WO2013039006A1 - Laser machining method - Google Patents
Laser machining method Download PDFInfo
- Publication number
- WO2013039006A1 WO2013039006A1 PCT/JP2012/072930 JP2012072930W WO2013039006A1 WO 2013039006 A1 WO2013039006 A1 WO 2013039006A1 JP 2012072930 W JP2012072930 W JP 2012072930W WO 2013039006 A1 WO2013039006 A1 WO 2013039006A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- workpiece
- along
- laser
- modified
- laser light
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D5/00—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
- B28D5/0005—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
- B28D5/0011—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/0006—Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0643—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/352—Working by laser beam, e.g. welding, cutting or boring for surface treatment
- B23K26/359—Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
- B23K26/382—Removing material by boring or cutting by boring
- B23K26/389—Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/50—Working by transmitting the laser beam through or within the workpiece
- B23K26/53—Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
Definitions
- the present invention relates to a laser processing method for cutting a workpiece.
- a conventional laser processing method there is a method of condensing a laser beam on a processing object, forming a modified region along the planned cutting line on the processing target, and cutting the processing target along the planned cutting line. It is known (see, for example, Patent Document 1). In such a laser processing method, a plurality of modified spots are formed along a planned cutting line, and a modified region is formed by the plurality of modified spots.
- an object of the present invention is to provide a laser processing method capable of cutting an object to be processed formed of crystal with high dimensional accuracy.
- a laser processing method is a laser processing method for cutting a processing target formed of crystal along a planned cutting line.
- a modified region forming step is provided in which a modified region including a plurality of modified spots is formed on a workpiece along a planned cutting line by condensing a laser beam. Forming a plurality of first modified spots along the planned cutting line while irradiating the workpiece with laser light and forming a plurality of first modified spots along the planned cutting line; As a result, the plurality of second modified spots exposed on the laser light incident surface of the workpiece are not moved and cracks are not formed on the laser light incident surface. Forming along the sectional scheduled line, to include the features.
- a plurality of first modified spots formed inside are easily cut along a planned cutting line and exposed to the laser light incident surface.
- the second modified spot acts as a so-called cut line, and the cutting is assisted by the plurality of second modified spots. Therefore, it is possible to cut the workpiece with high dimensional accuracy.
- FIG. 3 is a cross-sectional view taken along the line III-III of the workpiece in FIG. 2. It is a top view of the processing target after laser processing.
- FIG. 5 is a cross-sectional view taken along the line VV of the workpiece in FIG. 4.
- FIG. 5 is a cross-sectional view taken along line VI-VI of the workpiece in FIG. 4.
- FIG. 13 It is a schematic block diagram of the other laser processing apparatus which concerns on this embodiment. It is a flowchart which shows the manufacturing process of the crystal oscillator which concerns on this embodiment. It is the schematic for demonstrating the process of cut
- (A) is a photograph showing the surface of the workpiece on which the second modified spot according to the present embodiment is formed
- (b) is a photograph corresponding to a cross section taken along line bb in FIG. 13 (a).
- FIG. It is a photograph figure which shows the surface of the process target object in which the 2nd modified spot which concerns on a comparative example was formed.
- the laser beam is focused on the object to be processed, and a modified region including a plurality of modified spots is formed along the planned cutting line.
- a modified region including a plurality of modified spots is formed along the planned cutting line.
- a laser processing apparatus 100 includes a laser light source 101 that oscillates a laser beam L, a dichroic mirror 103 that is arranged so as to change the direction of the optical axis (optical path) of the laser beam L, and A condensing lens (condensing optical system) 105 for condensing the laser light L. Further, the laser processing apparatus 100 includes a support base 107 for supporting the workpiece 1 irradiated with the laser light L condensed by the condensing lens 105, and a stage 111 for moving the support base 107. , A laser light source control unit 102 for controlling the laser light source 101 to adjust the output, pulse width, pulse waveform, and the like of the laser light L, and a stage control unit 115 for controlling the movement of the stage 111.
- the laser light L emitted from the laser light source 101 has its optical axis changed by 90 ° by the dichroic mirror 103, and the inside of the processing object 1 placed on the support base 107.
- the light is condensed by the condensing lens 105.
- the stage 111 is moved, and the workpiece 1 is moved relative to the laser beam L along the planned cutting line 5.
- a modified region along the planned cutting line 5 is formed on the workpiece 1.
- the stage 111 is moved in order to move the laser light L relatively, but the condensing lens 105 may be moved, or both of them may be moved.
- the processing object 1 is formed of crystal, and as shown in FIG. 2, a cutting line 5 for cutting the processing object 1 is set in the processing object 1.
- the planned cutting line 5 is a virtual line extending linearly.
- the laser beam L is scheduled to be cut in a state where the focusing point (focusing position) P is aligned with the inside of the workpiece 1. It moves relatively along the line 5 (that is, in the direction of arrow A in FIG. 2).
- the modified region 7 is formed inside the workpiece 1 along the planned cutting line 5, and the modified region 7 formed along the planned cutting line 5 is formed. It becomes the cutting start area 8.
- the condensing point P is a location where the laser light L is condensed.
- the planned cutting line 5 is not limited to a straight line, but may be a curved line, a three-dimensional shape in which these lines are combined, or a coordinate designated. Further, the planned cutting line 5 is not limited to a virtual line but may be a line actually drawn on the surface 3 of the workpiece 1.
- the modified region 7 may be formed continuously or intermittently. Further, the modified region 7 may be in the form of a line or a dot. In short, the modified region 7 only needs to be formed at least inside the workpiece 1.
- a crack may be formed starting from the modified region 7, and the crack and the modified region 7 may be exposed on the outer surface (front surface 3, back surface 21, or outer peripheral surface) of the workpiece 1.
- the laser light incident surface when forming the modified region 7 is not limited to the front surface 3 of the workpiece 1 but may be the back surface 21 of the workpiece 1.
- the laser light L here passes through the workpiece 1 and is particularly absorbed near the condensing point inside the workpiece 1, thereby forming the modified region 7 in the workpiece 1. (Ie, internal absorption laser processing). Therefore, since the laser beam L is hardly absorbed by the surface 3 of the workpiece 1, the surface 3 of the workpiece 1 is not melted. In general, when a removed portion such as a hole or a groove is formed by being melted and removed from the front surface 3 (surface absorption laser processing), the processing region gradually proceeds from the front surface 3 side to the back surface side.
- the modified region formed in the present embodiment refers to a region in which density, refractive index, mechanical strength, and other physical characteristics are different from the surroundings.
- the reforming region include a melting treatment region (meaning at least one of a region once solidified after melting, a region in a molten state, and a region in a state of being resolidified from melting), a crack region, There are dielectric breakdown regions, refractive index change regions, and the like, and there are also regions where these are mixed.
- the modified region there are a region where the density of the modified region in the material to be processed is changed compared to the density of the non-modified region, and a region where lattice defects are formed. Also known as the metastatic region).
- the area where the density of the melt-processed area, the refractive index changing area, the modified area is changed compared to the density of the non-modified area, or the area where lattice defects are formed is In some cases, cracks (cracks, microcracks) are included in the interface between the non-modified region and the non-modified region. The included crack may be formed over the entire surface of the modified region, or may be formed in only a part or a plurality of parts.
- quartz SiO 2
- a material containing quartz is used as the processing object 1.
- the modified region 7 is formed by forming a plurality of modified spots (processing marks) along the planned cutting line 5.
- the modified spot is a modified portion formed by one pulse shot of pulsed laser light (that is, one pulse of laser irradiation: laser shot).
- Examples of the modified spot include a crack spot, a melting treatment spot, a refractive index change spot, or a mixture of at least one of these.
- the size of the modified spot and the length of the crack to be generated are appropriately determined. It is preferable to control.
- the laser processing apparatus 200 includes a support base 201 that supports the plate-shaped workpiece 1, a laser light source 202 that emits laser light L, and laser light L emitted from the laser light source 202.
- the optical optical system 204 and the control part (control means) 205 which controls at least the reflection type spatial light modulator 203 are provided.
- the laser processing apparatus 200 forms a modified region 7 including a plurality of modified spots along the planned cutting line 5 of the workpiece 1 by irradiating the workpiece 1 with the laser beam L.
- the reflective spatial light modulator 203 is installed in the housing 231, and the laser light source 202 is installed on the top plate of the housing 231.
- the condensing optical system 204 includes a plurality of lenses, and is installed on the bottom plate of the housing 231 via a drive unit 232 including a piezoelectric element and the like.
- the laser engine 230 is comprised by the components installed in the housing
- the housing 231 is provided with a moving mechanism that moves the housing 231 in the thickness direction of the workpiece 1 (not shown).
- a moving mechanism that moves the housing 231 in the thickness direction of the workpiece 1 (not shown).
- the position of the condensing optical system 204 is changed, and the laser beam L is changed to a desired depth of the workpiece 1. It is possible to condense at this position.
- a moving mechanism that moves the supporting table 201 in the thickness direction of the workpiece 1 may be provided on the supporting table 201.
- the condensing optical system 204 may be moved in the thickness direction of the workpiece 1 using an AF unit 212 described later. It is also possible to combine these.
- the control unit 205 controls the whole of the laser processing apparatus 200 in addition to controlling the reflective spatial light modulator 203. For example, when the control unit 205 forms the modified region 7, the condensing point P of the laser light L is located at a predetermined distance from the surface (laser light incident surface) 3 of the workpiece 1 and the laser light L
- the laser engine 230 including the condensing optical system 204 is controlled so that the condensing point P of the light beam moves relatively along the cutting scheduled line 5.
- the control unit 205 controls the support base 201 instead of the laser engine 230 including the condensing optical system 204 in order to move the condensing point P of the laser light L relative to the workpiece 1.
- both the laser engine 230 including the condensing optical system 204 and the support base 201 may be controlled.
- Laser light L emitted from the laser light source 202 is sequentially reflected by the mirrors 206 and 207 in the housing 231, then reflected by the reflecting member 208 such as a prism, and enters the reflective spatial light modulator 203.
- the laser beam L incident on the reflective spatial light modulator 203 is modulated by the reflective spatial light modulator 203 and emitted from the reflective spatial light modulator 203.
- the laser light L emitted from the reflective spatial light modulator 203 is reflected by the reflecting member 208 along the optical axis of the condensing optical system 204 in the housing 231 and sequentially passes through the beam splitters 209 and 210. Then, it enters the condensing optical system 204.
- the laser light L incident on the condensing optical system 204 is condensed by the condensing optical system 204 inside the workpiece 1 placed on the support table 201.
- the laser processing apparatus 200 includes a surface observation unit 211 for observing the surface 3 of the workpiece 1 in the housing 231.
- the surface observation unit 211 emits visible light VL reflected by the beam splitter 209 and transmitted through the beam splitter 210, collected by the condensing optical system 204, and reflected by the surface 3 of the workpiece 1. Is detected, an image of the surface 3 of the workpiece 1 is acquired.
- the laser processing apparatus 200 performs AF for accurately aligning the condensing point P of the laser light L at a predetermined distance from the surface 3 even when the surface 3 of the workpiece 1 is wavy.
- a (autofocus) unit 212 is provided in the housing 231.
- the AF unit 212 emits AF laser light LB reflected by the beam splitter 210, and detects the AF laser light LB condensed by the condensing optical system 204 and reflected by the surface 3 of the workpiece 1.
- the displacement data of the surface 3 along the planned cutting line 5 is acquired using, for example, an astigmatism method.
- the AF unit 212 drives the drive unit 232 based on the acquired displacement data when forming the modified region 7, so that the condensing optical system follows the undulation of the surface 3 of the workpiece 1.
- 204 is reciprocated in the optical axis direction to finely adjust the distance between the condensing optical system 204 and the workpiece 1.
- the reflective spatial light modulator 203 corrects the aberration of the laser light L emitted from the laser light source 202.
- the reflective spatial light modulator SLM: Spatial Light
- LCOS Liquid Crystal on Silicon
- Modulator is used.
- FIG. 8 is a partial cross-sectional view of the reflective spatial light modulator of the laser processing apparatus of FIG. As shown in FIG.
- the reflective spatial light modulator 203 includes a silicon substrate 213, a drive circuit layer 914, a plurality of pixel electrodes 214, a reflective film 215 such as a dielectric multilayer mirror, an alignment film 999a, a liquid crystal layer 216, An alignment film 999b, a transparent conductive film 217, and a transparent substrate 218 such as a glass substrate are provided, and these are stacked in this order.
- the transparent substrate 218 has a surface 218 a along the XY plane, and the surface 218 a constitutes the surface of the reflective spatial light modulator 203.
- the transparent substrate 218 mainly contains a light transmissive material such as glass, for example, and the laser light L having a predetermined wavelength incident from the surface 218 a of the reflective spatial light modulator 203 is converted into the interior of the reflective spatial light modulator 203. To penetrate.
- the transparent conductive film 217 is formed on the back surface 218b of the transparent substrate 218, and mainly includes a conductive material (for example, ITO) that transmits the laser light L.
- the plurality of pixel electrodes 214 are two-dimensionally arranged according to the arrangement of the plurality of pixels, and are arranged on the silicon substrate 213 along the transparent conductive film 217.
- Each pixel electrode 214 is made of a metal material such as aluminum, for example, and the surface 214a is processed flat and smoothly.
- the plurality of pixel electrodes 214 are driven by an active matrix circuit provided in the drive circuit layer 914.
- the active matrix circuit is provided between the plurality of pixel electrodes 214 and the silicon substrate 213, and controls the voltage applied to each pixel electrode 214 in accordance with the optical image to be output from the reflective spatial light modulator 203.
- Such an active matrix circuit includes, for example, a first driver circuit that controls the applied voltage of each pixel column arranged in the X-axis direction (not shown) and a first driver circuit that controls the applied voltage of each pixel column arranged in the Y-axis direction. And a predetermined voltage is applied to the pixel electrode 214 of the pixel designated by both of the driver circuits by the control unit 250.
- the alignment films 999a and 999b are arranged on both end faces of the liquid crystal layer 216, and the liquid crystal molecule groups are arranged in a certain direction.
- the alignment films 999a and 999b are made of, for example, a polymer material such as polyimide, and the contact surface with the liquid crystal layer 216 is subjected to a rubbing process or the like.
- the liquid crystal layer 216 is disposed between the plurality of pixel electrodes 214 and the transparent conductive film 217, and modulates the laser light L in accordance with an electric field formed by each pixel electrode 214 and the transparent conductive film 217. That is, when a voltage is applied to a certain pixel electrode 214 by the active matrix circuit, an electric field is formed between the transparent conductive film 217 and the pixel electrode 214.
- This electric field is applied to each of the reflective film 215 and the liquid crystal layer 216 at a rate corresponding to the thickness of each. Then, the alignment direction of the liquid crystal molecules 216a changes according to the magnitude of the electric field applied to the liquid crystal layer 216.
- the laser light L passes through the transparent substrate 218 and the transparent conductive film 217 and enters the liquid crystal layer 216, the laser light L is modulated by the liquid crystal molecules 216 a while passing through the liquid crystal layer 216 and reflected by the reflective film 215. Then, the light is again modulated by the liquid crystal layer 216 and taken out.
- an aberration correction (wavefront shaping) pattern for shaping (modulating) the beam wavefront of the laser light L is displayed on the liquid crystal layer 216, whereby the laser light L transmitted through the aberration correction pattern of the liquid crystal layer 216 is Aberration is corrected by phase modulation according to the aberration correction pattern.
- the control unit 205 When forming the modified region 7, the control unit 205 inputs pattern information related to the aberration correction pattern to the reflective spatial light modulator 203 and displays a predetermined aberration correction pattern on the liquid crystal layer 216, thereby reflecting the reflective type. The aberration of the laser beam L emitted from the spatial light modulator 203 is controlled. Note that the pattern information input to the reflective spatial light modulator 203 may be input sequentially, or pattern information stored in advance may be selected and input.
- the laser light L whose aberration is corrected by the reflective spatial light modulator 203 changes its wavefront shape by propagating through the space.
- the laser light L emitted from the reflective spatial light modulator 203 or the laser light L incident on the condensing optical system 204 is light having a predetermined spread (that is, light other than parallel light)
- the reflective light The wavefront shape in the spatial light modulator 203 and the wavefront shape in the condensing optical system 204 do not coincide with each other, and as a result, there is a possibility that the target precise internal processing may be hindered. Therefore, it is important to match the wavefront shape in the reflective spatial light modulator 203 with the wavefront shape in the condensing optical system 204.
- the change in the wavefront shape when the laser light L propagates from the reflective spatial light modulator 203 to the condensing optical system 204 is obtained by measurement or the like, and the pattern information of the aberration correction pattern in consideration of the change in the wavefront shape Is more preferably input to the reflective spatial light modulator 203.
- the reflective spatial light modulator 203 and the condensing optical system 204 are used.
- the adjusting optical system 240 may be provided on the optical path of the laser light L traveling between the two. This makes it possible to accurately realize wavefront shaping.
- the adjusting optical system 240 has at least two lenses 241a and 241b.
- the lenses 241a and 241b are for making the wavefront shape in the reflective spatial light modulator 203 and the wavefront shape in the condensing optical system 204 similar.
- the distance between the reflective spatial light modulator 203 and the lens 241a is the focal length f1 of the lens 241a
- the distance between the condensing optical system 204 and the lens 241b is the focal length f2 of the lens 241b
- the lens 241a are disposed between the reflective spatial light modulator 203 and the reflective member 208 so that the lens 241a and the lens 241b form a bilateral telecentric optical system.
- the wavefront in the reflective spatial light modulator 203 and the wavefront in the condensing optical system 204 can be matched. it can.
- the beam diameter of the laser light L is determined by the ratio of f1 and f2 (the beam diameter of the laser light L incident on the condensing optical system 204 is determined by the laser light L emitted from the reflective spatial light modulator 203. F2 / f1 times the beam diameter). Therefore, regardless of whether the laser light L is parallel light or light having a small spread, the laser incident on the condensing optical system 204 while maintaining the angle emitted from the reflective spatial light modulator 203. A desired beam diameter in the light L can be obtained.
- the adjustment optical system 240 preferably includes a mechanism for independently fine-tuning the positions of the lenses 241a and 241b.
- a beam expander may be provided on the optical path of the laser light L between the reflective spatial light modulator 203 and the laser light source 202. .
- the laser processing method of the present embodiment is used, for example, as a method for manufacturing a crystal unit for manufacturing a crystal unit, and laser processing is performed on a processing target 1 formed of crystal that is a hexagonal columnar crystal.
- the apparatus 200 cuts into a plurality of crystal chips.
- an artificial quartz crystal is cut out by, for example, diamond grinding and processed into a rod-shaped body (lumbard) of a predetermined size (S1). Subsequently, the cutting angle corresponding to the temperature characteristic requirement of the crystal resonator is measured by X-rays, and the lambard is cut into a plurality of wafer-like workpieces 1 by wire saw processing based on this cutting angle (S2).
- the workpiece 1 here has a rectangular plate shape of 10 mm ⁇ 10 mm, and has a crystal axis inclined by 35.15 ° with respect to the thickness direction.
- the thickness of the workpiece 1 is finely adjusted to, for example, about 100 ⁇ m (S4, S5).
- the modified region 7 is formed in the workpiece 1, and the workpiece 1 is cut along the planned cutting line 5 using the modified region 7 as a starting point for cutting (S6: , Described later).
- S6 a starting point for cutting
- the line 5 to be cut is set in the processing object 1 in a lattice shape when viewed from the front surface 3, and the processing object 1 is cut as a rectangular plate-shaped crystal chip of 1 mm ⁇ 0.5 mm.
- the quartz chip is subjected to chamfering (convex machining) so as to have a predetermined frequency, and the thickness of the quartz chip is adjusted by etching so that the predetermined frequency is obtained (S7, S8).
- the crystal chip is assembled as a crystal resonator (S9). Specifically, an electrode is formed on the crystal chip by sputtering, this crystal chip is mounted in the mounter, heat-treated in a vacuum atmosphere, and then the frequency of the crystal chip electrode is adjusted by ion etching to adjust the frequency inside the mounter. Seal the seam. Thereby, the manufacture of the crystal unit is completed.
- FIG. 8 is a schematic diagram for explaining a process of cutting a workpiece into a quartz chip.
- the cutting along one cutting scheduled line 5 is illustrated as an example.
- S6 for cutting the workpiece 1 into a crystal chip first, the expanded tape 31 is attached to the back surface 21 of the workpiece 1 and the workpiece 1 is placed on the support table 201 (see FIG. 7). .
- control unit 205 controls the laser engine 230 and the reflective spatial light modulator 203, and appropriately converges the laser beam L on the workpiece 1 along the scheduled cutting line 5, so that a plurality of modified spots S are obtained.
- the modified region 7 including the material is formed (modified region forming step).
- the laser beam L is emitted from the surface 3 side while irradiating the laser beam L from the surface 3 side with an output of 0.03 W, a repetition frequency of 15 kHz, and a pulse width of 500 picoseconds to 640 picoseconds, for example. It is relatively moved along the line to cut 5, a plurality of the second reforming spot S 2 a row formed along the line to cut 5 exposed to the surface 3 of the object 1 (second scan).
- the second scan exposed on the surface 3 of the laser light entrance surface instead of being focused solely on the surface 3 of the object 1 with laser light L
- the so-called idling phenomenon the modified spot S even if the laser beam L is condensed on the workpiece 1). It is found that the occurrence of a phenomenon in which no is formed can be suppressed.
- a predetermined aberration correction pattern for correcting the aberration of the laser beam L so that the condensing point of the laser beam L is positioned in the vicinity of the surface 3 in the workpiece 1 is reflected by spatial reflection light modulation.
- the image is displayed on the liquid crystal layer 216 of the vessel 203.
- the focal point of the condensing optical system 204 is positioned on the surface 3 of the workpiece 1.
- the laser beam L is irradiated from the surface 3 side, that is, the laser beam L whose aberration is corrected so that the focal point is located near the surface 3 in the workpiece 1 is a surface as a laser beam incident surface. 3 to collect light.
- a predetermined aberration correction pattern for positioning the condensing point at a position 1 ⁇ m to 2 ⁇ m inside from the surface 3 in the workpiece 1 is displayed on the liquid crystal layer 216.
- the laser beam L whose aberration is corrected so that the condensing point is located at a position 1 ⁇ m to 2 ⁇ m inside the surface 3 in the workpiece 1 is condensed on the surface 3.
- the workpiece 1 is cut from the back surface 21 side through the expanded tape 31.
- the knife edge 32 is pressed along the planned line 5 and a force is applied to the workpiece 1 from the outside along the planned cutting line 5 (cutting process).
- reforming spots with first reforming spots S 1 more acts primarily as contributing reforming spot cutting, as intermittent surface dents which second reforming spots S 2 multiple assists the cutting
- the workpiece 1 is cut into a plurality of quartz chips using the modified region 7 as a starting point for cutting. Then, as shown in FIG. 12B, the expanding tape 31 is expanded to ensure a chip interval. Thus, the workpiece 1 is cut as a plurality of crystal chips 10.
- a plurality of first modified spots S 1 positioned inside the workpiece 1 are formed along the planned cutting line 5 and a plurality of second modified spots exposed on the surface 3.
- spot S 2 is formed along the line to cut 5. Therefore, the object 1 is easily cut along the line to cut 5 by a plurality of first reforming spots S 1, and the second reforming spots S 2 more exposed on the surface 3 is a so-called tear-off line act so, such cutting is to be assisted by the second reforming spots S 2 of the plurality. Therefore, the workpiece 1 can be cut with high dimensional accuracy, and the processing quality can be improved.
- the half-cut when a half-cut is generated in the workpiece 1 formed of quartz, the half-cut is easy to meander due to the processing characteristics of the quartz, for example, so that the dimensional accuracy of the workpiece 1 after cutting is controlled. It is not easy to do.
- the half-cut since the half-cut may be laser processing so as not to be formed from the second reforming spots S 2, the workpiece 1 can be cut more dimensional accuracy.
- the laser beam L corrected for aberration so that the focal point is located at a position less than 1 ⁇ m from the surface 3 in the workpiece 1 is applied to the surface 3.
- a so-called idling phenomenon is likely to occur. Therefore, in these cases, the processing quality is degraded.
- FIG. 14 is a photographic diagram showing the surface of the workpiece on which the second modified spot according to the comparative example is formed.
- the laser beam L whose aberration has been corrected so that the focal point is located at a position 3 to 6 ⁇ m inside the surface 3 in the workpiece 1 is condensed on the surface 3 to form the second modified spot S 2 .
- FIG. 14 when the second modified spot S 2 exposed on the surface 3 is formed, aberration correction is performed so that the condensing point is located deep from the surface 3, and the laser light L is collected on the surface 3.
- an idling phenomenon has occurred (see the frame in the figure).
- a crystal resonator is a device that uses the characteristics of the crystal material itself, the dimensional accuracy of a crystal chip for a crystal resonator greatly affects temperature characteristics and resonator characteristics.
- the present embodiment that can cut the workpiece 1 with high dimensional accuracy as a quartz chip is particularly effective. Further, even if the second reforming spots S 2 remained (exposed) on the surface 3, it is small effect on the temperature characteristics and the transducer characteristics of the crystal chip. Further, simply increasing the processing point output of the laser beam L is not preferable because it is difficult not only to suppress the so-called idling phenomenon but also to easily cause burns and scratches on the surface 3.
- the LCOS-SLM is used as the reflective spatial light modulator 203, but a MEMS-SLM, a DMD (deformable mirror device), or the like may be used.
- the reflective spatial light modulator 203 of the above embodiment includes the dielectric multilayer mirror, the reflection of the pixel electrode of the silicon substrate may be used.
- a transmissive spatial light modulator may be used. Examples of the spatial light modulator include a liquid crystal cell type and an LCD type.
- the laser light L is condensed on the surface 3 in a state where the aberration of the laser light L is corrected so that the condensing point is positioned in the vicinity of the surface 3 in the workpiece 1.
- 2 reforming spots S 2 is not limited to this, short, it is sufficient form to a second reforming spots exposed to the laser light entrance surface half cutting does not occur.
- the control unit 205 may form a second reformed spot S 2 by appropriately controlling the laser processing apparatus 200.
- the first reforming spots S 1 after forming the second modified spots S 2 May be formed.
- the order of forming these modified regions 7 is in no particular order.
- each numerical value relating to aberration correction allows for errors in processing, manufacturing, and design.
- the present invention can also be regarded as a crystal resonator manufacturing method or manufacturing apparatus for manufacturing a crystal resonator by the laser processing method described above, but is not limited to a crystal resonator manufacturing method and is formed of crystal.
- the present invention can be applied to various methods or apparatuses for cutting a workpiece.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Laser Beam Processing (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
- Dicing (AREA)
Abstract
In the present invention, laser light (L) is focused onto a quartz-crystal workpiece (1) such that a modified region (7) containing a plurality of modified spots (S) is formed in the workpiece (1) along a planned-cut line (5). To do so, the workpiece (1) and/or the laser light (L) is moved so as to produce relative movement therebetween along the planned-cut line (5) as the laser light (L) is shined on the workpiece (1), thereby forming a plurality of modified spots (S1) inside the workpiece (1) along the planned-cut line (5). Then, the workpiece (1) and/or the laser light (L) is moved so as to produce relative movement therebetween along the planned-cut line (5) as the laser light (L) is shined on the workpiece (1), thereby forming a plurality of modified spots (S2) exposed at the surface (3) of the workpiece (1) along the planned-cut line (5) such that no cracks exposed to the surface (3) are formed.
Description
本発明は、加工対象物を切断するためのレーザ加工方法に関する。
The present invention relates to a laser processing method for cutting a workpiece.
従来のレーザ加工方法としては、加工対象物にレーザ光を集光させ、加工対象物に改質領域を切断予定ラインに沿って形成し、加工対象物を切断予定ラインに沿って切断するものが知られている(例えば、特許文献1参照)。このようなレーザ加工方法では、切断予定ラインに沿って複数の改質スポットを形成し、これら複数の改質スポットによって改質領域を形成している。
As a conventional laser processing method, there is a method of condensing a laser beam on a processing object, forming a modified region along the planned cutting line on the processing target, and cutting the processing target along the planned cutting line. It is known (see, for example, Patent Document 1). In such a laser processing method, a plurality of modified spots are formed along a planned cutting line, and a modified region is formed by the plurality of modified spots.
ここで、上述したようなレーザ加工方法においては、水晶で形成された加工対象物を切断する場合、例えば大きい亀裂が発生し易いことから、当該亀裂を制御して切断後の加工対象物の寸法精度(加工品質)を制御することは容易でなく、寸法精度を向上させることが困難とされている。
Here, in the laser processing method as described above, when a workpiece to be formed of quartz is cut, for example, since a large crack is likely to occur, the size of the workpiece after cutting is controlled by controlling the crack. It is difficult to control accuracy (processing quality), and it is difficult to improve dimensional accuracy.
そこで、本発明は、水晶で形成された加工対象物を寸法精度よく切断することができるレーザ加工方法を提供することを課題とする。
Therefore, an object of the present invention is to provide a laser processing method capable of cutting an object to be processed formed of crystal with high dimensional accuracy.
上記課題を解決するために、本発明の一側面に係るレーザ加工方法は、水晶で形成された加工対象物を切断予定ラインに沿って切断するためのレーザ加工方法であって、加工対象物にレーザ光を集光させることにより、切断予定ラインに沿って、複数の改質スポットを含む改質領域を加工対象物に形成する改質領域形成工程を備え、改質領域形成工程は、加工対象物に対しレーザ光を照射しながら切断予定ラインに沿って相対移動させ、加工対象物の内部に位置する複数の第1改質スポットを切断予定ラインに沿って形成する工程と、加工対象物に対しレーザ光を照射しながら切断予定ラインに沿って相対移動させ、加工対象物のレーザ光入射面に露出する複数の第2改質スポットを、レーザ光入射面に露出する亀裂が形成されないように切断予定ラインに沿って形成する工程と、を含むことを特徴とする。
In order to solve the above-described problem, a laser processing method according to one aspect of the present invention is a laser processing method for cutting a processing target formed of crystal along a planned cutting line. A modified region forming step is provided in which a modified region including a plurality of modified spots is formed on a workpiece along a planned cutting line by condensing a laser beam. Forming a plurality of first modified spots along the planned cutting line while irradiating the workpiece with laser light and forming a plurality of first modified spots along the planned cutting line; As a result, the plurality of second modified spots exposed on the laser light incident surface of the workpiece are not moved and cracks are not formed on the laser light incident surface. Forming along the sectional scheduled line, to include the features.
このレーザ加工方法により加工された加工対象物を切断する場合、内部に形成された複数の第1改質スポットにより切断予定ラインに沿って容易に切断されると共に、レーザ光入射面に露出する複数の第2改質スポットがいわゆる切取り線となるように作用し、かかる切断が当該複数の第2改質スポットによりアシストされることとなる。従って、加工対象物を寸法精度よく切断することが可能となる。
When cutting a workpiece to be processed by this laser processing method, a plurality of first modified spots formed inside are easily cut along a planned cutting line and exposed to the laser light incident surface. The second modified spot acts as a so-called cut line, and the cutting is assisted by the plurality of second modified spots. Therefore, it is possible to cut the workpiece with high dimensional accuracy.
また、切断予定ラインに沿って外部から加工対象物に力を印加することにより、改質領域を切断の起点として加工対象物を切断する切断工程をさらに備えることができる。これにより、加工対象物を確実に切断予定ラインに沿って切断することが可能となる。
Further, it is possible to further include a cutting step of cutting the processing object using the modified region as a starting point of cutting by applying a force to the processing object from the outside along the scheduled cutting line. Thereby, it becomes possible to cut | disconnect a process target object along a cutting plan line reliably.
本発明によれば、水晶で形成された加工対象物を寸法精度よく切断することが可能となる。
According to the present invention, it is possible to cut a workpiece formed of quartz with high dimensional accuracy.
以下、本発明の一実施形態について、図面を参照して詳細に説明する。なお、以下の説明において同一又は相当要素には同一符号を付し、重複する説明を省略する。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following description, the same or equivalent elements will be denoted by the same reference numerals, and redundant description will be omitted.
本実施形態に係るレーザ加工方法では、加工対象物にレーザ光を集光させ、複数の改質スポットを含む改質領域を切断予定ラインに沿って形成する。そこで、まず、改質領域の形成について、図1~図6を参照して説明する。
In the laser processing method according to the present embodiment, the laser beam is focused on the object to be processed, and a modified region including a plurality of modified spots is formed along the planned cutting line. First, the formation of the modified region will be described with reference to FIGS.
図1に示すように、レーザ加工装置100は、レーザ光Lをパルス発振するレーザ光源101と、レーザ光Lの光軸(光路)の向きを90°変えるように配置されたダイクロイックミラー103と、レーザ光Lを集光するための集光用レンズ(集光光学系)105と、を備えている。また、レーザ加工装置100は、集光用レンズ105で集光されたレーザ光Lが照射される加工対象物1を支持するための支持台107と、支持台107を移動させるためのステージ111と、レーザ光Lの出力やパルス幅、パルス波形等を調節するためにレーザ光源101を制御するレーザ光源制御部102と、ステージ111の移動を制御するステージ制御部115と、を備えている。
As shown in FIG. 1, a laser processing apparatus 100 includes a laser light source 101 that oscillates a laser beam L, a dichroic mirror 103 that is arranged so as to change the direction of the optical axis (optical path) of the laser beam L, and A condensing lens (condensing optical system) 105 for condensing the laser light L. Further, the laser processing apparatus 100 includes a support base 107 for supporting the workpiece 1 irradiated with the laser light L condensed by the condensing lens 105, and a stage 111 for moving the support base 107. , A laser light source control unit 102 for controlling the laser light source 101 to adjust the output, pulse width, pulse waveform, and the like of the laser light L, and a stage control unit 115 for controlling the movement of the stage 111.
このレーザ加工装置100においては、レーザ光源101から出射されたレーザ光Lは、ダイクロイックミラー103によってその光軸の向きを90°変えられ、支持台107上に載置された加工対象物1の内部に集光用レンズ105によって集光される。これと共に、ステージ111が移動させられ、加工対象物1がレーザ光Lに対して切断予定ライン5に沿って相対移動させられる。これにより、切断予定ライン5に沿った改質領域が加工対象物1に形成されることとなる。なお、ここでは、レーザ光Lを相対的に移動させるためにステージ111を移動させたが、集光用レンズ105を移動させてもよいし、或いはこれらの両方を移動させてもよい。
In this laser processing apparatus 100, the laser light L emitted from the laser light source 101 has its optical axis changed by 90 ° by the dichroic mirror 103, and the inside of the processing object 1 placed on the support base 107. The light is condensed by the condensing lens 105. At the same time, the stage 111 is moved, and the workpiece 1 is moved relative to the laser beam L along the planned cutting line 5. As a result, a modified region along the planned cutting line 5 is formed on the workpiece 1. Here, the stage 111 is moved in order to move the laser light L relatively, but the condensing lens 105 may be moved, or both of them may be moved.
加工対象物1は、水晶で形成されており、図2に示すように、加工対象物1には、加工対象物1を切断するための切断予定ライン5が設定されている。切断予定ライン5は、直線状に延びた仮想線である。加工対象物1の内部に改質領域を形成する場合、図3に示すように、加工対象物1の内部に集光点(集光位置)Pを合わせた状態で、レーザ光Lを切断予定ライン5に沿って(すなわち、図2の矢印A方向に)相対的に移動させる。これにより、図4~図6に示すように、改質領域7が切断予定ライン5に沿って加工対象物1の内部に形成され、切断予定ライン5に沿って形成された改質領域7が切断起点領域8となる。
The processing object 1 is formed of crystal, and as shown in FIG. 2, a cutting line 5 for cutting the processing object 1 is set in the processing object 1. The planned cutting line 5 is a virtual line extending linearly. When the modified region is formed inside the workpiece 1, as shown in FIG. 3, the laser beam L is scheduled to be cut in a state where the focusing point (focusing position) P is aligned with the inside of the workpiece 1. It moves relatively along the line 5 (that is, in the direction of arrow A in FIG. 2). As a result, as shown in FIGS. 4 to 6, the modified region 7 is formed inside the workpiece 1 along the planned cutting line 5, and the modified region 7 formed along the planned cutting line 5 is formed. It becomes the cutting start area 8.
なお、集光点Pとは、レーザ光Lが集光する箇所のことである。また、切断予定ライン5は、直線状に限らず曲線状であってもよいし、これらが組み合わされた3次元状であってもよいし、座標指定されたものであってもよい。また、切断予定ライン5は、仮想線に限らず加工対象物1の表面3に実際に引かれた線であってもよい。改質領域7は、連続的に形成される場合もあるし、断続的に形成される場合もある。また、改質領域7は列状でも点状でもよく、要は、改質領域7は少なくとも加工対象物1の内部に形成されていればよい。また、改質領域7を起点に亀裂が形成される場合があり、亀裂及び改質領域7は、加工対象物1の外表面(表面3、裏面21、若しくは外周面)に露出していてもよい。また、改質領域7を形成する際のレーザ光入射面は、加工対象物1の表面3に限定されるものではなく、加工対象物1の裏面21であってもよい。
In addition, the condensing point P is a location where the laser light L is condensed. Further, the planned cutting line 5 is not limited to a straight line, but may be a curved line, a three-dimensional shape in which these lines are combined, or a coordinate designated. Further, the planned cutting line 5 is not limited to a virtual line but may be a line actually drawn on the surface 3 of the workpiece 1. The modified region 7 may be formed continuously or intermittently. Further, the modified region 7 may be in the form of a line or a dot. In short, the modified region 7 only needs to be formed at least inside the workpiece 1. In addition, a crack may be formed starting from the modified region 7, and the crack and the modified region 7 may be exposed on the outer surface (front surface 3, back surface 21, or outer peripheral surface) of the workpiece 1. Good. Further, the laser light incident surface when forming the modified region 7 is not limited to the front surface 3 of the workpiece 1 but may be the back surface 21 of the workpiece 1.
ちなみに、ここでのレーザ光Lは、加工対象物1を透過すると共に加工対象物1の内部の集光点近傍にて特に吸収され、これにより、加工対象物1に改質領域7が形成される(すなわち、内部吸収型レーザ加工)。よって、加工対象物1の表面3ではレーザ光Lが殆ど吸収されないので、加工対象物1の表面3が溶融することはない。一般的に、表面3から溶融され除去されて穴や溝等の除去部が形成される(表面吸収型レーザ加工)場合、加工領域は表面3側から徐々に裏面側に進行する。
Incidentally, the laser light L here passes through the workpiece 1 and is particularly absorbed near the condensing point inside the workpiece 1, thereby forming the modified region 7 in the workpiece 1. (Ie, internal absorption laser processing). Therefore, since the laser beam L is hardly absorbed by the surface 3 of the workpiece 1, the surface 3 of the workpiece 1 is not melted. In general, when a removed portion such as a hole or a groove is formed by being melted and removed from the front surface 3 (surface absorption laser processing), the processing region gradually proceeds from the front surface 3 side to the back surface side.
ところで、本実施形態で形成される改質領域は、密度、屈折率、機械的強度やその他の物理的特性が周囲とは異なる状態になった領域をいう。改質領域としては、例えば、溶融処理領域(一旦溶融後再固化した領域、溶融状態中の領域及び溶融から再固化する状態中の領域のうち少なくともいずれか一つを意味する)、クラック領域、絶縁破壊領域、屈折率変化領域等があり、これらが混在した領域もある。さらに、改質領域としては、加工対象物の材料において改質領域の密度が非改質領域の密度と比較して変化した領域や、格子欠陥が形成された領域がある(これらをまとめて高密転移領域ともいう)。
Incidentally, the modified region formed in the present embodiment refers to a region in which density, refractive index, mechanical strength, and other physical characteristics are different from the surroundings. Examples of the reforming region include a melting treatment region (meaning at least one of a region once solidified after melting, a region in a molten state, and a region in a state of being resolidified from melting), a crack region, There are dielectric breakdown regions, refractive index change regions, and the like, and there are also regions where these are mixed. Furthermore, as the modified region, there are a region where the density of the modified region in the material to be processed is changed compared to the density of the non-modified region, and a region where lattice defects are formed. Also known as the metastatic region).
また、溶融処理領域や屈折率変化領域、改質領域の密度が非改質領域の密度と比較して変化した領域、格子欠陥が形成された領域は、さらに、それら領域の内部や改質領域と非改質領域との界面に亀裂(割れ、マイクロクラック)を内包している場合がある。内包される亀裂は改質領域の全面に渡る場合や一部分のみや複数部分に形成される場合がある。加工対象物1としては、水晶(SiO2)又は水晶を含む材料が用いられている。
In addition, the area where the density of the melt-processed area, the refractive index changing area, the modified area is changed compared to the density of the non-modified area, or the area where lattice defects are formed is In some cases, cracks (cracks, microcracks) are included in the interface between the non-modified region and the non-modified region. The included crack may be formed over the entire surface of the modified region, or may be formed in only a part or a plurality of parts. As the processing object 1, quartz (SiO 2 ) or a material containing quartz is used.
また、本実施形態においては、切断予定ライン5に沿って改質スポット(加工痕)を複数形成することによって、改質領域7を形成している。改質スポットとは、パルスレーザ光の1パルスのショット(つまり1パルスのレーザ照射:レーザショット)で形成される改質部分であり、改質スポットが集まることにより改質領域7となる。改質スポットとしては、クラックスポット、溶融処理スポット若しくは屈折率変化スポット、又はこれらの少なくとも1つが混在するもの等が挙げられる。
In the present embodiment, the modified region 7 is formed by forming a plurality of modified spots (processing marks) along the planned cutting line 5. The modified spot is a modified portion formed by one pulse shot of pulsed laser light (that is, one pulse of laser irradiation: laser shot). Examples of the modified spot include a crack spot, a melting treatment spot, a refractive index change spot, or a mixture of at least one of these.
この改質スポットについては、要求される切断精度、要求される切断面の平坦性、加工対象物の厚さ、種類、結晶方位等を考慮して、その大きさや発生する亀裂の長さを適宜制御することが好ましい。
Considering the required cutting accuracy, required flatness of the cut surface, thickness of the workpiece, type, crystal orientation, etc., the size of the modified spot and the length of the crack to be generated are appropriately determined. It is preferable to control.
次に、本実施形態に係るレーザ加工装置について説明する。
Next, the laser processing apparatus according to this embodiment will be described.
図7に示すように、レーザ加工装置200は、板状の加工対象物1を支持する支持台201と、レーザ光Lを出射するレーザ光源202と、レーザ光源202から出射されたレーザ光Lの収差を補正するための反射型空間光変調器203と、支持台201によって支持された加工対象物1の内部に、反射型空間光変調器203によって収差補正されたレーザ光Lを集光する集光光学系204と、反射型空間光変調器203を少なくとも制御する制御部(制御手段)205と、を備えている。レーザ加工装置200は、加工対象物1にレーザ光Lを照射することにより、加工対象物1の切断予定ライン5に沿って、複数の改質スポットを含む改質領域7を形成する。
As shown in FIG. 7, the laser processing apparatus 200 includes a support base 201 that supports the plate-shaped workpiece 1, a laser light source 202 that emits laser light L, and laser light L emitted from the laser light source 202. A collection of the spatial light modulator 203 for correcting the aberration and the laser beam L corrected for aberration by the reflective spatial light modulator 203 inside the workpiece 1 supported by the support table 201. The optical optical system 204 and the control part (control means) 205 which controls at least the reflection type spatial light modulator 203 are provided. The laser processing apparatus 200 forms a modified region 7 including a plurality of modified spots along the planned cutting line 5 of the workpiece 1 by irradiating the workpiece 1 with the laser beam L.
反射型空間光変調器203は筐体231内に設置されており、レーザ光源202は筐体231の天板に設置されている。また、集光光学系204は、複数のレンズを含んで構成されており、圧電素子等を含んで構成された駆動ユニット232を介して筐体231の底板に設置されている。そして、筐体231に設置された部品によってレーザエンジン230が構成されている。なお、制御部205は、レーザエンジン230の筐体231内に設置されてもよい。
The reflective spatial light modulator 203 is installed in the housing 231, and the laser light source 202 is installed on the top plate of the housing 231. The condensing optical system 204 includes a plurality of lenses, and is installed on the bottom plate of the housing 231 via a drive unit 232 including a piezoelectric element and the like. And the laser engine 230 is comprised by the components installed in the housing | casing 231. FIG. Note that the control unit 205 may be installed in the housing 231 of the laser engine 230.
筐体231には、筐体231を加工対象物1の厚さ方向に移動させる移動機構が設置されている(図示せず)。これにより、加工対象物1の深さに応じてレーザエンジン230を上下に移動させることができるため、集光光学系204の位置を変化させて、レーザ光Lを加工対象物1の所望の深さ位置に集光することが可能となる。なお、筐体231に移動機構を設置する代わりに、支持台201に、支持台201を加工対象物1の厚さ方向に移動させる移動機構を設けてもよい。また、後述するAFユニット212を利用して集光光学系204を加工対象物1の厚さ方向に移動させてもよい。そして、これらを組み合わせることも可能である。
The housing 231 is provided with a moving mechanism that moves the housing 231 in the thickness direction of the workpiece 1 (not shown). Thereby, since the laser engine 230 can be moved up and down according to the depth of the workpiece 1, the position of the condensing optical system 204 is changed, and the laser beam L is changed to a desired depth of the workpiece 1. It is possible to condense at this position. Instead of installing a moving mechanism in the housing 231, a moving mechanism that moves the supporting table 201 in the thickness direction of the workpiece 1 may be provided on the supporting table 201. Further, the condensing optical system 204 may be moved in the thickness direction of the workpiece 1 using an AF unit 212 described later. It is also possible to combine these.
制御部205は、反射型空間光変調器203を制御する他、レーザ加工装置200の全体を制御する。例えば、制御部205は、改質領域7を形成する際に、レーザ光Lの集光点Pが加工対象物1の表面(レーザ光入射面)3から所定の距離に位置し且つレーザ光Lの集光点Pが切断予定ライン5に沿って相対的に移動するように集光光学系204を含むレーザエンジン230を制御する。なお、制御部205は、加工対象物1に対してレーザ光Lの集光点Pを相対的に移動させるために、集光光学系204を含むレーザエンジン230ではなく支持台201を制御してもよいし、或いは集光光学系204を含むレーザエンジン230及び支持台201の両方を制御してもよい。
The control unit 205 controls the whole of the laser processing apparatus 200 in addition to controlling the reflective spatial light modulator 203. For example, when the control unit 205 forms the modified region 7, the condensing point P of the laser light L is located at a predetermined distance from the surface (laser light incident surface) 3 of the workpiece 1 and the laser light L The laser engine 230 including the condensing optical system 204 is controlled so that the condensing point P of the light beam moves relatively along the cutting scheduled line 5. The control unit 205 controls the support base 201 instead of the laser engine 230 including the condensing optical system 204 in order to move the condensing point P of the laser light L relative to the workpiece 1. Alternatively, both the laser engine 230 including the condensing optical system 204 and the support base 201 may be controlled.
レーザ光源202から出射されたレーザ光Lは、筐体231内において、ミラー206,207によって順次反射された後、プリズム等の反射部材208によって反射されて反射型空間光変調器203に入射する。反射型空間光変調器203に入射したレーザ光Lは、反射型空間光変調器203によって変調されて反射型空間光変調器203から出射される。反射型空間光変調器203から出射されたレーザ光Lは、筐体231内において、集光光学系204の光軸に沿うように反射部材208によって反射され、ビームスプリッタ209,210を順次透過して集光光学系204に入射する。集光光学系204に入射したレーザ光Lは、支持台201上に載置された加工対象物1の内部に集光光学系204によって集光される。
Laser light L emitted from the laser light source 202 is sequentially reflected by the mirrors 206 and 207 in the housing 231, then reflected by the reflecting member 208 such as a prism, and enters the reflective spatial light modulator 203. The laser beam L incident on the reflective spatial light modulator 203 is modulated by the reflective spatial light modulator 203 and emitted from the reflective spatial light modulator 203. The laser light L emitted from the reflective spatial light modulator 203 is reflected by the reflecting member 208 along the optical axis of the condensing optical system 204 in the housing 231 and sequentially passes through the beam splitters 209 and 210. Then, it enters the condensing optical system 204. The laser light L incident on the condensing optical system 204 is condensed by the condensing optical system 204 inside the workpiece 1 placed on the support table 201.
また、レーザ加工装置200は、加工対象物1の表面3を観察するための表面観察ユニット211を筐体231内に備えている。表面観察ユニット211は、ビームスプリッタ209で反射され且つビームスプリッタ210を透過する可視光VLを出射し、集光光学系204によって集光されて加工対象物1の表面3で反射された可視光VLを検出することで、加工対象物1の表面3の像を取得する。
Further, the laser processing apparatus 200 includes a surface observation unit 211 for observing the surface 3 of the workpiece 1 in the housing 231. The surface observation unit 211 emits visible light VL reflected by the beam splitter 209 and transmitted through the beam splitter 210, collected by the condensing optical system 204, and reflected by the surface 3 of the workpiece 1. Is detected, an image of the surface 3 of the workpiece 1 is acquired.
さらに、レーザ加工装置200は、加工対象物1の表面3にうねりが存在するような場合にも、表面3から所定の距離の位置にレーザ光Lの集光点Pを精度良く合わせるためのAF(autofocus)ユニット212を筐体231内に備えている。AFユニット212は、ビームスプリッタ210で反射されるAF用レーザ光LBを出射し、集光光学系204によって集光されて加工対象物1の表面3で反射されたAF用レーザ光LBを検出することで、例えば非点収差法を用いて、切断予定ライン5に沿った表面3の変位データを取得する。そして、AFユニット212は、改質領域7を形成する際に、取得した変位データに基づいて駆動ユニット232を駆動させることで、加工対象物1の表面3のうねりに沿うように集光光学系204をその光軸方向に往復移動させ、集光光学系204と加工対象物1との距離を微調整する。
Further, the laser processing apparatus 200 performs AF for accurately aligning the condensing point P of the laser light L at a predetermined distance from the surface 3 even when the surface 3 of the workpiece 1 is wavy. A (autofocus) unit 212 is provided in the housing 231. The AF unit 212 emits AF laser light LB reflected by the beam splitter 210, and detects the AF laser light LB condensed by the condensing optical system 204 and reflected by the surface 3 of the workpiece 1. Thus, the displacement data of the surface 3 along the planned cutting line 5 is acquired using, for example, an astigmatism method. Then, the AF unit 212 drives the drive unit 232 based on the acquired displacement data when forming the modified region 7, so that the condensing optical system follows the undulation of the surface 3 of the workpiece 1. 204 is reciprocated in the optical axis direction to finely adjust the distance between the condensing optical system 204 and the workpiece 1.
ここで、反射型空間光変調器203について説明する。反射型空間光変調器203は、レーザ光源202から出射されたレーザ光Lの収差を補正するものであり、例えば反射型液晶(LCOS:Liquid Crystal on Silicon)の空間光変調器(SLM:Spatial Light Modulator)が用いられている。図8は、図7のレーザ加工装置の反射型空間光変調器の部分断面図である。図8に示すように、反射型空間光変調器203は、シリコン基板213、駆動回路層914、複数の画素電極214、誘電体多層膜ミラー等の反射膜215、配向膜999a、液晶層216、配向膜999b、透明導電膜217、及びガラス基板等の透明基板218を備え、これらがこの順に積層されている。
Here, the reflective spatial light modulator 203 will be described. The reflective spatial light modulator 203 corrects the aberration of the laser light L emitted from the laser light source 202. For example, the reflective spatial light modulator (SLM: Spatial Light) of a reflective liquid crystal (LCOS: Liquid Crystal on Silicon). Modulator) is used. FIG. 8 is a partial cross-sectional view of the reflective spatial light modulator of the laser processing apparatus of FIG. As shown in FIG. 8, the reflective spatial light modulator 203 includes a silicon substrate 213, a drive circuit layer 914, a plurality of pixel electrodes 214, a reflective film 215 such as a dielectric multilayer mirror, an alignment film 999a, a liquid crystal layer 216, An alignment film 999b, a transparent conductive film 217, and a transparent substrate 218 such as a glass substrate are provided, and these are stacked in this order.
透明基板218は、XY平面に沿った表面218aを有しており、該表面218aは反射型空間光変調器203の表面を構成する。透明基板218は、例えばガラス等の光透過性材料を主に含んでおり、反射型空間光変調器203の表面218aから入射した所定波長のレーザ光Lを、反射型空間光変調器203の内部へ透過する。透明導電膜217は、透明基板218の裏面218b上に形成されており、レーザ光Lを透過する導電性材料(例えばITO)を主に含んで構成されている。
The transparent substrate 218 has a surface 218 a along the XY plane, and the surface 218 a constitutes the surface of the reflective spatial light modulator 203. The transparent substrate 218 mainly contains a light transmissive material such as glass, for example, and the laser light L having a predetermined wavelength incident from the surface 218 a of the reflective spatial light modulator 203 is converted into the interior of the reflective spatial light modulator 203. To penetrate. The transparent conductive film 217 is formed on the back surface 218b of the transparent substrate 218, and mainly includes a conductive material (for example, ITO) that transmits the laser light L.
複数の画素電極214は、複数の画素の配列に従って二次元状に配列されており、透明導電膜217に沿ってシリコン基板213上に配列されている。各画素電極214は、例えばアルミニウム等の金属材料からなり、これらの表面214aは、平坦且つ滑らかに加工されている。複数の画素電極214は、駆動回路層914に設けられたアクティブ・マトリクス回路によって駆動される。
The plurality of pixel electrodes 214 are two-dimensionally arranged according to the arrangement of the plurality of pixels, and are arranged on the silicon substrate 213 along the transparent conductive film 217. Each pixel electrode 214 is made of a metal material such as aluminum, for example, and the surface 214a is processed flat and smoothly. The plurality of pixel electrodes 214 are driven by an active matrix circuit provided in the drive circuit layer 914.
アクティブ・マトリクス回路は、複数の画素電極214とシリコン基板213との間に設けられ、反射型空間光変調器203から出力しようとする光像に応じて各画素電極214への印加電圧を制御する。このようなアクティブ・マトリクス回路は、例えば図示しないX軸方向に並んだ各画素列の印加電圧を制御する第1のドライバ回路と、Y軸方向に並んだ各画素列の印加電圧を制御する第2のドライバ回路とを有しており、制御部250によって双方のドライバ回路で指定された画素の画素電極214に所定電圧が印加されるよう構成されている。
The active matrix circuit is provided between the plurality of pixel electrodes 214 and the silicon substrate 213, and controls the voltage applied to each pixel electrode 214 in accordance with the optical image to be output from the reflective spatial light modulator 203. . Such an active matrix circuit includes, for example, a first driver circuit that controls the applied voltage of each pixel column arranged in the X-axis direction (not shown) and a first driver circuit that controls the applied voltage of each pixel column arranged in the Y-axis direction. And a predetermined voltage is applied to the pixel electrode 214 of the pixel designated by both of the driver circuits by the control unit 250.
なお、配向膜999a,999bは、液晶層216の両端面に配置されており、液晶分子群を一定方向に配列させる。配向膜999a,999bは、例えばポリイミドといった高分子材料からなり、液晶層216との接触面にラビング処理等が施されたものが適用される。
Note that the alignment films 999a and 999b are arranged on both end faces of the liquid crystal layer 216, and the liquid crystal molecule groups are arranged in a certain direction. The alignment films 999a and 999b are made of, for example, a polymer material such as polyimide, and the contact surface with the liquid crystal layer 216 is subjected to a rubbing process or the like.
液晶層216は、複数の画素電極214と透明導電膜217との間に配置されており、各画素電極214と透明導電膜217とにより形成される電界に応じてレーザ光Lを変調する。すなわち、アクティブ・マトリクス回路によって或る画素電極214に電圧が印加されると、透明導電膜217と該画素電極214との間に電界が形成される。
The liquid crystal layer 216 is disposed between the plurality of pixel electrodes 214 and the transparent conductive film 217, and modulates the laser light L in accordance with an electric field formed by each pixel electrode 214 and the transparent conductive film 217. That is, when a voltage is applied to a certain pixel electrode 214 by the active matrix circuit, an electric field is formed between the transparent conductive film 217 and the pixel electrode 214.
この電界は、反射膜215及び液晶層216のそれぞれに対し、各々の厚さに応じた割合で印加される。そして、液晶層216に印加された電界の大きさに応じて液晶分子216aの配列方向が変化する。レーザ光Lが透明基板218及び透明導電膜217を透過して液晶層216に入射すると、このレーザ光Lは液晶層216を通過する間に液晶分子216aによって変調され、反射膜215において反射した後、再び液晶層216により変調されてから取り出されることとなる。そして、レーザ光Lのビーム波面を整形(変調)させるための収差補正(波面整形)パターンが液晶層216に表示され、これにより、液晶層216の収差補正パターンを透過したレーザ光Lは、当該収差補正パターンに応じて位相変調され収差が補正される。
This electric field is applied to each of the reflective film 215 and the liquid crystal layer 216 at a rate corresponding to the thickness of each. Then, the alignment direction of the liquid crystal molecules 216a changes according to the magnitude of the electric field applied to the liquid crystal layer 216. When the laser light L passes through the transparent substrate 218 and the transparent conductive film 217 and enters the liquid crystal layer 216, the laser light L is modulated by the liquid crystal molecules 216 a while passing through the liquid crystal layer 216 and reflected by the reflective film 215. Then, the light is again modulated by the liquid crystal layer 216 and taken out. Then, an aberration correction (wavefront shaping) pattern for shaping (modulating) the beam wavefront of the laser light L is displayed on the liquid crystal layer 216, whereby the laser light L transmitted through the aberration correction pattern of the liquid crystal layer 216 is Aberration is corrected by phase modulation according to the aberration correction pattern.
制御部205は、改質領域7を形成する際、収差補正パターンに関するパターン情報を反射型空間光変調器203に入力し、液晶層216上に所定の収差補正パターンを表示させることで、反射型空間光変調器203から出射されるレーザ光Lの収差を制御する。なお、反射型空間光変調器203に入力するパターン情報は逐次入力するようにしてもよいし、予め記憶されたパターン情報を選択して入力するようにしてもよい。
When forming the modified region 7, the control unit 205 inputs pattern information related to the aberration correction pattern to the reflective spatial light modulator 203 and displays a predetermined aberration correction pattern on the liquid crystal layer 216, thereby reflecting the reflective type. The aberration of the laser beam L emitted from the spatial light modulator 203 is controlled. Note that the pattern information input to the reflective spatial light modulator 203 may be input sequentially, or pattern information stored in advance may be selected and input.
ところで、厳密に言えば、反射型空間光変調器203で収差補正されたレーザ光Lは、空間を伝播することにより波面形状が変化してしまう。特に、反射型空間光変調器203から出射されたレーザ光Lや集光光学系204に入射するレーザ光Lが所定の拡がりを有する光(すなわち、平行光以外の光)である場合、反射型空間光変調器203での波面形状と集光光学系204での波面形状とが一致せず、結果的に、目的とする精密な内部加工を妨げるおそれがある。そこで、反射型空間光変調器203での波面形状と集光光学系204での波面形状とを一致させることが重要となる。そのためには、レーザ光Lが反射型空間光変調器203から集光光学系204に伝播したときの波面形状の変化を計測等により求め、その波面形状の変化を考慮した収差補正パターンのパターン情報を反射型空間光変調器203に入力することがより望ましい。
Strictly speaking, the laser light L whose aberration is corrected by the reflective spatial light modulator 203 changes its wavefront shape by propagating through the space. In particular, when the laser light L emitted from the reflective spatial light modulator 203 or the laser light L incident on the condensing optical system 204 is light having a predetermined spread (that is, light other than parallel light), the reflective light The wavefront shape in the spatial light modulator 203 and the wavefront shape in the condensing optical system 204 do not coincide with each other, and as a result, there is a possibility that the target precise internal processing may be hindered. Therefore, it is important to match the wavefront shape in the reflective spatial light modulator 203 with the wavefront shape in the condensing optical system 204. For this purpose, the change in the wavefront shape when the laser light L propagates from the reflective spatial light modulator 203 to the condensing optical system 204 is obtained by measurement or the like, and the pattern information of the aberration correction pattern in consideration of the change in the wavefront shape Is more preferably input to the reflective spatial light modulator 203.
或いは、反射型空間光変調器203での波面形状と集光光学系204での波面形状とを一致させるために、図9に示すように、反射型空間光変調器203と集光光学系204との間を進行するレーザ光Lの光路上に、調整光学系240を設けてもよい。これにより、正確に波面整形を実現することが可能となる。
Alternatively, in order to make the wavefront shape in the reflective spatial light modulator 203 coincide with the wavefront shape in the condensing optical system 204, as shown in FIG. 9, the reflective spatial light modulator 203 and the condensing optical system 204 are used. The adjusting optical system 240 may be provided on the optical path of the laser light L traveling between the two. This makes it possible to accurately realize wavefront shaping.
調整光学系240は、少なくとも2つのレンズ241a及びレンズ241bを有している。レンズ241a,241bは、反射型空間光変調器203での波面形状と集光光学系204での波面形状とを相似的に一致させるためのものである。レンズ241a,241bは、反射型空間光変調器203とレンズ241aとの距離がレンズ241aの焦点距離f1となり、集光光学系204とレンズ241bとの距離がレンズ241bの焦点距離f2となり、レンズ241aとレンズ241bとの距離がf1+f2となり、且つレンズ241aとレンズ241bとが両側テレセントリック光学系となるように、反射型空間光変調器203と反射部材208との間に配置されている。
The adjusting optical system 240 has at least two lenses 241a and 241b. The lenses 241a and 241b are for making the wavefront shape in the reflective spatial light modulator 203 and the wavefront shape in the condensing optical system 204 similar. In the lenses 241a and 241b, the distance between the reflective spatial light modulator 203 and the lens 241a is the focal length f1 of the lens 241a, the distance between the condensing optical system 204 and the lens 241b is the focal length f2 of the lens 241b, and the lens 241a. And the lens 241b are disposed between the reflective spatial light modulator 203 and the reflective member 208 so that the lens 241a and the lens 241b form a bilateral telecentric optical system.
このように配置することで、1°以下程度の小さな拡がり角を有するレーザ光Lであっても、反射型空間光変調器203での波面と集光光学系204での波面とを合わせることができる。また、レーザ光Lのビーム径は、f1とf2との比で決まる(集光光学系204に入射するレーザ光Lのビーム径は、反射型空間光変調器203から出射されるレーザ光Lのビーム径のf2/f1倍となる)。従って、レーザ光Lが平行光、或いは小さな拡がりを有する光のいずれの場合であっても、反射型空間光変調器203から出射される角度を保ったまま、集光光学系204に入射するレーザ光Lにおいて所望のビーム径を得ることができる。
By arranging in this way, even with the laser light L having a small divergence angle of about 1 ° or less, the wavefront in the reflective spatial light modulator 203 and the wavefront in the condensing optical system 204 can be matched. it can. The beam diameter of the laser light L is determined by the ratio of f1 and f2 (the beam diameter of the laser light L incident on the condensing optical system 204 is determined by the laser light L emitted from the reflective spatial light modulator 203. F2 / f1 times the beam diameter). Therefore, regardless of whether the laser light L is parallel light or light having a small spread, the laser incident on the condensing optical system 204 while maintaining the angle emitted from the reflective spatial light modulator 203. A desired beam diameter in the light L can be obtained.
なお、調整光学系240は、レンズ241a,241bのそれぞれの位置を独立して微調整する機構を備えることが望ましい。また、反射型空間光変調器203の有効エリアを有効に使用するために、反射型空間光変調器203とレーザ光源202との間のレーザ光Lの光路上にビームエキスパンダを設けてもよい。
The adjustment optical system 240 preferably includes a mechanism for independently fine-tuning the positions of the lenses 241a and 241b. In order to effectively use the effective area of the reflective spatial light modulator 203, a beam expander may be provided on the optical path of the laser light L between the reflective spatial light modulator 203 and the laser light source 202. .
次に、本実施形態に係るレーザ加工方法について説明する。
Next, the laser processing method according to this embodiment will be described.
本実施形態のレーザ加工方法は、例えば水晶振動子を製造するための水晶振動子の製造方法として用いられるものであって、六方柱状の結晶である水晶で形成された加工対象物1をレーザ加工装置200により複数の水晶チップに切断する。そこで、まず、図10を参照しつつ水晶振動子の全体の製造工程フローを概略説明する。
The laser processing method of the present embodiment is used, for example, as a method for manufacturing a crystal unit for manufacturing a crystal unit, and laser processing is performed on a processing target 1 formed of crystal that is a hexagonal columnar crystal. The apparatus 200 cuts into a plurality of crystal chips. First, an overall manufacturing process flow of the crystal resonator will be described with reference to FIG.
初めに、人工水晶原石を例えばダイヤモンド研削によって切り出し、所定サイズの棒状体(ランバード)に加工する(S1)。続いて、水晶振動子の温度特性要求に応じた切断角度をX線により測定し、この切断角度に基づいてランバードをワイヤーソー加工によって複数のウェハ状の加工対象物1に切断する(S2)。ここでの加工対象物1は、10mm×10mmの矩形板状を呈し、厚さ方向に対し35.15°傾斜した結晶軸を有している。
First, an artificial quartz crystal is cut out by, for example, diamond grinding and processed into a rod-shaped body (lumbard) of a predetermined size (S1). Subsequently, the cutting angle corresponding to the temperature characteristic requirement of the crystal resonator is measured by X-rays, and the lambard is cut into a plurality of wafer-like workpieces 1 by wire saw processing based on this cutting angle (S2). The workpiece 1 here has a rectangular plate shape of 10 mm × 10 mm, and has a crystal axis inclined by 35.15 ° with respect to the thickness direction.
続いて、ラッピング加工を加工対象物1の表面3及び裏面21に施し、その厚さを所定厚さとする(S3)。続いて、微小角度レベルで切断角度をX線により測定し、加工対象物1の選別及び分類を行った後、上記S3と同様なラッピング加工を加工対象物1の表面3及び裏面21に再度施し、加工対象物1の厚さを例えば100μm程度に微調整する(S4,S5)。
Subsequently, lapping is performed on the front surface 3 and the back surface 21 of the workpiece 1, and the thickness is set to a predetermined thickness (S3). Subsequently, the cutting angle is measured by X-rays at a minute angle level, and after selecting and classifying the workpiece 1, lapping processing similar to the above S3 is performed again on the front surface 3 and the back surface 21 of the workpiece 1. Then, the thickness of the workpiece 1 is finely adjusted to, for example, about 100 μm (S4, S5).
そして、切断加工及び外形加工として、加工対象物1に改質領域7を形成し当該改質領域7を切断の起点として加工対象物1を切断予定ライン5に沿って切断する(S6:詳しくは、後述)。これにより、±数μm以下の寸法精度の外形寸法を有する複数の水晶チップを得る。本実施形態では、表面3視において切断予定ライン5が格子状に加工対象物1に設定されており、1mm×0.5mmの矩形板状の水晶チップとして加工対象物1を切断する。
Then, as the cutting process and the outer shape process, the modified region 7 is formed in the workpiece 1, and the workpiece 1 is cut along the planned cutting line 5 using the modified region 7 as a starting point for cutting (S6: , Described later). As a result, a plurality of crystal chips having external dimensions with a dimensional accuracy of ± several μm or less are obtained. In the present embodiment, the line 5 to be cut is set in the processing object 1 in a lattice shape when viewed from the front surface 3, and the processing object 1 is cut as a rectangular plate-shaped crystal chip of 1 mm × 0.5 mm.
続いて、所定周波数となるように水晶チップに面取り加工(コンベックス加工)を施す共に、所定周波数となるようにエッチング加工により水晶チップの厚さを調整する(S7,S8)。その後、この水晶チップを水晶振動子として組み立てる(S9)。具体的には、水晶チップ上にスパッタリングにより電極を形成し、この水晶チップをマウンタ内に搭載し、真空雰囲気中で熱処理した後、イオンエッチングで水晶チップの電極を削り周波数を調整し、マウンタ内をシーム封止する。これにより、水晶振動子の製造が完了する。
Subsequently, the quartz chip is subjected to chamfering (convex machining) so as to have a predetermined frequency, and the thickness of the quartz chip is adjusted by etching so that the predetermined frequency is obtained (S7, S8). Thereafter, the crystal chip is assembled as a crystal resonator (S9). Specifically, an electrode is formed on the crystal chip by sputtering, this crystal chip is mounted in the mounter, heat-treated in a vacuum atmosphere, and then the frequency of the crystal chip electrode is adjusted by ion etching to adjust the frequency inside the mounter. Seal the seam. Thereby, the manufacture of the crystal unit is completed.
図8は、加工対象物を水晶チップに切断する工程を説明するための概略図である。図中においては、説明の便宜上、1つの切断予定ライン5に沿った切断を例示して示している。加工対象物1を水晶チップへ切断する上記S6においては、まず、加工対象物1の裏面21にエキスパンドテープ31を貼り付けて加工対象物1を支持台201(図7参照)上に載置する。
FIG. 8 is a schematic diagram for explaining a process of cutting a workpiece into a quartz chip. In the drawing, for convenience of explanation, the cutting along one cutting scheduled line 5 is illustrated as an example. In S6 for cutting the workpiece 1 into a crystal chip, first, the expanded tape 31 is attached to the back surface 21 of the workpiece 1 and the workpiece 1 is placed on the support table 201 (see FIG. 7). .
続いて、制御部205によりレーザエンジン230及び反射型空間光変調器203を制御し、切断予定ライン5に沿って、加工対象物1にレーザ光Lを適宜集光させて複数の改質スポットSを含む改質領域7を形成する(改質領域形成工程)。
Subsequently, the control unit 205 controls the laser engine 230 and the reflective spatial light modulator 203, and appropriately converges the laser beam L on the workpiece 1 along the scheduled cutting line 5, so that a plurality of modified spots S are obtained. The modified region 7 including the material is formed (modified region forming step).
具体的には、図11(a)に示すように、例えば出力0.03W、繰返し周波数15kHz及びパルス幅500ピコ秒ないし640ピコ秒でレーザ光Lを表面3側から照射しながら、このレーザ光Lを切断予定ライン5に沿って相対移動させ、加工対象物1の内部のみに位置する複数の第1改質スポットS1を切断予定ライン5に沿って一列形成する(第1スキャン)。
Specifically, as shown in FIG. 11 (a), while irradiating the laser beam L from the surface 3 side with an output of 0.03 W, a repetition frequency of 15 kHz, and a pulse width of 500 picoseconds to 640 picoseconds, for example, L is relatively moved along the planned cutting line 5, and a plurality of first modified spots S1 located only inside the workpiece 1 are formed in a line along the planned cutting line 5 (first scan).
続いて、図11(b)に示すように、例えば出力0.03W、繰返し周波数15kHz及びパルス幅500ピコ秒~640ピコ秒でレーザ光Lを表面3側から照射しながら、このレーザ光Lを切断予定ライン5に沿って相対移動させ、加工対象物1の表面3に露出する複数の第2改質スポットS2を切断予定ライン5に沿って一列形成する(第2スキャン)。
Subsequently, as shown in FIG. 11B, the laser beam L is emitted from the surface 3 side while irradiating the laser beam L from the surface 3 side with an output of 0.03 W, a repetition frequency of 15 kHz, and a pulse width of 500 picoseconds to 640 picoseconds, for example. It is relatively moved along the line to cut 5, a plurality of the second reforming spot S 2 a row formed along the line to cut 5 exposed to the surface 3 of the object 1 (second scan).
ここで、レーザ光入射面としての表面3に露出する第2改質スポットS2を形成する上記第2スキャンの際、単に加工対象物1の表面3にレーザ光Lを集光させるのではなく、このレーザ光Lの収差を加工対象物1内の表面3近傍に集光点が位置するよう補正すると、いわゆる空振り現象(レーザ光Lを加工対象物1に集光させても改質スポットSが形成されない現象)の発生を抑制し得ることが見出される。
Here, during the second reforming to form a spot S 2 the second scan exposed on the surface 3 of the laser light entrance surface, instead of being focused solely on the surface 3 of the object 1 with laser light L When the aberration of the laser beam L is corrected so that the focal point is positioned near the surface 3 in the workpiece 1, the so-called idling phenomenon (the modified spot S even if the laser beam L is condensed on the workpiece 1). It is found that the occurrence of a phenomenon in which no is formed can be suppressed.
そこで、上記第2スキャンにおいては、レーザ光Lの集光点が加工対象物1内の表面3近傍に位置するようレーザ光Lの収差を補正する所定の収差補正パターンを、反射型空間光変調器203の液晶層216に表示させる。これと共に、集光光学系204の焦点を加工対象物1の表面3に位置させる。この状態で、レーザ光Lを表面3側から照射する、すなわち、加工対象物1内の表面3近傍に集光点が位置するように収差補正したレーザ光Lを、レーザ光入射面としての表面3に集光させる。
In the second scan, therefore, a predetermined aberration correction pattern for correcting the aberration of the laser beam L so that the condensing point of the laser beam L is positioned in the vicinity of the surface 3 in the workpiece 1 is reflected by spatial reflection light modulation. The image is displayed on the liquid crystal layer 216 of the vessel 203. At the same time, the focal point of the condensing optical system 204 is positioned on the surface 3 of the workpiece 1. In this state, the laser beam L is irradiated from the surface 3 side, that is, the laser beam L whose aberration is corrected so that the focal point is located near the surface 3 in the workpiece 1 is a surface as a laser beam incident surface. 3 to collect light.
特に、本実施形態の上記第2スキャンでは、加工対象物1内の表面3から1μm~2μm内側の位置に集光点を位置させる所定の収差補正パターンを液晶層216に表示させており、これにより、加工対象物1内の表面3から1μm~2μm内側の位置に集光点が位置するよう収差補正したレーザ光Lを表面3に集光させる。
In particular, in the second scan of the present embodiment, a predetermined aberration correction pattern for positioning the condensing point at a position 1 μm to 2 μm inside from the surface 3 in the workpiece 1 is displayed on the liquid crystal layer 216. As a result, the laser beam L whose aberration is corrected so that the condensing point is located at a position 1 μm to 2 μm inside the surface 3 in the workpiece 1 is condensed on the surface 3.
これにより、図13に示すように、いわゆる空振り現象の発生を抑制することができる共に、表面3に露出する亀裂であるハーフカットを形成せずに、表面3に露出する複数の第2改質スポットS2(つまり、断続的に表面3から露出する改質領域7)のみを綺麗に切断予定ライン5に沿って継続的に形成することが可能となる。
As a result, as shown in FIG. 13, it is possible to suppress the occurrence of a so-called idling phenomenon, and to form a plurality of second modifications exposed on the surface 3 without forming a half cut that is a crack exposed on the surface 3. Only the spot S 2 (that is, the modified region 7 that is intermittently exposed from the surface 3) can be continuously formed cleanly along the planned cutting line 5.
続いて、上記第1及び第2スキャンを全ての切断予定ライン5について実施した後、図12(a)に示すように、加工対象物1に対し裏面21側から、エキスパンドテープ31を介して切断予定ライン5に沿うようにナイフエッジ32を押し当て、切断予定ライン5に沿って外部から加工対象物1に力を印加する(切断工程)。
Subsequently, after the first and second scans are performed for all the planned cutting lines 5, as shown in FIG. 12A, the workpiece 1 is cut from the back surface 21 side through the expanded tape 31. The knife edge 32 is pressed along the planned line 5 and a force is applied to the workpiece 1 from the outside along the planned cutting line 5 (cutting process).
これにより、複数の第1改質スポットS1が切断に主として寄与する改質スポットとして働くと共に、複数の第2改質スポットS2が切断をアシストする断続的な表面打痕としての改質スポットとして働くことになり、改質領域7を切断の起点として加工対象物1が複数の水晶チップに切断される。そして、図12(b)に示すように、エキスパンドテープ31を拡張させ、チップ間隔を確保する。以上により、加工対象物1が複数の水晶チップ10として切断される。
Thus, reforming spots with first reforming spots S 1 more acts primarily as contributing reforming spot cutting, as intermittent surface dents which second reforming spots S 2 multiple assists the cutting The workpiece 1 is cut into a plurality of quartz chips using the modified region 7 as a starting point for cutting. Then, as shown in FIG. 12B, the expanding tape 31 is expanded to ensure a chip interval. Thus, the workpiece 1 is cut as a plurality of crystal chips 10.
以上、本実施形態においては、加工対象物1の内部に位置する複数の第1改質スポットS1が切断予定ライン5に沿って形成されると共に、表面3に露出する複数の第2改質スポットS2が切断予定ライン5に沿って形成される。よって、複数の第1改質スポットS1により切断予定ライン5に沿って加工対象物1が容易に切断されると共に、表面3に露出する複数の第2改質スポットS2がいわゆる切取り線となるように作用し、かかる切断が当該複数の第2改質スポットS2によりアシストされることとなる。従って、加工対象物1を寸法精度よく切断することができ、加工品質を向上させることが可能となる。
As described above, in the present embodiment, a plurality of first modified spots S 1 positioned inside the workpiece 1 are formed along the planned cutting line 5 and a plurality of second modified spots exposed on the surface 3. spot S 2 is formed along the line to cut 5. Therefore, the object 1 is easily cut along the line to cut 5 by a plurality of first reforming spots S 1, and the second reforming spots S 2 more exposed on the surface 3 is a so-called tear-off line act so, such cutting is to be assisted by the second reforming spots S 2 of the plurality. Therefore, the workpiece 1 can be cut with high dimensional accuracy, and the processing quality can be improved.
特に、水晶で形成された加工対象物1においてハーフカットを生じさせると、このハーフカットは例えば水晶が有する加工特性のために蛇行し易いことから、切断後の加工対象物1の寸法精度を制御することは容易でない。この点、本実施形態では、上述したように、ハーフカットが第2改質スポットS2から形成されないようレーザ加工できるため、加工対象物1を一層寸法精度よく切断することが可能となる。
In particular, when a half-cut is generated in the workpiece 1 formed of quartz, the half-cut is easy to meander due to the processing characteristics of the quartz, for example, so that the dimensional accuracy of the workpiece 1 after cutting is controlled. It is not easy to do. In this regard, in the present embodiment, as described above, since the half-cut may be laser processing so as not to be formed from the second reforming spots S 2, the workpiece 1 can be cut more dimensional accuracy.
また、本実施形態では、上述したように、ナイフエッジ32を用いて加工対象物1に切断予定ライン5に沿って外部応力を印加し、改質領域7を切断の起点として加工対象物1を切断している。これにより、切断し難い水晶で形成された加工対象物1であっても、加工対象物1を確実に切断予定ライン5に沿って精度よく切断することが可能となる。
Further, in the present embodiment, as described above, external stress is applied to the workpiece 1 along the planned cutting line 5 using the knife edge 32, and the workpiece 1 is set with the modified region 7 as a starting point of cutting. Disconnected. Thereby, even if it is the process target object 1 formed with the crystal | crystallization which is hard to cut | disconnect, it becomes possible to cut | disconnect the process target object 1 reliably along the scheduled cutting line 5. FIG.
なお、表面3に露出する第2改質スポットS2を形成する際、加工対象物1内における表面3から1μm未満の位置に集光点が位置するよう収差補正したレーザ光Lを表面3に集光させる場合、及び、表面3から2μmよりも離れた位置に集光点が位置するよう収差補正したレーザ光Lを表面3に集光させる場合、いわゆる空振り現象が発生し易い。よってこれらの場合、加工品質が低下してしまうことになる。
When forming the second modified spot S 2 exposed on the surface 3, the laser beam L corrected for aberration so that the focal point is located at a position less than 1 μm from the surface 3 in the workpiece 1 is applied to the surface 3. When condensing, and when condensing the laser beam L corrected for aberration so that the condensing point is located at a position more than 2 μm away from the surface 3, a so-called idling phenomenon is likely to occur. Therefore, in these cases, the processing quality is degraded.
図14は、比較例に係る第2改質スポットが形成された加工対象物の表面を示す写真図である。図中では、加工対象物1内の表面3から3~6μm内側の位置に集光点が位置するよう収差補正したレーザ光Lを、表面3に集光させて第2改質スポットS2を形成している。図14に示すように、表面3に露出する第2改質スポットS2を形成する際、表面3から深い位置に集光点が位置するよう収差補正をしてレーザ光Lを表面3に集光させた場合には、空振り現象が発生しているのがわかる(図中の枠内参照)。
FIG. 14 is a photographic diagram showing the surface of the workpiece on which the second modified spot according to the comparative example is formed. In the figure, the laser beam L whose aberration has been corrected so that the focal point is located at a position 3 to 6 μm inside the surface 3 in the workpiece 1 is condensed on the surface 3 to form the second modified spot S 2 . Forming. As shown in FIG. 14, when the second modified spot S 2 exposed on the surface 3 is formed, aberration correction is performed so that the condensing point is located deep from the surface 3, and the laser light L is collected on the surface 3. When light is applied, it can be seen that an idling phenomenon has occurred (see the frame in the figure).
ちなみに、水晶振動子は水晶の材料そのものの特性を利用するデバイスであることから、水晶振動子用の水晶チップは寸法精度が温度特性や振動子特性に大きく影響を与える。この点において、水晶チップとして寸法精度よく加工対象物1を切断可能な本実施形態は、特に有効なものである。また、表面3に第2改質スポットS2が残存(露出)した場合でも、水晶チップの温度特性や振動子特性に与える影響は少ない。また、レーザ光Lの加工点出力を単に上げても、いわゆる空振り現象の発生を抑制するのは困難であるだけでなく、表面3に焦げや傷が発生し易くなるために好ましくない。
Incidentally, since a crystal resonator is a device that uses the characteristics of the crystal material itself, the dimensional accuracy of a crystal chip for a crystal resonator greatly affects temperature characteristics and resonator characteristics. In this respect, the present embodiment that can cut the workpiece 1 with high dimensional accuracy as a quartz chip is particularly effective. Further, even if the second reforming spots S 2 remained (exposed) on the surface 3, it is small effect on the temperature characteristics and the transducer characteristics of the crystal chip. Further, simply increasing the processing point output of the laser beam L is not preferable because it is difficult not only to suppress the so-called idling phenomenon but also to easily cause burns and scratches on the surface 3.
以上、本発明の好適な実施形態について説明したが、本発明は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用してもよい。
The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments. The present invention can be modified without departing from the scope described in the claims or applied to other embodiments. May be.
例えば、上記実施形態では、反射型空間光変調器203としてLCOS-SLMを用いたが、MEMS(メムス)-SLM、又はDMD(デフォーマブルミラーデバイス)等を用いてもよい。上記実施形態の反射型空間光変調器203は誘電体多層膜ミラーを備えていたが、シリコン基板の画素電極の反射を利用してもよい。さらに、上記実施形態では、反射型空間光変調器203を用いたが、透過型の空間光変調器でもよい。空間光変調器としては、液晶セルタイプ、LCDタイプのものが挙げられる。
For example, in the above embodiment, the LCOS-SLM is used as the reflective spatial light modulator 203, but a MEMS-SLM, a DMD (deformable mirror device), or the like may be used. Although the reflective spatial light modulator 203 of the above embodiment includes the dielectric multilayer mirror, the reflection of the pixel electrode of the silicon substrate may be used. Furthermore, although the reflective spatial light modulator 203 is used in the above embodiment, a transmissive spatial light modulator may be used. Examples of the spatial light modulator include a liquid crystal cell type and an LCD type.
また、上記実施形態では、加工対象物1内の表面3近傍に集光点が位置するようにレーザ光Lの収差を補正した状態で当該レーザ光Lを表面3に集光させることにより、第2改質スポットS2を形成したが、これに限定されず、要は、レーザ光入射面に露出する第2改質スポットをハーフカットが発生しないよう形成できればよい。例えば、制御部205でレーザ加工装置200を適宜制御することによって第2改質スポットS2を形成してもよい。
In the above embodiment, the laser light L is condensed on the surface 3 in a state where the aberration of the laser light L is corrected so that the condensing point is positioned in the vicinity of the surface 3 in the workpiece 1. were formed 2 reforming spots S 2, is not limited to this, short, it is sufficient form to a second reforming spots exposed to the laser light entrance surface half cutting does not occur. For example, the control unit 205 may form a second reformed spot S 2 by appropriately controlling the laser processing apparatus 200.
また、上記実施形態では、第1改質スポットS1を形成した後に第2改質スポットS2を形成しているが、第2改質スポットS2を形成した後に第1改質スポットS1を形成してもよい。厚さ方向の位置が互いに異なる複数列の改質領域7を加工対象物1に形成する場合、これら改質領域7の形成順序は順不同である。
Further, in the above embodiment, to form a second reformed spots S 2 after forming the first modified spots S 1, the first reforming spots S 1 after forming the second modified spots S 2 May be formed. When a plurality of rows of modified regions 7 having different positions in the thickness direction are formed on the workpiece 1, the order of forming these modified regions 7 is in no particular order.
上記において、収差補正に関する各数値は、加工上、製造上及び設計上等の誤差を許容するものである。なお、本発明は、上記レーザ加工方法により水晶振動子を製造する水晶振動子の製造方法又は製造装置として捉えることもできる一方、水晶振動子を製造するものに限定されず、水晶で形成された加工対象物を切断するための種々の方法又は装置に適用可能である。
In the above, each numerical value relating to aberration correction allows for errors in processing, manufacturing, and design. The present invention can also be regarded as a crystal resonator manufacturing method or manufacturing apparatus for manufacturing a crystal resonator by the laser processing method described above, but is not limited to a crystal resonator manufacturing method and is formed of crystal. The present invention can be applied to various methods or apparatuses for cutting a workpiece.
水晶で形成された加工対象物を寸法精度よく切断することが可能となる。
It becomes possible to cut a workpiece formed of crystal with high dimensional accuracy.
1…加工対象物、5…切断予定ライン、7…改質領域、L…レーザ光、S…改質スポット、S1…第1改質スポット、S2…第2改質スポット。
1 ... workpiece, 5 ... line to cut 7 ... modified region, L ... laser light, S ... modified spot, S 1 ... first modified spot, S 2 ... second modified spots.
Claims (2)
- 水晶で形成された加工対象物を切断予定ラインに沿って切断するためのレーザ加工方法であって、
前記加工対象物にレーザ光を集光させることにより、前記切断予定ラインに沿って、複数の改質スポットを含む改質領域を前記加工対象物に形成する改質領域形成工程を備え、
前記改質領域形成工程は、
前記加工対象物に対し前記レーザ光を照射しながら前記切断予定ラインに沿って相対移動させ、前記加工対象物の内部に位置する複数の第1改質スポットを前記切断予定ラインに沿って形成する工程と、
前記加工対象物に対し前記レーザ光を照射しながら前記切断予定ラインに沿って相対移動させ、前記加工対象物のレーザ光入射面に露出する複数の第2改質スポットを、前記レーザ光入射面に露出する亀裂が形成されないように前記切断予定ラインに沿って形成する工程と、を含むことを特徴とするレーザ加工方法。 A laser processing method for cutting a processing object formed of crystal along a planned cutting line,
A focused region forming step of forming a modified region including a plurality of modified spots on the workpiece along the planned cutting line by condensing a laser beam on the workpiece;
The modified region forming step includes
While irradiating the laser beam to the object to be processed, the object is relatively moved along the planned cutting line, and a plurality of first modified spots located inside the processing object are formed along the planned cutting line. Process,
A plurality of second modified spots exposed to the laser beam incident surface of the workpiece are moved relative to each other along the planned cutting line while irradiating the laser beam to the workpiece, and the laser beam incident surface Forming along the planned cutting line so as not to form a crack that is exposed to the surface. - 前記切断予定ラインに沿って外部から前記加工対象物に力を印加することにより、前記改質領域を切断の起点として前記加工対象物を切断する切断工程をさらに備えたことを特徴とする請求項1記載のレーザ加工方法。 The method further comprises a cutting step of cutting the workpiece from the modified region as a starting point by applying a force to the workpiece from the outside along the planned cutting line. The laser processing method according to 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011203400A JP2013063455A (en) | 2011-09-16 | 2011-09-16 | Laser machining method |
JP2011-203400 | 2011-09-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013039006A1 true WO2013039006A1 (en) | 2013-03-21 |
Family
ID=47883237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/072930 WO2013039006A1 (en) | 2011-09-16 | 2012-09-07 | Laser machining method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2013063455A (en) |
TW (1) | TW201334902A (en) |
WO (1) | WO2013039006A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114401811A (en) * | 2019-09-11 | 2022-04-26 | 浜松光子学株式会社 | Laser processing device and laser processing method |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3164828B1 (en) | 2014-07-01 | 2018-08-29 | Qiova | Micromachining method and system for patterning a material, and method for using one such micromachining system |
US10576585B1 (en) | 2018-12-29 | 2020-03-03 | Cree, Inc. | Laser-assisted method for parting crystalline material |
US11024501B2 (en) | 2018-12-29 | 2021-06-01 | Cree, Inc. | Carrier-assisted method for parting crystalline material along laser damage region |
US10562130B1 (en) | 2018-12-29 | 2020-02-18 | Cree, Inc. | Laser-assisted method for parting crystalline material |
US10611052B1 (en) | 2019-05-17 | 2020-04-07 | Cree, Inc. | Silicon carbide wafers with relaxed positive bow and related methods |
CN110216389A (en) * | 2019-07-01 | 2019-09-10 | 大族激光科技产业集团股份有限公司 | A kind of laser processing and system of wafer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007284310A (en) * | 2006-04-19 | 2007-11-01 | Seiko Epson Corp | Laser scribing method, laser beam machining equipment and electrooptical device |
JP2009067612A (en) * | 2007-09-11 | 2009-04-02 | Seiko Epson Corp | Method of dividing board and laser irradiation apparatus |
JP2011051011A (en) * | 2009-08-03 | 2011-03-17 | Hamamatsu Photonics Kk | Laser beam machining method and method for manufacturing semiconductor device |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005142303A (en) * | 2003-11-05 | 2005-06-02 | Disco Abrasive Syst Ltd | Method of dividing silicon wafer, and apparatus thereof |
JP2006315017A (en) * | 2005-05-11 | 2006-11-24 | Canon Inc | Laser beam cutting method, and member to be cut |
JP2007012733A (en) * | 2005-06-29 | 2007-01-18 | Seiko Epson Corp | Dividing method of substrate |
JP4977980B2 (en) * | 2005-08-29 | 2012-07-18 | セイコーエプソン株式会社 | Laser irradiation apparatus and laser scribing method |
JP2007130768A (en) * | 2005-11-08 | 2007-05-31 | Seiko Epson Corp | Cutting method of quartz substrate |
JP4816390B2 (en) * | 2005-11-16 | 2011-11-16 | 株式会社デンソー | Semiconductor chip manufacturing method and semiconductor chip |
JP2007165835A (en) * | 2005-11-16 | 2007-06-28 | Denso Corp | Laser dicing method and semiconductor wafer |
JP4826773B2 (en) * | 2005-11-16 | 2011-11-30 | 株式会社デンソー | Laser dicing method |
JP4777761B2 (en) * | 2005-12-02 | 2011-09-21 | 株式会社ディスコ | Wafer division method |
JP5232375B2 (en) * | 2006-10-13 | 2013-07-10 | アイシン精機株式会社 | Method for separating semiconductor light emitting device |
JP5119463B2 (en) * | 2006-09-22 | 2013-01-16 | Dowaエレクトロニクス株式会社 | Light emitting device and manufacturing method thereof |
-
2011
- 2011-09-16 JP JP2011203400A patent/JP2013063455A/en active Pending
-
2012
- 2012-09-07 WO PCT/JP2012/072930 patent/WO2013039006A1/en active Application Filing
- 2012-09-13 TW TW101133480A patent/TW201334902A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007284310A (en) * | 2006-04-19 | 2007-11-01 | Seiko Epson Corp | Laser scribing method, laser beam machining equipment and electrooptical device |
JP2009067612A (en) * | 2007-09-11 | 2009-04-02 | Seiko Epson Corp | Method of dividing board and laser irradiation apparatus |
JP2011051011A (en) * | 2009-08-03 | 2011-03-17 | Hamamatsu Photonics Kk | Laser beam machining method and method for manufacturing semiconductor device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114401811A (en) * | 2019-09-11 | 2022-04-26 | 浜松光子学株式会社 | Laser processing device and laser processing method |
Also Published As
Publication number | Publication date |
---|---|
TW201334902A (en) | 2013-09-01 |
JP2013063455A (en) | 2013-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5840215B2 (en) | Laser processing method and laser processing apparatus | |
JP6353683B2 (en) | Laser processing apparatus and laser processing method | |
JP5632751B2 (en) | Processing object cutting method | |
JP6272301B2 (en) | Laser processing apparatus and laser processing method | |
JP6039217B2 (en) | Laser processing method | |
JP6258787B2 (en) | Laser processing apparatus and laser processing method | |
TWI647043B (en) | Laser processing device and laser processing method | |
JP5479924B2 (en) | Laser processing method | |
JP5451238B2 (en) | Laser processing method | |
JP5905274B2 (en) | Manufacturing method of semiconductor device | |
JP5479925B2 (en) | Laser processing system | |
US10322526B2 (en) | Laser processing method | |
JP6272145B2 (en) | Laser processing apparatus and laser processing method | |
WO2013039006A1 (en) | Laser machining method | |
JP6715632B2 (en) | Laser processing method and laser processing apparatus | |
JP5844089B2 (en) | Laser processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12831283 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12831283 Country of ref document: EP Kind code of ref document: A1 |