[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013038970A1 - Light emitting device, display device, and illumination device - Google Patents

Light emitting device, display device, and illumination device Download PDF

Info

Publication number
WO2013038970A1
WO2013038970A1 PCT/JP2012/072600 JP2012072600W WO2013038970A1 WO 2013038970 A1 WO2013038970 A1 WO 2013038970A1 JP 2012072600 W JP2012072600 W JP 2012072600W WO 2013038970 A1 WO2013038970 A1 WO 2013038970A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light
light emitting
layer
bank
Prior art date
Application number
PCT/JP2012/072600
Other languages
French (fr)
Japanese (ja)
Inventor
充浩 向殿
悦昌 藤田
別所 久徳
礼隆 遠藤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011198501A external-priority patent/JP2014225323A/en
Priority claimed from JP2012049319A external-priority patent/JP2014225330A/en
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013038970A1 publication Critical patent/WO2013038970A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present invention relates to a light emitting device that emits light by applying a voltage to an organic light emitting layer, and a display device and an illumination device including the light emitting device.
  • the need for flat panel displays has increased with the advancement of information technology in society.
  • the flat panel display include a non-self-luminous liquid crystal display (LCD), a self-luminous plasma display (PDP), an inorganic electroluminescence (inorganic EL) display, and organic electroluminescence (hereinafter, “organic EL”). Or a display or the like.
  • organic EL Organic light emitting diode
  • organic EL still has problems such as low luminous efficiency, high power consumption, short lifetime, and low reliability.
  • ⁇ (ext) is the external quantum efficiency
  • ⁇ ext is the external light extraction efficiency
  • is the internal quantum efficiency
  • is the carrier balance
  • ⁇ r is the exciton generation establishment
  • ⁇ f is the fluorescence quantum yield.
  • the internal quantum efficiency has steadily improved with the progress of materials, and in particular, has been greatly improved with the progress of phosphorescent materials utilizing triplet states.
  • light extraction efficiency remains a major issue.
  • the refractive index of the organic light emitting layer, the transparent electrode layer, the glass substrate, etc. used is larger than that of air, light cannot be efficiently extracted from the total reflection condition based on Snell's law.
  • the amount of light that can be extracted is usually about 15 to 30%, and most of the light is lost without being emitted to the outside.
  • the low light extraction efficiency not only lowers the light emission efficiency and increases the power consumption. Since more current must be passed in order to obtain the desired brightness, the life and reliability are also affected. Conversely, if the light extraction efficiency is improved, it can be said that a great improvement can be expected with respect to the light emission efficiency, power consumption, lifetime, reliability, and the like of the organic EL.
  • Patent Document 1 discloses an invention in which a low refractive index layer having a refractive index in the range of 1.01 to 1.3 is provided on the surface of the transparent conductive layer opposite to the light emitting layer.
  • Patent Document 2 a leaching light diffusion layer in which particles that scatter light are diffused in a matrix resin made of a low refractive index material is provided between a transparent electrode layer and a light-transmitting substrate.
  • Patent Document 3 discloses an invention in which a light extraction layer composed of a large number of fine particles is provided on a substrate surface on the light extraction side.
  • Patent Document 4 discloses an invention in which the light extraction efficiency is improved by forming a pixel with a concave structure.
  • Patent Document 5 discloses an invention in which the light extraction efficiency is improved by providing a reflective layer on the side surface of a pixel.
  • Patent Document 6 discloses that, in an organic EL element in which a phosphor layer is combined with an organic EL light emitting unit, a reflective film made of a resin containing metal powder, metal particles, or a white pigment is provided on the side surface of the phosphor layer.
  • Patent Document 7 discloses an invention in which light is extracted using a bank having a tapered side surface.
  • the light extraction efficiency can be improved, but the effect of improving the light extraction efficiency is limited. In other words, no measures have been taken against the fact that light propagates along the surface direction through the organic light emitting layer or the electrode and the light emitted to the outside decreases.
  • the typical refractive index of an organic light emitting layer is about 1.8
  • the typical refractive index of an insulating layer (bank) is about 1.5 to 1.8
  • the typical refractive index of ITO which is a transparent electrode layer Is about 2.1 to 2.2, and is totally reflected at the interface with the low refractive index layer because of the difference in refractive index from the low refractive index layer (with a refractive index of about 1.0 to 1.3).
  • the totally reflected component propagates along the surface direction through the organic light emitting layer, the insulating layer, the transparent electrode layer, and the like, and is lost without being emitted to the outside.
  • Insulating layer for partitioning the transparent electrode layer in each pixel region of the organic light emitting layer (bank) is conventionally polymethyl methacrylate, is composed of a polymer material or an inorganic material such as SiO 2, such as polyimide, or color transparent It was black. For this reason, when the insulating layer (bank) is black, the light spread along the surface direction is absorbed by the insulating layer and lost. Further, when the insulating layer (bank) is transparent (light transmissive), light propagates toward the adjacent organic light emitting layer or transparent electrode layer through the insulating layer and is lost.
  • Patent Documents 5 and 6 disclose a technique for improving the light extraction efficiency by forming a reflection film on the side surface of the light emitting portion. Further, Patent Document 6 discloses metal powder, metal particles as the reflection film. Alternatively, it is disclosed that the resin is made of a resin containing a white pigment, but there are structural and process problems.
  • Patent Document 6 a technique for forming a reflective film on the side surface of the phosphor layer and a technique made of a resin containing metal powder, metal particles, or a white pigment as the reflective film are disclosed. There is no disclosure or suggestion about application to the light emitting part. Further, when this technique is applied to an organic EL light emitting unit and a reflective film is formed on the side surface of the organic light emitting unit, structural problems arise in terms of structure. First, the organic material used for the light emitting portion of the organic EL is extremely weak against moisture, oxygen, solvent, etc., and it is extremely difficult to form a reflective film on the side surface of the organic EL light emitting portion.
  • this technique has a problem that it cannot be applied to a structure in which the light emitting layer is formed on the entire surface without being separated for each pixel, regardless of whether the light emitting layer is separately formed for each pixel of the organic EL. Furthermore, when considering the optical loss due to the optical waveguide from the organic EL light emitting part, it is necessary to consider the waveguide from other than the light emitting part such as an electrode. However, Patent Document 6 does not disclose or suggest any of them. .
  • Patent Document 7 an invention is disclosed in which light is extracted using a bank having a tapered side surface.
  • the light is guided through an organic layer or a transparent electrode.
  • the light escaping in the lateral direction is not completely lost, and the light extraction effect is not sufficient.
  • control of the taper angle is important, the process margin when considering production is narrow.
  • the present invention has been made in view of the above circumstances, and provides a light emitting device, a display device, and a lighting device that can efficiently emit light emitted from an organic light emitting layer toward the outside and emit light with high luminance.
  • the purpose is to do.
  • the light-emitting device includes a first substrate, a second electrode including a first electrode and a light-transmissive conductive material, which are sequentially stacked on one surface of the first substrate, the first electrode, and the second electrode.
  • An organic light emitting layer formed between the electrodes, and a first bank for partitioning at least the first electrode into a predetermined region, wherein the first bank is made of a light-reflective material, The emitted light is emitted to the outside through the second electrode.
  • the first electrode may include a light shielding property.
  • the first electrode may include a light reflective conductive material.
  • the light-emitting device may further include an insulating film that covers the second electrode and the bank.
  • the light-emitting device may further include a second substrate provided on the second electrode.
  • the light-emitting device in one embodiment of the present invention may further include a low refractive index layer that is provided between the second substrate and the second electrode and has a refractive index lower than that of the second substrate.
  • the low refractive index layer may be a gas.
  • the light-emitting device may further include a light-reflective counter bank provided on the second substrate and facing the bank.
  • the light-emitting device further includes a reflective layer disposed between the first substrate and the first electrode, an intermediate layer disposed between the first electrode and the reflective layer,
  • the first electrode may include a light transmissive conductive material
  • the intermediate layer may include a light transmissive material.
  • the intermediate layer may include a connection region that electrically connects the first electrode and the reflective layer.
  • the light emitting device is further disposed between the second substrate provided to face the first substrate and the first substrate and the second substrate, and more than the second substrate.
  • the light-emitting device further includes an intermediate layer disposed between the first substrate and the first electrode, the first substrate including a light-reflective material, One electrode may include a light-transmitting conductive material, and the intermediate layer may include a light-transmitting material.
  • the bank and the reflective layer may be partially in contact with each other.
  • the distance from the center position of the light emitting region of the organic layer to the first electrode may be set to be 200 nm or more.
  • the material included in the bank may be a material having light diffusibility.
  • the material included in the bank may be white.
  • the material included in the bank may include a resin and fine particles dispersed in the resin.
  • the particle size of the particles may be 200 nm or more and 5 ⁇ m or less.
  • the first bank includes a second bank, a third bank, and a light reflection film
  • the second bank is formed on the first substrate, and the light reflection film May cover the second bank
  • the third bank may cover the light reflecting film
  • the third bank may include a light transmissive material
  • the second bank may be black.
  • the material included in the third bank may further have light scattering properties.
  • An illumination device includes the light emitting device and a drive unit that controls the light emitting device.
  • An illumination device includes the light emitting device and a drive unit that controls the light emitting device.
  • FIG. 1 is a schematic sectional view showing a light emitting device according to the first embodiment.
  • the light emitting device 10 includes a substrate 11, a first electrode (lower electrode) 12, a second electrode (upper electrode) 13, and an organic light emitting layer 14.
  • the first electrode (lower electrode) 12 and the second electrode (upper electrode) 13 are sequentially stacked on one surface 11 a of the substrate 11.
  • the organic light emitting layer 14 is formed between the first electrode 12 and the second electrode 13.
  • a bank (insulating layer) 15 that partitions the first electrode 12 into a plurality of predetermined regions is formed on the one surface 11a of the substrate 11.
  • Such a bank 15 divides the first electrode 12 into a plurality of parts corresponding to a region corresponding to one pixel of the organic light emitting layer 14, for example, and electrically insulates the divided first electrodes 12 from each other. .
  • a sufficient dehydration process baking process, bake process, It is preferable to perform a vacuum drying step or the like.
  • the substrate 11 is light-transmitting or light-impermeable (light-blocking) and is made of, for example, glass, resin, metal plate, or the like.
  • the first electrode (lower electrode) 12 may be light-shielding or light-transmissive. If it is light transmissive, it may be a transparent electrode.
  • ITO Indium-tin-oxide
  • ZnO Zinc oxide
  • a metal film may be used.
  • the first electrode (lower electrode) 12 When the first electrode (lower electrode) 12 is light-shielding, the emitted light is taken out from the second electrode (upper electrode) 13 side, and becomes a so-called top emission type organic EL. In addition, when the first electrode (lower electrode) 12 is light transmissive, the emitted light is extracted from both surfaces of the first electrode (lower electrode) 12 and the second electrode (upper electrode) 13, This is a so-called double-sided organic EL.
  • the thickness of the first electrode 12 is about 100 nm, for example.
  • the first electrode 12 is usually an anode, but may be a cathode. In that case, a material having a low work function is used.
  • auxiliary wiring may be provided for the purpose of reducing wiring resistance.
  • the auxiliary wiring can be formed of a metal material such as Al, Ag, Ta, Ti, Ni, for example.
  • the first electrode (lower electrode) 12 is divided into a plurality of predetermined areas by banks (insulating layers) 15.
  • the first electrode (lower electrode) 12 may be partitioned for each region corresponding to one pixel.
  • the second electrode (upper electrode) 13 is composed of a light transmissive transparent electrode, whereby the light emitted from the organic light emitting layer 14 is emitted to the outside through the second electrode (upper electrode) 13. It becomes an emission type light emitting device.
  • the second electrode 13 normally forms a cathode, and LiF / ITO, MgAg / IZO, or the like can be used.
  • the second electrode (upper electrode) 13 may be an anode, and in this case, a material having a high work function, such as ITO, is preferably used.
  • various known electrode materials can be used as the electrode material for forming the first electrode 12 and the second electrode 13.
  • a metal such as gold (Au), platinum (Pt), nickel (Ni) or the like having a work function of 4.5 eV or more from the viewpoint of more efficiently injecting holes into the organic light emitting layer 14.
  • oxide (ITO) made of indium (In) and tin (Sn), oxide of tin (Sn) (SnO 2 ), oxide made of indium (In) and zinc (Zn) (IZO), etc. are transparent It is mentioned as an electrode material.
  • lithium (Li), calcium (Ca), cerium (Ce) having a work function of 4.5 eV or less from the viewpoint of more efficiently injecting electrons into the organic light emitting layer 14.
  • metals such as barium (Ba) and aluminum (Al), or alloys such as Mg: Ag alloy and Li: Al alloy containing these metals.
  • the first electrode 12 and the second electrode 13 can be formed using the above materials by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, a resistance heating vapor deposition method, etc.
  • the forming method is not limited. If necessary, the formed electrode can be patterned by a photolithographic fee method or a laser peeling method, or a patterned electrode can be directly formed by combining with a shadow mask.
  • the film thickness is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance is increased, which may increase the drive voltage.
  • the organic light emitting layer (organic EL light emitter) 14 emits light in a predetermined wavelength band by a voltage applied between the first electrode 12 and the second electrode 13.
  • the organic light emitting layer (organic EL light emitter) 14 may be a single layer, but is usually composed of a plurality of layers. For example, a laminated film of ⁇ -NPD and Alq3 can be used.
  • a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, between a first electrode (lower electrode) 12 serving as an anode and a second electrode (upper electrode) 13 serving as a cathode It is also practiced to form a multi-layered organic light emitting layer composed of an electron injection layer or the like.
  • a light-emitting element using a quantum dot-containing layer is called a QLED (Quantum-dot light-emitting diode).
  • QLED Quantum-dot light-emitting diode
  • tandem structure in which light emitting regions are stacked can also be used.
  • positioned between the 1st electrode 12 and the 2nd electrode 13 each layer is about several tens of nm normally.
  • the technique can be applied to a light-emitting element that has not been invented or a light-emitting element that is not generally recognized. .
  • Organic light emitting layer 14 includes the following configurations, but the present embodiment is not limited thereto.
  • the organic light emitting layer 14 may be composed of only the organic light emitting material exemplified below, or may be composed of a combination of a light emitting dopant and a host material, and optionally, a hole transport material, an electron transport material, Additives (donor, acceptor, etc.) may be included, and these materials may be dispersed in a polymer material (binding resin) or an inorganic material. From the viewpoint of luminous efficiency and lifetime, it is preferable that a luminescent dopant is dispersed in the host material.
  • the organic light emitting material a known light emitting material for an organic light emitting layer can be used.
  • Such light-emitting materials are classified into low-molecular light-emitting materials, polymer light-emitting materials, and the like. Specific examples of these compounds are given below, but the present embodiment is not limited to these materials.
  • the light-emitting material may be classified into a fluorescent material, a phosphorescent material, and the like, and it is preferable to use a phosphorescent material with high light emission efficiency from the viewpoint of reducing power consumption.
  • this embodiment is not limited to these materials.
  • a known dopant material for an organic light emitting layer can be used.
  • a dopant material for example, as an ultraviolet light emitting material, p-quaterphenyl, 3,5,3,5 tetra-t-butylsecphenyl, 3,5,3,5 tetra-t-butyl-p -Fluorescent materials such as quinckphenyl.
  • Fluorescent light-emitting materials such as styryl derivatives, bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III) (FIrpic), bis (4 ′, 6′-difluorophenyl) And phosphorescent organometallic complexes such as polydinato) tetrakis (1-pyrazolyl) borate iridium (III) (FIr 6 ).
  • a known host material for organic EL can be used as a host material when using a dopant.
  • host materials include the low-molecular light-emitting materials, the polymer light-emitting materials, 4,4′-bis (carbazole) biphenyl, 9,9-di (4-dicarbazole-benzyl) fluorene (CPF), 3 , 6-bis (triphenylsilyl) carbazole (mCP), carbazole derivatives such as (PCF), aniline derivatives such as 4- (diphenylphosphoyl) -N, N-diphenylaniline (HM-A1), 1,3- And fluorene derivatives such as bis (9-phenyl-9H-fluoren-9-yl) benzene (mDPFB) and 1,4-bis (9-phenyl-9H-fluoren-9-yl) benzene (pDPFB).
  • the charge injection / transport layer is used to more efficiently inject charges (holes, electrons) from the electrode and transport (injection) to the light emitting layer, and the charge injection layer (hole injection layer, electron injection layer). It is classified as a transport layer (hole transport layer, electron transport layer), and may be composed only of the charge injection transport material exemplified below, and may optionally contain additives (donor, acceptor, etc.) These materials may be dispersed in a polymer material (binding resin) or an inorganic material.
  • charge injecting and transporting material a known charge transporting material for the organic light emitting layer can be used.
  • charge injecting and transporting materials are classified into hole injecting and transporting materials and electron injecting and transporting materials. Specific examples of these compounds are given below, but this embodiment is not limited to these materials. .
  • hole injection hole transport materials include oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 3 ), inorganic p-type semiconductor materials, porphyrin compounds, N, N′-bis (3- Aromatic tertiary compounds such as methylphenyl) -N, N′-bis (phenyl) -benzidine (TPD), N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPD)
  • TPD N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine
  • Low molecular weight materials such as quaternary amine compounds, hydrazone compounds, quinacridone compounds, styrylamine compounds, polyaniline (PANI), polyaniline-camphor sulfonic acid (PANI-CSA), 3,4-polyethylenedioxythiophene / polystyrene sulf
  • the highest occupied molecular orbital (HOMO) is better than the hole injection and transport material used for the hole transport layer. It is preferable to use a material having a low energy level, and as the hole transport layer, it is preferable to use a material having higher hole mobility than the hole injection transport material used for the hole injection layer.
  • the hole injection / transport material in order to improve the hole injection and transport properties, it is preferable to dope the hole injection / transport material with an acceptor.
  • an acceptor the well-known acceptor material for organic light emitting layers can be used. Although these specific compounds are illustrated below, this embodiment is not limited to these materials.
  • Acceptor materials include Au, Pt, W, Ir, POCl 3 , AsF 6 , Cl, Br, I, vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 3 ) and other inorganic materials, TCNQ (7, 7 , 8,8, -tetracyanoquinodimethane), TCNQF 4 (tetrafluorotetracyanoquinodimethane), TCNE (tetracyanoethylene), HCNB (hexacyanobutadiene), DDQ (dicyclodicyanobenzoquinone), etc.
  • TNF trinitrofluorenone
  • DNF dinitrofluorenone
  • organic materials such as fluoranyl, chloranil and bromanyl.
  • compounds having a cyano group such as TCNQ, TCNQF 4 , TCNE, HCNB, DDQ and the like are more preferable because they can increase the carrier concentration more effectively.
  • Examples of electron injection electron transport materials include inorganic materials that are n-type semiconductors, oxadiazole derivatives, triazole derivatives, thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, fluorenone derivatives, benzodifuran derivatives, etc. And low molecular weight materials; polymer materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS).
  • examples of the electron injection material include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), and oxides such as lithium oxide (Li 2 O).
  • the material used for the electron injection layer is a material having an energy level of the lowest unoccupied molecular orbital (LUMO) higher than that of the electron injection and transport material used for the electron transport layer in that the electron injection and transport from the cathode are performed more efficiently. It is preferable to use a material having a higher electron mobility than the electron injecting and transporting material used for the electron injecting layer.
  • LUMO lowest unoccupied molecular orbital
  • the electron injection / transport material it is preferable to dope the electron injection / transport material with a donor.
  • a donor a known donor material for an organic light emitting layer can be used. Although these specific compounds are illustrated below, this invention is not limited to these materials.
  • Donor materials include inorganic materials such as alkali metals, alkaline earth metals, rare earth elements, Al, Ag, Cu, and In, anilines, phenylenediamines, benzidines (N, N, N ′, N′-tetraphenyl) Benzidine, N, N'-bis- (3-methylphenyl) -N, N'-bis- (phenyl) -benzidine, N, N'-di (naphthalen-1-yl) -N, N'-diphenyl- Benzidine, etc.), triphenylamines (triphenylamine, 4,4′4 ′′ -tris (N, N-diphenyl-amino) -triphenylamine, 4,4′4 ′′ -tris (N-3- Methylphenyl-N-phenyl-amino) -triphenylamine, 4,4′4 ′′ -tris (N- (1-naphthyl) -
  • Organic light-emitting layers such as a light-emitting layer, a hole transport layer, an electron transport layer, a hole injection layer, and an electron injection layer are prepared using a coating liquid for forming an organic light-emitting layer in which the above materials are dissolved and dispersed in a solvent.
  • Known coating methods such as spin coating method, dipping method, doctor blade method, discharge coating method, spray coating method, ink jet method, letterpress printing method, intaglio printing method, screen printing method, printing method such as microgravure coating method, etc.
  • the coating liquid for forming the organic light emitting layer may contain additives for adjusting the physical properties of the coating liquid, such as a leveling agent and a viscosity modifier. .
  • each layer constituting the organic light emitting layer 14 is usually about 1 nm to 1000 nm, preferably 10 nm to 200 nm. If the film thickness is less than 10 nm, the properties (charge injection characteristics, transport characteristics, confinement characteristics) that are originally required cannot be obtained. In addition, pixel defects due to foreign matters such as dust may occur. Further, when the film thickness exceeds 200 nm, there is a concern that the drive voltage increases due to the resistance component of the organic light emitting layer, leading to an increase in power consumption.
  • the bank (insulating layer) 15 that divides the first electrode (lower electrode) 12 into a plurality of predetermined regions (for example, pixels) is made of a material having at least light reflectivity.
  • a material having a white color tone is preferably used.
  • the profile of the extracted light varies greatly depending on the angle of the bank side surface with respect to the substrate and the shape of the bank. Therefore, in order to obtain a desired light profile, the angle of the bank side surface with respect to the substrate and the bank There is also a need to control the shape of the material appropriately.
  • the bank has whiteness and light scattering properties in addition to light reflectivity, the direction of light reflected by the bank is widened. A natural light emission profile is easily obtained without depending on the shape of the bank.
  • the bank (insulating layer) 15 uses, for example, a high-reflectance white solder resist disclosed in JP2007-322546A, JP2008-211036A, JP2011-66267A, and the like. Can be formed. Alternatively, it is an effective technique to disperse particles such as TiO 2 in a polyimide-based or acrylic-based photosensitive resin to provide functions such as light reflectivity, light scattering, and whiteness.
  • the bank 15 may be formed using a resin containing a reflective metal such as silver (Ag).
  • the bank (insulating layer) 15 is formed in a predetermined pattern on the one surface 11 a of the light transmissive or light non-transmissive substrate 11.
  • a method of patterning a photosensitive resin with titanium oxide particles added using photolithography, a resin with titanium oxide particles added to the entire surface, etc. Apply a well-known manufacturing process used in semiconductor manufacturing processes, liquid crystal panel manufacturing processes, etc., such as a method of forming a photoresist pattern on it and etching the resin layer with added titanium oxide particles into a predetermined pattern can do.
  • the film thickness of the bank 15 is, for example, approximately 1 ⁇ m to 5 ⁇ m, for example, but may be appropriately selected according to the purpose.
  • a bank having a height of 100 nm to several tens of ⁇ m can be used, and the effect of this embodiment can be obtained in any case.
  • the interval (opening diameter) between the banks 15 adjacent to each other is not so large. It is better not to be big.
  • the intervals between adjacent banks 15 are 50 mm, 20 mm, 10 mm, 5 mm, 1 mm, 500 ⁇ m, 100 ⁇ m, 50 ⁇ m, 20 ⁇ m, and the like.
  • the bank 15 When giving the bank 15 light scattering properties, it is preferable to disperse fine light-reflecting particles in the resin constituting the bank 15.
  • the light reflective particles preferably have a particle size of 200 nm to 5 ⁇ m.
  • the bank 15 can have light reflectivity and can also have light scattering properties that make the light reflection direction random.
  • the bank 15 also serves to prevent leakage at the edge of the first electrode (lower electrode) 12. That is, when the organic light emitting layer 14 is formed on the first electrode 12, the thickness of the organic light emitting layer 14 is reduced at the end face of the first electrode 12. For this reason, a short circuit easily occurs between the first electrode 12 and the second electrode 13. By arranging the bank 15 in such a region, a short circuit can be prevented.
  • the bank 15 is a component generally called an edge cover or an insulating layer.
  • the bank 15 also prevents liquid applied to a pixel area on the substrate 11 from flowing to an adjacent pixel area when the organic light emitting layer 14 is formed by a wet process such as inkjet. In order to further enhance such a function, it is also preferable to perform a process for imparting liquid repellency to the bank 15.
  • Each layer constituting the organic layer 14 is vulnerable to moisture and oxygen and generally needs to be sealed.
  • Various sealing structures are known.
  • an insulating film is formed directly on the second electrode (upper electrode).
  • an inorganic film such as SiO 2
  • an organic film made of polyimide resin an inorganic-organic hybrid film, an inorganic-organic alternating laminated film, or the like can be used.
  • the operation of the light emitting device having the above configuration will be described. As shown in FIG. 1, when a voltage having a predetermined voltage value is applied between the first electrode (lower electrode) 12 and the second electrode (upper electrode) 13 of the light emitting device 10, The organic light emitting layer 14 emits light due to excitons (excitons) generated by recombination of electrons and holes injected into.
  • the light F1 emitted in the direction toward the transparent second electrode (upper electrode) 13 is transmitted through the second electrode 13 and emitted to the outside.
  • the light F ⁇ b> 2 emitted in the direction toward the light impermeable first electrode (lower electrode) 12 is reflected by the surface of the first electrode 13. The light passes through the organic light emitting layer 14 again, passes through the transparent second electrode 13, and is emitted to the outside.
  • the light F 3 emitted in the surface spreading direction (direction perpendicular to the stacking direction) is incident on the bank 15.
  • the light incident on the bank 15 reflects and preferably diffuses the incident light because the bank 15 is made of a material having light reflectivity.
  • the light F3 reflected by the bank 15 is also transmitted through the second electrode 13 and emitted to the outside.
  • the light emitting device 10 of the present embodiment since the bank 15 has light reflectivity, the light F3 emitted toward the bank 15 is absorbed by the bank 15 or inside the bank 15. There is no loss due to wave guiding. Then, the light F3 emitted toward the bank 15 is reflected by the bank 15 and emitted to the outside through the second electrode 13, whereby the light extraction efficiency can be significantly improved.
  • the light emitted from the organic light emitting layer It is confined in the region surrounded by 15 and not propagated in the direction of the bank 15.
  • the emission of light can be limited only to the direction in which the light is desired to be extracted, and the light can be extracted efficiently without loss.
  • the light extraction efficiency can be remarkably improved as compared with a conventionally known light emitting device.
  • the bank 15 is more preferably composed of a material having irregular reflection properties and scattering properties instead of regular reflection. In the case of irregular reflection and scattering, the light incident on the bank 15 is reflected in a random direction, and the light extraction efficiency can be further improved compared to regular reflection.
  • the bank 15 is preferably covered by the bank 15 around the first electrode (lower electrode) 12 patterned into a predetermined shape.
  • the effect of improving the light extraction efficiency can be obtained.
  • the peripheral length of the first electrode (lower electrode) 12 for example, if a light-reflective bank is arranged only for a length of 1%, the remaining 99% of the length is Light is guided and lost in the surface spreading direction, and the effect of improving the light extraction efficiency is limited.
  • the peripheral length of the first electrode 12 Whether the light emitted from the organic light-emitting layer 14 is guided away in the surface spreading direction or escapes, or is reflected by the light-reflective bank 15 and extracted from the substrate 11 side, is the peripheral length of the first electrode 12.
  • the ratio of the length in which the bank 15 is arranged correlates with the length. For example, assuming that the light extraction efficiency without using a light reflective bank is 25%, the loss is 75%. If the ratio of the length in which the bank 15 is arranged to the peripheral length of the first electrode 12 is 10%, approximately 7.5% of light may be extracted on the basis of the total light.
  • the extraction efficiency is 32.5%, which is an improvement of about 30% compared to the extraction efficiency of 25% when the light-reflective bank 15 is not formed.
  • the ratio of the length in which the bank 15 is arranged to the peripheral length of the first electrode 12 is 1%, the light extraction is improved only by 0.75% at the maximum, and the total light extraction is performed. The efficiency is only 25.75%. This is only a 3% improvement over the light extraction efficiency of 25% when the light-reflective bank 15 is not provided, and the obtained effect is too small.
  • the ratio of the length in which the bank 15 is disposed to the peripheral length of the first electrode (lower electrode) 12 is ideally 100%, but is approximately 5% or more. Accordingly, a corresponding effect of improving the light extraction efficiency can be obtained.
  • the ratio of the length in which the bank 15 is arranged to the peripheral length of the first electrode 12 is 5%
  • the maximum amount of light extracted by the light reflective bank 15 is 3.75% (75% ⁇ 5 %)
  • the light reflective property be compared with the peripheral length of the first electrode 12.
  • the ratio of the length in which the bank 15 is arranged is preferably 50% or more, and particularly preferably 100%.
  • the ratio of the length in which the bank 15 is arranged with respect to the peripheral length of the first electrode 12 can be determined by, for example, the shape when the bank 15 is patterned. Considering a general case, it is not difficult to cover the entire periphery of the first electrode 12 with the bank 15, and it is formed by suppressing leakage between the second electrode 13 and the first electrode 12 and by a wet process. Considering the viewpoint of preventing inflow into adjacent pixels, it is preferable to cover the entire periphery of the first electrode (lower electrode) 12 with the light reflective bank 15.
  • a sealing method it is preferable to seal the periphery of the light emitting device 10 by an appropriate method in order to ensure reliability.
  • a sealing method a known method or the like can be used. For example, a method using a can seal and a desiccant, a method using a cap glass and a desiccant, a glass frit seal, a method of pasting together a film with suppressed moisture permeability and glass, and the like.
  • the light emitting device 10 may have a low refractive index layer between the second electrode 13 and the organic light emitting layer 14.
  • a low refractive index layer between the second electrode 13 and the organic light emitting layer 14.
  • it is formed from a material having a refractive index in a range lower than the refractive index of the organic light emitting layer 14 and higher than the refractive index of the second electrode 13.
  • the critical angle of incident light incident from the organic light emitting layer 14 toward the low refractive index layer is smaller than the critical angle of outgoing light emitted from the low refractive index layer to the second electrode 13. It is preferable to have such a refractive index.
  • the low refractive index layer has functions of charge injection and charge transport. By forming such a low refractive index layer, the light extraction efficiency can be further improved.
  • FIG. 2 is a schematic cross-sectional view showing a light emitting device according to the second embodiment.
  • the light emitting device 20 includes a light transmissive or light opaque substrate 21, a first electrode (lower electrode) 22, a transparent second electrode (upper electrode) 23, and an organic light emitting layer 24.
  • the first electrode (lower electrode) 22 and the second electrode (upper electrode) 23 are sequentially stacked on the one surface 21 a of the substrate 21.
  • the organic light emitting layer 24 is formed between the first electrode 22 and the second electrode 23.
  • a light-reflective bank (insulating layer) 25 that divides the first electrode 22 into a plurality of predetermined regions is formed on the one surface 21a of the substrate 21.
  • the configuration of the organic light emitting layer 24 is different from the organic light emitting layer 14 of the first embodiment. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • the organic light emitting layer 24 is formed, for example, divided for each pixel. That is, in the first embodiment, the organic light emitting layer 14 is formed as a series of layers over the bank 15 (see FIG. 1), but in the second embodiment, the organic light emitting layer 24 is formed above the bank 25. It is divided into a plurality of sections separated by (second electrode side). Thereby, light propagating through the organic light emitting layer 24 and propagating in the surface spreading direction can be blocked, and the light extraction efficiency can be further improved.
  • FIG. 3 is a schematic sectional view showing a light emitting device according to the third embodiment.
  • the light emitting device 30 includes a light transmissive or light opaque substrate 31, a first electrode (lower electrode) 32, a transparent second electrode (upper electrode) 33, and an organic light emitting layer 34.
  • the first electrode (lower electrode) 32 and the second electrode (upper electrode) 33 are sequentially stacked on the one surface 31 a of the substrate 31.
  • the organic light emitting layer 34 is formed between the first electrode 32 and the second electrode 33.
  • a light reflective bank (insulating layer) 35 that divides the first electrode 32 and the organic light emitting layer 34 into a plurality of predetermined regions is formed on the one surface 31 a of the substrate 31.
  • the configuration of the organic light emitting layer 34 is different from the organic light emitting layer 14 of the first embodiment. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • the organic light emitting layer 34 is partitioned by the bank 35 for each pixel, for example. That is, in the first embodiment, the organic light emitting layer 14 is formed as a series of layers over the bank 15 (see FIG. 1). However, in the third embodiment, the organic light emitting layer 24 includes a plurality of banks 35. It is divided into. Thereby, the light propagating through the organic light emitting layer 24 and blocking the light propagating in the surface spreading direction is blocked, and the light emitted from the side cross section (thickness direction cross section) of the organic light emitting layer 24 is also reflected in the light reflective bank. Therefore, the light extraction efficiency can be further improved.
  • a method of forming the organic light emitting layers 24 and 34 by limiting the formation region within a predetermined range for example, a mask vapor deposition method, an inkjet method, printing, or the like is used.
  • a method using a laser such as LITI (Laser Induced Thermal Imaging), LIPS (Laser Induced Pattern Wise Sublimation), or a method such as a photo bleach method may be used as appropriate.
  • FIG. 4 is a schematic sectional view showing a light emitting device according to the fourth embodiment.
  • the light emitting device 40 includes a light transmissive or light opaque substrate 41, a first electrode (lower electrode) 42, a transparent second electrode (upper electrode) 43, and an organic light emitting layer 44.
  • the first electrode (lower electrode) 42 and the second electrode (upper electrode) 43 are sequentially stacked on the one surface 41 a of the substrate 41.
  • the organic light emitting layer 44 is formed between the first electrode 42 and the second electrode 43.
  • a light-reflective bank (insulating layer) 45 that partitions the first electrode 42 into a plurality of predetermined regions is formed.
  • a low refractive index layer 46 is formed so as to cover the second electrode (upper electrode) 43.
  • the light emitting device 40 of this embodiment is different from the first embodiment in that it has a low refractive index layer 46 and the configuration of the organic light emitting layer 44. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • the low refractive index layer 46 is formed of a material having a refractive index in a range lower than the refractive index of the second electrode (upper electrode) 43 and higher than the refractive index of air (outside air), for example.
  • the critical angle of incident light incident from the second electrode 43 toward the low refractive index material layer 46 is larger than the critical angle of outgoing light emitted from the low refractive index material layer 46 to the outside. It is preferable that the refractive index be small.
  • the low refractive index layer 46 is formed of a material having a refractive index in a range lower than the refractive index of the second electrode (upper electrode) 43 and higher than the refractive index of air (outside air), for example.
  • the refractive index of the low refractive index layer is preferably lower than the refractive index of the substrate, and ideally 1.0 is most preferable, which is the same as the refractive index of air.
  • the light extraction efficiency can be further improved. That is, assuming that the refractive index of air (outside air) is 1.0 and the refractive index of the second electrode (upper electrode) 43 is 1.5, if the low refractive index layer 46 is not provided, the organic light emitting layer will The light travels straight from the substrate to the air (outside air) interface, but due to the refractive index difference at the interface between the second electrode (upper electrode) and air (outside air), the light whose angle from the normal is greater than 42 ° Total reflection.
  • the low refractive index layer 46 having a refractive index of 1.2 when the low refractive index layer 46 having a refractive index of 1.2 is provided, the angle from the normal line at the interface between the low refractive index layer 46 and air (outside air). Although light larger than 53 ° is totally reflected, the possibility that the reflected light is reflected by the light-reflective bank 45 and taken out to the outside increases. Also in the embodiment shown in FIG. 4, at the interface between the low refractive index layer 46 and air (outside air), light having an angle from the normal of 42 ° to 53 ° cannot be totally reflected, but from the organic light emitting layer 44. In terms of the angle of the emitted light, only the light of 42 ° to 53 ° cannot be extracted, and the effect of improving the light extraction efficiency by forming the low refractive index layer 46 is great.
  • the low-refractive-index layer 46 is formed without providing a light-reflective bank, the light bounced off at the interface between the second electrode 43 and the low-refractive-index layer 46 repeats regular reflection in the surface spreading direction. The light extraction efficiency will not improve so much. Therefore, by using the light-reflective bank 45 and the low refractive index layer 46 in combination, a significant improvement in the light extraction efficiency can be obtained.
  • FIG. 5 is a schematic sectional view showing a light emitting device according to the fifth embodiment.
  • the light emitting device 50 includes a light-transmissive or light-impermeable substrate 51, a first electrode (lower electrode) 52, a transparent second electrode (upper electrode) 53, and an organic light emitting layer 54.
  • the first electrode (lower electrode) 52 and the transparent second electrode (upper electrode) 53 are sequentially stacked on one surface 51 a of the substrate 51.
  • the organic light emitting layer 54 is formed between the first electrode 52 and the second electrode 53.
  • a light-reflective bank (insulating layer) 55 that partitions the first electrode 52 into a plurality of predetermined regions is formed on the one surface 51a of the substrate 51.
  • a low refractive index layer 56 is formed so as to overlap the second electrode (upper electrode) 53.
  • the light emitting device 50 according to the present embodiment is different from the first embodiment in that the configuration of the organic light emitting layer 54 and the low refractive index layer 56 are included. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • the low refractive index layer 56 is partitioned for each pixel, for example. That is, in the fourth embodiment, the low refractive index layer 46 is formed as a series of layers so as to cover the entire second electrode (upper electrode) 43 (see FIG. 4), but in the fifth embodiment, The low refractive index layer 56 is divided into a plurality of sections. Thereby, the light propagating from the low refractive index layer 56 in the surface spreading direction can be blocked, and the light extraction efficiency can be further improved.
  • FIG. 6 is a schematic sectional view showing a light emitting device according to the sixth embodiment.
  • the light emitting device 60 includes a light transmissive or light opaque substrate 61, a first electrode (lower electrode) 62, a transparent second electrode (upper electrode) 63, and an organic light emitting layer 64.
  • the first electrode (lower electrode) 62 and the transparent second electrode (upper electrode) 63 are sequentially stacked on the one surface 61 a of the substrate 61.
  • the organic light emitting layer 64 has an organic light emitting layer 64 formed between the first electrode 62 and the second electrode 63.
  • a light reflective bank (insulating layer) 65 that partitions the first electrode 62 into a plurality of predetermined regions is formed on the one surface 61 a of the substrate 61.
  • the light emitting device 60 of the present embodiment is different from the first embodiment in that it includes a bonding layer 66 and a counter substrate 67. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • a counter substrate (sealing substrate) 67 is formed on the second electrode (upper electrode) 63 via a bonding layer 66.
  • the organic light emitting layer 64 is vulnerable to moisture and oxygen and generally needs to be sealed.
  • Various sealing structures are known. For example, there is a structure in which a sealing film is formed directly on the second electrode (upper electrode).
  • the sealing film an inorganic film such as SiO 2 , an organic film made of polyimide resin, an inorganic-organic hybrid film, an inorganic-organic alternating laminated film, or the like can be used.
  • the counter substrate (sealing substrate) 67 needs to be light transmissive, and for example, a hard transparent substrate such as glass or film can be applied.
  • the bonding layer 66 may be a light transmissive solid layer, for example, a laminate of an inorganic film and a resin film.
  • the bonding layer 66 is also preferably a gas layer such as an air layer or a dry nitrogen layer, or a reduced pressure gas layer or a vacuum layer.
  • a gas layer such as an air layer or a dry nitrogen layer, or a reduced pressure gas layer or a vacuum layer.
  • the counter substrate (sealing substrate) 67 is further formed on the second electrode (upper electrode) 63, the organic light emitting layer 64 that is weak against moisture and oxygen is removed from the outside air (air).
  • the organic light emitting layer 64 can be prevented from being deteriorated.
  • FIG. 7 is a schematic sectional view showing a light emitting device according to the seventh embodiment.
  • the light emitting device 70 includes a light transmissive or light opaque substrate 71, a first electrode (lower electrode) 72, a transparent second electrode (upper electrode) 73, and an organic light emitting layer 74.
  • the first electrode (lower electrode) 72 and the transparent second electrode (upper electrode) 73 are sequentially laminated on one surface 71 a of the substrate 71.
  • the organic light emitting layer 74 is formed between the first electrode 72 and the second electrode 73.
  • a light-reflective bank (insulating layer) 75 that partitions the first electrode 72 and the organic light emitting layer 74 into a plurality of predetermined regions is formed.
  • the light emitting device 70 of this embodiment is different from that of the first embodiment in that it includes a bonding layer 86, a counter substrate 87, and a low refractive index layer 88. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • a counter substrate (sealing substrate) 77 is formed on the second electrode (upper electrode) 73 with a bonding layer 76 interposed therebetween.
  • a low refractive index layer 78 is formed between the bonding layer 76 and the second electrode (upper electrode) 73.
  • the low refractive index layer 78 is formed of, for example, a material having a refractive index lower than that of the counter substrate (sealing substrate) 77.
  • FIG. 8 is a schematic sectional view showing the light emitting device according to the eighth embodiment.
  • the light emitting device 80 includes a light transmissive or light opaque substrate 81, a first electrode (lower electrode) 82, a transparent second electrode (upper electrode) 83, and an organic light emitting layer 84.
  • the first electrode (lower electrode) 82 and the transparent second electrode (upper electrode) 83 are sequentially stacked on one surface 81 a of the substrate 81.
  • the organic light emitting layer 84 is formed between the first electrode 82 and the second electrode 83.
  • a light-reflective bank (insulating layer) 85 that partitions the first electrode 82 and the organic light emitting layer 84 into a plurality of predetermined regions is formed.
  • the light emitting device 80 of this embodiment is different from that of the first embodiment in that it includes a bonding layer 86, a counter substrate 87, and a low refractive index layer 88. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • a counter substrate (sealing substrate) 87 is formed on the second electrode (upper electrode) 83 via a bonding layer 86.
  • a low refractive index layer 88 is formed between the bonding layer 86 and the second electrode (upper electrode) 83.
  • the low refractive index layer 88 is formed from a material having a refractive index lower than that of the counter substrate (sealing substrate) 87, for example.
  • the low refractive index layer 88 is partitioned for each pixel, for example. That is, in the seventh embodiment, the low refractive index layer 78 is formed as a series of layers so as to cover the entire second electrode (upper electrode) 73 (see FIG. 7), but in the eighth embodiment.
  • the low refractive index layer 88 is divided into a plurality of sections. Thereby, the light propagating from the low refractive index layer 88 in the surface spreading direction can be blocked, and the light extraction efficiency can be further improved.
  • FIG. 9 is a schematic sectional view showing a light emitting device according to the ninth embodiment.
  • the light emitting device 90 includes a light transmissive or light opaque substrate 91, a first electrode (lower electrode) 92, a transparent second electrode (upper electrode) 93, and an organic light emitting layer 94.
  • the first electrode (lower electrode) 92 and the transparent second electrode (upper electrode) 93 are sequentially stacked on the one surface 91 a of the substrate 91.
  • the organic light emitting layer 94 is formed between the first electrode 92 and the second electrode 93.
  • a light reflective bank (insulating layer) 95 that partitions the first electrode 92 and the organic light emitting layer 94 into a plurality of predetermined regions is formed on the one surface 91a of the substrate 91.
  • the light emitting device 90 of this embodiment is different from that of the first embodiment in that it includes a bonding layer 96, a counter substrate 97, and a low refractive index layer 98. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • a counter substrate (sealing substrate) 97 is formed on the second electrode (upper electrode) 93 with a bonding layer 96 interposed therebetween.
  • a low refractive index layer 98 is formed between the bonding layer 96 and the counter substrate (sealing substrate) 97.
  • the low refractive index layer 98 is formed of a material having a refractive index lower than that of the counter substrate (sealing substrate) 97, for example.
  • FIG. 10 is a schematic sectional view showing a light emitting device according to the tenth embodiment.
  • the light emitting device 100 includes a light transmissive or light opaque substrate 101, a first electrode (lower electrode) 102, a transparent second electrode (upper electrode) 103, and an organic light emitting layer 104.
  • the first electrode (lower electrode) 102 and the transparent second electrode (upper electrode) 103 are sequentially laminated on one surface 101a of the substrate 101.
  • the organic light emitting layer 104 is formed between the first electrode 102 and the second electrode 103.
  • a light reflective bank (insulating layer) 105 that partitions the first electrode 102 and the organic light emitting layer 104 into a plurality of predetermined regions is formed.
  • the light emitting device 100 of this embodiment is different from that of the first embodiment in that it includes a bonding layer 106, a counter substrate 107, and a low refractive index layer 108. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • a counter substrate (sealing substrate) 107 is formed on the second electrode (upper electrode) 103 with a bonding layer 106 interposed therebetween.
  • a low refractive index layer 108 is formed between the bonding layer 106 and the counter substrate (sealing substrate) 107.
  • the low refractive index layer 108 is formed from a material having a refractive index lower than that of the counter substrate (sealing substrate) 107, for example.
  • the low refractive index layer 108 is partitioned for each pixel, for example. That is, in the ninth embodiment, the low refractive index layer 98 is formed as a series of layers so as to cover the entire second electrode (upper electrode) 93 (see FIG. 9), but in the tenth embodiment. The low refractive index layer 108 is divided into a plurality of sections. As a result, light propagating from the low refractive index layer 108 in the surface spreading direction can be blocked, and the light extraction efficiency can be further improved.
  • FIG. 11 is a schematic sectional view showing a light emitting device according to the eleventh embodiment.
  • the light emitting device 110 includes a light transmissive or light opaque substrate 111, a first electrode (lower electrode) 112, a transparent second electrode (upper electrode) 113, and an organic light emitting layer 114.
  • the first electrode (lower electrode) 112 and the transparent second electrode (upper electrode) 113 are sequentially stacked on the one surface 111 a of the substrate 111.
  • the organic light emitting layer 114 is formed between the first electrode 112 and the second electrode 113.
  • a light reflective first bank (bank) 115 a that partitions the first electrode 112 and the organic light emitting layer 114 into a plurality of predetermined regions is formed on one surface 111 a of the substrate 111.
  • the light emitting device 110 according to the present embodiment is different from the first embodiment in that the organic light emitting layer 114 has a second bank 115b, a bonding layer 116, a counter substrate 117, and a low refractive index layer 118. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • a counter substrate (sealing substrate) 117 is formed on the second electrode (upper electrode) 113 with a bonding layer 116 interposed therebetween.
  • a light-reflective second bank (opposite bank) 115 b and a low refractive index layer 118 are formed between the bonding layer 116 and the counter substrate (sealing substrate) 117.
  • the first bank (bank) 115 a and the second bank (opposite bank) 115 b are formed at positions facing each other via the second electrode (upper electrode) 113.
  • the low refractive index layer 118 is formed, for example, for each pixel between the second banks (opposing banks) 115b.
  • the width of the first bank 115a may be larger than the width of the second bank 115b. By doing so, loss of light emitted from the organic light emitting layer 114 can be reduced.
  • the surface on the organic light emitting layer 114 is formed by forming the light-reflective first bank (bank) 115a and the second bank (opposite bank) 115b at positions facing each other.
  • the second bank 115b can prevent the propagation of light in the plane spreading direction even in the vicinity of the bonding layer 116 and the counter substrate (sealing substrate) 117, thereby further improving the light extraction efficiency. Can be improved.
  • FIG. 12 is a schematic sectional view showing a light emitting device according to the twelfth embodiment.
  • the light emitting device 120 includes a light-transmitting or light-impermeable substrate 121, a first electrode (lower electrode) 122, a transparent second electrode (upper electrode) 123, and an organic light emitting layer 124.
  • the first electrode (lower electrode) 122 and the transparent second electrode (upper electrode) 123 are sequentially laminated on the one surface 121a of the substrate 121.
  • the organic light emitting layer 124 is formed between the first electrode 122 and the second electrode 123.
  • a light reflective bank (insulating layer) 125 that partitions the first electrode 122 and the organic light emitting layer 124 into a plurality of predetermined regions is formed.
  • the light emitting device 110 of the present embodiment is different from the first embodiment in that it has a black matrix layer 129 and the configuration of the organic light emitting layer 124. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • a black matrix layer 129 is formed between the bank (insulating layer) 125 and one surface 121 a of the substrate 121, that is, inside the bank (insulating layer) 125.
  • the black matrix layer 129 prevents reflection of external light, improves the contrast of the light emitting device 120 even in an environment such as a bright outdoor environment, and can further improve visibility.
  • the light emitting device 210 includes a first substrate 211, a first electrode (lower electrode) 212, a light transmissive second electrode (upper electrode) 213, an organic light emitting layer 214, and a transparent insulating layer 216.
  • the first electrode (lower electrode) 212 and the light transmissive second electrode (upper electrode) 213 are sequentially stacked on one surface 211 a of the substrate 211.
  • the organic light emitting layer 214 is formed between the first electrode 212 and the second electrode 213.
  • the insulating film 216 covers the second electrode (upper electrode) 213.
  • the light emitting device 210 of the present embodiment is different from the first embodiment in that an insulating film 216 is provided. Description of other components that are the same as those described in the first embodiment will be omitted.
  • a bank (insulator) 215 that partitions the first electrode 212 into a plurality of predetermined regions is formed on the one surface 211a of the substrate 211.
  • the first electrode may be patterned for each region delimited by the bank 215 as shown in FIGS. 13A and 13B.
  • the first electrode may be formed by forming the bank 215 on the first electrode 212 having a pattern wider than the region delimited by the bank 215.
  • a pattern may be used in which the first electrodes adjacent to each other are electrically connected to each other.
  • a first electrode (lower electrode) 212 is formed on a first substrate 211, a bank 215 is then formed, an organic light emitting layer 214, and a second electrode (upper electrode) 213.
  • a process for forming an insulating layer or the like can be used. Since the material used for the organic EL is extremely weak against moisture, oxygen and the like, a sufficient dehydration step (baking step, bake step, and so on) is performed before the organic light emitting layer 214 is formed, that is, after the first electrode (lower electrode) 212 and the bank 215 are formed. It is preferable to perform a vacuum drying step or the like.
  • the first electrode (lower electrode) 212 has light reflectivity.
  • Ag, Al, etc. are used.
  • the first electrode 212 is usually an anode, but can also be a cathode.
  • Ag or an Ag alloy is a preferable material from the viewpoint of work function.
  • auxiliary wiring may be provided for the purpose of reducing wiring resistance.
  • the auxiliary wiring can be formed of a metal material such as Al, Ag, Ta, Ti, Ni, for example.
  • the second electrode (upper electrode) 213 is the same as the second electrode (upper electrode) 13 described in the first embodiment.
  • an auxiliary wiring may be provided in the second electrode (upper electrode) 213.
  • the auxiliary wiring can be formed of a metal material such as Al, Ag, Ta, Ti, Ni, for example.
  • the organic light emitting layer 214 such as an organic light emitting layer, a hole transport layer, an electron transport layer, a hole injection layer, and an electron injection layer may be formed in a region partitioned by the bank 215 or across the bank 215. You may form in a wide range.
  • the organic light emitting layer 214 may be a continuous film, as shown in FIGS. 13A and 13C, or in FIGS. 13B and 13D. As shown, it may be formed in a state where the bank portion is disconnected. Both of these can be used in the present embodiment.
  • the organic light emitting layer 214 is a continuous film or a disconnected state depends on the nature of the bank (especially taper shape and lyophobic property), the method of forming the organic film, the nature of the organic film material (particularly, When coating and forming, viscosity and surface tension are important.
  • the method for forming the organic light emitting layer 214 by limiting the formation region within a predetermined range include, for example, coating using a wet method such as a mask vapor deposition method, an ink jet method, and printing, LITI (Laser Induced Thermal Imaging), A method using a laser such as LIPS (Laser Induced Pattern Wise Sublimation) or a method such as a photo bleach method may be used as appropriate.
  • a wet method such as a mask vapor deposition method, an ink jet method, and printing
  • LITI Laser Induced Thermal Imaging
  • a method using a laser such as LIPS (Laser Induced Pattern Wise Sublimation) or a method such as a photo bleach method may be used as appropriate.
  • LIPS Laser Induced Pattern Wise Sublimation
  • a photo bleach method may be used as appropriate.
  • the operation of the light emitting device having the above configuration will be described.
  • a voltage having a predetermined voltage value is applied between the first electrode (lower electrode) 212 and the second electrode (upper electrode) 213 of the light emitting device 210, as shown in FIGS.
  • the organic light emitting layer 214 emits light by excitons (excitons) generated by recombination of electrons and holes injected into the light emitting layer 214.
  • the light emitted from the organic light emitting layer 214 (excitation light)
  • the light having a small angle with respect to the substrate normal out of the light emitted in the direction toward the insulating film 216 passes through the second electrode 213 and the transparent insulating layer 216.
  • the light is transmitted to the outside.
  • light having a large angle with respect to the substrate normal cannot be extracted due to a difference in refractive index between the film constituting the light emitting device 210 and air. How many times the light is extracted depends mainly on the refractive index of the film constituting the light emitting device 210 and follows Snell's law.
  • the light emitted from the organic light emitting layer 214 (excitation light)
  • the light emitted in the direction toward the light impermeable first electrode (lower electrode) 212 is reflected by the surface of the first electrode 213,
  • the light passes through the organic light emitting layer 214 again and travels toward the transparent insulating layer 216.
  • the reflected light light having a small angle with respect to the substrate normal is transmitted through the second electrode 213 and the insulating layer 216 and emitted to the outside.
  • light having a large angle with respect to the substrate normal cannot be extracted due to a difference in refractive index between the film constituting the light emitting device 210 and air. How many times the light is extracted depends mainly on the refractive index of the film constituting the light emitting device 210 and follows Snell's law.
  • the light (excitation light) emitted from the organic light emitting layer 214 the light emitted in the surface spreading direction (direction perpendicular to the stacking direction) enters the bank 215.
  • the light incident on the bank 215 reflects and preferably diffuses the incident light because the bank 215 is made of a material having light reflectivity.
  • the light reflected by the bank 215 is also repeatedly reflected and scattered in the light emitting device 210 and then travels toward the insulating layer 216.
  • light having a small angle with respect to the substrate normal is transmitted to the outside through the second electrode 213 and the insulating layer 216.
  • the light that has not been extracted from the light emitting device 210 travels again inside the light emitting device 210.
  • the traveling direction is changed there, and an opportunity to go to the insulating layer 216 again is obtained. It is thought that it becomes. If the angle with respect to the substrate normal at that time is small, the light is taken out to the outside, and if the angle with respect to the substrate normal is large, reflection and scattering are repeated in the light emitting device 210 again. As long as there is only a place where the light is taken out through the light source, light other than the light that attenuates and disappears inside the light emitting device 210 is taken out in principle.
  • the light emitting device 210 of this embodiment since the bank 215 has light reflectivity, the light emitted toward the bank 215 is absorbed by the bank 215 or guided in the bank 215. There is no loss due to waves. Then, the light emitted toward the bank 215 is reflected by the bank 215 and emitted to the outside through the second electrode 213, so that the light extraction efficiency can be remarkably improved.
  • the light emitted from the organic layer 214 is emitted from the bank 215. It is to be confined in the region surrounded by, and not propagated in the direction of the bank 215. With such a configuration, the emission of light can be limited only to the direction in which the light is desired to be extracted, and the light can be extracted efficiently without loss. Thereby, the light extraction efficiency can be remarkably improved as compared with a conventionally known light emitting device.
  • the bank 215 is required to have light reflectivity, but it is more preferable that the bank 215 be made of a material having irregular reflection properties and scattering properties instead of regular reflection. In the case of irregular reflection and scattering, the light incident on the bank 215 is reflected in a random direction, and the light extraction efficiency can be further enhanced in comparison with regular reflection.
  • the bank 215 is preferably disposed around the first electrode (lower electrode) 212 patterned in a predetermined shape with the bank 215.
  • the bank 215 is preferably disposed around the first electrode (lower electrode) 212 patterned in a predetermined shape with the bank 215.
  • FIG. 14 is a schematic sectional view showing a light emitting device according to the fourteenth embodiment.
  • the light-emitting device 220 includes a light-transmissive or light-impermeable first substrate 221, a light-reflective first electrode (lower electrode) 222, a transparent second electrode (upper electrode) 223, and an organic light-emitting layer 224. And having.
  • the light-reflective first electrode (lower electrode) 222 and the transparent second electrode (upper electrode) 223 are sequentially stacked on the one surface 221 a of the first substrate 221.
  • the organic light emitting layer 224 is formed between the first electrode 222 and the second electrode 223.
  • the organic light emitting layer 224 includes a first charge transport layer 224a, an organic light emitting layer 224b, and a second charge transport layer 224c.
  • a light reflective bank (insulator) 225 that partitions the first electrode 222 into a plurality of predetermined regions is formed on the one surface 221a of the substrate 21.
  • the light emitting device 220 of this embodiment is different from the first embodiment in the configuration of the organic light emitting layer 224. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • the light emitting device 220 of this embodiment is formed such that the distance from the center position of the light emitting region of the organic light emitting layer 224, that is, the center of the organic light emitting layer 224b in the thickness direction to the upper surface of the first electrode 222 is 200 nm or more. Yes.
  • the distance between the center position of the light emitting region of the organic light emitting layer 224 and the first electrode 222 there are several methods for setting the distance between the center position of the light emitting region of the organic light emitting layer 224 and the first electrode 222 to 200 nm or more. For example, as shown in FIG. There is a method in which the first charge transport layer 224a is formed to have a thickness of 200 nm or more, and the like is formed using the 224a, the organic light emitting layer 224b, and the second charge transport layer 224c.
  • FIG. 14 sealing for protecting the organic EL element from moisture and oxygen is not shown.
  • a method of covering the upper surface of the second electrode 223 with a transparent insulating layer, a method of sealing using a second substrate as in the fifteenth embodiment described later, and the like can be used. .
  • the organic light emitting layer 224 is depicted as a continuous film across the bank 225. However, as described in the first embodiment, the organic light emitting layer 224 may be disconnected at the portion where the bank 225 is formed. The organic light emitting layer 224 may be formed only in a region partitioned by the bank 225.
  • FIG. 15 is a schematic sectional view showing a light emitting device according to the fifteenth embodiment.
  • the light emitting device 230 includes a light transmissive or light non-transmissive first substrate 231, a light reflective first electrode (lower electrode) 232, a transparent second electrode (upper electrode) 233, and an organic light emitting layer 234. And having.
  • the light-reflective first electrode (lower electrode) 232 and the transparent second electrode (upper electrode) 233 are sequentially stacked on the one surface 231a of the first substrate 231.
  • the organic light emitting layer 234 is formed between the first electrode 232 and the second electrode 233.
  • a light reflective bank (insulator) 235 that partitions the first electrode 232 and the organic light emitting layer 234 into a plurality of predetermined regions is formed on the one surface 231a of the substrate 231.
  • the light emitting device 230 of the present embodiment is different from the first embodiment in that the light emitting device 230 includes a second substrate 236, a low refractive index layer 237, a moisture absorbing member (moisture absorbing layer) 238, and a sealing layer 239. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • a light-transmissive second substrate 236 is disposed so as to face the first substrate 231.
  • a low refractive index layer 237 and a moisture absorbing member (moisture absorbing layer) 238 are disposed between the second substrate 236 and the second electrode 233.
  • a sealing layer 239 that prevents moisture and oxygen from entering the light emitting device 230 from the outside is formed on the peripheral surface of each layer between the first substrate 231 and the second substrate 236.
  • the second substrate (sealing substrate) 236 needs to be light transmissive, and for example, a hard transparent substrate such as glass or film can be applied.
  • the moisture absorbing member 238 protects the light emitting device 230 from moisture and oxygen. As shown in FIG. 15, when the moisture absorbing member 238 is disposed in a portion that becomes a path through which light exits, the moisture absorbing member 238 is required to be light transmissive. FIG. 15 shows a case where the moisture absorbing member 238 is arranged in a path through which light is emitted. However, a configuration in which the moisture absorbing member 283 is disposed in a peripheral portion that is off the path from which the light exits may be used. If the sealing layer 239 has a sufficient ability to prevent moisture permeation, the moisture absorbing member 238 need not be formed.
  • the low refractive index layer 237 may be a light transmissive solid layer, for example, a laminate of an inorganic film and a resin film.
  • the low refractive index layer 237 is also preferably a gas layer such as an air layer or a dry nitrogen layer, or a reduced pressure gas layer or a vacuum layer.
  • a gas layer such as an air layer or a dry nitrogen layer, or a reduced pressure gas layer or a vacuum layer.
  • an edge portion is maintained by holding a predetermined interval between the second substrate 236 and the second electrode (upper electrode) 233 with, for example, a spacer member. What is necessary is just to seal with.
  • a gas layer can be comprised with various gas, such as air, nitrogen, argon, for example, and the kind of gas is not specifically limited. However, it is desirable to use an inert gas from the viewpoint of suppressing characteristic deterioration due to reaction with the organic light emitting layer 234.
  • the refractive index of air is about 1.000293
  • the refractive index of nitrogen is about 1.000297
  • the refractive index of argon is 1.000281. Even if other gases are included, the refractive index of the gas can be regarded as approximately 1.000.
  • the pressure of the gas layer may be arbitrary, may be atmospheric pressure (1.01325 ⁇ 105 Pa), may be in a reduced pressure state relative to atmospheric pressure, or may be in a pressurized state. In the reduced pressure state, an absolute vacuum does not actually exist, but if the form of the gas layer 6 is maintained, for example, a high vacuum state (0.1 Pa to 10-5 Pa) or an ultrahigh vacuum state (10 ⁇ 5 Pa or less).
  • the organic light emitting layer 234 and the second substrate 236 are arranged at a predetermined distance without contacting each other, and have a thickness between the organic layer 234 and the second substrate 236. It is necessary to form a low refractive index layer 237 made of a gas layer having a substantially constant diameter.
  • the refractive index of the low refractive index layer 237 made of a gas layer is 1.000.
  • the emitted light is extracted to the low refractive index layer 237 made of a gas layer by the same mechanism as described in the thirteenth embodiment. Since the refractive index difference between the gas layer and the outside is substantially zero, the light that has come out of the gas layer is extracted outside through the second substrate 236.
  • a low refractive index layer 237 having a refractive index between the refractive index value of the second substrate 236 and 1.0 is disposed.
  • the light extraction efficiency increases as the refractive index value approaches 1.0.
  • the refractive index value is the same as that of glass, a large amount of light is guided through the second substrate 236 made of this layer or glass. And run away, the effect is lost.
  • the organic light emitting layer 234 is drawn as a continuous film across the bank 235. As described in the thirteenth embodiment, the organic light emitting layer 234 may be cut off at the portion where the bank 235 is formed. The organic light emitting layer 234 may be formed only in the region delimited by the bank 35.
  • the low refractive index layer 237 is formed without providing the light reflective bank 235, the light bounced off at the interface between the second electrode 233 and the low refractive index layer 237 repeats specular reflection and spreads in the surface direction. The light extraction efficiency will not improve so much. Therefore, by using the light-reflective bank 235 and the low refractive index layer 237 in combination, a significant improvement in light extraction efficiency can be obtained.
  • FIG. 16 is a schematic sectional view showing a light emitting device according to the sixteenth embodiment.
  • the light emitting device 240 includes a light transmissive or light non-transmissive first substrate 241, a reflective layer 246, a light transmissive first electrode (lower electrode) 242, and a transparent second electrode (upper electrode) 243. And an organic light emitting layer 244 and a light reflective bank (insulator) 245.
  • the reflective layer 246, the light transmissive first electrode (lower electrode) 242, and the transparent second electrode (upper electrode) 243 are sequentially stacked on the one surface 241a of the first substrate 241.
  • the organic light emitting layer 244 is formed between the first electrode 242 and the second electrode 243.
  • the bank (insulator) 245 is formed with a light reflective bank (insulator) 245 that partitions the first electrode 242 and the organic layer 244 into a plurality of predetermined regions.
  • the reflective layer 246 is made of, for example, a metal film. For example, Ag, Al, etc. can be used.
  • the light emitting device 240 of the present embodiment is different from the first embodiment in that it has a reflective layer 246. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • the distance between the center position of the light emitting region of the organic light emitting layer 244 and the first electrode 242 is 200 nm or more.
  • the reason why the distance between the center position of the light emitting region of the organic light emitting layer 244 and the first electrode 242 is 200 nm or more is that light extraction loss due to surface plasmon phenomenon based on resonance with metal as described in the second embodiment. Is to prevent.
  • the same method as that described in the second embodiment can be used.
  • the light transmissive first electrode 242 also contributes to separating the metal and the light emitting position, and is an effective technique for obtaining a distance of 200 nm or more.
  • sealing for protecting the light emitting device 240 from moisture and oxygen is not illustrated, but a method of covering the light emitting device 240 with an insulating layer as in FIG. 13 or the second substrate illustrated in FIG. 15 is used. A sealing method or the like can be used.
  • the organic light emitting layer 244 is shown as a continuous film across the bank 245. However, as described in the first embodiment, the organic light emitting layer 244 is stepped at the portion where the bank 245 is formed. The organic light emitting layer 244 may be formed only in a region that is cut or separated by the bank 245.
  • FIG. 17 is a schematic sectional view showing a light emitting device according to the seventeenth embodiment.
  • the light-emitting device 250 includes a light-transmissive or light-impermeable first substrate 251, a reflective layer 256, a light-transmissive intermediate layer 257, a light-transmissive first electrode (lower electrode) 252, a transparent A second electrode (upper electrode) 253 and an organic light emitting layer 254 are included.
  • the reflective layer 256, the light transmissive intermediate layer 257, the light transmissive first electrode (lower electrode) 252, and the transparent second electrode (upper electrode) 253 are sequentially stacked on the one surface 251 a of the first substrate 251.
  • the organic light emitting layer 254 is formed between the first electrode 252 and the second electrode 253. Further, on one surface 251a of the substrate 251, a light-reflective bank (insulator) 255 that partitions the first electrode 252 into a plurality of predetermined regions is formed. Note that the intermediate layer 257 may be omitted as necessary.
  • the light emitting device 250 of the present embodiment is different from the first embodiment in that it includes a reflective layer 256 and a light transmissive intermediate layer 257. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • the distance between the center position of the light emitting region of the organic light emitting layer 254 and the first electrode 252 is 200 nm or more.
  • the reason why the distance between the center position of the light emitting region of the organic light emitting layer 254 and the first electrode 252 is 200 nm or more is to prevent light extraction loss due to surface plasmon phenomenon based on resonance with metal as described in the second embodiment. Because.
  • the method described in the fourteenth embodiment can be used to set the distance between the center position of the light emitting region of the organic layer 254 and the first electrode 252 to 200 nm or more.
  • the intermediate layer 257 is used.
  • the light-transmissive first electrode 252 also contributes to separating the metal and the light emission position, and can be said to be an effective technique for obtaining a distance of 200 nm or more.
  • sealing for protecting the light emitting device 250 from moisture and oxygen is not shown, but a method of covering with an insulating film as in FIG. 13 or a second substrate shown in FIG. 15 is used. A sealing method or the like can be used.
  • the organic light emitting layer 254 is shown as a continuous film across the bank 255. However, as described in the first embodiment, the organic light emitting layer 254 may be disconnected at the portion where the bank 255 is formed. The organic light emitting layer 254 may have a form in which the organic light emitting layer 254 is formed only in a region partitioned by the bank 255.
  • FIG. 18 is a schematic sectional view showing a light emitting device according to the eighteenth embodiment.
  • the light emitting device 260 includes a light transmissive or light non-transmissive first substrate 261, a reflective layer 266, a light transmissive intermediate layer 267, a light transmissive first electrode (lower electrode) 262, and a light transmissive device. Second electrode (upper electrode) 263 and organic light emitting layer 264.
  • the reflective layer 266, the light transmissive intermediate layer 267, the light transmissive first electrode (lower electrode) 262, and the light transmissive second electrode (upper electrode) 263 are sequentially formed on the one surface 261 a of the first substrate 261. Laminated.
  • the organic light emitting layer 264 is formed between the first electrode 262 and the second electrode 263. Further, on one surface 261a of the first substrate 261, a light-reflective bank (insulator) 265 that partitions the first electrode 262 into a plurality of predetermined regions is formed.
  • the reflective layer 266 is conductive, and the first electrode 262 and the reflective layer 266 are electrically connected via a through hole (connection region) P of the intermediate layer 267 formed at a predetermined position. ing.
  • the light emitting device 260 of the present embodiment is different from the first embodiment in that it includes a reflective layer 266 and an intermediate layer 267. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • the path through which light escapes through the intermediate layer 267 is blocked, which is preferable from the viewpoint of light extraction.
  • the reflective layer 266 can also play a role of reducing the wiring resistance.
  • sealing for protecting the light emitting device 260 from moisture and oxygen is not shown, but a method of covering with an insulating layer as in FIG. 13 or the second substrate shown in FIG. For example, a sealing method can be used.
  • the organic light emitting layer 264 is shown as a continuous film across the bank 265. However, as described in the first embodiment, the organic light emitting layer 264 is a portion where the bank 265 is formed. It may be cut off. The organic light emitting layer 264 may be formed only in the region delimited by the bank 265.
  • FIG. 19 is a schematic cross-sectional view showing a light emitting device according to the nineteenth embodiment.
  • the light emitting device 270 includes a light transmissive or light non-transmissive first substrate 271, a reflective layer 276, a light transmissive intermediate layer 277, a light transmissive first electrode (lower electrode) 272, a transparent A second electrode (upper electrode) 273 and an organic light emitting layer 274 are included.
  • the reflective layer 276, the light transmissive intermediate layer 277, the light transmissive first electrode (lower electrode) 272, and the transparent second electrode (upper electrode) 273 are sequentially stacked on the one surface 271a of the first substrate 271. .
  • the organic light emitting layer 274 is formed between the first electrode 272 and the second electrode 273. Further, on one surface 271a of the first substrate 271, a light-reflective bank (insulator) 275 that partitions the first electrode 272 into a plurality of predetermined regions is formed.
  • the light emitting device 270 of this embodiment includes a reflective layer 276, a light transmissive intermediate layer 277, a second substrate 278, a low refractive index layer 279, a moisture absorbing member (moisture absorbing layer) 81, and a sealing layer.
  • the point which has 282 differs from 1st embodiment. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • a light-transmissive second substrate 278 is disposed so as to face the first substrate 271. Between the second substrate 278 and the second electrode 273, a low refractive index layer 279 and a moisture absorbing member (moisture absorbing layer) 281 are disposed. In addition, a sealing layer 282 for preventing moisture and oxygen from entering the light emitting device 270 from the outside is formed on the peripheral surface of each layer between the first substrate 271 and the second substrate 276.
  • the reflective layer 276 is conductive, and the first electrode 272 and the reflective layer 276 are electrically connected via a through hole (connection region) P of the intermediate layer 277 formed at a predetermined position. ing. In this embodiment, a path through which light escapes through the intermediate layer 277 is blocked, which is preferable from the viewpoint of light extraction. Further, by forming a light-transmitting second substrate 278 so as to face the first substrate 271, in order to prevent moisture and oxygen from entering the light-emitting device 270 from the outside, the periphery is sealed with a sealing layer 282. It is sealed with.
  • the second substrate (sealing substrate) 278 needs to be light transmissive, and for example, a hard transparent substrate such as glass or film can be applied.
  • the moisture absorbing member 281 protects the light emitting device 270 from moisture and oxygen. As shown in FIG. 19, when the moisture absorbing member 281 is disposed in a portion that becomes a path through which light exits, the moisture absorbing member 281 is required to be light transmissive. Although FIG. 19 shows the case where the moisture absorbing member 281 is disposed in the path through which light exits, a configuration in which the moisture absorbing member is disposed in a peripheral portion outside the path through which light exits may be used. Further, if the sealing layer 282 has a sufficient ability to prevent moisture permeation, the moisture absorbing member need not be particularly formed.
  • the low refractive index layer 279 may be a light transmissive solid layer, for example, a laminate of an inorganic film and a resin film.
  • the low refractive index layer 279 is preferably a gas layer such as an air layer or a dry nitrogen layer, or a reduced pressure gas layer or a vacuum layer.
  • a gas layer such as an air layer or a dry nitrogen layer, or a reduced pressure gas layer or a vacuum layer.
  • an edge portion is maintained by holding a predetermined interval, for example, with a spacer member between the second substrate 278 and the second electrode (upper electrode) 273. What is necessary is just to seal with.
  • a gas layer can be comprised with various gas, such as air, nitrogen, argon, for example, and the kind of gas is not specifically limited. However, from the viewpoint of suppressing characteristic deterioration due to reaction with the organic layer 274, it is desirable to use an inert gas.
  • the refractive index of air is about 1.000293
  • the refractive index of nitrogen is about 1.000297
  • the refractive index of argon is 1.000281. Even if other gases are included, the refractive index of the gas can be regarded as approximately 1.000.
  • the pressure of the gas layer may be arbitrary, may be atmospheric pressure (1.01325 ⁇ 105 Pa), may be in a reduced pressure state relative to atmospheric pressure, or may be in a pressurized state. In the reduced pressure state, an absolute vacuum does not actually exist, but if the form of the gas layer 6 is maintained, for example, a high vacuum state (0.1 Pa to 10-5 Pa) or an ultrahigh vacuum state (10 ⁇ 5 Pa or less).
  • the organic light emitting layer 274 and the second substrate 278 are arranged at a predetermined distance without being in contact with each other, and have a thickness between the organic light emitting layer 274 and the second substrate 278. It is necessary to form the low refractive index layer 279 made of a gas layer having a substantially constant thickness. In the following description, the refractive index of the low refractive index layer 279 made of a gas layer is 1.000.
  • the emitted light is extracted to the low refractive index layer 279 made of a gas layer by the same mechanism as described in the first embodiment. Since the refractive index difference between the gas layer and the outside is substantially zero, the light that has come out of the gas layer is extracted outside through the second substrate 278.
  • the low refractive index layer 279 When the low refractive index layer 279 is not a gas, the low refractive index layer 279 having a refractive index between the refractive index value of the second substrate 278 and 1.0 is disposed. As the refractive index value approaches 1.0, the light extraction efficiency increases. When the refractive index value is the same as that of glass, much light is guided through the second substrate 278 made of this layer or glass. And run away, the effect is lost.
  • the organic light emitting layer 274 is shown as a continuous film across the bank 275. However, as described in the first embodiment, the light emitting layer 274 is a portion where the bank 75 is formed. It may be cut off. The organic light emitting layer 274 may be formed only in the region delimited by the bank 75.
  • the low refractive index layer 279 is formed without providing the light reflective bank 275, the light bounced off at the interface between the second electrode 273 and the low refractive index layer 279 repeats regular reflection and spreads the surface. The light extraction efficiency will not improve so much. Therefore, by using the light-reflective bank 75 and the low refractive index layer 279 in combination, a significant improvement in light extraction efficiency can be obtained.
  • the light-emitting device 290 includes a light-impermeable first substrate 291, a light-transmissive intermediate layer 296, a light-transmissive first electrode (lower electrode) 292, a transparent second electrode (upper electrode) 293, And an organic light emitting layer 294.
  • the light transmissive intermediate layer 296, the light transmissive first electrode (lower electrode) 292, and the transparent second electrode (upper electrode) 293 are sequentially stacked on the one surface 291a of the substrate 291.
  • the organic light emitting layer 294 is formed between the first electrode 292 and the second electrode 293.
  • a light reflective bank (insulator) 295 that partitions the first electrode 292 into a plurality of predetermined regions is formed on one surface 291a of the substrate 291.
  • the light emitting device 290 of the present embodiment is different from the first embodiment in that the light emitting device 290 has a light transmissive intermediate layer 296. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • the first substrate 291 may or may not have conductivity.
  • the first electrode 272 and the first substrate 271 may be electrically connected through a through hole (connection region) of the intermediate layer 296 as shown in FIG. 20B.
  • the intermediate layer 296 may be omitted as necessary.
  • FIG. 20A there is a path through which light escapes through the intermediate layer 96.
  • FIG. 20B it is also preferable to close the path by patterning the intermediate layer 96 to increase the light extraction efficiency.
  • sealing for protecting the light emitting device 90 from moisture and oxygen is not shown, but a method of covering with an insulating film as in FIG. 13 or the second substrate shown in FIG. For example, a method of sealing with can be used.
  • the organic light emitting layer 294 is shown to be a continuous film across the bank 295. However, as described in the first embodiment, the organic light emitting layer 294 may be disconnected at the portion where the bank 95 is formed. The organic light emitting layer 294 may form the organic layer 94 only in the region delimited by the bank 95.
  • FIG. 21 is a schematic sectional view showing a light emitting device according to the twenty-first embodiment.
  • the light emitting device 310 includes a light-transmitting or light-impermeable substrate 311, a first electrode (lower electrode) 322, a transparent second electrode (upper electrode) 323, and an organic light emitting layer 324.
  • the first electrode (lower electrode) 322 and the second electrode (upper electrode) 323 are sequentially stacked on one surface 321 a of the substrate 321.
  • the organic light emitting layer 324 is formed between the first electrode 322 and the second electrode 323.
  • a light reflective bank (insulating layer) 325 that partitions the first electrode 322 into a plurality of predetermined regions is formed.
  • the first electrode 322 includes a light transmissive conductive layer 322a and a reflective metal layer 322b.
  • a configuration in which the first electrode 322 includes the light-transmissive conductive layer 322a and the reflective metal layer 322b will be described, but the first electrode 322 may have a single-layer structure.
  • the configuration of the bank 425 is different from the bank 15 of the first embodiment. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • the bank 325 includes a bank 325a, a bank 325b, and a light reflecting film 325c.
  • the light reflecting film 325c is formed so as to cover the bank 325a.
  • the bank 325b is formed so as to cover the light reflecting film 325c.
  • the bank 325a may be transparent, white, or black. When the bank 425a is black, the bank 325a can also have a function of preventing external light reflection.
  • the light reflecting film 325c may be formed to contain, for example, silver (Ag) or aluminum (Al).
  • the light reflecting film 325c may be formed of the same material as the reflective metal layer 322b. In the present embodiment, the reflective metal layer 322b may not be formed.
  • the bank 325b has a light transmitting property, a light reflecting property, and / or a light scattering property. Light emitted from the organic light emitting layer 322 and propagating in the lateral direction can be reflected by the light reflecting film 325c. In order to increase the light extraction efficiency by changing the light traveling direction, the bank 325b preferably has light scattering properties. Further, when the bank 425b covers the edge of the first electrode (lower electrode) 422, a short circuit between the first electrode (lower electrode) 422 and the second electrode (upper electrode) 423 can be prevented, and the yield can be improved. Is preferable.
  • the bank can have various cross-sectional shapes.
  • 22A to 22E are sectional views showing examples of the sectional shape of the bank.
  • the bank 133 that partitions the first electrode (lower electrode) 132 formed on the substrate 131 is formed to have a trapezoid with a narrow upper portion.
  • the bank 134 that divides the first electrode (lower electrode) 132 formed on the substrate 131 is formed to have a trapezoidal shape with the upper part widened.
  • the bank 135 that partitions the first electrode (lower electrode) 132 formed on the substrate 131 is formed so that the upper part is semicircular or semielliptical.
  • FIG. 22A the bank 133 that partitions the first electrode (lower electrode) 132 formed on the substrate 131 is formed to have a trapezoid with a narrow upper portion.
  • the bank 134 that divides the first electrode (lower electrode) 132 formed on the substrate 131 is formed to have a trapezoidal shape with the upper part widened.
  • the bank 136 that partitions the first electrode (lower electrode) 132 formed on the substrate 131 is formed so that the upper part is a semicircular shape and the top part is a flat surface.
  • the bank 137 that partitions the first electrode (lower electrode) 132 formed on the substrate 131 is formed so that the upper part is a triangle.
  • the shape spreading to one side has an effect that light is more easily emitted. Since such an effect also affects the light emission profile, it contributes to a wide viewing angle when applied to a display device. From the viewpoint of this wide viewing angle, the shape of the bank 137 shown in FIG. 22E is most preferable. On the other hand, in order to prevent the layer formed on the bank from being cut off at the edge portion, FIG. A shape in which the banks 135 and 136 are rounded like 22D is preferable.
  • the planar shape of the bank can be various.
  • 23A to 23I are cross-sectional views showing examples of the planar shape of the bank.
  • each region is formed in a square shape.
  • FIG. 23B shows each region formed in a circular shape.
  • the organic layer is formed by a coating method, there are corners such as a square. The liquid hardly wets and spreads only in that part, but in the case of a circle, there is no corner, so the liquid can be spread uniformly.
  • each region is drawn in a circle, but it may be formed in an ellipse or a shape with rounded corners of a square.
  • FIG. 23C shows the hexagonal arrangement of the areas. By making the hexagonal arrangement, the ratio of the light emitting areas can be increased as compared with the embodiment of FIG. 23C.
  • FIG. 23D shows a hexagonal arrangement of hexagonal regions.
  • FIG. 23E is an area where a bank is not formed in a part of each area. By doing so, it is possible to prevent the second electrode from stepping over the bank, and to improve the yield and reliability.
  • FIG. 23F is an example in which the positions of areas where no bank is formed in a part of each area are not aligned.
  • FIG. 23E In the case of the embodiment shown in FIG. 23E, in the region where no bank is formed, the light guided in the lateral direction is not reflected and scattered to the edge of the device, resulting in a loss.
  • FIG. 23F in the region where the bank is not formed, light proceeds from the region guided in the lateral direction to the next region, and the light hits the bank in the next region. Loss can be suppressed.
  • FIG. 23G, FIG. 23H, and FIG. 23I show the areas of FIG. 23D, FIG. 23B, and FIG.
  • FIG. 24A the bank 143 that partitions the first electrode (lower electrode) 142 formed on the substrate 141 includes a transparent insulating resin layer 143a and a light-reflective metal layer 143b.
  • substrate 141 is comprised from the reflective metal.
  • the bank 144 is disposed between the first electrodes (lower electrodes) 142 so as to be separated from the first electrode 142. This ensures insulation between the adjacent first electrodes (lower electrodes) 142.
  • the bank 145 that partitions the first electrode (lower electrode) 142 formed on the substrate 141 is composed of a reflective metal body 145a and a transparent insulating resin layer 145b covering the same.
  • the upper portion of the reflective metal body 145a may be covered with the insulating resin layer 145b.
  • the thickness of the upper portion of the insulating resin layer 145b is reduced. It is preferable to form as follows.
  • the bank 146 defining the first electrode (lower electrode) 142 formed on the substrate 141 includes a reflective metal body 146a, a transparent insulating resin layer 146b covering the same, and an upper reflective layer 146c.
  • the bank 147 that partitions the first electrode (lower electrode) 142 formed on the substrate 141 is composed of a reflective metal layer that covers at least the side surface of the first electrode (lower electrode) 142.
  • the bank 148 that partitions the first electrode (lower electrode) 142 formed on the substrate 141 includes an insulating resin body 148a and a reflective metal layer 148b that covers the insulating resin body 148a.
  • the reflective metal layer 148b is formed such that the lower end thereof is not in contact with the first electrode (lower electrode) 142, thereby ensuring insulation between the first electrodes (lower electrodes) 142 adjacent to each other. .
  • FIG. 25 is a schematic cross-sectional view showing a display device according to the twenty-second embodiment.
  • a top emission type organic EL display device in which a light emitting device is driven in an active matrix is shown.
  • the organic EL display device (display device) 150 includes a light-transmitting or light-impermeable substrate 151, a first electrode (lower electrode) 152, a light-transmitting second electrode (upper electrode) 153, and an organic light emitting layer.
  • the organic light emitting layer 154 is formed between the first electrode 152 and the second electrode 153.
  • the bank 155 partitions the first electrode 152 into a plurality of predetermined areas.
  • an active matrix drive element (drive unit) 160 that is an example of a drive unit is formed between the substrate 151 and the first electrode (lower electrode) 152.
  • a gate electrode 160a and a gate oxide film 158 are formed on the substrate 151.
  • An active layer 160d, a source electrode 160b, and a drain electrode 160c are formed on the gate oxide film 158, and an interlayer insulating film 159 is further formed.
  • a contact hole is provided in the interlayer insulating film 159, and the drain electrode 160c and the first electrode 152 are electrically joined.
  • the active matrix driving element 160 includes a gate electrode 160a, a gate oxide film 158, a source electrode 160b, a drain electrode 160c, an active layer 160d, and the like.
  • An active matrix driving element (driving unit) 160 that controls the light emission of the light emitting device 157 functions for switching and driving.
  • Such an active matrix driving element 160 can be formed using a known material, structure, and forming method.
  • the material of the active layer 160d include inorganic semiconductor materials such as amorphous silicon (amorphous silicon), polycrystalline silicon (polysilicon), microcrystalline silicon, cadmium selenide, zinc oxide, indium oxide-gallium oxide-oxide.
  • oxide semiconductor materials such as zinc, or organic semiconductor materials such as polythiophene derivatives, thiophene oligomers, poly (p-ferylene vinylene) derivatives, naphthacene, and pentacene.
  • the TFT structure include a staggered type, an inverted staggered type, a top gate type, and a coplanar type.
  • a method for forming the active layer 160d (1) a method of ion doping impurities into amorphous silicon formed by a plasma induced chemical vapor deposition (PECVD) method, and (2) a reduced pressure chemistry using a silane (SiH 4 ) gas.
  • PECVD plasma induced chemical vapor deposition
  • SiH 4 silane
  • Amorphous silicon is formed by vapor phase epitaxy (LPCVD), and amorphous silicon is crystallized by solid phase epitaxy to obtain polysilicon, followed by ion doping by ion implantation, (3) Si 2 H 6 gas Amorphous silicon is formed by LPCVD method or PECVD method using SiH 4 gas, annealed by laser such as excimer laser, etc., and amorphous silicon is crystallized to obtain polysilicon, followed by ion doping (low temperature process) ), (4) LPCVD method or PECVD method To form a more polysilicon layer, a gate insulating film formed by thermal oxidation at 1000 ° C.
  • the gate insulating film 158 can be formed using a known material. Examples thereof include SiO 2 formed by PECVD, LPCVD, etc., or SiO 2 obtained by thermally oxidizing a polysilicon film.
  • the signal electrode line, the scanning electrode line, the common electrode line, the first drive electrode, and the second drive electrode of the TFT can be formed using a known material, for example, tantalum (Ta), aluminum (Al). , Copper (Cu), and the like.
  • the interlayer insulating film 159 can be formed using a known material, for example, silicon oxide (SiO 2 ), silicon nitride (SiN or Si 2 N 4 ), tantalum oxide (TaO or Ta 2 O). 5 )) or an organic material such as an acrylic resin or a resist material.
  • a known material for example, silicon oxide (SiO 2 ), silicon nitride (SiN or Si 2 N 4 ), tantalum oxide (TaO or Ta 2 O). 5 )) or an organic material such as an acrylic resin or a resist material.
  • Examples of the formation method include dry processes such as chemical vapor deposition (CVD) and vacuum deposition, and wet processes such as spin coating. Moreover, it can also pattern by the photolithographic method etc. as needed.
  • the active matrix driving element 160 When the active matrix driving element 160 is formed on the substrate 151, unevenness is formed on the surface, and the unevenness causes, for example, a defect in the pixel electrode, a defect in the organic EL layer, a defect in the counter electrode in the light emitting device 157. There is a risk of disconnection, short-circuiting between the pixel electrode and the counter electrode, reduction in breakdown voltage, and the like. In order to prevent these phenomena, a planarization film may be further provided over the interlayer insulating film 159.
  • planarizing film can be formed using a known material, and examples thereof include inorganic materials such as silicon oxide, silicon nitride, and tantalum oxide, and organic materials such as polyimide, acrylic resin, and resist material.
  • examples of the method for forming the planarizing film include a dry process such as a CVD method and a vacuum deposition method, and a wet process such as a spin coating method.
  • the present embodiment is not limited to these materials and the forming method.
  • the planarization film may have a single layer structure or a multilayer structure.
  • a color filter, a color conversion film, or the like may be further combined with the organic EL display device (display device) 150 described above.
  • the emission color is usually white.
  • the emission color is usually blue.
  • FIG. 26 is a schematic sectional view showing a display device according to the twenty-third embodiment.
  • the organic EL display device (display device) 170 includes a light-transmissive or light-impermeable substrate 171, a first electrode (lower electrode) 172, a second electrode (upper electrode) 173, an organic light emitting layer 174,
  • the light emitting device 182 includes a light reflective bank (insulating layer) 175.
  • the organic light emitting layer 174 is formed between the first electrode 172 and the second electrode 173.
  • the bank (insulating layer) 175 partitions the first electrode 172 into a plurality of predetermined areas.
  • the substrate 171 and the counter substrate (sealing substrate) 177 are opposed to each other.
  • the sealing layer 176 and the low refractive index layer 181 may be provided.
  • the substrate 171 and the counter substrate (sealing substrate) 177 are opposed to each other by using a sealing resin, an adhesive resin, or the like around the substrate without the light emitting element. And stick together.
  • the sealing layer 176 is made of a solid layer such as a resin, and may have adhesiveness, moisture and / or oxygen permeation prevention properties, moisture and / or oxygen absorption properties, and the like.
  • the low refractive index layer 181 is formed of, for example, a material having a refractive index lower than that of the counter substrate (sealing substrate) 177, and is a solid layer or a gas layer (dry air layer, nitrogen layer, reduced pressure gas layer, A vacuum layer, etc.).
  • an active matrix driving element (driving unit) 180 that is an example of a driving unit is formed between the substrate 171 and the first electrode (lower electrode) 172.
  • a gate electrode 180 a and a gate oxide film 178 are formed on the substrate 171.
  • An active layer 180d, a source electrode 180b, and a drain electrode 180c are formed on the gate oxide film 178, and an interlayer insulating film 179 is further formed.
  • a contact hole is provided in the interlayer insulating film 179, and the drain electrode 180c and the first electrode 172 are electrically joined.
  • the active matrix driving element 180 includes a gate electrode 180a, a gate oxide film 178, a source electrode 180b, a drain electrode 180c, an active layer 160d, and the like.
  • FIG. 27A and 27B are schematic cross-sectional views showing the light emitting device according to the fifteenth embodiment.
  • FIG. 27A is a plan view of the light emitting device as viewed from above.
  • FIG. 27B is a cross-sectional view taken along line AA ′ in FIG. 27A.
  • an auxiliary wiring 209 is formed on a light-transmissive or light-impermeable substrate 201.
  • One or a plurality of auxiliary wirings 209 may be arranged.
  • auxiliary wiring 209 a metal material having a low electric resistance value such as Al or Ag is usually used.
  • auxiliary wirings 209 When a plurality of auxiliary wirings 209 are arranged, for example, they can be arranged in a stripe shape or a lattice shape.
  • the auxiliary wiring 209 is covered with the first electrode (lower electrode) 202.
  • a metal electrode material is used for the first electrode (lower electrode) 202, and the film thickness is, for example, about 100 nm to 300 nm.
  • a patterning method using photolithography or the like, or mask deposition can be used.
  • a light reflective bank 205 is formed between the first electrodes (lower electrodes) 202 adjacent to each other. Even if the bank 205 covers only a part of the periphery of the first electrode (lower electrode) 202, the effect of improving the light extraction efficiency can be obtained. High and preferable.
  • the opening area of the light reflective bank 205 is drawn in a square shape, but a rectangular shape, a circular shape, or other shapes are possible.
  • the opening size of the bank 205 is not limited, and various sizes such as an opening diameter of 0.5 mm, 1 mm, 5 mm, 10 mm, 50 mm, and 100 mm can be selected.
  • An organic light emitting layer 204 is formed on the first electrode (lower electrode) 202.
  • the organic light emitting layer 204 for example, a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, a laminated film of an electron injection layer, or the like can be used.
  • a second electrode (upper electrode) 203 is formed on the organic light emitting layer 204.
  • the second electrode (upper electrode) 203 may be made of a transparent electrode material such as ITO or IZO.
  • FIGS. 27A and 27B in order to protect the light emitting device 200 from corrosion and alteration due to moisture and oxygen in the atmosphere, it is preferable to seal using a counter substrate or the like. If there is a concern that the second electrode (upper electrode) 203 is disconnected due to the shape of the bank 205 being an inversely tapered shape, as shown in FIGS. 28A and 28B, It is preferable to form a portion without a step in 205.
  • a mobile phone illustrated in FIG. 29A As an application example of the light-emitting device, a mobile phone illustrated in FIG. 29A, an organic EL television illustrated in FIG. 29B, and the like can be given.
  • a cellular phone 1000 illustrated in FIG. 29A includes a main body 1001, a display portion 1002, an audio input portion 1003, an audio output portion 1004, an antenna 1005, an operation switch 1006, and the like, and the light emitting devices of the above embodiments are included in the display portion 1002. It is used. Moreover, the drive part for controlling this light-emitting device is incorporated.
  • a television receiver 1100 illustrated in FIG. 29B includes a main body cabinet 1101, a display portion 1102, speakers 1103, a stand 1104, and the like, and the light emitting device of each of the above embodiments is used for the display portion 1102. Moreover, the drive part for controlling this light-emitting device is incorporated. In these cellular phones and organic EL televisions, since the light emitting device of each of the above embodiments is used, the luminance is high and the display quality is excellent.
  • the light emitting device for example, it can be applied to a ceiling light (illumination device) shown in FIG. 30A.
  • a ceiling light 1400 illustrated in FIG. 30A includes an illumination unit 1401, a hanging tool 1402, a power cord 1403, and the like.
  • the light emitting device of each said embodiment can be applied suitably as the illumination part 1401.
  • FIG. Moreover, the drive part for controlling this light-emitting device is incorporated.
  • the light emitting device By applying the light emitting device according to an embodiment of the present invention to the illumination unit 1401 of the ceiling light 1400, it is possible to obtain bright and free-colored illumination light with low power consumption, and high lighting performance. Can be realized. In addition, it is possible to realize a lighting fixture capable of emitting surface light with high color purity with uniform illuminance.
  • An illumination stand 1500 illustrated in FIG. 30B includes an illumination unit 1501, a stand 1502, a power switch 1503, a power cord 1504, and the like. And the light emitting device of each said embodiment can be applied suitably as the illumination part 1501. FIG. Moreover, the drive part for controlling this light-emitting device is incorporated.
  • the light-emitting device By applying the light-emitting device according to an embodiment of the present invention to the illumination unit 1501 of the illumination stand 1500, it is possible to obtain bright and free-colored illumination light with low power consumption, and to have high lighting performance. Can be realized. In addition, it is possible to realize a lighting fixture capable of emitting surface light with high color purity with uniform illuminance.
  • aspects of the present invention can be used for light-emitting elements, and more specifically, for display devices, display systems, lighting devices, lighting systems, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A light emitting device comprises: a first substrate; a first electrode and second electrode, including an optically transparent conductive material, that are sequentially laminated on one face of the aforementioned first substrate; an organic light emitting layer that is formed between the aforementioned first electrode and the aforementioned second electrode; and at least a first bank where the first electrode is partitioned into prescribed regions. This first bank is constituted of optically reflective material and launches light emitted by the organic light emitting layer to the outside through the second electrode.

Description

発光デバイス、表示装置、及び照明装置Light emitting device, display device, and lighting device
 本発明は、有機発光層に電圧を印加して発光させる発光デバイス、およびこれを備えた表示装置、照明装置に関する。
 本願は、2011年9月12日に、日本に出願された特願2011-198501号及び2012年3月6日に、日本に出願された特願2012-49319号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a light emitting device that emits light by applying a voltage to an organic light emitting layer, and a display device and an illumination device including the light emitting device.
This application claims priority based on Japanese Patent Application No. 2011-198501 filed in Japan on September 12, 2011 and Japanese Patent Application No. 2012-49319 filed on March 6, 2012 in Japan, The contents are incorporated here.
  近年、社会の高度情報化に伴い、フラットパネルディスプレイのニーズが高まっている。フラットパネルディスプレイとしては、例えば、非自発光型の液晶ディスプレイ(LCD)、自発光型のプラズマディスプレイ(PDP)、無機エレクトロルミネセンス(無機EL)ディスプレイ、有機エレクトロルミネセンス(以下、「有機EL」または「有機LED」とも言う)ディスプレイ等が挙げられる。 In recent years, the need for flat panel displays has increased with the advancement of information technology in society. Examples of the flat panel display include a non-self-luminous liquid crystal display (LCD), a self-luminous plasma display (PDP), an inorganic electroluminescence (inorganic EL) display, and organic electroluminescence (hereinafter, “organic EL”). Or a display or the like.
  これらフラットパネルディスプレイの中でも、特に有機EL(Organic light emitting diode)ディスプレイなど、有機発光層を用いた発光素子は、薄型・広視野角などの特長から次世代ディスプレイの主流になりうる候補技術として注目されている。 Among these flat panel displays, light-emitting elements using organic light-emitting layers such as organic EL (Organic light emitting diode) displays are particularly notable as candidate technologies that can become the mainstream of next-generation displays due to their thin and wide viewing angle. Has been.
  従来の白熱電球、蛍光灯に代わる新しい照明技術として、近年、LED照明が急速に普及してきている。さらに、次世代照明として、有機EL照明の研究、事業化が活発に行われている。有機EL照明は、薄型で高発光効率の面照明が可能である点が大きな利点であり、さらには、フィルム基板などを利用することにより、さまざまな形状が可能なことからデザイン面で特徴のある照明を作りうるといった利点もある。 LEDIn recent years, LED lighting has been rapidly spreading as a new lighting technology to replace conventional incandescent bulbs and fluorescent lamps. Furthermore, research and commercialization of organic EL lighting are being actively conducted as next-generation lighting. Organic EL lighting has the advantage of being thin and capable of surface illumination with high luminous efficiency. Furthermore, it can be made into various shapes by using a film substrate, etc. There is also an advantage that lighting can be made.
  しかし一方で、有機ELには、発光効率が低い、消費電力が大きい、寿命が短い、信頼性が低いなどの課題が残っている。発光効率は、一般的にηφ(ext)(External Quantum Efficiency)=ηext×ηφ=ηext×γ×ηr×φfで表される。ここで、ηφ(ext)は外部量子効率、ηextは外部光取出し効率、ηφは内部量子効率、γはキャリアバランス、ηrは励起子生成確立、φfは蛍光量子収率である。 However, on the other hand, organic EL still has problems such as low luminous efficiency, high power consumption, short lifetime, and low reliability. The luminous efficiency is generally expressed by ηφ (ext) (External Quantum Efficiency) = ηext × ηφ = ηext × γ × ηr × φf. Here, ηφ (ext) is the external quantum efficiency, ηext is the external light extraction efficiency, ηφ is the internal quantum efficiency, γ is the carrier balance, ηr is the exciton generation establishment, and φf is the fluorescence quantum yield.
  近年、材料の進歩に伴い、内部量子効率は着実に向上しており、特に、三重項状態を利用するりん光材料の進展に伴い大幅に改善されてきている。しかし一方、光取出し効率は大きな課題として残っている。有機EL素子においては、用いられる有機発光層、透明電極層、ガラス基板などの屈折率が空気より大きいため、スネルの法則に基づく全反射条件から光を効率よく取り出せない。取り出せる光の量は通常、15~30%程度であり、大半の光が外部に出射されることなく失われていることになる。 In recent years, the internal quantum efficiency has steadily improved with the progress of materials, and in particular, has been greatly improved with the progress of phosphorescent materials utilizing triplet states. However, light extraction efficiency remains a major issue. In the organic EL element, since the refractive index of the organic light emitting layer, the transparent electrode layer, the glass substrate, etc. used is larger than that of air, light cannot be efficiently extracted from the total reflection condition based on Snell's law. The amount of light that can be extracted is usually about 15 to 30%, and most of the light is lost without being emitted to the outside.
  光取出し効率の低さは、発光効率を低下させ、消費電力を増大させるばかりでない。
 所望の明るさを得るためにより多くの電流を流さなくてはならなくなるため、寿命や信頼性などにも影響がある。逆に言えば、光取出し効率が改善されれば、有機ELの発光効率、消費電力、寿命、信頼性などに対して大きな改善を見込むことができると言える。
The low light extraction efficiency not only lowers the light emission efficiency and increases the power consumption.
Since more current must be passed in order to obtain the desired brightness, the life and reliability are also affected. Conversely, if the light extraction efficiency is improved, it can be said that a great improvement can be expected with respect to the light emission efficiency, power consumption, lifetime, reliability, and the like of the organic EL.
  こうした課題に対して、例えば、特許文献1においては、透明導電層の発光層と反対の面に屈折率1.01~1.3の範囲となる低屈折率層を設けた発明が開示されている。
  また、特許文献2においては、透明電極層と光透過性の基板との間に、低屈折率材料からなるマトリクス樹脂中に光を散乱させる粒子を拡散させた浸み出し光拡散層を設けた発明が開示されている。
  また、特許文献3においては、光を取り出す側の基板面に、多数の微小粒子からなる光取出し層を設けた発明が開示されている。
  また、特許文献4には、画素を凹状構造にすることによって光取出し効率を向上させた発明が開示されている。
  また、特許文献5には、画素の側面に反射層を設けることにより光取出し効率を向上させた発明が開示されている。
  更に、特許文献6には、蛍光体層を有機EL発光部と組み合わせた有機EL素子において、蛍光体層の側面に金属粉、金属粒子もしくは白色顔料を含む樹脂からなる反射膜を設けることが開示されている。
  また、特許文献7には、側面がテーパ状となるバンクを用いて光を取り出す発明が開示されている。
To deal with such problems, for example, Patent Document 1 discloses an invention in which a low refractive index layer having a refractive index in the range of 1.01 to 1.3 is provided on the surface of the transparent conductive layer opposite to the light emitting layer. Yes.
In Patent Document 2, a leaching light diffusion layer in which particles that scatter light are diffused in a matrix resin made of a low refractive index material is provided between a transparent electrode layer and a light-transmitting substrate. The invention is disclosed.
Patent Document 3 discloses an invention in which a light extraction layer composed of a large number of fine particles is provided on a substrate surface on the light extraction side.
Patent Document 4 discloses an invention in which the light extraction efficiency is improved by forming a pixel with a concave structure.
Patent Document 5 discloses an invention in which the light extraction efficiency is improved by providing a reflective layer on the side surface of a pixel.
Further, Patent Document 6 discloses that, in an organic EL element in which a phosphor layer is combined with an organic EL light emitting unit, a reflective film made of a resin containing metal powder, metal particles, or a white pigment is provided on the side surface of the phosphor layer. Has been.
Patent Document 7 discloses an invention in which light is extracted using a bank having a tapered side surface.
特開2002-278477号公報JP 2002-278477 A 特開2004-296437号公報JP 2004-296437 A 特開2011-108395号公報JP 2011-108395 A 特開2011-009017号公報JP 2011-009017 A 特開2010-009793号公報JP 2010-009793 A 特開平11-329726号公報Japanese Patent Laid-Open No. 11-329726 特開2006-012585号公報JP 2006-012585 A
 上述した特許文献1~4に開示された発明では、光取出し効率を向上させることができるとされているものの、光取出し効率の向上効果が限定的である。即ち、有機発光層や電極を介して面方向に沿って光が伝播し、外部へ出射される光が減少することへの対策が全くなされていなかった。 In the inventions disclosed in Patent Documents 1 to 4 described above, the light extraction efficiency can be improved, but the effect of improving the light extraction efficiency is limited. In other words, no measures have been taken against the fact that light propagates along the surface direction through the organic light emitting layer or the electrode and the light emitted to the outside decreases.
 例えば、有機発光層の典型的な屈折率が1.8程度、絶縁層(バンク)の典型的な屈折率が1.5~1.8程度、透明電極層であるITOの典型的な屈折率が2.1~2.2程度であるため、低屈折率層(屈折率1.0~1.3程度)との屈折率差のために、低屈折率層との界面で全反射されてしまう成分が多い。この全反射された成分は、有機発光層、絶縁層、透明電極層などを介して面方向に沿って伝播し、外部に出射されることなく損失する。 For example, the typical refractive index of an organic light emitting layer is about 1.8, the typical refractive index of an insulating layer (bank) is about 1.5 to 1.8, and the typical refractive index of ITO which is a transparent electrode layer Is about 2.1 to 2.2, and is totally reflected at the interface with the low refractive index layer because of the difference in refractive index from the low refractive index layer (with a refractive index of about 1.0 to 1.3). There are many ingredients that end up. The totally reflected component propagates along the surface direction through the organic light emitting layer, the insulating layer, the transparent electrode layer, and the like, and is lost without being emitted to the outside.
 透明電極層を有機発光層の画素領域ごとに区画する絶縁層(バンク)は、従来、ポリメチルメタクリレート、ポリイミドなどの高分子材料やSiO等の無機材料から構成されており、色調は透明か黒色であった。このため、面方向に沿って広がった光は、絶縁層(バンク)が黒色の場合は、この絶縁層に吸収されて損失する。また、絶縁層(バンク)が透明(光透過性)の場合は、この絶縁層を介して隣接する有機発光層や透明電極層に向けて光が伝播して損失する。 Insulating layer for partitioning the transparent electrode layer in each pixel region of the organic light emitting layer (bank) is conventionally polymethyl methacrylate, is composed of a polymer material or an inorganic material such as SiO 2, such as polyimide, or color transparent It was black. For this reason, when the insulating layer (bank) is black, the light spread along the surface direction is absorbed by the insulating layer and lost. Further, when the insulating layer (bank) is transparent (light transmissive), light propagates toward the adjacent organic light emitting layer or transparent electrode layer through the insulating layer and is lost.
 また、特許文献5及び6には、発光部分の側面に反射膜を形成することにより光取出し効率を向上させる技術が開示されており、さらに、特許文献6には反射膜として金属粉、金属粒子もしくは白色顔料を含む樹脂からなることが開示されているが、構造上、プロセス上の課題があった。 Patent Documents 5 and 6 disclose a technique for improving the light extraction efficiency by forming a reflection film on the side surface of the light emitting portion. Further, Patent Document 6 discloses metal powder, metal particles as the reflection film. Alternatively, it is disclosed that the resin is made of a resin containing a white pigment, but there are structural and process problems.
 特許文献5の技術においては、側面の反射膜が導電性であるため、反射膜状にさらに絶縁層を設ける必要があり、プロセスが複雑になる。しかも、反射膜が形成されている部分が、基板に対して斜めになっている隔壁側面であるため、生産時のプロセス制御性が困難であるばかりでなく、パターン形成のための露光位置合わせマージンなどを考えると、画素開口部が小さくなるという課題があった。画素開口部が小さくなると、ディスプレイとしての所望の輝度を得るために、画素開口部での発光輝度を上げる必要があった。 In the technique of Patent Document 5, since the reflective film on the side surface is conductive, it is necessary to further provide an insulating layer in the shape of the reflective film, which complicates the process. In addition, since the portion where the reflective film is formed is the side wall of the partition wall that is inclined with respect to the substrate, not only is the process controllability during production difficult, but also the exposure alignment margin for pattern formation In view of the above, there is a problem that the pixel opening becomes small. When the pixel opening is small, it is necessary to increase the light emission luminance at the pixel opening in order to obtain a desired luminance as a display.
 特許文献6の技術においては、蛍光体層の側面に反射膜を形成する技術、反射膜として金属粉、金属粒子もしくは白色顔料を含む樹脂からなる技術が開示されているが、この技術を有機EL発光部分に適用することについてはなんら開示も示唆もされていない。また、この技術を有機EL発光部に適用し、有機発光部の側面に反射膜を形成しようとすると構造上、プロセス上の課題が生じる。まず、有機ELの発光部分に用いられる有機材料は水分、酸素、溶剤などに対して極めて弱く、この有機EL発光部分の側面に反射膜を形成することはプロセス上極めて困難である。また、この技術は有機ELの各画素ごとに発光層が分離形成されている場合はともかく、発光層が画素ごとに分離させず全面形成された構造には適用できないという課題もある。さらに、有機EL発光部からの光導波による光損失を考えるときには、電極など発光部分以外からの導波も考えなければならないが、特許文献6には、それらについてはなんら開示も示唆もされていない。 In the technique of Patent Document 6, a technique for forming a reflective film on the side surface of the phosphor layer and a technique made of a resin containing metal powder, metal particles, or a white pigment as the reflective film are disclosed. There is no disclosure or suggestion about application to the light emitting part. Further, when this technique is applied to an organic EL light emitting unit and a reflective film is formed on the side surface of the organic light emitting unit, structural problems arise in terms of structure. First, the organic material used for the light emitting portion of the organic EL is extremely weak against moisture, oxygen, solvent, etc., and it is extremely difficult to form a reflective film on the side surface of the organic EL light emitting portion. In addition, this technique has a problem that it cannot be applied to a structure in which the light emitting layer is formed on the entire surface without being separated for each pixel, regardless of whether the light emitting layer is separately formed for each pixel of the organic EL. Furthermore, when considering the optical loss due to the optical waveguide from the organic EL light emitting part, it is necessary to consider the waveguide from other than the light emitting part such as an electrode. However, Patent Document 6 does not disclose or suggest any of them. .
 また、特許文献7に開示された発明では、側面がテーパ状となるバンクを用いて光を取り出す発明が開示されているが、この方法の場合、有機層、あるいは透明電極内を導波して横方向に逃げてゆく光が完全にはなくならず、光取出しの効果として十分とは言えない。また、テーパ角の制御が重要であるため、生産を考えた場合のプロセスマージンが狭い。 Further, in the invention disclosed in Patent Document 7, an invention is disclosed in which light is extracted using a bank having a tapered side surface. In this method, the light is guided through an organic layer or a transparent electrode. The light escaping in the lateral direction is not completely lost, and the light extraction effect is not sufficient. Also, since control of the taper angle is important, the process margin when considering production is narrow.
  本発明は、上記の事情に鑑みてなされたものであり、有機発光層から発した光を外部に向けて効率よく出射させ、高輝度に発光可能な発光デバイス、表示装置、及び照明装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a light emitting device, a display device, and a lighting device that can efficiently emit light emitted from an organic light emitting layer toward the outside and emit light with high luminance. The purpose is to do.
 本発明のいくつかの態様は次のような発光デバイス、表示装置、及び照明装置を提供する。
 本発明の一態様における発光デバイスは、第一基板と、前記第一基板の一面に順に積層された第一電極および光透過性導電材を含む第二電極と、前記第一電極および前記第二電極の間に形成された有機発光層と、少なくとも前記第一電極を所定の領域に区画する第一バンクを備え、前記第一バンクは光反射性を有する材料から構成され、前記有機発光層で発光した光が、前記第二電極を介して外部に出射する。
Some embodiments of the present invention provide a light emitting device, a display device, and a lighting device as follows.
The light-emitting device according to an aspect of the present invention includes a first substrate, a second electrode including a first electrode and a light-transmissive conductive material, which are sequentially stacked on one surface of the first substrate, the first electrode, and the second electrode. An organic light emitting layer formed between the electrodes, and a first bank for partitioning at least the first electrode into a predetermined region, wherein the first bank is made of a light-reflective material, The emitted light is emitted to the outside through the second electrode.
 本発明の一態様における発光デバイスにおいて、前記第一電極は、遮光性を含んでいてもよい。 In the light emitting device according to one embodiment of the present invention, the first electrode may include a light shielding property.
 本発明の一態様における発光デバイスにおいて、前記第一電極は、光反射性の導電材料を含んでいてもよい。 In the light emitting device according to one embodiment of the present invention, the first electrode may include a light reflective conductive material.
 本発明の一態様における発光デバイスは、さらに、前記第二電極及び前記バンクを覆う絶縁膜を有していてもよい。 The light-emitting device according to one embodiment of the present invention may further include an insulating film that covers the second electrode and the bank.
 本発明の一態様における発光デバイスは、さらに、前記第二電極上に設けられた第二基板を有していてもよい。 The light-emitting device according to one embodiment of the present invention may further include a second substrate provided on the second electrode.
 本発明の一態様における発光デバイスは、さらに、前記第二基板と前記第二電極との間に設けられ、前記第二基板よりも屈折率の低い低屈折率層を含んでいてもよい。 The light-emitting device in one embodiment of the present invention may further include a low refractive index layer that is provided between the second substrate and the second electrode and has a refractive index lower than that of the second substrate.
 本発明の一態様における発光デバイスにおいて、前記低屈折率層は、気体であってもよい。 In the light emitting device according to one embodiment of the present invention, the low refractive index layer may be a gas.
 本発明の一態様における発光デバイスは、さらに、前記第二基板上に設けられ、前記バンクと対面する光反射性の対向バンクを含んでいてもよい。 The light-emitting device according to an aspect of the present invention may further include a light-reflective counter bank provided on the second substrate and facing the bank.
 本発明の一態様における発光デバイスは、さらに、前記第一基板と前記第一電極の間に配置された反射層と、前記第一電極と前記反射層との間に配置された中間層と、を有し、前記第一電極は、光透過性の導電材料を含み、前記中間層は、光透過性の材料を含んでいてもよい。 The light-emitting device according to an aspect of the present invention further includes a reflective layer disposed between the first substrate and the first electrode, an intermediate layer disposed between the first electrode and the reflective layer, The first electrode may include a light transmissive conductive material, and the intermediate layer may include a light transmissive material.
 本発明の一態様における発光デバイスにおいて、前記中間層は、前記第一電極と前記反射層とを電気的に接続する接続領域を含んでいてもよい。 In the light emitting device according to one embodiment of the present invention, the intermediate layer may include a connection region that electrically connects the first electrode and the reflective layer.
 本発明の一態様における発光デバイスは、さらに、前記第一基板に対向して設けられた第二基板と、 前記第一基板と前記第二基板との間に配置され、前記第二基板よりも低い屈折率を有する低屈折率層と、前記第一基板と前記第二基板との間に配置された水分吸収部材と、を有していてもよい。 The light emitting device according to an aspect of the present invention is further disposed between the second substrate provided to face the first substrate and the first substrate and the second substrate, and more than the second substrate. You may have the low-refractive-index layer which has a low refractive index, and the water | moisture-content absorption member arrange | positioned between said 1st board | substrate and said 2nd board | substrate.
 本発明の一態様における発光デバイスは、さらに、前記第一基板と前記第一電極との間に配置された中間層を有し、前記第一基板は、光反射性の材料を含み、前記第一電極は、光透過性の導電材料を含み、前記中間層は、光透過性の材料を含んでいてもよい。 The light-emitting device according to an aspect of the present invention further includes an intermediate layer disposed between the first substrate and the first electrode, the first substrate including a light-reflective material, One electrode may include a light-transmitting conductive material, and the intermediate layer may include a light-transmitting material.
 本発明の一態様における発光デバイスにおいて、前記バンクと前記反射層とは互いにその一部が接触してもよい。 In the light emitting device according to one embodiment of the present invention, the bank and the reflective layer may be partially in contact with each other.
 本発明の一態様における発光デバイスにおいて、前記有機層の発光領域の中心位置から前記第一電極までの間隔が200nm以上となるように設定されてもよい。 In the light emitting device according to one embodiment of the present invention, the distance from the center position of the light emitting region of the organic layer to the first electrode may be set to be 200 nm or more.
 本発明の一態様における発光デバイスにおいて、前記バンクに含まれる前記材料は、更に光拡散性を有する材料であってもよい。 In the light emitting device according to one embodiment of the present invention, the material included in the bank may be a material having light diffusibility.
 本発明の一態様における発光デバイスにおいて、前記バンクに含まれる前記材料は、白色であってもよい。 In the light emitting device according to one embodiment of the present invention, the material included in the bank may be white.
 本発明の一態様における発光デバイスにおいて、前記バンクに含まれる前記材料は、樹脂と、前記樹脂中に分散された微細な粒子とを含んでもよい。 In the light emitting device according to one embodiment of the present invention, the material included in the bank may include a resin and fine particles dispersed in the resin.
 本発明の一態様における発光デバイスにおいて、前記粒子の粒径は200nm以上、5μm以下であってもよい。 In the light-emitting device according to one embodiment of the present invention, the particle size of the particles may be 200 nm or more and 5 μm or less.
 本発明の一態様における発光デバイスにおいて、前記第一バンクは、第二バンク、第三バンク、および光反射膜を含み、前記第二バンクは、前記第一基板上に形成され、前記光反射膜は、前記第二バンクを覆い、前記第三バンクは、前記光反射膜を覆い、前記第三バンクは、光透過性を有する材料を含んでもよい。 In the light emitting device according to the aspect of the present invention, the first bank includes a second bank, a third bank, and a light reflection film, and the second bank is formed on the first substrate, and the light reflection film May cover the second bank, the third bank may cover the light reflecting film, and the third bank may include a light transmissive material.
 本発明の一態様における発光デバイスにおいて、前記第二バンクは、黒色であってもよい。 In the light emitting device according to one aspect of the present invention, the second bank may be black.
 本発明の一態様における発光デバイスにおいて、前記第三バンクに含まれる前記材料は、さらに光散乱性を有してもよい。 In the light emitting device according to one aspect of the present invention, the material included in the third bank may further have light scattering properties.
 本発明の他の態様における照明装置は、前記発光デバイスと、前記発光デバイスを制御する駆動部とを備える。 An illumination device according to another aspect of the present invention includes the light emitting device and a drive unit that controls the light emitting device.
 本発明のさらに他の態様における照明装置は、前記発光デバイスと、前記発光デバイスを制御する駆動部とを備える。 An illumination device according to still another aspect of the present invention includes the light emitting device and a drive unit that controls the light emitting device.
  本発明の態様によれば、高発光効率(高輝度)の発光デバイス、表示装置、及び照明装置を提供することができる。 According to an aspect of the present invention, it is possible to provide a light emitting device, a display device, and a lighting device with high luminous efficiency (high luminance).
本発明の第一実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 3rd embodiment of this invention. 本発明の第四実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 4th embodiment of this invention. 本発明の第五実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 5th embodiment of this invention. 本発明の第六実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 6th embodiment of this invention. 本発明の第七実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 7th embodiment of this invention. 本発明の第八実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 8th embodiment of this invention. 本発明の第九実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 9th embodiment of this invention. 本発明の第十実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 10th embodiment of this invention. 本発明の第十一実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 11th embodiment of this invention. 本発明の第十二実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 12th embodiment of this invention. 本発明の第十三実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 13th embodiment of this invention. 本発明の第十三実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 13th embodiment of this invention. 本発明の第十三実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 13th embodiment of this invention. 本発明の第十三実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 13th embodiment of this invention. 本発明の第十四実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 14th embodiment of this invention. 本発明の第十五実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 15th embodiment of this invention. 本発明の第十六実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 16th embodiment of this invention. 本発明の第十七実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 17th embodiment of this invention. 本発明の第十八実施形態に係る表示装置を示す断面図である。It is sectional drawing which shows the display apparatus which concerns on 18th embodiment of this invention. 本発明の第十九実施形態に係る表示装置を示す断面図である。It is sectional drawing which shows the display apparatus which concerns on 19th embodiment of this invention. 本発明の第二十実施形態に係る表示装置を示す断面図である。It is sectional drawing which shows the display apparatus which concerns on 20th embodiment of this invention. 本発明の第二十実施形態に係る表示装置を示す断面図である。It is sectional drawing which shows the display apparatus which concerns on 20th embodiment of this invention. 本発明の第二十一実施形態に係る表示装置を示す断面図である。It is sectional drawing which shows the display apparatus which concerns on 21st embodiment of this invention. バンクの断面形状例を示した断面図である。It is sectional drawing which showed the cross-sectional shape example of the bank. バンクの断面形状例を示した断面図である。It is sectional drawing which showed the cross-sectional shape example of the bank. バンクの断面形状例を示した断面図である。It is sectional drawing which showed the cross-sectional shape example of the bank. バンクの断面形状例を示した断面図である。It is sectional drawing which showed the cross-sectional shape example of the bank. バンクの断面形状例を示した断面図である。It is sectional drawing which showed the cross-sectional shape example of the bank. バンクの形状例を示した断面図である。It is sectional drawing which showed the example of the shape of a bank. バンクの形状例を示した断面図である。It is sectional drawing which showed the example of the shape of a bank. バンクの形状例を示した断面図である。It is sectional drawing which showed the example of the shape of a bank. バンクの形状例を示した断面図である。It is sectional drawing which showed the example of the shape of a bank. バンクの形状例を示した断面図である。It is sectional drawing which showed the example of the shape of a bank. バンクの形状例を示した断面図である。It is sectional drawing which showed the example of the shape of a bank. バンクの形状例を示した断面図である。It is sectional drawing which showed the example of the shape of a bank. バンクの形状例を示した断面図である。It is sectional drawing which showed the example of the shape of a bank. バンクの形状例を示した断面図である。It is sectional drawing which showed the example of the shape of a bank. バンクの構成例を示した断面図である。It is sectional drawing which showed the structural example of the bank. バンクの構成例を示した断面図である。It is sectional drawing which showed the structural example of the bank. バンクの構成例を示した断面図である。It is sectional drawing which showed the structural example of the bank. バンクの構成例を示した断面図である。It is sectional drawing which showed the structural example of the bank. バンクの構成例を示した断面図である。It is sectional drawing which showed the structural example of the bank. バンクの構成例を示した断面図である。It is sectional drawing which showed the structural example of the bank. 本発明の第二十二実施形態に係る表示装置を示す断面図である。It is sectional drawing which shows the display apparatus which concerns on 22nd embodiment of this invention. 本発明の第二十三実施形態に係る表示装置を示す断面図である。It is sectional drawing which shows the display apparatus which concerns on 23rd embodiment of this invention. 本発明の第二十四実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 24th embodiment of this invention. 本発明の第二十四実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 24th embodiment of this invention. 第二十四実施形態の変形例を示す断面図である。It is sectional drawing which shows the modification of 24th embodiment. 第二十四実施形態の変形例を示す断面図である。It is sectional drawing which shows the modification of 24th embodiment. 本発明の発光デバイスの一適用例である表示装置を示す外観図である。It is an external view which shows the display apparatus which is one application example of the light-emitting device of this invention. 本発明の発光デバイスの一適用例である表示装置を示す外観図である。It is an external view which shows the display apparatus which is one application example of the light-emitting device of this invention. 本発明の発光デバイスの一適用例である照明装置を示す外観図である。It is an external view which shows the illuminating device which is one application example of the light-emitting device of this invention. 本発明の発光デバイスの一適用例である照明装置を示す外観図である。It is an external view which shows the illuminating device which is one application example of the light-emitting device of this invention.
 以下、図面を参照して、本発明の態様に係る発光デバイス、表示装置、及び電子機器の一実施形態について説明する。なお、以下に示す実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明の態様を限定するものではない。また、以下の説明で用いる図面は、本発明の態様の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。 Hereinafter, an embodiment of a light-emitting device, a display device, and an electronic apparatus according to an aspect of the present invention will be described with reference to the drawings. The following embodiments are specifically described for better understanding of the gist of the invention, and do not limit the embodiments of the present invention unless otherwise specified. In addition, in the drawings used in the following description, in order to make the features of the embodiments of the present invention easier to understand, there is a case where a main part is shown in an enlarged manner for convenience, and the dimensional ratio of each component is actually shown. Is not necessarily the same.
(発光デバイス:第一実施形態)
  図1は第一実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス10は、基板11と、第一電極(下部電極)12と、第二電極(上部電極)13と、有機発光層14と、を有する。第一電極(下部電極)12、第二電極(上部電極)13は、この基板11の一面11aに順に積層される。有機発光層14は、この第一電極12および第二電極13の間に形成される。
(Light emitting device: first embodiment)
FIG. 1 is a schematic sectional view showing a light emitting device according to the first embodiment.
The light emitting device 10 includes a substrate 11, a first electrode (lower electrode) 12, a second electrode (upper electrode) 13, and an organic light emitting layer 14. The first electrode (lower electrode) 12 and the second electrode (upper electrode) 13 are sequentially stacked on one surface 11 a of the substrate 11. The organic light emitting layer 14 is formed between the first electrode 12 and the second electrode 13.
  また、基板11の一面11aには、第一電極12を所定の領域毎に複数に区画するバンク(絶縁層)15が形成されている。このようなバンク15は、例えば有機発光層14の1画素に相当する領域に対応して、第一電極12を複数に区画して、区画された第一電極12どうしを互いに電気的に絶縁する。 Also, a bank (insulating layer) 15 that partitions the first electrode 12 into a plurality of predetermined regions is formed on the one surface 11a of the substrate 11. Such a bank 15 divides the first electrode 12 into a plurality of parts corresponding to a region corresponding to one pixel of the organic light emitting layer 14, for example, and electrically insulates the divided first electrodes 12 from each other. .
  作製プロセスとしては、例えば、基板11上に第一電極(下部電極)12を形成し、その後バンク15を形成し、さらに有機発光層14、第二電極(上部電極)13を形成するプロセスなどを用いることができる。有機ELに用いられる材料は水分、酸素などに極めて弱いため、有機発光層14の形成前、すなわち、第一電極(下部電極)12及びバンク15を形成した後に、十分な脱水工程(ベーク工程、真空乾燥工程など)を行うことが好ましい。 As a manufacturing process, for example, a process of forming a first electrode (lower electrode) 12 on a substrate 11, then forming a bank 15, and further forming an organic light emitting layer 14 and a second electrode (upper electrode) 13. Can be used. Since the material used for the organic EL is extremely weak against moisture, oxygen, and the like, a sufficient dehydration process (baking process, bake process, It is preferable to perform a vacuum drying step or the like.
 基板11は、光透過性または光不透過性(遮光性)であり、例えば、ガラス、樹脂、金属板などから構成される。
  第一電極(下部電極)12は、遮光性である場合と光透過性である場合とがある。光透過性である場合は、透明電極であればよく、例えば、ITO(Indium-tin-oxide)や、ZnO(Zinc oxide)などが用いられる。また、遮光性である場合には、例えば金属膜で形成すればよい。
The substrate 11 is light-transmitting or light-impermeable (light-blocking) and is made of, for example, glass, resin, metal plate, or the like.
The first electrode (lower electrode) 12 may be light-shielding or light-transmissive. If it is light transmissive, it may be a transparent electrode. For example, ITO (Indium-tin-oxide), ZnO (Zinc oxide), or the like is used. In the case of light shielding properties, for example, a metal film may be used.
  第一電極(下部電極)12が遮光性である場合には、発光した光は第二電極(上部電極)13側から取り出されることになり、いわゆるトップエミッション型有機ELとなる。また、第一電極(下部電極)12が光透過性である場合には、発光した光は第一電極(下部電極)12及び第二電極(上部電極)13の両面から取り出されることになり、いわゆる両面発光型有機ELとなる。 When the first electrode (lower electrode) 12 is light-shielding, the emitted light is taken out from the second electrode (upper electrode) 13 side, and becomes a so-called top emission type organic EL. In addition, when the first electrode (lower electrode) 12 is light transmissive, the emitted light is extracted from both surfaces of the first electrode (lower electrode) 12 and the second electrode (upper electrode) 13, This is a so-called double-sided organic EL.
  このような第一電極12の厚さは例えば、100nm程度である。なお、第一電極12は、通常はアノードであるが、カソードとすることも可能であり、その場合には低仕事関数の材料を用いる。また、配線抵抗を下げる目的等で補助配線を併設してもいい。補助配線は、例えばAl, Ag, Ta, Ti, Niなどの金属材料で形成することができる。 The thickness of the first electrode 12 is about 100 nm, for example. The first electrode 12 is usually an anode, but may be a cathode. In that case, a material having a low work function is used. In addition, auxiliary wiring may be provided for the purpose of reducing wiring resistance. The auxiliary wiring can be formed of a metal material such as Al, Ag, Ta, Ti, Ni, for example.
  第一電極(下部電極)12は、バンク(絶縁層)15によって、所定の領域毎に複数に区画されている。本実施形態の発光デバイスを表示装置(有機ELディスプレイ)として用いる場合には、第一電極(下部電極)12は、1画素に相当する領域毎に区画されていればよい。 The first electrode (lower electrode) 12 is divided into a plurality of predetermined areas by banks (insulating layers) 15. When the light-emitting device of this embodiment is used as a display device (organic EL display), the first electrode (lower electrode) 12 may be partitioned for each region corresponding to one pixel.
  第二電極(上部電極)13は、光透過性の透明電極から構成され、これによって、有機発光層14で発光した光が第二電極(上部電極)13を経て外部に出射される、いわゆるトップエミッション型の発光デバイスとなる。第二電極13は、通常はカソードを成し、LiF/ITO, MgAg/IZOなどを用いることができる。なお、第二電極(上部電極)13をアノードとすることも可能であり、その場合には、仕事関数の高い材料、例えば、ITOなどが好ましく用いられる。 The second electrode (upper electrode) 13 is composed of a light transmissive transparent electrode, whereby the light emitted from the organic light emitting layer 14 is emitted to the outside through the second electrode (upper electrode) 13. It becomes an emission type light emitting device. The second electrode 13 normally forms a cathode, and LiF / ITO, MgAg / IZO, or the like can be used. Note that the second electrode (upper electrode) 13 may be an anode, and in this case, a material having a high work function, such as ITO, is preferably used.
  これら以外にも、第一電極12及び第二電極13を形成する電極材料として、各種の公知の電極材料を用いることができる。アノードである場合には、有機発光層14への正孔の注入をより効率よく行う観点から、仕事関数が4.5eV以上の金(Au)、白金(Pt)、ニッケル(Ni)等の金属、及び、インジウム(In)と錫(Sn)からなる酸化物(ITO)、錫(Sn)の酸化物(SnO)インジウム(In)と亜鉛(Zn)からなる酸化物(IZO)等が透明電極材料として挙げられる。 In addition to these, various known electrode materials can be used as the electrode material for forming the first electrode 12 and the second electrode 13. In the case of an anode, a metal such as gold (Au), platinum (Pt), nickel (Ni) or the like having a work function of 4.5 eV or more from the viewpoint of more efficiently injecting holes into the organic light emitting layer 14. And oxide (ITO) made of indium (In) and tin (Sn), oxide of tin (Sn) (SnO 2 ), oxide made of indium (In) and zinc (Zn) (IZO), etc. are transparent It is mentioned as an electrode material.
  また、カソードを形成する電極材料としては、有機発光層14への電子の注入をより効率よく行う観点から、仕事関数が4.5eV以下のリチウム(Li)、カルシウム(Ca)、セリウム(Ce)、バリウム(Ba)、アルミニウム(Al)等の金属、又は、これらの金属を含有するMg:Ag合金、Li:Al合金等の合金が挙げられる。 Moreover, as an electrode material for forming the cathode, lithium (Li), calcium (Ca), cerium (Ce) having a work function of 4.5 eV or less from the viewpoint of more efficiently injecting electrons into the organic light emitting layer 14. And metals such as barium (Ba) and aluminum (Al), or alloys such as Mg: Ag alloy and Li: Al alloy containing these metals.
  第一電極12及び第二電極13は上記の材料を用いてEB蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等の公知の方法により形成することができるが、本発明はこれらの形成方法に限定されるものではない。また、必要に応じて、フォトリソグラフフィー法、レーザー剥離法により、形成した電極をパターン化することもでき、シャドーマスクと組み合わせることで直接パターン化した電極を形成することもできる。その膜厚は、50nm以上が好ましい。膜厚が50nm未満の場合には、配線抵抗が高くなることから、駆動電圧の上昇が生じるおそれがある。 The first electrode 12 and the second electrode 13 can be formed using the above materials by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, a resistance heating vapor deposition method, etc. The forming method is not limited. If necessary, the formed electrode can be patterned by a photolithographic fee method or a laser peeling method, or a patterned electrode can be directly formed by combining with a shadow mask. The film thickness is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance is increased, which may increase the drive voltage.
  有機発光層(有機EL発光体)14は、第一電極12と第二電極13との間に印加された電圧によって、所定の波長帯の光を発する。有機発光層(有機EL発光体)14は、単層でもよいが、通常は複数層からなり、例えば、α-NPDとAlq3の積層膜などを用いることができる。また、アノードである第一電極(下部電極)12と、カソードである第二電極(上部電極)13との間に、ホール注入層、ホール輸送層、発光層、ホールブロッキング層、電子輸送層、電子注入層などからなる複層の有機発光層を形成することも行われている。 The organic light emitting layer (organic EL light emitter) 14 emits light in a predetermined wavelength band by a voltage applied between the first electrode 12 and the second electrode 13. The organic light emitting layer (organic EL light emitter) 14 may be a single layer, but is usually composed of a plurality of layers. For example, a laminated film of α-NPD and Alq3 can be used. Further, a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, between a first electrode (lower electrode) 12 serving as an anode and a second electrode (upper electrode) 13 serving as a cathode, It is also practiced to form a multi-layered organic light emitting layer composed of an electron injection layer or the like.
  これらの層以外に、MoO層、C0層、フラーレン含有層、量子ドット含有層などさまざまな層を併用することも盛んに検討されており、いずれも本実施形態を適用できることは言うまでもない。量子ドット含有層を用いた発光素子は、QLED(Quantum-dot light-emitting diode)と呼ばれている。また、発光領域を積層するいわゆるタンデム構造を用いることもできる。第一電極12と第二電極13との間に配置される層の膜厚は、通常、各層が数10nm程度である。もちろん、本実施形態の技術は、本実施形態の構成をとるものであれば、現在まだ発明されていない発光素子、一般に認知されていない発光素子などにも適用可能であることはいうまでもない。 In addition to these layers, it has been actively studied to use various layers such as a MoO 3 layer, a C 60 layer, a fullerene-containing layer, and a quantum dot-containing layer, and it goes without saying that this embodiment can be applied to any of these layers. . A light-emitting element using a quantum dot-containing layer is called a QLED (Quantum-dot light-emitting diode). A so-called tandem structure in which light emitting regions are stacked can also be used. As for the film thickness of the layer arrange | positioned between the 1st electrode 12 and the 2nd electrode 13, each layer is about several tens of nm normally. Of course, as long as the technology of the present embodiment has the configuration of the present embodiment, it is needless to say that the technique can be applied to a light-emitting element that has not been invented or a light-emitting element that is not generally recognized. .
  有機発光層14の層構造としての具体的として、下記の構成が挙げられるが、本実施形態はこれらにより限定されるものではない。
(1)有機発光層
(2)正孔輸送層/有機発光層
(3)有機発光層/電子輸送層
(4)正孔輸送層/有機発光層/電子輸送層
(5)正孔注入層/正孔輸送層/有機発光層/電子輸送層
(6)正孔注入層/正孔輸送層/有機発光層/電子輸送層/電子注入層
(7)正孔注入層/正孔輸送層/有機発光層/正孔防止層/電子輸送層
(8)正孔注入層/正孔輸送層/有機発光層/正孔防止層/電子輸送層/電子注入層
(9)正孔注入層/正孔輸送層/電子防止層/有機発光層/正孔防止層/電子輸送層/電子注入層
  ここで、有機発光層、正孔注入層、正孔輸送層、正孔防止層、電子防止層、電子輸送層及び電子注入層の各層は、単層構造でも多層構造でもよい。
Specific examples of the layer structure of the organic light emitting layer 14 include the following configurations, but the present embodiment is not limited thereto.
(1) Organic light emitting layer (2) Hole transport layer / organic light emitting layer (3) Organic light emitting layer / electron transport layer (4) Hole transport layer / organic light emitting layer / electron transport layer (5) Hole injection layer / Hole transport layer / organic light emitting layer / electron transport layer (6) hole injection layer / hole transport layer / organic light emitting layer / electron transport layer / electron injection layer (7) hole injection layer / hole transport layer / organic Light emitting layer / Hole prevention layer / Electron transport layer (8) Hole injection layer / Hole transport layer / Organic light emitting layer / Hole prevention layer / Electron transport layer / Electron injection layer (9) Hole injection layer / Hole Transport layer / electron prevention layer / organic light emitting layer / hole prevention layer / electron transport layer / electron injection layer Here, organic light emission layer, hole injection layer, hole transport layer, hole prevention layer, electron prevention layer, electron Each of the transport layer and the electron injection layer may have a single layer structure or a multilayer structure.
  有機発光層14は、以下に例示する有機発光材料のみから構成されていてもよく、発光性のドーパントとホスト材料の組み合わせから構成されていてもよく、任意に正孔輸送材料、電子輸送材料、添加剤(ドナー、アクセプター等)等を含んでいてもよく、また、これらの材料が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。発光効率及び寿命の観点からは、ホスト材料中に発光性のドーパントが分散されたものが好ましい。 The organic light emitting layer 14 may be composed of only the organic light emitting material exemplified below, or may be composed of a combination of a light emitting dopant and a host material, and optionally, a hole transport material, an electron transport material, Additives (donor, acceptor, etc.) may be included, and these materials may be dispersed in a polymer material (binding resin) or an inorganic material. From the viewpoint of luminous efficiency and lifetime, it is preferable that a luminescent dopant is dispersed in the host material.
  有機発光材料としては、有機発光層用の公知の発光材料を用いることができる。このような発光材料は、低分子発光材料、高分子発光材料等に分類され、これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。また、上記発光材料は、蛍光材料、燐光材料等に分類されるものでもよく、低消費電力化の観点で、発光効率の高い燐光材料を用いる事が好ましい。
  ここで、具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
As the organic light emitting material, a known light emitting material for an organic light emitting layer can be used. Such light-emitting materials are classified into low-molecular light-emitting materials, polymer light-emitting materials, and the like. Specific examples of these compounds are given below, but the present embodiment is not limited to these materials. The light-emitting material may be classified into a fluorescent material, a phosphorescent material, and the like, and it is preferable to use a phosphorescent material with high light emission efficiency from the viewpoint of reducing power consumption.
Here, although a specific compound is illustrated below, this embodiment is not limited to these materials.
  発光層に任意に含まれる発光性のドーパントとしては、有機発光層用の公知のドーパント材料を用いることができる。このようなドーパント材料としては、例えば、紫外発光材料としては、p-クォーターフェニル、3,5,3,5テトラ-t-ブチルセクシフェニル、3,5,3,5テトラ-t-ブチル-p-クィンクフェニル等の蛍光発光材料等が挙げられる。青色発光材料として、スチリル誘導体等の蛍光発光材料、ビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2‘]ピコリネート イリジウム(III)(FIrpic)、ビス(4’,6‘-ジフルオロフェニルポリジナト)テトラキス(1-ピラゾイル)ボレート イリジウム(III)(FIr)等の燐光発光有機金属錯体等が挙げられる。 As a luminescent dopant arbitrarily contained in the light emitting layer, a known dopant material for an organic light emitting layer can be used. As such a dopant material, for example, as an ultraviolet light emitting material, p-quaterphenyl, 3,5,3,5 tetra-t-butylsecphenyl, 3,5,3,5 tetra-t-butyl-p -Fluorescent materials such as quinckphenyl. Fluorescent light-emitting materials such as styryl derivatives, bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III) (FIrpic), bis (4 ′, 6′-difluorophenyl) And phosphorescent organometallic complexes such as polydinato) tetrakis (1-pyrazolyl) borate iridium (III) (FIr 6 ).
  また、ドーパントを用いる時のホスト材料としては、有機EL用の公知のホスト材料を用いることができる。このようなホスト材料としては、上述した低分子発光材料、高分子発光材料、4,4‘-ビス(カルバゾール)ビフェニル、9,9-ジ(4-ジカルバゾール-ベンジル)フルオレン(CPF)、3,6-ビス(トリフェニルシリル)カルバゾール(mCP)、(PCF)等のカルバゾール誘導体、4-(ジフェニルフォスフォイル)-N,N-ジフェニルアニリン(HM-A1)等のアニリン誘導体、1,3-ビス(9-フェニル-9H-フルオレン-9-イル)ベンゼン(mDPFB)、1,4-ビス(9-フェニル-9H-フルオレン-9-イル)ベンゼン(pDPFB)等のフルオレン誘導体等が挙げられる。 Moreover, as a host material when using a dopant, a known host material for organic EL can be used. Examples of such host materials include the low-molecular light-emitting materials, the polymer light-emitting materials, 4,4′-bis (carbazole) biphenyl, 9,9-di (4-dicarbazole-benzyl) fluorene (CPF), 3 , 6-bis (triphenylsilyl) carbazole (mCP), carbazole derivatives such as (PCF), aniline derivatives such as 4- (diphenylphosphoyl) -N, N-diphenylaniline (HM-A1), 1,3- And fluorene derivatives such as bis (9-phenyl-9H-fluoren-9-yl) benzene (mDPFB) and 1,4-bis (9-phenyl-9H-fluoren-9-yl) benzene (pDPFB).
  電荷注入輸送層は、電荷(正孔、電子)の電極からの注入と発光層への輸送(注入)をより効率よく行う目的で、電荷注入層(正孔注入層、電子注入層)と電荷輸送層(正孔輸送層、電子輸送層)に分類され、以下に例示する電荷注入輸送材料のみから構成されていてもよく、任意に添加剤(ドナー、アクセプター等)等を含んでいてもよく、これらの材料が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。 The charge injection / transport layer is used to more efficiently inject charges (holes, electrons) from the electrode and transport (injection) to the light emitting layer, and the charge injection layer (hole injection layer, electron injection layer). It is classified as a transport layer (hole transport layer, electron transport layer), and may be composed only of the charge injection transport material exemplified below, and may optionally contain additives (donor, acceptor, etc.) These materials may be dispersed in a polymer material (binding resin) or an inorganic material.
  電荷注入輸送材料としては、有機発光層用の公知の電荷輸送材料を用いることができる。このような電荷注入輸送材料は、正孔注入輸送材料及び電子注入輸送材料に分類され、これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。 As the charge injecting and transporting material, a known charge transporting material for the organic light emitting layer can be used. Such charge injecting and transporting materials are classified into hole injecting and transporting materials and electron injecting and transporting materials. Specific examples of these compounds are given below, but this embodiment is not limited to these materials. .
  正孔注入正孔輸送材料としては、例えば、酸化バナジウム(V)、酸化モリブデン(MoO)等の酸化物、無機p型半導体材料、ポルフィリン化合物、N,N’-ビス(3-メチルフェニル)-N,N’-ビス(フェニル)-ベンジジン(TPD)、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン(NPD)等の芳香族第三級アミン化合物、ヒドラゾン化合物、キナクリドン化合物、スチリルアミン化合物等の低分子材料、ポリアニリン(PANI)、ポリアニリン-樟脳スルホン酸(PANI-CSA)、3,4-ポリエチレンジオキシチオフェン/ポリスチレンサルフォネイト(PEDOT/PSS)、ポリ(トリフェニルアミン)誘導体(Poly-TPD)、ポリビニルカルバゾール(PVCz)、ポリ(p-フェニレンビニレン)(PPV)、ポリ(p-ナフタレンビニレン)(PNV)等の高分子材料等が挙げられる。 Examples of hole injection hole transport materials include oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 3 ), inorganic p-type semiconductor materials, porphyrin compounds, N, N′-bis (3- Aromatic tertiary compounds such as methylphenyl) -N, N′-bis (phenyl) -benzidine (TPD), N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPD) Low molecular weight materials such as quaternary amine compounds, hydrazone compounds, quinacridone compounds, styrylamine compounds, polyaniline (PANI), polyaniline-camphor sulfonic acid (PANI-CSA), 3,4-polyethylenedioxythiophene / polystyrene sulfonate (PEDOT) / PSS), poly (triphenylamine) derivatives (Poly-TPD), polyvinylcarbazole (PVCz) ), Poly (p-phenylene vinylene) (PPV), poly (p-naphthalene vinylene) (PNV), and the like.
  また、アノードからの正孔の注入および輸送をより効率よく行う点で、正孔注入層として用いる材料としては、正孔輸送層に使用する正孔注入輸送材料より最高被占分子軌道(HOMO)のエネルギー準位が低い材料を用いることが好ましく、正孔輸送層としては、正孔注入層に使用する正孔注入輸送材料より正孔の移動度が、高い材料を用いることが好ましい。 In addition, as a material used for the hole injection layer in terms of more efficiently injecting and transporting holes from the anode, the highest occupied molecular orbital (HOMO) is better than the hole injection and transport material used for the hole transport layer. It is preferable to use a material having a low energy level, and as the hole transport layer, it is preferable to use a material having higher hole mobility than the hole injection transport material used for the hole injection layer.
  また、より正孔の注入および輸送性を向上させるため、前記正孔注入輸送材料にアクセプターをドープする事が好ましい。アクセプターとしては、有機発光層用の公知のアクセプター材料を用いることができる。これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。 In addition, in order to improve the hole injection and transport properties, it is preferable to dope the hole injection / transport material with an acceptor. As an acceptor, the well-known acceptor material for organic light emitting layers can be used. Although these specific compounds are illustrated below, this embodiment is not limited to these materials.
  アクセプター材料としては、Au、Pt、W,Ir、POCl3 、AsF6 、Cl、Br、I、酸化バナジウム(V)、酸化モリブデン(MoO)等の無機材料、TCNQ(7,7,8,8,-テトラシアノキノジメタン)、TCNQF4 (テトラフルオロテトラシアノキノジメタン)、TCNE(テトラシアノエチレン)、HCNB(ヘキサシアノブタジエン)、DDQ(ジシクロジシアノベンゾキノン)等のシアノ基を有する化合物、TNF(トリニトロフルオレノン)、DNF(ジニトロフルオレノン)等のニトロ基を有する化合物、フルオラニル、クロラニル、ブロマニル等の有機材料が挙げられる。
 この内、TCNQ、TCNQF4 、TCNE、HCNB、DDQ等のシアノ基を有する化合物がよりキャリア濃度を効果的に増加させることが可能であるためより好ましい。
Acceptor materials include Au, Pt, W, Ir, POCl 3 , AsF 6 , Cl, Br, I, vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 3 ) and other inorganic materials, TCNQ (7, 7 , 8,8, -tetracyanoquinodimethane), TCNQF 4 (tetrafluorotetracyanoquinodimethane), TCNE (tetracyanoethylene), HCNB (hexacyanobutadiene), DDQ (dicyclodicyanobenzoquinone), etc. And compounds having a nitro group such as TNF (trinitrofluorenone) and DNF (dinitrofluorenone), and organic materials such as fluoranyl, chloranil and bromanyl.
Among these, compounds having a cyano group such as TCNQ, TCNQF 4 , TCNE, HCNB, DDQ and the like are more preferable because they can increase the carrier concentration more effectively.
  電子注入電子輸送材料としては、例えば、n型半導体である無機材料、オキサジアゾール誘導体、トリアゾール誘導体、チオピラジンジオキシド誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、ベンゾジフラン誘導体等の低分子材料;ポリ(オキサジアゾール)(Poly-OXZ)、ポリスチレン誘導体(PSS)等の高分子材料が挙げられる。特に、電子注入材料としては、特にフッ化リチウム(LiF)、フッ化バリウム(BaF)等のフッ化物、酸化リチウム(LiO)等の酸化物等が挙げられる。 Examples of electron injection electron transport materials include inorganic materials that are n-type semiconductors, oxadiazole derivatives, triazole derivatives, thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, fluorenone derivatives, benzodifuran derivatives, etc. And low molecular weight materials; polymer materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS). In particular, examples of the electron injection material include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), and oxides such as lithium oxide (Li 2 O).
  電子のカソードからの注入および輸送をより効率よく行う点で、電子注入層として用いる材料としては、電子輸送層に使用する電子注入輸送材料より最低空分子軌道(LUMO)のエネルギー準位が高い材料を用いることが好ましく、電子輸送層として用いる材料としては、電子注入層に使用する電子注入輸送材料より電子の移動度が高い材料を用いることが好ましい。 The material used for the electron injection layer is a material having an energy level of the lowest unoccupied molecular orbital (LUMO) higher than that of the electron injection and transport material used for the electron transport layer in that the electron injection and transport from the cathode are performed more efficiently. It is preferable to use a material having a higher electron mobility than the electron injecting and transporting material used for the electron injecting layer.
  また、より電子の注入および輸送性を向上させるため、前記電子注入輸送材料にドナーをドープする事が好ましい。ドナーとしては、有機発光層用の公知のドナー材料を用いることができる。これらの具体的な化合物を以下に例示するが、本発明はこれらの材料に限定されるものではない。 Also, in order to further improve the electron injection and transport properties, it is preferable to dope the electron injection / transport material with a donor. As the donor, a known donor material for an organic light emitting layer can be used. Although these specific compounds are illustrated below, this invention is not limited to these materials.
  ドナー材料としては、アルカリ金属、アルカリ土類金属、希土類元素、Al、Ag、Cu、In等の無機材料、アニリン類、フェニレンジアミン類、ベンジジン類(N,N,N’,N’-テトラフェニルベンジジン、N,N’-ビス-(3-メチルフェニル)-N,N’-ビス-(フェニル)-ベンジジン、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン等)、トリフェニルアミン類(トリフェニルアミン、4,4’4''-トリス(N,N-ジフェニル-アミノ)-トリフェニルアミン、4,4’4''-トリス(N-3-メチルフェニル-N-フェニル-アミノ)-トリフェニルアミン、4,4’4''-トリス(N-(1-ナフチル)-N-フェニル-アミノ)-トリフェニルアミン等)、トリフェニルジアミン類(N,N’-ジ-(4-メチル-フェニル)-N,N’-ジフェニル-1,4-フェニレンジアミン)等の芳香族3級アミンを骨格にもつ化合物、フェナントレン、ピレン、ペリレン、アントラセン、テトラセン、ペンタセン等の縮合多環化合物(ただし、縮合多環化合物は置換基を有してもよい)、TTF(テトラチアフルバレン)類、ジベンゾフラン、フェノチアジン、カルバゾール等の有機材料がある。この内特に、芳香族3級アミンを骨格にもつ化合物、縮合多環化合物、アルカリ金属がよりキャリア濃度を効果的に増加させることが可能であるためより好ましい。 Donor materials include inorganic materials such as alkali metals, alkaline earth metals, rare earth elements, Al, Ag, Cu, and In, anilines, phenylenediamines, benzidines (N, N, N ′, N′-tetraphenyl) Benzidine, N, N'-bis- (3-methylphenyl) -N, N'-bis- (phenyl) -benzidine, N, N'-di (naphthalen-1-yl) -N, N'-diphenyl- Benzidine, etc.), triphenylamines (triphenylamine, 4,4′4 ″ -tris (N, N-diphenyl-amino) -triphenylamine, 4,4′4 ″ -tris (N-3- Methylphenyl-N-phenyl-amino) -triphenylamine, 4,4′4 ″ -tris (N- (1-naphthyl) -N-phenyl-amino) -triphenylamine, etc.), triphenyldia Compounds having an aromatic tertiary amine skeleton such as amines (N, N′-di- (4-methyl-phenyl) -N, N′-diphenyl-1,4-phenylenediamine), phenanthrene, pyrene, perylene There are organic materials such as condensed polycyclic compounds such as anthracene, tetracene and pentacene (however, the condensed polycyclic compound may have a substituent), TTFs (tetrathiafulvalene), dibenzofuran, phenothiazine and carbazole. Among these, a compound having an aromatic tertiary amine as a skeleton, a condensed polycyclic compound, and an alkali metal are more preferable because the carrier concentration can be increased more effectively.
  発光層、正孔輸送層、電子輸送層、正孔注入層及び電子注入層等の有機発光層は、上記の材料を溶剤に溶解、分散させた有機発光層形成用の塗液を用いて、スピンコーティング法、ディッピング法、ドクターブレード法、吐出コート法、スプレーコート法等の塗布法、インクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法、マイクログラビアコート法等の印刷法等による公知のウエットプロセス、上記の材料を抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、有機気相蒸着(OVPD)法等の公知のドライプロセス、又は、レーザー転写法等により形成することができる。なお、ウエットプロセスにより有機発光層を形成する場合には、有機発光層形成用の塗液は、レベリング剤、粘度調整剤等の塗液の物性を調整するための添加剤を含んでいてもよい。 Organic light-emitting layers such as a light-emitting layer, a hole transport layer, an electron transport layer, a hole injection layer, and an electron injection layer are prepared using a coating liquid for forming an organic light-emitting layer in which the above materials are dissolved and dispersed in a solvent. Known coating methods such as spin coating method, dipping method, doctor blade method, discharge coating method, spray coating method, ink jet method, letterpress printing method, intaglio printing method, screen printing method, printing method such as microgravure coating method, etc. Wet process, known dry processes such as resistance heating vapor deposition, electron beam (EB) vapor deposition, molecular beam epitaxy (MBE), sputtering, organic vapor deposition (OVPD), etc., or laser transfer It can be formed by a method or the like. When forming the organic light emitting layer by a wet process, the coating liquid for forming the organic light emitting layer may contain additives for adjusting the physical properties of the coating liquid, such as a leveling agent and a viscosity modifier. .
  上記の有機発光層14を構成する各層の膜厚は、通常1nm~1000nm程度であるが、10nm~200nmが好ましい。膜厚が10nm未満であると、本来必要とされる物性(電荷の注入特性、輸送特性、閉じ込め特性)が得なれない。また、ゴミ等の異物による画素欠陥が生じるおそれがある。また、膜厚が200nmを超えると有機発光層の抵抗成分により駆動電圧の上昇が生じ、消費電力の上昇に繋がる懸念がある。 The thickness of each layer constituting the organic light emitting layer 14 is usually about 1 nm to 1000 nm, preferably 10 nm to 200 nm. If the film thickness is less than 10 nm, the properties (charge injection characteristics, transport characteristics, confinement characteristics) that are originally required cannot be obtained. In addition, pixel defects due to foreign matters such as dust may occur. Further, when the film thickness exceeds 200 nm, there is a concern that the drive voltage increases due to the resistance component of the organic light emitting layer, leading to an increase in power consumption.
 第一電極(下部電極)12を所定の領域(例えば画素)毎に複数に区画するバンク(絶縁層)15は、少なくとも光反射性を有する材料から構成される。光反射性を有する材料としては、色調が白色の材料を用いることが好ましい。更に、光反射性に加えて光拡散性を有する材料を用いることも好ましい。 The bank (insulating layer) 15 that divides the first electrode (lower electrode) 12 into a plurality of predetermined regions (for example, pixels) is made of a material having at least light reflectivity. As the material having light reflectivity, a material having a white color tone is preferably used. Furthermore, it is also preferable to use a material having light diffusibility in addition to light reflectivity.
 単に光反射性のみの場合には、バンク側面の基板に対する角度やバンクの形状によって、取り出される光のプロファイルが大きく変わるため、所望の光プロファイルを得るためには、バンク側面の基板に対する角度やバンクの形状を適切なものに制御する必要も出てくる。これに対し、バンクが光反射性に加えて、白色性、光散乱性を有していると、バンクで反射する光の方向が広がるため、取り出される光のプロファイルは、バンク側面の基板に対する角度やバンクの形状にそれほど依存せず、自然な発光プロファイルが得られやすい。 In the case of only light reflectivity, the profile of the extracted light varies greatly depending on the angle of the bank side surface with respect to the substrate and the shape of the bank. Therefore, in order to obtain a desired light profile, the angle of the bank side surface with respect to the substrate and the bank There is also a need to control the shape of the material appropriately. On the other hand, if the bank has whiteness and light scattering properties in addition to light reflectivity, the direction of light reflected by the bank is widened. A natural light emission profile is easily obtained without depending on the shape of the bank.
  一例として、バンク(絶縁層)15を、例えば、特開2007-322546号公報, 特開2008-211036号公報, 特開2011-66267号公報など開示されている高反射率の白色ソルダーレジストを利用して形成することができる。あるいは、ポリイミド系やアクリル系などの感光性樹脂にTiOなどの粒子を分散させて、光反射性、光散乱性、白色性などの機能を付与することも有効な手法である。また、バンク15は、銀(Ag)等の反射性を有する金属を含む樹脂を用いて形成してもよい。 As an example, the bank (insulating layer) 15 uses, for example, a high-reflectance white solder resist disclosed in JP2007-322546A, JP2008-211036A, JP2011-66267A, and the like. Can be formed. Alternatively, it is an effective technique to disperse particles such as TiO 2 in a polyimide-based or acrylic-based photosensitive resin to provide functions such as light reflectivity, light scattering, and whiteness. The bank 15 may be formed using a resin containing a reflective metal such as silver (Ag).
  バンク(絶縁層)15は、光透過性または光不透過性の基板11の一面11a上に、所定のパターンで形成される。バンク15を所定の形状にパターン化するためには、光感光性樹脂に酸化チタン粒子などを添加したものをフォトリソグラフィーを用いてパターン化する方法、樹脂に酸化チタン粒子などを添加したものを全面形成し、その上にフォトレジストをパターン形成して、酸化チタン粒子を添加した樹脂層を所定のパターンにエッチングする方法など、半導体製造工程や液晶パネル製造工程などで用いられる公知の製造工程を適用することができる。 The bank (insulating layer) 15 is formed in a predetermined pattern on the one surface 11 a of the light transmissive or light non-transmissive substrate 11. In order to pattern the bank 15 into a predetermined shape, a method of patterning a photosensitive resin with titanium oxide particles added using photolithography, a resin with titanium oxide particles added to the entire surface, etc. Apply a well-known manufacturing process used in semiconductor manufacturing processes, liquid crystal panel manufacturing processes, etc., such as a method of forming a photoresist pattern on it and etching the resin layer with added titanium oxide particles into a predetermined pattern can do.
  バンク15の膜厚は、例えば1μm~5μmが概ね適切な範囲ではあるが、目的に合わせて適宜膜厚を選定してもよい。例えば、100nm~数10μmの高さのバンクも使用可能であり、いずれの場合であっても本実施形態の効果を得ることができる。 The film thickness of the bank 15 is, for example, approximately 1 μm to 5 μm, for example, but may be appropriately selected according to the purpose. For example, a bank having a height of 100 nm to several tens of μm can be used, and the effect of this embodiment can be obtained in any case.
  バンク15によって有機発光層14から発した光を反射する前に、全反射を繰り返してそのたびごとに光がロスするのは好ましくないので、互いに隣接するバンク15どうしの間隔(開口径)はあまり大きくないほうがよい。隣接するバンク15どうしの間隔は、50mm,20mm,10mm,5mm,1mm,500μm,100μm,50μm,20μmなどである。 Before the light emitted from the organic light emitting layer 14 is reflected by the bank 15, it is not preferable that light is lost every time the total reflection is repeated. Therefore, the interval (opening diameter) between the banks 15 adjacent to each other is not so large. It is better not to be big. The intervals between adjacent banks 15 are 50 mm, 20 mm, 10 mm, 5 mm, 1 mm, 500 μm, 100 μm, 50 μm, 20 μm, and the like.
  バンク15に光散乱性を持たせる場合には、バンク15を構成する樹脂中に微細な光反射性粒子を分散させることが好ましい。光反射性粒子は、粒径が200nm~5μmであることが好ましい。これによって、バンク15は光反射性を持つとともに、光の反射方向をランダムにする光散乱性も持つことができる。 When giving the bank 15 light scattering properties, it is preferable to disperse fine light-reflecting particles in the resin constituting the bank 15. The light reflective particles preferably have a particle size of 200 nm to 5 μm. As a result, the bank 15 can have light reflectivity and can also have light scattering properties that make the light reflection direction random.
  バンク15は、また、第一電極(下部電極)12のエッジ部分でのリークを防ぐ役割も果たす。即ち、第一電極12に有機発光層14を形成した場合、第一電極12の端面で有機発光層14の膜厚が薄くなる。このため第一電極12と第二電極13との間でショートが起こりやすくなる。バンク15をこうした領域に配置することによって、ショートを防止することができる。この場合、バンク15は、一般的にエッジカバー、ないし絶縁層などと称される構成物となる。 The bank 15 also serves to prevent leakage at the edge of the first electrode (lower electrode) 12. That is, when the organic light emitting layer 14 is formed on the first electrode 12, the thickness of the organic light emitting layer 14 is reduced at the end face of the first electrode 12. For this reason, a short circuit easily occurs between the first electrode 12 and the second electrode 13. By arranging the bank 15 in such a region, a short circuit can be prevented. In this case, the bank 15 is a component generally called an edge cover or an insulating layer.
  バンク15は、また、インクジェットなどウェットプロセスによって有機発光層14を形成する場合に、基板11のある画素領域に塗布された液体が、隣接する画素領域に流れることを防止する。こうした機能をより高めるために、バンク15に更に撥液性を付与する処理を施すことも好ましい。 The bank 15 also prevents liquid applied to a pixel area on the substrate 11 from flowing to an adjacent pixel area when the organic light emitting layer 14 is formed by a wet process such as inkjet. In order to further enhance such a function, it is also preferable to perform a process for imparting liquid repellency to the bank 15.
  有機層14を構成する各層は水分や酸素に弱く、一般的には封止を行うことが必要である。封止構造は様々なものが知られているが、例えば、第二電極(上部電極)に重ねて直接に絶縁膜を形成する構造がある。この場合、絶縁膜としては、SiOなどの無機膜、ポリイミド樹脂などによる有機膜、無機-有機ハイブリッド膜、無機-有機交互積層膜などを用いることができる。 Each layer constituting the organic layer 14 is vulnerable to moisture and oxygen and generally needs to be sealed. Various sealing structures are known. For example, there is a structure in which an insulating film is formed directly on the second electrode (upper electrode). In this case, as the insulating film, an inorganic film such as SiO 2 , an organic film made of polyimide resin, an inorganic-organic hybrid film, an inorganic-organic alternating laminated film, or the like can be used.
  以上のような構成の発光デバイスの作用について説明する。
  図1に示すように、発光デバイス10の第一電極(下部電極)12と第二電極(上部電極)13との間に、所定の電圧値の電圧が印加されると、有機発光層14中に注入された電子と正孔との再結合によって生じた励起子(エキシトン)によって、有機発光層14が発光する。
The operation of the light emitting device having the above configuration will be described.
As shown in FIG. 1, when a voltage having a predetermined voltage value is applied between the first electrode (lower electrode) 12 and the second electrode (upper electrode) 13 of the light emitting device 10, The organic light emitting layer 14 emits light due to excitons (excitons) generated by recombination of electrons and holes injected into.
  有機発光層14で発光した光(励起光)のうち、透明な第二電極(上部電極)13に向かう方向に出射された光F1は、第二電極13を透過して外部に出射される。
  また、有機発光層14で発光した光(励起光)のうち、光不透過性の第一電極(下部電極)12に向かう方向に出射された光F2は、第一電極13の表面で反射され、再び有機発光層14を透過し、透明な第二電極13を透過して外部に出射される。
Of the light (excitation light) emitted from the organic light emitting layer 14, the light F1 emitted in the direction toward the transparent second electrode (upper electrode) 13 is transmitted through the second electrode 13 and emitted to the outside.
Of the light (excitation light) emitted from the organic light emitting layer 14, the light F <b> 2 emitted in the direction toward the light impermeable first electrode (lower electrode) 12 is reflected by the surface of the first electrode 13. The light passes through the organic light emitting layer 14 again, passes through the transparent second electrode 13, and is emitted to the outside.
  一方、有機発光層14で発光した光(励起光)のうち、面広がり方向(積層方向に直角な方向)に向けて出射された光F3は、バンク15に入射する。バンク15に入射した光は、バンク15が光反射性を有する材料から構成されているため、入射した光を反射、および好ましくは拡散させる。そして、バンク15で反射された光F3も、第二電極13を透過して外部に出射される。 On the other hand, of the light (excitation light) emitted from the organic light emitting layer 14, the light F 3 emitted in the surface spreading direction (direction perpendicular to the stacking direction) is incident on the bank 15. The light incident on the bank 15 reflects and preferably diffuses the incident light because the bank 15 is made of a material having light reflectivity. The light F3 reflected by the bank 15 is also transmitted through the second electrode 13 and emitted to the outside.
  このように、本実施形態の発光デバイス10によれば、バンク15に光反射性があるため、バンク15に向かって出射された光F3が、バンク15で吸収されてしまったり、バンク15内を導波して損失することがない。そして、バンク15に向かって出射された光F3をバンク15で反射させて第二電極13を経て外部に出射させることによって、光取出し効率を格段に向上させることが可能になる。 Thus, according to the light emitting device 10 of the present embodiment, since the bank 15 has light reflectivity, the light F3 emitted toward the bank 15 is absorbed by the bank 15 or inside the bank 15. There is no loss due to wave guiding. Then, the light F3 emitted toward the bank 15 is reflected by the bank 15 and emitted to the outside through the second electrode 13, whereby the light extraction efficiency can be significantly improved.
  即ち、従来の発光デバイスは、有機発光層の屈折率や散乱性、あるいは形状の制御によって光取出し効率を上げるという発想に対して、本実施形態においては、有機発光層において発光した光を、バンク15で囲われた領域内に閉じ込め、バンク15の方向に伝播させないことにある。こうした構成によって、光の出射を光を取り出したい方向にだけ限定でき、光をロスすることなく効率よく取り出せる。これによって、従来知られている発光デバイスと比較して、光取出し効率を格段に向上させることができる。 That is, in contrast to the idea that conventional light emitting devices increase the light extraction efficiency by controlling the refractive index, scattering property, or shape of the organic light emitting layer, in this embodiment, the light emitted from the organic light emitting layer It is confined in the region surrounded by 15 and not propagated in the direction of the bank 15. With such a configuration, the emission of light can be limited only to the direction in which the light is desired to be extracted, and the light can be extracted efficiently without loss. Thereby, the light extraction efficiency can be remarkably improved as compared with a conventionally known light emitting device.
  なお、バンク15は、光反射性は必須であるが、更に加えて正反射ではなく、乱反射性、散乱性を有する材料から構成することがより好ましい。正反射よりも、乱反射、散乱の方が、バンク15に入射した光がランダムな方向に反射されるため、光の取り出し効率をより一層高められる。 Note that although the light reflectivity is essential, the bank 15 is more preferably composed of a material having irregular reflection properties and scattering properties instead of regular reflection. In the case of irregular reflection and scattering, the light incident on the bank 15 is reflected in a random direction, and the light extraction efficiency can be further improved compared to regular reflection.
  また、バンク15を配置する位置は、理想的には、所定の形状にパターン化された第一電極(下部電極)12の周辺すべてをバンク15で覆うことが好ましい。しかし、その一部のみをバンク15覆っても、光取出し効率の向上効果は得られる。ただし、第一電極(下部電極)12の周辺長さに対して、例えば、1%の長さに対してのみ光反射性のバンクを配置しただけでは、残り99%の長さの部分からは光が面広がり方向に導波して損失することになり、光取出し効率の向上効果は限定的である。 In addition, ideally, the bank 15 is preferably covered by the bank 15 around the first electrode (lower electrode) 12 patterned into a predetermined shape. However, even if only a part of the bank 15 is covered, the effect of improving the light extraction efficiency can be obtained. However, with respect to the peripheral length of the first electrode (lower electrode) 12, for example, if a light-reflective bank is arranged only for a length of 1%, the remaining 99% of the length is Light is guided and lost in the surface spreading direction, and the effect of improving the light extraction efficiency is limited.
  有機発光層14で発光した光が面広がり方向に導波して逃げてゆくか、あるいは光反射性のバンク15によって反射されて、基板11側から取り出されるかは、第一電極12の周辺長さに対して、バンク15が配置されている長さの割合が相関している。例えば、光反射性のバンクを用いない場合の光取出し効率が25%と仮定すると、損失分は75%となる。第一電極12の周辺長さに対して、バンク15が配置されている長さの割合が10%であれば、概算で約7.5%の光が取り出される可能性があり、トータルの光取出し効率は32.5%となり、光反射性のバンク15を形成しない場合の取り出し効率25%に対して、約30%の効率向上となる。 Whether the light emitted from the organic light-emitting layer 14 is guided away in the surface spreading direction or escapes, or is reflected by the light-reflective bank 15 and extracted from the substrate 11 side, is the peripheral length of the first electrode 12. The ratio of the length in which the bank 15 is arranged correlates with the length. For example, assuming that the light extraction efficiency without using a light reflective bank is 25%, the loss is 75%. If the ratio of the length in which the bank 15 is arranged to the peripheral length of the first electrode 12 is 10%, approximately 7.5% of light may be extracted on the basis of the total light. The extraction efficiency is 32.5%, which is an improvement of about 30% compared to the extraction efficiency of 25% when the light-reflective bank 15 is not formed.
  しかし、第一電極12の周辺長さに対して、バンク15が配置されている長さの割合が1%であれば、最大でも0.75%しか光取出しは向上せず、トータルの光取出し効率は25.75%にしかならない。これは、光反射性のバンク15を設けない場合の光取出し効率25%に対して、僅か3%の改善でしかなく、得られる効果はあまりに小さい。 However, if the ratio of the length in which the bank 15 is arranged to the peripheral length of the first electrode 12 is 1%, the light extraction is improved only by 0.75% at the maximum, and the total light extraction is performed. The efficiency is only 25.75%. This is only a 3% improvement over the light extraction efficiency of 25% when the light-reflective bank 15 is not provided, and the obtained effect is too small.
  この様な観点から、第一電極(下部電極)12の周辺長さに対して、バンク15が配置されている長さの割合は、理想的には100%であるが、概ね5%以上あれば、相応の光取り出し効率の向上効果は得られることになる。 From such a viewpoint, the ratio of the length in which the bank 15 is disposed to the peripheral length of the first electrode (lower electrode) 12 is ideally 100%, but is approximately 5% or more. Accordingly, a corresponding effect of improving the light extraction efficiency can be obtained.
  第一電極12の周辺長さに対して、バンク15が配置されている長さの割合が5%の場合、光反射性のバンク15によって取り出される光は最大3.75%(75%×5%)であり、トータル27.75%となる。これは光反射性のバンク15を設けない場合の光取出し効率25%に対して、15%の向上であり、意味のある改善といえる。
  ただし、実質的には、他の構成部での光損失や、基板11内での導波によるロスなどがあるため、好ましくは、第一電極12の周辺長さに対して、光反射性のバンク15が配置されている長さの割合が50%以上が好ましく、特に100%にすることが好ましい。
When the ratio of the length in which the bank 15 is arranged to the peripheral length of the first electrode 12 is 5%, the maximum amount of light extracted by the light reflective bank 15 is 3.75% (75% × 5 %) For a total of 27.75%. This is a 15% improvement over the light extraction efficiency of 25% when the light-reflective bank 15 is not provided, and can be said to be a meaningful improvement.
However, since there is substantially a light loss in other constituent parts and a loss due to wave guide in the substrate 11, it is preferable that the light reflective property be compared with the peripheral length of the first electrode 12. The ratio of the length in which the bank 15 is arranged is preferably 50% or more, and particularly preferably 100%.
  第一電極12の周辺長さに対して、バンク15が配置されている長さの割合をどれくらいにするかは、例えば、バンク15をパターン化する際の形状で決めることができる。
一般的なケースで考えれば、第一電極12の周辺をすべてバンク15で覆うことはなんら困難ではなく、第二電極13と第一電極12との間のリークの抑制、およびウェットプロセスで形成する場合の隣接画素への流れ込み防止という観点も考えると、第一電極(下部電極)12の周辺をすべて光反射性バンク15で覆うことが好ましい。
The ratio of the length in which the bank 15 is arranged with respect to the peripheral length of the first electrode 12 can be determined by, for example, the shape when the bank 15 is patterned.
Considering a general case, it is not difficult to cover the entire periphery of the first electrode 12 with the bank 15, and it is formed by suppressing leakage between the second electrode 13 and the first electrode 12 and by a wet process. Considering the viewpoint of preventing inflow into adjacent pixels, it is preferable to cover the entire periphery of the first electrode (lower electrode) 12 with the light reflective bank 15.
  また、発光デバイス10は、信頼性確保のため、適切な方法で周囲を封止するのが好ましい。封止の方法は、公知の方法などを用いることができる。例えば、缶封止と乾燥剤を用いる方法、キャップガラスと乾燥剤を用いる方法、ガラスフリット封止、透湿性を抑えた膜とガラスとで張り合わせる方法などが挙げられる。 Moreover, it is preferable to seal the periphery of the light emitting device 10 by an appropriate method in order to ensure reliability. As a sealing method, a known method or the like can be used. For example, a method using a can seal and a desiccant, a method using a cap glass and a desiccant, a glass frit seal, a method of pasting together a film with suppressed moisture permeability and glass, and the like.
 また、発光デバイス10は、第二電極13と有機発光層14との間に、低屈折率層を有していてもよい。例えば、有機発光層14の屈折率よりも低く、第二電極13の屈折率よりも高い範囲の屈折率をもつ材料から形成される。低屈折率層は、例えば、有機発光層14から低屈折率層に向けて入射する入射光の臨界角が、低屈折率層から第二電極13に出射する出射光の臨界角よりも小さくなるような屈折率を持つことが好ましい。なお、低屈折率層は、電荷注入および電荷輸送の機能を有している。このような低屈折率層を形成することによって、光取出し効率を更に向上させることができる。 The light emitting device 10 may have a low refractive index layer between the second electrode 13 and the organic light emitting layer 14. For example, it is formed from a material having a refractive index in a range lower than the refractive index of the organic light emitting layer 14 and higher than the refractive index of the second electrode 13. In the low refractive index layer, for example, the critical angle of incident light incident from the organic light emitting layer 14 toward the low refractive index layer is smaller than the critical angle of outgoing light emitted from the low refractive index layer to the second electrode 13. It is preferable to have such a refractive index. The low refractive index layer has functions of charge injection and charge transport. By forming such a low refractive index layer, the light extraction efficiency can be further improved.
(発光デバイス:第二実施形態)
  図2は第二実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス20は、光透過性または光不透過性の基板21と、第一電極(下部電極)22と、透明な第二電極(上部電極)23と、有機発光層24と、を有する。第一電極(下部電極)22、第二電極(上部電極)23は、基板21の一面21aに順に積層される。有機発光層24は、第一電極22および第二電極23の間に形成される。また、基板21の一面21aには、第一電極22を所定の領域毎に複数に区画する光反射性のバンク(絶縁層)25が形成されている。
 本実施形態は、有機発光層24の構成が第一実施形態の有機発光層14と異なる。その他の構成については、第一実施形態と同様であるため、説明を省略する。
(Light Emitting Device: Second Embodiment)
FIG. 2 is a schematic cross-sectional view showing a light emitting device according to the second embodiment.
The light emitting device 20 includes a light transmissive or light opaque substrate 21, a first electrode (lower electrode) 22, a transparent second electrode (upper electrode) 23, and an organic light emitting layer 24. The first electrode (lower electrode) 22 and the second electrode (upper electrode) 23 are sequentially stacked on the one surface 21 a of the substrate 21. The organic light emitting layer 24 is formed between the first electrode 22 and the second electrode 23. A light-reflective bank (insulating layer) 25 that divides the first electrode 22 into a plurality of predetermined regions is formed on the one surface 21a of the substrate 21.
In the present embodiment, the configuration of the organic light emitting layer 24 is different from the organic light emitting layer 14 of the first embodiment. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  そして、この実施形態においては、有機発光層24を、例えば画素毎に区切って形成している。即ち、第一実施形態においては、有機発光層14はバンク15を乗り越えて一連の層として形成されていたが(図1参照)、第二実施形態においては、有機発光層24はバンク25の上部(第二電極側)で区切られて複数に分割されている。これによって、有機発光層24を伝播して面広がり方向に伝播していく光を遮断し、光取出し効率を更に向上させることができる。 In this embodiment, the organic light emitting layer 24 is formed, for example, divided for each pixel. That is, in the first embodiment, the organic light emitting layer 14 is formed as a series of layers over the bank 15 (see FIG. 1), but in the second embodiment, the organic light emitting layer 24 is formed above the bank 25. It is divided into a plurality of sections separated by (second electrode side). Thereby, light propagating through the organic light emitting layer 24 and propagating in the surface spreading direction can be blocked, and the light extraction efficiency can be further improved.
(発光デバイス:第三実施形態)
  図3は第三実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス30は、光透過性または光不透過性の基板31と、第一電極(下部電極)32と、透明な第二電極(上部電極)33と、有機発光層34と、を有する。第一電極(下部電極)32、第二電極(上部電極)33は、基板31の一面31aに順に積層される。有機発光層34は、第一電極32および第二電極33の間に形成される。また、基板31の一面31aには、第一電極32、および有機発光層34とを所定の領域毎に複数に区画する光反射性のバンク(絶縁層)35が形成されている。
 本実施形態は、有機発光層34の構成が第一実施形態の有機発光層14と異なる。その他の構成については、第一実施形態と同様であるため、説明を省略する。
(Light emitting device: third embodiment)
FIG. 3 is a schematic sectional view showing a light emitting device according to the third embodiment.
The light emitting device 30 includes a light transmissive or light opaque substrate 31, a first electrode (lower electrode) 32, a transparent second electrode (upper electrode) 33, and an organic light emitting layer 34. The first electrode (lower electrode) 32 and the second electrode (upper electrode) 33 are sequentially stacked on the one surface 31 a of the substrate 31. The organic light emitting layer 34 is formed between the first electrode 32 and the second electrode 33. In addition, a light reflective bank (insulating layer) 35 that divides the first electrode 32 and the organic light emitting layer 34 into a plurality of predetermined regions is formed on the one surface 31 a of the substrate 31.
In the present embodiment, the configuration of the organic light emitting layer 34 is different from the organic light emitting layer 14 of the first embodiment. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  この実施形態においては、有機発光層34はバンク35によって、例えば画素毎に区画されている。即ち、第一実施形態においては、有機発光層14はバンク15を乗り越えて一連の層として形成されていたが(図1参照)、第三実施形態においては、有機発光層24はバンク35で複数に区画されている。これによって、有機発光層24を伝播して面広がり方向に伝播していく光を遮断し、かつ、有機発光層24の側断面(厚み方向の断面)から出射された光も光反射性のバンク35によって反射させることができ、光取出し効率を更に一層向上させることができる。 In this embodiment, the organic light emitting layer 34 is partitioned by the bank 35 for each pixel, for example. That is, in the first embodiment, the organic light emitting layer 14 is formed as a series of layers over the bank 15 (see FIG. 1). However, in the third embodiment, the organic light emitting layer 24 includes a plurality of banks 35. It is divided into. Thereby, the light propagating through the organic light emitting layer 24 and blocking the light propagating in the surface spreading direction is blocked, and the light emitted from the side cross section (thickness direction cross section) of the organic light emitting layer 24 is also reflected in the light reflective bank. Therefore, the light extraction efficiency can be further improved.
  なお、これら第二実施形態や第三実施形態において、有機発光層24,34の形成領域を所定の範囲内に限定して形成する方法としては、例えば、マスク蒸着法、インクジェット法、印刷などによるウェット法を用いた塗わけ、LITI(Laser Induced Thermal Imaging)、LIPS(laser Induced Pattern wise Sublimation)などのレーザーを用いる手法、フォトブリーチ法などの方法を適宜用いればよい。 In the second embodiment and the third embodiment, as a method of forming the organic light emitting layers 24 and 34 by limiting the formation region within a predetermined range, for example, a mask vapor deposition method, an inkjet method, printing, or the like is used. A method using a laser such as LITI (Laser Induced Thermal Imaging), LIPS (Laser Induced Pattern Wise Sublimation), or a method such as a photo bleach method may be used as appropriate.
(発光デバイス:第四実施形態)
  図4は第四実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス40は、光透過性または光不透過性の基板41と、第一電極(下部電極)42と、透明な第二電極(上部電極)43と、有機発光層44と、を有する。第一電極(下部電極)42、および第二電極(上部電極)43は、基板41の一面41aに順に積層される。有機発光層44は、第一電極42および第二電極43の間に形成される。また、基板41の一面41aには、第一電極42を所定の領域毎に複数に区画する光反射性のバンク(絶縁層)45が形成されている。そして、第二電極(上部電極)43を覆うように低屈折率層46が形成されている。
 本実施形態の発光デバイス40は、低屈折率層46を有する点および有機発光層44の構成が第一実施形態と異なる。その他の構成については、第一実施形態と同様であるため、説明を省略する。 
(Light-emitting device: Fourth embodiment)
FIG. 4 is a schematic sectional view showing a light emitting device according to the fourth embodiment.
The light emitting device 40 includes a light transmissive or light opaque substrate 41, a first electrode (lower electrode) 42, a transparent second electrode (upper electrode) 43, and an organic light emitting layer 44. The first electrode (lower electrode) 42 and the second electrode (upper electrode) 43 are sequentially stacked on the one surface 41 a of the substrate 41. The organic light emitting layer 44 is formed between the first electrode 42 and the second electrode 43. Further, on one surface 41a of the substrate 41, a light-reflective bank (insulating layer) 45 that partitions the first electrode 42 into a plurality of predetermined regions is formed. A low refractive index layer 46 is formed so as to cover the second electrode (upper electrode) 43.
The light emitting device 40 of this embodiment is different from the first embodiment in that it has a low refractive index layer 46 and the configuration of the organic light emitting layer 44. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  低屈折率層46は、例えば、第二電極(上部電極)43の屈折率よりも低く、空気(外気)の屈折率よりも高い範囲の屈折率をもつ材料から形成される。低屈折率層46は、例えば、第二電極43から低屈折率材層46に向けて入射する入射光の臨界角が、低屈折率材層46から外部に出射する出射光の臨界角よりも小さくなるような屈折率を持つことが好ましい。 The low refractive index layer 46 is formed of a material having a refractive index in a range lower than the refractive index of the second electrode (upper electrode) 43 and higher than the refractive index of air (outside air), for example. In the low refractive index layer 46, for example, the critical angle of incident light incident from the second electrode 43 toward the low refractive index material layer 46 is larger than the critical angle of outgoing light emitted from the low refractive index material layer 46 to the outside. It is preferable that the refractive index be small.
  低屈折率層46は、例えば、第二電極(上部電極)43の屈折率よりも低く、空気(外気)の屈折率よりも高い範囲の屈折率をもつ材料から形成される。低屈折率層の屈折率は基板の屈折率より低いことが好ましく、理想的には空気の屈折率と同じ1.0がもっとも好ましい。 The low refractive index layer 46 is formed of a material having a refractive index in a range lower than the refractive index of the second electrode (upper electrode) 43 and higher than the refractive index of air (outside air), for example. The refractive index of the low refractive index layer is preferably lower than the refractive index of the substrate, and ideally 1.0 is most preferable, which is the same as the refractive index of air.
  このような低屈折率層46を形成することによって、光取出し効率を更に向上させることができる。即ち、空気(外気)の屈折率を1.0、第二電極(上部電極)43の屈折率を1.5と仮定した時に、低屈折率層46を設けない場合は、有機発光層から出た光は基板から空気(外気)界面までは直進するが、第二電極(上部電極)と空気(外気)との界面における屈折率差のため、法線からの角度が42°より大きな光は全反射してしまう。 By forming such a low refractive index layer 46, the light extraction efficiency can be further improved. That is, assuming that the refractive index of air (outside air) is 1.0 and the refractive index of the second electrode (upper electrode) 43 is 1.5, if the low refractive index layer 46 is not provided, the organic light emitting layer will The light travels straight from the substrate to the air (outside air) interface, but due to the refractive index difference at the interface between the second electrode (upper electrode) and air (outside air), the light whose angle from the normal is greater than 42 ° Total reflection.
  これに対して、図4のように、例えば屈折率が1.2の低屈折率層46を設けた場合、低屈折率層46と空気(外気)との界面においては、法線からの角度53°より大きな光は全反射してしまうが、反射された光は光反射性のバンク45などで反射されて外部に取り出される可能性が高まる。図4に示す実施形態においても、低屈折率層46と空気(外気)との界面においては、法線からの角度が42°~53°の光は全反射取り出せないが、有機発光層44から出る光の角度で言えば、42°~53°の光だけが取り出せないだけであり、低屈折率層46を形成したことによる光取り出し効率の向上効果は大きい。 On the other hand, as shown in FIG. 4, for example, when the low refractive index layer 46 having a refractive index of 1.2 is provided, the angle from the normal line at the interface between the low refractive index layer 46 and air (outside air). Although light larger than 53 ° is totally reflected, the possibility that the reflected light is reflected by the light-reflective bank 45 and taken out to the outside increases. Also in the embodiment shown in FIG. 4, at the interface between the low refractive index layer 46 and air (outside air), light having an angle from the normal of 42 ° to 53 ° cannot be totally reflected, but from the organic light emitting layer 44. In terms of the angle of the emitted light, only the light of 42 ° to 53 ° cannot be extracted, and the effect of improving the light extraction efficiency by forming the low refractive index layer 46 is great.
  なお、光反射性のバンクを設けずに、低屈折率層46を形成しただけでは、第二電極43と低屈折率層46との界面で跳ね返った光が正反射を繰り返して面広がり方向に逃げてゆくことになり、光取出し効率はそれほど向上しない。ゆえに、光反射性のバンク45と低屈折率層46を組み合わせて用いることによって、光取出し効率の大幅な向上効果を得ることができる。 If the low-refractive-index layer 46 is formed without providing a light-reflective bank, the light bounced off at the interface between the second electrode 43 and the low-refractive-index layer 46 repeats regular reflection in the surface spreading direction. The light extraction efficiency will not improve so much. Therefore, by using the light-reflective bank 45 and the low refractive index layer 46 in combination, a significant improvement in the light extraction efficiency can be obtained.
(発光デバイス:第五実施形態)
  図5は第五実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス50は、光透過性または光不透過性の基板51と、第一電極(下部電極)52と、透明な第二電極(上部電極)53と、有機発光層54と、を有する。第一電極(下部電極)52、および透明な第二電極(上部電極)53は、基板51の一面51aに順に積層される。有機発光層54は、第一電極52および第二電極53の間に形成される。また、基板51の一面51aには、第一電極52を所定の領域毎に複数に区画する光反射性のバンク(絶縁層)55が形成されている。そして、第二電極(上部電極)53に重ねて低屈折率層56が形成されている。
 本実施形態の発光デバイス50は、有機発光層54の構成と、低屈折率層56を有する点で第一実施形態と異なる。その他の構成については、第一実施形態と同様であるため、説明を省略する。
(Light-emitting device: fifth embodiment)
FIG. 5 is a schematic sectional view showing a light emitting device according to the fifth embodiment.
The light emitting device 50 includes a light-transmissive or light-impermeable substrate 51, a first electrode (lower electrode) 52, a transparent second electrode (upper electrode) 53, and an organic light emitting layer 54. The first electrode (lower electrode) 52 and the transparent second electrode (upper electrode) 53 are sequentially stacked on one surface 51 a of the substrate 51. The organic light emitting layer 54 is formed between the first electrode 52 and the second electrode 53. A light-reflective bank (insulating layer) 55 that partitions the first electrode 52 into a plurality of predetermined regions is formed on the one surface 51a of the substrate 51. A low refractive index layer 56 is formed so as to overlap the second electrode (upper electrode) 53.
The light emitting device 50 according to the present embodiment is different from the first embodiment in that the configuration of the organic light emitting layer 54 and the low refractive index layer 56 are included. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  この実施形態においては、低屈折率層56は例えば、画素毎に区画されている。即ち、第四実施形態においては、低屈折率層46は、第二電極(上部電極)43全体を覆うように一連の層として形成されていたが(図4参照)、第五実施形態においては、低屈折率層56は複数に区画されている。これによって、低屈折率層56から面広がり方向に伝播していく光を遮断し、光取出し効率を更に一層向上させることができる。 In this embodiment, the low refractive index layer 56 is partitioned for each pixel, for example. That is, in the fourth embodiment, the low refractive index layer 46 is formed as a series of layers so as to cover the entire second electrode (upper electrode) 43 (see FIG. 4), but in the fifth embodiment, The low refractive index layer 56 is divided into a plurality of sections. Thereby, the light propagating from the low refractive index layer 56 in the surface spreading direction can be blocked, and the light extraction efficiency can be further improved.
(発光デバイス:第六実施形態)
  図6は第六実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス60は、光透過性または光不透過性の基板61と、第一電極(下部電極)62と、透明な第二電極(上部電極)63と、有機発光層64と、を有する。第一電極(下部電極)62、および透明な第二電極(上部電極)63は、基板61の一面61aに順に積層される。有機発光層64は、この第一電極62および第二電極63の間に形成された有機発光層64と、を有する。また、基板61の一面61aには、第一電極62を所定の領域毎に複数に区画する光反射性のバンク(絶縁層)65が形成されている。
 本実施形態の発光デバイス60は、接合層66および対向基板67を有する点で第一実施形態と異なる。その他の構成については、第一実施形態と同様であるため、説明を省略する。
(Light-emitting device: Sixth embodiment)
FIG. 6 is a schematic sectional view showing a light emitting device according to the sixth embodiment.
The light emitting device 60 includes a light transmissive or light opaque substrate 61, a first electrode (lower electrode) 62, a transparent second electrode (upper electrode) 63, and an organic light emitting layer 64. The first electrode (lower electrode) 62 and the transparent second electrode (upper electrode) 63 are sequentially stacked on the one surface 61 a of the substrate 61. The organic light emitting layer 64 has an organic light emitting layer 64 formed between the first electrode 62 and the second electrode 63. In addition, a light reflective bank (insulating layer) 65 that partitions the first electrode 62 into a plurality of predetermined regions is formed on the one surface 61 a of the substrate 61.
The light emitting device 60 of the present embodiment is different from the first embodiment in that it includes a bonding layer 66 and a counter substrate 67. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  第二電極(上部電極)63に重ねて、接合層66を介して対向基板(封止基板)67が形成されている。有機発光層64は水分や酸素に弱く、一般的には封止を行うことが必要である。封止構造は様々なものが知られているが、例えば、第二電極(上部電極)に重ねて直接に封止膜を形成する構造がある。この場合、封止膜としては、SiOなどの無機膜、ポリイミド樹脂などによる有機膜、無機-有機ハイブリッド膜、無機-有機交互積層膜などを用いることができる。しかし、最近では本実施形態のように、接合層66を介して対向基板(封止基板)67を形成することが主流となりつつある。 A counter substrate (sealing substrate) 67 is formed on the second electrode (upper electrode) 63 via a bonding layer 66. The organic light emitting layer 64 is vulnerable to moisture and oxygen and generally needs to be sealed. Various sealing structures are known. For example, there is a structure in which a sealing film is formed directly on the second electrode (upper electrode). In this case, as the sealing film, an inorganic film such as SiO 2 , an organic film made of polyimide resin, an inorganic-organic hybrid film, an inorganic-organic alternating laminated film, or the like can be used. However, recently, it is becoming mainstream to form the counter substrate (sealing substrate) 67 through the bonding layer 66 as in this embodiment.
  対向基板(封止基板)67は光透過性である必要があり、例えば、ガラス、フィルムなど硬質な透明基板を適用することができる。接合層66は、光透過性の固体層、例えば無機膜と樹脂膜との積層体であればよい。また、接合層66は、空気層、ドライ窒素層などの気体層、あるいは、減圧気体層、真空層などであることも好ましい。接合層66を気体層とする場合には、対向基板(封止基板)67と第二電極(上部電極)63との間に例えばスペーサ部材などを挟んで所定の間隔を保持するようにして、エッジ部分で封止すればよい。 The counter substrate (sealing substrate) 67 needs to be light transmissive, and for example, a hard transparent substrate such as glass or film can be applied. The bonding layer 66 may be a light transmissive solid layer, for example, a laminate of an inorganic film and a resin film. The bonding layer 66 is also preferably a gas layer such as an air layer or a dry nitrogen layer, or a reduced pressure gas layer or a vacuum layer. When the bonding layer 66 is a gas layer, for example, a spacer member is sandwiched between the counter substrate (sealing substrate) 67 and the second electrode (upper electrode) 63, and a predetermined interval is maintained. What is necessary is just to seal by an edge part.
  このような実施形態においては、第二電極(上部電極)63に重ねて更に対向基板(封止基板)67が形成されているため、水分や酸素に弱い有機発光層64を、外気(空気)に含まれる湿気や酸素から保護し、有機発光層64の劣化を防止することができる。 In such an embodiment, since the counter substrate (sealing substrate) 67 is further formed on the second electrode (upper electrode) 63, the organic light emitting layer 64 that is weak against moisture and oxygen is removed from the outside air (air). Thus, the organic light emitting layer 64 can be prevented from being deteriorated.
(発光デバイス:第七実施形態)
  図7は第七実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス70は、光透過性または光不透過性の基板71と、第一電極(下部電極)72と、透明な第二電極(上部電極)73と、有機発光層74と、を有する。第一電極(下部電極)72、および透明な第二電極(上部電極)73は、この基板71の一面71aに順に積層される。有機発光層74は、第一電極72および第二電極73の間に形成される。また、基板71の一面71aには、第一電極72および有機発光層74を所定の領域毎に複数に区画する光反射性のバンク(絶縁層)75が形成されている。
 本実施形態の発光デバイス70は、接合層86、対向基板87、低屈折率層88を有する点で第一実施形態と異なる。その他の構成については、第一実施形態と同様であるため、説明を省略する。
(Light Emitting Device: Seventh Embodiment)
FIG. 7 is a schematic sectional view showing a light emitting device according to the seventh embodiment.
The light emitting device 70 includes a light transmissive or light opaque substrate 71, a first electrode (lower electrode) 72, a transparent second electrode (upper electrode) 73, and an organic light emitting layer 74. The first electrode (lower electrode) 72 and the transparent second electrode (upper electrode) 73 are sequentially laminated on one surface 71 a of the substrate 71. The organic light emitting layer 74 is formed between the first electrode 72 and the second electrode 73. Further, on one surface 71a of the substrate 71, a light-reflective bank (insulating layer) 75 that partitions the first electrode 72 and the organic light emitting layer 74 into a plurality of predetermined regions is formed.
The light emitting device 70 of this embodiment is different from that of the first embodiment in that it includes a bonding layer 86, a counter substrate 87, and a low refractive index layer 88. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  第二電極(上部電極)73に重ねて、接合層76を介して対向基板(封止基板)77が形成されている。また、接合層76と第二電極(上部電極)73との間には、低屈折率層78が形成されている。低屈折率層78は、例えば、対向基板(封止基板)77の屈折率よりも低い屈折率をもつ材料から形成される。 A counter substrate (sealing substrate) 77 is formed on the second electrode (upper electrode) 73 with a bonding layer 76 interposed therebetween. A low refractive index layer 78 is formed between the bonding layer 76 and the second electrode (upper electrode) 73. The low refractive index layer 78 is formed of, for example, a material having a refractive index lower than that of the counter substrate (sealing substrate) 77.
  これによって、光取出し効率を更に向上させることができる。即ち、空気(外気)の屈折率を1.0、対向基板(封止基板)77を1.5と仮定した時に、低屈折率層78を設けない場合は、有機発光層から出た光は基板から空気(外気)界面までは直進するが、対向基板(封止基板)と空気(外気)との界面における屈折率差のため、法線からの角度が42°より大きな光は全反射してしまう。 This can further improve the light extraction efficiency. That is, assuming that the refractive index of air (outside air) is 1.0 and the counter substrate (sealing substrate) 77 is 1.5, if the low refractive index layer 78 is not provided, the light emitted from the organic light emitting layer is Light goes straight from the substrate to the air (outside air) interface, but light with an angle greater than 42 ° from the normal is totally reflected due to the refractive index difference at the interface between the counter substrate (sealing substrate) and air (outside air). End up.
  これに対して、図7のように、例えば屈折率が1.2の低屈折率層78を設けた場合、対向基板(封止基板)77と空気(外気)との界面においては、法線からの角度53°より大きな光は全反射しまうが、反射された光は光反射性のバンク75などで反射されて外部に取り出される可能性が高まる。図7に示す実施形態においても、対向基板(封止基板)77と空気(外気)との界面においては、法線からの角度が42°~53°の光は全反射取り出せないが、有機発光層74から出る光の角度で言えば、42°~53°の光だけが取り出せないだけであり、低屈折率層78を形成したことによる光取り出し効率の向上効果は大きい。 On the other hand, as shown in FIG. 7, when a low refractive index layer 78 having a refractive index of 1.2 is provided, for example, the normal line is formed at the interface between the counter substrate (sealing substrate) 77 and air (outside air). However, there is a high possibility that the reflected light is reflected by the light reflective bank 75 and extracted to the outside. In the embodiment shown in FIG. 7 as well, at the interface between the counter substrate (sealing substrate) 77 and air (outside air), light having an angle from the normal of 42 ° to 53 ° cannot be totally reflected, but organic light emission In terms of the angle of light emitted from the layer 74, only light of 42 ° to 53 ° cannot be extracted, and the effect of improving the light extraction efficiency by forming the low refractive index layer 78 is great.
(発光デバイス:第八実施形態)
  図8は第八実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス80は、光透過性または光不透過性の基板81と、第一電極(下部電極)82と、透明な第二電極(上部電極)83と、有機発光層84と、を有する。第一電極(下部電極)82、および透明な第二電極(上部電極)83は、この基板81の一面81aに順に積層される。有機発光層84は、第一電極82および第二電極83の間に形成される。また、基板81の一面81aには、第一電極82および有機発光層84を所定の領域毎に複数に区画する光反射性のバンク(絶縁層)85が形成されている。
 本実施形態の発光デバイス80は、接合層86、対向基板87、低屈折率層88を有する点で第一実施形態と異なる。その他の構成については、第一実施形態と同様であるため、説明を省略する。
(Light Emitting Device: Eighth Embodiment)
FIG. 8 is a schematic sectional view showing the light emitting device according to the eighth embodiment.
The light emitting device 80 includes a light transmissive or light opaque substrate 81, a first electrode (lower electrode) 82, a transparent second electrode (upper electrode) 83, and an organic light emitting layer 84. The first electrode (lower electrode) 82 and the transparent second electrode (upper electrode) 83 are sequentially stacked on one surface 81 a of the substrate 81. The organic light emitting layer 84 is formed between the first electrode 82 and the second electrode 83. Further, on one surface 81a of the substrate 81, a light-reflective bank (insulating layer) 85 that partitions the first electrode 82 and the organic light emitting layer 84 into a plurality of predetermined regions is formed.
The light emitting device 80 of this embodiment is different from that of the first embodiment in that it includes a bonding layer 86, a counter substrate 87, and a low refractive index layer 88. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
 第二電極(上部電極)83に重ねて、接合層86を介して対向基板(封止基板)87が形成されている。また、接合層86と第二電極(上部電極)83との間には、低屈折率層88が形成されている。低屈折率層88は、例えば、対向基板(封止基板)87の屈折率よりも低い屈折率をもつ材料から形成される。 A counter substrate (sealing substrate) 87 is formed on the second electrode (upper electrode) 83 via a bonding layer 86. A low refractive index layer 88 is formed between the bonding layer 86 and the second electrode (upper electrode) 83. The low refractive index layer 88 is formed from a material having a refractive index lower than that of the counter substrate (sealing substrate) 87, for example.
  この実施形態においては、低屈折率層88は例えば、画素毎に区画されている。即ち、第七実施形態においては、低屈折率層78は、第二電極(上部電極)73全体を覆うように一連の層として形成されていたが(図7参照)、第八実施形態においては、低屈折率層88は複数に区画されている。これによって、低屈折率層88から面広がり方向に伝播していく光を遮断し、光取出し効率を更に一層向上させることができる。 In this embodiment, the low refractive index layer 88 is partitioned for each pixel, for example. That is, in the seventh embodiment, the low refractive index layer 78 is formed as a series of layers so as to cover the entire second electrode (upper electrode) 73 (see FIG. 7), but in the eighth embodiment. The low refractive index layer 88 is divided into a plurality of sections. Thereby, the light propagating from the low refractive index layer 88 in the surface spreading direction can be blocked, and the light extraction efficiency can be further improved.
(発光デバイス:第九実施形態)
  図9は第九実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス90は、光透過性または光不透過性の基板91と、第一電極(下部電極)92と、透明な第二電極(上部電極)93と、有機発光層94と、を有する。第一電極(下部電極)92、および透明な第二電極(上部電極)93は、基板91の一面91aに順に積層される。有機発光層94は、第一電極92および第二電極93の間に形成される。また、基板91の一面91aには、第一電極92および有機発光層94を所定の領域毎に複数に区画する光反射性のバンク(絶縁層)95が形成されている。
 本実施形態の発光デバイス90は、接合層96、対向基板97、低屈折率層98を有する点で第一実施形態と異なる。その他の構成については、第一実施形態と同様であるため、説明を省略する。
(Light Emitting Device: Ninth Embodiment)
FIG. 9 is a schematic sectional view showing a light emitting device according to the ninth embodiment.
The light emitting device 90 includes a light transmissive or light opaque substrate 91, a first electrode (lower electrode) 92, a transparent second electrode (upper electrode) 93, and an organic light emitting layer 94. The first electrode (lower electrode) 92 and the transparent second electrode (upper electrode) 93 are sequentially stacked on the one surface 91 a of the substrate 91. The organic light emitting layer 94 is formed between the first electrode 92 and the second electrode 93. In addition, a light reflective bank (insulating layer) 95 that partitions the first electrode 92 and the organic light emitting layer 94 into a plurality of predetermined regions is formed on the one surface 91a of the substrate 91.
The light emitting device 90 of this embodiment is different from that of the first embodiment in that it includes a bonding layer 96, a counter substrate 97, and a low refractive index layer 98. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
 第二電極(上部電極)93に重ねて、接合層96を介して対向基板(封止基板)97が形成されている。また、接合層96と対向基板(封止基板)97との間には、低屈折率層98が形成されている。低屈折率層98は、例えば、対向基板(封止基板)97の屈折率よりも低い屈折率をもつ材料から形成される。これによって、接合層96と対向基板(封止基板)97との間の屈折率差を低屈折率層98によって緩和し、光取出し効率を更に向上させることができる。 A counter substrate (sealing substrate) 97 is formed on the second electrode (upper electrode) 93 with a bonding layer 96 interposed therebetween. A low refractive index layer 98 is formed between the bonding layer 96 and the counter substrate (sealing substrate) 97. The low refractive index layer 98 is formed of a material having a refractive index lower than that of the counter substrate (sealing substrate) 97, for example. Thereby, the refractive index difference between the bonding layer 96 and the counter substrate (sealing substrate) 97 can be relaxed by the low refractive index layer 98, and the light extraction efficiency can be further improved.
(発光デバイス:第十実施形態)
  図10は第十実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス100は、光透過性または光不透過性の基板101と、第一電極(下部電極)102と、透明な第二電極(上部電極)103と、有機発光層104と、を有する。第一電極(下部電極)102、および透明な第二電極(上部電極)103は、この基板101の一面101aに順に積層される。有機発光層104は、第一電極102および第二電極103の間に形成される。また、基板101の一面101aには、第一電極102および有機発光層104を所定の領域毎に複数に区画する光反射性のバンク(絶縁層)105が形成されている。
 本実施形態の発光デバイス100は、接合層106、対向基板107、低屈折率層108を有する点で第一実施形態と異なる。その他の構成については、第一実施形態と同様であるため、説明を省略する。
(Light Emitting Device: Tenth Embodiment)
FIG. 10 is a schematic sectional view showing a light emitting device according to the tenth embodiment.
The light emitting device 100 includes a light transmissive or light opaque substrate 101, a first electrode (lower electrode) 102, a transparent second electrode (upper electrode) 103, and an organic light emitting layer 104. The first electrode (lower electrode) 102 and the transparent second electrode (upper electrode) 103 are sequentially laminated on one surface 101a of the substrate 101. The organic light emitting layer 104 is formed between the first electrode 102 and the second electrode 103. Further, on one surface 101a of the substrate 101, a light reflective bank (insulating layer) 105 that partitions the first electrode 102 and the organic light emitting layer 104 into a plurality of predetermined regions is formed.
The light emitting device 100 of this embodiment is different from that of the first embodiment in that it includes a bonding layer 106, a counter substrate 107, and a low refractive index layer 108. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
 第二電極(上部電極)103に重ねて、接合層106を介して対向基板(封止基板)107が形成されている。また、接合層106と対向基板(封止基板)107との間には、低屈折率層108が形成されている。低屈折率層108は、例えば、対向基板(封止基板)107の屈折率よりも低い屈折率をもつ材料から形成される。 A counter substrate (sealing substrate) 107 is formed on the second electrode (upper electrode) 103 with a bonding layer 106 interposed therebetween. A low refractive index layer 108 is formed between the bonding layer 106 and the counter substrate (sealing substrate) 107. The low refractive index layer 108 is formed from a material having a refractive index lower than that of the counter substrate (sealing substrate) 107, for example.
  また、この実施形態においては、低屈折率層108は例えば、画素毎に区画されている。即ち、第九実施形態においては、低屈折率層98は、第二電極(上部電極)93全体を覆うように一連の層として形成されていたが(図9参照)、第十実施形態においては、低屈折率層108は複数に区画されている。これによって、低屈折率層108から面広がり方向に伝播していく光を遮断し、光取出し効率を更に一層向上させることができる。 Also, in this embodiment, the low refractive index layer 108 is partitioned for each pixel, for example. That is, in the ninth embodiment, the low refractive index layer 98 is formed as a series of layers so as to cover the entire second electrode (upper electrode) 93 (see FIG. 9), but in the tenth embodiment. The low refractive index layer 108 is divided into a plurality of sections. As a result, light propagating from the low refractive index layer 108 in the surface spreading direction can be blocked, and the light extraction efficiency can be further improved.
(発光デバイス:第十一実施形態)
  図11は第十一実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス110は、光透過性または光不透過性の基板111と、第一電極(下部電極)112と、透明な第二電極(上部電極)113と、有機発光層114と、を有する。第一電極(下部電極)112、および透明な第二電極(上部電極)113は、基板111の一面111aに順に積層される。有機発光層114は、第一電極112および第二電極113の間に形成される。また、基板111の一面111aには、第一電極112および有機発光層114を所定の領域毎に複数に区画する光反射性の第一バンク(バンク)115aが形成されている。
 本実施形態の発光デバイス110は、第二バンク115b、接合層116、対向基板117、低屈折率層118を有する点と、有機発光層114の構成が第一実施形態と異なる。その他の構成については、第一実施形態と同様であるため、説明を省略する。
(Light Emitting Device: Eleventh Embodiment)
FIG. 11 is a schematic sectional view showing a light emitting device according to the eleventh embodiment.
The light emitting device 110 includes a light transmissive or light opaque substrate 111, a first electrode (lower electrode) 112, a transparent second electrode (upper electrode) 113, and an organic light emitting layer 114. The first electrode (lower electrode) 112 and the transparent second electrode (upper electrode) 113 are sequentially stacked on the one surface 111 a of the substrate 111. The organic light emitting layer 114 is formed between the first electrode 112 and the second electrode 113. In addition, a light reflective first bank (bank) 115 a that partitions the first electrode 112 and the organic light emitting layer 114 into a plurality of predetermined regions is formed on one surface 111 a of the substrate 111.
The light emitting device 110 according to the present embodiment is different from the first embodiment in that the organic light emitting layer 114 has a second bank 115b, a bonding layer 116, a counter substrate 117, and a low refractive index layer 118. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  第二電極(上部電極)113に重ねて、接合層116を介して対向基板(封止基板)117が形成されている。また、接合層116と対向基板(封止基板)117との間には、光反射性の第二バンク(対向バンク)115bおよび低屈折率層118が形成されている。第一バンク(バンク)115aおよび第二バンク(対向バンク)115bは、第二電極(上部電極)113を介して互いに対向する位置に形成されている。また、低屈折率層118は、第二バンク(対向バンク)115bどうしの間で、例えば画素毎に形成されている。第一バンク115aの幅は、第二バンク115bの幅より大きくてもよい。こうすることで、有機発光層114から射出される光のロスを少なくすることができる。 A counter substrate (sealing substrate) 117 is formed on the second electrode (upper electrode) 113 with a bonding layer 116 interposed therebetween. A light-reflective second bank (opposite bank) 115 b and a low refractive index layer 118 are formed between the bonding layer 116 and the counter substrate (sealing substrate) 117. The first bank (bank) 115 a and the second bank (opposite bank) 115 b are formed at positions facing each other via the second electrode (upper electrode) 113. Further, the low refractive index layer 118 is formed, for example, for each pixel between the second banks (opposing banks) 115b. The width of the first bank 115a may be larger than the width of the second bank 115b. By doing so, loss of light emitted from the organic light emitting layer 114 can be reduced.
  このような第十一実施形態においては、互いに対向する位置に、光反射性の第一バンク(バンク)115aおよび第二バンク(対向バンク)115bを形成することによって、有機発光層114での面広がり方向への光の伝播を防止すると共に、第二バンク115bによって、接合層116および対向基板(封止基板)117付近でも面広がり方向への光の伝播を防止でき、より一層、光取出し効率を向上させることができる。 In such an eleventh embodiment, the surface on the organic light emitting layer 114 is formed by forming the light-reflective first bank (bank) 115a and the second bank (opposite bank) 115b at positions facing each other. In addition to preventing the propagation of light in the spreading direction, the second bank 115b can prevent the propagation of light in the plane spreading direction even in the vicinity of the bonding layer 116 and the counter substrate (sealing substrate) 117, thereby further improving the light extraction efficiency. Can be improved.
(発光デバイス:第十二実施形態)
  図12は第十二実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス120は、光透過性または光不透過性の基板121と、第一電極(下部電極)122と、透明な第二電極(上部電極)123と、有機発光層124と、を有する。第一電極(下部電極)122、および透明な第二電極(上部電極)123は、この基板121の一面121aに順に積層される。有機発光層124は、第一電極122および第二電極123の間に形成される。また、基板121の一面121aには、第一電極122および有機発光層124を所定の領域毎に複数に区画する光反射性のバンク(絶縁層)125が形成されている。
 本実施形態の発光デバイス110は、ブラックマトリクス層129を有する点と、有機発光層124の構成が第一実施形態と異なる。その他の構成については、第一実施形態と同様であるため、説明を省略する。
(Light Emitting Device: Twelfth Embodiment)
FIG. 12 is a schematic sectional view showing a light emitting device according to the twelfth embodiment.
The light emitting device 120 includes a light-transmitting or light-impermeable substrate 121, a first electrode (lower electrode) 122, a transparent second electrode (upper electrode) 123, and an organic light emitting layer 124. The first electrode (lower electrode) 122 and the transparent second electrode (upper electrode) 123 are sequentially laminated on the one surface 121a of the substrate 121. The organic light emitting layer 124 is formed between the first electrode 122 and the second electrode 123. Further, on one surface 121a of the substrate 121, a light reflective bank (insulating layer) 125 that partitions the first electrode 122 and the organic light emitting layer 124 into a plurality of predetermined regions is formed.
The light emitting device 110 of the present embodiment is different from the first embodiment in that it has a black matrix layer 129 and the configuration of the organic light emitting layer 124. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
 バンク(絶縁層)125と基板121の一面121aとの間、即ちバンク(絶縁層)125の内部には、ブラックマトリクス層129が形成されている。このブラックマトリクス層129は、外光の反射を防止し、例えば明るい屋外などの環境下にあっても、発光デバイス120のコントラストを向上させ、より一層視認性を高めることができる。 A black matrix layer 129 is formed between the bank (insulating layer) 125 and one surface 121 a of the substrate 121, that is, inside the bank (insulating layer) 125. The black matrix layer 129 prevents reflection of external light, improves the contrast of the light emitting device 120 even in an environment such as a bright outdoor environment, and can further improve visibility.
(発光デバイス:第十三実施形態)
  図13A~図13Dは第一実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス210は、第一基板211と、第一電極(下部電極)212と、光透過性の第二電極(上部電極)213と、有機発光層214と、透明な絶縁層216とを有する。第一電極(下部電極)212、および光透過性の第二電極(上部電極)213は、この基板211の一面211aに順に積層される。有機発光層214は、第一電極212および第二電極213の間に形成される。絶縁膜216は、第二電極(上部電極)213を覆う。
 本実施形態の発光デバイス210は、絶縁膜216を有する点が第一実施形態と異なる。その他の構成要素が第一実施形態に記載された構成要素と同じ場合については、説明を省略する。
(Light-emitting device: thirteenth embodiment)
13A to 13D are schematic cross-sectional views showing the light emitting device according to the first embodiment.
The light emitting device 210 includes a first substrate 211, a first electrode (lower electrode) 212, a light transmissive second electrode (upper electrode) 213, an organic light emitting layer 214, and a transparent insulating layer 216. The first electrode (lower electrode) 212 and the light transmissive second electrode (upper electrode) 213 are sequentially stacked on one surface 211 a of the substrate 211. The organic light emitting layer 214 is formed between the first electrode 212 and the second electrode 213. The insulating film 216 covers the second electrode (upper electrode) 213.
The light emitting device 210 of the present embodiment is different from the first embodiment in that an insulating film 216 is provided. Description of other components that are the same as those described in the first embodiment will be omitted.
  また、基板211の一面211aには、第一電極212を所定の領域毎に複数に区画するバンク(絶縁体)215が形成されている。
  第一電極は、図13Aおよび図13Bに示すようにバンク215で区切られる各領域ごとにパターン形成しても良い。第一電極は、図13Cおよび図13Dのように、バンク215で区切られる領域よりも広いパターンの第一電極212上にバンク215を形成しても良い。但し、照明用途などで全面発光すればよい場合には、図13Aおよび図13Bのケースにおいても、ある部分では隣り合う第一電極同士が導通するようなパターンにしても良い。
A bank (insulator) 215 that partitions the first electrode 212 into a plurality of predetermined regions is formed on the one surface 211a of the substrate 211.
The first electrode may be patterned for each region delimited by the bank 215 as shown in FIGS. 13A and 13B. As shown in FIG. 13C and FIG. 13D, the first electrode may be formed by forming the bank 215 on the first electrode 212 having a pattern wider than the region delimited by the bank 215. However, in the case shown in FIGS. 13A and 13B, when the entire surface needs only to be used for illumination or the like, a pattern may be used in which the first electrodes adjacent to each other are electrically connected to each other.
  発光デバイス210の製造プロセスとしては、例えば、第一基板211上に第一電極(下部電極)212を形成し、その後バンク215を形成し、さらに有機発光層214、第二電極(上部電極)213、絶縁層を形成するプロセスなどを用いることができる。
 有機ELに用いられる材料は水分、酸素などに極めて弱いため、有機発光層214の形成前、すなわち、第一電極(下部電極)212及びバンク215を形成した後に、十分な脱水工程(ベーク工程、真空乾燥工程など)を行うことが好ましい。
As a manufacturing process of the light emitting device 210, for example, a first electrode (lower electrode) 212 is formed on a first substrate 211, a bank 215 is then formed, an organic light emitting layer 214, and a second electrode (upper electrode) 213. A process for forming an insulating layer or the like can be used.
Since the material used for the organic EL is extremely weak against moisture, oxygen and the like, a sufficient dehydration step (baking step, bake step, and so on) is performed before the organic light emitting layer 214 is formed, that is, after the first electrode (lower electrode) 212 and the bank 215 are formed. It is preferable to perform a vacuum drying step or the like.
 第一電極(下部電極)212は、光反射性を有する。例えば、Ag, Alなどが用いられる。第一電極212は、通常はアノードであるが、カソードとすることも可能である。第一電極212を陽極する場合には、仕事関数の点などから、Ag又はAg合金などは好ましい材料である。一方、第一電極212を陰極とする場合には、Ag, Ag合金、Al, Al合金などを用いることができる。
  また、配線抵抗を下げる目的等で補助配線を併設してもいい。補助配線は、例えばAl, Ag, Ta, Ti, Niなどの金属材料で形成することができる。
The first electrode (lower electrode) 212 has light reflectivity. For example, Ag, Al, etc. are used. The first electrode 212 is usually an anode, but can also be a cathode. In the case of anodizing the first electrode 212, Ag or an Ag alloy is a preferable material from the viewpoint of work function. On the other hand, when the first electrode 212 is a cathode, Ag, an Ag alloy, Al, an Al alloy, or the like can be used.
In addition, auxiliary wiring may be provided for the purpose of reducing wiring resistance. The auxiliary wiring can be formed of a metal material such as Al, Ag, Ta, Ti, Ni, for example.
 第二電極(上部電極)213は、第一実施形態に記載されている第二電極(上部電極)13と同様である。配線抵抗を下げる目的等で第二電極(上部電極)213に補助配線を併設してもいい。補助配線は、例えばAl, Ag, Ta, Ti, Niなどの金属材料で形成することができる。 The second electrode (upper electrode) 213 is the same as the second electrode (upper electrode) 13 described in the first embodiment. For the purpose of reducing the wiring resistance, an auxiliary wiring may be provided in the second electrode (upper electrode) 213. The auxiliary wiring can be formed of a metal material such as Al, Ag, Ta, Ti, Ni, for example.
  有機発光層、正孔輸送層、電子輸送層、正孔注入層及び電子注入層等の有機発光層214は、バンク215で仕切られた領域内に形成しても良いし、バンク215をまたいで広い範囲に形成しても良い。
 有機発光層214をバンク215をまたいで広い範囲に形成する場合には、有機発光層214は、図13Aおよび図13Cに示すように、連続的な膜になる場合と、図13Bおよび図13Dに示すように、バンク部分で段切れした状態で形成される場合がある。本実施形態は、これらどちらも使用可能である。有機発光層214が連続的な膜になるか段切れした状態になるかは、バンクの性質(特にテーパー形状や親撥液性など)、有機膜の形成方法、有機膜材料の性質(特に、塗布形成する場合には粘度や表面張力が重要)などに依存する。
The organic light emitting layer 214 such as an organic light emitting layer, a hole transport layer, an electron transport layer, a hole injection layer, and an electron injection layer may be formed in a region partitioned by the bank 215 or across the bank 215. You may form in a wide range.
When the organic light emitting layer 214 is formed in a wide range across the bank 215, the organic light emitting layer 214 may be a continuous film, as shown in FIGS. 13A and 13C, or in FIGS. 13B and 13D. As shown, it may be formed in a state where the bank portion is disconnected. Both of these can be used in the present embodiment. Whether the organic light emitting layer 214 is a continuous film or a disconnected state depends on the nature of the bank (especially taper shape and lyophobic property), the method of forming the organic film, the nature of the organic film material (particularly, When coating and forming, viscosity and surface tension are important.
  一方、バンクで仕切られた領域に形成する場合には、例えば、図13Bおよび図13Dにおいて、バンク上の有機発光層214がない状態となる。有機発光層214の形成領域を所定の範囲内に限定して形成する方法としては、例えば、マスク蒸着法、インクジェット法、印刷などによるウェット法を用いた塗わけ、LITI(Laser Induced Thermal Imaging)、LIPS(laser Induced Pattern wise Sublimation)などのレーザーを用いる手法、フォトブリーチ法などの方法を適宜用いればよい。 On the other hand, when forming in the area partitioned by the bank, for example, in FIG. 13B and FIG. 13D, there is no organic light emitting layer 214 on the bank. Examples of the method for forming the organic light emitting layer 214 by limiting the formation region within a predetermined range include, for example, coating using a wet method such as a mask vapor deposition method, an ink jet method, and printing, LITI (Laser Induced Thermal Imaging), A method using a laser such as LIPS (Laser Induced Pattern Wise Sublimation) or a method such as a photo bleach method may be used as appropriate.
  以上のような構成の発光デバイスの作用について説明する。
  図13A~図13Dにそれぞれ示すように、発光デバイス210の第一電極(下部電極)212と第二電極(上部電極)213との間に、所定の電圧値の電圧が印加されると、有機発光層214中に注入された電子と正孔との再結合によって生じた励起子(エキシトン)によって、有機発光層214が発光する。
The operation of the light emitting device having the above configuration will be described.
When a voltage having a predetermined voltage value is applied between the first electrode (lower electrode) 212 and the second electrode (upper electrode) 213 of the light emitting device 210, as shown in FIGS. The organic light emitting layer 214 emits light by excitons (excitons) generated by recombination of electrons and holes injected into the light emitting layer 214.
  有機発光層214で発光した光(励起光)のうち、絶縁膜216に向かう方向に出射された光のうち、基板法線に対する角度が小さい光は、第二電極213、透明な絶縁層216を透過して外部に出射される。しかし、基板法線に対する角度が大きい光は発光デバイス210を構成する膜と空気との屈折率差のため、取り出すことができない。何度以下の光が取り出されるかは、主に、発光デバイス210を構成する膜の屈折率に依存し、スネルの法則に従う。 Of the light emitted from the organic light emitting layer 214 (excitation light), the light having a small angle with respect to the substrate normal out of the light emitted in the direction toward the insulating film 216 passes through the second electrode 213 and the transparent insulating layer 216. The light is transmitted to the outside. However, light having a large angle with respect to the substrate normal cannot be extracted due to a difference in refractive index between the film constituting the light emitting device 210 and air. How many times the light is extracted depends mainly on the refractive index of the film constituting the light emitting device 210 and follows Snell's law.
  また、有機発光層214で発光した光(励起光)のうち、光不透過性の第一電極(下部電極)212に向かう方向に出射された光は、第一電極213の表面で反射され、再び有機発光層214を透過し、透明な絶縁層216に向かう。この反射された光のうち、基板法線に対する角度が小さい光は、第二電極213、絶縁層216を透過して外部に出射される。しかし、基板法線に対する角度が大きい光は発光デバイス210を構成する膜と空気との屈折率差のため、取り出すことができない。何度以下の光が取り出されるかは、主に、発光デバイス210を構成する膜の屈折率に依存し、スネルの法則に従う。 Of the light emitted from the organic light emitting layer 214 (excitation light), the light emitted in the direction toward the light impermeable first electrode (lower electrode) 212 is reflected by the surface of the first electrode 213, The light passes through the organic light emitting layer 214 again and travels toward the transparent insulating layer 216. Of the reflected light, light having a small angle with respect to the substrate normal is transmitted through the second electrode 213 and the insulating layer 216 and emitted to the outside. However, light having a large angle with respect to the substrate normal cannot be extracted due to a difference in refractive index between the film constituting the light emitting device 210 and air. How many times the light is extracted depends mainly on the refractive index of the film constituting the light emitting device 210 and follows Snell's law.
  一方、有機発光層214で発光した光(励起光)のうち、面広がり方向(積層方向に直角な方向)に向けて出射された光は、バンク215に入射する。バンク215に入射した光は、バンク215が光反射性を有する材料から構成されているため、入射した光を反射、および好ましくは拡散させる。そして、バンク215で反射された光も、発光デバイス210内で反射、散乱などを繰り返すなどした後、絶縁層216に向かう。この光のうち、基板法線に対する角度が小さい光は、第二電極213、絶縁層216を透過して外部に出射される。しかし、基板法線に対する角度が大きい光は、発光デバイス210を構成する膜と空気との屈折率差のため、取り出すことができない。何度以下の光が取り出されるかは、主に、発光デバイス210を構成する膜の屈折率に依存し、スネルの法則に従う。 On the other hand, of the light (excitation light) emitted from the organic light emitting layer 214, the light emitted in the surface spreading direction (direction perpendicular to the stacking direction) enters the bank 215. The light incident on the bank 215 reflects and preferably diffuses the incident light because the bank 215 is made of a material having light reflectivity. Then, the light reflected by the bank 215 is also repeatedly reflected and scattered in the light emitting device 210 and then travels toward the insulating layer 216. Of this light, light having a small angle with respect to the substrate normal is transmitted to the outside through the second electrode 213 and the insulating layer 216. However, light having a large angle with respect to the substrate normal cannot be extracted due to a difference in refractive index between the film constituting the light emitting device 210 and air. How many times the light is extracted depends mainly on the refractive index of the film constituting the light emitting device 210 and follows Snell's law.
  発光デバイス210から取り出されなかった光は、再び、発光デバイス210の内部を進むことになるが、その過程でバンク215にあたると、そこで進行方向を変え、再び、絶縁層216に向かう機会を得ることになると考えられる。そして、その時の基板法線に対する角度が小さければ外部に取り出され、基板法線に対する角度が大きければ、再度、発光デバイス210内で反射、散乱を繰り返すことになるが、光の出口が絶縁層216を介して外部に取り出される場所しかない以上、発光デバイス210の内部で減衰、消失する光以外は、原理的に外部に取り出されることになる。 The light that has not been extracted from the light emitting device 210 travels again inside the light emitting device 210. When the light hits the bank 215 in the process, the traveling direction is changed there, and an opportunity to go to the insulating layer 216 again is obtained. It is thought that it becomes. If the angle with respect to the substrate normal at that time is small, the light is taken out to the outside, and if the angle with respect to the substrate normal is large, reflection and scattering are repeated in the light emitting device 210 again. As long as there is only a place where the light is taken out through the light source, light other than the light that attenuates and disappears inside the light emitting device 210 is taken out in principle.
  このように、本実施形態の発光デバイス210によれば、バンク215に光反射性があるため、バンク215に向かって出射された光が、バンク215で吸収されてしまったり、バンク215内を導波して損失することがない。そして、バンク215に向かって出射された光をバンク215で反射させて第二電極213を経て外部に出射させることによって、光取出し効率を格段に向上させることが可能になる。 As described above, according to the light emitting device 210 of this embodiment, since the bank 215 has light reflectivity, the light emitted toward the bank 215 is absorbed by the bank 215 or guided in the bank 215. There is no loss due to waves. Then, the light emitted toward the bank 215 is reflected by the bank 215 and emitted to the outside through the second electrode 213, so that the light extraction efficiency can be remarkably improved.
  即ち、従来の発光デバイスは、有機層の屈折率や散乱性、あるいは形状の制御によって光取出し効率を上げるという発想に対して、本実施形態においては、有機層214において発光した光を、バンク215で囲われた領域内に閉じ込め、バンク215の方向に伝播させないことにある。こうした構成によって、光の出射を光を取り出したい方向にだけ限定でき、光をロスすることなく効率よく取り出せる。これによって、従来知られている発光デバイスと比較して、光取出し効率を格段に向上させることができる。 That is, in contrast to the idea that the conventional light emitting device increases the light extraction efficiency by controlling the refractive index, scattering property, or shape of the organic layer, in this embodiment, the light emitted from the organic layer 214 is emitted from the bank 215. It is to be confined in the region surrounded by, and not propagated in the direction of the bank 215. With such a configuration, the emission of light can be limited only to the direction in which the light is desired to be extracted, and the light can be extracted efficiently without loss. Thereby, the light extraction efficiency can be remarkably improved as compared with a conventionally known light emitting device.
  なお、バンク215は、光反射性は必須であるが、更に加えて正反射ではなく、乱反射性、散乱性を有する材料から構成することがより好ましい。正反射よりも、乱反射、散乱の方が、バンク215に入射した光がランダムな方向に反射されるため、光の取り出し効率をより一層高められる。 It should be noted that the bank 215 is required to have light reflectivity, but it is more preferable that the bank 215 be made of a material having irregular reflection properties and scattering properties instead of regular reflection. In the case of irregular reflection and scattering, the light incident on the bank 215 is reflected in a random direction, and the light extraction efficiency can be further enhanced in comparison with regular reflection.
  また、バンク215を配置する位置は、理想的には、所定の形状にパターン化された第一電極(下部電極)212の周辺すべてをバンク215で覆うことが好ましい。しかし、その一部のみをバンク215で覆っても、光取出し効率の向上効果は得られる。 In addition, ideally, the bank 215 is preferably disposed around the first electrode (lower electrode) 212 patterned in a predetermined shape with the bank 215. However, even if only a part thereof is covered with the bank 215, the effect of improving the light extraction efficiency can be obtained.
(発光デバイス:第十四実施形態)
  図14は、第十四実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス220は、光透過性または光不透過性の第一基板221と、光反射性の第一電極(下部電極)222と、透明な第二電極(上部電極)223と、有機発光層224と、を有する。光反射性の第一電極(下部電極)222、および透明な第二電極(上部電極)223は、第一基板221の一面221aに順に積層される。有機発光層224は、第一電極222および第二電極223の間に形成される。有機発光層224は、第一電荷輸送層224a、有機発光層224b、第二電荷輸送層224cを有する。また、基板21の一面221aには、第一電極222を所定の領域毎に複数に区画する光反射性のバンク(絶縁体)225が形成されている。
 本実施形態の発光デバイス220は、有機発光層224の構成が第一実施形態と異なる。その他の構成については、第一実施形態と同様であるため、説明を省略する。
(Light-emitting device: 14th embodiment)
FIG. 14 is a schematic sectional view showing a light emitting device according to the fourteenth embodiment.
The light-emitting device 220 includes a light-transmissive or light-impermeable first substrate 221, a light-reflective first electrode (lower electrode) 222, a transparent second electrode (upper electrode) 223, and an organic light-emitting layer 224. And having. The light-reflective first electrode (lower electrode) 222 and the transparent second electrode (upper electrode) 223 are sequentially stacked on the one surface 221 a of the first substrate 221. The organic light emitting layer 224 is formed between the first electrode 222 and the second electrode 223. The organic light emitting layer 224 includes a first charge transport layer 224a, an organic light emitting layer 224b, and a second charge transport layer 224c. In addition, a light reflective bank (insulator) 225 that partitions the first electrode 222 into a plurality of predetermined regions is formed on the one surface 221a of the substrate 21.
The light emitting device 220 of this embodiment is different from the first embodiment in the configuration of the organic light emitting layer 224. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  この実施形態の発光デバイス220は、有機発光層224の発光領域の中心位置、即ち有機発光層224bの厚み方向の中心から第一電極222の上面までの距離が200nm以上となるように形成されている。 The light emitting device 220 of this embodiment is formed such that the distance from the center position of the light emitting region of the organic light emitting layer 224, that is, the center of the organic light emitting layer 224b in the thickness direction to the upper surface of the first electrode 222 is 200 nm or more. Yes.
  光取出し効率を下げる要因のひとつとして、金属電極との共鳴に基づく表面プラズモン現象がある。この表面プラズモン現象は、金属電極と発光位置との間の距離が200nm程度になると小さくなるため、有機発光層224の発光領域の中心位置と第一電極222との距離が200nm以上となるように設定することによって、高い光取出し効率を実現することができる。 ひ と つ One of the factors that lower the fluorescence extraction efficiency is the surface plasmon phenomenon based on resonance with metal electrodes. This surface plasmon phenomenon is reduced when the distance between the metal electrode and the light emission position is about 200 nm, so that the distance between the center position of the light emission region of the organic light emitting layer 224 and the first electrode 222 is 200 nm or more. By setting, high light extraction efficiency can be realized.
   有機発光層224の発光領域の中心位置と第一電極222との距離を200nm以上とする方法にはいくつかあるが、例えば、図14に示すように、有機発光層224を第一電荷輸送層224a、有機発光層224b、第二電荷輸送層224cで形成し、第一電荷輸送層224aの膜厚を200nm以上となるように形成する方法などがある。 There are several methods for setting the distance between the center position of the light emitting region of the organic light emitting layer 224 and the first electrode 222 to 200 nm or more. For example, as shown in FIG. There is a method in which the first charge transport layer 224a is formed to have a thickness of 200 nm or more, and the like is formed using the 224a, the organic light emitting layer 224b, and the second charge transport layer 224c.
   なお、図14においては、有機EL素子を水分や酸素から守るための封止について図示していない。しかしながら、図13と同様に、第二電極223の上面を透明な絶縁層で覆う方法や、後述する第十五実施形態のように第二基板を用いて封止する方法などを用いることができる。 In addition, in FIG. 14, sealing for protecting the organic EL element from moisture and oxygen is not shown. However, as in FIG. 13, a method of covering the upper surface of the second electrode 223 with a transparent insulating layer, a method of sealing using a second substrate as in the fifteenth embodiment described later, and the like can be used. .
   また、図14においては有機発光層224がバンク225をまたいだ連続膜となるように描かれている。しかしながら、第一実施形態で説明したように、有機発光層224がバンク225の形成部分で段切れしていてもよい。有機発光層224は、バンク225で区切られた領域の中にのみ形成された形態であってもよい。 Also, in FIG. 14, the organic light emitting layer 224 is depicted as a continuous film across the bank 225. However, as described in the first embodiment, the organic light emitting layer 224 may be disconnected at the portion where the bank 225 is formed. The organic light emitting layer 224 may be formed only in a region partitioned by the bank 225.
(発光デバイス:第十五実施形態)
  図15は、第十五実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス230は、光透過性または光不透過性の第一基板231と、光反射性の第一電極(下部電極)232と、透明な第二電極(上部電極)233と、有機発光層234と、を有する。光反射性の第一電極(下部電極)232、および透明な第二電極(上部電極)233は、第一基板231の一面231aに順に積層される。有機発光層234は、第一電極232および第二電極233の間に形成される。また、基板231の一面231aには、第一電極232、および有機発光層234とを所定の領域毎に複数に区画する光反射性のバンク(絶縁体)235が形成されている。
 本実施形態の発光デバイス230は、第二基板236と、低屈折率層237と、水分吸収部材(水分吸収層)238と、封止層239とを有する点が第一実施形態と異なる。その他の構成については、第一実施形態と同様であるため、説明を省略する。 
(Light-emitting device: 15th embodiment)
FIG. 15 is a schematic sectional view showing a light emitting device according to the fifteenth embodiment.
The light emitting device 230 includes a light transmissive or light non-transmissive first substrate 231, a light reflective first electrode (lower electrode) 232, a transparent second electrode (upper electrode) 233, and an organic light emitting layer 234. And having. The light-reflective first electrode (lower electrode) 232 and the transparent second electrode (upper electrode) 233 are sequentially stacked on the one surface 231a of the first substrate 231. The organic light emitting layer 234 is formed between the first electrode 232 and the second electrode 233. In addition, a light reflective bank (insulator) 235 that partitions the first electrode 232 and the organic light emitting layer 234 into a plurality of predetermined regions is formed on the one surface 231a of the substrate 231.
The light emitting device 230 of the present embodiment is different from the first embodiment in that the light emitting device 230 includes a second substrate 236, a low refractive index layer 237, a moisture absorbing member (moisture absorbing layer) 238, and a sealing layer 239. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
 第一基板231に対向して、光透過性の第二基板236が配置されている。この第二基板236と第二電極233との間には、低屈折率層237、および水分吸収部材(水分吸収層)238が配されている。また、第一基板231と第二基板236との間の各層の周面には、外部から発光デバイス230の内部に水分や酸素の浸入を防止する封止層239が形成されている。 A light-transmissive second substrate 236 is disposed so as to face the first substrate 231. A low refractive index layer 237 and a moisture absorbing member (moisture absorbing layer) 238 are disposed between the second substrate 236 and the second electrode 233. In addition, a sealing layer 239 that prevents moisture and oxygen from entering the light emitting device 230 from the outside is formed on the peripheral surface of each layer between the first substrate 231 and the second substrate 236.
  第二基板(封止基板)236は光透過性である必要があり、例えば、ガラス、フィルムなど硬質な透明基板を適用することができる。
  水分吸収部材238は、水分や酸素から発光デバイス230を保護する。図15のように、光が出てゆく経路となる部分に水分吸収部材238を配置する場合には、水分吸収部材238は光透過性であることが求められる。図15では、光が出てゆく経路に水分吸収部材238を配置する場合を示している。しかしながら、光が出てゆく経路から外れた周辺部分に水分吸収部材283を配置する構成でもよい。また、封止層239が水分の透過を防止する十分な能力を持っていれば、水分吸収部材238を形成しなくても良い。
The second substrate (sealing substrate) 236 needs to be light transmissive, and for example, a hard transparent substrate such as glass or film can be applied.
The moisture absorbing member 238 protects the light emitting device 230 from moisture and oxygen. As shown in FIG. 15, when the moisture absorbing member 238 is disposed in a portion that becomes a path through which light exits, the moisture absorbing member 238 is required to be light transmissive. FIG. 15 shows a case where the moisture absorbing member 238 is arranged in a path through which light is emitted. However, a configuration in which the moisture absorbing member 283 is disposed in a peripheral portion that is off the path from which the light exits may be used. If the sealing layer 239 has a sufficient ability to prevent moisture permeation, the moisture absorbing member 238 need not be formed.
  低屈折率層237は、光透過性の固体層、例えば無機膜と樹脂膜との積層体であればよい。また、低屈折率層237は、空気層、ドライ窒素層などの気体層、あるいは、減圧気体層、真空層などであることも好ましい。低屈折率層237を気体層とする場合には、第二基板236と第二電極(上部電極)233との間に例えばスペーサ部材などを挟んで所定の間隔を保持するようにして、エッジ部分で封止すればよい。 The low refractive index layer 237 may be a light transmissive solid layer, for example, a laminate of an inorganic film and a resin film. The low refractive index layer 237 is also preferably a gas layer such as an air layer or a dry nitrogen layer, or a reduced pressure gas layer or a vacuum layer. In the case where the low refractive index layer 237 is a gas layer, an edge portion is maintained by holding a predetermined interval between the second substrate 236 and the second electrode (upper electrode) 233 with, for example, a spacer member. What is necessary is just to seal with.
  このような低屈折率層237でもっとも好ましいのは、気体層である。気体層は、例えば空気、窒素、アルゴン等の種々の気体で構成することができ、気体の種類は特に限定されない。ただし、有機発光層234との反応による特性劣化を抑制する観点では、不活性ガスを用いることが望ましい。 気 体 Most preferred of such a low refractive index layer 237 is a gas layer. A gas layer can be comprised with various gas, such as air, nitrogen, argon, for example, and the kind of gas is not specifically limited. However, it is desirable to use an inert gas from the viewpoint of suppressing characteristic deterioration due to reaction with the organic light emitting layer 234.
 有機発光層234への水分の浸入による特性劣化を抑制する観点では、乾燥空気等の湿度が低い気体を用いることが望ましい。大気圧において、空気の屈折率は約1.000293であり、窒素の屈折率は約1.000297であり、アルゴンの屈折率は1.000281である。その他の気体を含めても、気体の屈折率は概ね1.000とみなすことができる。 From the viewpoint of suppressing the deterioration of characteristics due to the ingress of moisture into the organic light emitting layer 234, it is desirable to use a gas with low humidity such as dry air. At atmospheric pressure, the refractive index of air is about 1.000293, the refractive index of nitrogen is about 1.000297, and the refractive index of argon is 1.000281. Even if other gases are included, the refractive index of the gas can be regarded as approximately 1.000.
  気体の屈折率は、圧力が変わっても略変わらないと考えてよい。よって、気体層の圧力は任意でよく、大気圧(1.01325×105Pa)であってもよいし、大気圧に対して減圧状態であってもよいし、加圧状態であってもよい。減圧状態の場合、絶対真空は現実には存在しないものの、気体層6の形態が維持される状態であれば、例えば高真空状態(0.1Pa~10-5Pa)や超高真空状態(10-5Pa以下)であってもよい。 It may be considered that the refractive index of gas does not change substantially even if the pressure changes. Therefore, the pressure of the gas layer may be arbitrary, may be atmospheric pressure (1.01325 × 105 Pa), may be in a reduced pressure state relative to atmospheric pressure, or may be in a pressurized state. In the reduced pressure state, an absolute vacuum does not actually exist, but if the form of the gas layer 6 is maintained, for example, a high vacuum state (0.1 Pa to 10-5 Pa) or an ultrahigh vacuum state (10− 5 Pa or less).
  すなわち、気体の圧力に係わらず、有機発光層234と第二基板236とは、互いに接触することなく、所定の距離をおいて配置され、有機層234と第二基板236との間に厚さが略一定の気体層からなる低屈折率層237が形成されている必要がある。以下の説明では、気体層からなる低屈折率層237の屈折率を1.000とする。 That is, regardless of the gas pressure, the organic light emitting layer 234 and the second substrate 236 are arranged at a predetermined distance without contacting each other, and have a thickness between the organic layer 234 and the second substrate 236. It is necessary to form a low refractive index layer 237 made of a gas layer having a substantially constant diameter. In the following description, the refractive index of the low refractive index layer 237 made of a gas layer is 1.000.
  この実施形態において、低屈折率層237が気体層である場合、第十三実施形態で説明したのと同様のメカニズムで、発光した光は気体層からなる低屈折率層237に取り出される。気体層と外部との屈折率差は実質的にほぼゼロであるため、気体層に出てきた光は、第二基板236を介して外部に取り出されることになる。 In this embodiment, when the low refractive index layer 237 is a gas layer, the emitted light is extracted to the low refractive index layer 237 made of a gas layer by the same mechanism as described in the thirteenth embodiment. Since the refractive index difference between the gas layer and the outside is substantially zero, the light that has come out of the gas layer is extracted outside through the second substrate 236.
  低屈折率層237が気体でない場合、その屈折率は第二基板236の屈折率の値と1.0と間の屈折率となる低屈折率層237を配置する。屈折率の値が1.0に近づくほど光取出し効率は高くなり、屈折率の値がガラスと同じ場合には、多くの光がこの層またはガラスなどから構成された第二基板236を導波して逃げていってしまい、効果がなくなってしまう。 When the low refractive index layer 237 is not a gas, a low refractive index layer 237 having a refractive index between the refractive index value of the second substrate 236 and 1.0 is disposed. The light extraction efficiency increases as the refractive index value approaches 1.0. When the refractive index value is the same as that of glass, a large amount of light is guided through the second substrate 236 made of this layer or glass. And run away, the effect is lost.
  なお、図15においては、有機発光層234がバンク235をまたいだ連続膜となるように描かれている。第十三実施形態で説明したように、有機発光層234がバンク235の形成部分で段切れしていてもよい。有機発光層234は、バンク35で区切られた領域の中にのみ形成されていても良い。 In FIG. 15, the organic light emitting layer 234 is drawn as a continuous film across the bank 235. As described in the thirteenth embodiment, the organic light emitting layer 234 may be cut off at the portion where the bank 235 is formed. The organic light emitting layer 234 may be formed only in the region delimited by the bank 35.
  また、光反射性のバンク235を設けずに、低屈折率層237を形成しただけでは、第二電極233と低屈折率層237との界面で跳ね返った光が正反射を繰り返して面広がり方向に逃げてゆくことになり、光取出し効率はそれほど向上しない。ゆえに、光反射性のバンク235と低屈折率層237を組み合わせて用いることによって、光取出し効率の大幅な向上効果を得ることができる。 Further, if the low refractive index layer 237 is formed without providing the light reflective bank 235, the light bounced off at the interface between the second electrode 233 and the low refractive index layer 237 repeats specular reflection and spreads in the surface direction. The light extraction efficiency will not improve so much. Therefore, by using the light-reflective bank 235 and the low refractive index layer 237 in combination, a significant improvement in light extraction efficiency can be obtained.
(発光デバイス:第十六実施形態)
  図16は第十六実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス240は、光透過性または光不透過性の第一基板241と、反射層246と、光透過性の第一電極(下部電極)242と、透明な第二電極(上部電極)243と、有機発光層244と、光反射性のバンク(絶縁体)245を有する。反射層246、光透過性の第一電極(下部電極)242、および透明な第二電極(上部電極)243は、第一基板241の一面241aに順に積層される。有機発光層244は、第一電極242および第二電極243の間に形成される。バンク(絶縁体)245は、第一電極242、有機層244とを所定の領域毎に複数に区画する光反射性のバンク(絶縁体)245が形成されている。を有する。
  反射層246は例えば、金属膜によって構成されている。例えば、Ag, Alなどを用いることができる。
 本実施形態の発光デバイス240は、反射層246を有する点が第一実施形態と異なる。その他の構成については、第一実施形態と同様であるため、説明を省略する。
(Light Emitting Device: Sixteenth Embodiment)
FIG. 16 is a schematic sectional view showing a light emitting device according to the sixteenth embodiment.
The light emitting device 240 includes a light transmissive or light non-transmissive first substrate 241, a reflective layer 246, a light transmissive first electrode (lower electrode) 242, and a transparent second electrode (upper electrode) 243. And an organic light emitting layer 244 and a light reflective bank (insulator) 245. The reflective layer 246, the light transmissive first electrode (lower electrode) 242, and the transparent second electrode (upper electrode) 243 are sequentially stacked on the one surface 241a of the first substrate 241. The organic light emitting layer 244 is formed between the first electrode 242 and the second electrode 243. The bank (insulator) 245 is formed with a light reflective bank (insulator) 245 that partitions the first electrode 242 and the organic layer 244 into a plurality of predetermined regions. Have
The reflective layer 246 is made of, for example, a metal film. For example, Ag, Al, etc. can be used.
The light emitting device 240 of the present embodiment is different from the first embodiment in that it has a reflective layer 246. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  この実施形態においては、有機発光層244の発光領域の中心位置と第一電極242との間の距離が200nm以上である。有機発光層244の発光領域の中心位置と第一電極242との間の距離を200nm以上とするのは、第二実施形態でも説明したとおり、金属との共鳴に基づく表面プラズモン現象による光取出しロスを防ぐためである。 In this embodiment, the distance between the center position of the light emitting region of the organic light emitting layer 244 and the first electrode 242 is 200 nm or more. The reason why the distance between the center position of the light emitting region of the organic light emitting layer 244 and the first electrode 242 is 200 nm or more is that light extraction loss due to surface plasmon phenomenon based on resonance with metal as described in the second embodiment. Is to prevent.
  有機発光層244の発光領域の中心位置と第一電極242との距離を200nm以上とする方法は、第二実施形態で説明した方法と同様の方法を用いることができるが、本実施形態においては、光透過性の第一電極242も金属と発光位置とを離すことに寄与しており、200nm以上という距離を得るために有効な手法である。
  なお、図16においては、発光デバイス240を水分および酸素から守るための封止について図示していないが、図13と同様に絶縁層で覆う方法や、図15に示した第二基板を用いて封止する方法などを用いることができる。
  また、図16においては、有機発光層244がバンク245をまたいだ連続膜となるように示しているが、第一実施形態で説明したように、有機発光層244がバンク245の形成部分で段切れしていたり、バンク245で区切られた領域の中にのみ有機発光層244を形成してもよい。
As a method for setting the distance between the center position of the light emitting region of the organic light emitting layer 244 and the first electrode 242 to 200 nm or more, the same method as that described in the second embodiment can be used. The light transmissive first electrode 242 also contributes to separating the metal and the light emitting position, and is an effective technique for obtaining a distance of 200 nm or more.
Note that in FIG. 16, sealing for protecting the light emitting device 240 from moisture and oxygen is not illustrated, but a method of covering the light emitting device 240 with an insulating layer as in FIG. 13 or the second substrate illustrated in FIG. 15 is used. A sealing method or the like can be used.
In FIG. 16, the organic light emitting layer 244 is shown as a continuous film across the bank 245. However, as described in the first embodiment, the organic light emitting layer 244 is stepped at the portion where the bank 245 is formed. The organic light emitting layer 244 may be formed only in a region that is cut or separated by the bank 245.
(発光デバイス:第十七実施形態)
  図17は第十七実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス250は、光透過性または光不透過性の第一基板251と、反射層256と、光透過性の中間層257と、光透過性の第一電極(下部電極)252と、透明な第二電極(上部電極)253と、有機発光層254と、を有する。反射層256、光透過性の中間層257、光透過性の第一電極(下部電極)252、および透明な第二電極(上部電極)253は、この第一基板251の一面251aに順に積層される。有機発光層254は、この第一電極252および第二電極253の間に形成される。また、基板251の一面251aには、第一電極252を所定の領域毎に複数に区画する光反射性のバンク(絶縁体)255が形成されている。なお、中間層257は必要に応じて省略されても良い。
 本実施形態の発光デバイス250は、反射層256と、光透過性の中間層257を有する点が第一実施形態と異なる。その他の構成については、第一実施形態と同様であるため、説明を省略する。
(Light-emitting device: 17th embodiment)
FIG. 17 is a schematic sectional view showing a light emitting device according to the seventeenth embodiment.
The light-emitting device 250 includes a light-transmissive or light-impermeable first substrate 251, a reflective layer 256, a light-transmissive intermediate layer 257, a light-transmissive first electrode (lower electrode) 252, a transparent A second electrode (upper electrode) 253 and an organic light emitting layer 254 are included. The reflective layer 256, the light transmissive intermediate layer 257, the light transmissive first electrode (lower electrode) 252, and the transparent second electrode (upper electrode) 253 are sequentially stacked on the one surface 251 a of the first substrate 251. The The organic light emitting layer 254 is formed between the first electrode 252 and the second electrode 253. Further, on one surface 251a of the substrate 251, a light-reflective bank (insulator) 255 that partitions the first electrode 252 into a plurality of predetermined regions is formed. Note that the intermediate layer 257 may be omitted as necessary.
The light emitting device 250 of the present embodiment is different from the first embodiment in that it includes a reflective layer 256 and a light transmissive intermediate layer 257. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  この実施形態においては、有機発光層254の発光領域の中心位置と第一電極252との距離を200nm以上にすることも好ましい。有機発光層254の発光領域の中心位置と第一電極252までの距離が200nm以上とするのは、第二実施形態で説明したとおり、金属との共鳴に基づく表面プラズモン現象による光取出しロスを防ぐためである。 In this embodiment, it is also preferable that the distance between the center position of the light emitting region of the organic light emitting layer 254 and the first electrode 252 is 200 nm or more. The reason why the distance between the center position of the light emitting region of the organic light emitting layer 254 and the first electrode 252 is 200 nm or more is to prevent light extraction loss due to surface plasmon phenomenon based on resonance with metal as described in the second embodiment. Because.
  有機層254の発光領域の中心位置と第一電極252との距離を200nm以上とする方法は、第十四実施形態で説明した方法を用いることができるが、本実施形態においては、中間層257及び光透過性の第一電極252も金属と発光位置とを離すことに寄与しており、200nm以上という距離を得るために有効な手法といえる。 The method described in the fourteenth embodiment can be used to set the distance between the center position of the light emitting region of the organic layer 254 and the first electrode 252 to 200 nm or more. In this embodiment, the intermediate layer 257 is used. The light-transmissive first electrode 252 also contributes to separating the metal and the light emission position, and can be said to be an effective technique for obtaining a distance of 200 nm or more.
  なお、図17においては、発光デバイス250を水分および酸素から守るための封止について図示していないが、図13と同様に絶縁膜で覆う方法や、図15に示した第二基板を用いて封止する方法などを用いることができる。
  また、図17においては、有機発光層254がバンク255をまたいだ連続膜となるように示されている。しかしながら、第一実施形態で説明したように、有機発光層254がバンク255の形成部分で段切れしていいてもよい。有機発光層254は、バンク255で区切られた領域の中にのみ有機発光層254を形成した形態であってもよい。
Note that in FIG. 17, sealing for protecting the light emitting device 250 from moisture and oxygen is not shown, but a method of covering with an insulating film as in FIG. 13 or a second substrate shown in FIG. 15 is used. A sealing method or the like can be used.
In FIG. 17, the organic light emitting layer 254 is shown as a continuous film across the bank 255. However, as described in the first embodiment, the organic light emitting layer 254 may be disconnected at the portion where the bank 255 is formed. The organic light emitting layer 254 may have a form in which the organic light emitting layer 254 is formed only in a region partitioned by the bank 255.
(発光デバイス:第十八実施形態)
  図18は第十八実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス260は、光透過性または光不透過性の第一基板261と、反射層266と、光透過性の中間層267と、光透過性の第一電極(下部電極)262と、光透過性の第二電極(上部電極)263と、有機発光層264と、を有する。反射層266、光透過性の中間層267、光透過性の第一電極(下部電極)262、および光透過性の第二電極(上部電極)263は、この第一基板261の一面261aに順に積層される。有機発光層264は、第一電極262および第二電極263の間に形成される。また、第一基板261の一面261aには、第一電極262を所定の領域毎に複数に区画する光反射性のバンク(絶縁体)265が形成されている。
  本実施形態において、反射層266は導電性であり、第一電極262と反射層266とは所定の位置に形成された中間層267のスルーホール(接続領域)Pを介して電気的に接続されている。
 本実施形態の発光デバイス260は、反射層266と、中間層267を有する点が第一実施形態と異なる。その他の構成については、第一実施形態と同様であるため、説明を省略する。
(Light Emitting Device: Eighteenth Embodiment)
FIG. 18 is a schematic sectional view showing a light emitting device according to the eighteenth embodiment.
The light emitting device 260 includes a light transmissive or light non-transmissive first substrate 261, a reflective layer 266, a light transmissive intermediate layer 267, a light transmissive first electrode (lower electrode) 262, and a light transmissive device. Second electrode (upper electrode) 263 and organic light emitting layer 264. The reflective layer 266, the light transmissive intermediate layer 267, the light transmissive first electrode (lower electrode) 262, and the light transmissive second electrode (upper electrode) 263 are sequentially formed on the one surface 261 a of the first substrate 261. Laminated. The organic light emitting layer 264 is formed between the first electrode 262 and the second electrode 263. Further, on one surface 261a of the first substrate 261, a light-reflective bank (insulator) 265 that partitions the first electrode 262 into a plurality of predetermined regions is formed.
In this embodiment, the reflective layer 266 is conductive, and the first electrode 262 and the reflective layer 266 are electrically connected via a through hole (connection region) P of the intermediate layer 267 formed at a predetermined position. ing.
The light emitting device 260 of the present embodiment is different from the first embodiment in that it includes a reflective layer 266 and an intermediate layer 267. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  図18においては、中間層267の中を通って光が逃げるパスを塞いでおり、光取り出しの観点から好ましい。また、反射層266は、配線抵抗を下げる役割を担うこともできる。
 なお、図18においては、発光デバイス260を水分および酸素から守るための封止について図示していないが、図13と同様に絶縁層で覆う方法や、図15などで示した第二基板を用いて封止する方法などを用いることができる。
In FIG. 18, the path through which light escapes through the intermediate layer 267 is blocked, which is preferable from the viewpoint of light extraction. The reflective layer 266 can also play a role of reducing the wiring resistance.
In FIG. 18, sealing for protecting the light emitting device 260 from moisture and oxygen is not shown, but a method of covering with an insulating layer as in FIG. 13 or the second substrate shown in FIG. For example, a sealing method can be used.
  また、図18においては、有機発光層264がバンク265をまたいだ連続膜となるように示されているが、第一実施形態で説明したように、有機発光層264がバンク265の形成部分で段切れしていてもよい。有機発光層264は、バンク265で区切られた領域の中にのみ形成されていても良い。 In FIG. 18, the organic light emitting layer 264 is shown as a continuous film across the bank 265. However, as described in the first embodiment, the organic light emitting layer 264 is a portion where the bank 265 is formed. It may be cut off. The organic light emitting layer 264 may be formed only in the region delimited by the bank 265.
(発光デバイス:第十九実施形態)
  図19は第十九実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス270は、光透過性または光不透過性の第一基板271と、反射層276と、光透過性の中間層277と、光透過性の第一電極(下部電極)272と、透明な第二電極(上部電極)273と、有機発光層274と、を有する。反射層276、光透過性の中間層277、光透過性の第一電極(下部電極)272、および透明な第二電極(上部電極)273は、第一基板271の一面271aに順に積層される。有機発光層274は、第一電極272および第二電極273の間に形成される。また、第一基板271の一面271aには、第一電極272を所定の領域毎に複数に区画する光反射性のバンク(絶縁体)275が形成されている。
 本実施形態の発光デバイス270は、反射層276と、光透過性の中間層277と、第二基板278と、低屈折率層279と、水分吸収部材(水分吸収層)81と、封止層282を有する点が第一実施形態と異なる。その他の構成については、第一実施形態と同様であるため、説明を省略する。
(Light emitting device: nineteenth embodiment)
FIG. 19 is a schematic cross-sectional view showing a light emitting device according to the nineteenth embodiment.
The light emitting device 270 includes a light transmissive or light non-transmissive first substrate 271, a reflective layer 276, a light transmissive intermediate layer 277, a light transmissive first electrode (lower electrode) 272, a transparent A second electrode (upper electrode) 273 and an organic light emitting layer 274 are included. The reflective layer 276, the light transmissive intermediate layer 277, the light transmissive first electrode (lower electrode) 272, and the transparent second electrode (upper electrode) 273 are sequentially stacked on the one surface 271a of the first substrate 271. . The organic light emitting layer 274 is formed between the first electrode 272 and the second electrode 273. Further, on one surface 271a of the first substrate 271, a light-reflective bank (insulator) 275 that partitions the first electrode 272 into a plurality of predetermined regions is formed.
The light emitting device 270 of this embodiment includes a reflective layer 276, a light transmissive intermediate layer 277, a second substrate 278, a low refractive index layer 279, a moisture absorbing member (moisture absorbing layer) 81, and a sealing layer. The point which has 282 differs from 1st embodiment. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
 第一基板271に対向して、光透過性の第二基板278が配置されている。この第二基板278と第二電極273との間には、低屈折率層279、および水分吸収部材(水分吸収層)281が配されている。また、第一基板271と第二基板276との間の各層の周面には、外部から発光デバイス270の内部に水分や酸素の浸入を防止する封止層282が形成されている。 A light-transmissive second substrate 278 is disposed so as to face the first substrate 271. Between the second substrate 278 and the second electrode 273, a low refractive index layer 279 and a moisture absorbing member (moisture absorbing layer) 281 are disposed. In addition, a sealing layer 282 for preventing moisture and oxygen from entering the light emitting device 270 from the outside is formed on the peripheral surface of each layer between the first substrate 271 and the second substrate 276.
  本実施形態において、反射層276は導電性であり、第一電極272と反射層276とは所定の位置に形成された中間層277のスルーホール(接続領域)Pを介して電気的に接続されている。この実施形態では中間層277の中を通って光が逃げるパスを塞いでおり、光取り出しの観点から好ましい。
  さらに、第一基板271に対向して、光透過性の第二基板278を形成することによって、外部から発光デバイス270の内部に水分や酸素が浸入するのを防ぐため、周囲を封止層282で封止している。
In the present embodiment, the reflective layer 276 is conductive, and the first electrode 272 and the reflective layer 276 are electrically connected via a through hole (connection region) P of the intermediate layer 277 formed at a predetermined position. ing. In this embodiment, a path through which light escapes through the intermediate layer 277 is blocked, which is preferable from the viewpoint of light extraction.
Further, by forming a light-transmitting second substrate 278 so as to face the first substrate 271, in order to prevent moisture and oxygen from entering the light-emitting device 270 from the outside, the periphery is sealed with a sealing layer 282. It is sealed with.
  第二基板(封止基板)278は光透過性である必要があり、例えば、ガラス、フィルムなど硬質な透明基板を適用することができる。
  水分吸収部材281は、水分や酸素から発光デバイス270を保護する。図19のように、光が出てゆく経路となる部分に水分吸収部材281を配置する場合には、水分吸収部材281は光透過性であることが求められる。図19では、光が出てゆく経路に水分吸収部材281を配置する場合を示しているが、光が出てゆく経路から外れた周辺部分に水分吸収部材を配置する構成でもよい。また、封止層282が水分の透過を防止する十分な能力を持っていれば、水分吸収部材を特に形成しなくても良い。
The second substrate (sealing substrate) 278 needs to be light transmissive, and for example, a hard transparent substrate such as glass or film can be applied.
The moisture absorbing member 281 protects the light emitting device 270 from moisture and oxygen. As shown in FIG. 19, when the moisture absorbing member 281 is disposed in a portion that becomes a path through which light exits, the moisture absorbing member 281 is required to be light transmissive. Although FIG. 19 shows the case where the moisture absorbing member 281 is disposed in the path through which light exits, a configuration in which the moisture absorbing member is disposed in a peripheral portion outside the path through which light exits may be used. Further, if the sealing layer 282 has a sufficient ability to prevent moisture permeation, the moisture absorbing member need not be particularly formed.
  低屈折率層279は、光透過性の固体層、例えば無機膜と樹脂膜との積層体であればよい。また、低屈折率層279は、空気層、ドライ窒素層などの気体層、あるいは、減圧気体層、真空層などであることも好ましい。低屈折率層279を気体層とする場合には、第二基板278と第二電極(上部電極)273との間に例えばスペーサ部材などを挟んで所定の間隔を保持するようにして、エッジ部分で封止すればよい。 The low refractive index layer 279 may be a light transmissive solid layer, for example, a laminate of an inorganic film and a resin film. The low refractive index layer 279 is preferably a gas layer such as an air layer or a dry nitrogen layer, or a reduced pressure gas layer or a vacuum layer. In the case where the low refractive index layer 279 is a gas layer, an edge portion is maintained by holding a predetermined interval, for example, with a spacer member between the second substrate 278 and the second electrode (upper electrode) 273. What is necessary is just to seal with.
  このような低屈折率層279でもっとも好ましいのは、気体層である。気体層は、例えば空気、窒素、アルゴン等の種々の気体で構成することができ、気体の種類は特に限定されない。ただし、有機層274との反応による特性劣化を抑制する観点では、不活性ガスを用いることが望ましい。 気 体 Most preferred of such a low refractive index layer 279 is a gas layer. A gas layer can be comprised with various gas, such as air, nitrogen, argon, for example, and the kind of gas is not specifically limited. However, from the viewpoint of suppressing characteristic deterioration due to reaction with the organic layer 274, it is desirable to use an inert gas.
 有機発光層274への水分の浸入による特性劣化を抑制する観点では、乾燥空気等の湿度が低い気体を用いることが望ましい。大気圧において、空気の屈折率は約1.000293であり、窒素の屈折率は約1.000297であり、アルゴンの屈折率は1.000281である。その他の気体を含めても、気体の屈折率は概ね1.000とみなすことができる。 From the viewpoint of suppressing characteristic deterioration due to the ingress of moisture into the organic light emitting layer 274, it is desirable to use a gas with low humidity such as dry air. At atmospheric pressure, the refractive index of air is about 1.000293, the refractive index of nitrogen is about 1.000297, and the refractive index of argon is 1.000281. Even if other gases are included, the refractive index of the gas can be regarded as approximately 1.000.
  気体の屈折率は、圧力が変わっても略変わらないと考えてよい。よって、気体層の圧力は任意でよく、大気圧(1.01325×105Pa)であってもよいし、大気圧に対して減圧状態であってもよいし、加圧状態であってもよい。減圧状態の場合、絶対真空は現実には存在しないものの、気体層6の形態が維持される状態であれば、例えば高真空状態(0.1Pa~10-5Pa)や超高真空状態(10-5Pa以下)であってもよい。 It may be considered that the refractive index of gas does not change substantially even if the pressure changes. Therefore, the pressure of the gas layer may be arbitrary, may be atmospheric pressure (1.01325 × 105 Pa), may be in a reduced pressure state relative to atmospheric pressure, or may be in a pressurized state. In the reduced pressure state, an absolute vacuum does not actually exist, but if the form of the gas layer 6 is maintained, for example, a high vacuum state (0.1 Pa to 10-5 Pa) or an ultrahigh vacuum state (10− 5 Pa or less).
  すなわち、気体の圧力に係わらず、有機発光層274と第二基板278とは、互いに接触することなく、所定の距離をおいて配置され、有機発光層274と第二基板278との間に厚さが略一定の気体層からなる低屈折率層279が形成されている必要がある。以下の説明では、気体層からなる低屈折率層279の屈折率を1.000とする。 That is, regardless of the gas pressure, the organic light emitting layer 274 and the second substrate 278 are arranged at a predetermined distance without being in contact with each other, and have a thickness between the organic light emitting layer 274 and the second substrate 278. It is necessary to form the low refractive index layer 279 made of a gas layer having a substantially constant thickness. In the following description, the refractive index of the low refractive index layer 279 made of a gas layer is 1.000.
  この実施形態において、低屈折率層279が気体層である場合、第一実施形態で説明したのと同様のメカニズムで、発光した光は気体層からなる低屈折率層279に取り出される。気体層と外部との屈折率差は実質的にほぼゼロであるため、気体層に出てきた光は、第二基板278を介して外部に取り出されることになる。 In this embodiment, when the low refractive index layer 279 is a gas layer, the emitted light is extracted to the low refractive index layer 279 made of a gas layer by the same mechanism as described in the first embodiment. Since the refractive index difference between the gas layer and the outside is substantially zero, the light that has come out of the gas layer is extracted outside through the second substrate 278.
  低屈折率層279が気体でない場合、その屈折率は第二基板278の屈折率の値と1.0と間の屈折率となる低屈折率層279を配置する。屈折率の値が1.0に近づくほど光取出し効率は高くなり、屈折率の値がガラスと同じ場合には、多くの光がこの層またはガラスなどから構成された第二基板278を導波して逃げていってしまい、効果がなくなってしまう。 When the low refractive index layer 279 is not a gas, the low refractive index layer 279 having a refractive index between the refractive index value of the second substrate 278 and 1.0 is disposed. As the refractive index value approaches 1.0, the light extraction efficiency increases. When the refractive index value is the same as that of glass, much light is guided through the second substrate 278 made of this layer or glass. And run away, the effect is lost.
  なお、図19においては、有機発光層274がバンク275をまたいだ連続膜となるように示されているが、第一実施形態で説明したように、有発光機層274がバンク75の形成部分で段切れしていてもよい。バンク75で区切られた領域の中にのみ有機発光層274が形成されていても良い。 In FIG. 19, the organic light emitting layer 274 is shown as a continuous film across the bank 275. However, as described in the first embodiment, the light emitting layer 274 is a portion where the bank 75 is formed. It may be cut off. The organic light emitting layer 274 may be formed only in the region delimited by the bank 75.
また、光反射性のバンク275を設けずに、低屈折率層279を形成しただけでは、第二電極273と低屈折率層279との界面で跳ね返った光が正反射を繰り返して面広がり方向に逃げてゆくことになり、光取出し効率はそれほど向上しない。ゆえに、光反射性のバンク75と低屈折率層279を組み合わせて用いることによって、光取出し効率の大幅な向上効果を得ることができる。 In addition, if the low refractive index layer 279 is formed without providing the light reflective bank 275, the light bounced off at the interface between the second electrode 273 and the low refractive index layer 279 repeats regular reflection and spreads the surface. The light extraction efficiency will not improve so much. Therefore, by using the light-reflective bank 75 and the low refractive index layer 279 in combination, a significant improvement in light extraction efficiency can be obtained.
(発光デバイス:第二十実施形態)
  図20A及び20Bは、第八実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス290は、光不透過性の第一基板291と、光透過性の中間層296と、光透過性の第一電極(下部電極)292と、透明な第二電極(上部電極)293と、有機発光層294と、を有する。光透過性の中間層296、光透過性の第一電極(下部電極)292、および透明な第二電極(上部電極)293は、基板291の一面291aに順に積層される。有機発光層294は、第一電極292および第二電極293の間に形成される。また、基板291の一面291aには、第一電極292を所定の領域毎に複数に区画する光反射性のバンク(絶縁体)295が形成されている。
 本実施形態の発光デバイス290は、光透過性の中間層296を有する点が第一実施形態と異なる。その他の構成については、第一実施形態と同様であるため、説明を省略する。
(Light-emitting device: 20th embodiment)
20A and 20B are schematic cross-sectional views showing the light emitting device according to the eighth embodiment.
The light-emitting device 290 includes a light-impermeable first substrate 291, a light-transmissive intermediate layer 296, a light-transmissive first electrode (lower electrode) 292, a transparent second electrode (upper electrode) 293, And an organic light emitting layer 294. The light transmissive intermediate layer 296, the light transmissive first electrode (lower electrode) 292, and the transparent second electrode (upper electrode) 293 are sequentially stacked on the one surface 291a of the substrate 291. The organic light emitting layer 294 is formed between the first electrode 292 and the second electrode 293. In addition, a light reflective bank (insulator) 295 that partitions the first electrode 292 into a plurality of predetermined regions is formed on one surface 291a of the substrate 291.
The light emitting device 290 of the present embodiment is different from the first embodiment in that the light emitting device 290 has a light transmissive intermediate layer 296. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  第一基板291は導電性を有していても、また導電性を有していなくてもよい。第一基板291が導電性である場合、図20Bに示すように中間層296のスルーホール(接続領域)を介して、第一電極272と第一基板271とを電気的に接続しても良い。また、中間層296は必要に応じて省略されてもよい。 The first substrate 291 may or may not have conductivity. When the first substrate 291 is conductive, the first electrode 272 and the first substrate 271 may be electrically connected through a through hole (connection region) of the intermediate layer 296 as shown in FIG. 20B. . Further, the intermediate layer 296 may be omitted as necessary.
  図20Aにおいては、中間層96の中を通って光が逃げるパスが存在するが、図20Bのように、中間層96をパターニングすることによりこのパスを塞ぎ、光取り出し効率を上げることも好ましい。
  なお、図20A及び20Bにおいては、発光デバイス90を水分および酸素から守るための封止について図示していないが、図13と同様に絶縁膜で覆う方法や、図15などに示した第二基板を用いて封止する方法などを用いることができる。
In FIG. 20A, there is a path through which light escapes through the intermediate layer 96. However, as shown in FIG. 20B, it is also preferable to close the path by patterning the intermediate layer 96 to increase the light extraction efficiency.
20A and 20B, sealing for protecting the light emitting device 90 from moisture and oxygen is not shown, but a method of covering with an insulating film as in FIG. 13 or the second substrate shown in FIG. For example, a method of sealing with can be used.
  また、図20A及び20Bにおいては、有機発光層294がバンク295をまたいだ連続膜となるように示されている。しかしながら、第一実施形態で説明したように、有機発光層294がバンク95の形成部分で段切れしていてもよい。有機発光層294は、バンク95で区切られた領域の中にのみ有機層94を形成してもよい。 Also, in FIGS. 20A and 20B, the organic light emitting layer 294 is shown to be a continuous film across the bank 295. However, as described in the first embodiment, the organic light emitting layer 294 may be disconnected at the portion where the bank 95 is formed. The organic light emitting layer 294 may form the organic layer 94 only in the region delimited by the bank 95.
(発光デバイス:第二十一実施形態)
  図21は、第二十一実施形態に係る発光デバイスを示す概略断面図である。
  発光デバイス310は、光透過性または光不透過性の基板311と、第一電極(下部電極)322と、透明な第二電極(上部電極)323と、有機発光層324と、を有する。第一電極(下部電極)322、第二電極(上部電極)323は、基板321の一面321aに順に積層される。有機発光層324は、第一電極322および第二電極323の間に形成される。また、基板321上には、第一電極322を所定の領域毎に複数に区画する光反射性のバンク(絶縁層)325が形成されている。第一電極322は、光透過性導電層322aと反射金属層322bとを含む。なお、本実施形態においては、第一電極322が光透過性導電層322aと反射金属層322bとを含む構成について説明するが、第一電極322は、単層構造でも構わない。
 本実施形態は、バンク425の構成が第一実施形態のバンク15と異なる。その他の構成については、第一実施形態と同様であるため、説明を省略する。
(Light-emitting device: 21st embodiment)
FIG. 21 is a schematic sectional view showing a light emitting device according to the twenty-first embodiment.
The light emitting device 310 includes a light-transmitting or light-impermeable substrate 311, a first electrode (lower electrode) 322, a transparent second electrode (upper electrode) 323, and an organic light emitting layer 324. The first electrode (lower electrode) 322 and the second electrode (upper electrode) 323 are sequentially stacked on one surface 321 a of the substrate 321. The organic light emitting layer 324 is formed between the first electrode 322 and the second electrode 323. On the substrate 321, a light reflective bank (insulating layer) 325 that partitions the first electrode 322 into a plurality of predetermined regions is formed. The first electrode 322 includes a light transmissive conductive layer 322a and a reflective metal layer 322b. In the present embodiment, a configuration in which the first electrode 322 includes the light-transmissive conductive layer 322a and the reflective metal layer 322b will be described, but the first electrode 322 may have a single-layer structure.
In the present embodiment, the configuration of the bank 425 is different from the bank 15 of the first embodiment. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  本実施形態においては、バンク325が、バンク325aと、バンク325bと、光反射膜325cを含む。光反射膜325cは、バンク325aを覆うように形成されている。バンク325bは、光反射膜325cを覆うように形成されている。 In the present embodiment, the bank 325 includes a bank 325a, a bank 325b, and a light reflecting film 325c. The light reflecting film 325c is formed so as to cover the bank 325a. The bank 325b is formed so as to cover the light reflecting film 325c.
 バンク325aは、透明、白色、黒色のいずれでもよい。バンク425aが黒色の場合、バンク325aは、外光反射防止の機能も備えることができる。 The bank 325a may be transparent, white, or black. When the bank 425a is black, the bank 325a can also have a function of preventing external light reflection.
 光反射膜325cは、例えば銀(Ag)やアルミニウム(Al)を含むように形成されていてもよい。光反射膜325cは、反射金属層322bと同じ材料で形成されていてもよい。なお、本実施形態においては、反射金属層322bが形成されていなくてもよい。 The light reflecting film 325c may be formed to contain, for example, silver (Ag) or aluminum (Al). The light reflecting film 325c may be formed of the same material as the reflective metal layer 322b. In the present embodiment, the reflective metal layer 322b may not be formed.
 バンク325bは、光透過性、光反射性、および又は光散乱性を有する。有機発光層322から射出され、横方向に伝播する光は、光反射膜325cで反射することができる。光の進行方向を変えて光の取り出し効率を上げるためには、バンク325bが光散乱性を有することが好ましい。また、バンク425bは、第一電極(下部電極)422のエッジを覆うと、第一電極(下部電極)422と第二電極(上部電極)423のショートを防ぐことができ、歩留まりの向上の点で好ましい。 The bank 325b has a light transmitting property, a light reflecting property, and / or a light scattering property. Light emitted from the organic light emitting layer 322 and propagating in the lateral direction can be reflected by the light reflecting film 325c. In order to increase the light extraction efficiency by changing the light traveling direction, the bank 325b preferably has light scattering properties. Further, when the bank 425b covers the edge of the first electrode (lower electrode) 422, a short circuit between the first electrode (lower electrode) 422 and the second electrode (upper electrode) 423 can be prevented, and the yield can be improved. Is preferable.
(バンクの断面形状例)
  バンクの断面形状はさまざまな形状にすることができる。図22A~図22Eは、バンクの断面形状例を示した断面図である。
  図22Aでは、基板131に形成された第一電極(下部電極)132を区画するバンク133は、上部が狭まった台形となるように形成されている。
  図22Bでは、基板131に形成された第一電極(下部電極)132を区画するバンク134は、上部が広がった台形となるように形成されている。
  図22Cでは、基板131に形成された第一電極(下部電極)132を区画するバンク135は、上部が半円形ないし半楕円形となるように形成されている。
  図22Dでは、基板131に形成された第一電極(下部電極)132を区画するバンク136は、上部が半円形で、かつ頂部が平坦面となるように形成されている。
  図22Eでは、基板131に形成された第一電極(下部電極)132を区画するバンク137は、上部が三角形となるように形成されている。
(Example of bank cross section)
The bank can have various cross-sectional shapes. 22A to 22E are sectional views showing examples of the sectional shape of the bank.
In FIG. 22A, the bank 133 that partitions the first electrode (lower electrode) 132 formed on the substrate 131 is formed to have a trapezoid with a narrow upper portion.
In FIG. 22B, the bank 134 that divides the first electrode (lower electrode) 132 formed on the substrate 131 is formed to have a trapezoidal shape with the upper part widened.
In FIG. 22C, the bank 135 that partitions the first electrode (lower electrode) 132 formed on the substrate 131 is formed so that the upper part is semicircular or semielliptical.
In FIG. 22D, the bank 136 that partitions the first electrode (lower electrode) 132 formed on the substrate 131 is formed so that the upper part is a semicircular shape and the top part is a flat surface.
In FIG. 22E, the bank 137 that partitions the first electrode (lower electrode) 132 formed on the substrate 131 is formed so that the upper part is a triangle.
  これらバンクの形状のうち、図22A、図22C、図22D、図22Eのように、一方に広がっている形状が、光がより出射されやすいという効果がある。こうした効果は、発光プロファイルにも影響を与えるので、表示装置に適用した場合の広視野角化に寄与する。この広視野角という視点では、図22Eに示すバンク137の形状がもっとも好ましいが、一方、バンクに重ねて成膜する層がエッジ部分で切れてしまうことを抑制するためには、図22C、図22Dのようにバンク135,136が丸みを帯びた形状が好ましい。 Among these bank shapes, as shown in FIGS. 22A, 22C, 22D, and 22E, the shape spreading to one side has an effect that light is more easily emitted. Since such an effect also affects the light emission profile, it contributes to a wide viewing angle when applied to a display device. From the viewpoint of this wide viewing angle, the shape of the bank 137 shown in FIG. 22E is most preferable. On the other hand, in order to prevent the layer formed on the bank from being cut off at the edge portion, FIG. A shape in which the banks 135 and 136 are rounded like 22D is preferable.
  一方、パッシブ駆動有機EL表示装置でよく用いられる手法であるが、図22Bのような逆テーパー形状のバンク134を形成し、これによって、第二電極(上部電極)を全面形成したときに、バンク134のエッジ部分で段切れを生じさせ、第二電極(上部電極)をストライプ状に形成することも可能である。更に、図22Bのバンク134の構造は、プライベート使用を主たる目的とした有機EL表示装置において、視野角を狭くしてプライバシーフィルタの役割を果たすことにも有効である。 On the other hand, although this technique is often used in a passive drive organic EL display device, when the reverse-tapered bank 134 as shown in FIG. 22B is formed, and the second electrode (upper electrode) is formed on the entire surface, the bank is formed. It is also possible to cause step breakage at the edge portion 134 and form the second electrode (upper electrode) in a stripe shape. Furthermore, the structure of the bank 134 in FIG. 22B is also effective in narrowing the viewing angle and playing the role of a privacy filter in an organic EL display device mainly intended for private use.
(バンクの平面形状例)
  バンクの平面形状はさまざまな形状にすることができる。図23A~図23Iは、バンクの平面形状例を示した断面図である。
  図23Aは、各領域を四角形に形成したものである。
  図23Bは、各領域を円形に形成したものである。各領域を円形にすると、バンクで反射される光のプロファイルが各方向で等しくなるというメリットがある。また、有機層を塗布法で形成する場合などにおいては、四角形のように角部があると。その部分だけ液が濡れ広がりにくいが、円形の場合には角部がないため、液を均一に広げることができる。なお、この図23Bでは各領域を円形で描いているが、楕円や、四角形の角部に丸みを帯びさせた形状などに形成してもよい。
(Example of bank plan shape)
The planar shape of the bank can be various. 23A to 23I are cross-sectional views showing examples of the planar shape of the bank.
In FIG. 23A, each region is formed in a square shape.
FIG. 23B shows each region formed in a circular shape. When each region is circular, there is an advantage that the profile of light reflected by the bank is equal in each direction. In addition, when the organic layer is formed by a coating method, there are corners such as a square. The liquid hardly wets and spreads only in that part, but in the case of a circle, there is no corner, so the liquid can be spread uniformly. In FIG. 23B, each region is drawn in a circle, but it may be formed in an ellipse or a shape with rounded corners of a square.
  図23Cは、各領域の配置をヘキサゴナル配置にしたものである。ヘキサゴナル配置にすることによって、図23Cの実施形態と比較して、発光エリアの比率を高めることができる。
  図23Dは、六角形の領域をヘキサゴナル配置したものである。
  図23Eは、各領域の一部にバンクを形成しない領域を配したものである。こうすることによって、第二電極がバンクを乗り越えるときに段切れすることを防止し、歩留まり、および信頼性を向上させることができる。
  図23Fは、各領域の一部にバンクを形成しない領域の位置を、一直線にさせないようにした例である。
FIG. 23C shows the hexagonal arrangement of the areas. By making the hexagonal arrangement, the ratio of the light emitting areas can be increased as compared with the embodiment of FIG. 23C.
FIG. 23D shows a hexagonal arrangement of hexagonal regions.
FIG. 23E is an area where a bank is not formed in a part of each area. By doing so, it is possible to prevent the second electrode from stepping over the bank, and to improve the yield and reliability.
FIG. 23F is an example in which the positions of areas where no bank is formed in a part of each area are not aligned.
  図23Eに示した実施形態の場合、バンクを形成していない領域において、横方向に導波する光がデバイスの端まで反射散乱されることがなく、損失となる。これに対して、図23Fでは、バンクを形成していない領域において、横方向に導波してある領域から次の領域に進んで光が、次の領域ではバンクにあたる構造となっており、光の損失を抑制できる。図23G、図23H、図23Iは、図23D、図23B、図23Cの構成において、それぞれ各領域の一部にバンクを形成しない領域を配したものである。 In the case of the embodiment shown in FIG. 23E, in the region where no bank is formed, the light guided in the lateral direction is not reflected and scattered to the edge of the device, resulting in a loss. On the other hand, in FIG. 23F, in the region where the bank is not formed, light proceeds from the region guided in the lateral direction to the next region, and the light hits the bank in the next region. Loss can be suppressed. FIG. 23G, FIG. 23H, and FIG. 23I show the areas of FIG. 23D, FIG. 23B, and FIG.
(バンクの構造例)
  上述した各実施形態では、バンク自体を白色樹脂など光反射性の樹脂で形成した例を示したが、バンクの構造はこれに限定されない。
  図24A~図24Fは、バンクに光反射性を付与するための構造例を示す断面図である。
  図24Aでは、基板141に形成された第一電極(下部電極)142を区画するバンク143は、透明な絶縁性樹脂層143aと、光反射性の金属層143bとから構成される。
  図24Bでは、基板141に形成された第一電極(下部電極)142を区画するバンク144は反射性金属から構成されている。そして、このバンク144は、第一電極(下部電極)142どうしの間に、第一電極142とは離間して配置されている。これによって、隣接する第一電極(下部電極)142どうしの絶縁性を確保する。
  図24Cでは、基板141に形成された第一電極(下部電極)142を区画するバンク145は反射性金属体145aと、これを覆う透明な絶縁樹脂層145bとから構成されている。この形態では、反射性金属体145aの上部も絶縁樹脂層145bで覆われてもかまわないが、この領域から光が伝播する可能性を考慮すると、絶縁樹脂層145bの上部の厚さを薄くなるように形成することが好ましい。更にはこの部分には樹脂を形成しない形状も好ましい。
  図24Dでは、基板141に形成された第一電極(下部電極)142を区画するバンク146は反射性金属体146aと、これを覆う透明な絶縁樹脂層146bと、更に上部反射層146cとから構成されている。
  図24Eでは、基板141に形成された第一電極(下部電極)142を区画するバンク147は、第一電極(下部電極)142の少なくとも側面を覆う反射性金属層から構成されている。
  図24Fでは、基板141に形成された第一電極(下部電極)142を区画するバンク148は、絶縁樹脂体148aと、この絶縁樹脂体148aを覆う反射性金属層148bとから構成される。そして、反射性金属層148bは、その下端が第一電極(下部電極)142に接しないように形成することによって、互いに隣接する第一電極(下部電極)142どうしの絶縁性を確保している。
(Example of bank structure)
In each of the above-described embodiments, an example in which the bank itself is formed of a light-reflective resin such as a white resin has been described. However, the structure of the bank is not limited to this.
24A to 24F are cross-sectional views showing structural examples for imparting light reflectivity to the bank.
In FIG. 24A, the bank 143 that partitions the first electrode (lower electrode) 142 formed on the substrate 141 includes a transparent insulating resin layer 143a and a light-reflective metal layer 143b.
In FIG. 24B, the bank 144 which partitions the 1st electrode (lower electrode) 142 formed in the board | substrate 141 is comprised from the reflective metal. The bank 144 is disposed between the first electrodes (lower electrodes) 142 so as to be separated from the first electrode 142. This ensures insulation between the adjacent first electrodes (lower electrodes) 142.
In FIG. 24C, the bank 145 that partitions the first electrode (lower electrode) 142 formed on the substrate 141 is composed of a reflective metal body 145a and a transparent insulating resin layer 145b covering the same. In this embodiment, the upper portion of the reflective metal body 145a may be covered with the insulating resin layer 145b. However, in consideration of the possibility of light propagating from this region, the thickness of the upper portion of the insulating resin layer 145b is reduced. It is preferable to form as follows. Furthermore, the shape which does not form resin in this part is also preferable.
In FIG. 24D, the bank 146 defining the first electrode (lower electrode) 142 formed on the substrate 141 includes a reflective metal body 146a, a transparent insulating resin layer 146b covering the same, and an upper reflective layer 146c. Has been.
In FIG. 24E, the bank 147 that partitions the first electrode (lower electrode) 142 formed on the substrate 141 is composed of a reflective metal layer that covers at least the side surface of the first electrode (lower electrode) 142.
In FIG. 24F, the bank 148 that partitions the first electrode (lower electrode) 142 formed on the substrate 141 includes an insulating resin body 148a and a reflective metal layer 148b that covers the insulating resin body 148a. The reflective metal layer 148b is formed such that the lower end thereof is not in contact with the first electrode (lower electrode) 142, thereby ensuring insulation between the first electrodes (lower electrodes) 142 adjacent to each other. .
(表示装置:第二十二実施形態)
  図25は、第二十二実施形態に係る表示装置を示す概略断面図である。
  この実施形態では、発光デバイスをアクティブマトリクス駆動させたトップエミッション型の有機EL表示装置を示す。有機EL表示装置(表示装置)150は、光透過性または光不透過性の基板151、第一電極(下部電極)152、および光透過性の第二電極(上部電極)153と、有機発光層154と、光反射性のバンク(絶縁層)155とからなる発光デバイス157を備えている。有機発光層154は、第一電極152および第二電極153の間に形成される。バンク155は、第一電極152を所定の領域毎に複数に区画する。
(Display device: 22nd embodiment)
FIG. 25 is a schematic cross-sectional view showing a display device according to the twenty-second embodiment.
In this embodiment, a top emission type organic EL display device in which a light emitting device is driven in an active matrix is shown. The organic EL display device (display device) 150 includes a light-transmitting or light-impermeable substrate 151, a first electrode (lower electrode) 152, a light-transmitting second electrode (upper electrode) 153, and an organic light emitting layer. And a light emitting device 157 including a light reflective bank (insulating layer) 155. The organic light emitting layer 154 is formed between the first electrode 152 and the second electrode 153. The bank 155 partitions the first electrode 152 into a plurality of predetermined areas.
  また、基板151と第一電極(下部電極)152との間には、駆動部の一例であるアクティブマトリックス駆動素子(駆動部)160が形成される。基板151上に、ゲート電極160a、ゲート酸化膜158が形成される。ゲート酸化膜158上には、活性層160d、ソース電極160b、ドレイン電極160cが形成され、さらに、層間絶縁膜159が形成される。層関絶縁膜159にはコンタクトホールが設けられており、ドレイン電極160cと第一電極152が電気的に接合される。アクティブマトリックス駆動素子160は、ゲート電極160a、ゲート酸化膜158、ソース電極160b、ドレイン電極160cおよび活性層160dなどからなる。 Also, an active matrix drive element (drive unit) 160 that is an example of a drive unit is formed between the substrate 151 and the first electrode (lower electrode) 152. A gate electrode 160a and a gate oxide film 158 are formed on the substrate 151. An active layer 160d, a source electrode 160b, and a drain electrode 160c are formed on the gate oxide film 158, and an interlayer insulating film 159 is further formed. A contact hole is provided in the interlayer insulating film 159, and the drain electrode 160c and the first electrode 152 are electrically joined. The active matrix driving element 160 includes a gate electrode 160a, a gate oxide film 158, a source electrode 160b, a drain electrode 160c, an active layer 160d, and the like.
  発光デバイス157の発光を制御するアクティブマトリックス駆動素子(駆動部)160は、スイッチング用及び駆動用として機能する。こうしたアクティブマトリックス駆動素子160は公知の材料、構造及び形成方法を用いて形成することができる。
  活性層160dの材料としては、例えば、非晶質シリコン(アモルファスシリコン)、多結晶シリコン(ポリシリコン)、微結晶シリコン、セレン化カドミウム等の無機半導体材料、酸化亜鉛、酸化インジウム-酸化ガリウム-酸化亜鉛等の酸化物半導体材料又は、ポリチオフェン誘導体、チオフエンオリゴマー、ポリ(p-フェリレンビニレン)誘導体、ナフタセン、ペンタセン等の有機半導体材料が挙げられる。また、TFTの構造としては、例えば、スタガ型、逆スタガ型、トップゲート型、コプレーナ型が挙げられる。
An active matrix driving element (driving unit) 160 that controls the light emission of the light emitting device 157 functions for switching and driving. Such an active matrix driving element 160 can be formed using a known material, structure, and forming method.
Examples of the material of the active layer 160d include inorganic semiconductor materials such as amorphous silicon (amorphous silicon), polycrystalline silicon (polysilicon), microcrystalline silicon, cadmium selenide, zinc oxide, indium oxide-gallium oxide-oxide. Examples thereof include oxide semiconductor materials such as zinc, or organic semiconductor materials such as polythiophene derivatives, thiophene oligomers, poly (p-ferylene vinylene) derivatives, naphthacene, and pentacene. Examples of the TFT structure include a staggered type, an inverted staggered type, a top gate type, and a coplanar type.
  活性層160dの形成方法としては、(1)プラズマ誘起化学気相成長(PECVD)法により成膜したアモルファスシリコンに不純物をイオンドーピングする方法、(2)シラン(SiH)ガスを用いた減圧化学気相成長(LPCVD)法によりアモルファスシリコンを形成し、固相成長法によりアモルファスシリコンを結晶化してポリシリコンを得た後、イオン打ち込み法によりイオンドーピングする方法、(3)Siガスを用いたLPCVD法又はSiHガスを用いたPECVD法によりアモルファスシリコンを形成し、エキシマレーザー等のレーザーによりアニールし、アモルファスシリコンを結晶化してポリシリコンを得た後、イオンドーピングを行う方法(低温プロセス)、(4)LPCVD法又はPECVD法によりポリシリコン層を形成し、1000℃以上で熱酸化することによりゲート絶縁膜を形成し、その上に、nポリシリコンのゲート電極を形成し、その後、イオンドーピングを行う方法(高温プロセス)、(5)有機半導体材料をインクジェット法等により形成する方法、(6)有機半導体材料の単結晶膜を得る方法等が挙げられる。 As a method for forming the active layer 160d, (1) a method of ion doping impurities into amorphous silicon formed by a plasma induced chemical vapor deposition (PECVD) method, and (2) a reduced pressure chemistry using a silane (SiH 4 ) gas. Amorphous silicon is formed by vapor phase epitaxy (LPCVD), and amorphous silicon is crystallized by solid phase epitaxy to obtain polysilicon, followed by ion doping by ion implantation, (3) Si 2 H 6 gas Amorphous silicon is formed by LPCVD method or PECVD method using SiH 4 gas, annealed by laser such as excimer laser, etc., and amorphous silicon is crystallized to obtain polysilicon, followed by ion doping (low temperature process) ), (4) LPCVD method or PECVD method To form a more polysilicon layer, a gate insulating film formed by thermal oxidation at 1000 ° C. or higher, thereon to form a gate electrode of the n + polysilicon, then, a method of performing ion doping (high temperature process) (5) A method of forming an organic semiconductor material by an inkjet method or the like, and (6) a method of obtaining a single crystal film of the organic semiconductor material.
  ゲート絶縁膜158は、公知の材料を用いて形成することができる。例えば、PECVD法、LPCVD法等により形成されたSiO又はポリシリコン膜を熱酸化して得られるSiO等が挙げられる。また、TFTの信号電極線、走査電極線、共通電極線、第1駆動電極及び第2駆動電極は、公知の材料を用いて形成することができ、例えば、タンタル(Ta)、アルミニウム(Al)、銅(Cu)等が挙げられる。 The gate insulating film 158 can be formed using a known material. Examples thereof include SiO 2 formed by PECVD, LPCVD, etc., or SiO 2 obtained by thermally oxidizing a polysilicon film. The signal electrode line, the scanning electrode line, the common electrode line, the first drive electrode, and the second drive electrode of the TFT can be formed using a known material, for example, tantalum (Ta), aluminum (Al). , Copper (Cu), and the like.
  層間絶縁膜159は、公知の材料を用いて形成することができ、例えば、酸化シリコン(SiO)、窒化シリコン(SiN、又は、Si)、酸化タンタル(TaO、又は、Ta)等の無機材料、又は、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。また、その形成方法としては、化学気相成長(CVD)法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセスが挙げられる。また、必要に応じてフォトリソグラフィー法等によりパターニングすることもできる。 The interlayer insulating film 159 can be formed using a known material, for example, silicon oxide (SiO 2 ), silicon nitride (SiN or Si 2 N 4 ), tantalum oxide (TaO or Ta 2 O). 5 )) or an organic material such as an acrylic resin or a resist material. Examples of the formation method include dry processes such as chemical vapor deposition (CVD) and vacuum deposition, and wet processes such as spin coating. Moreover, it can also pattern by the photolithographic method etc. as needed.
  なお、アクティブマトリックス駆動素子160を基板151上に形成した場合には、その表面に凸凹が形成され、この凸凹によって発光デバイス157における、例えば、画素電極の欠損、有機EL層の欠損、対向電極の断線、画素電極と対向電極の短絡、耐圧の低下等が発生するおそれがある。これらの現象を防止するために、層間絶縁膜159上に更に平坦化膜を設けてもよい。 When the active matrix driving element 160 is formed on the substrate 151, unevenness is formed on the surface, and the unevenness causes, for example, a defect in the pixel electrode, a defect in the organic EL layer, a defect in the counter electrode in the light emitting device 157. There is a risk of disconnection, short-circuiting between the pixel electrode and the counter electrode, reduction in breakdown voltage, and the like. In order to prevent these phenomena, a planarization film may be further provided over the interlayer insulating film 159.
  こうした平坦化膜は、公知の材料を用いて形成することができ、例えば、酸化シリコン、窒化シリコン、酸化タンタル等の無機材料、ポリイミド、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。平坦化膜の形成方法としては、CVD法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセスが挙げられるが、本実施形態はこれらの材料及び形成方法に限定されるものではない。また、平坦化膜は、単層構造でも多層構造でもよい。 Such a planarizing film can be formed using a known material, and examples thereof include inorganic materials such as silicon oxide, silicon nitride, and tantalum oxide, and organic materials such as polyimide, acrylic resin, and resist material. Examples of the method for forming the planarizing film include a dry process such as a CVD method and a vacuum deposition method, and a wet process such as a spin coating method. However, the present embodiment is not limited to these materials and the forming method. Further, the planarization film may have a single layer structure or a multilayer structure.
  また、上述した有機EL表示装置(表示装置)150に、更にカラーフィルタ、色変換膜などを組み合わせても良い。カラーフィルタと組み合わせる場合には、通常、発光色を白色とする。また、色変換膜と組み合わせる場合には、通常、発光色を青色とする。 Further, a color filter, a color conversion film, or the like may be further combined with the organic EL display device (display device) 150 described above. When combined with a color filter, the emission color is usually white. When combined with a color conversion film, the emission color is usually blue.
(表示装置:第二十三実施形態)
  図26は、第二十三実施形態に係る表示装置を示す概略断面図である。
  有機EL表示装置(表示装置)170は、光透過性または光不透過性の基板171と、第一電極(下部電極)172と、第二電極(上部電極)173と、有機発光層174と、光反射性のバンク(絶縁層)175とを備えた発光デバイス182を有する。有機発光層174は、この第一電極172および第二電極173の間に形成される。バンク(絶縁層)175は、第一電極172を所定の領域毎に複数に区画する。
(Display device: 23rd embodiment)
FIG. 26 is a schematic sectional view showing a display device according to the twenty-third embodiment.
The organic EL display device (display device) 170 includes a light-transmissive or light-impermeable substrate 171, a first electrode (lower electrode) 172, a second electrode (upper electrode) 173, an organic light emitting layer 174, The light emitting device 182 includes a light reflective bank (insulating layer) 175. The organic light emitting layer 174 is formed between the first electrode 172 and the second electrode 173. The bank (insulating layer) 175 partitions the first electrode 172 into a plurality of predetermined areas.
  更に、基板171と対向基板(封止基板)177を対向させる。基板171と対向基板(封止基板)177を対向して貼り合わせる際、封止層176、低屈折率層181を配置しても良い。封止層176、低屈折率層181ともに用いない場合には、発光素子のない基板周辺部などに封止樹脂、接着樹脂などを用いて、基板171と対向基板(封止基板)177を対向して貼り合わせると良い。封止層176は樹脂などの固体層からなり、接着性、水分及び又は酸素透過防止性、水分及び又は酸素吸収性などを有していても良い。低屈折率層181は、例えば、対向基板(封止基板)177の屈折率よりも低い屈折率をもつ材料から形成され、固体層、あるいは気体層(乾燥空気層、窒素層、減圧気体層、真空層など)で構成されればよい。 Further, the substrate 171 and the counter substrate (sealing substrate) 177 are opposed to each other. When the substrate 171 and the counter substrate (sealing substrate) 177 are bonded to each other, the sealing layer 176 and the low refractive index layer 181 may be provided. When neither the sealing layer 176 nor the low-refractive index layer 181 is used, the substrate 171 and the counter substrate (sealing substrate) 177 are opposed to each other by using a sealing resin, an adhesive resin, or the like around the substrate without the light emitting element. And stick together. The sealing layer 176 is made of a solid layer such as a resin, and may have adhesiveness, moisture and / or oxygen permeation prevention properties, moisture and / or oxygen absorption properties, and the like. The low refractive index layer 181 is formed of, for example, a material having a refractive index lower than that of the counter substrate (sealing substrate) 177, and is a solid layer or a gas layer (dry air layer, nitrogen layer, reduced pressure gas layer, A vacuum layer, etc.).
  また、基板171と第一電極(下部電極)172との間には、駆動部の一例であるアクティブマトリックス駆動素子(駆動部)180が形成される。基板171上に、ゲート電極180a、ゲート酸化膜178が形成される。ゲート酸化膜178上には、活性層180d、ソース電極180b、ドレイン電極180cが形成され、さらに、層間絶縁膜179が形成される。層関絶縁膜179にはコンタクトホールが設けられており、ドレイン電極180cと第一電極172が電気的に接合される。アクティブマトリックス駆動素子180は、ゲート電極180a、ゲート酸化膜178、ソース電極180b、ドレイン電極180cおよび活性層160dなどからなる。 Also, an active matrix driving element (driving unit) 180 that is an example of a driving unit is formed between the substrate 171 and the first electrode (lower electrode) 172. A gate electrode 180 a and a gate oxide film 178 are formed on the substrate 171. An active layer 180d, a source electrode 180b, and a drain electrode 180c are formed on the gate oxide film 178, and an interlayer insulating film 179 is further formed. A contact hole is provided in the interlayer insulating film 179, and the drain electrode 180c and the first electrode 172 are electrically joined. The active matrix driving element 180 includes a gate electrode 180a, a gate oxide film 178, a source electrode 180b, a drain electrode 180c, an active layer 160d, and the like.
(発光デバイス:第二十四実施形態)
  第一電極(下部電極)の導電性を高めるために、更に補助電極を備えた発光デバイスに、光反射性のバンクを形成することも好ましい。
  図27A及び図27Bは、第十五実施形態に係る発光デバイスを示す概略断面図である。なお、図27Aは、発光デバイスを上から見たときの平面図である。図27Bは、図27AのA-A’線における断面図である。
  この実施形態の発光デバイス200は、光透過性または光不透過性の基板201に補助配線209が形成されている。補助配線209は1本または複数本配置すればよい。補助配線209は、通常はAl, Agなど、電気抵抗値の低い金属材料を用いる。複数本の補助配線209を配置する場合には、例えば、ストライプ状、あるいは格子状に配置することができる。
(Light-emitting device: 24th embodiment)
In order to increase the conductivity of the first electrode (lower electrode), it is also preferable to form a light-reflective bank in a light-emitting device that further includes an auxiliary electrode.
27A and 27B are schematic cross-sectional views showing the light emitting device according to the fifteenth embodiment. FIG. 27A is a plan view of the light emitting device as viewed from above. FIG. 27B is a cross-sectional view taken along line AA ′ in FIG. 27A.
In the light emitting device 200 of this embodiment, an auxiliary wiring 209 is formed on a light-transmissive or light-impermeable substrate 201. One or a plurality of auxiliary wirings 209 may be arranged. For the auxiliary wiring 209, a metal material having a low electric resistance value such as Al or Ag is usually used. When a plurality of auxiliary wirings 209 are arranged, for example, they can be arranged in a stripe shape or a lattice shape.
  補助配線209は第一電極(下部電極)202に覆われる。第一電極(下部電極)202は、例えば、金属電極材料を用い、膜厚は、例えば100nm~300nm程度である。第一電極202を所定の形状に形成するためには、フォトリソグラフィーなどを用いてパターンニングする方法、あるいは、マスク蒸着などを用いることができる。 The auxiliary wiring 209 is covered with the first electrode (lower electrode) 202. For example, a metal electrode material is used for the first electrode (lower electrode) 202, and the film thickness is, for example, about 100 nm to 300 nm. In order to form the first electrode 202 in a predetermined shape, a patterning method using photolithography or the like, or mask deposition can be used.
  隣接する第一電極(下部電極)202どうしの間には、光反射性のバンク205が形成されている。バンク205は、第一電極(下部電極)202の周囲の一部のみカバーしても、光取出し効率向上の効果は得られるが、周囲全部を囲う方がもっとも光取出し効率向上に対して効果が高く、好ましい。なお、図27Aにおいては、光反射性のバンク205の開口エリアは正方形の形状で描いているが、長方形、円形、その他の形状が可能である。バンク205の開口サイズであるが、開口径0.5mm,1mm,5mm,10mm,50mm,100mmなど、さまざまなサイズを選択することができ限定されるものではない。 光 Between the first electrodes (lower electrodes) 202 adjacent to each other, a light reflective bank 205 is formed. Even if the bank 205 covers only a part of the periphery of the first electrode (lower electrode) 202, the effect of improving the light extraction efficiency can be obtained. High and preferable. In FIG. 27A, the opening area of the light reflective bank 205 is drawn in a square shape, but a rectangular shape, a circular shape, or other shapes are possible. The opening size of the bank 205 is not limited, and various sizes such as an opening diameter of 0.5 mm, 1 mm, 5 mm, 10 mm, 50 mm, and 100 mm can be selected.
  第一電極(下部電極)202の上には有機発光層204が形成されている。有機発光層204は、例えば、ホール注入層、ホール輸送層、発光層、ホールブロッキング層、電子輸送層、電子注入層の積層膜などを用いることができる。有機発光層204の上には第二電極(上部電極)203が形成される。第二電極(上部電極)203はITO,IZOなどの透明電極材料を用いればよい。 有機 An organic light emitting layer 204 is formed on the first electrode (lower electrode) 202. As the organic light emitting layer 204, for example, a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, a laminated film of an electron injection layer, or the like can be used. A second electrode (upper electrode) 203 is formed on the organic light emitting layer 204. The second electrode (upper electrode) 203 may be made of a transparent electrode material such as ITO or IZO.
  更に、図27A及び図27Bには図示されていないが、発光デバイス200を大気中の水分や酸素による腐食、変質から保護するために、対向基板などを用いて封止することが好ましい。
  なお、バンク205の形状が逆テーパー形状となっているなどの理由で、第二電極(上部電極)203の段切れなどが懸念される場合には、図28A及び図28Bに示すように、バンク205に段差のない部分を形成することが好ましい。
Further, although not shown in FIGS. 27A and 27B, in order to protect the light emitting device 200 from corrosion and alteration due to moisture and oxygen in the atmosphere, it is preferable to seal using a counter substrate or the like.
If there is a concern that the second electrode (upper electrode) 203 is disconnected due to the shape of the bank 205 being an inversely tapered shape, as shown in FIGS. 28A and 28B, It is preferable to form a portion without a step in 205.
(発光デバイスの適用例)
  発光デバイスの適用例として、図29Aに示す携帯電話機、図29Bに示す有機ELテレビなどが挙げられる。
  図29Aに示す携帯電話機1000は、本体1001、表示部1002、音声入力部1003、音声出力部1004、アンテナ1005、操作スイッチ1006等を備えており、表示部1002に前記各実施形態の発光デバイスが用いられている。また、この発光デバイスを制御するための駆動部を内蔵している。
(Application examples of light emitting devices)
As an application example of the light-emitting device, a mobile phone illustrated in FIG. 29A, an organic EL television illustrated in FIG. 29B, and the like can be given.
A cellular phone 1000 illustrated in FIG. 29A includes a main body 1001, a display portion 1002, an audio input portion 1003, an audio output portion 1004, an antenna 1005, an operation switch 1006, and the like, and the light emitting devices of the above embodiments are included in the display portion 1002. It is used. Moreover, the drive part for controlling this light-emitting device is incorporated.
  図29Bに示すテレビ受信装置1100は、本体キャビネット1101、表示部1102、スピーカー1103、スタンド1104等を備えており、表示部1102に前記各実施形態の発光デバイスが用いられている。また、この発光デバイスを制御するための駆動部を内蔵している。
  これら携帯電話機や有機ELテレビにおいては、前記各実施形態の発光デバイスが用いられているため、輝度が高く表示品位に優れている。
A television receiver 1100 illustrated in FIG. 29B includes a main body cabinet 1101, a display portion 1102, speakers 1103, a stand 1104, and the like, and the light emitting device of each of the above embodiments is used for the display portion 1102. Moreover, the drive part for controlling this light-emitting device is incorporated.
In these cellular phones and organic EL televisions, since the light emitting device of each of the above embodiments is used, the luminance is high and the display quality is excellent.
  また、発光デバイスの適用例として、例えば、図30Aに示すシーリングライト(照明装置)に適用できる。図30Aに示すシーリングライト1400は、照明部1401、吊具1402、及び電源コード1403等を備えている。そして、照明部1401として前記各実施形態の発光デバイスが好適に適用できる。また、この発光デバイスを制御するための駆動部を内蔵している。 Also, as an application example of the light emitting device, for example, it can be applied to a ceiling light (illumination device) shown in FIG. 30A. A ceiling light 1400 illustrated in FIG. 30A includes an illumination unit 1401, a hanging tool 1402, a power cord 1403, and the like. And the light emitting device of each said embodiment can be applied suitably as the illumination part 1401. FIG. Moreover, the drive part for controlling this light-emitting device is incorporated.
  本発明の一実施形態に係る発光デバイスをシーリングライト1400の照明部1401に適用することによって、少ない消費電力で明るく、かつ自在な色調の照明光を得ることができ、光演出性の高い照明器具を実現することができる。また、均一な照度で色純度の高い面発光が可能な照明器具を実現することができる。 By applying the light emitting device according to an embodiment of the present invention to the illumination unit 1401 of the ceiling light 1400, it is possible to obtain bright and free-colored illumination light with low power consumption, and high lighting performance. Can be realized. In addition, it is possible to realize a lighting fixture capable of emitting surface light with high color purity with uniform illuminance.
  また、発光デバイスの適用例として、例えば、図30Bに示す照明スタンドに適用できる。図30Bに示す照明スタンド1500は、照明部1501、スタンド1502、電源スイッチ1503、及び電源コード1504等を備えている。そして、照明部1501として前記各実施形態の発光デバイスが好適に適用できる。また、この発光デバイスを制御するための駆動部を内蔵している。 Also, as an application example of the light emitting device, for example, it can be applied to the lighting stand shown in FIG. 30B. An illumination stand 1500 illustrated in FIG. 30B includes an illumination unit 1501, a stand 1502, a power switch 1503, a power cord 1504, and the like. And the light emitting device of each said embodiment can be applied suitably as the illumination part 1501. FIG. Moreover, the drive part for controlling this light-emitting device is incorporated.
  本発明の一実施形態に係る発光デバイスを照明スタンド1500の照明部1501に適用することによって、少ない消費電力で明るく、かつ自在な色調の照明光を得ることができ、光演出性の高い照明器具を実現することができる。また、均一な照度で色純度の高い面発光が可能な照明器具を実現することができる。 By applying the light-emitting device according to an embodiment of the present invention to the illumination unit 1501 of the illumination stand 1500, it is possible to obtain bright and free-colored illumination light with low power consumption, and to have high lighting performance. Can be realized. In addition, it is possible to realize a lighting fixture capable of emitting surface light with high color purity with uniform illuminance.
  本発明の態様は、発光素子に利用でき、より具体的には、表示装置、表示システム、照明装置、照明システムなどに利用できる。 Aspects of the present invention can be used for light-emitting elements, and more specifically, for display devices, display systems, lighting devices, lighting systems, and the like.
 10…発光デバイス、11…基板、12…第一電極(下部電極)、13…第二電極(上部電極)、14…有機発光層、15…バンク。 DESCRIPTION OF SYMBOLS 10 ... Light-emitting device, 11 ... Board | substrate, 12 ... 1st electrode (lower electrode), 13 ... 2nd electrode (upper electrode), 14 ... Organic light emitting layer, 15 ... Bank.

Claims (24)

  1.   第一基板と、
     前記第一基板の一面に順に積層された第一電極および光透過性導電材を含む第二電極と、
     前記第一電極および前記第二電極の間に形成された有機発光層と、
      少なくとも前記第一電極を所定の領域に区画する第一バンクを備え、
      前記第一バンクは光反射性を有する材料から構成され、
      前記有機発光層で発光した光が、前記第二電極を介して外部に出射する発光デバイス。
    A first substrate;
    A second electrode including a first electrode and a light-transmissive conductive material, which are sequentially laminated on one surface of the first substrate;
    An organic light emitting layer formed between the first electrode and the second electrode;
    A first bank that partitions at least the first electrode into a predetermined region;
    The first bank is made of a light-reflective material,
    A light emitting device in which light emitted from the organic light emitting layer is emitted to the outside through the second electrode.
  2.   前記第一電極は、遮光性を含む請求項1に記載の発光デバイス。 The light emitting device according to claim 1, wherein the first electrode includes a light shielding property.
  3.   前記第一電極は、光反射性の導電材料を含む請求項1に記載の発光デバイス。 The light emitting device according to claim 1, wherein the first electrode includes a light reflective conductive material.
  4.  さらに、前記第二電極及び前記バンクを覆う絶縁膜を有する請求項3に記載の発光デバイス。 The light emitting device according to claim 3, further comprising an insulating film covering the second electrode and the bank.
  5.   さらに、前記第二電極上に設けられた第二基板を有する請求項3に記載の発光デバイス。 The light-emitting device according to claim 3, further comprising a second substrate provided on the second electrode.
  6.   さらに、前記第二基板と前記第二電極との間に設けられ、前記第二基板よりも屈折率の低い低屈折率層を含む請求項5に記載の発光デバイス。 The light emitting device according to claim 5, further comprising a low refractive index layer provided between the second substrate and the second electrode and having a refractive index lower than that of the second substrate.
  7.   前記低屈折率層は、気体である請求項6記載の発光デバイス。 The light emitting device according to claim 6, wherein the low refractive index layer is a gas.
  8.   更に、前記第一基板と前記第二基板との間に、水分吸収部材を有する請求項6または7記載の発光デバイス。 Further, the light emitting device according to claim 6 or 7, further comprising a moisture absorbing member between the first substrate and the second substrate.
  9.   さらに、前記第二基板上に設けられ、前記バンクと対面する光反射性の対向バンクを含む請求項5ないし8いずれか1項に記載の発光デバイス。 The light emitting device according to any one of claims 5 to 8, further comprising a light-reflective counter bank provided on the second substrate and facing the bank.
  10.  さらに、前記第一基板と前記第一電極の間に配置された反射層と、
     前記第一電極と前記反射層との間に配置された中間層と、を有し、
     前記第一電極は、光透過性の導電材料を含み、
     前記中間層は、光透過性の材料を含む請求項1に記載の発光デバイス。
    A reflective layer disposed between the first substrate and the first electrode;
    An intermediate layer disposed between the first electrode and the reflective layer;
    The first electrode includes a light transmissive conductive material,
    The light emitting device according to claim 1, wherein the intermediate layer includes a light transmissive material.
  11.   前記中間層は、前記第一電極と前記反射層とを電気的に接続する接続領域を含む請求項10に記載の発光デバイス。 The light emitting device according to claim 10, wherein the intermediate layer includes a connection region that electrically connects the first electrode and the reflective layer.
  12.   さらに、前記第一基板に対向して設けられた第二基板と、
      前記第一基板と前記第二基板との間に配置され、前記第二基板よりも低い屈折率を有する低屈折率層と、
     前記第一基板と前記第二基板との間に配置された水分吸収部材と、を有する請求項11記載の発光デバイス。
    Furthermore, a second substrate provided facing the first substrate;
    A low refractive index layer disposed between the first substrate and the second substrate and having a lower refractive index than the second substrate;
    The light-emitting device according to claim 11, further comprising a moisture absorbing member disposed between the first substrate and the second substrate.
  13.   さらに、前記第一基板と前記第一電極との間に配置された中間層を有し、
      前記第一基板は、光反射性の材料を含み、
     前記第一電極は、光透過性の導電材料を含み、
     前記中間層は、光透過性の材料を含む請求項1に記載の発光デバイス。
    Furthermore, having an intermediate layer disposed between the first substrate and the first electrode,
    The first substrate includes a light reflective material,
    The first electrode includes a light transmissive conductive material,
    The light emitting device according to claim 1, wherein the intermediate layer includes a light transmissive material.
  14.   前記バンクと前記反射層とは互いにその一部が接触する請求項10ないし12いずれか1項に記載の発光デバイス。 The light emitting device according to any one of claims 10 to 12, wherein a part of the bank and the reflective layer are in contact with each other.
  15.   前記有機層の発光領域の中心位置から前記第一電極までの間隔が200nm以上となるように設定された請求項1ないし14いずれか1項に記載の発光デバイス。 The light emitting device according to any one of claims 1 to 14, wherein the distance from the center position of the light emitting region of the organic layer to the first electrode is set to 200 nm or more.
  16.   前記バンクに含まれる前記材料は、更に光拡散性を有する材料である請求項1ないし15いずれか1項記載の発光デバイス。 The light-emitting device according to claim 1, wherein the material included in the bank is a material further having light diffusibility.
  17.   前記バンクに含まれる前記材料は、白色である請求項1ないし16いずれか1項に記載の発光デバイス。 The light emitting device according to claim 1, wherein the material included in the bank is white.
  18.   前記バンクに含まれる前記材料は、樹脂と、前記樹脂中に分散された微細な粒子とを含む請求項1ないし17いずれか1項に記載の発光デバイス。 The light emitting device according to any one of claims 1 to 17, wherein the material included in the bank includes a resin and fine particles dispersed in the resin.
  19.   前記粒子の粒径は200nm以上、5μm以下である請求項18に記載の発光デバイス。 The light emitting device according to claim 18, wherein the particle diameter is 200 nm or more and 5 μm or less.
  20.  前記第一バンクは、第二バンク、第三バンク、および光反射膜を含み、
     前記第二バンクは、前記第一基板上に形成され、
     前記光反射膜は、前記第二バンクを覆い、
     前記第三バンクは、前記光反射膜を覆い、
     前記第三バンクは、光透過性を有する材料を含む請求項1ないし15いずれか1項に記載の発光デバイス。
    The first bank includes a second bank, a third bank, and a light reflecting film,
    The second bank is formed on the first substrate;
    The light reflecting film covers the second bank;
    The third bank covers the light reflecting film,
    The light emitting device according to claim 1, wherein the third bank includes a light transmissive material.
  21.  前記第二バンクは、黒色である請求項20項に記載の発光デバイス。 The light emitting device according to claim 20, wherein the second bank is black.
  22.  前記第三バンクに含まれる前記材料は、さらに光散乱性を有する請求項20または21に記載の発光デバイス。 The light-emitting device according to claim 20 or 21, wherein the material included in the third bank further has light scattering properties.
  23.   請求項1ないし22いずれか1項に記載の発光デバイスと、前記発光デバイスを制御する駆動部とを備える照明装置。 A lighting device comprising: the light emitting device according to any one of claims 1 to 22; and a drive unit that controls the light emitting device.
  24.  請求項1ないし22いずれか1項に記載の発光デバイスと、前記発光デバイスを制御する駆動部とを備える表示装置。
     
    23. A display device comprising: the light-emitting device according to claim 1; and a drive unit that controls the light-emitting device.
PCT/JP2012/072600 2011-09-12 2012-09-05 Light emitting device, display device, and illumination device WO2013038970A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-198501 2011-09-12
JP2011198501A JP2014225323A (en) 2011-09-12 2011-09-12 Light-emitting device, display device, and illuminating device
JP2012049319A JP2014225330A (en) 2012-03-06 2012-03-06 Light-emitting device, luminaire and display device
JP2012-049319 2012-03-06

Publications (1)

Publication Number Publication Date
WO2013038970A1 true WO2013038970A1 (en) 2013-03-21

Family

ID=47883201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072600 WO2013038970A1 (en) 2011-09-12 2012-09-05 Light emitting device, display device, and illumination device

Country Status (2)

Country Link
TW (1) TW201318241A (en)
WO (1) WO2013038970A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014209480A (en) * 2013-03-28 2014-11-06 株式会社半導体エネルギー研究所 Light-emitting device
WO2016103970A1 (en) * 2014-12-26 2016-06-30 ソニー株式会社 Display device, display device production method and electronic equipment
US9678378B2 (en) 2014-04-08 2017-06-13 Japan Display Inc. Display device
EP3712948A4 (en) * 2018-08-06 2021-03-03 Yungu (Gu'an) Technology Co., Ltd. Display panel, display screen and display terminal
US20220393071A1 (en) * 2019-11-07 2022-12-08 Samsung Display Co., Ltd. Display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112812A (en) * 1997-06-12 1999-01-06 Toshiba Corp Reflection conductive substrate, reflection liquid crystal display device, and manufacture of reflection conductive substrate
JP2001027811A (en) * 1999-05-07 2001-01-30 Toray Ind Inc Photosensitive paste and display
JP2004119197A (en) * 2002-09-26 2004-04-15 Seiko Epson Corp Organic el panel, its manufacturing method, electrooptical panel and electronic equipment using the same
JP2005209612A (en) * 2003-11-07 2005-08-04 Seiko Epson Corp Light emitting device, its manufacturing method, and electronic equipment
JP2008511108A (en) * 2004-08-25 2008-04-10 ノヴァレッド・アクチエンゲゼルシャフト Display based on organic light emitting diodes and method of manufacturing the same
JP2009151955A (en) * 2007-12-18 2009-07-09 Sony Corp Surface emitting light source and its manufacturing method
JP2010009793A (en) * 2008-06-24 2010-01-14 Canon Inc Light-emitting element, display device using light-emitting element, and method of manufacturing light-emitting element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112812A (en) * 1997-06-12 1999-01-06 Toshiba Corp Reflection conductive substrate, reflection liquid crystal display device, and manufacture of reflection conductive substrate
JP2001027811A (en) * 1999-05-07 2001-01-30 Toray Ind Inc Photosensitive paste and display
JP2004119197A (en) * 2002-09-26 2004-04-15 Seiko Epson Corp Organic el panel, its manufacturing method, electrooptical panel and electronic equipment using the same
JP2005209612A (en) * 2003-11-07 2005-08-04 Seiko Epson Corp Light emitting device, its manufacturing method, and electronic equipment
JP2008511108A (en) * 2004-08-25 2008-04-10 ノヴァレッド・アクチエンゲゼルシャフト Display based on organic light emitting diodes and method of manufacturing the same
JP2009151955A (en) * 2007-12-18 2009-07-09 Sony Corp Surface emitting light source and its manufacturing method
JP2010009793A (en) * 2008-06-24 2010-01-14 Canon Inc Light-emitting element, display device using light-emitting element, and method of manufacturing light-emitting element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014209480A (en) * 2013-03-28 2014-11-06 株式会社半導体エネルギー研究所 Light-emitting device
US9678378B2 (en) 2014-04-08 2017-06-13 Japan Display Inc. Display device
WO2016103970A1 (en) * 2014-12-26 2016-06-30 ソニー株式会社 Display device, display device production method and electronic equipment
EP3712948A4 (en) * 2018-08-06 2021-03-03 Yungu (Gu'an) Technology Co., Ltd. Display panel, display screen and display terminal
US11244992B2 (en) 2018-08-06 2022-02-08 Yungu (Gu'an) Technology Co., Ltd. Display panels, display screens, and display terminals
US20220393071A1 (en) * 2019-11-07 2022-12-08 Samsung Display Co., Ltd. Display device

Also Published As

Publication number Publication date
TW201318241A (en) 2013-05-01

Similar Documents

Publication Publication Date Title
WO2013038971A1 (en) Light-emitting device, display device and lighting device
KR100782639B1 (en) Wiring substrate and display device
JP5538519B2 (en) Light emitting element, display and display device
JP4393249B2 (en) ORGANIC LIGHT EMITTING ELEMENT, IMAGE DISPLAY DEVICE, AND MANUFACTURING METHOD THEREOF
WO2013111696A1 (en) Fluorescent material substrate, display apparatus, and electronic apparatus
JP2014225329A (en) Light-emitting device, display device, and illuminating device
WO2012108384A1 (en) Fluorescent substrate, and display device and lighting device using same
WO2013073611A1 (en) Organic electroluminescent display device, electronic apparatus using same, and method for producing organic electroluminescent display device
WO2011129135A1 (en) Fluorescent substrate and method for producing the same, and display device
WO2012090786A1 (en) Light-emitting device, display device, and illumination device
WO2013137052A1 (en) Fluorescent substrate and display device provided with same
JP2014199267A (en) Phosphor substrate, display unit, and electronic apparatus
US20140009905A1 (en) Fluorescent substrate, display apparatus, and lighting apparatus
WO2017043242A1 (en) Organic electroluminescence device, lighting device and display device
WO2011145418A1 (en) Phosphor display device, and phosphor layer
US9461276B2 (en) Organic electroluminescence device and method of fabricating the same
JP2013109907A (en) Phosphor substrate and display device
WO2017043243A1 (en) Organic electroluminescence device, organic electroluminescence device manufacturing method, lighting device and display device
WO2013073521A1 (en) Organic electroluminescent display device, electronic apparatus using same, and method for producing organic electroluminescent display device
WO2013038970A1 (en) Light emitting device, display device, and illumination device
JP2016143658A (en) Light emitting element and display device
WO2012081536A1 (en) Light-emitting device, display device, electronic apparatus, and illumination device
US8547013B2 (en) Organic EL display device with a color converting layer
JP2013191464A (en) Organic electroluminescent element and manufacturing method therefor, liquid crystal display device
JP6552100B2 (en) Organic electroluminescent device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP