WO2013031589A1 - Battery charger, and charging station - Google Patents
Battery charger, and charging station Download PDFInfo
- Publication number
- WO2013031589A1 WO2013031589A1 PCT/JP2012/071127 JP2012071127W WO2013031589A1 WO 2013031589 A1 WO2013031589 A1 WO 2013031589A1 JP 2012071127 W JP2012071127 W JP 2012071127W WO 2013031589 A1 WO2013031589 A1 WO 2013031589A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- circuit
- charging
- modulation
- power
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/46—Accumulators structurally combined with charging apparatus
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/90—Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/00714—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/007182—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/007188—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
- H02J7/007192—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
- H02J7/007194—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
- H02J7/04—Regulation of charging current or voltage
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4278—Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/60—Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
- H02J7/00034—Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a battery charger that charges a built-in battery such as a pack battery or a mobile phone, and a charging stand that conveys electric power to the battery charger by electromagnetic induction and charges the battery with the battery charger.
- a charging stand has been developed to charge the battery by transferring power from the transmitting coil to the receiving coil by the action of electromagnetic induction. (See Patent Document 1)
- This charging stand has a built-in power transmission coil that is excited by an AC power source, and the battery charger has a power receiving coil that is electromagnetically coupled to the power transmission coil.
- the battery charger is built in a pack battery or a mobile phone and charges the battery. This battery charger rectifies the alternating current induced in the power receiving coil, and supplies this to the battery to charge the battery.
- a battery pack with a built-in battery charger or a mobile phone can be placed on a charging stand to charge the battery in a non-contact state.
- the method of transmitting the charging power of the battery from the charging stand by electromagnetically coupling the power transmission coil and the receiving coil is transmitted from the battery charger side to the charging stand and the power is transmitted on the charging stand side. It is necessary to stop power supply to the coil and stop charging the battery. Further, even during battery charging, battery information such as battery voltage, charging current, and temperature can be transmitted to the charging stand and charged in an ideal state.
- the structure described in the publication of Patent Document 2 changes the load impedance with the modulation signal of the power receiving coil and transmits battery information to the charging base, so that the charging base accurately detects the state of the battery to be charged.
- the power transmitted from the power transmission coil to the power reception coil can be controlled to an optimum state.
- This method can detect a modulation signal by detecting a change in load impedance of a power receiving coil by a voltage change, a current change, and a power change of a power transmission coil that supplies an AC signal. That is, it is necessary to detect battery information by detecting a change in the AC power while supplying AC power to the power transmission coil.
- this modulation method needs to transmit battery information as a modulation signal from the battery charger to the charging stand even when the battery is not charged. For example, before starting charging a set battery, until the battery serial number or standard is confirmed, or when the battery temperature is higher than the set temperature and charging is suspended, the battery charger Battery information needs to be transmitted from the battery to the charging stand.
- an element having a low on-resistance and a low withstand voltage is used as the switching element.
- a synchronous rectifier circuit using a switching element as an FET can considerably reduce the on-resistance by using an FET having a low withstand voltage as the switching element.
- a low breakdown voltage FET has a negative effect of being destroyed by the voltage when the receiving coil is unloaded and the input voltage becomes high.
- the circuit configuration using a low breakdown voltage FET as the switching element of the rectifier circuit can prevent voltage breakdown of the FET without charging the battery by connecting a Zener diode to the output side of the rectifier circuit.
- this circuit configuration causes a problem that the Zener diode consumes power and generates heat to a high temperature without charging the battery.
- the present invention was developed for the purpose of solving the above drawbacks with a simple circuit configuration.
- An important object of the present invention is to prevent breakdown due to high voltage of the element while reducing the withstand voltage of the switching element constituting the rectifier circuit and reducing heat generation without charging the battery.
- a circuit configuration for connecting a battery charger, a battery charger and a charging stand capable of transmitting battery information and the like as a modulation signal from the battery charger to the charging stand while reducing heat generation of the Zener diode, and a battery charger are provided. It is in.
- the battery charger and charging stand supply charging power by electromagnetically coupling to the battery chargers 50 and 70 including the power receiving coil 51 for charging the battery 45 and the power receiving coil 51 of the battery chargers 50 and 70.
- the charging stand 10 includes a power transmission coil 11.
- the battery chargers 50 and 70 charge the modulation signal with a rectifier circuit 53 that rectifies the alternating current induced in the power receiving coil 51 and converts it into direct current that charges the battery 45, and modulation that changes the load impedance of the power receiving coil 51.
- a modulation circuit 61 that transmits to the base 10 and a load resistor 56 connected to the output side of the rectifier circuit 53 are provided.
- the battery chargers 50 and 70 connect the load resistor 56 to the output side of the rectifier circuit 53, change the load impedance of the power receiving coil 51 with the modulation circuit 61, and transmit the modulation signal to the charging stand 10.
- the breakdown voltage of the switching element constituting the rectifier circuit can be lowered to reduce heat generation, and the element can be prevented from being damaged by a high voltage.
- the voltage on the output side of the rectifier circuit can be prevented from being increased by the load resistance by connecting the load resistor to the rectifier circuit. Since the output voltage of the rectifier circuit cannot be increased by the load resistance when the battery is not charged, the switching element of the rectifier circuit is turned on with a low withstand voltage without using a switching element with a high withstand voltage and a large on-resistance. FETs and diodes with low resistance can be used. For this reason, the voltage destruction of a switching element can be prevented, reducing the emitted-heat amount of a rectifier circuit.
- the battery information is transmitted from the battery charger to the charging stand as a modulation signal to the charging stand while reducing the heat generated by the Zener diode. it can.
- the load resistor is connected in parallel with the Zener diode, and the output current of the rectifier circuit is divided into the Zener diode and the load resistor, so that the current of the Zener diode can be reduced.
- the Zener diode passes a load current through the rectifier circuit and clamps the output voltage at a constant level.
- the current flows in a state where the output voltage of the rectifier circuit is clamped to a constant voltage and is shunted to the Zener diode and the load resistor.
- the output voltage of the rectifier circuit can be clamped to a constant voltage by reducing the current. Since the amount of heat generated by the Zener diode, that is, Joule heat increases in proportion to the flowing current, the amount of generated heat can be reduced by reducing the current.
- a circuit for connecting a zener diode without destroying the voltage of the low withstand voltage switching element of the rectifier circuit while carrying power from the power transmitting coil of the charging stand to the power receiving coil In the configuration, the heat generated by the Zener diode can be reduced. Therefore, even when the battery is not charged, power can be conveyed from the power transmission coil to the power reception coil. For this reason, in this state, the load impedance of the power receiving coil is changed, and battery information and the like can be transmitted as a modulation signal from the battery charger to the charging stand.
- the charging stand controls the AC power supplied to the power transmission coil with signals such as battery information transmitted from the battery charger, and always charges the battery in an ideal state via the battery charger. You can stop.
- the rectifier circuit 53 can be a synchronous rectifier circuit 53A using the FET 53a as a switching element. According to the above circuit configuration, the heat generation of the switching element of the rectifier circuit can be further reduced. This is because an FET having a smaller on-resistance than a diode can be used as a switching element, and the on-resistance can be further reduced by lowering the breakdown voltage of the FET.
- a Zener diode 57 can be connected to the output side of the rectifier circuit 53. According to the above circuit configuration, the output voltage of the rectifier circuit can always be clamped to a constant voltage with the Zener diode, and the rectifier circuit can prevent a high voltage from being applied to the switching element regardless of the state of the load.
- the battery charger and charging stand include a load switch 58 that connects the load resistor 56 to the output side of the rectifier circuit 53, and a control circuit 52 that controls the load switch 58 to be turned on and off. In the state, the control circuit 52 can turn on the load switch 58 to connect the load resistor 56 to the load side of the rectifier circuit 53.
- the battery can be efficiently charged with the output of the rectifier circuit without any power loss due to the load resistance in the state of charging the battery. This is because the load resistor can be connected to the rectifier circuit only when the battery is not charged, and the load resistor can be controlled not to be connected to the rectifier circuit when the battery is charged.
- the battery charger and the charging stand include a load impedance changing circuit 62 in which a modulation circuit 61 is connected in parallel with the power receiving coil 51, and a modulation capacitor 63 and a modulation switch 64 are connected in series. And a control circuit 65 for switching the modulation switch 64 of the load impedance changing circuit 62 on and off.
- the control circuit 65 can switch the modulation switch 64 on and off and transmit the modulation signal to the charging base 10.
- the battery charger and the charging stand according to the present invention include a detection circuit 17 in which the charging stand 10 detects a change in the load impedance of the power receiving coil 51 changed by the modulation circuit 61 via the power transmission coil 11 to detect a modulation signal. Can be provided. According to the above circuit configuration, a change in the load impedance of the power receiving coil that is changed by the modulation circuit can be reliably detected as a modulation signal by the detection circuit of the charging stand via the power transmission coil.
- the modulation signal transmitted to the charging stand 10 by the modulation circuit 61 is such that the voltage of the battery 45 being charged, the charging current, the battery temperature, the serial number, and the battery 45
- the allowable charging current for specifying the charging current, the allowable temperature for controlling the charging of the battery 45, and either the output voltage or the output current of the battery charger 70 can be included.
- the battery charger of the present invention includes a power receiving coil 51 that is electromagnetically coupled to a power transmission coil 11 built in the charging stand 10 and charges the battery 45 with electric power conveyed from the power transmission coil 11.
- the battery charger rectifies the alternating current induced in the power receiving coil 51 to convert it into direct current for charging the battery 45, and modulates the load signal of the power receiving coil 51 with the modulation signal to the charging base 10.
- a modulation circuit 61 for transmission and a load resistor 56 connected to the output side of the rectifier circuit 53 are provided.
- the battery charger connects the load resistor 56 to the output side of the rectifier circuit 53, changes the load impedance of the power receiving coil 51 with the modulation circuit 61, and transmits the modulation signal to the charging stand 10.
- the charging stand 10 has battery chargers 50 and 70 arranged on the upper surface, and as shown in FIG. 2, charges the battery 45 built in the battery charger 50 by electromagnetic induction, or FIG. 3 and FIG. As shown in FIG. 4, the battery 45 built in the battery built-in apparatus 40 provided with the battery charger 70 is charged by electromagnetic induction.
- the battery chargers 50 and 70 have a power receiving coil 51 that is electromagnetically coupled to the power transmitting coil 11.
- the battery chargers 50 and 70 charge the battery 45 with the electric power induced in the power receiving coil 51.
- the battery built-in device 40 shown in FIG. 3 incorporates a battery 45 as a battery pack 41 so that the battery pack 41 can be replaced.
- the battery charger 50 including the battery 45 shown in FIG. 2 can be a pack battery or an electronic device, and the battery charger 70 including the battery charger 70 and the battery 45 shown in FIGS.
- the device 40 may be an electronic device such as a mobile phone or an IC player, or may be a battery pack.
- the battery chargers 50 and 70 include a rectifier circuit 53 that rectifies the alternating current induced in the power receiving coil 51 and converts the alternating current into a direct current that charges the battery 45, and changes the load impedance of the power receiving coil 51 to change the modulation signal to the charging base 10. And a load resistor 56 connected to the output side of the rectifier circuit 53.
- the rectifier circuit 53 converts alternating current input from the power receiving coil 51 into direct current.
- the direct current output of the rectifier circuit 53 is supplied to the battery 45. 2 and 3 is a synchronous rectifier circuit 53A in which a switching element is an FET.
- the synchronous rectifier circuit 53A includes four FETs 53a connected to the bridge, and a switching circuit 53b that controls on / off of each FET 53a.
- the switching circuit 53b switches the FET 53a in synchronization with the alternating current output from the power receiving coil 51, converts the input alternating current to direct current, and outputs the direct current.
- the synchronous rectifier circuit 53A can perform rectification more efficiently than the diode bridge and reduce power loss due to the voltage drop.
- a diode bridge 53B can be used for the rectifier circuit 53 in place of the synchronous rectifier circuit as shown in FIG.
- the rectifier circuit 53 of FIGS. 2 to 4 has a Zener diode 57 connected to the output side.
- the Zener diode 57 clamps the output voltage of the rectifier circuit 53 to a constant voltage and prevents a high voltage from being applied to the switching element of the rectifier circuit 53.
- the Zener voltage of the Zener diode 57 is higher than the voltage at which the battery 45 can be charged. For example, in a battery charger that charges a lithium ion battery, the Zener voltage is set to about 5 V while charging the battery. Limit the output voltage to 5V. However, the Zener voltage of the Zener diode is set to a voltage that is higher and lower than the voltage that can charge the battery in consideration of the voltage of the battery to be charged.
- the rectifier circuit 53 shown in FIGS. 2 to 4 has a Zener diode 57 connected to the output side to clamp the output voltage of the rectifier circuit 53 to the Zener voltage to prevent voltage breakdown of the switching element.
- the output current of the rectifier circuit 53 is shunted to the load resistor 56 and the Zener diode 57, and heat generation of the load resistor 56 can be reduced.
- the battery charger of the present invention does not necessarily need to connect a Zener diode to the output side of the rectifier circuit. This is because the load resistance connected to the output side of the rectifier circuit can limit the output voltage of the rectifier circuit to prevent voltage breakdown of the switching element.
- the rectifier circuit 53 of FIGS. 2 to 4 has a load resistor 56 connected to the output side of the rectifier circuit 53 via a load switch 58.
- the load switch 58 is controlled to be turned on / off by the control circuit 52.
- the control circuit 52 turns on the load switch 58 when the battery 45 is not charged, and turns it off when the battery 45 is charged.
- the control circuit 52 can also connect the load resistor 56 to the output side of the control circuit 52 by switching the load switch 58 on in a state where the charging current of the battery 45 is smaller than the set value.
- a lithium ion battery reduces the charging current as it approaches full charge. Therefore, when charging is started, the load switch 58 is turned off to charge the lithium ion battery efficiently, and the charging current approaches the full charge. In the small state, the load switch 58 can be turned on.
- the load resistor 56 is connected only when the battery 45 is not charged or when the charging current of the battery 45 is small, and when the battery 45 is charged or when the charging current of the battery is larger than the set value. Since the load resistor 56 is not connected, the battery 45 can be efficiently charged with the output of the rectifier circuit 53. However, the load resistor 56 can always be connected to the rectifier circuit 53 without going through the load switch 58.
- the load resistor 56 is set to an electric resistance that limits the output of the rectifier circuit 53 and prevents the Zener diode 57 from generating heat, for example, about 10 ⁇ . However, the electrical resistance of the load resistor can be in the range of 5 ⁇ to 500 ⁇ .
- the battery chargers 50 and 70 in FIGS. 2 to 4 have the output side of the rectifier circuit 53 connected to the battery 45 via the output cut-off switch 54. 2 and 4, the battery charger 50 has a load resistor 56 connected to the battery side which is the output side of the output cutoff switch 54, or the input of the output cutoff switch 54 as shown in FIG. 3.
- a load resistor 56 can be connected to the rectifier circuit 53 side.
- the circuit configuration in which the load resistor 56 is connected to the output side of the output cutoff switch 54 is such that the output cutoff switch 54 is turned on and the output cutoff switch 54 is turned on when the battery 45 is not charged.
- a load resistor 56 is connected to the output side of the rectifier circuit 53.
- the battery charger 50 shown in FIG. 2 charges the battery 45 by supplying power output from the rectifier circuit 53 directly to the battery 45.
- the battery built-in device 40 shown in FIGS. 3 and 4 includes a charge control circuit 44 between the output terminal 71 that is the output of the built-in battery charger 70 and the battery 45, and the charge control circuit 44 is The battery 45 is charged with the power output from the battery charger 70.
- the charge control circuit 44 detects full charge of the battery 45 and stops charging.
- the charge control circuit 44 that charges the battery 45 which is a lithium ion battery, fully charges the battery 45 by constant voltage / constant current charging.
- a charge control circuit for charging a nickel metal hydride battery is charged at a constant current to fully charge the battery.
- the battery built-in device 40 shown in FIGS. 3 and 4 is connected to an adapter 80 that converts commercial power (AC 100 V) into direct current (for example, DC 5 V), and the battery 45 is supplied with power supplied from the adapter 80. It has a structure that can be charged.
- the battery built-in device 40 shown in the figure is connected to a power supply terminal 47 for connecting an adapter 80 to a positive / negative input line 48 connected to an output terminal 71 of the battery charger 70 on the input side of the battery 45. .
- the battery built-in device 40 is supplied from the adapter 80 by connecting the adapter 80 to the power terminal 47 when the battery 45 is not charged via the charging stand 10, that is, when the non-contact battery charger 70 is not used.
- the supplied electric power can be supplied to the charge control circuit 44 to charge the battery 45.
- the modulation circuit 61 includes a voltage of the battery 45 being charged, a charging current, a battery temperature, a serial number, an allowable charging current value that allows charging of the battery 45, an allowable temperature that controls charging of the battery 45, and the battery charger 70.
- the impedance of the power receiving coil 51 is changed by information such as output voltage or output current, an output increase instruction signal, an output decrease instruction signal, an output stop instruction signal, or the like. That is, the modulation circuit 61 changes the load impedance of the power receiving coil 51 with information or signals to be transmitted.
- the charging stand 10 includes a detection circuit 17 that detects a change in the load impedance of the power receiving coil 51 that is changed by the modulation circuit 61 via the power transmission coil 11 to detect information and signals.
- the modulation circuit 61 includes a load impedance change circuit 62 in which a modulation switch 64 of a semiconductor switching element is connected in series to a modulation capacitor 63 connected in parallel with the power receiving coil 51, and a modulation switch of the load impedance change circuit 62. And a control circuit 65 for switching 64 on and off with information and signals.
- the control circuit 65 switches the modulation switch 64 on and off according to information and signals, and transmits information and signals to the charging base 10.
- the control circuit 65 is a battery such as a voltage of the battery 45 being charged, a charging current, a battery temperature, a battery serial number, an allowable charging current for specifying the charging current of the battery, and an allowable temperature for controlling the charging of the battery.
- Information, power supply information such as output voltage and output current output from the battery charger 70, and instruction signals such as output increase, output decrease, and output stop, which are requests to the charging stand 10, are used as digital signals, and modulation switches 64 is controlled and transmitted.
- the battery charger 50 shown in FIG. 2 includes a battery information detection circuit 46 that detects battery information of the battery 45. With the battery information detection circuit 46, the serial number, authenticity determination, battery voltage, and charge of the battery 45 are provided. Battery information such as current and battery temperature is detected and input to the control circuit 52. The control circuit 52 inputs the battery information input from the battery information detection circuit 46 to the control circuit 65.
- the battery pack 41 including the battery 45 and the battery information detection circuit 46 is built in the battery built-in device 40.
- the battery built-in device 40 includes a battery information detection circuit 46 that detects battery information of the battery 45.
- These battery built-in devices 40 control the charging of the battery 45 by inputting the battery information detected by the battery information detection circuit 46 to the charge control circuit 44.
- the battery charger 70 shown in FIGS. 3 and 4 includes a power supply information detection circuit 72 that detects information on the power output from the battery charger 70 and supplied to the charge control circuit 44.
- the power supply information detection circuit 72 is provided on the output side of the battery charger 70, and is provided between the output cutoff switch 54 and the output terminal 71 in FIG. 3, and in FIG. Is provided between the connection point of the load resistor 56 and the output terminal 71.
- the power supply information detection circuit 72 detects power supply information such as the output voltage and output current from the battery charger 70 and inputs the power supply information to the control circuit 52.
- the control circuit 52 inputs the power supply information input from the power supply information detection circuit 72 to the control circuit 65.
- the control circuit 65 repeats a predetermined cycle, that is, transmits information and signals by repeating a transmission timing for transmitting information and signals and a non-transmission timing for not transmitting information and signals at a predetermined cycle.
- This period is set to, for example, 0.1 sec to 5 sec, preferably 0.1 sec to 1 sec.
- Battery information such as battery serial number, allowable charging current that specifies battery charging current, and allowable temperature that controls battery charging, is transmitted only at the beginning of charging, and then repeatedly transmitted There is no need.
- the modulation circuit 61 switches the modulation switch 64 on and off with a digital signal indicating information and signals, and modulates the parallel capacitance of the power receiving coil 51 to transmit the information and signals.
- the control circuit 65 provided in the modulation circuit 61 controls on / off of the modulation switch 64 at a speed of 1000 bps to transmit information and signals.
- the control circuit 65 can also transmit information and signals at 500 bps to 5000 bps. After information and signals are transmitted at 1000 bps at the transmission timing, transmission of information and signals is stopped and the battery is charged in a normal state at non-transmission timing.
- the modulation switch 64 is switched on and off.
- a modulation capacitor 63 is connected to the power receiving coil 51. Since the modulation capacitor 63 is connected in parallel to the power reception coil 51, the efficiency of power transfer from the power transmission coil 11 to the power reception coil 51 is slightly reduced from the designed optimum state. However, the transmission timing is shorter than the non-transmission timing, and the timing at which the modulation capacitor 63 is connected to the power receiving coil 51 is very short even at this transmission timing. Even if the power transfer efficiency is reduced in a state where the power is connected, the reduction in power transfer efficiency can be almost negligible in the total time.
- the charging stand 10 detects information and signals transmitted from the power transmission coil 11, the AC power supply 12 that supplies AC power to the power transmission coil 11, and the battery chargers 50 and 70. And a detection circuit 17 for performing the above operation.
- the power transmission coil 11 is wound in a spiral shape on a surface parallel to the upper surface plate 21 and radiates an alternating magnetic flux above the upper surface plate 21.
- the power transmission coil 11 radiates an alternating magnetic flux orthogonal to the upper surface plate 21 above the upper surface plate 21.
- the power transmission coil 11 is supplied with AC power from the AC power source 12 and radiates AC magnetic flux above the upper surface plate 21.
- the AC power supply 12 supplies, for example, high frequency power of 20 kHz to several MHz to the power transmission coil 11.
- the AC power supply 12 is controlled by the detection circuit 17 and controls the AC power output to the power transmission coil 11.
- the detection circuit 17 detects the impedance change of the power receiving coil 51 from the voltage level change or / and the current level change of the power transmission coil 11, and detects information and signals from the impedance change.
- the impedance of the power receiving coil 51 changes
- the power transmission coil 11 is electromagnetically coupled to the power receiving coil 51, so that the voltage level and / or current level of the power transmission coil 11 changes. Since the voltage level and / or current level of the power transmission coil 11 changes in synchronization with the on / off of the modulation switch 64, the on / off state of the modulation switch 64 can be detected from the voltage level change or / and current level change of the power transmission coil 11.
- the detection circuit 17 detects the digital signal indicating the information or signal by detecting the on / off of the modulation switch 64. From the detected digital signal, the voltage, current, temperature, etc. of the battery being charged can be detected.
- the detection circuit 17 can also detect information and signals from either a phase change with respect to a current voltage or a change value such as a change in transmission efficiency. This is because these characteristics of the power transmission coil 11 change due to the impedance change of the power reception coil 51.
- the battery charger 50 shown in FIG. 2 does not include a charge control circuit on the input side of the battery 45, but this battery charger 50 controls the charging of the battery 45 as follows.
- the battery charger 50 of FIG. 2 charges the battery 45 that is a lithium ion battery
- the battery charger 50 performs constant voltage / constant current charging.
- the battery charger 50 is charged at a maximum voltage of 4.2 V, for example, by battery information such as voltage and current input from the battery information detection circuit 46 to the control circuit 52, when the battery voltage is 4.2 V or less,
- the modulation circuit 61 transmits an output increase or decrease instruction signal to the charging base 10 so that the predetermined constant current is obtained, and the charging base 10 increases or decreases the output.
- the modulation circuit 61 transmits an instruction signal for decreasing or increasing the output to the charging base 10, and the charging base 10 decreases or increases the output so that the battery voltage is reduced. Control so that 4.2V can be maintained.
- the battery charger 70 transmits power supply information such as output voltage and output current of the battery charger 70 input from the power supply information detection circuit 72 to the control circuit 52 to the charging base 10 by the modulation circuit 61, or For example, when the output voltage is less than 5V, the output increases, and when the output voltage is greater than 5V, the output of the battery charger 70 inputted from the power supply information detection circuit 72 to the control circuit 52 is equivalent to the output of the adapter 80.
- An instruction signal for lowering the output is transmitted to the charging stand 10.
- the charging stand 10 shown in the figure charges the battery 45 by placing the battery chargers 50 and 70 on the top plate 21.
- the charging stand 10 incorporates a mechanism for bringing the power transmission coil 11 close to the power reception coil 51 of the battery chargers 50 and 70, although not shown.
- the charging stand 10 includes a position detection controller 14 for detecting the position of the power receiving coil 51.
- FIGS. 2 and 3 show circuit diagrams of the charging stand 10 and the battery chargers 50 and 70 set on the charging stand 10.
- the charging stand 10 includes a position detection controller 14 that detects the position of the power receiving coil 51.
- FIG. 5 shows a block diagram of the position detection controller 14.
- the position detection controller 14 includes a plurality of position detection coils 30 fixed inside the upper surface plate 21 of the case 20 of the charging base 10, and a detection signal generation circuit 31 that supplies a position detection signal to the position detection coil 30.
- a reception circuit 32 that receives an echo signal that is excited by the position detection signal supplied from the detection signal generation circuit 31 to the position detection coil 30 and is output from the power reception coil 51 to the position detection coil 30;
- an identification circuit 33 for determining the position of the power receiving coil 51 from the received echo signal.
- the position detection controller 14 shown in the figure is controlled by the identification circuit 33 to switch the plurality of position detection coils 30 in order, and the position detection signal input from the detection signal generation circuit 31 to the reception circuit 32. And a limiter circuit 35 that inputs the signal level to the receiving circuit 32.
- the above position detection controller 14 detects the position of the power receiving coil 51 as follows. (1) The detection signal generation circuit 31 outputs a position detection signal of the pulse signal to the position detection coil 30. (2) Excited by the pulse signal of the position detection signal supplied to the position detection coil 30, an echo signal is output from the power receiving coil 51 to the position detection coil 30, as shown in FIG. (3) The echo signal is received by the receiving circuit 32. (4) A plurality of position detection coils 30 are sequentially switched by the switching circuit 34 to output a position detection signal of a pulse signal from each position detection coil 30, and an echo signal is received by each position detection coil 30. (5) The identification circuit 33 detects the level of the echo signal induced in each position detection coil 30 to detect the position of the power receiving coil 51.
- the echo signal induced in the position detection coil 30 approaching the power receiving coil 51 has a high level, and the level of the echo signal decreases as the power receiving coil 51 moves away from the position detection coil 30, so that the identification circuit 33 determines the level of the echo signal. From this, the position of the power receiving coil 51 is detected.
- the position detection controller 14 in FIG. 5 is provided with position detection coils 30 in the X-axis direction and the Y-axis direction, and the position of the power receiving coil 51 in the X-axis direction is determined by the X-axis detection coil 30A. It is detected by the Y-axis detection coil 30B.
- the above-described position detection controller 14 connects the modulation capacitor 63 in parallel with the power receiving coil 51 at the timing of detecting the position of the power receiving coil 51, as shown in the circuit diagrams of FIGS.
- a circuit 59 is configured to resonate with a pulse trigger and generate an echo signal.
- the modulation capacitor 63 connected in parallel with the power receiving coil 51 slightly lowers the power efficiency when charging the battery 45 with the power induced in the power receiving coil 51.
- the battery chargers 50 and 70 in FIGS. 2 to 4 include a series capacitor 55 connected in series to the power receiving coil 51, a modulation capacitor 63 connected in parallel to the power receiving coil 51, a series capacitor 55, and a modulation capacitor.
- a modulation switch 64 for switching the connection state between the capacitor 63 and the power receiving coil 51 is provided.
- the modulation capacitor 64 connects the modulation capacitor 63 to the power reception coil 51 and the power transmission coil 11 to the power reception coil 51.
- the power receiving coil 51 and the modulation capacitor 63 are disconnected from each other, and the alternating current of the power receiving coil 51 is output to the rectifier circuit 53 via the series capacitor 55.
- the series capacitor 55 is connected between the modulation capacitor 63 and the power receiving coil 51, or although not shown, it can also be connected to the rectifier circuit side than the modulation capacitor.
- the series capacitor 55 connected between the modulation capacitor 63 and the power receiving coil 51 is connected in series with the modulation capacitor 63 with the modulation switch 74 switched on. Therefore, the capacitance of the capacitor that realizes the parallel resonance circuit 59 with the power receiving coil 51 is a combined capacitance in which the series capacitor 55 and the two modulation capacitors 63 are connected in series.
- the battery chargers 50 and 70 and the charging stand 10 described above normally constitute a parallel resonance circuit 59 to accurately detect the position of the power receiving coil 51, and at the time of charging, the modulation capacitor 63 is disconnected to increase power efficiency.
- the battery 45 can be efficiently charged.
- the echo signal can be generated because the modulation capacitor 63 is connected in parallel with the power receiving coil 51 in a state where the position of the power receiving coil 51 is detected.
- the battery 45 can be charged efficiently by increasing the power efficiency.
- the capacitor is connected in series with the power receiving coil 51 without connecting the capacitor in parallel with the power receiving coil 51. This is because the power of the power receiving coil 51 can be output to the rectifier circuit 53 by connecting 55.
- the circuit configuration in which the series capacitor 55 is connected to the power receiving coil 51 improves the power efficiency and suppresses the heat generation of the coil and the battery during charging, as compared with the circuit configuration with a small transmission current connected to the power receiving coil. Can be charged efficiently, promptly and safely.
- the battery charger 50 described above uses the modulation capacitor 63, the modulation switch 64, and the control circuit 65 provided as the modulation circuit 61 in combination with the position detection controller 14, and the position detection controller 14 uses the position of the power receiving coil 51.
- the modulation switch 64 When detecting the modulation switch 64, the modulation switch 64 is turned on. For this reason, the battery charger 50 can detect the position of the power receiving coil 51 while transmitting information and signals to the charging stand 10 in an ideal state without increasing the manufacturing cost.
- the control circuit 52 turns on the modulation switch 64 and connects the modulation capacitor 63 to the power receiving coil 51.
- the power receiving coil 51 connected in parallel with the modulation capacitor 63 is excited by the position detection signal output from the position detection coil 30 and outputs a high level echo signal.
- the charging base identification circuit 33 can recognize and identify that the power receiving coil 51 of the battery charger 50 is mounted.
- a waveform different from the waveform of the echo signal is detected and identified, it is possible to stop the power supply assuming that something other than the power receiving coil 51 of the battery charger 50 (for example, a metal foreign object) is mounted. Further, when the waveform of the echo signal is not detected or identified, the power receiving coil 51 of the battery charger 50 is not mounted and power is not supplied.
- the control circuit 65 switches off the modulation switch 64 so that the modulation capacitor 63 is not connected to the power receiving coil 51. . That is, in the state where power is transferred from the power transmission coil 11 to the power reception coil 51, the control circuit 52 turns off the modulation switch 64 by the control circuit 65 to disconnect the modulation capacitor 63 from the power reception coil 51 and induces it to the power reception coil 51.
- the alternating current is efficiently output to the rectifier circuit 53 via the series capacitor 55.
- the above position detection circuit detects the position of the power receiving coil by the magnitude of the echo signal from the power receiving coil 51 with respect to the position detection signal of the pulse signal, but the position detection circuit is not shown, but the inductance and impedance of the power transmission coil are not shown.
- the position of the receiving coil of the battery charger can also be detected by the change.
- the above charging stand 10 includes a moving mechanism 13 that moves the power transmission coil 11 along the inner surface of the upper surface plate 21.
- the position detection controller 14 controls the moving mechanism 13 to charge the power transmission coil 11 with a battery.
- the power receiving coil 51 of the container 50 is moved closer.
- the position detection controller 14 controls the moving mechanism 13 with the position signal from the identification circuit 33 to transmit the power transmission coil 11. Is moved to the position of the power receiving coil 51.
- the charging stand 10 carries power to the battery charger 50 and charges the battery 45 by the following operation.
- the position of the battery charger 50 is detected by the position detection controller 14.
- the position detection controller 14 that has detected the position of the battery charger 50 controls the moving mechanism 13 to move the power transmission coil 11 along the upper surface plate 21 with the moving mechanism 13, so that the battery charger 50 Approach the power receiving coil 51.
- the power transmission coil 11 approaching the power reception coil 51 is electromagnetically coupled to the power reception coil 51 and carries AC power to the power reception coil 51.
- the battery charger 50 rectifies the AC power of the power receiving coil 51 and converts it to DC, and charges the battery 45 with this DC.
