[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013140479A1 - 暖房システムの制御方法及び暖房システム - Google Patents

暖房システムの制御方法及び暖房システム Download PDF

Info

Publication number
WO2013140479A1
WO2013140479A1 PCT/JP2012/007591 JP2012007591W WO2013140479A1 WO 2013140479 A1 WO2013140479 A1 WO 2013140479A1 JP 2012007591 W JP2012007591 W JP 2012007591W WO 2013140479 A1 WO2013140479 A1 WO 2013140479A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pump
heat
defrost
output suppression
mode
Prior art date
Application number
PCT/JP2012/007591
Other languages
English (en)
French (fr)
Inventor
岳 林田
高崎 真一
ワタンユー カイソンクラム
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP12864020.8A priority Critical patent/EP2829825B1/en
Publication of WO2013140479A1 publication Critical patent/WO2013140479A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1039Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1048Counting of energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • G05D23/1923Control of temperature characterised by the use of electric means characterised by the type of controller using thermal energy, the cost of which varies in function of time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/176Improving or maintaining comfort of users
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0271Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means the compressor allows rotation in reverse direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2642Domotique, domestic, home control, automation, smart house
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2658Heat pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the present invention relates to a method for controlling a heating system, and more particularly to a method for controlling a heating system including a heat pump type heating device.
  • the heat pump type hot water supply device absorbs the heat of the atmosphere, compresses and heats the refrigerant with electricity, and makes hot water from water using a heat exchanger. It is more energy efficient than conventional heater type electric water heaters. It is a water heater. Moreover, the heat pump type heating device uses hot water produced by the heat pump for heating, and is an energy saving heating device, similar to the heat pump type hot water supply device.
  • a general heat pump device When the air temperature is low, the heat pump generates a phenomenon (frost formation) in which frost forms on the heat exchanger when absorbing heat from the atmosphere.
  • frost forms on the heat exchanger when absorbing heat from the atmosphere.
  • the more frost reaches the heat exchanger the more difficult it is to absorb the heat of the atmosphere, causing problems such as a decrease in the output of the heat pump and a decrease in efficiency.
  • a general heat pump device has a function of performing an operation (defrosting) for removing frost when it is detected that frost has been formed on the heat exchanger to some extent.
  • the present invention has been made to solve the above-described problems, and provides a control method for a heat pump heating system that improves system power stabilization and user comfort by a peak cut with a simple method. For the purpose.
  • the control method of the heating system is a method of operating by receiving power supply from a power supply source.
  • the heating system includes a heat pump that generates heat using electric power supplied from the power supply source, and a heat radiating unit that radiates heat generated by the heat pump.
  • the heat pump operates in a heating mode for generating heat for radiating heat to the heat radiating unit or a defrosting mode for removing frost generated in the heat pump.
  • an output suppression instruction indicating an output suppression time zone for suppressing power consumption of the heat pump is acquired from the power supply source, and the output suppression instruction is acquired in the acquisition step.
  • the start time of the output suppression time zone is When the heat pump is switched to the defrost mode and the determination step determines that the state of the heat pump in the predetermined period does not satisfy the first condition, the start time of the output suppression time zone is The heat pump is operated in the heating mode without switching to the defrosting mode.
  • control method of the heat pump heating system it is possible to avoid the defrosting operation in the peak time period when the power consumption increases. As a result, it contributes to stabilization of system power by peak cut and improvement of user comfort.
  • FIG. 1 is a flowchart showing an outline of processing of the heat pump heating system according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration of the heat pump heating system according to the first embodiment.
  • FIG. 3 is a detailed configuration diagram of the heat pump heating device according to the first embodiment.
  • FIG. 4A is a diagram showing a refrigerant flow in the heat pump that operates in the heating mode according to Embodiment 1.
  • FIG. 4B is a diagram showing a refrigerant flow in the heat pump operating in the defrosting mode according to the first embodiment.
  • FIG. 5 is a detailed configuration diagram of the system control unit according to the first embodiment.
  • FIG. 6 is a flowchart of the entire process of the heat pump heating system according to the first embodiment.
  • FIG. 7 is a flowchart of the heat pump control process according to the first embodiment.
  • FIG. 8 is a flowchart of the DR control process according to the first embodiment.
  • FIG. 9 is a flowchart of pre-defrost control according to the first embodiment.
  • FIG. 10 is a diagram showing a list of information transmitted and received between each component according to the first embodiment.
  • FIG. 11A is a diagram showing an example of an HP output prediction table in a time zone other than the DR time zone according to Embodiment 1.
  • FIG. 11B is a diagram illustrating an example of an HP output prediction table in the DR time period according to Embodiment 1.
  • FIG. 12A is a diagram showing a heat exchanger surface temperature prediction table according to Embodiment 1.
  • FIG. 12B is a diagram illustrating an example of a prediction result of the heat exchanger surface temperature according to Embodiment 1.
  • FIG. 13A is a diagram illustrating an example of a temperature change when the defrosting condition according to Embodiment 1 is satisfied.
  • FIG. 13B is a diagram illustrating an example of a temperature change when the defrosting condition according to Embodiment 1 is not satisfied.
  • FIG. 14 is a diagram showing changes in power consumption, electricity charges, and room temperature in the heat pump heating system according to the first embodiment.
  • FIG. 15 is a flowchart of pre-defrost control according to the second embodiment.
  • FIG. 16 is a diagram showing changes in power consumption and room temperature in the heat pump heating system according to the second embodiment.
  • FIG. 17 is a flowchart of pre-defrost control according to the third embodiment.
  • FIG. 18 is a diagram illustrating changes in power consumption and room temperature in the heat pump heating system according to the third embodiment.
  • Patent Document 1 discloses a technique for generating an operation schedule that minimizes power consumption using a solution to an optimization problem, including a decrease in efficiency of a heat pump due to frost formation and a defrosting time. ing.
  • a heating system control method is a method that operates by receiving power supply from a power supply source.
  • the heating system includes a heat pump that generates heat using electric power supplied from the power supply source, and a heat radiating unit that radiates heat generated by the heat pump.
  • the heat pump operates in a heating mode for generating heat for radiating heat to the heat radiating unit or a defrosting mode for removing frost generated in the heat pump.
  • an output suppression instruction indicating an output suppression time zone for suppressing power consumption of the heat pump is acquired from the power supply source, and the output suppression instruction is acquired in the acquisition step.
  • the start time of the output suppression time zone is When the heat pump is switched to the defrost mode and the determination step determines that the state of the heat pump in the predetermined period does not satisfy the first condition, the start time of the output suppression time zone is The heat pump is operated in the heating mode without switching to the defrosting mode.
  • the defrosting operation in the peak time zone can be avoided by setting the peak time zone in which the power consumption is large as the output suppression time zone. As a result, it contributes to stabilization of system power by peak cut, reduction of user's electricity bill, and improvement of comfort.
  • the preliminary defrost determination step may be performed when the heat pump is not operating in the defrost mode after acquiring the output suppression instruction.
  • the heating system control method may include an output suppression operation control step of controlling the operation of the heat pump in the output suppression time zone.
  • the heat pump may be operated in an output suppression mode having an output smaller than that in the heating mode, and may not be operated in the defrost mode.
  • the heat pump in the output suppression mode may operate at an output that is less than half of the rated output of the heat pump.
  • the heat pump may switch from the defrost mode to the heating mode when the state of the heat pump satisfies a second condition indicating that frost has been removed.
  • the heat pump may be switched to the defrosting mode at a timing such that the state of the heat pump satisfies the second condition before the start time of the output suppression time zone. .
  • the end of the predetermined period may be an end time of the output suppression time zone.
  • control method of the heating system switches the heat generation amount per unit time of the heat pump from the first heat amount to the second heat amount smaller than the first heat amount at the start time of the output suppression time zone
  • An output suppression operation control step of switching from the second heat amount to the first heat amount at the end time of the output suppression time zone may be included.
  • the end of the predetermined period may be a time after the end time of the output suppression time zone and when the room temperature of the room in which the heat radiating unit is installed is restored to the level at the time when the output suppression instruction is acquired. Good.
  • the end of the predetermined period may be the next morning.
  • the heat pump may switch from the defrost mode to the heating mode when the state of the heat pump satisfies a second condition indicating that frost has been removed. And, in the preliminary defrosting step, at a timing such that the room temperature of the room in which the heat radiating unit is installed before the start time of the output suppression time zone is restored to the level before switching to the defrosting mode, The heat pump may be switched to the defrost mode.
  • the heating system operates by receiving power supply from a power supply source.
  • the heating system includes a heating device and a system control unit that controls the heating device.
  • the said heating apparatus is provided with the heat pump which produces
  • the heat pump can be switched between a heating mode for generating heat for radiating heat to the heat radiating unit or a defrosting mode for removing frost generated in the heat pump.
  • the said system control part acquired the said output suppression instruction
  • the prediction unit that predicts the state of the heat pump in a predetermined period including the output suppression time zone, and the state of the heat pump obtained by the prediction of the prediction unit needs to be switched to the defrosting mode.
  • a pre-defrost determination unit that determines whether or not the first condition indicating that the condition is satisfied, and the determination unit determines that the state of the heat pump in the predetermined period satisfies the first condition, A command unit for notifying that the heat pump is switched to the defrosting mode before the start time of the output suppression time zone.
  • the heating device may include a heat pump control unit that controls the heat pump.
  • the said heat pump control part may switch the said heat pump to the said defrost mode before the start time of the said output suppression time slot
  • the heat pump control unit determines from the start time of the output suppression time zone
  • the heat pump may be operated in the heating mode without switching to the defrost mode before.
  • the heating device may include a heat exchanger surface temperature detector.
  • the heat pump system control unit may include an output suppression operation control unit that causes the heat pump to operate in an output suppression mode in which the output is smaller than the heating mode in the output suppression time zone.
  • the heating system operates by receiving power supply from a power supply source.
  • the heating system includes a heating device.
  • the heating device includes a heat pump that generates heat using electric power supplied from the power supply source, a heat radiating unit that radiates heat generated by the heat pump, and heat that is radiated to the heat radiating unit of the heat pump.
  • the heat pump control part which switches operation
  • the said system control part acquired the said output suppression instruction
  • the prediction unit that predicts the state of the heat pump in a predetermined period including the output suppression time zone, and the state of the heat pump obtained by the prediction of the prediction unit needs to be switched to the defrosting mode.
  • a pre-defrost determination unit that determines whether or not the first condition indicating that the condition is satisfied, and the determination unit determines that the state of the heat pump in the predetermined period satisfies the first condition, A command unit for notifying that the heat pump is switched to the defrosting mode before the start time of the output suppression time zone.
  • FIG. 1 is a flowchart showing an outline of control of the heat pump heating system according to the present embodiment.
  • the heat pump heating system 1 includes a heat pump heating device 100 and a system control unit 8 as shown in FIG.
  • the heat pump heating system first outputs an output suppression signal (hereinafter referred to as “DR (Demand Response) signal”) from an energy supplier to an expensive power charge time zone.
  • DR Demand Response
  • Receive S101
  • the DR signal includes information for specifying an output suppression time zone (hereinafter referred to as “DR time zone”) that is a time zone in which the power consumption of the heat pump should be suppressed.
  • the output suppression time zone is a time zone that can be arbitrarily specified by the energy supplier.
  • the output suppression time zone is, for example, a time zone in which the power supplied by the energy supplier reaches a peak, and is defined as “2 hours from 18:00 to 20:00”.
  • the heat pump heating system receives the DR signal before the DR start time (for example, 17:30).
  • the heat pump heating system uses the predicted values of the outside air temperature, outside air humidity, and heat pump output in the DR time zone before the DR start time, and the surface temperature of the air heat exchanger (or the air heat exchanger). Predicting future changes in the temperature of the refrigerant flowing in, predicting the time at which the defrosting operation will be performed, and the necessity of prior defrosting from the relationship between the DR time zone and the predicted time at which the defrosting will be performed Determine (S102). When the heat pump heating system determines that the prior defrosting is necessary (Yes in S102), the heat pump heating system performs the defrosting operation before the DR start time (S103). In addition, the determination timing of prior defrosting is determined by the time required for defrosting.
  • a heat pump type heating system does not implement prior defrost, when not determining that prior defrost is required (No in S102), and performs a normal heat pump operation.
  • the “normal heat pump operation” is not an operation controlled by the system control unit 8 but an operation controlled by an HP (heat pump) control unit 103 described later.
  • the heat pump heating system switches the operation condition of the heat pump when the DR start time is reached, and operates the heat pump in the DR time period from the DR start time to the DR end time (S104).
  • the operation condition in the DR time zone is, for example, a heat amount (second heat amount: 2 kW) smaller than a heat amount (first heat amount: 4 kW, for example) generated by the heat pump per unit time in a time zone other than the DR time zone. Is the operating condition that heats up per unit time.
  • the second heat quantity is set to be equal to or less than half of the rated power (4 kW) (for example, 2 kW).
  • FIG. 2 is a diagram showing a heat pump heating system 1 according to the present embodiment. As shown in FIG. 2, the heat pump heating system 1 includes a heat pump heating device 100 and a system control unit 8.
  • the first power system is a power system to which power is stably supplied.
  • the first power system is a power system having a relatively high power rate, and the power consumption is measured by the first power meter 6.
  • the second power system is a power system in which the energy supplier 4 can suppress power supply in an arbitrary time zone. Further, the second power system is a power system whose power rate is lower than that of the first power system, and the power consumption is measured by the second power meter 7.
  • the heat pump heating device 100 includes at least a heat pump (raw heat unit) 101, a heat exchanger 102, and a heating device (heat radiating unit) 104.
  • the heat pump heating device 100 dissipates the heat generated by the heat pump 101 from the heating device 104 through the heat exchanger 102, whereby the room temperature of the room in which the heating device 104 is installed includes a predetermined set temperature. It is the apparatus which maintains in the temperature range.
  • the first power meter 6 measures the power consumption of devices other than the heat pump heating device 100 (that is, the power load 5 and the system control unit 8). That is, the system control unit 8 and the power load 5 operate by receiving power supply from the energy supplier 4 through the first power system.
  • the 2nd electric power meter 7 measures the electric power consumption of each component of the heat pump type heating apparatus 100, such as a compressor, a pump, a fan (not shown). That is, each component of the heat pump heating device 100 operates by receiving power supply from the energy supplier 4 through the second power system.
  • the system control unit 8 has a function of communicating with the energy supplier 4 and gives a control command to the heat pump heating device 100.
  • the system control unit 8 includes an output suppression operation control unit 83 (shown in FIG. 5), and operates the heat pump heating device 100 so that the power consumption of the heat pump 101 in the DR time zone is suppressed. Control.
  • the energy supplier 4 is a company that supplies electric power and gas to each household, and when it is desired to suppress the use of electric power in each household, it supplies each household through the second electric power system by transmitting a DR signal. Power consumption can be suppressed.
  • FIG. 3 is a detailed configuration diagram of the heat pump heating device 100 according to the present embodiment.
  • 4A and 4B are diagrams illustrating a detailed configuration of the heat pump 101.
  • FIG. 3 is a detailed configuration diagram of the heat pump heating device 100 according to the present embodiment.
  • 4A and 4B are diagrams illustrating a detailed configuration of the heat pump 101.
  • FIG. 3 is a detailed configuration diagram of the heat pump heating device 100 according to the present embodiment.
  • 4A and 4B are diagrams illustrating a detailed configuration of the heat pump 101.
  • the heat pump 101 includes a heat pump 101, a heat exchanger 102, a heating device 104, an HP control unit 103, an outside air temperature detection unit 105, an outside air humidity detection unit 106, and a heat exchanger.
  • a surface temperature detection unit 107, a heater 108, a hot water temperature detection unit 109, a flow rate detection unit 110, and an incoming water temperature detection unit 111 are provided.
  • the heat pump 101 and the heat exchanger 102 are collectively referred to as a heat pump unit.
  • the heat pump 101 is an air heat source heat pump, and compresses the refrigerant into a high temperature and high pressure state. More specifically, as shown in FIG. 4A, the heat pump 101 is a heat exchanger (air heat exchanger) that generates heat at low temperature and low pressure by causing heat exchange between outside air and low temperature and low pressure liquid refrigerant.
  • a heat exchanger air heat exchanger
  • a motor-driven compressor 101b that compresses low-temperature and low-pressure vapor refrigerant into high-temperature and high-pressure vapor refrigerant
  • an expansion valve 101c that generates low-temperature and low-pressure liquid refrigerant by reducing the pressure of the low-temperature and high-pressure vapor refrigerant
  • a fan (not shown) that promotes heat exchange between the refrigerant and the outside air is used.
  • the high-temperature and high-pressure vapor refrigerant output from the compressor 101b exchanges heat with water (heat storage material) in the heat exchanger 102 and flows into the expansion valve 101c as a low-temperature and high-pressure liquid refrigerant. That is, the refrigerant in the heat pump 101 circulates clockwise in the heat pump cycle of FIG. 4A.
  • the refrigerant of the heat pump 101 is, for example, R-410A. Due to the characteristics of this refrigerant, the maximum temperature at the outlet on the water cycle side of the heat exchanger 102 is 55 ° C., so the upper limit value of the set heating temperature is 55 ° C.
  • the heat exchanger (water heat exchanger) 102 is a high-temperature and high-pressure refrigerant output from the heat pump 101 and a secondary water cycle (that is, between the heat exchanger 102 and the heating device 104) filled with water. Heat exchange with water circulated in). Further, as shown in FIG. 3, a water pump that adjusts the amount of water input to the heat exchanger 102 is installed on the flow path from the heating device 104 to the heat exchanger 102.
  • the heating device 104 is a device for heating the interior of a home (house), and outputs, for example, a radiator or floor heating that releases thermal energy into the room through a heat dissipation panel, or warm air heated by the heat exchanger 102. Air conditioner.
  • the specific example of the heating apparatus 104 is not limited to these, All apparatuses which have the thermal radiation part which discharge
  • the outside air temperature detection unit 105 detects the outside air temperature, and specifically detects the outside air temperature in the vicinity where the heat pump heating device 100 is installed.
  • the outside air humidity detector 106 detects the outside air humidity, and specifically detects the outside air humidity in the vicinity where the heat pump heating device 100 is installed.
  • the heat exchanger surface temperature detector 107 detects the surface temperature of the heat exchanger 101a.
  • the heat pump heating device 100 may include a refrigerant temperature detection unit (not shown) that detects the temperature of the refrigerant circulating in the heat pump 101.
  • outside air temperature detection unit 105 the outside air humidity detection unit 106, the heat exchanger surface temperature detection unit 107, and the refrigerant temperature detection unit
  • a thermocouple a resistance temperature detector, and the like. What is necessary is just to employ
  • the HP control unit 103 controls the amount of generated heat by controlling the compressor 101b and the expansion valve 101c of the heat pump 101. First, the HP control unit 103 can operate the heat pump 101 in the heating mode, the defrosting mode, or the output suppression mode.
  • the heating mode is an operation mode that generates heat for radiating heat to the heating device 104, and can be realized by circulating the refrigerant in the heat pump 101 as shown in FIG. 4A. More specifically, the HP control unit 103 in which the heating mode is set controls the operation of the heat pump 101 in a normal time (a time zone other than the DR time zone), for example, according to an operating condition set by the user. To do. On the other hand, in the DR time zone, the HP control unit 103 gives priority to the instruction from the system control unit 8, and controls the operation of the heat pump 101 according to this instruction.
  • the defrost mode is an operation mode in which frost generated on the surface of the heat exchanger 101a is removed, and the refrigerant in the heat pump 101 is circulated as shown in FIG. 4B (circulated in the opposite direction to FIG. 4A). realizable. That is, by supplying the high-temperature and high-pressure vapor refrigerant generated by the compressor 101b to the heat exchanger 101a, frost generated on the surface of the heat exchanger 101a can be melted.
  • the method of operating the heat pump 101 in the defrost mode is not limited to the example of FIG. 4B.
  • the output suppression mode is an operation mode of the heat pump 101 in the DR time zone, and is an operation mode having a smaller output than the heating mode.
  • the heat pump 101 in the heating mode operates at the rated power (heats the first amount of heat per unit time), and the heat pump 101 in the output suppression mode has a power (less than the second power per unit time). Generate heat).
  • the HP control unit 103 uses the outside air temperature measured by the outside air temperature detecting unit 105 and the heat exchanger surface temperature measured by the heat exchanger surface temperature detecting unit 107 to perform heating mode and defrost mode. Judgment of switching.
  • the HP control unit 103 operates the heat pump 101 when the outside air temperature is 5 ° C. or lower and the heat exchanger surface temperature is ⁇ 10 ° C. or lower (first condition or defrosting condition). Switch the mode from heating mode to defrosting mode.
  • the HP control unit 103 switches the operation mode of the heat pump 101 from the defrost mode to the heating mode when the heat exchanger surface temperature is 10 ° C. or higher (second condition or defrost completion condition).
  • the HP control unit 103 receives a defrost command notification from the prior defrost control unit 9 in the system control unit 8 to be described later.
  • the HP control unit 103 switches the operation mode of the heat pump 101 from the heating mode to the defrost mode in accordance with the command of the system control unit 8 (that is, the content of the defrost command notification).
  • the HP control unit 103 notifies the data collection unit 81 of the system control unit 8 of the current operation mode.
  • the notification timing is not particularly limited, but may be, for example, a timing when the operation mode is switched, a timing requested from the system control unit 8, or a predetermined timing (such as midnight every day).
  • the HP control unit 103 performs the heat exchange measured by the incoming water temperature detection unit 111 and the temperature of the hot water output from the heat exchanger 102 measured by the hot water temperature detection unit 109 shown in FIG.
  • the heat pump 101 is multiplied by the difference between the temperature of the water input to the heater 102 (the incoming water temperature) and the flow rate in the flow path between the heat exchanger 102 and the heating device 104 measured by the flow rate detection unit 110. Is output to the system control unit 8.
  • the heater 108 is installed on a flow path from the heat exchanger 102 to the heating device 104, and can further heat the hot water output from the heat exchanger 102.
  • the specific structure of the heater 108 is not specifically limited, For example, a heating wire etc. can be used.
  • a tapping temperature that is a temperature of hot water output from the heat exchanger 102 is set by a user, and an operating condition of the heat pump 101 is determined in order to realize this tapping temperature.
  • the heat pump 101 requires a certain amount of time until the amount of generated heat is stabilized after being activated, and it is difficult to follow a large setting change in real time.
  • the heater 108 measures hot water output from the heat exchanger 102 when the hot water temperature (measured hot water temperature) detected by the hot water temperature detection unit 109 does not satisfy the temperature set by the user (set hot water temperature). Heat so that the tapping temperature approaches the set tapping temperature.
  • the circuit of the heat pump 101 is switched for defrosting, so that the temperature of the hot water is lowered and the room temperature is also lowered. Therefore, the heater 108 can heat the hot water output from the heat exchanger 102 while the heat pump 101 operates in the defrosting mode so as not to impair user comfort.
  • FIG. 5 is a detailed configuration diagram of the system control unit 8 of the heat pump heating system according to the present embodiment.
  • the system control unit 8 illustrated in FIG. 5 includes a communication unit 80 including a data collection unit 81 and a DR communication unit 82, an output suppression operation control unit 83, and a preliminary defrost control unit 9.
  • system control part 8 shown by FIG.2 and FIG.5 is comprised separately from the heat pump type heating apparatus 100, this invention is not limited to this. That is, the system control unit 8 may be configured integrally with the heat pump heating device 100. In this case, the system control unit 8 may be installed in the heat pump heating device 100 and disposed at a position adjacent to the HP control unit 103.
  • the data collecting unit 81 includes various temperatures detected by the outside air temperature detecting unit 105, the outside air humidity detecting unit 106, the heat exchanger surface temperature detecting unit 107, etc., and consumption measured by the first and second power meters 6 and 7. Various information such as the amount of electric power and the output of the heat pump 101 calculated by the HP control unit 103 are collected. And the data collection part 81 stores the collected data in the memory
  • the DR communication unit 82 receives a DR signal from energy supplier 4. In addition, the DR communication unit 82 notifies the energy supplier 4 that the supply of power to the heat pump heating device 100 through the second power system has been suppressed or resumed.
  • the DR communication unit 82 may communicate with the energy supplier 4 through a power line (Power Line Communication: PLC), or may communicate with the energy supplier 4 through a line different from the power line such as the Internet.
  • PLC Power Line Communication
  • the DR communication unit 82 also notifies the preliminary defrost control unit 9 of the DR signal.
  • the DR signal is transmitted from the energy supplier 4 before the start time (for example, 0.5 hours to 12 hours before) of the DR time zone in which the use of electric power in each home is to be suppressed, for example.
  • the DR signal includes information for specifying the start time and end time of the DR time zone. In the present embodiment, “DR start time: 18:00, DR end time: 20:00”.
  • a specific example of “information for specifying a start time and an end time of a DR time zone” is not particularly limited.
  • a DR start time such as “DR start time: 18:00, DR end time: 20:00” And DR end time itself, or information indicating the DR start time and the length of the DR time zone, such as “DR start time 18:00, DR time: 2 hours”.
  • the output suppression operation control unit 83 switches the operation of the HP control unit 103 between the DR time zone and other time zones. That is, the output suppression operation control unit 83 causes the HP control unit 103 to control the operation of the heat pump heating device 100 so as to realize the tapping temperature set by the user in a time zone other than “DR time zone”. .
  • the output suppression operation control unit 83 determines the operation condition of the heat pump heating device 100 in the DR time zone, and the HP control unit 103 with the determined operation condition. To control the operation of the heat pump heating device 100. In this case, the command of the system control unit 8 (output suppression operation control unit 83) has priority over the HP control unit 103.
  • the operating conditions include, for example, a set value of hot water temperature (hot water temperature) output from the heat exchanger 102 and an operating state of the heater 108.
  • the output suppression operation control unit 83 causes the heat pump 101 to generate a heat amount (second heat amount) smaller than a raw heat amount (first heat amount) per unit time of the heat pump 101 in a time zone other than the DR time zone.
  • the hot water temperature of the heat pump 101 in the DR time zone is determined.
  • the output suppression operation control unit 83 sets the tapping temperature from the heat exchanger 102 to a second temperature setting (for example, 55 ° C.) lower than the first temperature (for example, 55 ° C.). 41.degree. C.), and the amount of raw heat per unit time in the heat pump 101 is decreased from the first heat amount to the second heat amount.
  • the activation of the heater 108 is suppressed (or prohibited) to reduce power consumption.
  • the amount of hot water (outflow amount) output from the heat exchanger 102 is constant.
  • the operation condition determination process is executed, for example, at a timing when the DR communication unit 82 receives a DR signal from the energy supplier 4, but is not limited thereto.
  • the preliminary defrost control unit 9 refers to the DR start time included in the DR signal received by the DR communication unit 82, predicts the future heat exchanger surface temperature, and uses this prediction result before the DR start time. The necessity of performing a defrosting operation (hereinafter referred to as “pre-defrosting”) is determined. And the prior defrost control part 9 notifies a defrost instruction
  • the preliminary defrost control unit 9 includes a storage unit 91, an HP output prediction unit 92, a defrost determination unit 93, and a defrost command unit 94.
  • the storage unit 91 stores various information necessary for the operation of the preliminary defrost control unit 9. For example, the results of the output of the heat pump 101 collected by the data collection unit 81, mathematical formula parameters for predicting the output of the heat pump 101 described later, a heat exchanger surface temperature prediction table, and the like are stored. Details of various types of information stored in the storage unit 91 will be described later.
  • the HP output prediction unit 92 includes, for example, meteorological data including a predicted value of outside temperature and a predicted value of outside air humidity provided on the Internet, a past outside temperature stored in the storage unit 91, and a past heat pump 101 output. And the predicted value of the output of the heat pump 101 from the present time to the DR end time is calculated.
  • the defrost determination unit 93 uses the weather data and the predicted value of the output of the heat pump 101 predicted by the HP output prediction unit 92, predicts the surface temperature of the heat exchanger from the present time for each unit time, It is determined whether the heat exchanger surface temperature satisfies the defrosting condition (the outside air temperature is 5 ° C. or lower and the heat exchanger surface temperature is ⁇ 10 ° C. or lower) at the time.
  • the defrost determination part 93 determines with prior defrost being required, and complete
  • the defrost determination unit 93 determines that the prior defrost is unnecessary and ends the prediction of the heat exchanger surface temperature.
  • indication part 94 transmits a defrost instruction
  • FIG. 6 is a flowchart of the control process of the heat pump heating system according to the present embodiment.
  • FIG. 7 is a flowchart of the DR control process (S601 in FIG. 6) shown in FIG.
  • FIG. 8 is a flowchart of the HP control process (S602 in FIG. 6) shown in FIG.
  • FIG. 9 is a flowchart of the pre-defrost control process (S704 in FIG. 7) shown in FIG.
  • FIG. 6 and FIG. 7 will be described.
  • the DR control process (S601) and the HP control process (S602) are executed periodically (for example, every minute).
  • the system control unit 8 executes a DR control process (S601).
  • the HP control unit 103 executes the HP control process (S602).
  • the system control unit 8 first acquires the current time t (S701). Next, the system control unit 8 determines whether or not a DR signal transmitted from the energy supplier 4 is received by the DR communication unit 82 (S702). When the DR signal is not received (No in S702), the system control unit 8 ends the DR control process.
  • the data collection unit 81 refers to the current operation mode transmitted from the HP control unit 103 (S703). If the current operation mode is the defrost mode (Yes in S703), the system control unit 8 ends the DR control process.
  • the system control unit 8 causes the predefrosting control unit 9 to execute a predefrosting control process described later (S704).
  • a time at which a future defrosting operation is performed is predicted, and it is determined whether defrosting (preliminary defrosting) is necessary before the DR start time.
  • the pre-defrost control unit 9 transmits a defrost command notification to the HP control unit 103.
  • the prior defrosting is not performed (that is, the defrosting command notification is not transmitted), and the heat pump 101 continues to operate according to the command of the HP control unit 103.
  • the data collection unit 81 determines whether or not the acquired current time t has passed the DR start time ts (S705). When the current time t has not passed the DR start time ts (No in S705), the system control unit 8 ends the DR control process. On the other hand, when the current time t has passed the DR start time ts (Yes in S705), the system control unit 8 causes the output suppression operation control unit 83 to perform DR control, thereby allowing the temperature of the hot water from the heat exchanger 102 to be increased. Is changed from the current 55 ° C. (first temperature setting) to 41 ° C. (second temperature setting) (that is, the operation mode is switched from the heating mode to the output suppression mode) is transmitted to the HP control unit 103 ( S706). Thereafter, the system control unit 8 ends the DR control process.
  • the HP control unit 103 first checks whether or not the current operation mode of the heat pump 101 is the defrost mode (S801).
  • the HP control unit 103 confirms whether or not a defrost command notification is received from the defrost command unit 94 of the system control unit 8 (S802).
  • the HP control unit 103 uses the outside air temperature measured by the outside air temperature detecting unit 105 and the heat exchanger surface measured by the heat exchanger surface temperature detecting unit 107. With reference to the temperature, it is determined whether or not the current state satisfies the defrosting condition (S803).
  • the defrosting conditions in the present embodiment are, for example, an outside air temperature of 5 ° C. or lower and a heat exchanger surface temperature of ⁇ 10 ° C. or lower.
  • the HP control unit 103 sets the operation mode of the heat pump 101 to the defrosting mode (S805) and starts the operation of the heat pump 101 in the defrosting mode. (S806).
  • the HP control unit 103 causes the heat pump 101 to continue to operate in the heating mode (S804).
  • the HP control unit 103 sets the operation mode of the heat pump 101 to the defrost mode (S805) and starts the operation of the heat pump 101 in the defrost mode. (S806).
  • the HP control unit 103 refers to the heat exchanger surface temperature measured by the heat exchanger surface temperature detection unit 107 and determines whether or not a defrosting completion condition is satisfied (S807).
  • the defrosting completion conditions in this Embodiment shall be 10 degreeC or more for heat exchanger surface temperature, for example.
  • the HP control unit 103 sets the operation mode of the heat pump 101 to the heating mode (S808), and causes the heat pump 101 to start the operation in the heating mode (S809). .
  • the HP control unit 103 causes the heat pump 101 to continue to operate in the defrosting mode (S810).
  • the system control unit 8 causes the pre-defrost control unit 9 to execute the pre-defrost control process in step S704 of FIG.
  • the preliminary defrost control unit 9 checks the set value of the preliminary defrost flag (S901).
  • the prior defrost flag is a flag indicating whether or not prior defrost has been performed since the DR signal was received until now (that is, whether or not a defrost instruction notification has been issued in step S906). More specifically, the preliminary defrost flag is set to “ON” when the preliminary defrost has already been performed, and is set to “OFF” when the preliminary defrost has not been performed yet.
  • the prior defrost control unit 9 ends the prior defrost control process.
  • the preliminary defrost control unit 9 indicates that the current time t has passed the preliminary defrost start time (ts ⁇ td) and the current time t is DR. It is determined whether it is before the start time ts (S902).
  • This pre-defrost start time (ts-td) is a time that is back from the DR start time ts by a time td corresponding to the time required for defrost.
  • (ts ⁇ td) is a time that is back from the DR start time ts by a time td corresponding to the time required for defrost.
  • the prior defrost start time (ts-td) is set at 17:40 hours. If the current time t has not passed the prior defrost start time (ts-td) or the current time t has passed the DR start time ts (No in S902), the prior defrost control unit 9 The control process ends.
  • FIG. 10 is a diagram showing a list of information transmitted / received between each component.
  • the HP output predicting unit 92 obtains forecast values (outside temperature, outside humidity) of the outside air temperature in the time zone for predicting the output of the heat pump 101 from the weather data. And HP output prediction part 92 acquires the output track record of heat pump 101 corresponding to the predicted value of outside temperature acquired from the HP output prediction table.
  • FIG. 11A and FIG. 11B are diagrams showing examples of HP output prediction tables.
  • the HP output prediction table is a correspondence relationship between the outside air temperature in 1 ° C. rounded off the past outside air temperature and the average value of the past output results of the heat pump 101 at the outside air temperature. Is stored in the storage unit 91 in advance.
  • the second record of the HP output prediction table shown in FIG. 11A indicates that the average value of the past output of the heat pump 101 when the outside air temperature is 0 ° C. is 6 kW. The same applies to other records.
  • the average value of the output results of the heat pump 101 acquired in a time zone other than the DR time zone (FIG. 11A) and the average value of the output results of the heat pump 101 acquired in the DR time zone (FIG. 11B). are stored separately. That is, since the output of the heat pump 101 is suppressed during the DR time zone, the average value of the output results of the heat pump 101 in FIG. 11B is smaller than the average value of the output results associated with the same outside air temperature in FIG. 11A. Yes.
  • the HP output predicting unit 92 predicts the average output value of past heat pumps 101 associated with the same outside air temperature as the predicted value of the outside air temperature at the future time when the output of the heat pump 101 is to be predicted, by HP output prediction. Extract from table. Then, the HP output predicting unit 92 calculates the average value of the output performance of the heat pump 101 by the above method from a predetermined period including the DR time zone (in this embodiment, from the prior defrost start time (ts ⁇ td)). Extracted every unit time (for example, 1 minute) within the period of the end time tf) and output to the defrost determination unit 93 as a predicted value of the output of the heat pump 101 (denoted as “HP output predicted value” in FIG. 10) (S903 in FIG. 9).
  • the defrost determination part 93 acquires the predicted value of the output of the heat pump 101 of the predetermined period including DR time slot
  • the heat exchanger surface temperature detection part The current surface temperature of the heat exchanger 101a is acquired from 107, and the predicted value of the outside air temperature and the predicted value of the outside air humidity at time T (t ⁇ T ⁇ tf) are acquired from the weather data. Note that the initial value of the time T is the current time t.
  • the defrost determination part 93 is based on the acquired various data and the heat exchanger surface temperature prediction table shown by FIG. 12A, as shown in FIG. 12B, time T + 1 (for example, 1 minute after time T) ) To predict the surface temperature of the heat exchanger 101a.
  • FIG. 12A is a heat exchanger surface temperature prediction table stored in the storage unit 91 in advance.
  • the heat exchanger surface temperature prediction table is the state of the heat exchanger surface temperature at time T, and shows the heat exchanger surface temperature in the case of operation up to time (T + 1) with a predetermined HP output, outside air temperature, and outside air humidity. It is the table which measured the amount of change.
  • the HP output value at time (T + 1), the outside air temperature at time (T + 1), the outside air humidity at time (T + 1), and the time are held in association with each other.
  • the defrost determination unit 93 calculates the predicted values of the outside air temperature and the outside humidity at the time (T + 1) and the HP output at the time (T + 1). The amount of change in the heat exchanger surface temperature corresponding to the predicted value and the heat exchanger surface temperature at time T is read from the heat exchanger surface temperature prediction table. And the defrost determination part 93 calculates the heat exchanger surface temperature in the time (T + 1) by adding the heat exchanger surface temperature in the time T, and the read variation
  • the defrost determination part 93 determines whether a defrost condition is satisfied, whenever a heat exchanger surface temperature is estimated by step S904 (S905).
  • the defrost determining unit 93 according to the present embodiment satisfies the defrost condition when the outside air temperature at time T is 5 ° C. or lower and the heat exchanger surface temperature at time T is ⁇ 10 ° C. or lower. Determine (Yes in S905). On the other hand, when any one of the above is not satisfied, the defrost determining unit 93 determines that the defrost condition is not satisfied (No in S905).
  • Fig. 13A shows an example of a prediction result when the defrost condition is satisfied
  • Fig. 13B shows an example of a prediction result when the defrost condition is not satisfied.
  • the outside air temperature and the heat exchanger surface temperature are illustrated from 17:40, which is the pre-defrost start time, toward the future (future).
  • the defrosting condition is satisfied before the DR end time tf (19:30) (Yes in S905 of FIG. 9), and the subsequent prediction is skipped.
  • the heat exchanger surface temperature up to the DR end time tf is predicted.
  • the defrost determination unit 93 sets the time T as the time (T + 1) after one minute (S908). Next, the defrost determining unit 93 determines whether the new time T has passed the DR end time tf (S909). When the new time T has passed the DR end time tf (Yes in S909), the defrost determination unit 93 ends the preliminary defrost control process.
  • the defrost command notification (S906) since the defrost command notification (S906) is not executed, the preliminary defrost process is not performed in steps S802 to S806 in FIG.
  • the defrost determining unit 93 predicts the heat exchanger surface temperature at the new time T (S904).
  • the defrost command unit 94 determines that prior defrost is necessary, and transmits a defrost command notification to the HP control unit 103 (S906). ), The pre-defrost flag is set to “ON” (S907), and the pre-defrost process is terminated.
  • the defrost determination unit 93 determines whether or not the defrost condition is satisfied at each time while repeating the prediction of the heat exchanger surface temperature at each time in the future every minute. And if the defrost determination part 93 determines that the defrost conditions are satisfied by DR end time tf, it will determine that prior defrost is required, will transmit a defrost command notification to the HP control part 103, and will perform prior defrost control. The process ends. Alternatively, when the defrost condition is not satisfied even when the predicted time T reaches the DR end time tf, the defrost determination unit 93 determines that the predefrost is unnecessary and ends the predefrost control process.
  • FIG. 14A shows the power consumption (heat pump heating device) measured by the second power meter 7 when the defrosting operation is performed in the DR time period without executing the preliminary defrost control process of the present embodiment. 100 power consumption).
  • (B) of FIG. 14 is an example of power consumption measured by the second power meter 7 when it is determined that the defrost condition is satisfied in the DR time zone and the prior defrost is performed.
  • the power consumption of the heat pump heating device 100 operating in the heating mode (in a time zone other than the DR time zone (that is, a time zone in which the hot water temperature setting is high)) ( 4 kW) except during defrosting.
  • the power consumption (except during defrosting) of the heat pump heating device 100 operating in the heating mode is 2 kW.
  • the power consumption of the heat pump heating device 100 operating in the defrost mode is only 3 kW consumed by the heat pump 101 because the activation of the heater 108 is suppressed. To do. Furthermore, before the DR time period of FIG. 14B, the power consumption of the heat pump heating device 100 operating in the defrost mode is 2 kW consumed by the heater 108 since the activation of the heater 108 is not suppressed. It is set as 5 kW which added 3 kW consumed with the heat pump 101. FIG. Moreover, in any case of Fig.14 (a) and (b), the time concerning defrosting shall be 15 minutes.
  • the power charge between 18:00 and 20:00 is 50 yen per kW, and the power charge for other times is 10 yen per kW.
  • the power charge of (a) in FIG. 14 is 40 yen from 17:00 to 18:00.
  • the price is 212.5 yen from 18:00 to 20:00 and 40 yen from 20:00 to 21:00, for a total of 292.5 yen.
  • the power charge in FIG. 14B is 42.5 yen from 17:00 to 18:00, 200 yen from 18:00 to 20:00, 20 From 0:00 to 21:00, it is 40 yen, which is 282.5 yen in total. That is, the difference in power rate between the case of defrosting in the DR time zone as shown in FIG. 14A and the case of pre-defrosting before the DR start time as shown in FIG. It becomes.
  • the defrosting operation is performed in the DR time zone of the expensive power charge. It exceeds the power consumption when performing prior defrosting as in (b).
  • the power charge can be saved by performing the defrosting operation before the DR time zone.
  • FIG. 14 (d) when pre-defrosting is performed as shown in FIG. 14 (b) (shown by the solid line in FIG. 14 (d)), the heat pump 101 is set before the DR start time. Since the operation mode is switched to the defrosting mode and heat is not temporarily supplied from the heat pump 101 to the heating device 104, the room temperature gradually decreases. However, since the heater 108 is used during that period, the room temperature decrease rate (the slope of the solid line in FIG. 14D) is relatively small.
  • the operation mode of the heat pump 101 is switched to the defrosting mode in the DR time zone, and heat is transferred from the heat pump 101 to the heating device 104. It will not be supplied.
  • the HP control unit 103 suppresses (prohibits) the use of the heater 108 in the DR time zone, the room temperature decrease rate is larger than that in the case of prior defrosting.
  • the minimum value of the room temperature that greatly affects the comfort is lower than that in the case of performing prior defrosting as shown in FIG.
  • the time zone in which the power load is peaked is set to the DR time zone, it is desirable to reduce the power as much as possible to stabilize the system, and it is not desirable to consume wasteful power. That is, the power consumed during the defrosting operation in the DR time zone of FIG. 14A is used to melt the frost attached to the heat exchanger 101a, and is wasted power that does not contribute to heating the room. It can be said.
  • the control method of the heat pump heating system when it is determined that the defrost condition is satisfied in the peak time zone, by performing the defrost operation before the peak time zone, It is possible to avoid the defrosting operation during the peak time period.
  • it is useful as a system control method that contributes to stabilization of system power by power peak cut during peak hours, and reduction of user's electricity bill and comfort. That is, by setting the DR time zone to the power peak time zone, more system stabilization can be realized.
  • the instantaneous values of the outside air temperature and the heat exchanger surface temperature are used as the conditions for switching the operation mode of the heat pump 101.
  • a condition such as “a state where the heat exchanger surface temperature is ⁇ 10 ° C. or lower continues for a predetermined time (for example, 3 minutes)” may be used by using a continuous value or a moving average.
  • the temperature of the refrigerant flowing through the piping may be used instead of the heat exchanger surface temperature.
  • the amount of frost formation may be estimated by a combination of the heat exchanger surface temperature, the refrigerant temperature, and the like. That is, in the above example, the surface temperature of the air heat exchanger in a predetermined period is predicted every unit time, and when the surface temperature of the air heat exchanger obtained by the prediction is equal to or lower than the threshold value, defrosting is performed. It was judged that the condition was satisfied.
  • the temperature of the refrigerant in a predetermined period may be predicted every unit time, and it may be determined that the defrost condition is satisfied when the temperature of the refrigerant obtained by the prediction is equal to or less than a threshold value. Furthermore, you may measure the amount of frost formation directly using an imaging device (camera).
  • the defrost determination part 93 which concerns on this Embodiment calculates the predicted value of a heat exchanger surface temperature using a heat exchanger surface temperature prediction table
  • this invention is not limited to this.
  • an expression or a model having a relationship between the outside air temperature, the outside air humidity, and the heat pump output may be used.
  • the HP output prediction unit 92 may create a related expression or model in addition to creating an HP output prediction table.
  • the timing (preliminary defrosting start time) of the preliminary defrosting control process performed by the preliminary defrosting control unit 9 is not limited to just before the DR start time, but may be immediately after the DR signal reception time.
  • Embodiment 1 when it is determined that the defrost condition is satisfied by the DR end time, the defrost operation is performed before the DR start time as shown in FIG. Thereby, it is possible to avoid the defrosting operation being performed in the DR time zone as shown in FIG.
  • Embodiment 1 since the defrosting operation is not performed in advance when the defrosting condition is satisfied after the DR end time, the efficiency of the heat pump 101 due to frosting decreases, and the operation in a low efficiency state is performed. There is a problem that occurs in the DR time zone and the power consumption in the DR time zone increases. Also, if the defrosting operation is always performed before the DR start time, the power consumed by the prior defrost is reduced when the outside air temperature increases after the DR end time and the frost melts due to solar radiation or atmospheric heat. It becomes useless.
  • the defrosting operation may be performed immediately after the DR end time. Immediately after the DR end time, a process is executed to restore the room temperature lowered in the DR time period by returning the hot water temperature setting to the original state. For this reason, if the defrosting operation is performed during this period, power is consumed in the defrosting operation, so that there is a problem that the state where the room temperature is low becomes long and the comfort is impaired.
  • the end of the predetermined period is set to a time after the DR end time and when the room temperature of the room in which the heating device 104 is installed is restored to the level at the time when the DR signal is received, the next morning May be set at an arbitrary time (for example, 10:00).
  • Embodiment 1 (Configuration / Operation) This embodiment is common to Embodiment 1 in that it presupposes the heat pump heating device 100 shown in FIGS. 2 to 5.
  • the “end of the predetermined period (tf2)” is set to 10:00 am the next morning.
  • the HP control process and the DR control process are periodically executed as in the first embodiment shown in FIG. And HP control processing performs the same processing as Embodiment 1 shown by FIG. Next, the DR control processing in the present embodiment is shown in FIG.
  • the HP output prediction unit 92 Predicts the output of the heat pump 101 from the present (pre-defrosting start time) to 10:00 am (tf2) the next day after the end of the DR time zone (S1503).
  • the defrost determining unit 93 determines that the frost is naturally melted by solar radiation or atmospheric heat when it is determined that the defrost condition is not satisfied by 10 o'clock the next day when the outside air temperature starts to rise. To do. In the present embodiment, it is assumed that the room temperature is set in advance to take 2 hours to recover to the level at the time of DR signal reception after the DR end time.
  • the defrost determination part 93 performs prediction (S1504) of heat exchange surface temperature, and when defrost conditions are not satisfied (it is No at S1505), time T is made into time (T + 1) after 1 minute. (S1508).
  • the defrost determination unit 93 predicts the heat exchanger surface temperature at the new time T. (S1504).
  • the other processes are the same as those in FIG. 9 of the first embodiment, and a description thereof will not be repeated.
  • FIG. 16 shows the defrosting operation by the control method of the heat pump heating system according to the first embodiment when the defrosting condition is satisfied between the DR end time tf and the next 10 o'clock (tf2). It is an example of the power consumption measured by the 2nd electric power meter 7 at the time of doing.
  • the defrosting operation is performed after the DR end time. That is, in the case of FIG. 16A, a certain amount of frost has adhered to the heat exchanger 101a from before the DR time zone, and the heat pump 101 is operated with the frost still attached. As a result, the power consumption of the heat pump 101 in the DR time zone increases. Thereafter, in the control method for the heat pump heating system according to the first embodiment, the defrosting operation is performed after the above-described defrosting conditions are satisfied by 10:00 am the next day.
  • FIG. 16 shows the case where the defrosting condition is satisfied between the DR end time tf and the next day at 10:00 am (tf2) by the control method of the heat pump heating system according to the present embodiment. It is an example of the power consumption measured by the 2nd electric power meter 7 at the time of carrying out a frost driving
  • the defrosting operation is performed before the DR start time ts when it is determined that the defrosting condition is satisfied by 10:00 am the next day. That is, in the control method of the heat pump heating system according to the present embodiment, even if a certain amount of frost is attached to the heat exchanger 101a from before the DR time zone, the defrosting is performed in advance, so The heat pump 101 can be operated without frost. As a result, the power consumption of the heat pump 101 in the DR time period can be reduced.
  • (c) of FIG. 16 is the 2nd electric power at the time of defrosting with the control method of the heat pump type heating apparatus which concerns on this Embodiment, when it is judged that the defrosting conditions are not satisfied by the next 10 o'clock. It is an example of the power consumption measured by the meter.
  • FIG. 16D is a diagram comparing changes in room temperature when the operation is performed as in FIGS. 16A and 16B described above.
  • the defrosting operation is performed during the period from the DR end time tf until the room temperature recovers (room temperature recovery period (2 hours)) as in the first embodiment shown in FIG.
  • the supply of heat from the heat pump 101 to the heating device 104 is interrupted.
  • the room temperature further decreases during the defrosting operation after the DR end time tf, and the room temperature is restored again after the defrosting operation ends, and the comfort is impaired (broken line in FIG. 16D).
  • the defrosting operation is performed before the peak time period.
  • the control method of the heat pump heating system according to the present embodiment is useful as an operation method that contributes to stabilization of system power by peak cut and reduction of user's electricity bill and comfort.
  • the heat exchanger surface temperature is predicted from the preliminary defrost start time (ts-td) to the next 10 o'clock when the outside air temperature starts to rise, and it is determined whether or not the defrost condition is satisfied.
  • the prediction end time may be set until the room temperature recovers after the DR end time (22:00), the DR start time on the next day (18:00 on the next day), or 24 hours ahead.
  • the time for the room temperature to recover after the DR end time is set to 2 hours. For example, the time taken to recover the room temperature in the past is measured, and the time taken for the most recovery (for example, 4 hours) is used.
  • the heat exchanger surface temperature may be predicted until 4 hours after the end time.
  • the defrosting operation is started 20 minutes before the DR start time as illustrated in FIG.
  • the defrosting operation is avoided during the DR time zone.
  • the room temperature decreases. Further, immediately after the operation mode is switched from the defrosting mode to the heating mode, the temperature of the hot water from the heat exchanger 102 is lower than the set value. Therefore, as in the example of FIG. 14B, when the defrosting operation is started immediately before the DR start time, the time from the end of the defrosting operation to the DR start time is short, the room temperature and the heat exchanger The DR start time is reached without recovering the hot water temperature from 102. As described above, in the control method of the heat pump heating system according to Embodiment 1, the room temperature in the DR time zone is lowered, and the comfort is impaired.
  • the heat pump has a timing (17:40) such that the state of the heat pump satisfies the defrosting completion condition (that is, the defrosting operation ends) immediately before the DR start time (18:00).
  • the operation mode 101 is switched to the defrost mode.
  • it controls so that DR start time may be reached in the state which performed prior defrost and restored the room temperature of the room to the level before prior defrost.
  • the preliminary defrosting start timing (timing for switching the operation mode of the heat pump 101 to the defrosting mode) is set to the time required for the defrosting operation and the time to recover the room temperature from the DR start time. To do.
  • Embodiment 1 (Configuration / Operation) This embodiment is common to Embodiment 1 in that it presupposes the heat pump heating device 100 shown in FIGS. 2 to 5.
  • the HP control process and the DR control process are periodically executed, and the HP control process is the same as the first embodiment shown in FIG. I do.
  • the DR control processing in the present embodiment is shown in FIG.
  • the pre-defrost control process of the present embodiment is based on the DR start time of 18:00 (ts), 20 minutes (td), which is the time required for defrosting, and the hot water from the room temperature and heat exchanger 102 17:00, which is a time that is back by the time (60 minutes) obtained by adding 40 minutes (tr), which is the time until the temperature recovers, is set as the prior defrost start time (ts-td-tr).
  • the time until the room temperature and the temperature of the hot water from the heat exchanger 102 are restored is set to 40 minutes in advance, but this time varies depending on the house and the performance of the heat pump 101.
  • the HP output predicting unit 92 ends the DR from the previous defrost start time.
  • the output of the heat pump 101 until time tf is predicted (S1703).
  • 18B is the defrosting method according to the control method of the heat pump heating system according to the present embodiment when it is determined that the defrosting condition is satisfied in the DR time zone as in FIG. 18B. It is an example of the power consumption measured by the 2nd electric power meter 7 at the time of driving
  • advance from the DR start time ts, the time td required for defrosting and the time tr when the room temperature and the temperature of the tapping water from the heat exchanger 102 are recovered.
  • the preliminary defrosting is started at the defrosting start time (ts-td-tr).
  • FIG. 18 is a diagram comparing changes in room temperature when the operations in FIGS. 18 (a) and (b) are performed.
  • the defrosting operation is performed immediately before the DR start time ts, so that the DR start time ts remains at a low room temperature (the broken line in FIG. 18 (c)). ).
  • the present embodiment shown in FIG. 18 (b) sufficient time is secured to recover the room temperature and the hot water temperature from the heat exchanger 102 from the defrosting operation to the DR start time ts. Therefore, compared to the case of FIG. 18A, the room temperature in the DR time zone can be maintained high (solid line in FIG. 18C).
  • the minimum time required to restore the room temperature and the hot water temperature from the heat exchanger 102 to the level before defrosting at the DR start time ts is started ahead (40 minutes in the above example). For this reason, since the time from the end of the defrosting operation to the DR start time ts does not become unnecessarily long, the amount of frost formation at the DR start time ts can be kept low.
  • the DR signal is received at 16:00 and the defrosting operation is performed from 16:00, the room temperature and the hot water temperature from the heat exchanger 102 are restored to the level before the defrosting operation at 17:00.
  • the time from the end of the defrosting operation to the DR start time 18:00 becomes longer. Therefore, the amount of frost formation at the DR start time ts is larger than that in the present embodiment. For this reason, the operating efficiency of the heat pump 101 in the DR time period is reduced, and the power consumption is increased.
  • the power consumption of the heat pump 101 in the DR time period can be reduced by performing the pre-defrosting at the timing at which the room temperature and the temperature of the hot water from the heat exchanger 102 finish recovery immediately before the DR start time.
  • the room temperature and the temperature of the hot water from the heat exchanger 102 are in the peak time zone.
  • the defrosting operation at such a timing as to recover immediately before, it is possible to avoid performing the defrosting operation during the peak time period.
  • the operating efficiency of the heat pump 101 during peak hours can be improved without impairing comfort. As a result, it is useful as an operation method that contributes to stabilization of system power by peak cut and reduction of user's electricity bill and comfort.
  • the time until the room temperature and the temperature of the hot water from the heat exchanger 102 recover is set in advance as 40 minutes.
  • the room temperature by the operation of the heat pump 101 with respect to the past outside air temperature is set.
  • a method such as learning the degree of recovery and predicting the optimal recovery time may be used.
  • the heat pump hot water heating system has been described.
  • the present invention is not limited to this, and a heat pump air conditioner (air conditioner) may be used.
  • each of the above devices can be realized by a computer system including a microprocessor, a ROM, a RAM, a hard disk unit, a display unit, a keyboard, a mouse, and the like.
  • a computer program is stored in the RAM or the hard disk unit.
  • Each device achieves its functions by the microprocessor operating according to the computer program.
  • the computer program is configured by combining a plurality of instruction codes indicating instructions for the computer in order to achieve a predetermined function.
  • a part or all of the components constituting each of the above devices may be configured by one system LSI (Large Scale Integration).
  • the system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip, and specifically, a computer system including a microprocessor, ROM, RAM, and the like. .
  • a computer program is stored in the ROM.
  • the system LSI achieves its functions by the microprocessor loading a computer program from the ROM to the RAM and performing operations such as operations in accordance with the loaded computer program.
  • Part or all of the constituent elements constituting each of the above devices may be configured from an IC card or a single module that can be attached to and detached from each device.
  • the IC card or module is a computer system that includes a microprocessor, ROM, RAM, and the like.
  • the IC card or the module may include the super multifunctional LSI described above.
  • the IC card or the module achieves its functions by the microprocessor operating according to the computer program. This IC card or this module may have tamper resistance.
  • the present invention may be realized by the method described above. Further, these methods may be realized by a computer program realized by a computer, or may be realized by a digital signal consisting of a computer program.
  • the present invention also relates to a computer-readable recording medium that can read a computer program or a digital signal, such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-ray Disc), You may implement
  • a computer program or a digital signal may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, a data broadcast, or the like.
  • the present invention is also a computer system including a microprocessor and a memory.
  • the memory stores a computer program, and the microprocessor may operate according to the computer program.
  • program or digital signal may be recorded on a recording medium and transferred, or the program or digital signal may be transferred via a network or the like, and may be implemented by another independent computer system.
  • the control method of the heat pump heating system according to the present invention does not require defrosting operation during peak hours when power consumption increases, contributing to stabilization of system power by peak cut and reduction of user electricity bills. This is useful as a driving method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

暖房システムの制御方法は、出力抑制指示を電力供給元から取得する取得ステップ(S101)と、出力抑制時間帯を含む所定期間におけるヒートポンプの状態が、除霜モードへの切り替えが必要であることを示す第1の条件を満たすか否かを判断する事前除霜判断ステップ(S102)と、ヒートポンプの運転モードを制御する事前除霜ステップ(S103)とを含み、事前除霜ステップ(S103)では、ヒートポンプの状態が第1の条件を満たす場合に、出力抑制時間帯の開始時刻より前にヒートポンプを除霜モードに切り替え、第1の条件を満たさない場合に、出力抑制時間帯の開始時刻より前にヒートポンプを除霜モードに切り替えず、暖房モードで動作させる。

Description

暖房システムの制御方法及び暖房システム
 本発明は、暖房システムの制御方法に関し、特にヒートポンプ式暖房装置を備える暖房システムの制御方法に関するものである。
 ヒートポンプ式給湯装置は、大気の熱を吸熱し、電気で冷媒を圧縮して加熱し、熱交換器により水から温水を作る装置であり、従来のヒータ式の電気温水器と比較して省エネな給湯装置である。また、ヒートポンプ式暖房装置は、ヒートポンプで作った温水を暖房に利用するものであり、ヒートポンプ式給湯装置と同様に、省エネな暖房装置である。
 ヒートポンプは、大気の温度が低いと、大気の熱を吸熱する際に熱交換器に霜が着く現象(着霜)が発生する。この霜が熱交換器に多く着くほど大気の熱を吸熱し難くなり、ヒートポンプの出力の低下や、効率の低下などの問題が発生する。このため、一般的なヒートポンプ装置は、ある程度熱交換器に霜が着いたことを検知した時点で、霜を除去する運転(除霜)を行う機能を備えている。
特開2010-249333号公報
 近年ヒートポンプの普及により、熱需要を賄うエネルギー源として電力の割合が増加しており、電力需要のピークが上昇を続けている。このため、従来のピーク時間帯には電力料金が高価になる契約制度に加え、電力会社が指定するピーク時間帯に電力負荷を抑制する代わりに、ある程度電力料金を安価にする契約制度が需要家で選択可能となってきている。この契約制度を利用し、ピーク時間帯に電力負荷を抑制すると、暖房熱需要に対してヒートポンプの出力が不足して室温が低下するため、快適性が損なわれるという課題が発生する。
 そこで本発明は、上記の課題を解決するためになされたもので、簡易な手法でピークカットによる系統電力の安定化、およびユーザの快適性を向上させたヒートポンプ式暖房システムの制御方法を提供することを目的とする。
 本発明の一形態に係る暖房システムの制御方法は、電力供給元から電力の供給を受けて動作する方法である。前記暖房システムは、前記電力供給元から供給される電力を用いて熱を生成するヒートポンプと、前記ヒートポンプで生成された熱を放熱する放熱部とを備える。前記ヒートポンプは、前記放熱部に放熱させるための熱を生成する暖房モード、又は当該ヒートポンプに生じる霜を除去する除霜モードで動作する。前記暖房システムの制御方法は、前記ヒートポンプの消費電力を抑制する出力抑制時間帯を示す出力抑制指示を、前記電力供給元から取得する取得ステップと、前記取得ステップで前記出力抑制指示が取得された場合に、前記出力抑制時間帯を含む所定期間における前記ヒートポンプの状態を予測し、予測によって得られた前記ヒートポンプの状態が、前記除霜モードへの切り替えが必要であることを示す第1の条件を満たすか否かを判断する事前除霜判断ステップと、前記事前除霜判断ステップでの判断結果に応じて、前記ヒートポンプの運転モードを制御する事前除霜ステップとを含む。そして、前記事前除霜ステップでは、前記所定期間における前記ヒートポンプの状態が、前記第1の条件を満たすと前記判断ステップで判断された場合に、前記出力抑制時間帯の開始時刻より前に前記ヒートポンプを前記除霜モードに切り替え、前記所定期間における前記ヒートポンプの状態が、前記第1の条件を満たさないと前記判断ステップで判断された場合に、前記出力抑制時間帯の開始時刻より前に前記ヒートポンプを前記除霜モードに切り替えず、暖房モードで動作させる。
 なお、これらの全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたは記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本発明に係るヒートポンプ式暖房システムの制御方法によれば、電力消費量が多くなるピーク時間帯における除霜運転を回避することができる。その結果、ピークカットによる系統電力の安定化、およびユーザの快適性の向上に寄与する。
図1は、実施の形態1に係るヒートポンプ式暖房システムの処理の概要を示すフローチャートである。 図2は、実施の形態1に係るヒートポンプ式暖房システムの構成を示す図である。 図3は、実施の形態1に係るヒートポンプ式暖房装置の詳細な構成図である。 図4Aは、実施の形態1に係る暖房モードで動作するヒートポンプ内の冷媒の流れを示す図である。 図4Bは、実施の形態1に係る除霜モードで動作するヒートポンプ内の冷媒の流れを示す図である。 図5は、実施の形態1に係るシステム制御部の詳細な構成図である。 図6は、実施の形態1に係るヒートポンプ式暖房システム全体の処理のフローチャートである。 図7は、実施の形態1に係るヒートポンプ制御処理のフローチャートである。 図8は、実施の形態1に係るDR制御処理のフローチャートである。 図9は、実施の形態1に係る事前除霜制御のフローチャートである。 図10は、実施の形態1に係る各構成要素間で送受信される情報の一覧を示す図である。 図11Aは、実施の形態1に係るDR時間帯以外の時間帯のHP出力予測テーブルの例を示す図である。 図11Bは、実施の形態1に係るDR時間帯のHP出力予測テーブルの例を示す図である。 図12Aは、実施の形態1に係る熱交換器表面温度予測テーブルを示す図である。 図12Bは、実施の形態1に係る熱交換器表面温度の予測結果の例を示す図である。 図13Aは、実施の形態1に係る除霜条件を満たす場合の温度変化の一例を示す図である。 図13Bは、実施の形態1に係る除霜条件を満たさない場合の温度変化の一例を示す図である。 図14は、実施の形態1に係るヒートポンプ式暖房システムにおける消費電力、電気料金、及び室温の推移を示す図である。 図15は、実施の形態2に係る事前除霜制御のフローチャートである。 図16は、実施の形態2に係るヒートポンプ式暖房システムにおける消費電力及び室温の推移を示す図である。 図17は、実施の形態3に係る事前除霜制御のフローチャートである。 図18は、実施の形態3に係るヒートポンプ式暖房システムにおける消費電力及び室温の推移を示す図である。
 (本発明の基礎となった知見)
 例えば、特許文献1には、着霜によるヒートポンプの効率の低下と除霜する時刻とを含めて、消費電力が最小となる運転スケジュールを最適化問題の解法を利用して生成する技術が開示されている。
 しかしながら特許文献1の方式では、「発明が解決しようとする課題」で記載した契約制度を利用し、消費電力を考慮した運転スケジュールを立てると、ピーク時間帯(電力料金が高い)に除霜が発生する場合がある。この場合、ヒートポンプの出力が不足して室温が低下しているピーク時間帯であるにもかかわらず、除霜を行っている間はヒートポンプから全く熱需要を賄うことができないので、さらに室温が低下して快適性を損なうという課題がある。
 また、ピーク時間帯に除霜を行うと、熱需要を賄えず、快適性に寄与しないにもかかわらず、高価な電力を使用することになり、経済的でないばかりか、系統電力へも無駄な負荷をかけることになる。また、特許文献1の方式で消費電力の他に電力料金や快適性も最適化対象とすると、計算コストが増加して実時間で解を求めることが出来ない課題もある。
 そこで、上記の課題を解決するために、本発明の一形態に係る暖房システムの制御方法は、電力供給元から電力の供給を受けて動作する方法である。前記暖房システムは、前記電力供給元から供給される電力を用いて熱を生成するヒートポンプと、前記ヒートポンプで生成された熱を放熱する放熱部とを備える。前記ヒートポンプは、前記放熱部に放熱させるための熱を生成する暖房モード、又は当該ヒートポンプに生じる霜を除去する除霜モードで動作する。前記暖房システムの制御方法は、前記ヒートポンプの消費電力を抑制する出力抑制時間帯を示す出力抑制指示を、前記電力供給元から取得する取得ステップと、前記取得ステップで前記出力抑制指示が取得された場合に、前記出力抑制時間帯を含む所定期間における前記ヒートポンプの状態を予測し、予測によって得られた前記ヒートポンプの状態が、前記除霜モードへの切り替えが必要であることを示す第1の条件を満たすか否かを判断する事前除霜判断ステップと、前記事前除霜判断ステップでの判断結果に応じて、前記ヒートポンプの運転モードを制御する事前除霜ステップとを含む。そして、前記事前除霜ステップでは、前記所定期間における前記ヒートポンプの状態が、前記第1の条件を満たすと前記判断ステップで判断された場合に、前記出力抑制時間帯の開始時刻より前に前記ヒートポンプを前記除霜モードに切り替え、前記所定期間における前記ヒートポンプの状態が、前記第1の条件を満たさないと前記判断ステップで判断された場合に、前記出力抑制時間帯の開始時刻より前に前記ヒートポンプを前記除霜モードに切り替えず、暖房モードで動作させる。
 これにより、例えば、電力消費量が多くなるピーク時間帯を出力抑制時間帯に設定することにより、ピーク時間帯における除霜運転を回避することができる。その結果、ピークカットによる系統電力の安定化、およびユーザの電気代削減と快適性の向上とに寄与する。
 また、前記事前除霜判断ステップは、前記出力抑制指示を取得した後、前記ヒートポンプが除霜モード運転していないときに、実施されてもよい。
 さらに、前記暖房システムの制御方法は、前記出力抑制時間帯における前記ヒートポンプの運転を制御する出力抑制運転制御ステップを含んでもよい。そして、前記出力抑制運転制御ステップでは、前記ヒートポンプに、前記暖房モードより出力の小さい出力抑制モードで運転を行なわせ、且つ除霜モードで運転を行わせないようにしてもよい。
 また、前記出力抑制モードの前記ヒートポンプは、前記ヒートポンプの定格出力の半分以下の出力で動作してもよい。
 また、前記ヒートポンプは、当該ヒートポンプの状態が、霜が除去されたことを示す第2の条件を満たした場合に、前記除霜モードから前記暖房モードに切り替えてもよい。そして、前記事前除霜ステップでは、前記出力抑制時間帯の開始時刻より前に前記ヒートポンプの状態が前記第2の条件を満たすようなタイミングで、前記ヒートポンプを前記除霜モードに切り替えてもよい。
 また、前記所定期間の終期は、前記出力抑制時間帯の終了時刻であってもよい。
 さらに、該暖房システムの制御方法は、前記ヒートポンプの単位時間当たりの成熱量を、前記出力抑制時間帯の開始時刻に第1の熱量から前記第1の熱量より小さい第2の熱量に切り替え、前記出力抑制時間帯の終了時刻に前記第2の熱量から前記第1の熱量に切り替える出力抑制運転制御ステップを含んでもよい。そして、前記所定期間の終期は、前記出力抑制時間帯の終了時刻後で、且つ前記放熱部が設置された部屋の室温が前記出力抑制指示を取得した時点の水準に回復する時刻であってもよい。
 また、前記所定期間の終期は、翌朝であってもよい。
 また、前記ヒートポンプは、当該ヒートポンプの状態が、霜が除去されたことを示す第2の条件を満たした場合に、前記除霜モードから前記暖房モードに切り替えてもよい。そして、前記事前除霜ステップでは、前記出力抑制時間帯の開始時刻より前に前記放熱部が設置された部屋の室温が前記除霜モードに切り替わる前の水準に回復するようなタイミングで、前記ヒートポンプを前記除霜モードに切り替えてもよい。
 本発明の一形態に係る暖房システムは、電力供給元から電力の供給を受けて動作する。前記暖房システムは、暖房装置と前記暖房装置を制御するシステム制御部とを備える。前記暖房装置は、前記電力供給元から供給される電力を用いて熱を生成するヒートポンプと、前記ヒートポンプで生成された熱を放熱する放熱部とを備える。前記ヒートポンプは、前記放熱部に放熱させるための熱を生成する暖房モード、又は当該ヒートポンプに生じる霜を除去する除霜モードの動作切り替えができる。そして、前記システム制御部は、前記ヒートポンプの消費電力を抑制する出力抑制時間帯を示す出力抑制指示を、前記電力供給元から取得する取得部と、前記取得部で前記出力抑制指示が取得された場合に、前記出力抑制時間帯を含む所定期間における前記ヒートポンプの状態を予測する予測部と、前記予測部の予測によって得られた前記ヒートポンプの状態が、前記除霜モードへの切り替えが必要であることを示す第1の条件を満たすか否かを判断する事前除霜判断部と、前記所定期間における前記ヒートポンプの状態が、前記第1の条件を満たすと前記判断部で判断された場合に、前記出力抑制時間帯の開始時刻より前に前記ヒートポンプを前記除霜モードに切り替える通知をする指令部とを備える。
 さらに、前記暖房装置は、前記ヒートポンプを制御するヒートポンプ制御部を有してもよい。そして、前記ヒートポンプ制御部は、前記指令部から前記通知を取得した場合に、前記出力抑制時間帯の開始時刻より前に前記ヒートポンプを前記除霜モードに切り替えてもよい。
 また、前記所定期間における前記ヒートポンプの状態が、前記第1の条件を満たさないと前記事前除霜判断部で判断された場合に、前記ヒートポンプ制御部は、前記出力抑制時間帯の開始時刻より前に前記ヒートポンプを前記除霜モードに切り替えず、暖房モードで動作させてもよい。
 さらに、前記暖房装置は、熱交換器表面温度検出部を備えてもよい。
 さらに、前記ヒートポンプシステム制御部は、前記出力抑制時間帯において、前記暖房モードより出力の小さい出力抑制モードで前記ヒートポンプに運転を行なわせる出力抑制運転制御部を備えてもよい。
 本発明の他の形態に係る暖房システムは、電力供給元から電力の供給を受けて動作する。前記暖房システムは、暖房装置を備える。前記暖房装置は、前記電力供給元から供給される電力を用いて熱を生成するヒートポンプと、前記ヒートポンプで生成された熱を放熱する放熱部と、前記ヒートポンプの前記放熱部に放熱させるための熱を生成する暖房モード、又は当該ヒートポンプに生じる霜を除去する除霜モードの動作切り替えするヒートポンプ制御部と、前記ヒートポンプ制御部を制御するシステム制御部とを備える。そして、前記システム制御部は、前記ヒートポンプの消費電力を抑制する出力抑制時間帯を示す出力抑制指示を、前記電力供給元から取得する取得部と、前記取得部で前記出力抑制指示が取得された場合に、前記出力抑制時間帯を含む所定期間における前記ヒートポンプの状態を予測する予測部と、前記予測部の予測によって得られた前記ヒートポンプの状態が、前記除霜モードへの切り替えが必要であることを示す第1の条件を満たすか否かを判断する事前除霜判断部と、前記所定期間における前記ヒートポンプの状態が、前記第1の条件を満たすと前記判断部で判断された場合に、前記出力抑制時間帯の開始時刻より前に前記ヒートポンプを前記除霜モードに切り替える通知をする指令部とを備える。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、請求の範囲によって特定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。
 (実施の形態1)
 まず、図1を参照して、実施の形態1に係るヒートポンプ式暖房システムの制御方法の概要を説明する。図1は、本実施の形態に係るヒートポンプ式暖房システムの制御の概要を示すフローチャートである。ここでヒートポンプ式暖房システム1は、図2に示す通り、ヒートポンプ式暖房装置100とシステム制御部8とを備える。
 図1に表す通り、本実施の形態に係るヒートポンプ式暖房システムは、まず、エネルギー供給業者から高価な電力料金時間帯に対する出力抑制信号(以下、「DR(Demand Response)信号」と表記する)を受信する(S101)。DR信号には、ヒートポンプの消費電力を抑制すべき時間帯である出力抑制時間帯(以下、「DR時間帯」と表記する)を特定する情報が含まれている。
 出力抑制時間帯とは、エネルギー供給業者が任意に指定することができる時間帯である。出力抑制時間帯は、例えば、エネルギー供給業者が供給する電力がピークに達する時間帯であり、「18時から20時までの2時間」のように規定される。また、ヒートポンプ式暖房システムは、DR開始時刻より前(例えば、17時30分)にDR信号を受信する。
 次に、ヒートポンプ式暖房システムは、DR開始時刻の前に、DR時間帯における外気温度、外気湿度、及びヒートポンプ出力の予測値を用いて空気熱交換器の表面温度(又は、空気熱交換器に流入する冷媒の温度)の将来の変化を予測し、除霜運転が行われる時刻を予測し、DR時間帯と予測された除霜が行われる時刻との関係から、事前除霜の必要性を判定する(S102)。そして、ヒートポンプ式暖房システムは、事前除霜が必要と判定した場合(S102でYes)に、DR開始時刻より前に除霜運転を実施する(S103)。なお、事前除霜の判定タイミングは、除霜所要時間によって決定される。また、ヒートポンプ式暖房システムは、事前除霜が必要と判定しない場合(S102でNo)、事前除霜を実施せず、通常のヒートポンプの運転を行う。ここで「通常のヒートポンプの運転」とは、システム制御部8によって制御される運転ではなく、後述するHP(ヒートポンプ)制御部103によって制御される運転である。
 最後に、ヒートポンプ式暖房システムは、DR開始時刻になったらヒートポンプの運転条件を切り替えて、DR開始時刻からDR終了時刻までの間、DR時間帯の運転条件でヒートポンプを運転する(S104)。DR時間帯の運転条件とは、例えば、DR時間帯以外の時間帯にヒートポンプが単位時間当たりに生熱する熱量(第1の熱量:例えば4kW)より少ない熱量(第2の熱量:例えば2kW)を単位時間当たりに生熱するような運転条件である。ここでは、第2の熱量を定格電力(4kW)の半分以下(たとえば2kW)としている。
 このように、DR時間帯に除霜運転が必要と予測された場合に、事前に除霜運転を実施することで、消費電力の大きい除霜運転をDR時間帯に実行することを回避できる。その結果、エネルギー供給業者の目指した消費電力の削減、および電力需要者のための電気料金節約及びユーザの快適性を両立するヒートポンプのDR制御の効果を享受できる。
 図2は、本実施の形態に係るヒートポンプ式暖房システム1を示す図である。ヒートポンプ式暖房システム1は、図2に示す通り、ヒートポンプ式暖房装置100とシステム制御部8とから構成されている。
 図2に示される例では、エネルギー供給業者(電力供給元)4から住宅(建物)に対して、第1及び第2の電力系統を通じて電力が供給されている。第1の電力系統は、安定的に電力が供給される電力系統である。また、第1の電力系統は、電力料金が相対的に高い電力系統であり、第1の電力メーター6によって電力消費量が計測される。一方、第2の電力系統は、エネルギー供給業者4によって任意の時間帯に電力の供給を抑制することができる電力系統である。また、第2の電力系統は、電力料金が第1の電力系統よりも安価な電力系統であり、第2の電力メーター7によって電力消費量が計測される。
 また、図2に示される住宅内には、電力負荷5と、システム制御部8と、ヒートポンプ式暖房装置100とが設置されている。ヒートポンプ式暖房装置100は、ヒートポンプ(生熱部)101と、熱交換器102と、暖房装置(放熱部)104とを少なくとも備えている。
 ヒートポンプ式暖房装置100は、ヒートポンプ101で生成した熱を、熱交換器102を通じて暖房装置104から放熱することにより、暖房装置104が設置されている部屋の室温を予め定められた設定温度を含む所定の温度範囲内に維持する装置である。
 第1の電力メーター6は、ヒートポンプ式暖房装置100以外の機器(すなわち、電力負荷5及びシステム制御部8)の消費電力を計測するものである。すなわち、システム制御部8及び電力負荷5は、第1の電力系統を通じてエネルギー供給業者4から電力の供給を受けて動作する。一方、第2の電力メーター7は、圧縮機、ポンプ、及びファン等(図示省略)のヒートポンプ式暖房装置100の各構成要素の電力消費を計測するものである。すなわち、ヒートポンプ式暖房装置100の各構成要素は、第2の電力系統を通じてエネルギー供給業者4から電力の供給を受けて動作する。
 システム制御部8は、エネルギー供給業者4と通信を行う機能を有すると共に、ヒートポンプ式暖房装置100に制御指令を与える。例えば、システム制御部8は、出力抑制運転制御部83(図5に図示)を有しており、DR時間帯におけるヒートポンプ101の消費電力が抑制されるように、ヒートポンプ式暖房装置100の運転を制御する。
 エネルギー供給業者4は、各家庭に電力やガスを供給する会社であり、各家庭の電力の使用を抑制したい場合には、DR信号を送信することによって、各家庭に第2の電力系統を通じて供給される電力の消費を抑制させることができる。
 図3は、本実施の形態に係るヒートポンプ式暖房装置100の詳細な構成図である。図4A及び図4Bは、ヒートポンプ101の詳細構成を示す図である。
 図3に示されるヒートポンプ式暖房装置100は、ヒートポンプ101と、熱交換器102と、暖房装置104と、HP制御部103と、外気温度検出部105と、外気湿度検出部106と、熱交換器表面温度検出部107と、ヒータ108と、出湯温度検出部109と、流量検出部110と、入水温度検出部111とを備える。また、ヒートポンプ101及び熱交換器102を合わせて、ヒートポンプ部と呼ぶ。
 ヒートポンプ101は、空気熱源のヒートポンプであり、冷媒を圧縮して高温高圧の状態にする。より具体的には、ヒートポンプ101は、図4Aに示されるように、外気と低温低圧の液体冷媒との間で熱交換させて低温低圧の蒸気冷媒を生成する熱交換器(空気熱交換器)101a、低温低圧の蒸気冷媒を高温高圧の蒸気冷媒に圧縮するモーター駆動の圧縮機101b、及び低温高圧の蒸気冷媒の圧力を下げて低温低圧の液体冷媒を生成する膨張弁101c、蒸発器中の冷媒と外気との熱交換を促進させるファン(図示省略)等により構成されている。
 そして、圧縮機101bから出力された高温高圧の蒸気冷媒は、熱交換器102で水(蓄熱材)との間で熱交換し、低温高圧の液体冷媒として膨張弁101cに流入する。すなわち、ヒートポンプ101内の冷媒は、図4Aのヒートポンプサイクルを時計回りに循環する。ヒートポンプ101の冷媒は、例えば、R-410Aである。この冷媒の特性により、熱交換器102の水サイクル側の出口の最高温度は55℃となるので、設定暖房温度の上限値は55℃とする。
 熱交換器(水熱交換器)102は、ヒートポンプ101から出力される高温高圧の冷媒と、水が充填されている二次側の水サイクル(すなわち、熱交換器102と暖房装置104との間で循環する水)との間で熱交換を行う。また、暖房装置104から熱交換器102に至る流路上には、図3に示されるように、熱交換器102への水の入力量を調整する水ポンプが設置されている。
 暖房装置104は、家庭(住宅)内を暖めるための装置であり、例えば、放熱パネルを介して室内に熱エネルギーを放出するラジエータや床暖房、或いは熱交換器102で暖められた温風を出力する空調機等である。なお、暖房装置104の具体例はこれらに限定されず、ヒートポンプ101で生成された熱を、対象に放出する放熱部を有するあらゆる装置が該当する。
 外気温度検出部105は、外気温度を検出するものであり、具体的には、ヒートポンプ式暖房装置100が設置されている近傍の外気温度を検出する。外気湿度検出部106は、外気湿度を検出するものであり、具体的には、ヒートポンプ式暖房装置100が設置されている近傍の外気湿度を検出する。熱交換器表面温度検出部107は、熱交換器101aの表面温度を検出するものである。また、ヒートポンプ式暖房装置100は、ヒートポンプ101を循環する冷媒の温度を検出する冷媒温度検出部(図示省略)を備えてもよい。
 なお、上記の外気温度検出部105、外気湿度検出部106、熱交換器表面温度検出部107、及び冷媒温度検出部の具体的な構成は特に限定されないが、例えば、熱電対、測温抵抗体、サーミスタ、バイメタル式温度計等の温度を測定する一般的な構成を、測定する対象に応じて適宜採用すればよい。
 HP制御部103は、ヒートポンプ101の圧縮機101bと膨張弁101cとを制御することで、生熱量を制御する。まず、HP制御部103は、ヒートポンプ101を、暖房モード、除霜モード、又は出力抑制モードで動作させることができる。
 暖房モードとは、暖房装置104に放熱させるための熱を生成する運転モードであり、ヒートポンプ101内の冷媒を、図4Aのように循環させることによって実現できる。より具体的には、暖房モードが設定されたHP制御部103は、通常時(DR時間帯以外の時間帯)においては、例えば、ユーザによって設定された運転条件などに従って、ヒートポンプ101の動作を制御する。一方、DR時間帯においては、HP制御部103は、システム制御部8からの指示を優先し、この指示に従って、ヒートポンプ101の動作を制御する。
 一方、除霜モードとは、熱交換器101aの表面に生じる霜を除去する運転モードであり、ヒートポンプ101内の冷媒を、図4Bのように循環(図4Aと逆向きに循環)させることによって実現できる。すなわち、圧縮機101bで生成された高温高圧の蒸気冷媒を熱交換器101aに供給することによって、熱交換器101aの表面に生じる霜を溶かすことができる。
 なお、ヒートポンプ101を除霜モードで動作させる方法は、図4Bの例に限定されない。例えば、冷媒の循環方向は図4Aと同じにし、膨張弁101cでの膨張率を暖房モードの場合より小さくすることによっても、熱交換器101aに高圧の冷媒を供給することが可能となり、霜を溶かすことができる。
 さらに、出力抑制モードとは、DR時間帯におけるヒートポンプ101の運転モードであって、暖房モードより出力の小さい運転モードである。例えば、暖房モードのヒートポンプ101は定格電力(単位時間当たりに第1の熱量を生熱する)で動作し、出力抑制モードのヒートポンプ101は定格電力の半分以下の電力(単位時間当たりに第2の熱量を生成する)で動作する。
 また、HP制御部103は、外気温度検出部105で測定された外気温度と、熱交換器表面温度検出部107で測定された熱交換器表面温度とを用いて、暖房モードと除霜モードとの切り替えを判定する。本実施の形態に係るHP制御部103は、外気温度が5℃以下でかつ熱交換器表面温度が-10℃以下となった場合(第1の条件又は除霜条件)に、ヒートポンプ101の運転モードを暖房モードから除霜モードに切り替える。一方、HP制御部103は、熱交換器表面温度が10℃以上となった場合(第2の条件又は除霜完了条件)に、ヒートポンプ101の運転モードを除霜モードから暖房モードに切り替える。
 また、HP制御部103は、後述するシステム制御部8の中の事前除霜制御部9からの除霜指令通知を受信する。この除霜指令通知を受信した場合、HP制御部103は、システム制御部8の指令(すなわち、除霜指令通知の内容)にしたがい、ヒートポンプ101の運転モードを暖房モードから除霜モードに切り替える。
 また、HP制御部103は、現在の運転モードをシステム制御部8のデータ収集部81に通知する。通知するタイミングは特に限定されないが、例えば、運転モードが切り替わったタイミング、システム制御部8から要求されたタイミング、又は、予め定められたタイミング(毎日午前0時等)等であってもよい。
 また、HP制御部103は、図3に示される出湯温度検出部109で測定された熱交換器102から出力される湯の温度(出湯温度)と、入水温度検出部111で測定された熱交換器102に入力される水の温度(入水温度)との差分に、流量検出部110で測定された熱交換器102と暖房装置104との間の流路内の流量を乗算して、ヒートポンプ101の出力を計算し、システム制御部8に送信する。
 ヒータ108は、図3に示されるように、熱交換器102から暖房装置104に至る流路上に設置されて、熱交換器102から出力される湯をさらに加熱することができる。ヒータ108の具体的な構成は特に限定されないが、例えば、電熱線等を用いることができる。
 上記構成のヒートポンプ式暖房装置100は、例えば、熱交換器102から出力される湯の温度である出湯温度がユーザによって設定され、この出湯温度を実現するためにヒートポンプ101の運転条件が決定される。しかしながら、ヒートポンプ101は、起動してから生熱量が安定するまでにある程度の時間を必要とし、また大幅な設定変更にリアルタイムに追従するのが困難である。
 そこで、ヒータ108は、出湯温度検出部109で検出される出湯温度(計測出湯温度)がユーザの設定した温度(設定出湯温度)に満たさない場合に、熱交換器102から出力される湯の計測出湯温度が設定出湯温度に近づくように加熱する。
 また、ヒートポンプ101の運転モードが除霜モードの場合、ヒートポンプ101の回路が除霜用に切り替えられるので、出湯温度が低下し、室温も低下する。そこで、ユーザの快適性を損なわないように、ヒートポンプ101が除霜モードで動作する間、ヒータ108は、熱交換器102から出力される湯を加熱することができる。
 図5は、本実施の形態に係るヒートポンプ式暖房システムのシステム制御部8の詳細な構成図である。図5に示されるシステム制御部8は、データ収集部81及びDR通信部82を含む通信部80と、出力抑制運転制御部83と、事前除霜制御部9とを備える。
 なお、図2及び図5に示されるシステム制御部8は、ヒートポンプ式暖房装置100とは別体として構成されているが、本発明はこれに限定されない。すなわち、システム制御部8は、ヒートポンプ式暖房装置100と一体として構成されてもよい。この場合、システム制御部8は、ヒートポンプ式暖房装置100の中に設置され、HP制御部103の隣の位置に配置されていてもよい。
 データ収集部81は、外気温度検出部105、外気湿度検出部106、及び熱交換器表面温度検出部107等が検出した各種温度、第1及び第2の電力メーター6、7で計測された消費電力量等の各種情報、及びHP制御部103で計算されたヒートポンプ101の出力を収集する。そして、データ収集部81は、収集したデータを、後述する事前除霜制御部9の記憶部91に格納する。また、データ収集部81は、ヒートポンプ101の現在の運転モード通知を、HP制御部103から受信する。
 DR通信部82は、エネルギー供給業者4からDR信号を受信する。また、DR通信部82は、第2の電力系統を通じたヒートポンプ式暖房装置100への電力の供給を抑制または再開した旨をエネルギー供給業者4へと通知する。なお、DR通信部82は、電力線を通じてエネルギー供給業者4と通信(Power Line Communication:PLC)してもよいし、インターネット等の電力線とは異なる回線を通じてエネルギー供給業者4と通信してもよい。また、DR通信部82は、事前除霜制御部9にもDR信号を通知する。
 DR信号は、例えば、各家庭の電力の使用を抑制したいDR時間帯の開始時刻の前(例えば、0.5時間から12時間前)に、エネルギー供給業者4から送信される。この場合、DR信号には、DR時間帯の開始時刻及び終了時刻を特定するための情報が含まれる。本実施の形態では、「DR開始時刻:18時、DR終了時刻:20時」とする。
 「DR時間帯の開始時刻及び終了時刻を特定するための情報」の具体例は特に限定されないが、例えば、「DR開始時刻:18時、DR終了時刻:20時」のように、DR開始時刻及びDR終了時刻そのものであってもよいし、「DR開始時刻18時、DR時間:2時間」のように、DR開始時刻及びDR時間帯の長さを表す情報であってもよい。
 出力抑制運転制御部83は、DR時間帯とそれ以外の時間帯とで、HP制御部103の動作を切り替える。すなわち、出力抑制運転制御部83は、「DR時間帯以外」の時間帯においては、ユーザによって設定された出湯温度を実現するように、HP制御部103にヒートポンプ式暖房装置100の運転を制御させる。一方、出力抑制運転制御部83は、DR通信部82でDR信号が受信された場合に、DR時間帯におけるヒートポンプ式暖房装置100の運転条件を決定し、決定した運転条件で、HP制御部103にヒートポンプ式暖房装置100の運転を制御させる。この場合、HP制御部103よりもシステム制御部8(出力抑制運転制御部83)の指令が優先される。
 この運転条件は、例えば、熱交換器102から出力される湯の温度(出湯温度)の設定値とヒータ108の稼動状態とを含む。出力抑制運転制御部83は、例えば、DR時間帯以外の時間帯におけるヒートポンプ101の単位時間当たりの生熱量(第1の熱量)より小さな熱量(第2の熱量)をヒートポンプ101に生成させるように、DR時間帯におけるヒートポンプ101の出湯温度を決定する。
 具体的には、例えば、出力抑制運転制御部83は、熱交換器102からの出湯温度を第1の温度設定(例えば55℃)から、第1の温度よりも低い第2の温度設定(例えば41℃)に変更し、ヒートポンプ101での単位時間当たりの生熱量を第1の熱量から第2の熱量に減少させる。また、消費電力削減のためにヒータ108の起動を抑制(または禁止)する。ここでは、熱交換器102から出力される湯の量(出湯量)は一定としている。この運転条件の決定処理は、例えば、DR通信部82がエネルギー供給業者4からDR信号を受信したタイミングで実行されるが、これに限定されない。
 事前除霜制御部9は、DR通信部82で受信されたDR信号に含まれるDR開始時刻を参照し、将来の熱交換器表面温度を予測し、この予測結果を用いてDR開始時刻の前に除霜運転(以下「事前除霜」と表記する)を行う必要性を判定する。そして、事前除霜制御部9は、事前除霜が必要と判定した場合に、HP制御部103に除霜指令を通知する。事前除霜制御部9は、記憶部91と、HP出力予測部92と、除霜判定部93と、除霜指令部94とを備える。
 記憶部91は、事前除霜制御部9の動作に必要な各種情報を記憶する。例えば、データ収集部81で収集されたヒートポンプ101の出力の実績、及び後述する先のヒートポンプ101の出力を予測するための数式パラメータ、及び熱交換器表面温度予測テーブルなどを記憶する。記憶部91に記憶される各種情報の詳細は、後述する。
 HP出力予測部92は、例えば、インターネットで提供される外気温度の予報値と外気湿度の予報値とを含む気象データ、及び記憶部91に格納された過去の外気温度と過去のヒートポンプ101の出力の実績とを利用し、現時点からDR終了時刻までのヒートポンプ101の出力の予測値を算出する。
 除霜判定部93は、気象データ、及びHP出力予測部92で予測されたヒートポンプ101の出力の予測値を利用し、現時点からの熱交換器表面温度を単位時間毎に予測し、将来の各時刻で熱交換器表面温度が除霜条件(外気温が5℃以下、熱交換器表面温度が-10℃以下)を満足するか否かを判定する。
 そして、除霜条件を満足した将来の時刻がDR時間終了時刻よりも前であった場合、除霜判定部93は、事前除霜が必要と判定し、熱交換器表面温度の予測を終了する。または、将来の時刻がDR終了時刻に達しても除霜条件を満足しない場合、除霜判定部93は、事前除霜が不要と判定し、熱交換器表面温度の予測を終了する。
 除霜指令部94は、除霜判定部93により事前除霜が必要と判定された場合に、ヒートポンプ式暖房装置100のHP制御部103に、除霜指令通知を送信する。
 次に、図6~図9を参照して、本実施の形態に係るヒートポンプ式暖房システムの制御方法を説明する。
 図6は、本実施の形態に係るヒートポンプ式暖房システムの制御処理のフローチャートである。図7は、図6に示されるDR制御処理(図6のS601)のフローチャートである。図8は、図6に示されるHP制御処理(図6のS602)のフローチャートである。図9は、図7に示される事前除霜制御処理(図7のS704)のフローチャートである。
 まず、図6と図7とを説明する。図6に示されるように、ヒートポンプ制御処理は、DR制御処理(S601)とHP制御処理(S602)とを、周期的(例えば、1分毎)に実行する。最初に、システム制御部8は、DR制御処理を実行する(S601)。そして、DR制御処理が完了次第、HP制御部103は、HP制御処理を実行する(S602)。
 まず、図6に示されるDR制御処理(S601)の詳細は、図7に示される。システム制御部8は、まず現在時刻tを取得する(S701)。次に、システム制御部8は、エネルギー供給業者4から送信されるDR信号がDR通信部82で受信されているか否かを判定する(S702)。DR信号を受信していない場合(S702でNo)、システム制御部8は、DR制御処理を終了する。
 DR通信部82でDR信号が既に受信されている場合(S702でYes)、データ収集部81は、HP制御部103から送信された現在の運転モードを参照する(S703)。現在の運転モードが除霜モードの場合(S703でYes)、システム制御部8は、DR制御処理を終了する。
 一方、現在の運転モードが除霜モードでない場合(S703でNo)、システム制御部8は、後述する事前除霜制御処理を、事前除霜制御部9に実行させる(S704)。事前除霜制御処理では、将来の除霜運転が行われる時刻を予測し、DR開始時刻の前に除霜(事前除霜)が必要かを判定する。そして、事前除霜が必要と判断された場合、事前除霜制御部9は、HP制御部103へ除霜指令通知を送信する。事前除霜が必要でないと判断された場合、事前除霜は行われず(すなわち、除霜指令通知が送信されない)、ヒートポンプ101は、HP制御部103の指令により運転を継続する。
 事前除霜制御処理が終了すると、データ収集部81は、取得された現在時刻tがDR開始時刻tsを過ぎているか否かを判定する(S705)。現在時刻tがDR開始時刻tsを過ぎていない場合(S705でNo)、システム制御部8は、DR制御処理を終了する。一方、現在時刻tがDR開始時刻tsを過ぎている場合(S705でYes)、システム制御部8は、出力抑制運転制御部83にDR制御を実行させることにより、熱交換器102からの出湯温度を現在の55℃(第1の温度設定)から41℃(第2の温度設定)へ変更する(すなわち、運転モードを暖房モードから出力抑制モードに切り替える)信号をHP制御部103へ送信する(S706)。その後、システム制御部8は、DR制御の処理を終了する。
 次に、図6に示されるHP制御処理(S602)の詳細は、図8に示される。HP制御部103は、まず、ヒートポンプ101の現在の運転モードが除霜モードであるか否かを確認する(S801)。
 現在の運転モードが除霜モードでない場合(S801でNo)、ヒートポンプ101は既に暖房モードで運転(暖房運転)している状態である。この場合、HP制御部103は、システム制御部8の除霜指令部94から除霜指令通知を受信しているか否かを確認する(S802)。
 除霜指令通知を受信していない場合(S802でNo)、HP制御部103は、外気温度検出部105で測定された外気温度及び熱交換器表面温度検出部107で測定された熱交換器表面温度を参照し、現在の状態が除霜条件を満たしているか否かを判定する(S803)。なお、本実施の形態における除霜条件とは、例えば、外気温度が5℃以下かつ熱交換器表面温度が-10℃以下である。
 現在の状態が除霜条件を満たしている場合(S803でYes)、HP制御部103は、ヒートポンプ101の運転モードを除霜モードに設定し(S805)、ヒートポンプ101に除霜モードで運転を開始させる(S806)。一方、現在の状態が除霜条件を満たしていない場合(S803でNo)、HP制御部103は、ヒートポンプ101に引き続き暖房モードで運転させる(S804)。
 また、除霜指令通知を受信している場合(S802でYes)、HP制御部103は、ヒートポンプ101の運転モードを除霜モードに設定し(S805)、ヒートポンプ101に除霜モードで運転を開始させる(S806)。
 一方、現在の運転モードが除霜モードの場合(S801でYes)、ヒートポンプ101は既に除霜モードで運転(除霜運転)している状態である。この場合、HP制御部103は、熱交換器表面温度検出部107で測定された熱交換器表面温度を参照し、除霜完了条件を満たすか否かを判断する(S807)。本実施の形態における除霜完了条件は、例えば、熱交換器表面温度が10℃以上とする。
 そして、除霜完了条件を満たす場合(S807でYes)、HP制御部103は、ヒートポンプ101の運転モードを暖房モードに設定し(S808)、ヒートポンプ101に暖房モードでの運転を開始させる(S809)。一方、除霜完了条件を満たしていない場合(S807でNo)、HP制御部103は、ヒートポンプ101に引き続き除霜モードで運転させる(S810)。
 以上の処理で図6に示す処理が終了し、一定時間後に再度処理が開始される。
 次に、図9に示される事前除霜制御処理を説明する。前述の通り、システム制御部8は、図7のステップS704において、事前除霜制御部9に事前除霜制御処理を実行させる。
 まず、事前除霜制御部9は、事前除霜フラグの設定値を確認する(S901)。事前除霜フラグは、DR信号を受信してから現在までの間に事前除霜を行ったか否か(すなわち、ステップS906で除霜指令通知を発行したか否か)を示すフラグである。より具体的には、事前除霜フラグには、既に事前除霜が行われた場合に“ON”が設定され、未だ事前除霜が行われていない場合に“OFF”が設定される。
 そして、事前除霜フラグに“ON”が設定されている場合(S901でNo)、事前除霜制御部9は、事前除霜制御処理を終了する。一方、事前除霜フラグに“OFF”が設定されている場合、事前除霜制御部9は、現在時刻tが事前除霜開始時刻(ts-td)を過ぎており、かつ現在時刻tがDR開始時刻tsより前か否かを判定する(S902)。
 この事前除霜開始時刻(ts-td)は、DR開始時刻tsから除霜の所要時間に相当する時間tdだけ遡った時刻とする。本実施の形態のヒートポンプ式暖房システムでは、除霜の所要時間を最長で15分としているため、余裕をみてDR開始時刻tsの20分前(すなわち、td=20分)を事前除霜開始時刻(ts-td)と設定する。
 また、本実施の形態では、DR開始時刻tsを18:00とするため、事前除霜開始時刻(ts-td)は17:40時に設定される。現在時刻tが事前除霜開始時刻(ts-td)を過ぎていない、または、現在時刻tがDR開始時刻tsを過ぎた場合(S902でNo)、事前除霜制御部9は、事前除霜制御処理を終了する。
 一方、現在時刻tが事前除霜開始時刻(ts-td)を過ぎてかつDR開始時刻tsより前の場合(S902でYes)、事前除霜制御部9は、DR時間帯を含む所定期間におけるヒートポンプ101の状態を予測(S903、S904)し、予測によって得られたヒートポンプ101の状態が除霜条件を満たすか否かを判断する(S905)。図10~図13Bを参照して、図9のステップS903~ステップS905の処理を詳細に説明する。まず、図10は、各構成要素間で送受信される情報の一覧を示す図である。
 HP出力予測部92は、図10に示されるように、ヒートポンプ101の出力を予測する時間帯における外気温度の予報値(外気温度、外気湿度)を気象データから取得する。そして、HP出力予測部92は、取得した外気温度の予報値に対応するヒートポンプ101の出力実績をHP出力予測テーブルから取得する。
 図11A及び図11Bは、HP出力予測テーブルの例を示す図である。図11A及び図11Bに示されるように、HP出力予測テーブルは、過去の外気温度を四捨五入した1℃刻みの外気温度と、その外気温度における過去のヒートポンプ101の出力実績の平均値との対応関係を保持しており、予め記憶部91に記憶されている。
 すなわち、図11Aに示されるHP出力予測テーブルの2レコード目は、外気温度が0℃の時の過去のヒートポンプ101の出力の平均値が6kWであることを示している。他のレコードについても同様である。
 なお、記憶部91には、DR時間帯以外の時間帯に取得したヒートポンプ101の出力実績の平均値(図11A)と、DR時間帯に取得したヒートポンプ101の出力実績の平均値(図11B)とを、別々に記憶している。すなわち、DR時間帯はヒートポンプ101の出力が抑制されるので、図11Bにおけるヒートポンプ101の出力実績の平均値は、図11Aの同一の外気温度に対応付けられた出力実績の平均値より小さくなっている。
 そして、HP出力予測部92は、ヒートポンプ101の出力を予測しようとしている将来の時刻における外気温度の予報値と同じ外気温度に対応付けられた過去のヒートポンプ101の出力実績の平均値をHP出力予測テーブルから抽出する。そして、HP出力予測部92は、上記の方法により、ヒートポンプ101の出力実績の平均値を、DR時間帯を含む所定期間(本実施の形態では、事前除霜開始時刻(ts-td)からDR終了時刻tfの期間)内の単位時間(例えば、1分)毎に抽出し、ヒートポンプ101の出力の予測値(図10では「HP出力予測値」と表記)として除霜判定部93に出力する(図9のS903)。
 次に、除霜判定部93は、図10に示されるように、DR時間帯を含む所定期間のヒートポンプ101の出力の予測値をHP出力予測部92から取得し、熱交換器表面温度検出部107から現在の熱交換器101aの表面温度を取得し、時刻T(t≦T≦tf)における外気温度の予報値及び外気湿度の予報値を気象データから取得する。なお、時刻Tの初期値は現在時刻tである。
 そして、除霜判定部93は、取得した各種データと図12Aに示される熱交換器表面温度予測テーブルとに基づいて、図12Bに示されるように、時刻T+1(例えば、時刻Tの1分後)における熱交換器101aの表面温度を予測する。
 図12A及び図12Bを参照して、除霜判定部93で実行される熱交換器表面温度の予測を説明する。図12Aは、事前に記憶部91に記憶されている熱交換器表面温度予測テーブルである。熱交換器表面温度予測テーブルは、時刻Tにおける熱交換器表面温度の状態で、所定のHP出力と、外気温度と、外気湿度とで時刻(T+1)まで運転した場合における熱交換器表面温度の変化量を計測したテーブルである。
 より具体的には、図12Aに示される熱交換器表面温度予測テーブルには、時刻(T+1)におけるHP出力値と、時刻(T+1)における外気温度と、時刻(T+1)における外気湿度と、時刻Tにおける熱交換器表面温度と、時刻Tから時刻(T+1)までの熱交換器表面温度の変化量とが、対応付けて保持されている。
 熱交換器表面温度を計算しようとしている将来の時刻を(T+1)とすると、除霜判定部93は、時刻(T+1)における外気温度及び外気湿度の予報値と、時刻(T+1)におけるHP出力の予測値と、時刻Tにおける熱交換器表面温度とに対応する熱交換器表面温度の変化量を、熱交換器表面温度予測テーブルから読み出す。そして、除霜判定部93は、時刻Tにおける熱交換器表面温度と、読み出した熱交換器表面温度の変化量とを加算することにより、時刻(T+1)における熱交換器表面温度を算出(予測)する(図9のS904)。
 なお、熱交換器表面温度テーブルに取得した値と同一の値がない場合は、近傍値から線形補完し、時刻(T+1)における熱交換器表面温度の予測値を算出する。この処理を、除霜条件を満たすか(図9のS905)、又は時刻Tが時刻tfに到達(図9のS908、S909)するまで単位時間(例えば、1分)毎に行う。その結果、図12Bに示すように、時刻(t+1)の熱交換器表面温度の予測値は、時刻tの熱交換器表面温度を元に算出され、以下、図9のステップS904が呼び出される度に、1分先の熱交換器表面温度の予測値が算出される。
 そして、除霜判定部93は、ステップS904で熱交換器表面温度が予測されるたびに、除霜条件が満足されるかを判定する(S905)。本実施の形態に係る除霜判定部93は、時刻Tにおける外気温度が5℃以下で、かつ時刻Tにおける熱交換器表面温度が-10℃以下となった場合に、除霜条件を満足すると判定する(S905でYes)。一方、上記のいずれかを満たさない場合、除霜判定部93は、除霜条件を満足しないと判断する(S905でNo)。
 図13Aに除霜条件を満足する場合の予測結果の一例を、図13Bに除霜条件を満足しない場合の予測結果の一例を示す。図13A及び図13Bを参照すると、事前除霜開始時刻である17時40分から先(未来)に向かって、外気温度及び熱交換器表面温度が図示されている。そして、図13Aの例では、DR終了時刻tfより前(19時30分)で除霜条件を満たしている(図9のS905でYes)ので、それ以降の予測はスキップされる。一方、図13Bの例では、除霜条件を満たさないので、DR終了時刻tfまでの熱交換器表面温度が予測される。
 すなわち、除霜条件が満足されなかった場合(S905でNo)、除霜判定部93は、時刻Tを1分後の時刻(T+1)とする(S908)。次に、除霜判定部93は、新たな時刻TがDR終了時刻tfを過ぎているかを判定する(S909)。新たな時刻TがDR終了時刻tfを過ぎていた場合(S909でYes)、除霜判定部93は、事前除霜制御処理を終了する。
 この場合、除霜指令通知(S906)が実行されていないため、図8のステップS802~S806で事前除霜処理が実施されない。一方、新たな時刻TがDR終了時刻tfを過ぎていない場合(S909でNo)、除霜判定部93は、新たな時刻Tでの熱交換器表面温度を予測する(S904)。
 また、DR終了時刻までに除霜条件を満足した場合(S905でYes)、除霜指令部94は、事前除霜が必要と判断し、除霜指令通知をHP制御部103に送信し(S906)、事前除霜フラグに“ON”を設定して(S907)、事前除霜の処理を終了する。
 上記のように、除霜判定部93は、将来の1分毎の各時刻における熱交換器表面温度の予測を繰り返しながら、各時刻で除霜条件を満足するかどうかを判定する。そして、除霜判定部93は、DR終了時刻tfまでに除霜条件を満足すると判定したら、事前除霜が必要と判定して除霜指令通知をHP制御部103に送信し、事前除霜制御処理を終了する。または、予測時刻TがDR終了時刻tfに達しても除霜条件を満足しない場合、除霜判定部93は、事前除霜が不要と判定し、事前除霜制御の処理を終了する。
 図14を参照して、本実施の形態の効果を説明する。図14の(a)は、本実施の形態の事前除霜制御処理を実行せず、DR時間帯に除霜運転した場合の第2の電力メーター7によって計測される消費電力(ヒートポンプ式暖房装置100の消費電力)の一例である。図14の(b)は、DR時間帯に除霜条件を満たすと判断され、事前除霜を行う場合の第2の電力メーター7によって計測される消費電力の一例である。
 図14の(a)及び(b)に示されるように、DR時間帯以外の時間帯(すなわち、出湯温度設定が高い時間帯)において、暖房モードで動作するヒートポンプ式暖房装置100の消費電力(除霜時は除く)は、4kWとする。また、DR時間帯(すなわち、出湯温度設定が低い時間帯)において、暖房モードで動作するヒートポンプ式暖房装置100の消費電力(除霜時は除く)は、2kWとする。
 次に、図14の(a)のDR時間帯において、除霜モードで動作するヒートポンプ式暖房装置100の消費電力は、ヒータ108の起動が抑制されているため、ヒートポンプ101で消費する3kWのみとする。さらに、図14の(b)のDR時間帯の前において、除霜モードで動作するヒートポンプ式暖房装置100の消費電力は、ヒータ108の起動が抑制されていないため、ヒータ108で消費する2kWとヒートポンプ101で消費する3kWとを加算した5kWとする。また、図14(a)及び(b)のどちらの場合でも、除霜にかかる時間は15分とする。
 まず、電力料金に関する定量的な効果を計算する。例えば、図14の(c)に示されるように、18:00から20:00の間の電力料金が1kWあたり50円、それ以外の時間の電力料金を1kWあたり10円とする。
 17:00から21:00まで電力料金を計算するとすれば、図14の(a)の電力料金(図14の(c)で破線で示される)は、17:00~18:00において40円、18:00~20:00において212.5円、20:00~21:00において40円となり、合計で292.5円である。一方、図14の(b)の電力料金(図14の(c)実線で示される)は、17:00~18:00において42.5円、18:00~20:00において200円、20:00~21:00において40円となり、合計で282.5円である。つまり、図14の(a)のようにDR時間帯に除霜する場合と、図14の(b)のようにDR開始時刻までに事前除霜する場合との電力料金の差分は、10円となる。
 図14の(c)を時間帯毎に詳細に検討すると、図14の(b)のように事前除霜を行う場合、事前除霜の期間に、除霜モードで動作するヒートポンプ101の消費電力とヒータ108の消費電力とが必要となるので、DR開始時刻までの料金が、図14の(a)のようにDR時間帯に除霜を行う場合の料金よりも増加する。しかし、DR時間帯以外の比較的安価な電力料金を用いて除霜運転が行われるため、増加分(図14(c)の実線の傾き)は小さい。
 一方、図14の(a)のようにDR時間帯に除霜を行う場合は、高価な電力料金のDR時間帯に除霜運転が行われるため、除霜に伴う電力料金が、図14の(b)のように事前除霜を行う場合の消費電力を上回る。このように、DR時間帯に除霜条件を満たすと判断された場合に、DR時間帯の前に除霜運転を行うことで、電力料金を節約できる。
 次に、図14の(d)を参照して、快適性に関する効果を説明する。図14の(d)に示されるように、図14の(b)のように事前除霜を行う場合(図14の(d)の実線で示される)は、DR開始時刻の前にヒートポンプ101の運転モードが除霜モードに切り替えられ、ヒートポンプ101から暖房装置104に一時的に熱が供給されないので、室温が徐々に低下する。しかしながら、その期間はヒータ108が使われているため、室温低下率(図14(d)の実線の傾き)は比較的小さい。
 一方、図14の(a)のようにDR時間帯に除霜運転を行う場合は、ヒートポンプ101の運転モードがDR時間帯に除霜モードに切り替えられて、ヒートポンプ101から暖房装置104に熱が供給されなくなる。ここで、HP制御部103は、DR時間帯におけるヒータ108の使用を抑制(禁止)しているので、室温低下率が事前除霜の場合より大きい。その結果、快適性に大きく影響する室温の最低値が、図14の(b)のように事前除霜を行う場合と比べて低くなる。このように、DR時間帯に除霜条件を満たすと判断された場合に、DR時間帯の前に除霜運転を行うことで、快適性の低下を改善することが出来る。
 また、電力負荷がピークとなる時間帯をDR時間帯に設定する場合、系統の安定化のために可能な限り電力を削減することが望ましく、無駄な電力を消費することは望ましくない。すなわち、図14の(a)のDR時間帯の除霜運転の際に消費される電力は、熱交換器101aに付着した霜を溶かすために使用され、室内への暖房に寄与しない無駄な電力と言える。
 そこで、図14の(b)のように事前除霜を行うと、DR時間帯にヒートポンプ101で消費される電力は、全て暖房に使用される。このように、DR時間帯に除霜条件を満たすと判断された場合に、DR時間帯の前に除霜運転を行うことで、電力を有効に消費し、系統安定化にも寄与することが出来る。
 このように、本実施の形態に係るヒートポンプ式暖房システムの制御方法によれば、ピーク時間帯に除霜条件を満たすと判断した場合に、ピーク時間帯の前に除霜運転を行うことで、ピーク時間帯に除霜運転が行われるのを回避することができる。その結果、ピーク時間帯の電力ピークカットによる系統電力の安定化、およびユーザの電気代削減と快適性とに寄与するシステムの制御方法として有用である。すなわち、DR時間帯を電力のピーク時間帯に設定しておくことにより、より系統安定化を実現できる。
 なお、本実施の形態では、ヒートポンプ101の運転モードを切り替える条件として、外気温度及び熱交換器表面温度の瞬時の値を利用したが、本発明はこれに限定されない。例えば、連続値や移動平均時などを利用し、「熱交換器表面温度が-10℃以下の状態が所定時間(例えば、3分間)継続した」のような条件でもよい。
 また、熱交換器表面温度の変わりに、配管を流れる冷媒の温度を利用してもよい。さらに、熱交換器表面温度や冷媒温度などの組合せで、着霜量を推定してもよい。すなわち、上記の例では、所定期間における空気熱交換器の表面の温度を単位時間毎に予測し、予測によって得られた空気熱交換器の表面の温度が閾値以下となった場合に、除霜条件を満たすと判断していた。これに対して、所定期間における冷媒の温度を単位時間毎に予測し、予測によって得られた冷媒の温度が閾値以下となった場合に、除霜条件を満たすと判断してもよい。さらには、撮像装置(カメラ)等を用いて着霜量を直接測定してもよい。
 また、本実施の形態に係る除霜判定部93は、熱交換器表面温度予測テーブルを利用し、熱交換器表面温度の予測値を算出するが、本発明はこれに限定されない。例えば、外気温度と外気湿度とヒートポンプ出力との関係性のある式やモデルなどを利用してもよい。同様に、HP出力予測部92は、ヒートポンプ出力を予測するために、HP出力予測テーブルを作成するほか、関係性のある式やモデルなどを作成してもよい。
 また、事前除霜制御部9の行う事前除霜制御処理のタイミング(事前除霜開始時刻)は、DR開始時刻の直前に限らず、DR信号受信時刻の直後でもよい。
 (実施の形態2)
 次に、実施の形態2に係るヒートポンプ式暖房システムの制御方法を説明する。
 実施の形態1では、前述の通り、DR終了時刻までに除霜条件を満たすと判断した場合に、図14の(b)に示すようにDR開始時刻の前に除霜運転を行う。これにより、図14の(a)に示すようなDR時間帯に除霜運転が行われるのを回避することができる。
 しかし、実施の形態1では、DR終了時刻より後に除霜条件を満たす場合には事前に除霜運転を行わないため、着霜によるヒートポンプ101の効率が低下し、効率の低い状態での運転がDR時間帯に発生し、DR時間帯の消費電力が増加する課題がある。また、DR開始時刻の前に必ず除霜運転を行うとすると、DR終了時刻より後で外気温度が高くなり、日射や大気熱により霜が溶けるような場合に、事前除霜で消費した電力が無駄となる。
 また、実施の形態1では、DR終了時刻の直後に除霜運転が行われる場合もある。DR終了時刻の直後には、DR時間帯に低下した室温を、出湯温度設定を元に戻して回復させようとする処理が実行される。そのため、この期間に除霜運転が行われると、除霜運転に電力が消費されるため、室温が低い状態が長くなり、快適性が損なわれるという課題がある。
 (解決方法)
 そこで、本実施の形態では、実施の形態1での除霜条件を満たすか否かをDR終了時刻まで判断しているのに対して、さらに先(将来:tf2)まで予測を行う。なお、ヒートポンプ式暖房システムの制御方法の流れは図6と共通するため、実施の形態1との共通点の詳しい説明は省略し、相違点を中心に説明する。すなわち、実施の形態1では、除霜条件を満たすか否かを判断する「所定期間の終期」を、DR終了時刻tfとしている。これに対して、本実施の形態では、「所定期間の終期」を実施の形態1より長く設定(tf2)している。具体的には、「所定期間の終期」を、DR終了時刻後で、且つ暖房装置104が設置された部屋の室温がDR信号を受信した時点の水準に回復する時刻に設定する場合、また翌朝の任意の時刻(例えば、10時)に設定する場合がある。
 (構成・動作)
 本実施の形態は、図2~図5に示されるヒートポンプ式暖房装置100を前提としている点で、実施の形態1と共通する。
 次に、本実施の形態に係るヒートポンプ式暖房装置100の動作について説明する。本実施の形態では、「所定期間の終期(tf2)」を翌朝の午前10時としている。本実施の形態では、図6に示される実施の形態1と同様に、周期的にHP制御処理とDR制御処理とが実行される。そして、HP制御処理は、図8に示される実施の形態1と同じ処理を行う。次に、本実施の形態でのDR制御処理は、図15に示される。
 本実施の形態の事前除霜制御処理において、現在時刻tが事前除霜開始時刻(ts-td)を過ぎて、かつDR開始時刻tsより前の場合(S1502でYes)、HP出力予測部92は、現在(事前除霜開始時刻)からDR時間帯終了後の翌日の午前10時(tf2)までのヒートポンプ101の出力を予測する(S1503)。
 本実施の形態に係る除霜判定部93は、外気温度が上昇し始める翌10時までに除霜条件を満たさないと判断した場合に、霜が日射や大気熱により霜が自然に溶けると判断する。また、本実施の形態では、DR終了時刻の後に室温がDR信号受信時の水準に回復するために2時間かかると事前に設定されているものとする。
 次に、除霜判定部93は、熱交換表面温度の予測(S1504)を行い、除霜条件が満足されなかった場合(S1505でNo)、時刻Tを1分後の時刻(T+1)とする(S1508)。次に、新たな時刻TがDR終了後の翌10時(tf2)を過ぎていない場合(S1509でNo)、除霜判定部93は、新たな時刻Tでの熱交換器表面温度を予測する(S1504)。その他の処理については、実施の形態1の図9と同様であるので、再度の説明は省略する。
 (効果)
 次に、図16を参照して、本実施の形態のヒートポンプ式暖房システムの制御方法の効果を説明する。まず、図16の(a)は、DR終了時刻tfと翌10時(tf2)との間に除霜条件を満たす場合において、実施の形態1に係るヒートポンプ式暖房システムの制御方法で除霜運転した場合の第2の電力メーター7によって計測される消費電力の一例である。
 実施の形態1に係るヒートポンプ式暖房システムの制御方法では、DR終了時刻tfまでの間に除霜条件を満たすか否かを判断する。図16の(a)の場合は、DR終了時刻tfまでしか除霜条件を満たすかどうかの判断をしないため、事前除霜が行われない。しかしながら、図16の(a)の場合は、DR終了時刻後に除霜運転が実施されている。すなわち、図16の(a)の場合は、熱交換器101aにDR時間帯の前からある程度の霜が付着しており、霜が着いたままの状態でヒートポンプ101を運転することになる。その結果、DR時間帯のヒートポンプ101の消費電力が増加する。その後、実施の形態1に係るヒートポンプ式暖房システムの制御方法では、翌日午前10時までの間に前述の除霜条件を満足してから除霜運転を行う。
 次に、図16の(b)は、DR終了時刻tfと翌日午前10時(tf2)との間に除霜条件を満たす場合において、本実施の形態に係るヒートポンプ式暖房システムの制御方法で除霜運転した場合の第2の電力メーター7によって計測される消費電力の一例である。
 本実施の形態に係るヒートポンプ式暖房システムの制御方法では、翌日午前10時までに除霜条件を満たすと判断した場合に、DR開始時刻tsの前に除霜運転が行われる。すなわち、本実施の形態に係るヒートポンプ式暖房システムの制御方法では、熱交換器101aにDR時間帯の前からある程度の霜が付着していても、事前除霜を行うため、DR時間帯には霜がない状態でヒートポンプ101を運転することができる。その結果、DR時間帯におけるヒートポンプ101の消費電力を減少させることができる。
 また、図16の(c)は、翌10時までに除霜条件を満たさないと判断した場合において、本実施の形態に係るヒートポンプ式暖房装置の制御方法で除霜した場合の第2の電力メーター7によって計測される消費電力の一例である。
 図16の(c)に示されるように、外気温度が上昇し始める翌10時までに除霜条件を満たさないと判断した場合には、日射や大気熱により霜が自然に溶けると判断し、事前除霜は行われない。例えば、必ずDR開始時刻の前に除霜運転を行うとすると、いずれ自然に溶ける霜を電力によって溶かすことになるので、無駄な電力を使用することになる。実施の形態2に係るヒートポンプ式暖房システムの制御方法では、これを回避することで、無駄な電力の使用を抑えることができる。
 また、図16の(d)は、前述の図16の(a)及び(b)のように運転を行った場合の室温の変化を比較している図である。図16の(a)に示す実施の形態1のように、DR終了時刻tfから室温が回復するまでの間(室温回復期間(2時間))に除霜運転が行われた場合、室温の回復中にヒートポンプ101から暖房装置104への熱の供給が中断される。このため、DR終了時刻tfの後の除霜運転中にさらに室温が低下し、除霜運転終了後に再度室温を回復させることになり、快適性を損なう(図16の(d)の破線)。また、図16の(b)に示す実施の形態2のように、室温回復期間に除霜条件を満たすと判断した場合に事前除霜を行うことにより、室温の回復が中断されることなく、快適性を損なうことがない(図16の(d)の実線)。
 このように、本実施の形態に係るヒートポンプ式暖房システムの制御方法によれば、ピーク時間帯(すなわち、DR時間帯)はもちろんのこと、ピーク時間帯の後に除霜条件を満たすと判断した場合にも、ピーク時間帯の前に除霜運転を行う。これにより、ピーク時間帯に除霜運転をすることを回避することができるだけでなく、ピーク時間帯におけるヒートポンプ101の運転効率を改善できる。
 また、日射や大気熱で霜が自然に溶ける(すなわち、除霜運転が必要でない)と判断した場合には、事前除霜を行わないことで、無駄な電力の使用を回避することができる。
 また、ピーク時間帯の後の室温回復期間の後まで、除霜条件を満たすかどうかを判断しているため、室温回復期間(ここでは2時間)に除霜運転が行われることがなく、快適性を損なうことがない。すなわち、本実施の形態に係るヒートポンプ式暖房システムの制御方法は、ピークカットによる系統電力の安定化、およびユーザの電気代削減と快適性とに寄与する運転方法として有用である。
 なお、本実施の形態では、事前除霜開始時刻(ts-td)から外気温度が上昇し始める翌10時までの熱交換器表面温度の予測を行い、いずれ除霜条件を満たすか否かを判断しているが、本発明はこれに限定されない。例えば、予測の終了時刻を、DR終了時刻後に室温が回復した時点(22時)まで、翌日のDR開始時刻(翌日18時)まで、又は24時間先まで等としてもよい。また、DR終了時刻の後に室温が回復する時間を2時間としているが、例えば、過去の室温の回復にかかった時間を計測し、最も回復にかかったその時間(たとえば4時間)を用い、DR終了時刻から4時間後まで熱交換器表面温度を予測することとしてもよい。
 (実施の形態3)
 次に、実施の形態3に係るヒートポンプ式暖房システムの制御方法を説明する。
 実施の形態1では、前述の通り、DR終了時刻までに除霜が行われると予測した場合に、図14の(b)に示すようにDR開始時刻の20分前に除霜運転を開始することで、DR時間帯に除霜運転が行われるのを回避している。
 ここで、除霜運転中には、ヒートポンプ101から暖房装置104へ熱が供給されないので、室温が低下する。また、運転モードを除霜モードから暖房モードに切り替えた直後は、熱交換器102からの出湯温度が設定値より低くなっている。そのため、図14の(b)の例のように、DR開始時刻の直前に除霜運転が開始されると、除霜運転が終わってからDR開始時刻までの時間が短く、室温及び熱交換器102からの出湯温度が回復しないままDR開始時刻を迎える。このように、実施の形態1に係るヒートポンプ式暖房システムの制御方法では、DR時間帯における室温が低くなり、快適性が損なわれる。
 (解決方法)
 そこで、本実施の形態では、実施の形態1の事前除霜開始時刻よりさらに前に、除霜運転を開始する制御方法の例を説明する。なお、本実施の形態に係るヒートポンプ式暖房システムの制御方法の流れは図6と共通するため、実施の形態1との共通点の詳しい説明は省略し、相違点を中心に説明する。
 すなわち、実施の形態1では、DR開始時刻(18時)の直前にヒートポンプの状態が除霜完了条件を満たす(すなわち、除霜運転が終了する)ようなタイミング(17時40分)で、ヒートポンプ101の運転モードを除霜モードに切り替えている。これに対して、本実施の形態では、事前除霜を行い、且つ部屋の室温を事前除霜前の水準に回復させた状態でDR開始時刻を迎えるように制御する。より具体的には、事前除霜の開始タイミング(ヒートポンプ101の運転モードを除霜モードに切り替えるタイミング)を、DR開始時刻から除霜運転に必要な時間及び室温を回復させる時間遡った時刻に設定する。
 (構成・動作)
 本実施の形態は、図2~図5に示されるヒートポンプ式暖房装置100を前提としている点で、実施の形態1と共通する。
 次に、本実施の形態に係るヒートポンプ式暖房装置100の動作について説明する。本実施の形態では、図6に示される実施の形態1と同様に、周期的にHP制御処理とDR制御処理とが実行され、HP制御処理は図8に示される実施の形態1と同じ処理を行う。次に、本実施の形態でのDR制御処理は、図17に示される。
 本実施の形態の事前除霜制御処理は、DR開始時刻である18:00(ts)を基準として、除霜にかかる時間である20分(td)と、室温及び熱交換器102からの出湯温度が回復するまでの時間である40分(tr)とを加算した時間(60分)だけ遡った時刻である17:00を、事前除霜開始時刻(ts-td-tr)としている。なお、本実施の形態では、室温及び熱交換器102からの出湯温度が回復するまでの時間を40分と事前に設定しているが、この時間は住宅やヒートポンプ101の性能によって変動する。
 現在時刻tが事前除霜開始時刻(ts-td-tr)を過ぎて、かつDR開始時刻tsより前の場合(S1702でYes)、HP出力予測部92は、事前除霜開始時刻からDR終了時刻tfまでのヒートポンプ101の出力を予測する(S1703)。その他の処理については、実施の形態1の図9と同様であるので、再度の説明は省略する。
 (効果)
 次に、図18を参照して、上記本実施の形態のヒートポンプ式暖房システムの制御方法の効果を説明する。図18の(a)は、DR時間帯に除霜条件を満たすと判断された場合において、実施の形態1に係るヒートポンプ式暖房システムの制御方法で除霜運転した場合の第2の電力メーター7によって計測される消費電力の一例である。実施の形態1に係るヒートポンプ式暖房システムの制御方法では、DR開始時刻tsの直前に除霜運転が終了する。
 また、図18の(b)は、図18の(b)と同じくDR時間帯に除霜条件を満たすと判断された場合において、本実施の形態に係るヒートポンプ式暖房システムの制御方法で除霜運転した場合の第2の電力メーター7によって計測される消費電力の一例である。本実施の形態に係るヒートポンプ式暖房システムの制御方法では、DR開始時刻tsから、除霜に必要な時間tdと、室温及び熱交換器102からの出湯温度が回復する時間trとだけ遡った事前除霜開始時刻(ts-td-tr)に、事前除霜が開始されることになる。
 また、図18の(c)は、前述の図18の(a)及び(b)の運転を行った場合の室温の変化を比較している図である。図18の(a)に示す実施の形態1では、DR開始時刻tsの直前に除霜運転を行っているため、室温が低いままDR開始時刻tsになっている(図18(c)の破線)。一方、図18の(b)に示す本実施の形態では、除霜運転後からDR開始時刻tsまでに、室温及び熱交換器102からの出湯温度を回復させるのに十分な時間が確保されているので、図18の(a)の場合と比較して、DR時間帯の室温を高く維持できる(図18(c)の実線)。
 また、図18の(b)に示す本実施の形態では、DR開始時刻tsの時点で室温及び熱交換器102からの出湯温度を除霜前の水準に回復させるのに必要な最小限の時間(上記の例では40分)だけ前倒して除霜運転を開始している。このため、除霜運転の終了からDR開始時刻tsまでの時間が不必要に長くなることがないので、DR開始時刻tsにおける着霜量を低く抑えることができる。
 例えば、DR信号を16:00に受信し、16:00から除霜運転を行った場合には、17:00には室温及び熱交換器102からの出湯温度が除霜運転前の水準に回復するが、除霜運転の終了後からDR開始時刻18:00までの時間が長くなる。よって、DR開始時刻tsにおける着霜量が本実施の形態と比較して多くなる。そのため、DR時間帯におけるヒートポンプ101の運転効率が低くなり、消費電力が多くなる。そこで、本実施の形態ように、室温及び熱交換器102からの出湯温度がDR開始時刻直前に回復し終わるタイミングで事前除霜を行うことで、DR時間帯におけるヒートポンプ101の消費電力を低減できる。
 このように、本実施の形態に係るヒートポンプ式暖房システムの制御方法によれば、ピーク時間帯に除霜条件を満たすと判断した場合、室温及び熱交換器102からの出湯温度がピーク時間帯の直前に回復するようなタイミングで除霜運転を行うことで、ピーク時間帯に除霜運転をすることを回避できる。また、快適性を損なわず、さらにピーク時間帯のヒートポンプ101の運転効率を改善できる。その結果、ピークカットによる系統電力の安定化、およびユーザの電気代削減と快適性とに寄与する運転方法として有用である。
 なお、本実施の形態では、室温及び熱交換器102からの出湯温度が回復するまでの時間を40分と事前に設定しているが、例えば、過去の外気温に対するヒートポンプ101の運転による室温の回復度合い等を学習して、最適な回復時間を予測するなどの方法でもよい。
 なお、各実施の形態では、ヒートポンプ式温水暖房システムについて記載したが、これに限定されず、ヒートポンプ式のエアコン(空調機)であってもよい。
 なお、本発明を上記実施の形態に基づいて説明してきたが、本発明は、上記の実施の形態に限定されないのはもちろんである。以下のような場合も本発明に含まれる。
 (1)上記の各装置は、具体的には、マイクロプロセッサ、ROM、RAM、ハードディスクユニット、ディスプレイユニット、キーボード、マウスなどから構成されるコンピュータシステムで実現され得る。RAMまたはハードディスクユニットには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、各装置は、その機能を達成する。ここでコンピュータプログラムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが複数個組み合わされて構成されたものである。
 (2)上記の各装置を構成する構成要素の一部または全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されているとしてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。ROMには、コンピュータプログラムが記憶されている。マイクロプロセッサが、ROMからRAMにコンピュータプログラムをロードし、ロードしたコンピュータプログラムにしたがって演算等の動作することにより、システムLSIは、その機能を達成する。
 (3)上記の各装置を構成する構成要素の一部または全部は、各装置に脱着可能なICカードまたは単体のモジュールから構成されてもよい。ICカードまたはモジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。ICカードまたはモジュールには、上記の超多機能LSIが含まれてもよい。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、ICカードまたはモジュールは、その機能を達成する。このICカードまたはこのモジュールは、耐タンパ性を有してもよい。
 (4)本発明は、上記に示す方法で実現されてもよい。また、これらの方法をコンピュータにより実現するコンピュータプログラムで実現してもよいし、コンピュータプログラムからなるデジタル信号で実現してもよい。
 また、本発明は、コンピュータプログラムまたはデジタル信号をコンピュータ読み取り可能な記録媒体、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray Disc)、半導体メモリなどに記録したもので実現してもよい。また、これらの記録媒体に記録されているデジタル信号で実現してもよい。
 また、本発明は、コンピュータプログラムまたはデジタル信号を、電気通信回線、無線または有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送してもよい。
 また、本発明は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、メモリは、コンピュータプログラムを記憶しており、マイクロプロセッサは、コンピュータプログラムにしたがって動作してもよい。
 また、プログラムまたはデジタル信号を記録媒体に記録して移送することにより、またはプログラムまたはデジタル信号をネットワーク等を経由して移送することにより、独立した他のコンピュータシステムにより実施してもよい。
 (5)上記実施の形態及び上記変形例をそれぞれ組み合わせてもよい。
 以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。
 本発明に係るヒートポンプ式暖房システムの制御方法は、電力消費量が多くなるピーク時間帯に除霜運転をする必要がないため、ピークカットによる系統電力の安定化、およびユーザの電気代削減に寄与する運転方法として有用である。
 1 ヒートポンプ式暖房システム
 4 エネルギー供給業者
 5 電力負荷
 6 第1の電力メーター
 7 第2の電力メーター
 8 システム制御部
 9 事前除霜制御部
 80 通信部
 81 データ収集部
 82 DR通信部
 83 出力抑制運転制御部
 91 記憶部
 92 HP出力予測部
 93 除霜判定部
 94 除霜指令部
 100 ヒートポンプ式暖房装置
 101 ヒートポンプ
 101a,102 熱交換器
 101b 圧縮機
 101c 膨張弁
 103 HP制御部
 104 暖房装置
 105 外気温度検出部
 106 外気湿度検出部
 107 熱交換器表面温度検出部
 108 ヒータ
 109 出湯温度検出部
 110 流量検出部
 111 入水温度検出部

Claims (15)

  1.  電力供給元から電力の供給を受けて動作する暖房システムの制御方法であって、
     前記暖房システムは、前記電力供給元から供給される電力を用いて熱を生成するヒートポンプと、前記ヒートポンプで生成された熱を放熱する放熱部とを備え、
     前記ヒートポンプは、前記放熱部に放熱させるための熱を生成する暖房モード、又は当該ヒートポンプに生じる霜を除去する除霜モードで動作し、
     前記暖房システムの制御方法は、
     前記ヒートポンプの消費電力を抑制する出力抑制時間帯を示す出力抑制指示を、前記電力供給元から取得する取得ステップと、
     前記取得ステップで前記出力抑制指示が取得された場合に、前記出力抑制時間帯を含む所定期間における前記ヒートポンプの状態を予測し、予測によって得られた前記ヒートポンプの状態が、前記除霜モードへの切り替えが必要であることを示す第1の条件を満たすか否かを判断する事前除霜判断ステップと、
     前記事前除霜判断ステップでの判断結果に応じて、前記ヒートポンプの運転モードを制御する事前除霜ステップとを含み、
     前記事前除霜ステップでは、
     前記所定期間における前記ヒートポンプの状態が、前記第1の条件を満たすと前記判断ステップで判断された場合に、前記出力抑制時間帯の開始時刻より前に前記ヒートポンプを前記除霜モードに切り替え、
     前記所定期間における前記ヒートポンプの状態が、前記第1の条件を満たさないと前記判断ステップで判断された場合に、前記出力抑制時間帯の開始時刻より前に前記ヒートポンプを前記除霜モードに切り替えず、暖房モードで動作させる、
     暖房システムの制御方法。
  2.  前記事前除霜判断ステップは、前記出力抑制指示を取得した後、前記ヒートポンプが除霜モード運転していないときに、実施される、
     請求項1に記載の暖房システムの制御方法。
  3.  前記暖房システムの制御方法は、さらに、前記出力抑制時間帯における前記ヒートポンプの運転を制御する出力抑制運転制御ステップを含み、
     前記出力抑制運転制御ステップでは、前記ヒートポンプに、前記暖房モードより出力の小さい出力抑制モードで運転を行なわせ、且つ除霜モードで運転を行わせない、
     請求項1又は2に記載の暖房システムの制御方法。
  4.  前記出力抑制モードの前記ヒートポンプは、前記ヒートポンプの定格出力の半分以下の出力で動作する、
     請求項3に記載の暖房システムの制御方法。
  5.  前記ヒートポンプは、当該ヒートポンプの状態が、霜が除去されたことを示す第2の条件を満たした場合に、前記除霜モードから前記暖房モードに切り替え、
     前記事前除霜ステップでは、前記出力抑制時間帯の開始時刻より前に前記ヒートポンプの状態が前記第2の条件を満たすようなタイミングで、前記ヒートポンプを前記除霜モードに切り替える、
     請求項1~4のいずれか1項に記載の暖房システムの制御方法。
  6.  前記所定期間の終期は、前記出力抑制時間帯の終了時刻である
     請求項5に記載の暖房システムの制御方法。
  7.  該暖房システムの制御方法は、さらに、前記ヒートポンプの単位時間当たりの成熱量を、前記出力抑制時間帯の開始時刻に第1の熱量から前記第1の熱量より小さい第2の熱量に切り替え、前記出力抑制時間帯の終了時刻に前記第2の熱量から前記第1の熱量に切り替える出力抑制運転制御ステップを含み、
     前記所定期間の終期は、前記出力抑制時間帯の終了時刻後で、且つ前記放熱部が設置された部屋の室温が前記出力抑制指示を取得した時点の水準に回復する時刻である
     請求項1~4のいずれか1項に記載の暖房システムの制御方法。
  8.  前記所定期間の終期は、翌朝である、
     請求項7に記載の暖房システムの制御方法。
  9.  前記ヒートポンプは、当該ヒートポンプの状態が、霜が除去されたことを示す第2の条件を満たした場合に、前記除霜モードから前記暖房モードに切り替え、
     前記事前除霜ステップでは、前記出力抑制時間帯の開始時刻より前に前記放熱部が設置された部屋の室温が前記除霜モードに切り替わる前の水準に回復するようなタイミングで、前記ヒートポンプを前記除霜モードに切り替える
     請求項1~4のいずれか1項に記載の暖房システムの制御方法。
  10.  電力供給元から電力の供給を受けて動作する暖房システムであって、
     前記暖房システムは、暖房装置と前記暖房装置を制御するシステム制御部とを備え、
     前記暖房装置は、
     前記電力供給元から供給される電力を用いて熱を生成するヒートポンプと、
     前記ヒートポンプで生成された熱を放熱する放熱部と、を備え、
     前記ヒートポンプは、前記放熱部に放熱させるための熱を生成する暖房モード、又は当該ヒートポンプに生じる霜を除去する除霜モードの動作切り替えができ、
     前記システム制御部は、
     前記ヒートポンプの消費電力を抑制する出力抑制時間帯を示す出力抑制指示を、前記電力供給元から取得する取得部と、
     前記取得部で前記出力抑制指示が取得された場合に、前記出力抑制時間帯を含む所定期間における前記ヒートポンプの状態を予測する予測部と、
     前記予測部の予測によって得られた前記ヒートポンプの状態が、前記除霜モードへの切り替えが必要であることを示す第1の条件を満たすか否かを判断する事前除霜判断部と、
     前記所定期間における前記ヒートポンプの状態が、前記第1の条件を満たすと前記判断部で判断された場合に、前記出力抑制時間帯の開始時刻より前に前記ヒートポンプを前記除霜モードに切り替える通知をする指令部とを備える
     暖房システム。
  11.  前記暖房装置は、さらに、前記ヒートポンプを制御するヒートポンプ制御部を有し、
     前記ヒートポンプ制御部は、前記指令部から前記通知を取得した場合に、前記出力抑制時間帯の開始時刻より前に前記ヒートポンプを前記除霜モードに切り替える、
     請求項10に記載の暖房システム。
  12.  前記所定期間における前記ヒートポンプの状態が、前記第1の条件を満たさないと前記事前除霜判断部で判断された場合に、前記ヒートポンプ制御部は、前記出力抑制時間帯の開始時刻より前に前記ヒートポンプを前記除霜モードに切り替えず、暖房モードで動作させる、
     請求項11に記載の暖房システム。
  13.  前記暖房装置は、さらに、熱交換器表面温度検出部を備える、
     請求項10~12のいずれか1項に記載の暖房システム。
  14.  前記ヒートポンプシステム制御部は、さらに、前記出力抑制時間帯において、前記暖房モードより出力の小さい出力抑制モードで前記ヒートポンプに運転を行なわせる出力抑制運転制御部を備える、
     請求項10~13のいずれか1項に記載の暖房システム。
  15.  電力供給元から電力の供給を受けて動作する暖房システムであって、
     前記暖房システムは、暖房装置を備え、
     前記暖房装置は、
     前記電力供給元から供給される電力を用いて熱を生成するヒートポンプと、
     前記ヒートポンプで生成された熱を放熱する放熱部と、
     前記ヒートポンプの前記放熱部に放熱させるための熱を生成する暖房モード、又は当該ヒートポンプに生じる霜を除去する除霜モードの動作切り替えするヒートポンプ制御部と、前記ヒートポンプ制御部を制御するシステム制御部と、を備え、
     前記システム制御部は、
     前記ヒートポンプの消費電力を抑制する出力抑制時間帯を示す出力抑制指示を、前記電力供給元から取得する取得部と、
     前記取得部で前記出力抑制指示が取得された場合に、前記出力抑制時間帯を含む所定期間における前記ヒートポンプの状態を予測する予測部と、
     前記予測部の予測によって得られた前記ヒートポンプの状態が、前記除霜モードへの切り替えが必要であることを示す第1の条件を満たすか否かを判断する事前除霜判断部と、
     前記所定期間における前記ヒートポンプの状態が、前記第1の条件を満たすと前記判断部で判断された場合に、前記出力抑制時間帯の開始時刻より前に前記ヒートポンプを前記除霜モードに切り替える通知をする指令部とを備える
     暖房システム。
PCT/JP2012/007591 2012-03-21 2012-11-27 暖房システムの制御方法及び暖房システム WO2013140479A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12864020.8A EP2829825B1 (en) 2012-03-21 2012-11-27 Method for controlling heating system, and heating system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012064185A JP5899484B2 (ja) 2012-03-21 2012-03-21 ヒートポンプ式暖房システムの制御方法及び暖房システム
JP2012-064185 2012-03-21

Publications (1)

Publication Number Publication Date
WO2013140479A1 true WO2013140479A1 (ja) 2013-09-26

Family

ID=49221975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007591 WO2013140479A1 (ja) 2012-03-21 2012-11-27 暖房システムの制御方法及び暖房システム

Country Status (3)

Country Link
EP (1) EP2829825B1 (ja)
JP (1) JP5899484B2 (ja)
WO (1) WO2013140479A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7278496B1 (ja) * 2022-05-18 2023-05-19 三菱電機株式会社 冷凍サイクル状態予測装置、冷凍サイクル制御装置、及び冷凍サイクル装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6229397B2 (ja) * 2013-09-20 2017-11-15 日産自動車株式会社 ハイブリッド車両の制御装置
EP3536048A1 (en) * 2016-11-02 2019-09-11 Cork Institute Of Technology System and method for scheduling energy consumption in a network
DE102017206418A1 (de) * 2017-04-13 2018-10-18 Siemens Aktiengesellschaft Wärmepumpe und Verfahren zum Betrieb einer Wärmepumpe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195650A (ja) * 2000-12-25 2002-07-10 Toshiba Electric Appliance Co Ltd 貯湯式給湯装置
JP2003302131A (ja) * 2002-04-08 2003-10-24 Sanyo Electric Co Ltd 空気調和装置および空気調和装置の制御方法
JP2004020097A (ja) * 2002-06-18 2004-01-22 Fuji Electric Holdings Co Ltd 冷凍空調統合蓄熱システム
JP2004156847A (ja) * 2002-11-07 2004-06-03 Matsushita Electric Ind Co Ltd 給湯装置
JP2008180473A (ja) * 2007-01-26 2008-08-07 Kenji Umetsu ハイブリッドエネルギー利用ヒートポンプ装置
JP2010249333A (ja) 2009-04-10 2010-11-04 Mitsubishi Electric Corp 運転制御情報生成装置及び運転制御情報生成プログラム及び記録媒体及び運転制御情報生成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4627484A (en) * 1984-01-09 1986-12-09 Visual Information Institute, Inc. Heat pump control system with defrost cycle monitoring
JP2000088421A (ja) * 1998-09-18 2000-03-31 Hitachi Ltd 冷蔵庫
JP3974816B2 (ja) * 2002-06-06 2007-09-12 株式会社テセック 電子デバイス収容装置
JP2011052952A (ja) * 2009-08-07 2011-03-17 Sanyo Electric Co Ltd 冷凍機の運転管理装置
US8365541B2 (en) * 2010-11-04 2013-02-05 General Electric Company Method and apparatus using evaporator fan power requirements to determine defrost cycle for a refrigerator appliance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195650A (ja) * 2000-12-25 2002-07-10 Toshiba Electric Appliance Co Ltd 貯湯式給湯装置
JP2003302131A (ja) * 2002-04-08 2003-10-24 Sanyo Electric Co Ltd 空気調和装置および空気調和装置の制御方法
JP2004020097A (ja) * 2002-06-18 2004-01-22 Fuji Electric Holdings Co Ltd 冷凍空調統合蓄熱システム
JP2004156847A (ja) * 2002-11-07 2004-06-03 Matsushita Electric Ind Co Ltd 給湯装置
JP2008180473A (ja) * 2007-01-26 2008-08-07 Kenji Umetsu ハイブリッドエネルギー利用ヒートポンプ装置
JP2010249333A (ja) 2009-04-10 2010-11-04 Mitsubishi Electric Corp 運転制御情報生成装置及び運転制御情報生成プログラム及び記録媒体及び運転制御情報生成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2829825A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7278496B1 (ja) * 2022-05-18 2023-05-19 三菱電機株式会社 冷凍サイクル状態予測装置、冷凍サイクル制御装置、及び冷凍サイクル装置

Also Published As

Publication number Publication date
EP2829825A4 (en) 2015-06-17
EP2829825A1 (en) 2015-01-28
JP5899484B2 (ja) 2016-04-06
EP2829825B1 (en) 2018-04-25
JP2013195017A (ja) 2013-09-30

Similar Documents

Publication Publication Date Title
JP6052675B2 (ja) ヒートポンプシステム制御装置、ヒートポンプシステム、および、ヒートポンプシステム制御方法
JP5025834B2 (ja) 運転計画方法、運転計画装置、ヒートポンプ式給湯システムの運転方法、及びヒートポンプ式給湯暖房システムの運転方法
US9851110B2 (en) Heating system control method and heating system
EP2719973B1 (en) Operating method for heat pump, and heat pump system
JP5942196B2 (ja) ヒートポンプの運転方法及びヒートポンプシステム
JP5927569B2 (ja) ヒートポンプの運転方法及びヒートポンプシステム
JP6240900B2 (ja) ヒートポンプ制御装置及びヒートポンプ制御装置の制御方法
JP5820998B2 (ja) 暖房システムの制御方法及び暖房システム
JP5899484B2 (ja) ヒートポンプ式暖房システムの制御方法及び暖房システム
EP2541155B1 (en) Heating system, and heating system control method
JP5906421B2 (ja) 熱電併給システムおよびその運転方法
JP5938744B2 (ja) ヒートポンプ式暖房システムの制御方法及び暖房システム
WO2017009912A1 (ja) エネルギー管理装置、エネルギー管理方法、及び、プログラム
Tejeda et al. Energy Consequences of Non-optimal Heat Pump Parameterization

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012864020

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE