而进一步减少 该线型离子束缚装置阵列分析器件的制作复杂度。
在图 18B所示的实施例中, 两对辅助电极对只是对偶而非对称地放置在主对称 平面的两侧。这一实施例存在的一个缺点是每个离子阱单元如 181在出射方向两侧的 对称性被破坏了, 这会影响到离子阱的离子引出性能, 同时对质量分辨能力也造成了 一些诸如运动耦合, 离子难以冷却等问题。 在图 18C-18D中这一问题得到了解决, 类似图 17B的结构设计使得该装置可在多道检测和合并同步检测两方案中任意切换。
当各单元需要同步扫描时, 该离子阱阵列的射频电压附加模式为: 相邻单元阱 的射频电极电压相互反相但幅度相同,与图 17B装置的第二种电压施加方式相同,在 于各单元阱内的势阱深度被相邻反相区加强,同时保证了相邻单元间束缚电场结构完 全相同,由于没有了低加工精度的辅助电极,可以保证各单元在同步扫描时的同一性。
该方案的一个问题是每个分析单元的射频工作条件不能单独调整, 因此, 当每 个单元工作在不同的质谱扫描条件下时,一般不能采用常用的射频电压幅度扫描或频 率扫描模式。 为解决此问题, 可以扫描各单元通过隔离变压器所附加的偶极激发电压 的频率,通过改变激发频率使得拥有各自久期共振频率的不同质荷比离子依次共振而 出射, 从而获得质谱。该方案也可以和全部通道的共同射频幅度扫描或频率扫描相结 合。 以提升在扫描偶极激发频率模式下的质谱分辨性能。
图 18D方案的另一个特点是, 其各单元中央轴线所在对称平面可被设计为基本 交于同一轴线 186。 从而使得阵列中多个离子束缚装置分析单元径向出射方向近似聚 焦在一个小区域, 以减少多通道同步采样工作模式中的第一收集极面积。这在离子电 流采集系统采用法拉第筒结构 187时具有很大优势, 由于收集极面积的减少, 其寄生 电容也随之减少, 意味着较低的离子电流也可以得到较大的电压信号响应。
图 19A、 19B展示了进一步的优选方案, 在这一方案中, 与图 18D的方案相比, 阵列中各离子束缚装置单元围绕该同一轴线呈一个完整的圆周型分布,这可以使得从 阵列中多个离子束缚装置分析单元所出射的离子进一步聚焦出射在装置的中轴线上。 进而如图 20A、 20B所示, 可在该同一轴线处设置一个用于检测各分离子束缚装置逐 出总离子流的共同离子检测器 2000, 该检测器也可用一个通过该轴线上的第一打拿 极取代, 使得检测器本体可以安排到其他合适位置, 这样设计的中央离子检测系统可 用于接收聚焦出射在装置的中轴线上的离子流并在送至模数转换采集装置前进一步 增强。 当所述阵列离子束缚装置较长时, 从轴线引出离子会由于检测器引出电场收到 阵列离子束缚装置体电极的屏蔽而变得困难,这种情况下可以在轴线上安排多个离子 探测器本体或它们的多个第一打拿极,其中每一个离子探测器对应检测轴向一定范围
中由各分离子分析单元沿径向逐出的离子。 此外, 也可以在图 19A、 19B所示的各端 盖上的引出口 1901,1902等处分别设立轴向出射离子检测器 1903,1904等,运用 Hager 等人提出的轴向质量选择出射原理分别检测各离子分析单元逐出的离子,或用一个大 接受面积的检测器如微通道板 1905同一检测所有的离子
在图 19A、 19B所示的方案中, 阵列中离子束缚装置单元中一般应包含 2N个单 元,这是由于此方案是基于复用至少一部分辅助电极作为邻侧离子束缚装置单元的射 频电极的设计。 因此, 如图 19B所示, 通常相邻单元间所附加的射频电压应为反相关 系。 若该装置只包括奇数个单元, 则在同步质谱分析时, 每次扫描必须有两个相邻的 单元轮空, 因为它们的射频电极间附加了同相的射频信号, 因此不能有效束缚和冷却 离子。
图 20A、 20B还对比了圆柱型离子阱质量分析器阵列的两种基本工作模式, 在 图 20A中, 通过激发电压的相位调整, 主要的分析离子均向外侧的多个分道检测器 2001,2002,2003等出射, 得到各个分析单元的监测质谱, 在图 20B中, 通过在外电极 与内电极间施加直流电压差, 可以使离子阱各单元的四极电场平衡鞍点向内侧移动, 从而产生向心的聚集离子出射。 该信号可用位于圆柱结构体中央的检测器 2000统一 检测。
当所分析的样品浓度较大, 需要从前级离子光学系统分流离子流到各个质量分 析单元检测时, 可以采用如图 21A、 21B所示的圆台型线型离子束缚装置阵列结构, 其中各离子束缚装置单元如 2111、 2115等的中轴线均围绕同一轴线 2100呈现一端聚 集, 一端发散的锥型分布, 使得从同一分析离子来源分流引入时变得简易, 同时在张 口处可留出更大的空间, 以便于设计共用检测器结构,如图 21B中所示的共轴打拿极 2101和共轴检测器 2102等。
如上所述的圆柱, 圆台形离子束缚装置阵列还有另一种使用工作模式。 在该条 件下, 如图 22所示, 全部内侧电极阵列均从电源 2201附加同相射频信号, 而在外侧 电极阵列上通过电源 2202附加补偿直流信号, 可以通过两者间的平衡将整个环形空 间改造成一个超大容量的离子储存装置, 从截面上展现的离子云形状可见, 被束缚的 离子在该储存装置内呈现圆筒状分布。 当需要检测累积离子流量时, 可以快速撤去外 侧电极阵列上的射频信号, 而附加一个高压脉冲一次逐出全部离子。用这种方法可以 对平均强度低于电子噪音限的离子流做较精确的强度分析,可用于和离子迁移谱方法 的连用。
通常的离子束缚装置类质量分析器, 即离子阱质量分析器往往只能工作在脉冲 模式下,当分析器的前级为四极杆滤质器或连续型差分选择离子迁移过滤器等连续型 离子流选择装置时, 两者串联的占空比不佳, 通常需要采用一个额外的离子流时间调 制装置置于两者之间才能获得最佳的分析过程时间效率。但由于本方案中所述的线型 离子束缚装置具有较大的离子储存容量, 因此, 采用质量选择性连续离子储存方法和
快速离子直流脉冲逐出的方法, 可以得到较高离子利用时间占空比。 以配合这类连续 型的离子选择装置。
图 23展示了如何将这两种方式结合起来在本实施例所述的多通道线型离子束缚 装置阵列中实现对多通道正离子流的上述分析目的。这种工作模式的时序分为两个阶 段, 在储存阶段中, 附加在各通道的射频电压 2301开启, 同时离子门 2304的门限电 压 2302设为较低值, 这样在本阶段中从该离子束缚装置前端注入各通道的离子流就 能注入到离子束缚装置阵列中, 此时, 可以通过将该离子束缚装置上的射频电压占空 比调节至非对称值, 例如对内部四极电场成分较纯的该种离子束缚装置结构, 当束缚 射频电压为方波, 占空比在 38〜39%时就可以在引入离子的同时仅将一宽度在 5〜10Th 内质量范围的离子储存, 而将其他离子丢弃在该束缚装置通道的前端。 与这种方式类 似, 也可以使用对称波形来储存离子的同时, 使用包含连续频谱和一个频率缺口的波 形进行对特定质荷比外的离子连续激发,来除去除目标离子 2305外的其他干扰离子, 达到对连续注入的离子流选择性储存的目的,通常这种模式可以获得更高的质量隔离 选择性, 但速度较慢, 其操作周期在毫秒数量级。 将上述两种方式结合, 可以利用前 者的高速宽质量隔离效果减少后一方式的所需隔离质量范围,并减少频谱宽度及减少 整个隔离过程的总时间。
当所需离子被成功隔离后, 可以继续此阶段使得该目标质量或质量范围的离子 在某一通道内富集, 而其余通道则可以富集其他目标质量范围的离子。 当被束缚离子 的总量接近阱总储存极限的 10%〜30%之间后, 就可以如图 23中第二时序阶段所示, 将各通道上的射频电压 2301同时快速去除, 并提升离子门 2304的门限电压 2302将 正离子的注入途径关闭, 在同时或稍后数微秒内, 将外组与内组射频与辅助电极之间 的直流电位差 2303从原正常引入束缚时的 0伏特左右调整至超过射频电源电压的高 电压值, 如 1000V, 即可将在前一阶段储存的目标离子 2305向中央弹出, 在检测器 上获得一个离子脉冲,其高度或峰面积与在前一阶段所储存的该通道目标离子基本呈 线性关系。 反复进行这样的双阶段过程, 就可以对连续的离子流中目标质量范围内的 离子以 1赫兹至 1千赫兹的采样率进行采样。 由于离子是被脉冲逐出的, 第二时序阶 段通常只需消耗几个微秒至十几个微秒的时间,相对于第一时序阶段的毫秒级持续时 间, 可以看到该方法的时间占空比一般都能做到 99%以上。 类似的, 其他通道中的所 选择的相同或不同质量范围的目标离子 2306也可以被储存然后脉冲检测。
该方法也可以做一个变形, 在这种模式下, 在第二时序阶段束缚射频电压 2301 并不需要降到 0, 这样, 当逐出电压差 2303仅附加在某一通道的一对主射频电极间 时, 其他通道内所储存的目标离子并不会丢失, 这样可以将不同束缚离子通道的脉冲 逐出分析分散到不同周期,仅使用一个检测器也可以获取多个通道的选择质量离子流 谱。 除了脉冲逐出离子, 也可以使用微区扫描, 即在一个小质量范围内进行共振质量 扫描来获取被储存目标离子的谱图。 与脉冲模式相比, 这种微区扫描模式在获取目标
离子总量的同时还可以用于获取临近多个质量数的丰度谱分布,用于获取例如同位素 比例等额外的化学信息。
图 24A、 24B展示了一种更大的该类线型离子束缚装置的轴向串联一维 /二维阵 列结构, 图 24A给出了一个三段式轴向串联基本束缚装置单元阵列, 图 24B则展示 了一个两段式的圆筒型离子阱的二维阵列,在这些阵列结构的不同区段间可以分别储 存正负离子,并在合适的时候通过将轴向相邻区段的电压设为同一值将正负离子同时 储存并相互反应。该装置可用于研究电荷转移解离过程并产生与普通碰撞诱导解离过 程不同的碎片解离模式。 此外, 也可以在不同区段间转移离子, 使离子通过区段间的 电位差获得轴向加速动能,可用于获得与空间串级质谱分析装置如三重四极杆仪器类 似的串级谱图。
图 25A、 25B分别展示了在径向层叠构建的该类线型离子束缚装置的一维 /二维 阵列结构的截面图,这类结构复用该侧射频及辅助电极形成多层的离子束缚装置单元 阵列, 每一层的各相对射频电极间均可以有效储存离子, 可进一步增大该装置的离子 储存能力。
虽然本发明已以较佳实施例揭示如上, 然其并非用以限定本发明, 任何本领域 技术人员, 在不脱离本发明的精神和范围内, 当可作些许的修改和完善, 因此本发明 的保护范围当以权利要求书所界定的为准。例如, 该装置的上游离子光学装置可以为 连续式离子光学器件, 如离子导引、 四极杆质量分析器及其阵列、 离子漏斗、 行波离 子传输装置、 磁扇质量分析器、 静电扇区能量分析器、 差分迁移谱分析器等, 也可以 是脉冲式光学器件, 如脉冲式离子迁移谱仪、 其他离子阱等。 该装置的离子检测器除 电子倍增管, 或含打拿极的电子倍增器、 微通道板、 法拉第筒, 也可以是其他可以接 受脉冲式或准连续式离子流的质量分析器, 如四极杆、 单周或多周飞行时间检测器 ( TOF) 、 离子回旋共振腔 (FTICR) 、 静电离子阱 (Orbitrap ) 等, 再如, 所述离子 分析器不仅可以和液相色谱或直接分析方法偶联,也可以和毛细管电泳或气相色谱偶 联。 所分析的离子不仅可以是来自工作在真空条件下的离子源, 如电子轰击源、 基质 辅助激光解析电离源, 也可以来自大气压下的离子源, 如电喷雾离子化源、 大气压光 电离源、 大气压化学电离源等。
Claims
1. 一种线型离子束缚装置, 包括:
沿该线型离子束缚装置的中轴线两侧相对设置的一对沿轴向伸展的主射频电 极,其中该对主射频电极中的每一个主射频电极在垂直于该中轴线的各截平面上的截 面图形, 都对通过该中轴线的一主对称平面保持对称, 其中该对主射频电极上附加的 射频电压相位相同;
设于至少一个主射频电极上的离子引出槽; 以及
分别位于该对主射频电极两侧且对偶于该主对称平面放置的至少一对辅助电极 对, 其中至少一个辅助电极具有有限个对称平面, 且各对称平面与该对主射频电极的 对称平面之间的各个夹角中存在一大于 0度并小于 90度的最小夹角。
2. 如权利要求 1所述的线型离子束缚装置, 其特征在于, 包括两对对偶于该主 对称平面放置的辅助电极对。
3. 如权利要求 1所述的线型离子束缚装置, 其特征在于, 该中轴线为位于该对 主射频电极的主对称平面内的曲线。
4. 如权利要求 1所述的线型离子束缚装置, 其特征在于, 该离子引出槽是由关 于该主对称平面对称的一对主射频电极组成部分间的间隙构成。
5. 如权利要求 1所述的线型离子束缚装置, 其特征在于, 该线型离子束缚装置 相对于经过该中轴线且垂直于该主对称平面的平面对称。
6. 如权利要求 1所述的线型离子束缚装置, 其特征在于, 该线型离子束缚装置 在垂直于该主对称平面的方向上不存在其他对称面。
7. 如权利要求 1所述的线型离子束缚装置, 其特征在于, 该线型离子束缚装置 在垂直于该中轴线的截面上的瞬时静态电势分布,在以电场鞍点为中心的谐函数级数 展开项中具有以六极场为主的不对称成分,其中六极场与四极场的成分系数比的绝对 值在 0.5%〜10%之间。
8. 如权利要求 1所述的线型离子束缚装置, 其特征在于, 该线型离子束缚装置 的电场鞍点中心相对该对主射频电极正中位置向一侧偏移,其中该偏移占该离子束缚 装置场半径的 0.5%〜20%。
9. 如权利要求 1所述的线型离子束缚装置, 其特征在于, 该偏移占该离子束缚 装置场半径的 0.5%〜10%。
10.如权利要求 1所述的线型离子束缚装置, 其特征在于, 还包括用于反射离子 的两个端电极结构, 设在该线型离子束缚装置的沿该中轴线的两端。
1 1.如权利要求 1所述的线型离子束缚装置, 其特征在于, 至少一个该主射频电 极或该辅助电极为平面电极结构, 或是附着在绝缘体平面上的薄层电极结构。
12.如权利要求 1所述的线型离子束缚装置,其特征在于,该偶数对辅助电极中, 各辅助电极的结构与其位于中轴线同侧的主射频电极相同。
13.如权利要求 1所述的线型离子束缚装置, 其特征在于, 还包括:
工作电源; 以及
调整装置, 用于调整附加在该对主射频电极与该辅助电极间的射频电压或偏置 直流的幅度比例, 并依此改变质量扫描过程中的优势出射方向。
14.如权利要求 1所述的线型离子束缚装置, 其特征在于, 还包括:
场调节电极, 该场调节电极位于该离子束缚装置沿该中轴线的一端, 并关于该 主对称平面对称; 以及
电源, 用于向该场调节电极施加纯直流偏置电压, 或在邻近该场调节电极的一 主射频电极上所施加的射频束缚电压的基础上附加直流偏置电压并施加到该场调节 电极, 用以调节质量扫描过程中的优势出射方向或提高质量分辨率。
15.—种质谱分析方法, 包括以下步骤:
使用至少一个如权利要求 1所述的线型离子束缚装置来束缚目标离子; 使用以下手段来调节被束缚目标离子或被束缚目标离子的产物在质量选择逐出 过程中的质量轴偏移:调整附加在主射频电极与辅助电极间的射频电压或偏置直流的 幅度比例。
16.—种质谱分析方法, 包括以下步骤:
使用至少一个如权利要求 13所述的线型离子束缚装置来束缚目标离子; 使用以下手段来调节被束缚目标离子或被束缚目标离子的产物在质量选择逐出 过程中的质量轴偏移: 调整该场调节电极上所附的偏置直流电压的幅度。
17.—种线型离子束缚装置阵列结构, 包括:
多个如权利要求 1所述的线型离子束缚装置,
其中相邻的线型离子束缚装置之间, 复用至少一部分辅助电极。
18.如权利要求 17 所述的线型离子束缚装置阵列结构, 其特征在于, 至少一部 分被复用的辅助电极也是相邻线型离子束缚装置的主射频电极。
19.如权利要求 18 的所述线型离子束缚装置阵列结构, 其特征在于, 在一线型 离子束缚装置的垂直于该主对称平面的方向外侧周期性复制该线型离子束缚装置形 成离子束缚装置单元阵列。
20.如权利要求 17 所述的线型离子束缚装置阵列结构, 其特征在于, 各线型离 子束缚装置的中轴线所在的主对称平面基本交于同一轴线。
21.如权利要求 18 所述的线型离子束缚装置阵列结构, 其特征在于, 各线型离 子束缚装置围绕该同一轴线呈圆周型分布。
22.如权利要求 18 所述的线型离子束缚装置阵列结构, 其特征在于, 其中各线 型离子束缚装置的中轴线围绕该同一轴线呈现一端聚集, 一端发散的锥型分布。
23.如权利要求 18 所述的线型离子束缚装置阵列结构, 其特征在于, 在一线型 离子束缚装置的沿该中轴线的外侧通过复用主射频电极及辅助电极形成多层离子束 缚装置单元阵列。
24.如权利要求 17 所述的线型离子束缚装置阵列结构, 其特征在于, 所述的线 型离子束缚装置阵列结构是能够在时间或空间上分离不同质荷比离子的离子质量分 析器。
25.如权利要求 17 所述的线型离子束缚装置阵列结构, 其特征在于, 所述的线 型离子束缚装置阵列结构为线型离子阱质量分析器。
26.—种离子分析及检测装置, 包括:
如权利要求 20所述的线型离子束缚装置阵列结构; 以及
在该同一轴线处设置的至少一个初级离子接触面在该同一轴线上的共同离子检 测器。
27.—种质谱分析方法, 包括以下步骤:
使用至少一个如权利要求 1所述的线型离子束缚装置束缚目标离子; 对该主射频电极上附加相位相同的 5KHz〜20MHz的束缚射频电压;
对各辅助电极附加用于调整主射频电极间的四极电场与多极电场组分的辅助直 流或射频电压;
扫描附加在主射频电极上的束缚射频电压的幅度或频率, 使一个或多个质荷比 范围中的离子离开该线型离子束缚装置的储存空间;
使残留在该线型离子束缚装置内的至少一部分离子离开该线型离子束缚装置; 以及
将至少一部分时间段中离开该线型离子束缚装置的离子用检测器检测, 获得按 逐出时间变化的代表被束缚目标离子中至少一部分质荷比范围内的离子的质谱信号 的电信号。
28.如权利要求 27 所述的质谱分析方法, 其特征在于, 使用多个所述线型离子 束缚装置形成的阵列结构来束缚离子,并使用其中至少一个线型离子束缚装置所得的 代表质谱信号的电信号组合来形成质谱信号。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/389,642 US9406495B2 (en) | 2012-03-30 | 2013-02-26 | Linear ion beam bonding apparatus and array structure thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210090725.5 | 2012-03-30 | ||
CN201210090725.5A CN103367093B (zh) | 2012-03-30 | 2012-03-30 | 线型离子束缚装置及其阵列结构 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013143369A1 true WO2013143369A1 (zh) | 2013-10-03 |
Family
ID=49258181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/071877 WO2013143369A1 (zh) | 2012-03-30 | 2013-02-26 | 线型离子束缚装置及其阵列结构 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9406495B2 (zh) |
CN (1) | CN103367093B (zh) |
WO (1) | WO2013143369A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103871820B (zh) * | 2012-12-10 | 2017-05-17 | 株式会社岛津制作所 | 离子迁移率分析器和其组合设备以及离子迁移率分析方法 |
US8878127B2 (en) | 2013-03-15 | 2014-11-04 | The University Of North Carolina Of Chapel Hill | Miniature charged particle trap with elongated trapping region for mass spectrometry |
US9728392B2 (en) * | 2015-01-19 | 2017-08-08 | Hamilton Sundstrand Corporation | Mass spectrometer electrode |
KR102673632B1 (ko) | 2016-12-06 | 2024-06-13 | 삼성전자주식회사 | 이온 빔 추출을 위한 슬릿 구조체를 포함하는 이온 빔 장비, 및 이를 이용한 식각 방법 및 자기기억소자의 제조방법 |
CN106601583A (zh) * | 2016-12-22 | 2017-04-26 | 北京印刷学院 | 一种空间聚焦的圆锥形高场非对称波形离子迁移管 |
US10692712B2 (en) * | 2017-04-03 | 2020-06-23 | Perkinelmer Health Sciences, Inc. | Ion transfer from electron ionization sources |
DE102017208996B4 (de) * | 2017-05-29 | 2024-05-08 | Leybold Gmbh | Verfahren zur massenspektrometrischen Untersuchung eines Gases |
US10242857B2 (en) * | 2017-08-31 | 2019-03-26 | The University Of North Carolina At Chapel Hill | Ion traps with Y-directional ion manipulation for mass spectrometry and related mass spectrometry systems and methods |
WO2021131140A1 (ja) * | 2019-12-24 | 2021-07-01 | 株式会社島津製作所 | 多重周回飛行時間型質量分析装置 |
CN112114638B (zh) * | 2020-09-02 | 2022-04-08 | 清华大学 | 实现离子冷却的方法、装置、计算机存储介质及电子装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6730904B1 (en) * | 2003-04-30 | 2004-05-04 | Varian, Inc. | Asymmetric-field ion guiding devices |
CN101369510A (zh) * | 2008-09-27 | 2009-02-18 | 复旦大学 | 环形管状电极离子阱 |
CN102067274A (zh) * | 2008-05-29 | 2011-05-18 | 萨莫芬尼根有限责任公司 | 辅助拖曳场电极 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4324224C1 (de) * | 1993-07-20 | 1994-10-06 | Bruker Franzen Analytik Gmbh | Quadrupol-Ionenfallen mit schaltbaren Multipol-Anteilen |
US5783824A (en) * | 1995-04-03 | 1998-07-21 | Hitachi, Ltd. | Ion trapping mass spectrometry apparatus |
JP3656239B2 (ja) * | 1997-01-28 | 2005-06-08 | 株式会社島津製作所 | イオントラップ質量分析装置 |
US6911650B1 (en) * | 1999-08-13 | 2005-06-28 | Bruker Daltonics, Inc. | Method and apparatus for multiple frequency multipole |
CA2446964C (en) * | 2001-05-08 | 2010-07-20 | Thermo Finnigan Llc | Ion trap |
US7019289B2 (en) * | 2003-01-31 | 2006-03-28 | Yang Wang | Ion trap mass spectrometry |
DE102004037511B4 (de) * | 2004-08-03 | 2007-08-23 | Bruker Daltonik Gmbh | Multipole durch Drahterosion |
US7180057B1 (en) * | 2005-08-04 | 2007-02-20 | Thermo Finnigan Llc | Two-dimensional quadrupole ion trap |
US8395114B2 (en) * | 2005-08-30 | 2013-03-12 | Xiang Fang | Ion trap, multiple electrode system and electrode for mass spectrometric analysis |
US7405399B2 (en) * | 2006-01-30 | 2008-07-29 | Varian, Inc. | Field conditions for ion excitation in linear ion processing apparatus |
US7385193B2 (en) * | 2006-05-19 | 2008-06-10 | Thermo Finnigan Llc | System and method for implementing balanced RF fields in an ion trap device |
US7807963B1 (en) * | 2006-09-20 | 2010-10-05 | Carnegie Mellon University | Method and apparatus for an improved mass spectrometer |
JP5180217B2 (ja) * | 2006-09-28 | 2013-04-10 | ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド | 多重極質量分析計において補助電極を用いた軸方向の放出およびイントラップフラグメント化の方法 |
CN102231356B (zh) * | 2009-12-01 | 2015-03-11 | 株式会社岛津制作所 | 线形离子阱分析器 |
GB2476964A (en) * | 2010-01-15 | 2011-07-20 | Anatoly Verenchikov | Electrostatic trap mass spectrometer |
-
2012
- 2012-03-30 CN CN201210090725.5A patent/CN103367093B/zh active Active
-
2013
- 2013-02-26 US US14/389,642 patent/US9406495B2/en active Active
- 2013-02-26 WO PCT/CN2013/071877 patent/WO2013143369A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6730904B1 (en) * | 2003-04-30 | 2004-05-04 | Varian, Inc. | Asymmetric-field ion guiding devices |
CN102067274A (zh) * | 2008-05-29 | 2011-05-18 | 萨莫芬尼根有限责任公司 | 辅助拖曳场电极 |
CN101369510A (zh) * | 2008-09-27 | 2009-02-18 | 复旦大学 | 环形管状电极离子阱 |
Also Published As
Publication number | Publication date |
---|---|
CN103367093A (zh) | 2013-10-23 |
CN103367093B (zh) | 2016-12-21 |
US9406495B2 (en) | 2016-08-02 |
US20150170898A1 (en) | 2015-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013143369A1 (zh) | 线型离子束缚装置及其阵列结构 | |
US8969798B2 (en) | Abridged ion trap-time of flight mass spectrometer | |
US7019289B2 (en) | Ion trap mass spectrometry | |
JP5805663B2 (ja) | イオン捕捉型質量分析計 | |
US8927940B2 (en) | Abridged multipole structure for the transport, selection and trapping of ions in a vacuum system | |
US20010050335A1 (en) | Ion transfer from multipole ion guides into multipole ion guides and ion traps | |
US20080017794A1 (en) | Coaxial ring ion trap | |
JP2014524649A (ja) | 空間的に拡張されたイオントラップ領域を有するイオントラップ | |
US9184040B2 (en) | Abridged multipole structure for the transport and selection of ions in a vacuum system | |
US20070176098A1 (en) | Rotating excitation field in linear ion processing apparatus | |
US20130009050A1 (en) | Abridged multipole structure for the transport, selection, trapping and analysis of ions in a vacuum system | |
CA2837873C (en) | Abridged multipole structure for the transport, selection and trapping of ions in a vacuum system | |
US9536723B1 (en) | Thin field terminator for linear quadrupole ion guides, and related systems and methods | |
CA2837876C (en) | Abridged multipole structure for the transport, selection, trapping and analysis of ions in a vacuum system | |
US20240136167A1 (en) | Mass spectrometer and method | |
US9129790B2 (en) | Orthogonal acceleration TOF with ion guide mode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13769379 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14389642 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13769379 Country of ref document: EP Kind code of ref document: A1 |