- the charging stand 10 supplies AC power to the power transmission coil 11 with the AC power supply 12 in a state where the position detection controller 14 controls the moving mechanism 13 to bring the power transmission coil 11 close to the power reception coil 51.
- the AC power of the power transmission coil 11 is transferred to the power reception coil 51 and used for charging the battery 45.
- the charging stand 10 shown in FIGS. 2 and 3 includes a detection circuit 17 that detects information and signals conveyed from the battery chargers 50 and 70.
- the detection circuit 17 charges the battery 45 by controlling the voltage and current for charging the battery 45 based on information and signals transmitted from the battery chargers 50 and 70.
- the full charge of the battery 45 is transmitted from the battery chargers 50 and 70 as battery information. Therefore, the detection circuit 17 detects the full charge of the battery 45 from the battery information transmitted from the battery chargers 50 and 70, stops the supply of AC power to the power transmission coil 11, and ends the charging.
- the above charging stand includes a position detection circuit and a moving mechanism, and the position detecting mechanism detects the positions of the power receiving coils arranged on the top plate in the X-axis direction and the Y-axis direction, and the moving mechanism detects the power transmitting coil. Move it to the desired position. Since this charging stand can approach the power receiving coil to the power receiving coil, it can efficiently carry power from the power transmitting coil to the power receiving coil. However, the present invention does not specify the structure of the charging stand as a mechanism that detects the position of the power receiving coil and moves the power transmitting coil to the position of the power receiving coil.
- the charging base By placing the battery charger at a specific position on the charging base without bringing the power transmission coil close to the position of the power receiving coil, the charging base can be brought into a state where the power receiving coil can be brought close to the power transmitting coil and electromagnetically coupled. Furthermore, the power transmission coil can be enlarged, and the battery charger can be set on the charging stand so that the power reception coil is disposed inside the large power transmission coil, so that the power transmission coil and the power reception coil can be electromagnetically coupled.
- the user presses a set switch (not shown) to detect that the battery charger is set, and supplies AC power from the AC power source to the power transmission coil, or the battery charger is set. This is electrically detected or physically detected by a limit switch or the like, and power is supplied from the AC power source to the power transmission coil.
- Rectifier circuit 53A Synchronous rectifier circuit 53a ... FET 53b ... Switching circuit 53B ... Diode bridge 54 ... Output cutoff switch 55 ... Series capacitor 56 ... Load resistor 57 ... Zener diode 58 ... Load switch 59 ... Parallel resonance circuit 61 ... Modulation circuit 62 ... Load impedance change circuit 63 ... Modulation capacitor 64 ... Modulation switch 65 ... Control circuit 70 ... Battery charger 71 ... Output terminal 72 ... Power supply information detection circuit 80 ... Adapter
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
The present invention is capable of preventing elements from becoming destroyed by connecting a load resistor to the output side of a rectifier circuit and by preventing, by means of the load resistor, the voltage on the output side of the rectifier circuit from becoming high when the battery is not charged in a battery charger and charging station in which charging power is transmitted to the battery charger from the charging station by means of electromagnetic coupling and it is possible to transmit battery information as modulation signals from the battery charger to the charging station. This battery charger (50) is provided with a rectifier circuit (53) for rectifying the alternating current guided to a power reception coil (51) and for converting said alternating current to direct current for charging a battery (45), a modulation circuit (61) for transmitting a modulation signal to a charging station (10) by changing the load impedance of the reception coil (51), and a load resistor (56) connected to the output side of the rectifier circuit (53).
Description
本発明は、パック電池や携帯電話などの内蔵電池を充電する電池充電器と、この電池充電器に電磁誘導作用で電力を搬送して、電池充電器で電池を充電する充電台に関する。
The present invention relates to a battery charger that charges a built-in battery such as a pack battery or a mobile phone, and a charging stand that conveys electric power to the battery charger by electromagnetic induction and charges the battery with the battery charger.
電磁誘導の作用で送電コイルから受電コイルに電力搬送して、電池を充電する充電台は開発されている。(特許文献1参照)
A charging stand has been developed to charge the battery by transferring power from the transmitting coil to the receiving coil by the action of electromagnetic induction. (See Patent Document 1)
この充電台は、交流電源で励磁される送電コイルを内蔵し、電池充電器には送電コイルに電磁結合される受電コイルを内蔵している。電池充電器は、パック電池や携帯電話に内蔵されて電池を充電する。この電池充電器は、受電コイルに誘導される交流を整流し、これを電池に供給して電池を充電する。この充電方式は、充電台の上に電池充電器を内蔵するパック電池や携帯電話を載せて、非接触状態で電池を充電できる。
This charging stand has a built-in power transmission coil that is excited by an AC power source, and the battery charger has a power receiving coil that is electromagnetically coupled to the power transmission coil. The battery charger is built in a pack battery or a mobile phone and charges the battery. This battery charger rectifies the alternating current induced in the power receiving coil, and supplies this to the battery to charge the battery. In this charging method, a battery pack with a built-in battery charger or a mobile phone can be placed on a charging stand to charge the battery in a non-contact state.
送電コイルと受電コイルとを電磁結合して、電池の充電電力を充電台から伝送する方式は、電池の充電が完了したことを電池充電器側から充電台に伝送して、充電台側で送電コイルへの電力供給を停止して電池の充電を停止する必要がある。また、電池の充電途中においても、電池の電圧や充電電流や温度などの電池情報を充電台に伝送して理想的な状態で充電することができる。
The method of transmitting the charging power of the battery from the charging stand by electromagnetically coupling the power transmission coil and the receiving coil is transmitted from the battery charger side to the charging stand and the power is transmitted on the charging stand side. It is necessary to stop power supply to the coil and stop charging the battery. Further, even during battery charging, battery information such as battery voltage, charging current, and temperature can be transmitted to the charging stand and charged in an ideal state.
このことを実現するために、電池情報で受電コイルの負荷インピーダンスを変化させて電池情報を変調信号として充電台に伝送する変調方式が開発されている。(特許文献2参照)
In order to realize this, a modulation method has been developed in which the battery information is changed as a modulation signal to the charging stand by changing the load impedance of the receiving coil according to the battery information. (See Patent Document 2)
特許文献2の公報に記載される構造は、受電コイルの変調信号で負荷インピーダンスを変化させて、電池情報を充電台に伝送するので、充電台は充電される電池の状態を正確に検出しながら、送電コイルから受電コイルに4伝送する電力を最適な状態にコントロールできる。この方式は、受電コイルの負荷インピーダンスの変化を、交流信号を供給している送電コイルの電圧変化、電流変化、電力変化で検出して、変調信号を検出することができる。すなわち、送電コイルに交流電力を供給する状態で、この交流電力の変化を検出して電池情報を検出する必要がある。ところで、この変調方式は、電池を充電しない状態においても、電池充電器から充電台に電池情報を変調信号として伝送する必要がある。たとえば、セットされた電池の充電を開始するに先立って、電池のシリアル番号や規格を確認するまでの間、あるいは電池の温度が設定温度よりも高くなって充電を休止する状態において、電池充電器から充電台に電池情報を伝送する必要がある。
The structure described in the publication of Patent Document 2 changes the load impedance with the modulation signal of the power receiving coil and transmits battery information to the charging base, so that the charging base accurately detects the state of the battery to be charged. The power transmitted from the power transmission coil to the power reception coil can be controlled to an optimum state. This method can detect a modulation signal by detecting a change in load impedance of a power receiving coil by a voltage change, a current change, and a power change of a power transmission coil that supplies an AC signal. That is, it is necessary to detect battery information by detecting a change in the AC power while supplying AC power to the power transmission coil. By the way, this modulation method needs to transmit battery information as a modulation signal from the battery charger to the charging stand even when the battery is not charged. For example, before starting charging a set battery, until the battery serial number or standard is confirmed, or when the battery temperature is higher than the set temperature and charging is suspended, the battery charger Battery information needs to be transmitted from the battery to the charging stand.
電池の充電を停止する状態、すなわち、電池充電器の整流回路の負荷をオープンとする状態で、送電コイルから受電コイルに電力を搬送すると、無負荷の受電コイルに誘導される電圧が相当に高くなる。受電コイルの誘導電圧が高くなると、整流回路に入力される電圧が高くなって、整流回路のスイッチング素子が高電圧によって破壊される弊害が発生する。この弊害は、スイッチング素子に高耐圧の素子を使用して解消できるが、高耐圧の素子はオン抵抗が大きく、電池を充電する状態でのジュール熱による発熱が大きくなる。したがって、スイッチング素子にはオン抵抗の小さい耐圧の低い素子が使用される。とくに、スイッチング素子をFETとする同期整流回路は、耐圧の低いFETをスイッチング素子に使用して、オン抵抗を相当に小さくできる。ただ、低耐圧のFETは、受電コイルが無負荷となって、入力電圧が高くなると、電圧で破壊される弊害が発生する。
When power is transferred from the power transmission coil to the power receiving coil in a state where charging of the battery is stopped, that is, in a state where the load of the rectifier circuit of the battery charger is opened, the voltage induced in the unloaded power receiving coil is considerably high. Become. When the induction voltage of the power receiving coil is increased, the voltage input to the rectifier circuit is increased, which causes a problem that the switching element of the rectifier circuit is destroyed by the high voltage. This adverse effect can be solved by using a high withstand voltage element as the switching element, but the high withstand voltage element has a large on-resistance and heat generation due to Joule heat in a state where the battery is charged increases. Therefore, an element having a low on-resistance and a low withstand voltage is used as the switching element. In particular, a synchronous rectifier circuit using a switching element as an FET can considerably reduce the on-resistance by using an FET having a low withstand voltage as the switching element. However, a low breakdown voltage FET has a negative effect of being destroyed by the voltage when the receiving coil is unloaded and the input voltage becomes high.
さらに、低耐圧のFETを整流回路のスイッチング素子に使用する回路構成は、整流回路の出力側にツェナーダイオードを接続することで、電池を充電しない状態で、FETの電圧破壊を防止できる。ただ、この回路構成は、電池を充電しない状態で、ツェナーダイオードが電力を消費して高温に発熱する弊害が発生する。
Furthermore, the circuit configuration using a low breakdown voltage FET as the switching element of the rectifier circuit can prevent voltage breakdown of the FET without charging the battery by connecting a Zener diode to the output side of the rectifier circuit. However, this circuit configuration causes a problem that the Zener diode consumes power and generates heat to a high temperature without charging the battery.
本発明は、簡単な回路構成で以上の欠点を解決することを目的に開発されたものである。本発明の重要な目的は、電池を充電しない状態で、整流回路を構成するスイッチング素子の耐圧を低くして発熱を少なくしながら素子の高電圧による破壊を防止でき、さらに、整流回路にツェナーダイオードを接続する回路構成にあっては、ツェナーダイオードの発熱を少なくしながら、電池充電器から充電台に電池情報などを変調信号として伝送できる電池充電器と充電台、及び電池充電器を提供することにある。
The present invention was developed for the purpose of solving the above drawbacks with a simple circuit configuration. An important object of the present invention is to prevent breakdown due to high voltage of the element while reducing the withstand voltage of the switching element constituting the rectifier circuit and reducing heat generation without charging the battery. In a circuit configuration for connecting a battery charger, a battery charger and a charging stand capable of transmitting battery information and the like as a modulation signal from the battery charger to the charging stand while reducing heat generation of the Zener diode, and a battery charger are provided. It is in.
本発明の電池充電器と充電台は、電池45を充電する受電コイル51を備える電池充電器50、70と、この電池充電器50、70の受電コイル51に電磁結合して充電電力を供給する送電コイル11を備える充電台10とからなる。電池充電器50、70は、受電コイル51に誘導される交流を整流して電池45を充電する直流に変換する整流回路53と、受電コイル51の負荷インピーダンスを変化させる変調でもって変調信号を充電台10に伝送する変調回路61と、整流回路53の出力側に接続している負荷抵抗56とを備えている。電池充電器50、70は、整流回路53の出力側に負荷抵抗56を接続して、変調回路61でもって受電コイル51の負荷インピーダンスを変化させて変調信号を充電台10に伝送する。
The battery charger and charging stand according to the present invention supply charging power by electromagnetically coupling to the battery chargers 50 and 70 including the power receiving coil 51 for charging the battery 45 and the power receiving coil 51 of the battery chargers 50 and 70. The charging stand 10 includes a power transmission coil 11. The battery chargers 50 and 70 charge the modulation signal with a rectifier circuit 53 that rectifies the alternating current induced in the power receiving coil 51 and converts it into direct current that charges the battery 45, and modulation that changes the load impedance of the power receiving coil 51. A modulation circuit 61 that transmits to the base 10 and a load resistor 56 connected to the output side of the rectifier circuit 53 are provided. The battery chargers 50 and 70 connect the load resistor 56 to the output side of the rectifier circuit 53, change the load impedance of the power receiving coil 51 with the modulation circuit 61, and transmit the modulation signal to the charging stand 10.
以上の構成によると、電池を充電しない状態において、整流回路を構成するスイッチング素子の耐圧を低くして発熱を少なくしながら素子の高電圧による破壊を防止できる。それは、整流回路に負荷抵抗を接続することによって、負荷抵抗でもって整流回路の出力側の電圧が高くなるのを防止できるからである。電池を充電しない状態で、負荷抵抗によって整流回路の出力電圧が高くならないようにできるので、整流回路のスイッチング素子には、高耐圧でオン抵抗の大きいスイッチング素子を使用することなく、低耐圧でオン抵抗の小さいFETやダイオードを使用できる。このため、整流回路の発熱量を少なくしながら、スイッチング素子の電圧破壊を防止できる。
According to the above configuration, in a state where the battery is not charged, the breakdown voltage of the switching element constituting the rectifier circuit can be lowered to reduce heat generation, and the element can be prevented from being damaged by a high voltage. This is because the voltage on the output side of the rectifier circuit can be prevented from being increased by the load resistance by connecting the load resistor to the rectifier circuit. Since the output voltage of the rectifier circuit cannot be increased by the load resistance when the battery is not charged, the switching element of the rectifier circuit is turned on with a low withstand voltage without using a switching element with a high withstand voltage and a large on-resistance. FETs and diodes with low resistance can be used. For this reason, the voltage destruction of a switching element can be prevented, reducing the emitted-heat amount of a rectifier circuit.
また、以上の構成によると、整流回路にツェナーダイオードを接続する回路構成にあっては、ツェナーダイオードの発熱を少なくしながら、電池充電器から充電台に電池情報などを変調信号として充電台に伝送できる。それは、ツェナーダイオードと並列に負荷抵抗が接続されて、整流回路の出力電流がツェナーダイオードと負荷抵抗とに分流されて、ツェナーダイオードの電流を少なくできるからである。ツェナーダイオードは、整流回路に負荷電流を流して出力電圧を一定にクランプする。このとき、ツェナーダイオードと並列に負荷抵抗が接続されると、整流回路の出力電圧を一定の電圧にクランプする状態で、ツェナーダイオードと負荷抵抗に分流して電流が流れるので、ツェナーダイオードは、流れる電流を小さくして、整流回路の出力電圧を一定の電圧にクランプできる。ツェナーダイオードの発熱量、すなわちジュール熱は、流れる電流に比例して大きくなるので、電流を小さくすることで発熱量を少なくできる。
Moreover, according to the above configuration, in the circuit configuration in which the Zener diode is connected to the rectifier circuit, the battery information is transmitted from the battery charger to the charging stand as a modulation signal to the charging stand while reducing the heat generated by the Zener diode. it can. This is because the load resistor is connected in parallel with the Zener diode, and the output current of the rectifier circuit is divided into the Zener diode and the load resistor, so that the current of the Zener diode can be reduced. The Zener diode passes a load current through the rectifier circuit and clamps the output voltage at a constant level. At this time, if a load resistor is connected in parallel with the Zener diode, the current flows in a state where the output voltage of the rectifier circuit is clamped to a constant voltage and is shunted to the Zener diode and the load resistor. The output voltage of the rectifier circuit can be clamped to a constant voltage by reducing the current. Since the amount of heat generated by the Zener diode, that is, Joule heat increases in proportion to the flowing current, the amount of generated heat can be reduced by reducing the current.
以上のように、電池を充電しない状態において、充電台の送電コイルから受電コイルに電力搬送する状態としながら、整流回路の低耐圧スイッチング素子を電圧破壊することなく、また、ツェナーダイオードを接続する回路構成にあっては、ツェナーダイオードの発熱を少なくできる。したがって、電池を充電しない状態においても、送電コイルから受電コイルに電力搬送できる。このため、この状態で受電コイルの負荷インピーダンスを変化させて、電池充電器から充電台に電池情報などを変調信号として伝送できる。充電台は、電池充電器から伝送される電池情報などの信号で、送電コイルに供給する交流電力をコントロールして、電池充電器を介して電池を常に理想的な状態で充電し、また充電を停止できる。
As described above, in a state in which the battery is not charged, a circuit for connecting a zener diode without destroying the voltage of the low withstand voltage switching element of the rectifier circuit while carrying power from the power transmitting coil of the charging stand to the power receiving coil. In the configuration, the heat generated by the Zener diode can be reduced. Therefore, even when the battery is not charged, power can be conveyed from the power transmission coil to the power reception coil. For this reason, in this state, the load impedance of the power receiving coil is changed, and battery information and the like can be transmitted as a modulation signal from the battery charger to the charging stand. The charging stand controls the AC power supplied to the power transmission coil with signals such as battery information transmitted from the battery charger, and always charges the battery in an ideal state via the battery charger. You can stop.
本発明の電池充電器と充電台は、整流回路53を、FET53aをスイッチング素子とする同期整流回路53Aとすることができる。
以上の回路構成によると、整流回路のスイッチング素子の発熱をより少なくできる。それは、ダイオードよりもオン抵抗の小さいFETをスイッチング素子に使用でき、さらに、FETの耐圧を低くすることでよりオン抵抗を小さくできるからである。 In the battery charger and the charging stand of the present invention, therectifier circuit 53 can be a synchronous rectifier circuit 53A using the FET 53a as a switching element.
According to the above circuit configuration, the heat generation of the switching element of the rectifier circuit can be further reduced. This is because an FET having a smaller on-resistance than a diode can be used as a switching element, and the on-resistance can be further reduced by lowering the breakdown voltage of the FET.
以上の回路構成によると、整流回路のスイッチング素子の発熱をより少なくできる。それは、ダイオードよりもオン抵抗の小さいFETをスイッチング素子に使用でき、さらに、FETの耐圧を低くすることでよりオン抵抗を小さくできるからである。 In the battery charger and the charging stand of the present invention, the
According to the above circuit configuration, the heat generation of the switching element of the rectifier circuit can be further reduced. This is because an FET having a smaller on-resistance than a diode can be used as a switching element, and the on-resistance can be further reduced by lowering the breakdown voltage of the FET.
本発明の電池充電器と充電台は、整流回路53の出力側にツェナーダイオード57を接続することができる。
以上の回路構成によると、ツェナーダイオードでもって整流回路の出力電圧を常に一定電圧にクランプでき、整流回路は負荷の状態によらず、スイッチング素子に高電圧が印加されるのを防止できる。 In the battery charger and the charging stand of the present invention, a Zenerdiode 57 can be connected to the output side of the rectifier circuit 53.
According to the above circuit configuration, the output voltage of the rectifier circuit can always be clamped to a constant voltage with the Zener diode, and the rectifier circuit can prevent a high voltage from being applied to the switching element regardless of the state of the load.
以上の回路構成によると、ツェナーダイオードでもって整流回路の出力電圧を常に一定電圧にクランプでき、整流回路は負荷の状態によらず、スイッチング素子に高電圧が印加されるのを防止できる。 In the battery charger and the charging stand of the present invention, a Zener
According to the above circuit configuration, the output voltage of the rectifier circuit can always be clamped to a constant voltage with the Zener diode, and the rectifier circuit can prevent a high voltage from being applied to the switching element regardless of the state of the load.
本発明の電池充電器と充電台は、負荷抵抗56を整流回路53の出力側に接続する負荷スイッチ58と、負荷スイッチ58をオンオフに制御する制御回路52とを備えて、電池45の非充電状態において、制御回路52が負荷スイッチ58をオンに切り換えて、負荷抵抗56を整流回路53の負荷側に接続することができる。
以上の回路構成によると、電池を充電する状態で負荷抵抗による電力ロスを皆無にして、整流回路の出力で効率よく電池を充電できる。それは、電池を充電しない状態でのみ整流回路に負荷抵抗を接続して、電池を充電する状態では、整流回路に負荷抵抗を接続しないように制御できるからである。 The battery charger and charging stand according to the present invention include aload switch 58 that connects the load resistor 56 to the output side of the rectifier circuit 53, and a control circuit 52 that controls the load switch 58 to be turned on and off. In the state, the control circuit 52 can turn on the load switch 58 to connect the load resistor 56 to the load side of the rectifier circuit 53.
According to the above circuit configuration, the battery can be efficiently charged with the output of the rectifier circuit without any power loss due to the load resistance in the state of charging the battery. This is because the load resistor can be connected to the rectifier circuit only when the battery is not charged, and the load resistor can be controlled not to be connected to the rectifier circuit when the battery is charged.
以上の回路構成によると、電池を充電する状態で負荷抵抗による電力ロスを皆無にして、整流回路の出力で効率よく電池を充電できる。それは、電池を充電しない状態でのみ整流回路に負荷抵抗を接続して、電池を充電する状態では、整流回路に負荷抵抗を接続しないように制御できるからである。 The battery charger and charging stand according to the present invention include a
According to the above circuit configuration, the battery can be efficiently charged with the output of the rectifier circuit without any power loss due to the load resistance in the state of charging the battery. This is because the load resistor can be connected to the rectifier circuit only when the battery is not charged, and the load resistor can be controlled not to be connected to the rectifier circuit when the battery is charged.
本発明の電池充電器と充電台は、変調回路61が、受電コイル51と並列に接続している、変調用コンデンサー63と変調スイッチ64を直列に接続してなる負荷インピーダンス変化回路62と、この負荷インピーダンス変化回路62の変調スイッチ64をオンオフに切り換えるコントロール回路65とを備えて、コントロール回路65が変調スイッチ64をオンオフに切り換えて変調信号を充電台10に伝送することができる。
以上の回路構成は、出力側に変調用コンデンサーを接続して受電コイルの負荷インピーダンスを変化させるので、変調用コンデンサーが電力を消費することなく、受電コイルの負荷インピーダンスを変化させて、電池充電器から充電台に変調信号を伝送できる。 The battery charger and the charging stand according to the present invention include a loadimpedance changing circuit 62 in which a modulation circuit 61 is connected in parallel with the power receiving coil 51, and a modulation capacitor 63 and a modulation switch 64 are connected in series. And a control circuit 65 for switching the modulation switch 64 of the load impedance changing circuit 62 on and off. The control circuit 65 can switch the modulation switch 64 on and off and transmit the modulation signal to the charging base 10.
In the above circuit configuration, since the modulation capacitor is connected to the output side to change the load impedance of the power receiving coil, the load impedance of the power receiving coil is changed without consuming power by the modulation capacitor. The modulation signal can be transmitted from the battery to the charging stand.
以上の回路構成は、出力側に変調用コンデンサーを接続して受電コイルの負荷インピーダンスを変化させるので、変調用コンデンサーが電力を消費することなく、受電コイルの負荷インピーダンスを変化させて、電池充電器から充電台に変調信号を伝送できる。 The battery charger and the charging stand according to the present invention include a load
In the above circuit configuration, since the modulation capacitor is connected to the output side to change the load impedance of the power receiving coil, the load impedance of the power receiving coil is changed without consuming power by the modulation capacitor. The modulation signal can be transmitted from the battery to the charging stand.
本発明の電池充電器と充電台は、充電台10が、変調回路61で変化される受電コイル51の負荷インピーダンスの変化を送電コイル11を介して検出して変調信号を検出する検出回路17を備えることができる。
以上の回路構成によると、変調回路で変化される受電コイルの負荷インピーダンスの変化を、送電コイルを介して充電台の検出回路で変調信号として確実に検出できる。 The battery charger and the charging stand according to the present invention include adetection circuit 17 in which the charging stand 10 detects a change in the load impedance of the power receiving coil 51 changed by the modulation circuit 61 via the power transmission coil 11 to detect a modulation signal. Can be provided.
According to the above circuit configuration, a change in the load impedance of the power receiving coil that is changed by the modulation circuit can be reliably detected as a modulation signal by the detection circuit of the charging stand via the power transmission coil.
以上の回路構成によると、変調回路で変化される受電コイルの負荷インピーダンスの変化を、送電コイルを介して充電台の検出回路で変調信号として確実に検出できる。 The battery charger and the charging stand according to the present invention include a
According to the above circuit configuration, a change in the load impedance of the power receiving coil that is changed by the modulation circuit can be reliably detected as a modulation signal by the detection circuit of the charging stand via the power transmission coil.
本発明の電池充電器と充電台は、変調回路61によって充電台10に伝送される変調信号が、充電している電池45の電圧と、充電電流と、電池温度と、シリアル番号と、電池45の充電電流を特定する許容充電電流と、電池45の充電をコントロールする許容温度と、電池充電器70の出力電圧または出力電流のいずれかを含むことができる。
In the battery charger and charging stand of the present invention, the modulation signal transmitted to the charging stand 10 by the modulation circuit 61 is such that the voltage of the battery 45 being charged, the charging current, the battery temperature, the serial number, and the battery 45 The allowable charging current for specifying the charging current, the allowable temperature for controlling the charging of the battery 45, and either the output voltage or the output current of the battery charger 70 can be included.
本発明の電池充電器は、充電台10に内蔵される送電コイル11に電磁結合されて、送電コイル11から搬送される電力で電池45を充電する受電コイル51を備えている。電池充電器は、受電コイル51に誘導される交流を整流して電池45を充電する直流に変換する整流回路53と、受電コイル51の負荷インピーダンスを変化させる変調でもって変調信号を充電台10に伝送する変調回路61と、整流回路53の出力側に接続される負荷抵抗56とを備えている。電池充電器は、整流回路53の出力側に負荷抵抗56を接続して、変調回路61でもって受電コイル51の負荷インピーダンスを変化させて変調信号を充電台10に伝送する。
The battery charger of the present invention includes a power receiving coil 51 that is electromagnetically coupled to a power transmission coil 11 built in the charging stand 10 and charges the battery 45 with electric power conveyed from the power transmission coil 11. The battery charger rectifies the alternating current induced in the power receiving coil 51 to convert it into direct current for charging the battery 45, and modulates the load signal of the power receiving coil 51 with the modulation signal to the charging base 10. A modulation circuit 61 for transmission and a load resistor 56 connected to the output side of the rectifier circuit 53 are provided. The battery charger connects the load resistor 56 to the output side of the rectifier circuit 53, changes the load impedance of the power receiving coil 51 with the modulation circuit 61, and transmits the modulation signal to the charging stand 10.
以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電池充電器と充電台を例示するものであって、本発明は電池充電器と充電台を以下のものに特定しない。さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment shown below exemplifies a battery charger and a charging stand for embodying the technical idea of the present invention, and the present invention does not specify the battery charger and the charging stand as follows. . Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the examples are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.
図1ないし図4は、電池充電器50、70と充電台10の斜視図及びブロック図を示している。充電台10は、上面に電池充電器50、70を配置して、図2に示すように、電池充電器50に内蔵している電池45を電磁誘導作用で充電し、あるいは、図3と図4に示すように、電池充電器70を備える電池内蔵機器40に内蔵される電池45を電磁誘導作用で充電する。電池充電器50、70は、送電コイル11に電磁結合される受電コイル51を内蔵している。電池充電器50、70は、この受電コイル51に誘導される電力で電池45を充電する。図3に示す電池内蔵機器40は、電池45を電池パック41として内蔵しており、電池パック41を交換できるようにしている。ここで、図2に示す電池45を内蔵している電池充電器50は、パック電池又は電子機器とすることができ、図3と図4に示す電池充電器70と電池45を内蔵する電池内蔵機器40は、携帯電話やICプレーヤなどの電子機器とすることも、パック電池とすることもできる。
1 to 4 show a perspective view and a block diagram of the battery chargers 50 and 70 and the charging stand 10. The charging stand 10 has battery chargers 50 and 70 arranged on the upper surface, and as shown in FIG. 2, charges the battery 45 built in the battery charger 50 by electromagnetic induction, or FIG. 3 and FIG. As shown in FIG. 4, the battery 45 built in the battery built-in apparatus 40 provided with the battery charger 70 is charged by electromagnetic induction. The battery chargers 50 and 70 have a power receiving coil 51 that is electromagnetically coupled to the power transmitting coil 11. The battery chargers 50 and 70 charge the battery 45 with the electric power induced in the power receiving coil 51. The battery built-in device 40 shown in FIG. 3 incorporates a battery 45 as a battery pack 41 so that the battery pack 41 can be replaced. Here, the battery charger 50 including the battery 45 shown in FIG. 2 can be a pack battery or an electronic device, and the battery charger 70 including the battery charger 70 and the battery 45 shown in FIGS. The device 40 may be an electronic device such as a mobile phone or an IC player, or may be a battery pack.
電池充電器50、70は、受電コイル51に誘導される交流を整流して電池45を充電する直流に変換する整流回路53と、受電コイル51の負荷インピーダンスを変化させて変調信号を充電台10に伝送する変調回路61と、整流回路53の出力側に接続している負荷抵抗56とを備えている。
The battery chargers 50 and 70 include a rectifier circuit 53 that rectifies the alternating current induced in the power receiving coil 51 and converts the alternating current into a direct current that charges the battery 45, and changes the load impedance of the power receiving coil 51 to change the modulation signal to the charging base 10. And a load resistor 56 connected to the output side of the rectifier circuit 53.
整流回路53は、受電コイル51から入力される交流を直流に変換する。整流回路53の直流出力は、電池45に供給される。図2と図3の整流回路53は、スイッチング素子をFETとする同期整流回路53Aである。同期整流回路53Aは、ブリッジに接続している4個のFET53aと、各々のFET53aのオンオフを制御するスイッチング回路53bとを備えている。スイッチング回路53bは、受電コイル51から出力される交流に同期してFET53aをスイッチングして、入力される交流を直流に変換して出力する。同期整流回路53Aは、FET53aの電圧降下がダイオードよりも小さいので、ダイオードブリッジよりも効率よく、電圧降下による電力損失を少なくして整流できる。ただし、整流回路53には、図4に示すように、同期整流回路に代わってダイオードブリッジ53Bも使用できるのは言うまでもない。
The rectifier circuit 53 converts alternating current input from the power receiving coil 51 into direct current. The direct current output of the rectifier circuit 53 is supplied to the battery 45. 2 and 3 is a synchronous rectifier circuit 53A in which a switching element is an FET. The synchronous rectifier circuit 53A includes four FETs 53a connected to the bridge, and a switching circuit 53b that controls on / off of each FET 53a. The switching circuit 53b switches the FET 53a in synchronization with the alternating current output from the power receiving coil 51, converts the input alternating current to direct current, and outputs the direct current. Since the voltage drop of the FET 53a is smaller than that of the diode, the synchronous rectifier circuit 53A can perform rectification more efficiently than the diode bridge and reduce power loss due to the voltage drop. However, it goes without saying that a diode bridge 53B can be used for the rectifier circuit 53 in place of the synchronous rectifier circuit as shown in FIG.
さらに、図2ないし図4の整流回路53は、出力側にツェナーダイオード57を接続している。ツェナーダイオード57は、整流回路53の出力電圧を一定の電圧にクランプして、整流回路53のスイッチング素子に高電圧が印加されるのを阻止する。ツェナーダイオード57のツェナー電圧は、電池45を充電できる電圧よりも高く、たとえば、リチウムイオン電池を充電する電池充電器にあっては、ツェナー電圧を約5Vとして、電池を充電しながら、整流回路の出力電圧を5Vに制限する。ただし、ツェナーダイオードのツェナー電圧は、充電する電池の電圧を考慮して、電池を充電できる電圧よりも高くて、できる限り低い電圧に設定される。
Furthermore, the rectifier circuit 53 of FIGS. 2 to 4 has a Zener diode 57 connected to the output side. The Zener diode 57 clamps the output voltage of the rectifier circuit 53 to a constant voltage and prevents a high voltage from being applied to the switching element of the rectifier circuit 53. The Zener voltage of the Zener diode 57 is higher than the voltage at which the battery 45 can be charged. For example, in a battery charger that charges a lithium ion battery, the Zener voltage is set to about 5 V while charging the battery. Limit the output voltage to 5V. However, the Zener voltage of the Zener diode is set to a voltage that is higher and lower than the voltage that can charge the battery in consideration of the voltage of the battery to be charged.
図2ないし図4の整流回路53は、出力側にツェナーダイオード57を接続して、整流回路53の出力電圧をツェナー電圧にクランプして、スイッチング素子の電圧破壊を防止し、また、電池45を接続しない状態で、整流回路53の出力電流を負荷抵抗56とツェナーダイオード57に分流して、負荷抵抗56の発熱を少なくできる。ただ、本発明の電池充電器は、整流回路の出力側に必ずしもツェナーダイオードを接続する必要はない。整流回路の出力側に接続している負荷抵抗で、整流回路の出力電圧を制限して、スイッチング素子の電圧破壊を防止できるからである。
The rectifier circuit 53 shown in FIGS. 2 to 4 has a Zener diode 57 connected to the output side to clamp the output voltage of the rectifier circuit 53 to the Zener voltage to prevent voltage breakdown of the switching element. In a state in which the load resistor 56 is not connected, the output current of the rectifier circuit 53 is shunted to the load resistor 56 and the Zener diode 57, and heat generation of the load resistor 56 can be reduced. However, the battery charger of the present invention does not necessarily need to connect a Zener diode to the output side of the rectifier circuit. This is because the load resistance connected to the output side of the rectifier circuit can limit the output voltage of the rectifier circuit to prevent voltage breakdown of the switching element.
図2ないし図4の整流回路53は、負荷スイッチ58を介して整流回路53の出力側に負荷抵抗56を接続している。負荷スイッチ58は、制御回路52でオンオフに制御される。制御回路52は、電池45を充電しない状態で負荷スイッチ58をオン、電池45を充電する状態でオフに切り換える。ただし、制御回路52は、電池45の充電電流が設定値よりも小さくなる状態で、負荷スイッチ58をオンに切り換えて、制御回路52の出力側に負荷抵抗56を接続することもできる。たとえば、リチウムイオン電池は、満充電に近づくにしたがって充電電流を小さくするので、充電を開始する状態では負荷スイッチ58をオフとして、リチウムイオン電池を効率よく充電し、満充電に近づいて充電電流が小さくなる状態では、負荷スイッチ58をオンに切り換えることができる。
The rectifier circuit 53 of FIGS. 2 to 4 has a load resistor 56 connected to the output side of the rectifier circuit 53 via a load switch 58. The load switch 58 is controlled to be turned on / off by the control circuit 52. The control circuit 52 turns on the load switch 58 when the battery 45 is not charged, and turns it off when the battery 45 is charged. However, the control circuit 52 can also connect the load resistor 56 to the output side of the control circuit 52 by switching the load switch 58 on in a state where the charging current of the battery 45 is smaller than the set value. For example, a lithium ion battery reduces the charging current as it approaches full charge. Therefore, when charging is started, the load switch 58 is turned off to charge the lithium ion battery efficiently, and the charging current approaches the full charge. In the small state, the load switch 58 can be turned on.
この回路構成は、電池45を充電しない状態、あるいは電池45の充電電流が小さい状態でのみ負荷抵抗56を接続し、電池45を充電する状態、あるいは電池の充電電流が設定値よりも大きい状態では、負荷抵抗56を接続しない状態とするので、整流回路53の出力で効率よく電池45を充電できる。ただし、負荷抵抗56は、負荷スイッチ58を介することなく、常時、整流回路53に接続することもできる。負荷抵抗56は、整流回路53の出力を制限すると共に、ツェナーダイオード57の発熱を防止する電気抵抗、たとえば約10Ωに設定される。ただし、負荷抵抗の電気抵抗は、5Ω~500Ωの範囲とすることもできる。
In this circuit configuration, the load resistor 56 is connected only when the battery 45 is not charged or when the charging current of the battery 45 is small, and when the battery 45 is charged or when the charging current of the battery is larger than the set value. Since the load resistor 56 is not connected, the battery 45 can be efficiently charged with the output of the rectifier circuit 53. However, the load resistor 56 can always be connected to the rectifier circuit 53 without going through the load switch 58. The load resistor 56 is set to an electric resistance that limits the output of the rectifier circuit 53 and prevents the Zener diode 57 from generating heat, for example, about 10Ω. However, the electrical resistance of the load resistor can be in the range of 5Ω to 500Ω.
図2ないし図4の電池充電器50、70は、整流回路53の出力側を出力遮断スイッチ54を介して電池45に接続している。この電池充電器50は、図2と図4に示すように、出力遮断スイッチ54の出力側である電池側に負荷抵抗56を接続し、あるいは図3に示すように、出力遮断スイッチ54の入力側である整流回路53側に負荷抵抗56を接続することができる。図2と図4に示すように、出力遮断スイッチ54の出力側に負荷抵抗56を接続する回路構成は、電池45を充電しない状態において出力遮断スイッチ54をオンとして、出力遮断スイッチ54を介して負荷抵抗56を整流回路53の出力側に接続する。
The battery chargers 50 and 70 in FIGS. 2 to 4 have the output side of the rectifier circuit 53 connected to the battery 45 via the output cut-off switch 54. 2 and 4, the battery charger 50 has a load resistor 56 connected to the battery side which is the output side of the output cutoff switch 54, or the input of the output cutoff switch 54 as shown in FIG. 3. A load resistor 56 can be connected to the rectifier circuit 53 side. As shown in FIGS. 2 and 4, the circuit configuration in which the load resistor 56 is connected to the output side of the output cutoff switch 54 is such that the output cutoff switch 54 is turned on and the output cutoff switch 54 is turned on when the battery 45 is not charged. A load resistor 56 is connected to the output side of the rectifier circuit 53.
図2に示す電池充電器50は、整流回路53から出力される電力を直接に電池45に供給して電池45を充電している。また、図3と図4に示す電池内蔵機器40は、内蔵する電池充電器70の出力である出力端子71と電池45との間に充電制御回路44を備えており、この充電制御回路44が電池充電器70から出力される電力で電池45を充電している。充電制御回路44は、電池45の満充電を検出して充電を停止する。リチウムイオン電池である電池45を充電する充電制御回路44は、定電圧・定電流充電して電池45を満充電する。ニッケル水素電池の電池を充電する充電制御回路は、定電流充電して電池を満充電する。
The battery charger 50 shown in FIG. 2 charges the battery 45 by supplying power output from the rectifier circuit 53 directly to the battery 45. The battery built-in device 40 shown in FIGS. 3 and 4 includes a charge control circuit 44 between the output terminal 71 that is the output of the built-in battery charger 70 and the battery 45, and the charge control circuit 44 is The battery 45 is charged with the power output from the battery charger 70. The charge control circuit 44 detects full charge of the battery 45 and stops charging. The charge control circuit 44 that charges the battery 45, which is a lithium ion battery, fully charges the battery 45 by constant voltage / constant current charging. A charge control circuit for charging a nickel metal hydride battery is charged at a constant current to fully charge the battery.
さらに、図3と図4に示す電池内蔵機器40は、商用電力である交流(AC100V)を直流(たとえばDC5V)に変換するアダプター80を接続して、アダプター80から供給される電力で電池45を充電できる構造としている。図に示す電池内蔵機器40は、電池45の入力側であって、電池充電器70の出力端子71に接続される正負の入力ライン48に、アダプター80を接続する電源端子47を接続している。この電池内蔵機器40は、充電台10を介して電池45を充電しない時、すなわち、無接点による電池充電器70を使用しないときに、電源端子47にアダプター80を接続して、アダプター80から供給される電力を充電制御回路44に供給して電池45を充電することができる。
Further, the battery built-in device 40 shown in FIGS. 3 and 4 is connected to an adapter 80 that converts commercial power (AC 100 V) into direct current (for example, DC 5 V), and the battery 45 is supplied with power supplied from the adapter 80. It has a structure that can be charged. The battery built-in device 40 shown in the figure is connected to a power supply terminal 47 for connecting an adapter 80 to a positive / negative input line 48 connected to an output terminal 71 of the battery charger 70 on the input side of the battery 45. . The battery built-in device 40 is supplied from the adapter 80 by connecting the adapter 80 to the power terminal 47 when the battery 45 is not charged via the charging stand 10, that is, when the non-contact battery charger 70 is not used. The supplied electric power can be supplied to the charge control circuit 44 to charge the battery 45.
変調回路61は、充電している電池45の電圧、充電電流、電池温度、シリアル番号、電池45の充電を許容する許容充電電流値、電池45の充電をコントロールする許容温度、電池充電器70の出力電圧または出力電流等の情報や、出力増加の指示信号、出力低下の指示信号、出力停止の指示信号等で、受電コイル51のインピーダンスを変化させる。すなわち、変調回路61は、伝送する情報や信号で受電コイル51の負荷インピーダンスを変化させる。充電台10は、変調回路61で変化される受電コイル51の負荷インピーダンスの変化を送電コイル11を介して検出して情報や信号を検出する検出回路17を備えている。
The modulation circuit 61 includes a voltage of the battery 45 being charged, a charging current, a battery temperature, a serial number, an allowable charging current value that allows charging of the battery 45, an allowable temperature that controls charging of the battery 45, and the battery charger 70. The impedance of the power receiving coil 51 is changed by information such as output voltage or output current, an output increase instruction signal, an output decrease instruction signal, an output stop instruction signal, or the like. That is, the modulation circuit 61 changes the load impedance of the power receiving coil 51 with information or signals to be transmitted. The charging stand 10 includes a detection circuit 17 that detects a change in the load impedance of the power receiving coil 51 that is changed by the modulation circuit 61 via the power transmission coil 11 to detect information and signals.
変調回路61は、受電コイル51と並列に接続している変調用コンデンサー63に半導体スイッチング素子の変調スイッチ64を直列に接続している負荷インピーダンス変化回路62と、この負荷インピーダンス変化回路62の変調スイッチ64を情報や信号でオンオフに切り換えるコントロール回路65とを備えている。コントロール回路65は、情報や信号によって変調スイッチ64をオンオフに切り換えて、情報や信号を充電台10に伝送する。コントロール回路65は、充電している電池45の電圧、充電している電流、電池温度、電池のシリアル番号、電池の充電電流を特定する許容充電電流、電池の充電をコントロールする許容温度等の電池情報や、電池充電器70から出力される出力電圧、出力電流等の電力供給情報や、充電台10への要求である出力増加、出力低下、出力停止等の指示信号をデジタル信号として、変調スイッチ64を制御して伝送する。
The modulation circuit 61 includes a load impedance change circuit 62 in which a modulation switch 64 of a semiconductor switching element is connected in series to a modulation capacitor 63 connected in parallel with the power receiving coil 51, and a modulation switch of the load impedance change circuit 62. And a control circuit 65 for switching 64 on and off with information and signals. The control circuit 65 switches the modulation switch 64 on and off according to information and signals, and transmits information and signals to the charging base 10. The control circuit 65 is a battery such as a voltage of the battery 45 being charged, a charging current, a battery temperature, a battery serial number, an allowable charging current for specifying the charging current of the battery, and an allowable temperature for controlling the charging of the battery. Information, power supply information such as output voltage and output current output from the battery charger 70, and instruction signals such as output increase, output decrease, and output stop, which are requests to the charging stand 10, are used as digital signals, and modulation switches 64 is controlled and transmitted.
図2に示す電池充電器50は、電池45の電池情報を検出する電池情報検出回路46を備えており、この電池情報検出回路46でもって、電池45のシリアル番号、真贋判定、電池電圧、充電電流、電池温度等の電池情報を検出して制御回路52に入力している。制御回路52は、電池情報検出回路46から入力される電池情報をコントロール回路65に入力する。
The battery charger 50 shown in FIG. 2 includes a battery information detection circuit 46 that detects battery information of the battery 45. With the battery information detection circuit 46, the serial number, authenticity determination, battery voltage, and charge of the battery 45 are provided. Battery information such as current and battery temperature is detected and input to the control circuit 52. The control circuit 52 inputs the battery information input from the battery information detection circuit 46 to the control circuit 65.
また、電池充電器70と電池45とを電池内蔵機器40に内蔵する構造においては、図3に示すように、電池45と電池情報検出回路46を備える電池パック41として電池内蔵機器40に内蔵し、あるいは、図4に示すように、電池内蔵機器40が電池45の電池情報を検出する電池情報検出回路46を内蔵する。これらの電池内蔵機器40は、電池情報検出回路46で検出される電池情報を充電制御回路44に入力して電池45の充電を制御する。さらに、図3と図4に示す電池充電器70は、電池充電器70から出力されて充電制御回路44に供給される電力の情報を検出する電力供給情報検出回路72を備えている。この電力供給情報検出回路72は、電池充電器70の出力側であって、図3においては、出力遮断スイッチ54と出力端子71との間に設けており、図4においては、出力遮断スイッチ54と負荷抵抗56との接続点と出力端子71との間に設けている。この電力供給情報検出回路72は、電池充電器70からの出力電圧や出力電流等の電力供給情報を検出して制御回路52に入力する。制御回路52は、電力供給情報検出回路72から入力される電力供給情報をコントロール回路65に入力する。
Further, in the structure in which the battery charger 70 and the battery 45 are built in the battery built-in device 40, as shown in FIG. 3, the battery pack 41 including the battery 45 and the battery information detection circuit 46 is built in the battery built-in device 40. Alternatively, as shown in FIG. 4, the battery built-in device 40 includes a battery information detection circuit 46 that detects battery information of the battery 45. These battery built-in devices 40 control the charging of the battery 45 by inputting the battery information detected by the battery information detection circuit 46 to the charge control circuit 44. Further, the battery charger 70 shown in FIGS. 3 and 4 includes a power supply information detection circuit 72 that detects information on the power output from the battery charger 70 and supplied to the charge control circuit 44. The power supply information detection circuit 72 is provided on the output side of the battery charger 70, and is provided between the output cutoff switch 54 and the output terminal 71 in FIG. 3, and in FIG. Is provided between the connection point of the load resistor 56 and the output terminal 71. The power supply information detection circuit 72 detects power supply information such as the output voltage and output current from the battery charger 70 and inputs the power supply information to the control circuit 52. The control circuit 52 inputs the power supply information input from the power supply information detection circuit 72 to the control circuit 65.
コントロール回路65は、所定の周期で繰り返し、すなわち、情報や信号を伝送する伝送タイミングと、情報や信号を伝送しない非伝送タイミングとを所定の周期で繰り返して、情報や信号を伝送する。この周期は、たとえば0.1sec~5sec、好ましくは0.1sec~1秒に設定される。電池45を充電する状態では、電池45の残容量、電圧、電流、温度、さらには、電池充電器70の出力電圧や出力電流などが変化するので、これ等の情報は、前述の周期で繰り返し伝送するが、電池のシリアル番号、電池の充電電流を特定する許容充電電流、電池の充電をコントロールする許容温度等の電池情報は、充電を開始する最初にのみ伝送して、その後に繰り返し伝送する必要はない。
The control circuit 65 repeats a predetermined cycle, that is, transmits information and signals by repeating a transmission timing for transmitting information and signals and a non-transmission timing for not transmitting information and signals at a predetermined cycle. This period is set to, for example, 0.1 sec to 5 sec, preferably 0.1 sec to 1 sec. In the state where the battery 45 is charged, the remaining capacity, voltage, current, temperature, and further the output voltage and output current of the battery charger 70 change, so that such information is repeated at the above-mentioned cycle. Battery information such as battery serial number, allowable charging current that specifies battery charging current, and allowable temperature that controls battery charging, is transmitted only at the beginning of charging, and then repeatedly transmitted There is no need.
変調回路61は、伝送タイミングにおいては、情報や信号を示すデジタル信号で変調スイッチ64をオンオフに切り換えて、受電コイル51の並列容量性を変調して情報や信号を伝送する。たとえば、変調回路61に設けているコントロール回路65は、1000bpsのスピードで変調スイッチ64をオンオフ制御して、情報や信号を伝送する。ただし、コントロール回路65は、500bps~5000bpsで情報や信号を伝送することもできる。伝送タイミングにおいて1000bpsで情報や信号を伝送した後、非伝送タイミングにおいては、情報や信号の伝送を停止して電池を正常な状態で充電する。伝送タイミングにおいて、変調スイッチ64がオンオフに切り換えられる。
At the transmission timing, the modulation circuit 61 switches the modulation switch 64 on and off with a digital signal indicating information and signals, and modulates the parallel capacitance of the power receiving coil 51 to transmit the information and signals. For example, the control circuit 65 provided in the modulation circuit 61 controls on / off of the modulation switch 64 at a speed of 1000 bps to transmit information and signals. However, the control circuit 65 can also transmit information and signals at 500 bps to 5000 bps. After information and signals are transmitted at 1000 bps at the transmission timing, transmission of information and signals is stopped and the battery is charged in a normal state at non-transmission timing. At the transmission timing, the modulation switch 64 is switched on and off.
情報や信号を伝送するために、受電コイル51に変調用コンデンサー63が接続される。変調用コンデンサー63は、受電コイル51に対して並列に接続されることから、送電コイル11から受電コイル51に電力搬送する効率を設計された最適状態よりも若干だが低下させる。ただ、伝送タイミングが非伝送タイミングに対して短い時間であり、また、この伝送タイミングにおいても変調用コンデンサー63が受電コイル51に接続されるタイミングは非常に短いので、受電コイル51に変調用コンデンサー63を接続する状態で電力搬送の効率が低下しても、トータル時間では、電力搬送の効率低下はほとんど無視できる程度にできる。
In order to transmit information and signals, a modulation capacitor 63 is connected to the power receiving coil 51. Since the modulation capacitor 63 is connected in parallel to the power reception coil 51, the efficiency of power transfer from the power transmission coil 11 to the power reception coil 51 is slightly reduced from the designed optimum state. However, the transmission timing is shorter than the non-transmission timing, and the timing at which the modulation capacitor 63 is connected to the power receiving coil 51 is very short even at this transmission timing. Even if the power transfer efficiency is reduced in a state where the power is connected, the reduction in power transfer efficiency can be almost negligible in the total time.
充電台10は、図1ないし図4に示すように、送電コイル11と、この送電コイル11に交流電力を供給する交流電源12と、電池充電器50、70から伝送される情報や信号を検出する検出回路17とを備えている。
As shown in FIGS. 1 to 4, the charging stand 10 detects information and signals transmitted from the power transmission coil 11, the AC power supply 12 that supplies AC power to the power transmission coil 11, and the battery chargers 50 and 70. And a detection circuit 17 for performing the above operation.
送電コイル11は、上面プレート21と平行な面で渦巻き状に巻かれて、上面プレート21の上方に交流磁束を放射する。この送電コイル11は、上面プレート21に直交する交流磁束を上面プレート21の上方に放射する。送電コイル11は、交流電源12から交流電力が供給されて、上面プレート21の上方に交流磁束を放射する。
The power transmission coil 11 is wound in a spiral shape on a surface parallel to the upper surface plate 21 and radiates an alternating magnetic flux above the upper surface plate 21. The power transmission coil 11 radiates an alternating magnetic flux orthogonal to the upper surface plate 21 above the upper surface plate 21. The power transmission coil 11 is supplied with AC power from the AC power source 12 and radiates AC magnetic flux above the upper surface plate 21.
交流電源12は、たとえば、20kHz~数MHzの高周波電力を送電コイル11に供給する。交流電源12は、検出回路17に制御されて、送電コイル11に出力する交流電力をコントロールする。
The AC power supply 12 supplies, for example, high frequency power of 20 kHz to several MHz to the power transmission coil 11. The AC power supply 12 is controlled by the detection circuit 17 and controls the AC power output to the power transmission coil 11.
検出回路17は、送電コイル11の電圧レベル変化又は/及び電流レベル変化から、受電コイル51のインピーダンス変化を検出し、インピーダンス変化から情報や信号を検出する。受電コイル51のインピーダンスが変化すると、送電コイル11が受電コイル51に電磁結合していることから、送電コイル11の電圧レベル又は/及び電流レベルが変化する。送電コイル11の電圧レベル又は/及び電流レベルは、変調スイッチ64のオンオフに同期して変化するので、送電コイル11の電圧レベル変化又は/及び電流レベル変化から変調スイッチ64のオンオフを検出できる。変調回路61は、情報や信号を示すデジタル信号で変調スイッチ64をオンオフに切り換えているので、検出回路17が変調スイッチ64のオンオフを検出することで、情報や信号を示すデジタル信号を検出し、検出されるデジタル信号から、充電している電池の電圧、電流、温度などを検出することができる。
The detection circuit 17 detects the impedance change of the power receiving coil 51 from the voltage level change or / and the current level change of the power transmission coil 11, and detects information and signals from the impedance change. When the impedance of the power receiving coil 51 changes, the power transmission coil 11 is electromagnetically coupled to the power receiving coil 51, so that the voltage level and / or current level of the power transmission coil 11 changes. Since the voltage level and / or current level of the power transmission coil 11 changes in synchronization with the on / off of the modulation switch 64, the on / off state of the modulation switch 64 can be detected from the voltage level change or / and current level change of the power transmission coil 11. Since the modulation circuit 61 switches the modulation switch 64 on and off with a digital signal indicating information or a signal, the detection circuit 17 detects the digital signal indicating the information or signal by detecting the on / off of the modulation switch 64. From the detected digital signal, the voltage, current, temperature, etc. of the battery being charged can be detected.
ただし、検出回路17は、電流の電圧に対する位相変化、あるいは伝送効率の変化等の変化値のいずれかから、情報や信号を検出することもできる。受電コイル51のインピーダンス変化によって、送電コイル11のこれらの特性が変化するからである。
However, the detection circuit 17 can also detect information and signals from either a phase change with respect to a current voltage or a change value such as a change in transmission efficiency. This is because these characteristics of the power transmission coil 11 change due to the impedance change of the power reception coil 51.
ここで、図2に示す電池充電器50は、電池45の入力側に充電制御回路を備えていないが、この電池充電器50は、以下のようにして電池45の充電を制御する。
図2の電池充電器50が、リチウムイオン電池である電池45を充電する場合においては、定電圧・定電流充電する。この電池充電器50は、電池情報検出回路46から制御回路52に入力される電圧、電流等の電池情報により、例えば、最大4.2Vで充電する場合、電池電圧が4.2V以下のときは所定の定電流となるように、変調回路61により、出力増加あるいは低下の指示信号を充電台10に伝送し、充電台10は、出力を増加あるいは低下する。また、電池電圧が4.2Vとなったときは、変調回路61により、出力低下あるいは増加の指示信号を充電台10に伝送し、充電台10は、出力を低下あるいは増加して、電池電圧が4.2Vを維持できるように制御する。 Here, thebattery charger 50 shown in FIG. 2 does not include a charge control circuit on the input side of the battery 45, but this battery charger 50 controls the charging of the battery 45 as follows.
When thebattery charger 50 of FIG. 2 charges the battery 45 that is a lithium ion battery, the battery charger 50 performs constant voltage / constant current charging. When the battery charger 50 is charged at a maximum voltage of 4.2 V, for example, by battery information such as voltage and current input from the battery information detection circuit 46 to the control circuit 52, when the battery voltage is 4.2 V or less, The modulation circuit 61 transmits an output increase or decrease instruction signal to the charging base 10 so that the predetermined constant current is obtained, and the charging base 10 increases or decreases the output. When the battery voltage becomes 4.2 V, the modulation circuit 61 transmits an instruction signal for decreasing or increasing the output to the charging base 10, and the charging base 10 decreases or increases the output so that the battery voltage is reduced. Control so that 4.2V can be maintained.
図2の電池充電器50が、リチウムイオン電池である電池45を充電する場合においては、定電圧・定電流充電する。この電池充電器50は、電池情報検出回路46から制御回路52に入力される電圧、電流等の電池情報により、例えば、最大4.2Vで充電する場合、電池電圧が4.2V以下のときは所定の定電流となるように、変調回路61により、出力増加あるいは低下の指示信号を充電台10に伝送し、充電台10は、出力を増加あるいは低下する。また、電池電圧が4.2Vとなったときは、変調回路61により、出力低下あるいは増加の指示信号を充電台10に伝送し、充電台10は、出力を低下あるいは増加して、電池電圧が4.2Vを維持できるように制御する。 Here, the
When the
また、図3と図4の電池内蔵機器40においては、電池45の定電圧・定電流充電を制御する充電制御回路44を備えているので、無接点の電池充電器70からの出力が、アダプター80からの入力と同等の出力(たとえばDC5V)となるように制御する。この電池充電器70は、電力供給情報検出回路72から制御回路52に入力される電池充電器70の出力電圧や出力電流等の電力供給情報を変調回路61によって充電台10に伝送し、あるいは、電力供給情報検出回路72から制御回路52に入力される電池充電器70の出力がアダプター80の出力と同等となるように、例えば出力電圧が5V未満のときには出力増加、出力電圧5Vより大きいときは出力低下の指示信号を充電台10に伝送する。
3 and 4 includes a charging control circuit 44 that controls constant voltage / constant current charging of the battery 45, so that the output from the non-contact battery charger 70 is an adapter. The output is controlled to be equivalent to the input from 80 (for example, DC5V). The battery charger 70 transmits power supply information such as output voltage and output current of the battery charger 70 input from the power supply information detection circuit 72 to the control circuit 52 to the charging base 10 by the modulation circuit 61, or For example, when the output voltage is less than 5V, the output increases, and when the output voltage is greater than 5V, the output of the battery charger 70 inputted from the power supply information detection circuit 72 to the control circuit 52 is equivalent to the output of the adapter 80. An instruction signal for lowering the output is transmitted to the charging stand 10.
図に示す充電台10は、電池充電器50、70を上面プレート21の上に配置して電池45を充電する。電池45を効率よく充電するために、充電台10は、図示しないが、送電コイル11を電池充電器50、70の受電コイル51に接近させる機構を内蔵している。充電台10は、受電コイル51の位置を検出するために位置検出制御器14を備えている。
The charging stand 10 shown in the figure charges the battery 45 by placing the battery chargers 50 and 70 on the top plate 21. In order to charge the battery 45 efficiently, the charging stand 10 incorporates a mechanism for bringing the power transmission coil 11 close to the power reception coil 51 of the battery chargers 50 and 70, although not shown. The charging stand 10 includes a position detection controller 14 for detecting the position of the power receiving coil 51.
図2と図3は、充電台10と、この充電台10にセットされる電池充電器50、70の回路図を示している。この充電台10は、受電コイル51の位置を検出する位置検出制御器14を備える。図5は、位置検出制御器14のブロック図を示している。この位置検出制御器14は、充電台10のケース20の上面プレート21の内側に固定している複数の位置検出コイル30と、この位置検出コイル30に位置検出信号を供給する検出信号発生回路31と、検出信号発生回路31から位置検出コイル30に供給される位置検出信号に励起されて受電コイル51から位置検出コイル30に出力されるエコー信号を受信する受信回路32と、この受信回路32が受信するエコー信号から受電コイル51の位置を判別する識別回路33とを備えている。さらに、図の位置検出制御器14は、識別回路33で制御されて、複数の位置検出コイル30を順番に切り換える切換回路34と、検出信号発生回路31から受信回路32に入力される位置検出信号の信号レベルを制限して受信回路32に入力するリミッター回路35とを備えている。
2 and 3 show circuit diagrams of the charging stand 10 and the battery chargers 50 and 70 set on the charging stand 10. The charging stand 10 includes a position detection controller 14 that detects the position of the power receiving coil 51. FIG. 5 shows a block diagram of the position detection controller 14. The position detection controller 14 includes a plurality of position detection coils 30 fixed inside the upper surface plate 21 of the case 20 of the charging base 10, and a detection signal generation circuit 31 that supplies a position detection signal to the position detection coil 30. A reception circuit 32 that receives an echo signal that is excited by the position detection signal supplied from the detection signal generation circuit 31 to the position detection coil 30 and is output from the power reception coil 51 to the position detection coil 30; And an identification circuit 33 for determining the position of the power receiving coil 51 from the received echo signal. Further, the position detection controller 14 shown in the figure is controlled by the identification circuit 33 to switch the plurality of position detection coils 30 in order, and the position detection signal input from the detection signal generation circuit 31 to the reception circuit 32. And a limiter circuit 35 that inputs the signal level to the receiving circuit 32.
以上の位置検出制御器14は、以下のようにして受電コイル51の位置を検出する。
(1)検出信号発生回路31がパルス信号の位置検出信号を位置検出コイル30に出力する。
(2)位置検出コイル30に供給される位置検出信号のパルス信号に励起されて、図6に示すように、受電コイル51から位置検出コイル30にエコー信号が出力される。
(3)受信回路32にエコー信号が受信される。
(4)複数の位置検出コイル30を切換回路34で順番に切り換えて各々の位置検出コイル30からパルス信号の位置検出信号を出力し、各々の位置検出コイル30でもってエコー信号を受信する。
(5)識別回路33は、各々の位置検出コイル30に誘導されるエコー信号のレベルを検出して、受電コイル51の位置を検出する。受電コイル51に接近する位置検出コイル30に誘導されるエコー信号はレベルが高く、受電コイル51が位置検出コイル30から離れるにしたがってエコー信号のレベルが低くなるので、識別回路33はエコー信号のレベルから受電コイル51の位置を検出する。図5の位置検出制御器14は、X軸方向とY軸方向に位置検出コイル30を配設して、受電コイル51のX軸方向の位置をX軸検出コイル30AでY軸方向の位置をY軸検出コイル30Bで検出する。 The aboveposition detection controller 14 detects the position of the power receiving coil 51 as follows.
(1) The detectionsignal generation circuit 31 outputs a position detection signal of the pulse signal to the position detection coil 30.
(2) Excited by the pulse signal of the position detection signal supplied to theposition detection coil 30, an echo signal is output from the power receiving coil 51 to the position detection coil 30, as shown in FIG.
(3) The echo signal is received by the receivingcircuit 32.
(4) A plurality of position detection coils 30 are sequentially switched by the switchingcircuit 34 to output a position detection signal of a pulse signal from each position detection coil 30, and an echo signal is received by each position detection coil 30.
(5) Theidentification circuit 33 detects the level of the echo signal induced in each position detection coil 30 to detect the position of the power receiving coil 51. The echo signal induced in the position detection coil 30 approaching the power receiving coil 51 has a high level, and the level of the echo signal decreases as the power receiving coil 51 moves away from the position detection coil 30, so that the identification circuit 33 determines the level of the echo signal. From this, the position of the power receiving coil 51 is detected. The position detection controller 14 in FIG. 5 is provided with position detection coils 30 in the X-axis direction and the Y-axis direction, and the position of the power receiving coil 51 in the X-axis direction is determined by the X-axis detection coil 30A. It is detected by the Y-axis detection coil 30B.
(1)検出信号発生回路31がパルス信号の位置検出信号を位置検出コイル30に出力する。
(2)位置検出コイル30に供給される位置検出信号のパルス信号に励起されて、図6に示すように、受電コイル51から位置検出コイル30にエコー信号が出力される。
(3)受信回路32にエコー信号が受信される。
(4)複数の位置検出コイル30を切換回路34で順番に切り換えて各々の位置検出コイル30からパルス信号の位置検出信号を出力し、各々の位置検出コイル30でもってエコー信号を受信する。
(5)識別回路33は、各々の位置検出コイル30に誘導されるエコー信号のレベルを検出して、受電コイル51の位置を検出する。受電コイル51に接近する位置検出コイル30に誘導されるエコー信号はレベルが高く、受電コイル51が位置検出コイル30から離れるにしたがってエコー信号のレベルが低くなるので、識別回路33はエコー信号のレベルから受電コイル51の位置を検出する。図5の位置検出制御器14は、X軸方向とY軸方向に位置検出コイル30を配設して、受電コイル51のX軸方向の位置をX軸検出コイル30AでY軸方向の位置をY軸検出コイル30Bで検出する。 The above
(1) The detection
(2) Excited by the pulse signal of the position detection signal supplied to the
(3) The echo signal is received by the receiving
(4) A plurality of position detection coils 30 are sequentially switched by the switching
(5) The
以上の位置検出制御器14は、受電コイル51の位置を検出するタイミングにおいて、図2と図3の回路図に示すように、受電コイル51と並列に変調用コンデンサー63を接続して、並列共振回路59を構成し、パルスによるトリガーに共振してエコー信号を発生させる。ただ、受電コイル51と並列に接続している変調用コンデンサー63は、受電コイル51に誘導される電力で電池45を充電するときの電力効率をわずかだが低くする。
The above-described position detection controller 14 connects the modulation capacitor 63 in parallel with the power receiving coil 51 at the timing of detecting the position of the power receiving coil 51, as shown in the circuit diagrams of FIGS. A circuit 59 is configured to resonate with a pulse trigger and generate an echo signal. However, the modulation capacitor 63 connected in parallel with the power receiving coil 51 slightly lowers the power efficiency when charging the battery 45 with the power induced in the power receiving coil 51.
図2ないし図4の電池充電器50、70は、受電コイル51に直列に接続している直列コンデンサー55と、受電コイル51と並列に接続される変調用コンデンサー63と、直列コンデンサー55及び変調用コンデンサー63と受電コイル51との接続状態を切り換える変調スイッチ64とを備えている。電池充電器50、70は、位置検出制御器14が位置検出信号を出力する状態にあっては、変調スイッチ64によって、受電コイル51に変調用コンデンサー63を接続し、送電コイル11から受電コイル51に電力搬送する状態にあっては、受電コイル51と変調用コンデンサー63とを非接続状態として、直列コンデンサー55を介して受電コイル51の交流を整流回路53に出力する。
The battery chargers 50 and 70 in FIGS. 2 to 4 include a series capacitor 55 connected in series to the power receiving coil 51, a modulation capacitor 63 connected in parallel to the power receiving coil 51, a series capacitor 55, and a modulation capacitor. A modulation switch 64 for switching the connection state between the capacitor 63 and the power receiving coil 51 is provided. In the battery chargers 50 and 70, when the position detection controller 14 outputs a position detection signal, the modulation capacitor 64 connects the modulation capacitor 63 to the power reception coil 51 and the power transmission coil 11 to the power reception coil 51. In the state where the power is transferred to the power supply circuit, the power receiving coil 51 and the modulation capacitor 63 are disconnected from each other, and the alternating current of the power receiving coil 51 is output to the rectifier circuit 53 via the series capacitor 55.
直列コンデンサー55は、図に示すように、変調用コンデンサー63と受電コイル51との間に接続され、あるいは図示しないが、変調用コンデンサーよりも整流回路側に接続することもできる。変調用コンデンサー63と受電コイル51との間に接続している直列コンデンサー55は、変調スイッチ74をオンに切り換える状態で、変調用コンデンサー63と直列に接続される。したがって、受電コイル51とで並列共振回路59を実現するコンデンサーの静電容量は、直列コンデンサー55とふたつの変調用コンデンサー63を直列接続している合成容量となる。
As shown in the figure, the series capacitor 55 is connected between the modulation capacitor 63 and the power receiving coil 51, or although not shown, it can also be connected to the rectifier circuit side than the modulation capacitor. The series capacitor 55 connected between the modulation capacitor 63 and the power receiving coil 51 is connected in series with the modulation capacitor 63 with the modulation switch 74 switched on. Therefore, the capacitance of the capacitor that realizes the parallel resonance circuit 59 with the power receiving coil 51 is a combined capacitance in which the series capacitor 55 and the two modulation capacitors 63 are connected in series.
以上の電池充電器50、70と充電台10は、常時は並列共振回路59を構成して受電コイル51の位置を正確に検出しながら、充電時はこの変調用コンデンサー63を切り離し電力効率を高くして電池45を効率よく充電できる特徴がある。エコー信号を発生できるのは、受電コイル51の位置を検出する状態においては、受電コイル51と並列に変調用コンデンサー63を接続するからである。また、電力効率を高くして、電池45を効率よく充電できるのは、電池45を充電する状態にあっては、受電コイル51と並列にコンデンサーを接続することなく、受電コイル51と直列にコンデンサー55を接続して、受電コイル51の電力を整流回路53に出力できるからである。受電コイル51に直列コンデンサー55を接続する回路構成は、受電コイルに並列コンデンサーを接続している伝送電流の少ない回路構成より電力効率を向上して充電中のコイルや電池の発熱を抑え、電池45を効率よく速やかに、しかも安全に充電できる。
The battery chargers 50 and 70 and the charging stand 10 described above normally constitute a parallel resonance circuit 59 to accurately detect the position of the power receiving coil 51, and at the time of charging, the modulation capacitor 63 is disconnected to increase power efficiency. Thus, the battery 45 can be efficiently charged. The echo signal can be generated because the modulation capacitor 63 is connected in parallel with the power receiving coil 51 in a state where the position of the power receiving coil 51 is detected. In addition, the battery 45 can be charged efficiently by increasing the power efficiency. When the battery 45 is being charged, the capacitor is connected in series with the power receiving coil 51 without connecting the capacitor in parallel with the power receiving coil 51. This is because the power of the power receiving coil 51 can be output to the rectifier circuit 53 by connecting 55. The circuit configuration in which the series capacitor 55 is connected to the power receiving coil 51 improves the power efficiency and suppresses the heat generation of the coil and the battery during charging, as compared with the circuit configuration with a small transmission current connected to the power receiving coil. Can be charged efficiently, promptly and safely.
以上の電池充電器50は、変調回路61として設けている変調用コンデンサー63と変調スイッチ64とコントロール回路65を位置検出制御器14に併用しており、位置検出制御器14で受電コイル51の位置を検出するときに変調スイッチ64をオンに切り換えている。このため、この電池充電器50は、製造コストを高くすることなく、理想的な状態で情報や信号を充電台10に伝送しながら、受電コイル51の位置を検出できる。
The battery charger 50 described above uses the modulation capacitor 63, the modulation switch 64, and the control circuit 65 provided as the modulation circuit 61 in combination with the position detection controller 14, and the position detection controller 14 uses the position of the power receiving coil 51. When detecting the modulation switch 64, the modulation switch 64 is turned on. For this reason, the battery charger 50 can detect the position of the power receiving coil 51 while transmitting information and signals to the charging stand 10 in an ideal state without increasing the manufacturing cost.
制御回路52は、受電コイル51の位置を検出する状態において、変調スイッチ64をオンとして、受電コイル51に変調用コンデンサー63を接続する。変調用コンデンサー63を並列に接続している受電コイル51は、位置検出コイル30から出力される位置検出信号に励起されて高レベルのエコー信号を出力する。
In the state where the position of the power receiving coil 51 is detected, the control circuit 52 turns on the modulation switch 64 and connects the modulation capacitor 63 to the power receiving coil 51. The power receiving coil 51 connected in parallel with the modulation capacitor 63 is excited by the position detection signal output from the position detection coil 30 and outputs a high level echo signal.
なお、上記のような波形のエコー信号が検出されたとき、充電台の識別回路33は、電池充電器50の受電コイル51が搭載されたと認識、識別することができる。エコー信号の波形とは異なる波形が検出、識別されるときは、電池充電器50の受電コイル51以外(例えば、金属異物)のものが搭載されたとして、電力供給を停止することができる。また、エコー信号の波形が検出、識別されないときは、電池充電器50の受電コイル51が搭載されていないとして、電力供給をしない。
When the echo signal having the waveform as described above is detected, the charging base identification circuit 33 can recognize and identify that the power receiving coil 51 of the battery charger 50 is mounted. When a waveform different from the waveform of the echo signal is detected and identified, it is possible to stop the power supply assuming that something other than the power receiving coil 51 of the battery charger 50 (for example, a metal foreign object) is mounted. Further, when the waveform of the echo signal is not detected or identified, the power receiving coil 51 of the battery charger 50 is not mounted and power is not supplied.
受電コイル51の位置が検出されて、送電コイル11を受電コイル51に接近させた後、コントロール回路65は変調スイッチ64をオフに切り換えて、変調用コンデンサー63を受電コイル51に接続しない状態とする。すなわち、制御回路52は、送電コイル11から受電コイル51に電力搬送する状態にあっては、コントロール回路65で変調スイッチ64をオフとして変調用コンデンサー63を受電コイル51から切り離し、受電コイル51に誘導される交流を、直列コンデンサー55を介して整流回路53に効率よく出力する。
After the position of the power receiving coil 51 is detected and the power transmitting coil 11 is brought close to the power receiving coil 51, the control circuit 65 switches off the modulation switch 64 so that the modulation capacitor 63 is not connected to the power receiving coil 51. . That is, in the state where power is transferred from the power transmission coil 11 to the power reception coil 51, the control circuit 52 turns off the modulation switch 64 by the control circuit 65 to disconnect the modulation capacitor 63 from the power reception coil 51 and induces it to the power reception coil 51. The alternating current is efficiently output to the rectifier circuit 53 via the series capacitor 55.
以上の位置検出回路は、パルス信号の位置検出信号に対する受電コイル51からのエコー信号の大きさで受電コイルの位置を検出するが、位置検出回路は、図示しないが、送電コイルのインダクタンスやインピーダンスの変化で電池充電器の受電コイルの位置を検出することもできる。
The above position detection circuit detects the position of the power receiving coil by the magnitude of the echo signal from the power receiving coil 51 with respect to the position detection signal of the pulse signal, but the position detection circuit is not shown, but the inductance and impedance of the power transmission coil are not shown. The position of the receiving coil of the battery charger can also be detected by the change.
以上の充電台10は、送電コイル11を上面プレート21の内面に沿って移動させる移動機構13を備えており、この移動機構13を位置検出制御器14で制御して、送電コイル11を電池充電器50の受電コイル51に接近させる。位置検出制御器14は、識別回路33が、受電コイル51のX軸方向とY軸方向の位置を検出すると、この識別回路33からの位置信号でもって移動機構13を制御して、送電コイル11を受電コイル51の位置に移動させる。
The above charging stand 10 includes a moving mechanism 13 that moves the power transmission coil 11 along the inner surface of the upper surface plate 21. The position detection controller 14 controls the moving mechanism 13 to charge the power transmission coil 11 with a battery. The power receiving coil 51 of the container 50 is moved closer. When the identification circuit 33 detects the position of the power receiving coil 51 in the X-axis direction and the Y-axis direction, the position detection controller 14 controls the moving mechanism 13 with the position signal from the identification circuit 33 to transmit the power transmission coil 11. Is moved to the position of the power receiving coil 51.
この充電台10は、以下の動作で電池充電器50に電力搬送して電池45を充電する。
(1)ケース20の上面プレート21に電池充電器50が配置されると、この電池充電器50の位置が位置検出制御器14で検出される。
(2)電池充電器50の位置を検出した位置検出制御器14は、移動機構13を制御して、移動機構13でもって送電コイル11を上面プレート21に沿って移動させて電池充電器50の受電コイル51に接近させる。
(3)受電コイル51に接近する送電コイル11は、受電コイル51に電磁結合されて受電コイル51に交流電力を搬送する。
(4)電池充電器50は、受電コイル51の交流電力を整流して直流に変換し、この直流で電池45を充電する。 The charging stand 10 carries power to thebattery charger 50 and charges the battery 45 by the following operation.
(1) When thebattery charger 50 is disposed on the upper surface plate 21 of the case 20, the position of the battery charger 50 is detected by the position detection controller 14.
(2) Theposition detection controller 14 that has detected the position of the battery charger 50 controls the moving mechanism 13 to move the power transmission coil 11 along the upper surface plate 21 with the moving mechanism 13, so that the battery charger 50 Approach the power receiving coil 51.
(3) Thepower transmission coil 11 approaching the power reception coil 51 is electromagnetically coupled to the power reception coil 51 and carries AC power to the power reception coil 51.
(4) Thebattery charger 50 rectifies the AC power of the power receiving coil 51 and converts it to DC, and charges the battery 45 with this DC.
(1)ケース20の上面プレート21に電池充電器50が配置されると、この電池充電器50の位置が位置検出制御器14で検出される。
(2)電池充電器50の位置を検出した位置検出制御器14は、移動機構13を制御して、移動機構13でもって送電コイル11を上面プレート21に沿って移動させて電池充電器50の受電コイル51に接近させる。
(3)受電コイル51に接近する送電コイル11は、受電コイル51に電磁結合されて受電コイル51に交流電力を搬送する。
(4)電池充電器50は、受電コイル51の交流電力を整流して直流に変換し、この直流で電池45を充電する。 The charging stand 10 carries power to the
(1) When the
(2) The
(3) The
(4) The
充電台10は、位置検出制御器14で移動機構13を制御して送電コイル11を受電コイル51に接近させた状態で、交流電源12で送電コイル11に交流電力を供給する。送電コイル11の交流電力は受電コイル51に電力搬送されて、電池45の充電に使用される。図2と図3に示す充電台10は、電池充電器50、70から搬送される情報や信号を検出する検出回路17を内蔵している。検出回路17は、電池充電器50、70から伝送される情報や信号に基づいて、電池45を充電する電圧や電流をコントロールして電池45を充電する。電池45の満充電は、電池充電器50、70から電池情報として伝送される。したがって、検出回路17は、電池充電器50、70から伝送される電池情報で電池45の満充電を検出して送電コイル11への交流電力の供給を停止して充電を終了する。
The charging stand 10 supplies AC power to the power transmission coil 11 with the AC power supply 12 in a state where the position detection controller 14 controls the moving mechanism 13 to bring the power transmission coil 11 close to the power reception coil 51. The AC power of the power transmission coil 11 is transferred to the power reception coil 51 and used for charging the battery 45. The charging stand 10 shown in FIGS. 2 and 3 includes a detection circuit 17 that detects information and signals conveyed from the battery chargers 50 and 70. The detection circuit 17 charges the battery 45 by controlling the voltage and current for charging the battery 45 based on information and signals transmitted from the battery chargers 50 and 70. The full charge of the battery 45 is transmitted from the battery chargers 50 and 70 as battery information. Therefore, the detection circuit 17 detects the full charge of the battery 45 from the battery information transmitted from the battery chargers 50 and 70, stops the supply of AC power to the power transmission coil 11, and ends the charging.
以上の充電台は、位置検出回路と移動機構とを備え、位置検出機構で上面プレートに配置された受電コイルのX軸方向とY軸方向の位置を検出し、移動機構で送電コイルを検出された位置に移動させる。この充電台は、送電コイルを受電コイルに接近できるので、送電コイルから受電コイルに効率よく電力搬送できる。ただ、本発明は、充電台の構造を、受電コイルの位置を検出して、送電コイルを受電コイルの位置に移動させる機構に特定しない。充電台は、受電コイルの位置に送電コイルを接近させることなく、電池充電器を充電台の特定の位置に配置することで、受電コイルを送電コイルに接近させて電磁結合できる状態にできる。さらに、送電コイルを大きくして、大きな送電コイルの内側に受電コイルを配置するように、電池充電器を充電台にセットして、送電コイルと受電コイルとを電磁結合できる状態にもできる。これらの充電台は、ユーザーがセットスイッチ(図示せず)を押して、電池充電器がセットされたことを検出して、交流電源から送電コイルに交流電力を供給し、あるいは、電池充電器がセットされたことを電気的に、あるいはリミットスイッチなどで物理的に検出して、交流電源から送電コイルに電力を供給する。
The above charging stand includes a position detection circuit and a moving mechanism, and the position detecting mechanism detects the positions of the power receiving coils arranged on the top plate in the X-axis direction and the Y-axis direction, and the moving mechanism detects the power transmitting coil. Move it to the desired position. Since this charging stand can approach the power receiving coil to the power receiving coil, it can efficiently carry power from the power transmitting coil to the power receiving coil. However, the present invention does not specify the structure of the charging stand as a mechanism that detects the position of the power receiving coil and moves the power transmitting coil to the position of the power receiving coil. By placing the battery charger at a specific position on the charging base without bringing the power transmission coil close to the position of the power receiving coil, the charging base can be brought into a state where the power receiving coil can be brought close to the power transmitting coil and electromagnetically coupled. Furthermore, the power transmission coil can be enlarged, and the battery charger can be set on the charging stand so that the power reception coil is disposed inside the large power transmission coil, so that the power transmission coil and the power reception coil can be electromagnetically coupled. In these charging stands, the user presses a set switch (not shown) to detect that the battery charger is set, and supplies AC power from the AC power source to the power transmission coil, or the battery charger is set. This is electrically detected or physically detected by a limit switch or the like, and power is supplied from the AC power source to the power transmission coil.
10…充電台
11…送電コイル
12…交流電源
13…移動機構
14…位置検出制御器
17…検出回路
20…ケーシング
21…上面プレート
30…位置検出コイル 30A…X軸検出コイル
30B…Y軸検出コイル
31…検出信号発生回路
32…受信回路
33…識別回路
34…切換回路
35…リミッター回路
40…電池内蔵機器
41…電池パック
44…充電制御回路
45…電池
46…電池情報検出回路
47…電源端子
48…入力ライン
50…電池充電器
51…受電コイル
52…制御回路
53…整流回路 53A…同期整流回路
53a…FET
53b…スイッチング回路
53B…ダイオードブリッジ
54…出力遮断スイッチ
55…直列コンデンサー
56…負荷抵抗
57…ツェナーダイオード
58…負荷スイッチ
59…並列共振回路
61…変調回路
62…負荷インピーダンス変化回路
63…変調用コンデンサー
64…変調スイッチ
65…コントロール回路
70…電池充電器
71…出力端子
72…電力供給情報検出回路
80…アダプター DESCRIPTION OFSYMBOLS 10 ... Charging stand 11 ... Power transmission coil 12 ... AC power supply 13 ... Movement mechanism 14 ... Position detection controller 17 ... Detection circuit 20 ... Casing 21 ... Top plate 30 ... Position detection coil 30A ... X-axis detection coil 30B ... Y-axis detection coil DESCRIPTION OF SYMBOLS 31 ... Detection signal generation circuit 32 ... Reception circuit 33 ... Identification circuit 34 ... Switching circuit 35 ... Limiter circuit 40 ... Battery built-in apparatus 41 ... Battery pack 44 ... Charge control circuit 45 ... Battery 46 ... Battery information detection circuit 47 ... Power supply terminal 48 ... Input line 50 ... Battery charger 51 ... Receiving coil 52 ... Control circuit 53 ... Rectifier circuit 53A ... Synchronous rectifier circuit 53a ... FET
53b ...Switching circuit 53B ... Diode bridge 54 ... Output cutoff switch 55 ... Series capacitor 56 ... Load resistor 57 ... Zener diode 58 ... Load switch 59 ... Parallel resonance circuit 61 ... Modulation circuit 62 ... Load impedance change circuit 63 ... Modulation capacitor 64 ... Modulation switch 65 ... Control circuit 70 ... Battery charger 71 ... Output terminal 72 ... Power supply information detection circuit 80 ... Adapter
11…送電コイル
12…交流電源
13…移動機構
14…位置検出制御器
17…検出回路
20…ケーシング
21…上面プレート
30…位置検出コイル 30A…X軸検出コイル
30B…Y軸検出コイル
31…検出信号発生回路
32…受信回路
33…識別回路
34…切換回路
35…リミッター回路
40…電池内蔵機器
41…電池パック
44…充電制御回路
45…電池
46…電池情報検出回路
47…電源端子
48…入力ライン
50…電池充電器
51…受電コイル
52…制御回路
53…整流回路 53A…同期整流回路
53a…FET
53b…スイッチング回路
53B…ダイオードブリッジ
54…出力遮断スイッチ
55…直列コンデンサー
56…負荷抵抗
57…ツェナーダイオード
58…負荷スイッチ
59…並列共振回路
61…変調回路
62…負荷インピーダンス変化回路
63…変調用コンデンサー
64…変調スイッチ
65…コントロール回路
70…電池充電器
71…出力端子
72…電力供給情報検出回路
80…アダプター DESCRIPTION OF
53b ...
Claims (8)
- 電池(45)を充電する受電コイル(51)を備える電池充電器(50)、(70)と、この電池充電器(50)、(70)の受電コイル(51)に電磁結合して充電電力を供給する送電コイル(11)を備える充電台(10)とからなり、
前記電池充電器(50)、(70)が、受電コイル(51)に誘導される交流を整流して電池(45)を充電する直流に変換する整流回路(53)と、受電コイル(51)の負荷インピーダンスを変化させる変調でもって変調信号を充電台(10)に伝送する変調回路(61)と、前記整流回路(53)の出力側に接続される負荷抵抗(56)とを備えており、
前記電池充電器(50)、(70)は、前記整流回路(53)の出力側に負荷抵抗(56)が接続されて、前記変調回路(61)が受電コイル(51)の負荷インピーダンスを変化させて変調信号を充電台(10)に伝送するようにしてなる電池充電器と充電台。 Battery chargers (50) and (70) having a power receiving coil (51) for charging the battery (45) and the power receiving coil (51) of the battery chargers (50) and (70) are electromagnetically coupled to charge power. A charging stand (10) having a power transmission coil (11) for supplying
The battery charger (50), (70) is a rectifier circuit (53) for rectifying the alternating current induced in the power receiving coil (51) and converting the direct current to charge the battery (45), and the power receiving coil (51). A modulation circuit (61) for transmitting a modulation signal to the charging base (10) by modulation for changing the load impedance of the load, and a load resistor (56) connected to the output side of the rectifier circuit (53). ,
The battery charger (50), (70), the load resistance (56) is connected to the output side of the rectifier circuit (53), the modulation circuit (61) changes the load impedance of the power receiving coil (51) A battery charger and a charging stand configured to transmit a modulation signal to the charging stand (10). - 前記整流回路(53)が、FET(53a)をスイッチング素子とする同期整流回路(53A)である請求項1に記載される電池充電器と充電台。 The battery charger and charging stand according to claim 1, wherein the rectifier circuit (53) is a synchronous rectifier circuit (53A) having an FET (53a) as a switching element.
- 前記整流回路(53)の出力側にツェナーダイオード(57)を接続してなる請求項1又は2に記載される電池充電器と充電台。 The battery charger and charging stand according to claim 1 or 2, wherein a Zener diode (57) is connected to the output side of the rectifier circuit (53).
- 前記負荷抵抗(56)を前記整流回路(53)の出力側に接続する負荷スイッチ(58)と、前記負荷スイッチ(58)をオンオフに制御する制御回路(52)とを備えており、
前記制御回路(52)が電池(45)の非充電状態において、前記負荷スイッチ(58)をオンに切り換えて、負荷抵抗(56)を整流回路(53)の負荷側に接続する請求項1ないし3のいずれかに記載される電池充電器と充電台。 A load switch (58) for connecting the load resistor (56) to the output side of the rectifier circuit (53), and a control circuit (52) for controlling the load switch (58) on and off,
The control circuit (52) switches the load switch (58) on to connect the load resistor (56) to the load side of the rectifier circuit (53) when the battery (45) is not charged. The battery charger and charging stand described in any one of 3. - 前記変調回路(61)が、前記受電コイル(51)と並列に接続している、変調用コンデンサー(63)と変調スイッチ(64)を直列に接続してなる負荷インピーダンス変化回路(62)と、この負荷インピーダンス変化回路(62)の変調スイッチ(64)をオンオフに切り換えるコントロール回路(65)とを備えており、
前記コントロール回路(65)が前記変調スイッチ(64)をオンオフに切り換えて変調信号を充電台(10)に伝送するようにしてなる請求項1ないし4のいずれかに記載される電池充電器と充電台。 The modulation circuit (61) is connected in parallel with the power receiving coil (51), a load impedance change circuit (62) formed by connecting a modulation capacitor (63) and a modulation switch (64) in series, A control circuit (65) for switching on and off the modulation switch (64) of the load impedance change circuit (62),
The battery charger and charging according to any one of claims 1 to 4, wherein the control circuit (65) switches the modulation switch (64) on and off to transmit a modulation signal to the charging stand (10). Stand. - 前記充電台(10)が、前記変調回路(61)で変化される受電コイル(51)の負荷インピーダンスの変化を送電コイル(11)を介して検出して変調信号を検出する検出回路(17)を備える請求項1ないし5のいずれかに記載される電池充電器と充電台。 A detection circuit (17) for detecting a modulation signal by detecting, through the power transmission coil (11), a change in load impedance of the power receiving coil (51), wherein the charging base (10) is changed by the modulation circuit (61). A battery charger and a charging stand according to any one of claims 1 to 5.
- 前記変調回路(61)が充電台(10)に伝送する変調信号が、電池(45)の電圧と、充電電流と、電池温度と、シリアル番号と、電池(45)の充電電流を特定する許容充電電流と、電池(45)の充電をコントロールする許容温度と、前記電池充電器(70)の出力電圧または出力電流のいずれかを含む請求項1ないし6のいずれかに記載される電池充電器と充電台。 The modulation signal transmitted by the modulation circuit (61) to the charging base (10) includes the voltage of the battery (45), the charging current, the battery temperature, the serial number, and the tolerance for specifying the charging current of the battery (45). The battery charger according to any one of claims 1 to 6, including a charging current, an allowable temperature for controlling charging of the battery (45), and an output voltage or output current of the battery charger (70). And charging stand.
- 充電台(10)に内蔵される送電コイル(11)に電磁結合されて、前記送電コイル(11)から搬送される電力で電池(45)を充電する受電コイル(51)を備える電池充電器であって、
前記受電コイル(51)に誘導される交流を整流して電池(45)を充電する直流に変換する整流回路(53)と、受電コイル(51)の負荷インピーダンスを変化させる変調でもって変調信号を前記充電台(10)に伝送する変調回路(61)と、前記整流回路(53)の出力側に接続される負荷抵抗(56)とを備えており、
前記整流回路(53)の出力側に負荷抵抗(56)が接続されて、前記変調回路(61)が受電コイル(51)の負荷インピーダンスを変化させて変調信号を充電台(10)に伝送するようにしてなる電池充電器。 A battery charger comprising a power receiving coil (51) that is electromagnetically coupled to a power transmission coil (11) built in a charging stand (10) and charges a battery (45) with power carried from the power transmission coil (11). There,
A rectifier circuit (53) that rectifies the alternating current induced in the power receiving coil (51) and converts the direct current to charge the battery (45), and a modulation signal that modulates the load impedance of the power receiving coil (51) A modulation circuit (61) for transmitting to the charging base (10), and a load resistor (56) connected to the output side of the rectifier circuit (53),
A load resistor (56) is connected to the output side of the rectifier circuit (53), and the modulation circuit (61) changes the load impedance of the receiving coil (51) and transmits the modulation signal to the charging stand (10). Battery charger made like this.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011190970A JP2014212581A (en) | 2011-09-01 | 2011-09-01 | Battery charger and charging stand, and battery charger |
JP2011-190970 | 2011-09-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013031589A1 true WO2013031589A1 (en) | 2013-03-07 |
Family
ID=47756081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/071127 WO2013031589A1 (en) | 2011-09-01 | 2012-08-22 | Battery charger, and charging station |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014212581A (en) |
WO (1) | WO2013031589A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014180201A (en) * | 2013-03-13 | 2014-09-25 | Freescale Semiconductor Inc | Wireless charging system, devices, and methods |
CN104104156A (en) * | 2013-04-08 | 2014-10-15 | 索尼公司 | Electronic unit and power feeding system |
WO2014174783A1 (en) * | 2013-04-23 | 2014-10-30 | パナソニックIpマネジメント株式会社 | Wireless power transfer device |
CN114039396A (en) * | 2021-11-30 | 2022-02-11 | 江西意孚欧科技有限公司 | Electronic communication equipment charging protection device with protection battery |
US11522373B2 (en) | 2014-01-28 | 2022-12-06 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Terminal and battery charging control device and method thereof |
US11545843B2 (en) | 2014-01-28 | 2023-01-03 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Battery charging apparatus and battery charging protection control method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017018800A1 (en) | 2015-07-27 | 2017-02-02 | Samsung Electronics Co., Ltd. | Method for transmitting wireless power in wireless charging system including a wireless power transmitting unit and wireless power receiving unit |
KR102426688B1 (en) * | 2015-07-27 | 2022-07-29 | 삼성전자주식회사 | Method for transmitting a wireless power in wireless charge system, the wireless power transmitting unit, the wireless power receiving unit |
JP6817563B2 (en) * | 2015-12-14 | 2021-01-20 | パナソニックIpマネジメント株式会社 | Power transmission system and controller |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2161811A1 (en) * | 2008-09-05 | 2010-03-10 | Koninklijke Philips Electronics N.V. | Inductive charger and charging method |
WO2010131346A1 (en) * | 2009-05-14 | 2010-11-18 | トヨタ自動車株式会社 | Non-contact power reception device and vehicle equipped with same |
JP2010288431A (en) * | 2009-06-15 | 2010-12-24 | Sanyo Electric Co Ltd | Device housing battery and charging pad |
-
2011
- 2011-09-01 JP JP2011190970A patent/JP2014212581A/en not_active Withdrawn
-
2012
- 2012-08-22 WO PCT/JP2012/071127 patent/WO2013031589A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2161811A1 (en) * | 2008-09-05 | 2010-03-10 | Koninklijke Philips Electronics N.V. | Inductive charger and charging method |
WO2010131346A1 (en) * | 2009-05-14 | 2010-11-18 | トヨタ自動車株式会社 | Non-contact power reception device and vehicle equipped with same |
JP2010288431A (en) * | 2009-06-15 | 2010-12-24 | Sanyo Electric Co Ltd | Device housing battery and charging pad |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9667084B2 (en) | 2013-03-13 | 2017-05-30 | Nxp Usa, Inc. | Wireless charging systems, devices, and methods |
EP2779358A3 (en) * | 2013-03-13 | 2014-11-26 | Freescale Semiconductor, Inc. | Wireless charging systems, devices, and methods |
JP2014180201A (en) * | 2013-03-13 | 2014-09-25 | Freescale Semiconductor Inc | Wireless charging system, devices, and methods |
CN104104156A (en) * | 2013-04-08 | 2014-10-15 | 索尼公司 | Electronic unit and power feeding system |
CN104104156B (en) * | 2013-04-08 | 2019-06-28 | 索尼公司 | Electronic unit and feed system |
WO2014174783A1 (en) * | 2013-04-23 | 2014-10-30 | パナソニックIpマネジメント株式会社 | Wireless power transfer device |
CN105122589A (en) * | 2013-04-23 | 2015-12-02 | 松下知识产权经营株式会社 | Wireless power transfer device |
JPWO2014174783A1 (en) * | 2013-04-23 | 2017-02-23 | パナソニックIpマネジメント株式会社 | Wireless power transmission device |
US10020794B2 (en) | 2013-04-23 | 2018-07-10 | Panasonic Intellectual Property Management Co., Ltd. | Wireless power transmitter apparatus having power transmitter apparatus and power reception apparatus supplied with electric power energy via space |
US11522373B2 (en) | 2014-01-28 | 2022-12-06 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Terminal and battery charging control device and method thereof |
US11545843B2 (en) | 2014-01-28 | 2023-01-03 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Battery charging apparatus and battery charging protection control method |
CN114039396A (en) * | 2021-11-30 | 2022-02-11 | 江西意孚欧科技有限公司 | Electronic communication equipment charging protection device with protection battery |
CN114039396B (en) * | 2021-11-30 | 2022-12-13 | 国网甘肃省电力公司金昌供电公司 | Electronic communication equipment charging protection device capable of protecting battery |
Also Published As
Publication number | Publication date |
---|---|
JP2014212581A (en) | 2014-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013031589A1 (en) | Battery charger, and charging station | |
US8519666B2 (en) | Charging system including a device housing a battery and charging pad | |
JP6591851B2 (en) | Wireless power transfer apparatus and method | |
JP5362330B2 (en) | Charging stand | |
JP5340017B2 (en) | Built-in battery and charging stand | |
US8410751B2 (en) | Device housing a battery and charging pad | |
JP5872373B2 (en) | Contactless power supply method | |
US10305334B2 (en) | Wireless power-supplying system, power-receiving device, and power-transmitting device | |
US9680336B2 (en) | Wireless power repeater and method thereof | |
JP6090172B2 (en) | Contactless charging method | |
EP2629395A2 (en) | Wireless power transmitter, wireless power receiver, and power transmission method of wireless power transmitting system | |
CN104067477A (en) | Wireless power control system | |
JP2010288431A5 (en) | Battery built-in device and charging stand, battery built-in device, circuit, and control circuit | |
KR101250266B1 (en) | Wireless charger to charge battery of mobile comunication device having different capacity and method thereof | |
RU2011150408A (en) | NON-CONTACT ENERGY RECEIVING DEVICE AND VEHICLE WITH IT | |
CN103378638A (en) | Contactless method of supplying power | |
JP2011259534A (en) | Battery-integrated apparatus and charging stand | |
US10784707B2 (en) | Inductive power transfer system | |
JPWO2013011905A1 (en) | Charging stand, battery pack and charging stand, and battery pack | |
KR20150056222A (en) | Wireless power transmission device which enables to simultaneously charge | |
JP2016092921A (en) | Non-contact power transmission apparatus and power transmission device | |
WO2013047260A1 (en) | Apparatus having built-in battery with charging stand, and apparatus having built-in battery | |
KR20160028537A (en) | The Wireless Charger | |
CN110875638A (en) | Apparatus and method for wireless transmission of power | |
WO2013015208A1 (en) | Device with built-in battery, and charging station and device with built-in battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12826927 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12826927 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |