[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013029129A1 - Integrated system for producing ethyl acetate, acetaldehyde, hydrogen and ethylene, integrated process for producing ethyl acetate, acetaldehyde, hydrogen and ethylene, and products thereby produced - Google Patents

Integrated system for producing ethyl acetate, acetaldehyde, hydrogen and ethylene, integrated process for producing ethyl acetate, acetaldehyde, hydrogen and ethylene, and products thereby produced Download PDF

Info

Publication number
WO2013029129A1
WO2013029129A1 PCT/BR2011/000458 BR2011000458W WO2013029129A1 WO 2013029129 A1 WO2013029129 A1 WO 2013029129A1 BR 2011000458 W BR2011000458 W BR 2011000458W WO 2013029129 A1 WO2013029129 A1 WO 2013029129A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
acetaldehyde
ethyl acetate
ethylene
separation
Prior art date
Application number
PCT/BR2011/000458
Other languages
French (fr)
Portuguese (pt)
Inventor
Rubens Maciel FILHO
Maria Cristina de ARAÚJO
Original Assignee
Universidade Estadual De Campinas - Unicamp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Estadual De Campinas - Unicamp filed Critical Universidade Estadual De Campinas - Unicamp
Publication of WO2013029129A1 publication Critical patent/WO2013029129A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/39Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester
    • C07C67/40Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester by oxidation of primary alcohols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/002Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by dehydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/81Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C45/82Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • C07C45/83Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation by extractive distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/52Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C67/54Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with alkali- or alkaline earth metals or beryllium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention describes an integrated system for producing ethyl acetate, acetaldehyde, hydrogen, ethylene and water from ethanol.
  • the proposed system as well as the only integrated process for obtaining multi-products of interest and high commercial value, ensure greater efficiency of solvent use and energy use.
  • Preferred embodiments of the present invention allow for lower solvent consumption as they advantageously have a single azeotropic mixture and produce a large number of products from ethanol at atmospheric pressure, thereby reducing energy consumption. environment in relation to existing technologies. Accordingly, the present invention is an alternative to the alcoholic productive sector, especially those producing high purity solvents, in addition to generating hydrogen, a clean energy source.
  • the Brazilian industrial sector produces ethylene, ethylene oxide, butanol, octanol, acetaldehyde, acetic acid, ethyl acetate, butyl acetate, butadiene and other smaller scale products from ethanol.
  • Part of the applied technology is not recent, but local, since the sugarcane industry has always reasonably supplied the market with ethanol and thus its use as a raw material in the chemical industry dates back to 1920 (JEWUR, SS, A. Qu ⁇ mica Nova, p.67, 1984) and (MENEZES, TJB, Ethanol the fuel of Brazil, Agronomical Publisher Ceres, 1980).
  • Ethylene is the precursor of a wide range of products depending on the process in which it is employed. Some ethylene or ethylene derivatives are described by (SOUZA, AM, SOUSA-AGUIAR, EF Chemistry and Derivatives, p.64, 1983).
  • Patent application PI8205956-0 of 10/13/1982 deals with the production of ethylene from ethanol employing a vapor phase phosphoric acid based catalyst. Only the catalyst is described and not the subsequent separation steps or the conversion obtained by it.
  • the first document employs a zeolite-type catalyst containing a metal-substituted silicate and to maintain full conversion of ethanol it is necessary to regulate the catalyst temperature and the starting material flow rate.
  • the second one specifically employs a crystalline aluminosilicate zeolite type catalyst.
  • the present invention is an integrated system describing two complete configurations for the production of hydrogen, ethyl acetate and acetaldehyde.
  • the catalyst employed has acidic and basic characteristics which also generates in the process ethylene, water and hydrogen.
  • WO2007063279 of 06/07/07 describes the integrated production of ethylene and propylene from propanol in the vapor phase.
  • the process is carried out in 7 columns and in two reactors, but in the present invention the process involves 4 or 5 columns for producing not only ethylene from ethanol but also hydrogen, ethyl acetate and acetaldehyde, and advantageously rectify the solvent.
  • Acetaldehyde is also raw material for a large amount of derivatives such as acetic acid, butanol, acetic anhydride MVA, PVA and polyvinyl alcohol (SOUZA, A.M., SOUSA-AGUIAR, E.F. Chemistry and Derivatives, p.64, 1983).
  • derivatives such as acetic acid, butanol, acetic anhydride MVA, PVA and polyvinyl alcohol (SOUZA, A.M., SOUSA-AGUIAR, E.F. Chemistry and Derivatives, p.64, 1983).
  • Patent Application CN1706550 of April 14, 2005 relates to a type of catalyst employed in one step of the ethyl acetate-ethanol synthesis process and its preparation and application process.
  • the ammoniotiomolibidate catalyst is prepared by sulfurizing the catalyst with a specific sulfur and aluminum ratio.
  • the reaction is dehydrogenation and occurs in a gas phase, producing, in addition to ethyl acetate and acetaldehyde, hydrogen, a clean energy source.
  • Ethyl acetate is a commercially important chemical. It is especially suitable as a solvent for extraction processes in the food industry and is used in the preparation of cosmetics, glues and paints. High purity ethyl acetate is also used as an intermediate in chemical syntheses.
  • Patent Application CN 16 6398 of 09/14/2004 relates to a process of producing ethyl acetate by a tower of rectification tower with rectifying effect. After the reaction of acetic acid and ethanol, catalyzed by sulfuric acid, the solution is gasified forming an azeotrope system of ester, alcohol, water and acid, which is rectified and the products separated in an esterification tower. Ethyl acetate is provided with 95% purity.
  • WO2010014145-A2 of 07/20/2009 describes one of the methods employed for the production of ethyl acetate involving an acetic acid hydrogenation reaction.
  • the reaction cited in this patent application occurs at high temperatures (225 to 275 ° C), with pressure between 10 and 20 atm and utilizes a bimetallic catalyst.
  • the conversion of acetic acid using the catalysts of the invention is at least 20% and can be up to 70%, with ethyl acetate selectivity of at least 60%, preferably 80% and more preferably 95%.
  • the proposed invention differs from that disclosed in WO2010014145-A2 in that it comprises an integrated system and process for obtaining ethyl acetate and other derivatives such as acetaldehyde, ethylene and hydrogen, and utilizing as a single reaction solvent.
  • the present invention makes use of solvent which advantageously promotes the separation of ethyl acetate from water, which exhibit azeotropy when in binary mixing.
  • the proposed system ensures the use of thermal energy promoting energy savings, as well as milder operating conditions compared to the technology deposited in 2009.
  • EP0192587-A1 of 01/30/1986 Another patent application which also describes an acetic acid hydrogenation reaction is EP0192587-A1 of 01/30/1986.
  • the reaction in this case is catalyzed by ruthenium deposited on a silica support at high temperatures (250 to 350 ° C) and pressures (30 to 100 atm).
  • the present invention differs from the European patent application in that it does not use the same catalyst, ruthenium being a high cost catalyst.
  • Our catalyst operates at slightly above atmospheric pressure, as well as being a dehydrogenation reaction of ethanol generating ethyl acetate, acetaldehyde and ethylene, in addition to hydrogen, which can be used to generate energy.
  • ethyl acetate Another method employed for the production of ethyl acetate is described in patent application PI0300729-4 of 12/03/2003 and involves a zirconium supported copper catalyst reaction.
  • the proposed invention differs from that presented in PI0300729-4 in that it comprises a system and an integrated process for obtaining ethyl acetate, acetaldehyde, hydrogen and ethylene.
  • the proposed system ensures the utilization of thermal energy promoting energy saving, besides milder operating conditions. compared to the technology deposited in 2003, it also advantageously uses solvent only to separate ethyl acetate from water, and the hydrogen produced that can be used to generate clean energy without carbon dioxide.
  • Patent Application CN1526692 of 09/22/2003 describes the separation with the use of recycles in the extractive column, obtaining a 97% purity content for ethyl acetate.
  • the separation process occurs by extractive distillation in the presence of a distillation solvent extractive material selected from a dimethyl sulfoxide, an amine, an alkylated thiophene or a paraffin.
  • a distillation solvent extractive material selected from a dimethyl sulfoxide, an amine, an alkylated thiophene or a paraffin.
  • ethanol is fully consumed and the amount of water formed is relatively small which makes it possible to separate ethyl acetate with also a smaller amount of solvent, and some water remains in the ether.
  • ethyl acetate and acetaldehyde that form azeotropy are relatively small which makes it possible to separate ethyl acetate with also a smaller amount of solvent, and some water remains in the ether.
  • the present invention has advantages in various aspects. Firstly, by using two possible new system configurations that encompass all stages of the process of producing ethyl acetate, acetaldehyde, hydrogen, ethylene and water from ethanol, employing gaseous fixed bed reaction means and secondly, by obtaining products such as pure hydrogen, ethylene and ethyl acetate.
  • acetaldehyde can also be mostly purified in one of the proposed models.
  • Another advantage is that ethyl acetate is obtained from the dehydrogenation reaction of anhydrous ethanol without the use of high pressures. Additionally, a single solvent is employed to separate ethyl acetate from water at the end of the process. Two configurations are also proposed to produce 99.1 to 99.9 purity acetaldehyde, having a higher energy expenditure according to the required purity. The present invention addresses the need to preserve the environment with zero emission of pollutants.
  • the present invention comprises reaction media selected from fixed bed reactors.
  • the fixed bed reactor has advantages over other types of configurations. Simplicity of operation due to bedding of particles, low construction and maintenance costs, little need for ancillary equipment as it does not require costly downstream catalyst separation units, and wide operating flexibility are among these advantages.
  • mixed cobalt and aluminum oxide catalysts derived from the calcination of hydrotalcite materials were used.
  • Hydrotalcite-type materials calcined at 500 and 650 ° C form mixed mesoporous oxides.
  • ARA ⁇ JO M.C. Use of Hydrotalcites Mg / Co / Al in Ethanol Conversion, Master's Dissertation, Faculty of Chemical Engineering, State University of Campinas, 112p, 2003).
  • the present invention advantageously employed this type of material derived from calcined hydrotalcites at 650 ° C because they are relatively easy to prepare and characterize to obtain mesoporous or commonly called nanometric materials.
  • This mixed oxide catalyst obtained with calcination at 650 ° C had the advantage of preferentially promoting the dehydrogenation of acetaldehyde and ethyl acetate by generating a greater amount of hydrogen and reducing the amounts of ethyl ether to a trace, showing that the process Dehydration occurs only for small molecules, such as ethylene, and also generates smaller amounts of water.
  • the present invention provides an alternative system and integrated process for obtaining ethyl acetate, acetaldehyde, hydrogen, ethylene and water, with an emphasis on minimizing energy expenditure and reusing the solvents used therein.
  • the present invention contemplates an integrated process for producing ethyl acetate, acetaldehyde, hydrogen, ethylene and water.
  • a multiproduct procurement system in two preferred configurations.
  • a further object of the present invention are the high purity products obtained by the processes described herein.
  • the invention describes an integrated process comprising dehydrogenation and ethanol dehydration reaction steps, separating and obtaining the desired products by conferring solvent reuse in subsequent steps.
  • the configuration of said integrated system comprising this process is called a.
  • the reaction step of said process occurs with a catalyst and ethanol feed into the reactor (PFRHIDRO) called step (a).
  • the steps of separating said process comprise: a step of separating acetaldehyde and ethylene (top of the column) and ethyl acetate with water (bottom of the column) (COLUMN); after reaction step (a) named (b1); a separation between ethylene (top of the column) and acetaldehyde (bottom of the column) (COLUMN2), obtained at (b1) in the column top stream (COLUMNI) called (b2); a separation between ethyl acetate (top of the column) and water with ethylene glycol (bottom of the column) (COLUMA3), obtained at (b1) in the column bottom stream (COLUNAI) called (b3); a separation between water (column top) and ethylene glycol (column bottom) (COLUM4) obtained at (b3) in
  • the step of obtaining pure ethylene comprises the step of separating the ethylene (column top) from acetaldehyde (column bottom) (COLUMA2), obtained from (b1) in the column top stream (COLUMAI), according to step ( b2), called step (d).
  • step (d) To obtain acetaldehyde (bottom of the column) it was separated from the ethylene (top of the column) (COLUMA2), obtained from (b1) in the column top stream (COLUNAI), according to step (b2), called step ( d1).
  • step (e1) comprises the removal of water (bottom of the column) from the ethyl acetate (top of the column) (COLUMA3) obtained at (b1) in the bottom of the column ( COLUMN) with ethylene glycol addition according to step (b3).
  • step (f1) comprises flash separation of the other products after reaction step (a).
  • a second integrated process configuration for obtaining ethyl acetate, acetaldehyde, hydrogen and ethylene is described.
  • the configuration of said integrated system comprising this process is called ⁇ .
  • the reaction step of said process occurs with a catalyst and with the feed of ethanol into the reactor (PFRHIDRO) called step (a).
  • the mixture separation step comprises a sequence of steps as described below: a separation step between a fraction of acetaldehyde and ethylene (top of the column) and ethyl acetate with water and another fraction of acetaldehyde (bottom of the column) (COLUMN ); after reaction step (a) called step (fc>1); a separation between ethylene (top of the column) and acetaldehyde (bottom of the column) (COLUMN2), obtained at (b1) in the column top stream (COLUMNI) called step (b2); a separation between acetaldehyde (top of the column) and ethyl acetate with water (bottom of the column) (COLUMA3), obtained at (b1) in the column bottom stream (COLUNAI) called step (b3); a separation between ethyl acetate (column top) and water with ethylene glycol (column bottom) (COLUMA4), obtained at (b3) in the column bottom stream (COLUMA3) called
  • the pure ethylene step comprises the step of separating the ethylene (column top) from acetaldehyde (column bottom) (COLUMA2), obtained from (b1) in the column top stream (COLUMAI), according to step ( b2), called step (d).
  • the step for obtaining ethyl acetate takes place in two columns, one of them from the separation of acetaldehyde (bottom of the column) from ethylene (top of the column) (COLUNA2), obtained from (b1) in the top of the column (COLUNAI) stream.
  • step (d1) a second column in which acetaldehyde (top of the column) separation of ethyl acetate with water (column bottom) (COLUMA3) obtained from (b1) in the column bottom stream (COLUNAI) according to step (b3) occurs ), called step (d2).
  • the step of obtaining pure ethyl acetate, called step (e1) comprises the removal of water (bottom of the column) from the ethyl acetate (top of the column) (COLUMA4) obtained from (b3) in the bottom stream of the column ( COLUMN3) with ethylene glycol addition according to step (b4).
  • step (f1) comprises the flash separation of the other products after reaction step (a).
  • the integrated ethyl acetate, acetaldehyde, hydrogen, ethylene production system by configuration a, comprises at least one fixed bed reaction medium with calcined hydrotalcite type catalyst; at least four mixture separation means; separating means comprising at least one additional solvent stream preferably ethylene glycol; heat exchange means selected from parallel and countercurrent exchange between currents resulting from the process itself; means for mixing solvents and reagents; catalytic bed cleaning or activation means, line cleaning, reaction temperature adjustment and monitoring of catalytic bed pressure drop; and, available hydrogen separation means.
  • the integrated ethyl acetate, acetaldehyde, hydrogen and ethylene production system by the ⁇ configuration comprises at least one fixed bed reaction medium with calcined hydrotalcite catalyst; at least five mixture separation means; separating means comprising at least one additional solvent stream preferably ethylene glycol; means for exchanging heat selected from parallel and countercurrent exchange between currents resulting from the process itself; means for mixing solvents and reagents; catalytic bed cleaning or activation means, line cleaning, reaction temperature adjustment and monitoring of catalytic bed pressure drop; and available hydrogen separation means.
  • Figure 1 System with configuration a.
  • Figure 2 System with ⁇ configuration.
  • Figure 3 Molar composition of the multitubular reactor for dehydrogenation and dehydration of ethanol 10,000 tubes configuration a.
  • the present invention describes an integrated system for producing ethyl acetate, acetaldehyde, hydrogen and ethylene.
  • the ethyl acetate production process by fixed bed reaction with mixed cobalt and aluminum oxide catalysts derived from calcination of hydrotalcite and separation means in arrangements configured for maximum efficiency, solvent recovery and energy, according to said proposed system, result in products with good specification levels.
  • Said integrated system comprises two configurations selected from system operating with five distillation columns and system operating with only four. In both configurations ethyl acetate, acetaldehyde, hydrogen and ethylene are obtained.
  • Said embodiments operate with a solvent to separate ethyl acetate from water, said solvent may preferably be ethylene glycol.
  • the present invention comprises an integrated process for obtaining ethyl acetate, acetaldehyde, hydrogen and ethylene whose preferred operating conditions are described below.
  • the so-called ⁇ system separates acetaldehyde into just one solvent-free column as the catalyst has a residual ether production which will remain in acetaldehyde due to the azeotropy between them.
  • the system called ⁇ separates acetaldehyde into two columns without the use of solvents.
  • the integrated ethyl acetate, acetaldehyde, hydrogen and ethylene production system in both ⁇ and ⁇ configurations, can alternatively comprise catalytic bed cleaning or activation means, line cleaning, reaction temperature adjustment assisting in heat removal chemical reaction by convection and monitoring of pressure drop in the catalytic bed.
  • Said catalytic bed cleaning or activation means, line cleaning, reaction temperature adjustment and monitoring of the catalytic bed pressure drop may preferably be by feeding a nitrogen stream with a certain flow rate to remove impurities from the catalytic bed. catalytic bed as well as maintaining the temperature at 350 ° C. And only after this nitrogen feed should the ethanol feed be started.
  • Said separation means are preferably distillation columns.
  • Said fixed bed reaction means is preferably of the multitubular type and the available hydrogen separation means, preferably flash or membrane reactor.
  • the operating temperature of multitubular reactors is dependent on the type of catalyst and the type of reaction involved in the process.
  • multitubular fixed bed reactors of 2 meters in length and 5.08 centimeters in diameter (termed PFRHIDRO reactor) were selected without, however, restricting the present invention.
  • the plant has many products, but these are easily separable.
  • the separation of ethyl acetate from ethanol presents the greatest difficulty, since they form an azeotropic mixture with minimum boiling point, which is located close to half the molar concentration of both. Ethylene does not present any difficulty of separation, whatever your concentration.
  • the higher the acetaldehyde concentrations in ethanol the more easily they will be separated.
  • Another problem would be the separation of hydrogen from other products, which would normally occur at very low temperatures (from -187 ° C to -192 ° C). But to avoid this fact a flash (called FLASH1), a simple liquid vapor separation system was used to remove hydrogen from the system. A hydrogen permeable membrane reactor could also be employed in the proposed flash replacement system.
  • the present invention describes an integrated ethyl acetate, acetaldehyde, hydrogen and ethylene production system comprising two configurations for dehydrogenation and dehydration of the vapor-phase ethanol that differ only in the separation process employed to obtain acetaldehyde.
  • Said integrated process for producing ethyl acetate, acetaldehyde, hydrogen and ethylene comprises the following steps:
  • (b2) a separation between ethylene (column top) and acetaldehyde (column bottom) (COLUMN2), obtained from (b1) in the column top stream (COLUMNI);
  • (b4) a separation between water (top of the column) and ethylene glycol (bottom of the column) (COLUMA4) obtained from (b3) in the column bottom stream (COLUMA3).
  • step (d) separation of ethylene (column top) from acetaldehyde (column bottom) (COLUMA2) obtained from (b1) in the column top stream (COLUMAI) and consequently obtaining pure ethylene according to step (b2) .
  • step (d) obtaining acetaldehyde comprising: (d1) separation of acetaldehyde (bottom of column) from ethylene (top of column) (COLUMN2) obtained from (b1) in the column top stream (COLUMNI) and consequently obtaining pure acetaldehyde according to step (b2) .
  • Process (a) according to the foregoing description comprises an ethanol feed stream in reaction step (a) having a preferred inlet pressure of 1.355 bar and a preferred temperature of 350 ° C with 32 kmol / h of ethanol.
  • reaction step (a) having a preferred inlet pressure of 1.355 bar and a preferred temperature of 350 ° C with 32 kmol / h of ethanol.
  • the configuration is proposed with a mixer for possible bed maintenance steps, since nitrogen feed is not used in the reaction step, but this can be used in case of operating star-up for a temperature stabilization of fixed reactor bed.
  • Separation step (b) comprised a separation step (b1) between ethylene acetaldehyde (top of the column) and ethyl acetate with water
  • the present process in the ⁇ configuration comprises a solvent feed preferably ethylene glycol during separation (b3) between ethyl acetate (top of the column) and water (bottom of the column) (COLUMA3) obtained at (b1) in the bottom of the column (COLUNAI) stream.
  • the preferred temperature is selected from 98 to 195 5 ° C and atmospheric pressure, and preferably at 22 stages, being the feed plate 7, with a reflux ratio 0.54 and background rate 4.4 kmol / h.
  • the solvent (ethylene glycol) resulting from step (b4) is recovered and recirculated and can again feed the separation step of COLUMN 3.
  • the water in the proposed system is considered a noble product of the process because if it comes out pure when In the end the process is totally efficient and the energy costs are calculated on water.
  • a further object of the present invention is an integrated ethyl acetate acetaldehyde, hydrogen and ethylene production system in an a configuration comprising:
  • catalytic bed cleaning or activation means line cleaning, reaction temperature adjustment and monitoring of catalytic bed pressure drop;
  • available hydrogen separation means available hydrogen separation means.
  • a preferred system configuration comprises:
  • reaction medium preferably multitubular fixed bed reactor with calcined hydrotalcite catalyst
  • (b1) separating means comprising at least one distiller fed with an additional stream of solvent preferably ethylene glycol;
  • (c) means of exchanging heat selected from parallel and countercurrent exchange preferably indirect countercurrent heat exchangers between currents resulting from the process itself;
  • catalytic bed cleaning or activation means line cleaning, reaction temperature adjustment, and monitoring of the catalytic bed pressure drop preferably be by supply with a nitrogen stream in element (a), as the pressure it is related to the conversion of ethanol;
  • the present invention comprises an integrated process for producing ethyl acetate, acetaldehyde, hydrogen and ethylene, the configuration of which ( ⁇ ) comprises the following steps:
  • (b2) a separation between ethylene (column top) and acetaldehyde (column bottom) (COLUMN2), obtained from (b1) in the column top stream (COLUMNI);
  • step (d1) separation of acetaldehyde (bottom of column) from ethylene (top of column) (COLUMA2) obtained from (b1) in the column top stream (COLUMAI) and consequently obtaining pure acetaldehyde according to step (b2) ;
  • step (d2) separation of acetaldehyde (top of the column) from ethyl acetate with water (column bottom) (COLUMA3) obtained from (b1) in the column bottom stream (COLUNAI) and consequently obtaining pure acetaldehyde according to step (b3).
  • (f) obtaining hydrogen comprising: (f1) separating, by means of separation, the other products after reaction step (a).
  • reaction step (a) contemplates an ethanol feed stream in reaction step (a) with a preferred pressure of 1.255 bar, a preferred temperature of 350 ° C and preferably with 50 kmol / h ethanol, with a catalytic bed pressure drop of 0.3 bar.
  • the configuration is proposed with a mixer for possible bed maintenance steps, since nitrogen feed is not used in the reaction step, but this can be used in case of operating star-up for a temperature stabilization of fixed reactor bed.
  • the separation step (b) comprised a separation step (b1) between a preferably 15% fraction of acetaldehyde with ethylene (top of the column) and ethyl acetate with water and the largest preferably 85% fraction of acetaldehyde (bottom).
  • (COLUMN) in a preferred temperature range of -5 to 33 ° C, a preferred pressure of 0.955 bar and preferably in 32 stages, the feed plate being 1 1 o , reflux ratio 3, 01 and distillate rate of 10.24 kmol / h.
  • the separation step (b3) between acetaldehyde (top of the column) and ethyl acetate with water (bottom of the column) (COLUMA3) obtained at (b1) in the column bottom current (COLUNAI) occurs within a preferred temperature range between 20 and 70 ° C, a preferential atmospheric pressure and preferably in 50 stages, the feed plate being 39 °, with reflux ratio 1 and distillate rate of 20.0 Kmol / h, with liquid / liquid / vapor convergence. .
  • the step of obtaining pure ethyl acetate (e1) comprises feeding a solvent preferably ethylene glycol during separation. (b4) between ethyl acetate (top of the column) and water with ethylene glycol (bottom of the column) (COLUNA4) obtained from (b3) in the column top stream (COLUNA3) and thereby obtaining pure ethyl acetate in a temperature range from 75 to 118 ° C, a preferred pressure of 0.955 bar and preferably in 52 stages, with the feed plate 44 ° and the solvent feed plate 11 °, with reflux ratio 0.54 and distillate rate 9.74 kmol / h, with liquid / liquid / vapor convergence.
  • a solvent preferably ethylene glycol during separation.
  • the separation (b5) between water (column top) and ethylene glycol (column bottom) (COLUMA5) obtained at (b4) in the column bottom stream (COLUMA4) occurs in a preferred temperature range between 98 and 195.5 °.
  • C is a preferential pressure of 0.955 bar and preferably in 22 stages, the feed plate being 7 °, with reflux ratio of 0.54 and bottom rate of 6.79 kmol / h.
  • the solvent (ethylene glycol) resulting from step (b5) is recovered and recirculated, and can again feed the separation step of COLUMN 4.
  • the water in the proposed system is considered a noble product of the process, because if it comes out pure when In the end the process is totally efficient and the energy costs are computed to water.
  • a further object of the present invention is an integrated ethyl acetate, acetaldehyde, hydrogen and ethylene production system characterized by a ⁇ configuration as can be seen in Figure 2, comprising:
  • catalytic bed cleaning or activation means line cleaning, reaction temperature adjustment and monitoring of catalytic bed pressure drop;
  • available hydrogen separation means available hydrogen separation means.
  • reaction medium preferably multitubular fixed bed reactor with calcined hydrotalcite catalyst
  • (b1) separating means comprising at least one distiller fed with an additional stream of solvent preferably ethylene glycol;
  • (c) means of exchanging heat selected from parallel and countercurrent exchange, preferably indirect countercurrent heat exchangers between currents resulting from the process itself;
  • catalytic bed cleaning or activation means line cleaning, reaction temperature adjustment, and monitoring of the catalytic bed pressure drop preferably be by supply with a nitrogen stream in element (a), as the pressure it is related to the conversion of ethanol;
  • Example 1 Integrated system for obtaining ethyl acetate, acetaldehyde, hydrogen and ethylene in a configuration named a.
  • the so-called ⁇ system comprises reaction media with calcined hydrotalcite type catalyst at 650 ° C in a fixed-phase vapor bed reactor where anhydrous ethanol is fed without nitrogen.
  • Said reactor is called PFRHIDRO reactor.
  • PFRHIDRO reactor In a preferred configuration, without, however, restricting the PFRHIDRO reactor, to meet a production of approximately 5,000 tons / year of ethyl acetate may comprise 10,000 tubes, with dimensions of (2m x 2 ").
  • Figure 3 shows the molar compositions along the cobalt hydrotalcite reactor, PFRHIDRO, as a function of reactor length for plant a. It can be seen that practically, after 60 cm of reactor, all the ethanol was consumed. However, according to industry practice, the reactor should be designed to be 10 to 30 percent longer than the minimum length to ensure longer run time.
  • Example 2 Integrated process for obtaining ethyl acetate, acetaldehyde, hydrogen, ethylene and water employing the system a.
  • the exemplary embodiment described below shows a reaction step wherein said step comprises a catalyst preferably of calcined hydrotalcite type and ethanol feed.
  • the temperature of the reactor in said non-restricting embodiment was 350 ° C.
  • Table 2 shows an example embodiment of the present invention showing the inlet and outlet streams of the cobalt hydrotalcite reactor for plant a. It is also possible to check the operating temperature and pressure drop in the reactor. Table 2: Input and output currents in the cobalt hydrotalcite reactor, where EREATOR is reactor input current, SREATOR is reactor output current.
  • the separation step is intended to purify the obtained product which is in mixtures formed in earlier stages of the multiproduct production process.
  • Column 1 is a typical azeotropic distillation column, acetaldehyde and ethylene having minimal boiling azeotropy come out at the top of the column and at the bottom of the column in stream FUND01 there is ethyl acetate and water.
  • An interesting factor is the amount of water that can be removed at the bottom of the column along with acetic acid.
  • This column has a 24 stage configuration, with the feed plate 14 ° and reflux ratio 0.8, with 99.99% acetaldehyde along with 100% ethylene leaving the top of the column.
  • Column 2 in the present example is a conventional distillation column, this column is intended to separate acetaldide from ethylene. Ethylene is separated at the top of the distillation column with a molar composition purity of 99.9%. Acetaldehyde remains at the bottom of the distillation column with a molar composition of 99.1%.
  • Column 2 is a conventional convergence column cryogenic (low temperature), preferably composed of 16 stages and the feed plate 8 is 0 to 1.
  • the reflux ratio has minimal ethyl ether azeotroping point boiling with acetaldehyde and cannot be separated remaining as a residue in acetaldehyde.
  • Column 3 in this example is a special, differentiated extractive column. It can be said to be an extractive column because the solvent in this case disrupts the ethyl acetate / water azeotropy due to the formation of the two distinct liquid phases in the mixture capturing the water remaining at the bottom of the column along with the solvent.
  • stream FUND03 and thus proceeding to a rectifying column for recovery of the pure solvent.
  • Ethyl acetate is separated at the top of the distillation column with a molar composition purity of 99.9%. Water and solvent remain at the bottom of the distillation column.
  • Column 3 has 52 stages, the FUND01 current feed plate is 43 ° and the SOLVENT current feed plate is 11 °, with a reflow ratio of 0.52.
  • Column 4 is a conventional distillation column for solvent rectification having 22 stages; the preferred feeding plate being 12 ° and operating at a reflux ratio of 0.54.
  • the AGUAP top stream has 100% pure water, the solvent remains at the bottom of the column in the SOLVENTP stream, also 100% pure.
  • the pure solvent obtained at the bottom of column 4 is passed through the SOLVENTETP stream to the TROCA3 exchanger to take advantage of the thermal energy released by reducing the temperature that will facilitate separation in the next column, hence it is driven by the SOLVENT stream to column 3.
  • Example 3 Integrated process for obtaining ethyl acetate, acetaldehyde, hydrogen, ethylene and water according to the ⁇ system.
  • the first column is a conventional distillation column with 32 stages, the feed plate 11 is, the reflux ratio is 3.01. It is a column that It takes more energy to make a small amount of acetaldehyde carry most ethyl ether with it.
  • ethylene remains at the top of the distillation column with a purity of 99.9% molar composition and at the bottom of the column has most ethyl ether remaining together with acetaldehyde with a 95.5% molar composition due to minimum boiling azeotropy as seen above between acetaldehyde and ethyl ether.
  • Column 3 is an azeotropic distillation column.
  • the column will have three phases: two liquid and one vapor phase, having 50 stages, the feed plate is 39 ° and the reflux ratio 1.
  • Acetaldehyde remains at the top of the distillation column with a purity of molar composition. 99.87%, with the ethyl ether residue being impurity, and at the bottom of the column is ethyl acetate and water.
  • the steam molar composition of column 4 in the present example is similar to that of column 3 of configuration a, a special extractive column.
  • the column 52 has four stages, the feed plate of o11 is the solvent stream and the feed plate FUND03 the current is 44 ° and the reflux ratio 0.54.
  • the fifth column is a conventional distillation column for the rectification of the solvent, with 22 stages and the feed plate is 7, with a reflux ratio of 0.54.
  • the AGUA top stream features 100% water; the solvent remains at the bottom of the column in the SOLVENT stream of 100% purity.
  • This column 5 is exactly the same as column 4 of plant a, so the water comes out pure at the end, the process is totally efficient and the energy costs are computed to water, and the solvent is recovered and re-circulated to the process at this stage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention describes an integrated system for producing ethyl acetate, acetaldehyde, hydrogen and ethylene with high added value, by means of a process including a reaction step comprising a calcined hydrotalcite catalyst. Said proposed system, as well as the additional subject matter of the present invention comprising an integrated process for producing ethyl acetate, acetaldehyde, hydrogen and ethylene, also include steps of dehydrogenation and dehydration, separation and obtaining the desired products, allowing the solvents to be reused in subsequent steps. The multi-product production system has two preferential configurations, which allow lower consumption of solvents, and at the same time reduce energy consumption. Consequently, the final products produced are highly pure, and produced by means of a highly efficient process and with efficient use of energy. The present invention is therefore an alternative for the alcohol-based chemical industry, especially industries that produce highly pure solvents.

Description

"SISTEMA INTEGRADO PARA PRODUÇÃO DE ACETATO DE ETILA, ACETALDEÍDO, HIDROGÉNIO E ETILENO, PROCESSO INTEGRADO DE OBTENÇÃO DE ACETATO DE ETILA, ACETALDEÍDO, HIDROGÉNIO E ETILENO E, PRODUTOS ASSIM OBTIDOS"  "INTEGRATED SYSTEM FOR THE PRODUCTION OF ETHYL ACETATE, ACETALDEHYDE, HYDROGEN AND ETHYLENE, INTEGRATED PROCESS FOR ETHYL ACETATE, ACETALDEHYDE, HYDROGEN AND ETHYLENE, AND PRODUCTS SO OBTAINED"
CAMPO DA INVENÇÃO FIELD OF INVENTION
A presente invenção descreve um sistema integrado para produção de acetato de etila, acetaldeído, hidrogénio, etileno e água a partir de etanol. O sistema proposto, bem como o único processo integrado para a obtenção de multiprodutos de interesse e de alto valor comercial, garantem maior eficiência de aproveitamento dos solventes e aproveitamento energético. As configurações preferenciais da presente invenção permitem um menor consumo de solventes, já que, vantajosamente, apresentam uma única mistura azeotrópica e produzem um grande número de produtos oriundos do etanol, em pressão atmosférica, reduzindo o consumo energético, consequentemente, esta invenção contribui com o meio ambiente em relação às tecnologias hoje existentes. Assim sendo, a presente invenção é uma alternativa para o setor produtivo alcoolquímico em especial àquelas que produzem solventes de alta pureza, além de gerar hidrogénio, uma fonte de energia limpa.  The present invention describes an integrated system for producing ethyl acetate, acetaldehyde, hydrogen, ethylene and water from ethanol. The proposed system, as well as the only integrated process for obtaining multi-products of interest and high commercial value, ensure greater efficiency of solvent use and energy use. Preferred embodiments of the present invention allow for lower solvent consumption as they advantageously have a single azeotropic mixture and produce a large number of products from ethanol at atmospheric pressure, thereby reducing energy consumption. environment in relation to existing technologies. Accordingly, the present invention is an alternative to the alcoholic productive sector, especially those producing high purity solvents, in addition to generating hydrogen, a clean energy source.
FUNDAMENTOS DA INVENÇÃO BACKGROUND OF THE INVENTION
O setor industrial brasileiro produz etileno, óxido de etileno, butanol, octanol, acetaldeído, ácido acético, acetato de etila, acetato de butila, butadieno e outros produtos em menor escala a partir do etanol. Parte da tecnologia aplicada não é recente, mas local, uma vez que a indústria canavieira sempre abasteceu o mercado de forma razoável com etanol e, assim, o seu uso como matéria-prima na indústria química remonta a 1920 (JEWUR, S.S., A. Química Nova, p.67, 1984) e (MENEZES, T.J.B., Etanol o combustível do Brasil, Editora Agronómica Ceres, 1980). De acordo com o estado da técnica, observa-se a produção de um determinado produto a partir do etanol, diferentemente do proposto na presente invenção, que gera multiprodutos. O etileno é o precursor de grande gama de produtos dependendo do processo em que é empregado. Alguns derivados do etileno ou eteno são descritos por (SOUZA, A.M., SOUSA-AGUIAR, E.F. Química e Derivados, p.64, 1983). The Brazilian industrial sector produces ethylene, ethylene oxide, butanol, octanol, acetaldehyde, acetic acid, ethyl acetate, butyl acetate, butadiene and other smaller scale products from ethanol. Part of the applied technology is not recent, but local, since the sugarcane industry has always reasonably supplied the market with ethanol and thus its use as a raw material in the chemical industry dates back to 1920 (JEWUR, SS, A. Química Nova, p.67, 1984) and (MENEZES, TJB, Ethanol the fuel of Brazil, Agronomical Publisher Ceres, 1980). According to the state of the art, the production of a particular product from ethanol is observed, unlike that proposed in the present invention, which generates multiproducts. Ethylene is the precursor of a wide range of products depending on the process in which it is employed. Some ethylene or ethylene derivatives are described by (SOUZA, AM, SOUSA-AGUIAR, EF Chemistry and Derivatives, p.64, 1983).
O pedido de patente PI8205956-0 de 13/10/1982 trata da produção de etileno a partir de etanol empregando um catalisador a base de ácido fosfórico em fase vapor. É descrito apenas o catalisador e não as etapas posteriores de separação nem a conversão obtida pelo mesmo.  Patent application PI8205956-0 of 10/13/1982 deals with the production of ethylene from ethanol employing a vapor phase phosphoric acid based catalyst. Only the catalyst is described and not the subsequent separation steps or the conversion obtained by it.
Dois documentos descrevem a conversão de etanol em etileno, a PI8504106-8 de 27/08/1985 e a PI8700422-4 de 30/01/1987. O primeiro documento emprega um catalisador do tipo zeólita contendo um silicato substituído por um metal e para manter a conversão total do etanol é necessário regular a temperatura do catalisador e a vazão do material de partida. Já o segundo emprega especificamente um catalisador do tipo zeólito aluminossilicato cristalino. Nestes casos, assim como o anterior é descrito apenas o catalisador e não as etapas posteriores de separação nem a conversão obtida pelo mesmo. Diferentemente, a presente invenção trata de um sistema integrado, descrevendo duas configurações completas, para a produção de hidrogénio, acetato de etila e acetaldeído. Além disso, o catalisador empregado apresenta características ácidas e básicas que também gera no processo etileno, água e hidrogénio.  Two documents describe the conversion of ethanol to ethylene, PI8504106-8 of 08/27/1985 and PI8700422-4 of 01/30/1987. The first document employs a zeolite-type catalyst containing a metal-substituted silicate and to maintain full conversion of ethanol it is necessary to regulate the catalyst temperature and the starting material flow rate. The second one specifically employs a crystalline aluminosilicate zeolite type catalyst. In these cases, just as the previous one describes only the catalyst and not the subsequent separation steps nor the conversion obtained by it. In contrast, the present invention is an integrated system describing two complete configurations for the production of hydrogen, ethyl acetate and acetaldehyde. In addition, the catalyst employed has acidic and basic characteristics which also generates in the process ethylene, water and hydrogen.
O documento WO2007063279 de 07/06/07 descreve a produção integrada de etileno e propileno a partir de propanol na fase vapor. Desvantajosamente, o processo é realizado em 7 colunas e em dois reatores, já no presente invento o processo envolve 4 ou 5 colunas para produção não só de etileno a partir de etanol, mas também de hidrogénio, acetato de etila e acetaldeído, além de vantajosamente retificar o solvente.  WO2007063279 of 06/07/07 describes the integrated production of ethylene and propylene from propanol in the vapor phase. Disadvantageously, the process is carried out in 7 columns and in two reactors, but in the present invention the process involves 4 or 5 columns for producing not only ethylene from ethanol but also hydrogen, ethyl acetate and acetaldehyde, and advantageously rectify the solvent.
Outro processo de produção de etileno a partir de etanol é descrito no pedido de patente EP1792885 de 29/11/2005. A reação envolvida é de desidratação do etanol gerando éter etílico e etileno, empregando 4 colunas com grande gasto de energia. Os processos de desidratação geram água e como consequência azeotropia entre água e etanol, além da azeotropia do éter etílico com a água, consumindo grande quantidade de energia nas separações para produzir apenas dois produtos. O novo processo aqui proposto também gera um pouco de água por ser um catalisador ácido-básico, contudo o etanol é totalmente consumido não apresentando problemas de azeotrópia com a água, além de separar parte do acetaldeído que também apresenta azeotrópia com o éter etílico em uma das colunas com 99,9% de pureza. Another process for producing ethylene from ethanol is described in patent application EP1792885 of 11/29/2005. The reaction involved is dehydration of ethanol generating ethyl ether and ethylene, employing 4 columns with great energy expenditure. Dehydration processes generate water and consequently azeotropy between water and ethanol, in addition to ether azeotropy. ethylene with water, consuming large amounts of energy in the separations to produce only two products. The new process proposed here also generates some water as it is an acid-base catalyst, however ethanol is totally consumed without having problems with azeotropy with water, and separating part of acetaldehyde that also has azeotropy with ethyl ether in a 99.9% pure columns.
O acetaldeído também é matéria prima para uma grande quantidade de derivados, como ácido acético, butanol, anidrido acético MVA , PVA e do álcool polivinílico (SOUZA, A.M., SOUSA-AGUIAR, E.F. Química e Derivados, p.64, 1983).  Acetaldehyde is also raw material for a large amount of derivatives such as acetic acid, butanol, acetic anhydride MVA, PVA and polyvinyl alcohol (SOUZA, A.M., SOUSA-AGUIAR, E.F. Chemistry and Derivatives, p.64, 1983).
O pedido de patente CN1706550 de 14/04/2005 refere-se a um tipo de catalisador empregado em uma etapa do processo de síntese de acetato de etila com etanol e seu processo de preparação e aplicação. O catalisador de amoniotiomolibidato é preparado a base de sulfurização do catalisador com uma relação específica de enxofre e alumínio. Além dô~ acetato de etila, esse processo também gera acetaldeído, porém a preparação do catalisador é complexa, o que pode gerar problemas nas conversões de acetato de etila. Diferentemente do descrito neste documento, na presente invenção a reação é de desidrogenação e ocorre em fase gasosa, produzindo, além de acetato de etila e acetaldeído, hidrogénio, uma fonte de energia limpa. Patent Application CN1706550 of April 14, 2005 relates to a type of catalyst employed in one step of the ethyl acetate-ethanol synthesis process and its preparation and application process. The ammoniotiomolibidate catalyst is prepared by sulfurizing the catalyst with a specific sulfur and aluminum ratio. ~ Besides ethyl acetate, also generates acetaldehyde this process, however the catalyst preparation is complex, which may cause problems in conversions of ethyl acetate. Unlike described herein, in the present invention the reaction is dehydrogenation and occurs in a gas phase, producing, in addition to ethyl acetate and acetaldehyde, hydrogen, a clean energy source.
A patente US6399812 de 27/04/2000 descreve a conversão de etanol em acetato de etila, empregando catalisadores de zeólitas impregnados com paládio. A mistura de reação do reator é separada por meio de destilação azeotrópica em três colunas para recuperar o produto acetato de etila e os subprodutos acetaldeído e ácido acético. Desvantajosamente, o processo descrito utiliza solventes para a separação dos compostos, gera resíduos que devem ser tratados, além de gás carbónico. Já no presente invento o catalisador empregado é mais barato que o zeolítico e se levarmos em conta o paládio empregado então este se torna ainda mais caro. Além disso, as reações da presente invenção geram hidrogénio e a água sem acrescentar nenhum outro reagente que não seja o etanol, em pressão atmosférica. Acetato de etila é um produto químico comercialmente importante. É especialmente indicado como solvente para os processos de extração na indústria de alimentos, além de ser empregado na preparação de cosméticos, colas e tintas. O acetato de etila de alta pureza é também utilizado como intermediário em sínteses químicas. US6399812 of April 27, 2000 describes the conversion of ethanol to ethyl acetate employing palladium impregnated zeolite catalysts. The reactor reaction mixture is separated by three column azeotropic distillation to recover the ethyl acetate product and the acetaldehyde and acetic acid byproducts. Disadvantageously, the described process uses solvents for the separation of compounds, generates residues that must be treated, in addition to carbon dioxide. Already in the present invention the catalyst employed is cheaper than the zeolitic one and if we take into account the palladium employed then it becomes even more expensive. In addition, the reactions of the present invention generate hydrogen and water without adding any reagent other than ethanol at atmospheric pressure. Ethyl acetate is a commercially important chemical. It is especially suitable as a solvent for extraction processes in the food industry and is used in the preparation of cosmetics, glues and paints. High purity ethyl acetate is also used as an intermediate in chemical syntheses.
Um dos processos mais utilizados para a produção de acetato de etila é a reação de esterificação entre ácido acético e etanol. Na patente US6693213 de 11/10/2000 o acetato de etila é produzido a partir de etanol e ácido acético e/ou anidrido acético, na presença de um catalisador ácido. Diferentemente da invenção proposta, é realizada uma destilação catalítica em uma única coluna e a pureza máxima conseguida de acetato de etila foi de 96,1 %. Já na presente invenção trata-se de um sistema multi-processos, que além de produzir acetato de etila, gera acetaldeído, hidrogénio e etileno com altas purezas.  One of the most commonly used processes for the production of ethyl acetate is the esterification reaction between acetic acid and ethanol. In US6693213 of 11/10/2000 ethyl acetate is produced from ethanol and acetic acid and / or acetic anhydride in the presence of an acid catalyst. Unlike the proposed invention, a single column catalytic distillation is performed and the maximum achieved purity of ethyl acetate was 96.1%. Already in the present invention it is a multi-process system which, besides producing ethyl acetate, generates acetaldehyde, hydrogen and ethylene with high purity.
O processo do pedido de patente US2003013908 de 22/12/1999 também produz acetato de etila a partir da reação de ácido acético com etanol, na presença de um catalisador ácido. Além disso, é descrito um passo de destilação dos vapores formados, seguida da condensação para formar uma fase orgânica rica em acetato de etila e uma fase aquosa rica em água. Pelo menos uma parte da fase orgânica da primeira destilação é direcionada para uma membrana de separação, que remove água, álcool, ou a combinação de água e álcool, da fase orgânica rica em acetato de etila. Além de ser um processo ácido, como o descrito na patente citada anteriormente, ou seja, desidratante, prejudicando o rendimento, a separação de água empregando membranas é um processo caro e de difícil manutenção.  The process of US2003013908 of December 22, 1999 also produces ethyl acetate from the reaction of acetic acid with ethanol in the presence of an acid catalyst. Further, a distillation step of the formed vapors, followed by condensation to form an organic phase rich in ethyl acetate and an aqueous phase rich in water, is described. At least a portion of the organic phase of the first distillation is directed to a separation membrane, which removes water, alcohol, or the combination of water and alcohol, from the ethyl acetate-rich organic phase. In addition to being an acidic process as described in the aforementioned patent, i.e. dehydrating, impairing yield, water separation employing membranes is an expensive and difficult to maintain process.
O pedido de patente CN 16 6398 de 14/09/2004 refere-se a um processo de produção de acetato de etila por uma torre de esterificação torre com efeito de retificação. Após a reação de ácido acético e etanol, catalisada por ácido sulfúrico, a solução é gaseificada formando um sistema azeótropo de éster, álcool, água e ácido, que é retificado e os produtos separados em uma torre de esterificação. O acetato de etila é fornecido com 95% de pureza.  Patent Application CN 16 6398 of 09/14/2004 relates to a process of producing ethyl acetate by a tower of rectification tower with rectifying effect. After the reaction of acetic acid and ethanol, catalyzed by sulfuric acid, the solution is gasified forming an azeotrope system of ester, alcohol, water and acid, which is rectified and the products separated in an esterification tower. Ethyl acetate is provided with 95% purity.
Outra reação descrita para a obtenção de acetato de etila se encontra no pedido de patente PI0511050-5 de 06/05/2005, que reage etileno e ácido acético, também empregando, desvantajosamente, um catalisador ácido, como descrito acima. O processo da referida invenção envolve relações específicas das concentrações dos reagentes nas correntes de entrada do reator e, caso estes valores sejam alterados, produtos indesejados podem ser formados. A invenção proposta difere da PI0511050-5 visto que é um processo em fase vapor, a pressão atmosférica, em reator de leito fixo, sendo alimentado apenas com etanol. Os produtos gerados são separados em colunas convencionais, apenas na última é alimentado solvente para separar o acetato de etila da água, devido a mistura apresentar azeotropia. Another reaction described for obtaining ethyl acetate is in patent application PI0511050-5 of 05/06/2005, which reacts ethylene and acid disadvantageously also employing an acid catalyst as described above. The process of said invention involves specific ratios of reactant concentrations in the reactor inlet streams and, if these values are changed, undesired products may be formed. The proposed invention differs from PI0511050-5 in that it is a vapor phase process at atmospheric pressure in a fixed bed reactor, being fed only with ethanol. The generated products are separated in conventional columns, only the last one is fed solvent to separate the ethyl acetate from the water, because the mixture has azeotropy.
O documento WO2010014145-A2 de 20/07/2009 descreve um dos métodos empregados para a produção de acetato de etila, envolvendo uma reação de hidrogenação do ácido acético. A reação citada neste pedido de patente ocorre a altas temperaturas (225 a 275°C), com pressão entre 10 e 20 atm e utiliza um catalisador bimetálico. A conversão de ácido acético utilizando os catalisadores da invenção é de pelo menos 20% e pode chegar a 70%, com seletividade para acetato de etila de pelo menos 60%, preferencialmente 80% e mais preferencialmente 95%. A invenção proposta difere da apresentada em WO2010014145-A2, pois compreende um sistema e um processo integrado para obtenção de acetato de etila e outros derivados como acetaldeído, etileno e hidrogénio, além de utilizar como solvente de reação, um único solvente. A presente invenção faz uso de solvente que promove vantajosamente a separação do acetato de etila da água, que apresentam ponto de azeotropia quando em mistura binária. O sistema proposto garante aproveitamento da energia térmica promovendo economia energética, além de condições operacionais mais amenas quando comparada com a tecnologia depositada em 2009.  WO2010014145-A2 of 07/20/2009 describes one of the methods employed for the production of ethyl acetate involving an acetic acid hydrogenation reaction. The reaction cited in this patent application occurs at high temperatures (225 to 275 ° C), with pressure between 10 and 20 atm and utilizes a bimetallic catalyst. The conversion of acetic acid using the catalysts of the invention is at least 20% and can be up to 70%, with ethyl acetate selectivity of at least 60%, preferably 80% and more preferably 95%. The proposed invention differs from that disclosed in WO2010014145-A2 in that it comprises an integrated system and process for obtaining ethyl acetate and other derivatives such as acetaldehyde, ethylene and hydrogen, and utilizing as a single reaction solvent. The present invention makes use of solvent which advantageously promotes the separation of ethyl acetate from water, which exhibit azeotropy when in binary mixing. The proposed system ensures the use of thermal energy promoting energy savings, as well as milder operating conditions compared to the technology deposited in 2009.
Outro pedido de patente que também descreve uma reação de hidrogenação de ácido acético é a EP0192587-A1 de 30/01/1986. A reação neste caso é catalisada por rutênio depositado em um suporte de sílica, a altas temperaturas (250 a 350°C) e pressões (30 a 100 atm). A presente invenção difere do pedido de patente europeu, pois não utiliza o mesmo catalisador, sendo o rutênio um catalisador de elevado custo. O nosso catalisador opera a uma pressão um pouco acima da atmosférica, além de ser uma reação de desidrogenação do etanol gerando o acetato de etila, acetaldeído e etileno, além de hidrogénio, que pode ser utilizado para gerar energia. Another patent application which also describes an acetic acid hydrogenation reaction is EP0192587-A1 of 01/30/1986. The reaction in this case is catalyzed by ruthenium deposited on a silica support at high temperatures (250 to 350 ° C) and pressures (30 to 100 atm). The present invention differs from the European patent application in that it does not use the same catalyst, ruthenium being a high cost catalyst. Our catalyst operates at slightly above atmospheric pressure, as well as being a dehydrogenation reaction of ethanol generating ethyl acetate, acetaldehyde and ethylene, in addition to hydrogen, which can be used to generate energy.
Outro método empregado para a produção de acetato de etila está descrito no pedido de patente PI0300729-4 de 12/03/2003 e envolve uma reação à base de catalisadores de cobre, suportado em zircônio. A invenção proposta difere da apresentada em PI0300729-4, pois compreende um sistema e um processo integrado para obtenção de acetato de etila, acetaldeído, hidrogénio e etileno, O sistema proposto garante aproveitamento da energia térmica promovendo economia energética, além de condições operacionais mais amenas quando comparada com a tecnologia depositada em 2003, além de vantajosamente utilizar solvente unicamente para separar o acetato de etila da água, e o hidrogénio produzido que pode ser utilizado na geração de energia limpa sem a presença de dióxido de carbono.  Another method employed for the production of ethyl acetate is described in patent application PI0300729-4 of 12/03/2003 and involves a zirconium supported copper catalyst reaction. The proposed invention differs from that presented in PI0300729-4 in that it comprises a system and an integrated process for obtaining ethyl acetate, acetaldehyde, hydrogen and ethylene. The proposed system ensures the utilization of thermal energy promoting energy saving, besides milder operating conditions. compared to the technology deposited in 2003, it also advantageously uses solvent only to separate ethyl acetate from water, and the hydrogen produced that can be used to generate clean energy without carbon dioxide.
Outro pedido de patente que também descreve a produção de acetato de etila é a EP990638-A1 de 01/10/1998. Desvantajosamente, a reação neste caso ocorre a altas pressões (6 a 30 bar), além de ocorrer recirculação de hidrogénio. A presente invenção difere deste pedido de patente pois gera multiprodutos e o hidrogénio não precisa ser re-circulado para promover as condições ótimas do catalisador, então este pode ser utilizado na geração de energia e assim prover o processo com parte da energia necessária para a sua operação.  Another patent application which also describes the production of ethyl acetate is EP990638-A1 of 10/01/1998. Disadvantageously, the reaction in this case occurs at high pressures (6 to 30 bar), in addition to hydrogen recirculation. The present invention differs from this patent application in that it generates multiproducts and hydrogen does not need to be recirculated to promote optimal catalyst conditions, so it can be used in power generation and thus provide the process with part of the energy required for its catalyst. operation.
Três documentos tratam da separação do acetato de etila do etanol e água. O pedido de patente CN1526692 de 22/09/2003 descreve a separação com o uso de reciclos na coluna extrativa, obtendo um teor de 97% de pureza para o acetato de etila.  Three documents deal with the separation of ethyl acetate from ethanol and water. Patent Application CN1526692 of 09/22/2003 describes the separation with the use of recycles in the extractive column, obtaining a 97% purity content for ethyl acetate.
Já o pedido de patente CN1706799 de 11/05/2005 trata da separação empregando sais e um agente de extração em uma coluna com seções de retificação dos compostos. O acetato de etila produzido apresenta 99,5% de pureza e o etanol em torno de 95%.  Already patent application CN1706799 of 11/05/2005 deals with separation employing salts and an extraction agent in a column with rectifying sections of the compounds. The ethyl acetate produced is 99.5% pure and about 95% ethanol.
E no documento WO200044696 de 28/01/1999 o processo de separação ocorre por destilação extrativa na presença de um solvente de destilação extrativa selecionado dentre um sulfóxido de dimetil, uma amina, um tiofeno alquilado ou uma parafina. And in WO200044696 of 01/28/1999 the separation process occurs by extractive distillation in the presence of a distillation solvent extractive material selected from a dimethyl sulfoxide, an amine, an alkylated thiophene or a paraffin.
Em contrapartida aos três processos descritos acima, na presente invenção o etanol é totalmente consumido e a quantidade de água formada é relativamente pequena o que possibilita a separação do acetato de etila com uma quantidade também menor de solvente, e um pouco de água permanece no éter etílico e no acetaldeído que formam azeotropia.  In contrast to the three processes described above, in the present invention ethanol is fully consumed and the amount of water formed is relatively small which makes it possible to separate ethyl acetate with also a smaller amount of solvent, and some water remains in the ether. ethyl acetate and acetaldehyde that form azeotropy.
Diante das tecnologias descritas, a presente invenção apresenta vantagens sob vários aspectos. Primeiro por utilizar duas possíveis configurações de sistema inédito que englobam todas as etapas do processo de produção de acetato de etila, acetaldeído, hidrogénio, etileno e água a partir de etanol, empregando meios de reação via leito fixo em estado gasoso e segundo, por obter produtos como o hidrogénio, etileno e acetato de etila puros. Além disso, o acetaldeído também pode ser em sua maior parte purificado em um dos modelos propostos.  In view of the described technologies, the present invention has advantages in various aspects. Firstly, by using two possible new system configurations that encompass all stages of the process of producing ethyl acetate, acetaldehyde, hydrogen, ethylene and water from ethanol, employing gaseous fixed bed reaction means and secondly, by obtaining products such as pure hydrogen, ethylene and ethyl acetate. In addition, acetaldehyde can also be mostly purified in one of the proposed models.
Outra vantagem é que o acetato de etila é obtido a partir da reação de desidrogenação do etanol anidro sem o uso de altas pressões. Adicionalmente, é empregado um único solvente para separar o acetato de etila da água ao final do processo. Também são propostas duas configurações para produzir acetaldeído com 99,1 a 99,9 de pureza, apresentando um gasto maior de energia de acordo com a pureza requerida. A presente invenção atende à necessidade de preservar o meio ambiente, com emissão zero de poluentes.  Another advantage is that ethyl acetate is obtained from the dehydrogenation reaction of anhydrous ethanol without the use of high pressures. Additionally, a single solvent is employed to separate ethyl acetate from water at the end of the process. Two configurations are also proposed to produce 99.1 to 99.9 purity acetaldehyde, having a higher energy expenditure according to the required purity. The present invention addresses the need to preserve the environment with zero emission of pollutants.
A presente invenção compreende meios de reação selecionados dentre reatores de leito fixo. O reator de leito fixo possui vantagens em relação a outros tipos de configurações. Simplicidade de operação devido à fixação das partículas no leito, com baixo custo de construção e manutenção, pouca necessidade de equipamentos auxiliares, por não exigir unidades custosas de separação do catalisador a jusante, e larga flexibilidade de operação figuram entre estas vantagens.  The present invention comprises reaction media selected from fixed bed reactors. The fixed bed reactor has advantages over other types of configurations. Simplicity of operation due to bedding of particles, low construction and maintenance costs, little need for ancillary equipment as it does not require costly downstream catalyst separation units, and wide operating flexibility are among these advantages.
As dificuldades usualmente relacionadas ao emprego de reatores de leito fixo referem-se, principalmente, à transferência de calor. Isto se deve ao fato de que a taxa de liberação de energia ao longo do comprimento do reator não é uniforme e a maior parte da reação normalmente ocorre nas proximidades da entrada do reator. Alguns artifícios para superar estas dificuldades são conhecidos. Um deles é o emprego de reatores multitubulares, tal como utilizado por McGreavy e Maciel Filho (McGreavy, C; Maciel Filho, R. 3rd Latin American Conf. Heat and Mass, México, 1988), sendo apenas uma das formas de modificar apropriadamente a condição física do leito. Alguns artifícios são usados para reduzir os efeitos térmicos da reação, tais como o uso de diluentes inertes na alimentação, e também a diluição do catalisador com material sólido inerte. O controle da temperatura do refrigerante externo e a divisão do leito em seções independentes permitem também controlar adequadamente a temperatura interna do reator (Domingues, A. Modelagem e Simulação de Processo de Oxidação do Etanol a Acetaldeído, Campinas, SP. Faculdade de Engenharia Química, Universidade Estadual de Campinas, 1992; Maciel Filho, R.; Domingues, A. ISCRE 12 - Twelfth International Symposium on Chemical Reaction Engineering, Turim, Itália, 1992). The difficulties usually related to the use of fixed bed reactors mainly refer to heat transfer. This is because the rate of energy release over the length of the reactor It is not uniform and most of the reaction usually occurs near the reactor inlet. Some devices to overcome these difficulties are known. One is the use of multitubular reactors, as used by McGreavy and Maciel Filho (McGreavy, C; Maciel Filho, R. 3rd Latin American Conf. Heat and Mass, Mexico, 1988), being just one way to properly modify the physical condition of the bed. Some devices are used to reduce the thermal effects of the reaction, such as the use of inert diluents in the feed, as well as the catalyst dilution with inert solid material. The control of the external refrigerant temperature and the division of the bed into independent sections also allows to adequately control the internal reactor temperature (Domingues, A. Ethanol Oxidation Process Modeling and Simulation Acetaldehyde, Campinas, SP. Faculty of Chemical Engineering, Campinas State University, 1992; Maciel Filho, R.; Domingues, A. ISCRE 12 - Twelfth International Symposium on Chemical Reaction Engineering, Turin, Italy, 1992).
Com relação ao catalisador, foram utilizados catalisadores de óxidos mistos de cobalto e alumínio derivados da calcinação de materiais do tipo hidrotalcita. Matérias do tipo hidrotalcita calcinados a 500 e 650 °C formam óxidos mistos mesoporosos. (ARAÚJO M.C., Utilização de Hidrotalcitas Mg/Co/Al na Conversão de Etanol, Dissertação de Mestrado, Faculdade de Engenharia Química, Universidade Estadual de Campinas, 112p, 2003).  Regarding the catalyst, mixed cobalt and aluminum oxide catalysts derived from the calcination of hydrotalcite materials were used. Hydrotalcite-type materials calcined at 500 and 650 ° C form mixed mesoporous oxides. (ARAÚJO M.C., Use of Hydrotalcites Mg / Co / Al in Ethanol Conversion, Master's Dissertation, Faculty of Chemical Engineering, State University of Campinas, 112p, 2003).
Nos estudos de adsorção de nitrogénio para observar a distribuição de poros foram encontradas duas regiões de formação de poros para os materiais com 100% de cobalto que à medida que vão sendo calcinados à temperaturas mais altas apresentam apenas uma distribuição de diâmetro de poros, ou seja a 650 °C, e nesta calcinação já não se apresentou a formação de butanol e butiraldeíddo e apenas traços de éter etílico com quantidade maiores de acetaldeído > acetato de etila > etileno. Provavelmente, os poros cilíndricos ou esféricos mais largos tendem a gerar a desidrogenação e a maior proximidade do cobalto e alumínio à característica ácida para a formação do etileno nestes materiais (ARAÚJO M.C., Utilização de Hidrotalcitas Mg/Co/Al na Conversão de Etanol, Dissertação de Mestrado, Faculdade de Engenharia Química, Universidade Estadual de Campinas, 112p, 2003). Nitrogen adsorption studies to observe pore distribution have found two pore-forming regions for 100% cobalt materials which, as they are calcined at higher temperatures, have only a pore diameter distribution, ie at 650 ° C, and this calcination no longer showed the formation of butanol and butyraldehyde and only traces of ethyl ether with higher amounts of acetaldehyde> ethyl acetate> ethylene. Probably, the larger cylindrical or spherical pores tend to generate dehydrogenation and closer proximity of cobalt and aluminum to the acid characteristic for ethylene formation in these materials (ARAÚJO MC, Utilization of Hydrotalcitas Mg / Co / Al in Conversion). Ethanol, Master's Dissertation, Faculty of Chemical Engineering, State University of Campinas, 112p, 2003).
A presente invenção empregou vantajosamente este tipo de material oriundo de hidrotalcitas calcinadas a 650°C por serem relativamente fáceis de preparar e caracterizar, obtendo-se materiais mesoporos ou comumente chamados de nanométricos. Este catalisador de óxidos mistos obtidos com a calcinação a 650°C apresentaram a vantagem de preferencialmente promoverem a desidrogenação do acetaldeído e do acetato de etila gerando uma maior quantidade de hidrogénio e reduzindo, a traços, as quantidades de éter etílico, evidenciando que o processo de desidratação ocorre apenas para moléculas pequenas, como o etileno, e gerando também menores quantidade de água. Já no caso dos óxidos mistos de cobalto é necessária uma maior quantidade de tubos de reatores para garantir a conversão de todo o etanol alimentado, além de desvantajosamente, serem classificados como tóxicos, materiais classe II, e ainda, o cobalto é um mineral pouco encontrado no Brasil, devendo ser sempre importado..  The present invention advantageously employed this type of material derived from calcined hydrotalcites at 650 ° C because they are relatively easy to prepare and characterize to obtain mesoporous or commonly called nanometric materials. This mixed oxide catalyst obtained with calcination at 650 ° C had the advantage of preferentially promoting the dehydrogenation of acetaldehyde and ethyl acetate by generating a greater amount of hydrogen and reducing the amounts of ethyl ether to a trace, showing that the process Dehydration occurs only for small molecules, such as ethylene, and also generates smaller amounts of water. In the case of cobalt mixed oxides, a larger quantity of reactor tubes is necessary to ensure the conversion of all the ethanol fed, besides being disadvantageously classified as toxic, class II materials, and also, cobalt is a mineral little found. in Brazil, should always be imported ..
Um dos processos que mais consome energia em uma indústria química são os processos de separação envolvendo misturas formadas que apresentam azeotropos de mínimo ou de máximo, pois, nestes casos, deve ser acrescentado o uso de solventes, pressão, novas colunas e refluxos. Além disso, a escolha do solvente deve ser tal que garanta a não toxidade da planta. Neste sentido, a presente invenção apresenta uma alternativa de sistema e processo integrado de obtenção de acetato de etila, acetaldeído, hidrogénio, etileno e água, com ênfase em minimização do gasto energético e reaproveitamento dos solventes utilizados durante o mesmo.  One of the most energy-consuming processes in a chemical industry is separation processes involving formed mixtures that have minimum or maximum azeotropes, as in these cases the use of solvents, pressure, new columns and refluxes should be added. In addition, the choice of solvent should be such as to ensure non-toxicity of the plant. In this regard, the present invention provides an alternative system and integrated process for obtaining ethyl acetate, acetaldehyde, hydrogen, ethylene and water, with an emphasis on minimizing energy expenditure and reusing the solvents used therein.
BREVE DESCRIÇÃO DA INVENÇÃO BRIEF DESCRIPTION OF THE INVENTION
A presente invenção contempla um processo integrado de produção de acetato de etila, acetaldeído, hidrogénio, etileno e água. Um sistema de obtenção dos multiprodutos em duas configurações preferenciais. São um objeto adicional da presente invenção os produtos de alta pureza obtidos pelos processos ora descritos. A invenção descreve um processo integrado compreendendo etapas de reação de desidrogenação e desidratação de etanol, separação e obtenção dos produtos desejados conferindo reaproveitamento de solvente em etapas subsequentes. The present invention contemplates an integrated process for producing ethyl acetate, acetaldehyde, hydrogen, ethylene and water. A multiproduct procurement system in two preferred configurations. A further object of the present invention are the high purity products obtained by the processes described herein. The invention describes an integrated process comprising dehydrogenation and ethanol dehydration reaction steps, separating and obtaining the desired products by conferring solvent reuse in subsequent steps.
A configuração do referido sistema integrado compreendendo este processo é denominado a. A etapa de reação do dito processo ocorre com um catalisador e alimentação de etanol no reator (PFRHIDRO) denominada etapa (a). As etapas de separação do dito processo compreendem: uma etapa de separação entre acetaldeído e etileno (topo da coluna) e acetato de etila com água (fundo da coluna) (COLUNAI ); após etapa de reação (a) denominada (b1 ); uma separação entre etileno (topo da coluna) e acetaldeído (fundo da coluna) (COLUNA2), obtido em (b1 ) na corrente do topo da coluna (COLUNAI ) denominada (b2); uma separação entre acetato de etila (topo da coluna) e água com etilenoglicol (fundo da coluna) (COLUNA3), obtida em (b1) na corrente do fundo da coluna (COLUNAI) denominada (b3); uma separação entre água (topo da coluna) e etilenoglicol (fundo da coluna) (COLUNA4) obtida em (b3) na corrente do fundo da coluna (COLUNA3) denominada etapa (b4). A etapa de obtenção de etileno puro compreende a etapa de separação do etileno (topo da coluna) do acetaldeído (fundo da coluna) (COLUNA2), obtido em (b1 ) na corrente do topo da coluna (COLUNAI ), de acordo com etapa (b2), denominada etapa (d ). Para a obtenção de acetaldeído (fundo da coluna) este foi separado do etileno (topo da coluna) (COLUNA2), obtido em (b1 ) na corrente do topo da coluna (COLUNAI ), de acordo com etapa (b2), denominada etapa (d1 ). A etapa de obtenção de acetato de etila puro, denominada etapa (e1 ), compreende a remoção de água (fundo da coluna) do acetato de etila (topo da coluna) (COLUNA3) obtida em (b1 ) na corrente do fundo da coluna (COLUNAI ) com adição de etileno glicol, de acordo com etapa (b3). E a obtenção de hidrogénio, denominada etapa (f1 ) compreende a separação, através do flash, dos outros produtos após a etapa de reação (a).  The configuration of said integrated system comprising this process is called a. The reaction step of said process occurs with a catalyst and ethanol feed into the reactor (PFRHIDRO) called step (a). The steps of separating said process comprise: a step of separating acetaldehyde and ethylene (top of the column) and ethyl acetate with water (bottom of the column) (COLUMN); after reaction step (a) named (b1); a separation between ethylene (top of the column) and acetaldehyde (bottom of the column) (COLUMN2), obtained at (b1) in the column top stream (COLUMNI) called (b2); a separation between ethyl acetate (top of the column) and water with ethylene glycol (bottom of the column) (COLUMA3), obtained at (b1) in the column bottom stream (COLUNAI) called (b3); a separation between water (column top) and ethylene glycol (column bottom) (COLUM4) obtained at (b3) in the column bottom stream (COLUM4) called step (b4). The step of obtaining pure ethylene comprises the step of separating the ethylene (column top) from acetaldehyde (column bottom) (COLUMA2), obtained from (b1) in the column top stream (COLUMAI), according to step ( b2), called step (d). To obtain acetaldehyde (bottom of the column) it was separated from the ethylene (top of the column) (COLUMA2), obtained from (b1) in the column top stream (COLUNAI), according to step (b2), called step ( d1). The step of obtaining pure ethyl acetate, called step (e1), comprises the removal of water (bottom of the column) from the ethyl acetate (top of the column) (COLUMA3) obtained at (b1) in the bottom of the column ( COLUMN) with ethylene glycol addition according to step (b3). And obtaining hydrogen, called step (f1) comprises flash separation of the other products after reaction step (a).
Uma segunda configuração de processo integrado para obtenção de acetato de etila, acetaldeído, hidrogénio e etileno é descrita. A configuração do referido sistema integrado compreendendo este processo é denominado β. A etapa de reação do dito processo acontece com um catalisador e com a alimentação de etanol no reator (PFRHIDRO) denominada etapa (a). A etapa de separação das misturas compreende uma sequência de etapas conforme descrito a seguir: uma etapa de separação entre uma fração de acetaldeído e etileno (topo da coluna) e acetato de etila com água e outra fração do acetaldeído (fundo da coluna) (COLUNAI ); após etapa de reação (a) denominada etapa (fc>1 ); uma separação entre etileno (topo da coluna) e acetaldeído (fundo da coluna) (COLUNA2), obtido em (b1 ) na corrente do topo da coluna (COLUNAI ) denominada etapa (b2); uma separação entre acetaldeído (topo da coluna) e acetato de etila com água (fundo da coluna) (COLUNA3), obtida em (b1 ) na corrente do fundo da coluna (COLUNAI ) denominada etapa (b3); uma separação entre acetato de etila (topo da coluna) e água com etilenoglicol (fundo da coluna) (COLUNA4), obtida em (b3) na corrente do fundo da coluna (COLUNA3) denominada etapa (b4); uma separação água (topo da coluna) e etilenoglicol (fundo da coluna) (COLUNA5), obtida em (b4) na corrente do fundo da coluna (COLUNA4) denominada etapa (b5). A etapa de obtenção de etileno puro compreende a etapa de separação do etileno (topo da coluna) do acetaldeído (fundo da coluna) (COLUNA2), obtido em (b1 ) na corrente do topo da coluna (COLUNAI ), de acordo com etapa (b2), denominada etapa (d ). A etapa de obtenção de acetato de etila ocorre em duas colunas, uma delas a partir da separação do acetaldeído (fundo da coluna) do etileno (topo da coluna) (COLUNA2), obtido em (b1 ) na corrente do topo da coluna (COLUNAI ), de acordo com etapa (b2), denominada etapa (d1 ); uma segunda coluna em que ocorre a separação do acetaldeído (topo da coluna) do acetato de etila com água (fundo da coluna) (COLUNA3) obtida em (b1 ) na corrente do fundo da coluna (COLUNAI ), de acordo com etapa (b3), denominada etapa (d2). A etapa de obtenção de acetato de etila puro, denominada etapa (e1 ), compreende a remoção de água (fundo da coluna) do acetato de etila (topo da coluna) (COLUNA4) obtida em (b3) na corrente do fundo da coluna (COLUNA3) com adição de etileno glicol, de acordo com etapa (b4). E a obtenção de hidrogénio, denominada etapa (f1 ) compreende a separação, através do flash, dos outros produtos após a etapa de reação (a). A second integrated process configuration for obtaining ethyl acetate, acetaldehyde, hydrogen and ethylene is described. The configuration of said integrated system comprising this process is called β. THE The reaction step of said process occurs with a catalyst and with the feed of ethanol into the reactor (PFRHIDRO) called step (a). The mixture separation step comprises a sequence of steps as described below: a separation step between a fraction of acetaldehyde and ethylene (top of the column) and ethyl acetate with water and another fraction of acetaldehyde (bottom of the column) (COLUMN ); after reaction step (a) called step (fc>1); a separation between ethylene (top of the column) and acetaldehyde (bottom of the column) (COLUMN2), obtained at (b1) in the column top stream (COLUMNI) called step (b2); a separation between acetaldehyde (top of the column) and ethyl acetate with water (bottom of the column) (COLUMA3), obtained at (b1) in the column bottom stream (COLUNAI) called step (b3); a separation between ethyl acetate (column top) and water with ethylene glycol (column bottom) (COLUMA4), obtained at (b3) in the column bottom stream (COLUMA3) called step (b4); a separation of water (top of the column) and ethylene glycol (bottom of the column) (COLUMN5), obtained at (b4) in the column bottom stream (COLUMN4) called step (b5). The pure ethylene step comprises the step of separating the ethylene (column top) from acetaldehyde (column bottom) (COLUMA2), obtained from (b1) in the column top stream (COLUMAI), according to step ( b2), called step (d). The step for obtaining ethyl acetate takes place in two columns, one of them from the separation of acetaldehyde (bottom of the column) from ethylene (top of the column) (COLUNA2), obtained from (b1) in the top of the column (COLUNAI) stream. ), according to step (b2), called step (d1); a second column in which acetaldehyde (top of the column) separation of ethyl acetate with water (column bottom) (COLUMA3) obtained from (b1) in the column bottom stream (COLUNAI) according to step (b3) occurs ), called step (d2). The step of obtaining pure ethyl acetate, called step (e1), comprises the removal of water (bottom of the column) from the ethyl acetate (top of the column) (COLUMA4) obtained from (b3) in the bottom stream of the column ( COLUMN3) with ethylene glycol addition according to step (b4). And obtaining hydrogen, called step (f1) comprises the flash separation of the other products after reaction step (a).
O sistema integrado de produção de acetato de etila, acetaldeído, hidrogénio, etileno, pela configuração a, compreende ao menos um meio de reação em leito fixo com catalisador do tipo hidrotalcita calcinada; ao menos quatro meios de separação de misturas; meios de separação compreendendo ao menos uma corrente adicional de solvente preferencialmente etilenoglicol; meios de trocar calor selecionados dentre troca em paralelo e em contra- corrente entre correntes resultantes do próprio processo; meios de misturar solventes e reagentes; meios de limpeza ou ativação de leito catalítico, limpeza de linha, ajuste de temperatura de reação e, monitoramento da queda de pressão no leito catalítico; e, meios de separação do hidrogénio disponível.  The integrated ethyl acetate, acetaldehyde, hydrogen, ethylene production system, by configuration a, comprises at least one fixed bed reaction medium with calcined hydrotalcite type catalyst; at least four mixture separation means; separating means comprising at least one additional solvent stream preferably ethylene glycol; heat exchange means selected from parallel and countercurrent exchange between currents resulting from the process itself; means for mixing solvents and reagents; catalytic bed cleaning or activation means, line cleaning, reaction temperature adjustment and monitoring of catalytic bed pressure drop; and, available hydrogen separation means.
O sistema integrado de produção de acetato de etila, acetaldeído, hidrogénio e etileno pela configuração β compreende ao menos um meio de reação em leito fixo com catalisador do tipo hidrotalcita calcinada; ao menos cinco meios de separação de misturas; meios de separação compreendendo ao menos uma corrente adicional de solvente preferencialmente etileno glicol; meios de trocar calor selecionado dentre troca em paralelo e em contra- corrente entre correntes resultantes do próprio processo; meios de misturar solventes e reagentes; meios de limpeza ou ativação de leito catalítico, limpeza de linha, ajuste de temperatura de reação e, monitoramento da queda de pressão no leito catalítico; e meios de separação do hidrogénio disponível. BREVE DESCRIÇÃO DAS FIGURAS  The integrated ethyl acetate, acetaldehyde, hydrogen and ethylene production system by the β configuration comprises at least one fixed bed reaction medium with calcined hydrotalcite catalyst; at least five mixture separation means; separating means comprising at least one additional solvent stream preferably ethylene glycol; means for exchanging heat selected from parallel and countercurrent exchange between currents resulting from the process itself; means for mixing solvents and reagents; catalytic bed cleaning or activation means, line cleaning, reaction temperature adjustment and monitoring of catalytic bed pressure drop; and available hydrogen separation means. BRIEF DESCRIPTION OF THE FIGURES
Figura 1 : Sistema com configuração a. Figure 1: System with configuration a.
Figura 2: Sistema com configuração β. Figure 2: System with β configuration.
Figura 3: Composição molar do reator multitubular para a desidrogenação e desidratação do etanol 10000 tubos configuração a.  Figure 3: Molar composition of the multitubular reactor for dehydrogenation and dehydration of ethanol 10,000 tubes configuration a.
DESCRIÇÃO DETALHADA DA INVENÇÃO DETAILED DESCRIPTION OF THE INVENTION
A presente invenção descreve um sistema integrado para produção de acetato de etila, acetaldeído, hidrogénio e etileno. O processo de produção do acetato de etila por meio de reação em leito fixo com catalisadores de óxidos mistos de cobalto e alumínio derivados da calcinação de materiais do tipo hidrotalcita e meios de separação em arranjos configurados para máxima eficiência, recuperação de solventes e energia, de acordo com um dito sistema proposto, resultam em produtos com bons níveis de especificação. The present invention describes an integrated system for producing ethyl acetate, acetaldehyde, hydrogen and ethylene. The ethyl acetate production process by fixed bed reaction with mixed cobalt and aluminum oxide catalysts derived from calcination of hydrotalcite and separation means in arrangements configured for maximum efficiency, solvent recovery and energy, according to said proposed system, result in products with good specification levels.
O dito sistema integrado compreende duas configurações selecionadas dentre sistema operando com cinco colunas de destilação e sistema operando apenas com quatro. Em ambas as configurações se obtêm acetato de etila, acetaldeído, hidrogénio e etileno.  Said integrated system comprises two configurations selected from system operating with five distillation columns and system operating with only four. In both configurations ethyl acetate, acetaldehyde, hydrogen and ethylene are obtained.
As ditas configurações operam com um solvente para separar o acetato de etila da água, o dito solvente pode ser preferencialmente etilenoglicol.  Said embodiments operate with a solvent to separate ethyl acetate from water, said solvent may preferably be ethylene glycol.
Na presente invenção, denominamos o dito sistema que opera com quatro colunas como α e o dito sistema que opera com cinco denominamos β. O catalisador selecionado foi hidrotalcita calcinado a 650°C composto de cobalto e alumínio, uma vez que este foi mais seletivo em relação aos produtos obtidos (etileno, acetaldeído, acetato de etila, hidrogénio e traços de éter etílico). Para efeito de denominações do presente relatório descritivo, uma mistura azeotrópica ocorre quando a composição da fase líquida é igual à composição da fase vapor para um determinado ponto da curva de equilíbrio. Quando a temperatura de ponto de bolha é igual à temperatura do ponto de orvalho e corresponde ao menor valor para temperatura do diagrama, o azeótropo é denominado de azeótropo de mínimo ponto de ebulição. Caso contrário, ou seja, maior valor para a temperatura no diagrama, o azeótropo, é denominado de azeótropo de máximo ponto de ebulição.  In the present invention, we call said four-column operating system α and said five-column operating system we call β. The catalyst selected was calcined hydrotalcite at 650 ° C composed of cobalt and aluminum, as it was more selective in relation to the products obtained (ethylene, acetaldehyde, ethyl acetate, hydrogen and traces of ethyl ether). For the purposes of the names in this report, an azeotropic mixture occurs when the composition of the liquid phase is equal to the composition of the vapor phase for a given point on the equilibrium curve. When the bubble point temperature is equal to the dew point temperature and corresponds to the lowest temperature value in the diagram, the azeotrope is called the minimum boiling azeotrope. Otherwise, that is, the highest value for the temperature in the diagram, the azeotrope, is called the maximum boiling point azeotrope.
Adicionalmente a presente invenção compreende um processo integrado de obtenção de acetato de etila, acetaldeído, hidrogénio e etileno cujas condições operacionais preferenciais estão descritas a seguir.  Additionally the present invention comprises an integrated process for obtaining ethyl acetate, acetaldehyde, hydrogen and ethylene whose preferred operating conditions are described below.
É um objeto adicional da presente invenção os produtos com alta pureza, preferencialmente entre 95,5% e 99,9%, obtidos pelo dito processo integrado de acordo com cada uma das configurações dos sistemas propostos. Os ditos produtos são acetato de etila, acetaldeído, hidrogénio e etileno.  It is a further object of the present invention the high purity products, preferably between 95.5% and 99.9%, obtained by said integrated process according to each of the proposed system configurations. Said products are ethyl acetate, acetaldehyde, hydrogen and ethylene.
O sistema denominado α separa o acetaldeído em apenas uma coluna sem uso de solventes, já que o catalisador tem uma produção residual de éter etílico que permanecerá no acetaldeído devido à azeotropia existente entre ambos. The so-called α system separates acetaldehyde into just one solvent-free column as the catalyst has a residual ether production which will remain in acetaldehyde due to the azeotropy between them.
O sistema denominado β separa o acetaldeído em duas colunas sem uso de solventes.  The system called β separates acetaldehyde into two columns without the use of solvents.
O sistema integrado de produção de acetato de etila, acetaldeído, hidrogénio e etileno, em ambas as configurações α e β, pode alternativamente compreender meios de limpeza ou ativação de leito catalítico, limpeza da linha, ajuste de temperatura de reação auxiliando na remoção do calor da reação química por convecção e, monitoramento da queda de pressão no leito catalítico.  The integrated ethyl acetate, acetaldehyde, hydrogen and ethylene production system, in both α and β configurations, can alternatively comprise catalytic bed cleaning or activation means, line cleaning, reaction temperature adjustment assisting in heat removal chemical reaction by convection and monitoring of pressure drop in the catalytic bed.
Os ditos meios de limpeza ou ativação de leito catalítico, limpeza de linha, ajuste de temperatura de reação e, monitoramento da queda de pressão no leito catalítico pode ser preferencialmente através de alimentação de uma corrente de nitrogénio, com uma determinada vazão para remover impurezas do leito catalítico bem como manter a temperatura em 350°C. E só após desta alimentação do nitrogénio que deve-se iniciar a alimentação com etanol.  Said catalytic bed cleaning or activation means, line cleaning, reaction temperature adjustment and monitoring of the catalytic bed pressure drop may preferably be by feeding a nitrogen stream with a certain flow rate to remove impurities from the catalytic bed. catalytic bed as well as maintaining the temperature at 350 ° C. And only after this nitrogen feed should the ethanol feed be started.
Os ditos meios de separação são preferencialmente colunas de destilação.  Said separation means are preferably distillation columns.
Os ditos meios de reação em leito fixo são preferencialmente do tipo multitubulares e os meios de separação do hidrogénio disponível, preferencialmente flash ou reator de membranas.  Said fixed bed reaction means is preferably of the multitubular type and the available hydrogen separation means, preferably flash or membrane reactor.
A temperatura de operação dos reatores multitubulares é dependente do tipo de catalisador e do tipo de reação envolvida no processo.  The operating temperature of multitubular reactors is dependent on the type of catalyst and the type of reaction involved in the process.
Nos exemplos de concretização da presente invenção, foram selecionados reatores multitubulares de leito fixo com comprimento de 2 metros e 5,08 centímetros de diâmetro (denominado reator PFRHIDRO) sem, no entanto restringir a presente invenção.  In the exemplary embodiments of the present invention, multitubular fixed bed reactors of 2 meters in length and 5.08 centimeters in diameter (termed PFRHIDRO reactor) were selected without, however, restricting the present invention.
A planta apresenta muitos produtos, porém estes são facilmente separáveis. A separação do acetato de etila do etanol apresenta a maior dificuldade, pois formam uma mistura azeotrópica de mínimo ponto de ebulição, que está localizada próximo à metade da concentração molar de ambos. Já o etileno não apresenta nenhuma dificuldade de separação, qualquer que seja a sua concentração. E com relação à mistura acetaldeído etanol, quanto maior as concentrações de acetaldeído no etanol, mais facilmente estes vão ser separados. The plant has many products, but these are easily separable. The separation of ethyl acetate from ethanol presents the greatest difficulty, since they form an azeotropic mixture with minimum boiling point, which is located close to half the molar concentration of both. Ethylene does not present any difficulty of separation, whatever your concentration. And with respect to the acetaldehyde ethanol blend, the higher the acetaldehyde concentrations in ethanol, the more easily they will be separated.
Para se evitar os ternários azeotrópicos: etanol/acetato de etila/água aumentou-se o número de tubos de reator nas plantas propostas, para os catalisadores oriundos destes materiais do tipo hidrotalcita calcinados a 650°C, assim praticamente todo o etanol reagiu.  To avoid the azeotropic ternaries: ethanol / ethyl acetate / water, the number of reactor tubes in the proposed plants was increased for the catalysts derived from these calcined hydrotalcite-type materials at 650 ° C, thus virtually all of the ethanol reacted.
Outro problema seria a separação do hidrogénio dos demais produtos, o que normalmente ocorreria a temperaturas muito baixas (de -187°C a -192°C). Mas para evitar tal fato foi utilizado um flash (denominado FLASH1 ), um sistema simples de separação líquido vapor para retirar o hidrogénio do sistema. Um reator de membrana permeável ao hidrogénio também poderia ser empregado no sistema proposto em substituição ao flash.  Another problem would be the separation of hydrogen from other products, which would normally occur at very low temperatures (from -187 ° C to -192 ° C). But to avoid this fact a flash (called FLASH1), a simple liquid vapor separation system was used to remove hydrogen from the system. A hydrogen permeable membrane reactor could also be employed in the proposed flash replacement system.
Como irá ocorrer a formação de azeotropia de mínimo ponto de ebulição entre o acetaldeído e o éter etílico a melhor separação deve ocorrer utilizando- se peneiras moleculares, visto a grande diferença no tamanho das moléculas, e não através do uso de solventes. Isso implica em uma grande complexidade operacional e como as quantidades de éter etílico são mínimas não se propõe esta separação neste presente invento.  As the formation of minimal boiling azeotropy between acetaldehyde and ethyl ether will occur, the best separation should occur using molecular sieves, given the large difference in molecule size rather than the use of solvents. This implies a great operational complexity and as the amounts of ethyl ether are minimal this separation is not proposed in this present invention.
Os pontos de ebulição dos compostos encontrados na literatura The boiling points of the compounds found in the literature
(Prausnitz et al., 2001 The Properties of Gases and Liquids; Bruce E. Poling.,(Prausnitz et al., 2001 The Properties of Gases and Liquids; Bruce E. Poling.,
John M. Prausnitz., John P. 0'Connell 15°Edição) estão na Tabela 1. John M. Prausnitz., John P. O'Connell 15th Edition) are in Table 1.
Tabela 1 : Pontos de ebulição (Prausnitz et al., 2001 ) (1 ,01325 bar).  Table 1: Boiling points (Prausnitz et al., 2001) (1,01325 bar).
Figure imgf000017_0001
Figure imgf000017_0001
A preocupação em se obter o produto puro é uma demanda dos novos projetos de planta e da adequação das plantas já existentes. E, valendo-se da versatilidade do catalisador e, por outro lado, sabendo-se da importância da obtenção de água dentro das especificações ambientais, a presente invenção descreve um sistema integrado de produção de acetato de etila, acetaldeído, hidrogénio e etileno compreendendo duas configurações para desidrogenação e desidratação do etanol em fase vapor que se diferem apenas no processo de separação empregado para obtenção do acetaldeído. The concern in obtaining the pure product is a demand of the new plant projects and the adequacy of the existing plants. And, using the catalyst versatility and, on the other hand, knowing the importance of obtaining water within environmental specifications, the present invention describes an integrated ethyl acetate, acetaldehyde, hydrogen and ethylene production system comprising two configurations for dehydrogenation and dehydration of the vapor-phase ethanol that differ only in the separation process employed to obtain acetaldehyde.
Configuração (a) Configuration (a)
A descrição que segue, compreende uma configuração preferencial da presente invenção, sem, no entanto, restringir. O dito processo integrado de produção de acetato de etila, acetaldeído, hidrogénio e etileno compreende as seguintes etapas:  The following description comprises a preferred embodiment of the present invention without limitation. Said integrated process for producing ethyl acetate, acetaldehyde, hydrogen and ethylene comprises the following steps:
(a) reação de desidrogenação e desidratação do etanol com um catalisador e alimentação de etanol no reator (PFRHIDRO);  (a) ethanol dehydrogenation and dehydration reaction with a catalyst and reactor ethanol feed (PFRHIDRO);
(b) separação das misturas compreendendo:  (b) separating mixtures comprising:
(b1 ) uma separação entre acetaldeído com etileno (topo da coluna) e acetato de etila com água (fundo da coluna) (COLUNAI ) após etapa de reação (a);  (b1) a separation between ethylene acetaldehyde (top of the column) and ethyl acetate with water (bottom of the column) (COLUMN) after reaction step (a);
(b2) uma separação entre etileno (topo da coluna) e acetaldeído (fundo da coluna) (COLUNA2), obtido em (b1) na corrente do topo da coluna (COLUNAI );  (b2) a separation between ethylene (column top) and acetaldehyde (column bottom) (COLUMN2), obtained from (b1) in the column top stream (COLUMNI);
(b3) uma separação entre acetato de etila (topo da coluna) e água com etilenoglicol (fundo da coluna) (COLUNA3) obtida em (b1 ) na corrente do fundo da coluna (COLUNAI );  (b3) a separation between ethyl acetate (top of the column) and water with ethylene glycol (column bottom) (COLUMA3) obtained from (b1) in the column bottom stream (COLUNAI);
(b4) uma separação entre água (topo da coluna) e etilenoglicol (fundo da coluna) (COLUNA4) obtida em (b3) na corrente do fundo da coluna (COLUNA3).  (b4) a separation between water (top of the column) and ethylene glycol (bottom of the column) (COLUMA4) obtained from (b3) in the column bottom stream (COLUMA3).
(c) obtenção de etileno compreendendo:  (c) obtaining ethylene comprising:
(d ) separação do etileno (topo da coluna) do acetaldeído (fundo da coluna) (COLUNA2), obtido em (b1 ) na corrente do topo da coluna (COLUNAI ) e consequentente obtenção de etileno puro, de acordo com etapa (b2).  (d) separation of ethylene (column top) from acetaldehyde (column bottom) (COLUMA2) obtained from (b1) in the column top stream (COLUMAI) and consequently obtaining pure ethylene according to step (b2) .
(d) obtenção de acetaldeído compreendendo: (d1 ) separação do acetaldeído (fundo da coluna) do etileno (topo da coluna) (COLUNA2), obtido em (b1 ) na corrente do topo da coluna (COLUNAI ) e consequentente obtenção de acetaldeído puro, de acordo com etapa (b2).(d) obtaining acetaldehyde comprising: (d1) separation of acetaldehyde (bottom of column) from ethylene (top of column) (COLUMN2) obtained from (b1) in the column top stream (COLUMNI) and consequently obtaining pure acetaldehyde according to step (b2) .
(e) obtenção de acetato de etila compreendendo: (e) obtaining ethyl acetate comprising:
(e1 ) remoção de água (fundo da coluna) do acetato de etila (topo da coluna) (COLUNA3) obtida em (b1 ) na corrente do fundo da coluna (COLUNAI) com adição de etilenoglicol e, consequentente obtenção de acetato de etila puro, de acordo com etapa (b3);  (e1) removal of water (bottom of the column) from ethyl acetate (top of the column) (COLUMA3) obtained from (b1) in the column bottom stream (COLUNAI) with the addition of ethylene glycol and thereby obtaining pure ethyl acetate according to step (b3);
(f) obtenção de hidrogénio compreendendo:  (f) obtaining hydrogen comprising:
(f1 ) separação, através de um meio de separação, dos outros produtos após a etapa de reação (a).  (f1) separating, by means of separation, the other products after reaction step (a).
O dito exemplo de concretização da presente invenção tem por intenção melhor esclarecer o processo, sem, no entanto, restringir. O processo (a) de acordo com a descrição anterior compreende uma corrente de alimentação com etanol na etapa de reação (a) com uma pressão de entrada preferencial de 1 ,355 bar e uma temperatura preferencial de 350°C com 32 kmol/h de etanol. No referido exemplo a configuração é proposta com um misturador para eventuais etapas de manutenção do leito, visto que não se utiliza alimentação de nitrogénio na etapa de reação, mas este pode ser utilizado em casos de star-up de operação para uma estabilização da temperatura de leito fixo do reator.  Said exemplary embodiment of the present invention is intended to further clarify the process without, however, restricting it. Process (a) according to the foregoing description comprises an ethanol feed stream in reaction step (a) having a preferred inlet pressure of 1.355 bar and a preferred temperature of 350 ° C with 32 kmol / h of ethanol. In this example the configuration is proposed with a mixer for possible bed maintenance steps, since nitrogen feed is not used in the reaction step, but this can be used in case of operating star-up for a temperature stabilization of fixed reactor bed.
A etapa de separação (b) compreendeu uma etapa de separação (b1 ) entre acetaldeído com etileno (topo da coluna) e acetato de etila com água Separation step (b) comprised a separation step (b1) between ethylene acetaldehyde (top of the column) and ethyl acetate with water
(fundo da coluna) (COLUNAI ) em uma faixa preferencial de temperatura entre 13 e 70°C, uma pressão preferencial atmosférica e, preferencialmente, em 24 estágios, sendo o prato de alimentação o 14°, com razão de refluxo 0,8 e taxa de fundo de 10,69 kmol/h. (column bottom) (COLUMN) in a preferred temperature range between 13 and 70 ° C, a preferential atmospheric pressure and preferably in 24 stages, the feed plate being 14 °, with a reflux ratio 0.8 and background rate of 10.69 kmol / h.
Nos exemplos de concretização, a etapa de separação (b2) entre etileno In the exemplary embodiments, the separation step (b2) between ethylene
(topo da coluna) e acetaldeído (fundo da coluna) (COLUNA2) considerou uma faixa preferencial de temperatura entre - 105 e 20°C, uma pressão atmosférica e, preferencialmente em 16 estágios, sendo o prato de alimentação o 8o, com razão de refluxo 1 e taxa destilado 4,09 kmol/h. O presente processo na configuração α compreende uma alimentação de solvente preferencialmente etilenoglicol durante separação (b3) entre acetato de etila (topo da coluna) e água (fundo da coluna) (COLUNA3) obtida em (b1 ) na corrente do fundo da coluna (COLUNAI ) e, consequente obtenção do etilenoglicol puro com uma faixa preferencial de temperatura de 75 a 120°C, uma pressão atmosférica e, preferencialmente em 52 estágios, sendo o prato de alimentação o 43° e o prato de alimentação do solvente o 11o, com razão de refluxo 0,52 e taxa destilado de 6,49 kmol/h com convergência líquido/líquido/vapor. (top of the column) and acetaldehyde (bottom of the column) (COLUMN2) considered a preferred temperature range between -105 to 20 ° C, an atmospheric pressure, and preferably in 16 stages, with the feed plate 8 o of reflux 1 and distilled rate 4.09 kmol / h. The present process in the α configuration comprises a solvent feed preferably ethylene glycol during separation (b3) between ethyl acetate (top of the column) and water (bottom of the column) (COLUMA3) obtained at (b1) in the bottom of the column (COLUNAI) stream. ) and, consequently obtaining pure ethylene to a preferred range of temperature of 75 at 120 ° C, atmospheric pressure and preferably at 52 stages, and the feed plate the 43 ° and the solvent feed plate 11 a, with reflux ratio 0.52 and distilled rate of 6.49 kmol / h with liquid / liquid / vapor convergence.
Com relação a etapa de separação (b4) entre água (topo da coluna) e etilenoglicol (fundo da coluna) (COLUNA4) obtida em (b3) na corrente do fundo da coluna (COLUNA3), a temperatura preferencial é selecionada dentre 98 e 195,5°C e pressão atmosférica e, preferencialmente em 22 estágios, sendo o prato de alimentação o 7o, com razão de refluxo 0,54 e taxa fundo 4,4 kmol/h. With respect to the separation step (b4) between water (top of the column) and ethylene glycol (bottom of the column) (COLUMA4) obtained at (b3) in the column bottom current (COLUMA3), the preferred temperature is selected from 98 to 195 5 ° C and atmospheric pressure, and preferably at 22 stages, being the feed plate 7, with a reflux ratio 0.54 and background rate 4.4 kmol / h.
Vantajosamente o solvente (etilenoglicol) resultante da etapa (b4) é recuperado e re-circulado, podendo alimentar novamente a etapa de separação da COLUNA 3. A água no sistema proposto é considerada um produto nobre do processo, porque se a ela sai pura ao final o processo é totalmente eficiente e os gastos energéticos são computados a água.  Advantageously the solvent (ethylene glycol) resulting from step (b4) is recovered and recirculated and can again feed the separation step of COLUMN 3. The water in the proposed system is considered a noble product of the process because if it comes out pure when In the end the process is totally efficient and the energy costs are calculated on water.
É um objeto adicional da presente invenção, um sistema integrado de produção de acetato de etila acetaldeído, hidrogénio e etileno em uma configuração a, compreendendo:  A further object of the present invention is an integrated ethyl acetate acetaldehyde, hydrogen and ethylene production system in an a configuration comprising:
(a) ao menos um meio de reação em leito fixo com catalisador do tipo hidrotalcita calcinada;  (a) at least one fixed bed reaction medium with calcined hydrotalcite catalyst;
(b) ao menos quatro meios de separação de misturas;  (b) at least four mixture separation means;
(b1 ) meios de separação compreendendo ao menos uma corrente adicional de solvente;  (b1) separating means comprising at least one additional solvent stream;
(c) meios de trocar calor;  (c) heat exchange means;
(d) meios de misturar solventes e reagentes;  (d) means for mixing solvents and reagents;
(e) meios de limpeza ou ativação de leito catalítico, limpeza de linha, ajuste de temperatura de reação e, monitoramento da queda de pressão no leito catalítico; (f) meios de separação do hidrogénio disponível. (e) catalytic bed cleaning or activation means, line cleaning, reaction temperature adjustment and monitoring of catalytic bed pressure drop; (f) available hydrogen separation means.
Uma configuração preferencial do sistema compreende:  A preferred system configuration comprises:
(a) ao menos um meio de reação preferencialmente reator multitubular em leito fixo com catalisador do tipo hidrotalcita calcinada;  (a) at least one reaction medium preferably multitubular fixed bed reactor with calcined hydrotalcite catalyst;
(b) ao menos quatro meios de separação de misturas preferencialmente colunas de destilação;  (b) at least four mixture separation means preferably distillation columns;
(b1 ) meios de separação compreendendo ao menos um destilador alimentado com uma corrente adicional de solvente preferencialmente etilenoglicol;  (b1) separating means comprising at least one distiller fed with an additional stream of solvent preferably ethylene glycol;
(c) meios de trocar calor selecionado dentre troca em paralelo e em contra-corrente preferencialmente trocadores de calor indireto em contra- corrente entre correntes resultantes do próprio processo;  (c) means of exchanging heat selected from parallel and countercurrent exchange preferably indirect countercurrent heat exchangers between currents resulting from the process itself;
(d) meios de misturar solventes e reagentes;  (d) means for mixing solvents and reagents;
(e) meios de limpeza ou ativação de leito catalítico, limpeza de linha, ajuste de temperatura de reação e, monitoramento da queda de pressão no leito catalítico ser preferencialmente através de alimentação com uma corrente de nitrogénio no elemento (a), pois a pressão esta relacionada com a conversão do etanol;  (e) catalytic bed cleaning or activation means, line cleaning, reaction temperature adjustment, and monitoring of the catalytic bed pressure drop preferably be by supply with a nitrogen stream in element (a), as the pressure it is related to the conversion of ethanol;
(f) meios de separação do hidrogénio disponível, preferencialmente flash ou reator de membranas.  (f) available hydrogen separation means, preferably flash or membrane reactor.
Para melhor entendimento do dito sistema, a configuração denominada a, encontra-se disponível na Figura 1.  For a better understanding of this system, the configuration named a is available in Figure 1.
Configuração (β) Configuration (β)
A presente invenção compreende um processo integrado de produção de acetato de etila, acetaldeído, hidrogénio e etileno cuja configuração denominada (β) compreende as seguintes etapas:  The present invention comprises an integrated process for producing ethyl acetate, acetaldehyde, hydrogen and ethylene, the configuration of which (β) comprises the following steps:
(a) reação de desidrogenação e desidratação do etanol com um catalisador e alimentação de etanol no reator (PFRHIDRO);  (a) ethanol dehydrogenation and dehydration reaction with a catalyst and reactor ethanol feed (PFRHIDRO);
(b) separação das misturas compreendendo:  (b) separating mixtures comprising:
(b1 ) uma separação entre uma fração com preferencialmente 15% de acetaldeído com etileno (topo da coluna) e acetato de etila com água e outra fração com preferencialmente 85% do acetaldeído (fundo da coluna) (COLUNAI ) após etapa de reação (a); (b1) a separation between a fraction of preferably 15% ethylene acetaldehyde (top of the column) and ethyl acetate with water and another fraction with preferably 85% of acetaldehyde (column bottom) (COLUMN) after reaction step (a);
(b2) uma separação entre etileno (topo da coluna) e acetaldeído (fundo da coluna) (COLUNA2), obtido em (b1 ) na corrente do topo da coluna (COLUNAI );  (b2) a separation between ethylene (column top) and acetaldehyde (column bottom) (COLUMN2), obtained from (b1) in the column top stream (COLUMNI);
(b3) uma separação entre acetaldeído (topo da coluna) e acetato de etila com água (fundo da coluna) (COLUNA3) obtida em (b1 ) na corrente do fundo da coluna (COLUNAI );  (b3) a separation between acetaldehyde (top of the column) and ethyl acetate with water (bottom of the column) (COLUMA3) obtained from (b1) in the bottom of the column (COLUNAI) stream;
(b4) uma separação entre acetato de etila (topo da coluna) e água com etilenoglicol (fundo da coluna) (COLUNA4) obtida em (b3) na corrente do fundo da coluna (COLUNA3);  (b4) a separation between ethyl acetate (top of the column) and water with ethylene glycol (column bottom) (COLUMA4) obtained from (b3) in the column bottom stream (COLUMA3);
(b5) uma separação entre água (topo da coluna) e etilenoglicol (fundo da coluna) (COLUNA5) obtida em (b4) na corrente do fundo da coluna (COLUNA4).  (b5) a separation between water (column top) and ethylene glycol (column bottom) (COLUMA5) obtained from (b4) in the column bottom stream (COLUMA4).
(c) obtenção de etileno compreendendo: (c) obtaining ethylene comprising:
(Cl ) separação do etileno (topo da coluna) do acetaldeído (fundo da coluna) (COLUNA2), obtido em (b1 ) na corrente do topo da coluna (COLUNAI ) e consequentente obtenção de etileno puro, de acordo com etapa (b2).  (Cl) separation of ethylene (column top) from acetaldehyde (column bottom) (COLUMA2), obtained from (b1) in the column top stream (COLUMAI) and consequently obtaining pure ethylene according to step (b2) .
(d) obtenção de acetaldeído compreendendo:  (d) obtaining acetaldehyde comprising:
(d1 ) separação do acetaldeído (fundo da coluna) do etileno (topo da coluna) (COLUNA2), obtido em (b1 ) na corrente do topo da coluna (COLUNAI ) e consequentente obtenção de acetaldeído puro, de acordo com etapa (b2);  (d1) separation of acetaldehyde (bottom of column) from ethylene (top of column) (COLUMA2) obtained from (b1) in the column top stream (COLUMAI) and consequently obtaining pure acetaldehyde according to step (b2) ;
(d2) separação do acetaldeído (topo da coluna) do acetato de etila com água (fundo da coluna) (COLUNA3) obtida em (b1 ) na corrente do fundo da coluna (COLUNAI ) e consequentente obtenção de acetaldeído puro, de acordo com etapa (b3).  (d2) separation of acetaldehyde (top of the column) from ethyl acetate with water (column bottom) (COLUMA3) obtained from (b1) in the column bottom stream (COLUNAI) and consequently obtaining pure acetaldehyde according to step (b3).
(e) obtenção de acetato de etila compreendendo:  (e) obtaining ethyl acetate comprising:
(e1 ) remoção de água (fundo da coluna) do acetato de etila (topo da coluna) (COLUNA4) obtida em (b3) na corrente do fundo da coluna (COLUNA3) com adição de etilenoglicol e, consequentente obtenção de acetato de etila puro, de acordo com etapa (b4);  (e1) removal of water (bottom of column) from ethyl acetate (top of column) (COLUMA4) obtained from (b3) in the column bottom stream (COLUMA3) with the addition of ethylene glycol and thereby obtaining pure ethyl acetate according to step (b4);
(f) obtenção de hidrogénio compreendendo: (f1 ) separação, através de um meio de separação, dos outros produtos após a etapa de reação (a). (f) obtaining hydrogen comprising: (f1) separating, by means of separation, the other products after reaction step (a).
Nos exemplos de concretização da presente invenção, sem restringir o escopo da mesma, contempla uma corrente de alimentação com etanol na etapa de reação (a) com uma pressão preferencial de 1 ,255 bar, uma temperatura preferencial de 350° C e, preferencialmente com 50 kmol/h de etanol, com queda de pressão no leito catalítico de 0,3 bar.  In the exemplary embodiments of the present invention, without restricting the scope thereof, contemplates an ethanol feed stream in reaction step (a) with a preferred pressure of 1.255 bar, a preferred temperature of 350 ° C and preferably with 50 kmol / h ethanol, with a catalytic bed pressure drop of 0.3 bar.
No referido exemplo a configuração é proposta com um misturador para eventuais etapas de manutenção do leito, visto que não se utiliza alimentação de nitrogénio na etapa de reação, mas este pode ser utilizado em casos de star-up de operação para uma estabilização da temperatura de leito fixo do reator.  In this example the configuration is proposed with a mixer for possible bed maintenance steps, since nitrogen feed is not used in the reaction step, but this can be used in case of operating star-up for a temperature stabilization of fixed reactor bed.
A etapa de separação (b) compreendeu uma etapa de separação (b1 ) entre uma fração de preferencialmente 15% do acetaldeído com etileno (topo da coluna) e acetato de etila com água e a maior fração de preferencialmente de 85% de acetaldeído (fundo da coluna) (COLUNAI ) em uma faixa preferencial de temperatura entre - 5 e 33° C, uma pressão preferencial de 0,955 bar e, preferencialmente, em 32 estágios, sendo o prato de alimentação o 1 1o, com razão de refluxo 3,01 e taxa de destilado de 10,24 kmol/h. The separation step (b) comprised a separation step (b1) between a preferably 15% fraction of acetaldehyde with ethylene (top of the column) and ethyl acetate with water and the largest preferably 85% fraction of acetaldehyde (bottom). (COLUMN) in a preferred temperature range of -5 to 33 ° C, a preferred pressure of 0.955 bar and preferably in 32 stages, the feed plate being 1 1 o , reflux ratio 3, 01 and distillate rate of 10.24 kmol / h.
Na etapa de separação (b2) entre etileno (topo da coluna) e acetaldeído In the separation step (b2) between ethylene (top of the column) and acetaldehyde
(fundo da coluna) (COLUNA2) em uma faixa preferencial de temperatura entre - 105 e 20° C, uma pressão preferencial atmosférica e, preferencialmente em 16 estágios, sendo o prato de alimentação o 8o, com razão de refluxo 1 e taxa de destilado de 6,56 kmol/h. (bottom of column) (Column2) at a preferred temperature range of - 105 to 20 ° C, atmospheric preferred pressure, preferably at 16 stages, and the feed plate the 8th with reflux ratio 1 and ratio of 6.56 kmol / h distillate.
A etapa de separação (b3) entre acetaldeído (topo da coluna) e acetato de etila com água (fundo da coluna) (COLUNA3) obtida em (b1 ) na corrente do fundo da coluna (COLUNAI ) ocorre em uma faixa preferencial de temperatura entre 20 e 70°C, uma pressão preferencial atmosférica e, preferencialmente em 50 estágios, sendo o prato de alimentação o 39°, com razão de refluxo 1 e taxa de destilado de 20, 0 Kmol/h, com convergência líquido/líquido/vapor.  The separation step (b3) between acetaldehyde (top of the column) and ethyl acetate with water (bottom of the column) (COLUMA3) obtained at (b1) in the column bottom current (COLUNAI) occurs within a preferred temperature range between 20 and 70 ° C, a preferential atmospheric pressure and preferably in 50 stages, the feed plate being 39 °, with reflux ratio 1 and distillate rate of 20.0 Kmol / h, with liquid / liquid / vapor convergence. .
A etapa de obtenção de acetato de etila puro (e1 ) compreende alimentação de um solvente preferencialmente etilenoglicol durante separação (b4) entre acetato de etila (topo da coluna) e água com etilenoglicol (fundo da coluna) (COLUNA4) obtida em (b3) na corrente do topo da coluna (COLUNA3) e, consequente obtenção de acetato de etila puro, em uma faixa preferencial de temperatura de 75 a 118° C, uma pressão preferencial de 0,955 bar e, preferencialmente em 52 estágios, sendo o prato de alimentação o 44° e o prato de alimentação do solvente o 11°, com razão de refluxo 0,54 e taxa de destilado 9,74 kmol/h, com convergência líquido/líquido/vapor. The step of obtaining pure ethyl acetate (e1) comprises feeding a solvent preferably ethylene glycol during separation. (b4) between ethyl acetate (top of the column) and water with ethylene glycol (bottom of the column) (COLUNA4) obtained from (b3) in the column top stream (COLUNA3) and thereby obtaining pure ethyl acetate in a temperature range from 75 to 118 ° C, a preferred pressure of 0.955 bar and preferably in 52 stages, with the feed plate 44 ° and the solvent feed plate 11 °, with reflux ratio 0.54 and distillate rate 9.74 kmol / h, with liquid / liquid / vapor convergence.
A separação (b5) entre água (topo da coluna) e etilenoglicol (fundo da coluna) (COLUNA5) obtida em (b4) na corrente do fundo da coluna (COLUNA4) ocorre em uma faixa de temperatura preferencial entre 98 e 195,5° C, uma pressão preferencial de 0,955 bar e, preferencialmente em 22 estágios, sendo o prato de alimentação o 7°, com razão de refluxo de 0,54 e taxa de fundo de 6,79 kmol/h.  The separation (b5) between water (column top) and ethylene glycol (column bottom) (COLUMA5) obtained at (b4) in the column bottom stream (COLUMA4) occurs in a preferred temperature range between 98 and 195.5 °. C is a preferential pressure of 0.955 bar and preferably in 22 stages, the feed plate being 7 °, with reflux ratio of 0.54 and bottom rate of 6.79 kmol / h.
Vantajosamente o solvente (etilenoglicol) resultante da etapa (b5) é recuperado e re-circulado, podendo alimentar novamente a etapa de separação da COLUNA 4. A água no sistema proposto é considerada um produto nobre do processo, porque se a ela sai pura ao final o processo é totalmente eficiente e os gastos energéticos são computados á água.  Advantageously the solvent (ethylene glycol) resulting from step (b5) is recovered and recirculated, and can again feed the separation step of COLUMN 4. The water in the proposed system is considered a noble product of the process, because if it comes out pure when In the end the process is totally efficient and the energy costs are computed to water.
É um objeto adicional da presente invenção um sistema integrado de produção de acetato de etila, acetaldeído, hidrogénio e etileno caracterizado por uma configuração β, como pode ser observado na Figura 2, compreendendo:  A further object of the present invention is an integrated ethyl acetate, acetaldehyde, hydrogen and ethylene production system characterized by a β configuration as can be seen in Figure 2, comprising:
(a) ao menos um meio de reação em leito fixo com catalisador do tipo hidrotalcita calcinada;  (a) at least one fixed bed reaction medium with calcined hydrotalcite catalyst;
(b) ao menos cinco meios de separação de misturas;  (b) at least five mixture separation means;
(b1 ) meios de separação compreendendo ao menos uma corrente adicional de solvente;  (b1) separating means comprising at least one additional solvent stream;
(c) meios de trocar calor;  (c) heat exchange means;
(d) meios de misturar solventes e reagentes;  (d) means for mixing solvents and reagents;
(e) meios de limpeza ou ativação de leito catalítico, limpeza de linha, ajuste de temperatura de reação e, monitoramento da queda de pressão no leito catalítico; (f) meios de separação do hidrogénio disponível. (e) catalytic bed cleaning or activation means, line cleaning, reaction temperature adjustment and monitoring of catalytic bed pressure drop; (f) available hydrogen separation means.
É uma configuração preferencial da presente invenção, um sistema compreendendo:  It is a preferred embodiment of the present invention a system comprising:
(a) ao menos um meio de reação preferencialmente reator multitubular em leito fixo com catalisador do tipo hidrotalcita calcinada;  (a) at least one reaction medium preferably multitubular fixed bed reactor with calcined hydrotalcite catalyst;
(b) ao menos cinco meios de separação de misturas preferencialmente colunas de destilação;  (b) at least five mixture separation means preferably distillation columns;
(b1 ) meios de separação compreendendo ao menos um destilador alimentado com uma corrente adicional de solvente preferencialmente etilenoglicol;  (b1) separating means comprising at least one distiller fed with an additional stream of solvent preferably ethylene glycol;
(c) meios de trocar calor selecionado dentre troca em paralelo e em contra-corrente, preferencialmente trocadores de calor indireto em contra- corrente entre correntes resultantes do próprio processo;  (c) means of exchanging heat selected from parallel and countercurrent exchange, preferably indirect countercurrent heat exchangers between currents resulting from the process itself;
(d) meios de misturar solventes e reagentes;  (d) means for mixing solvents and reagents;
(e) meios de limpeza ou ativação de leito catalítico, limpeza de linha, ajuste de temperatura de reação e, monitoramento da queda de pressão no leito catalítico ser preferencialmente através de alimentação com uma corrente de nitrogénio no elemento (a), pois a pressão esta relacionada com a conversão do etanol;  (e) catalytic bed cleaning or activation means, line cleaning, reaction temperature adjustment, and monitoring of the catalytic bed pressure drop preferably be by supply with a nitrogen stream in element (a), as the pressure it is related to the conversion of ethanol;
(f) meios de separação do hidrogénio disponível, preferencialmente flash ou reator de membranas.  (f) available hydrogen separation means, preferably flash or membrane reactor.
Para melhor entendimento do dito sistema, a configuração denominada β, encontra-se disponível na Figura 2.  For a better understanding of this system, the configuration called β is available in Figure 2.
Acetato de etila com alta pureza de 99,99% obtido de acordo com qualquer um dos processos de obtenção de acetato de etila, acetaldeído, hidrogénio e etileno descritos anteriormente.  99.99% high purity ethyl acetate obtained according to any of the processes for obtaining ethyl acetate, acetaldehyde, hydrogen and ethylene described above.
Acetaldeído com alta pureza de 95,5 a 99,9% obtido de acordo com qualquer um dos processos de obtenção de acetato de etila, acetaldeído, hidrogénio e etileno descritos anteriormente.  High purity 95.5 to 99.9% acetaldehyde obtained according to any of the processes for obtaining ethyl acetate, acetaldehyde, hydrogen and ethylene described above.
Etileno com alta pureza de 99,9% obtido de acordo com qualquer um dos processos de obtenção de acetato de etila, acetaldeído, hidrogénio e etileno descritos anteriormente. Hidrogénio 100% puro obtido de acordo com qualquer um dos sistemas processos de obtenção de acetato de etila, acetaldeído, hidrogénio e etileno descritos anteriormente. 99.9% high purity ethylene obtained according to any of the processes for obtaining ethyl acetate, acetaldehyde, hydrogen and ethylene described above. 100% pure hydrogen obtained according to any of the systems for obtaining ethyl acetate, acetaldehyde, hydrogen and ethylene described above.
Exemplo 1 - Sistema integrado para obtenção de acetato de etila, acetaldeído, hidrogénio e etileno em uma configuração denominada a.  Example 1 - Integrated system for obtaining ethyl acetate, acetaldehyde, hydrogen and ethylene in a configuration named a.
O sistema denominado α compreende meios de reação com catalisador do tipo hidrotalcita calcinada a 650°C em reator de leito fixo em fase vapor onde o etanol anidro é alimentado sem a presença de nitrogénio. O dito reator é denominado reator PFRHIDRO. Em uma configuração preferencial, sem, no entanto restringir, o reator de PFRHIDRO, para atender uma produção de aproximadamente 5 mil toneladas/ano de acetato de etila poderá compreender 10.000 tubos, com dimensões de (2m x2").  The so-called α system comprises reaction media with calcined hydrotalcite type catalyst at 650 ° C in a fixed-phase vapor bed reactor where anhydrous ethanol is fed without nitrogen. Said reactor is called PFRHIDRO reactor. In a preferred configuration, without, however, restricting the PFRHIDRO reactor, to meet a production of approximately 5,000 tons / year of ethyl acetate may comprise 10,000 tubes, with dimensions of (2m x 2 ").
No presente exemplo, sem, no entanto restringir, as vazões molares de entrada no reator estão a uma temperatura de 350°C e pressão de 1 ,355 bar e se constituem de etanol igual a 32 kmol/h. A queda de pressão ao longo do reator é de 0,4 bar.  In the present example, without, however, restricting the reactor inlet molar flows are at a temperature of 350 ° C and a pressure of 1, 355 bar and consist of ethanol equal to 32 kmol / h. The pressure drop across the reactor is 0.4 bar.
Na Figura 3, encontra-se as composições molares ao longo do reator hidrotalcita cobalto, PFRHIDRO, em função do comprimento do reator para a planta a. Pode ser visto que, praticamente, após 60 cm de reator, todo o etanol foi consumido. No entanto, conforme prática industrial, o reator deve ser projetado entre 10 a 30% a mais do comprimento mínimo para garantir um maior tempo de campanha.  Figure 3 shows the molar compositions along the cobalt hydrotalcite reactor, PFRHIDRO, as a function of reactor length for plant a. It can be seen that practically, after 60 cm of reactor, all the ethanol was consumed. However, according to industry practice, the reactor should be designed to be 10 to 30 percent longer than the minimum length to ensure longer run time.
Exemplo 2 - Processo integrado para obtenção de acetato de etila, acetaldeído, hidrogénio, etileno e água empregando o sistema a.  Example 2 - Integrated process for obtaining ethyl acetate, acetaldehyde, hydrogen, ethylene and water employing the system a.
O exemplo de concretização descrito a seguir mostra uma etapa de reação sendo que a dita etapa compreende um catalisador preferencialmente do tipo hidrotalcita calcinada e alimentação de etanol. A temperatura do reator, no referido exemplo de concretização, sem, no entanto restringir, foi de 350°C.  The exemplary embodiment described below shows a reaction step wherein said step comprises a catalyst preferably of calcined hydrotalcite type and ethanol feed. The temperature of the reactor in said non-restricting embodiment, however, was 350 ° C.
Na Tabela 2 está apresentado um exemplo de concretização da presente invenção apresentando as correntes de entrada e saída do reator hidrotalcita cobalto para a planta a. É possível verificar também a temperatura de operação e a queda de pressão no reator. Tabela 2: As correntes de entrada e saída no reator de hidrotalcita cobalto, onde EREATOR é corrente de entrada dos reatores, SREATOR é corrente de saída dos reatores. Table 2 shows an example embodiment of the present invention showing the inlet and outlet streams of the cobalt hydrotalcite reactor for plant a. It is also possible to check the operating temperature and pressure drop in the reactor. Table 2: Input and output currents in the cobalt hydrotalcite reactor, where EREATOR is reactor input current, SREATOR is reactor output current.
Figure imgf000027_0001
Figure imgf000027_0001
No presente exemplo de concretização, a etapa de separação tem por objetivo purificar o produto obtido que se encontra em misturas formadas em etapas anteriores do processo de obtenção dos multiprodutos. A coluna 1 é uma coluna de destilação azeotrópica típica, o acetaldeído e o etileno que apresentam azeotropia de mínimo ponto de ebulição saem no topo da coluna e no fundo da coluna na corrente FUND01 tem-se o acetato de etila e a água. Um fator interessante é a quantidade de água que pode ser retirada no fundo da coluna juntamente com o ácido acético. Esta coluna apresenta uma configuração de 24 estágios, sendo o prato de alimentação o 14° e a razão de refluxo de 0,8, sendo que 99,99% do acetaldeído junto com 100% do etileno saem no topo da coluna.  In the present embodiment example, the separation step is intended to purify the obtained product which is in mixtures formed in earlier stages of the multiproduct production process. Column 1 is a typical azeotropic distillation column, acetaldehyde and ethylene having minimal boiling azeotropy come out at the top of the column and at the bottom of the column in stream FUND01 there is ethyl acetate and water. An interesting factor is the amount of water that can be removed at the bottom of the column along with acetic acid. This column has a 24 stage configuration, with the feed plate 14 ° and reflux ratio 0.8, with 99.99% acetaldehyde along with 100% ethylene leaving the top of the column.
A coluna 2, no presente exemplo, é uma coluna de destilação convencional, esta coluna tem o objetivo de separar o acetaldéido do etileno. O etileno é separado no topo da coluna de destilação com um pureza em termos de composição molar de 99,9%. O acetaldeído permanece no fundo da coluna de destilação com uma composição molar de 99,1 %. A coluna 2 é uma coluna convencional com convergência criogenia (para baixas temperaturas), composta preferencialmente de 16 estágios e o prato de alimentação é o 8 0 com razão de refluxo 1. O éter etílico apresenta azeotropia de mínimo ponto de ebulição com o acetaldeído e não pode ser separado permanecendo como resíduo no acetaldeído. Column 2 in the present example is a conventional distillation column, this column is intended to separate acetaldide from ethylene. Ethylene is separated at the top of the distillation column with a molar composition purity of 99.9%. Acetaldehyde remains at the bottom of the distillation column with a molar composition of 99.1%. Column 2 is a conventional convergence column cryogenic (low temperature), preferably composed of 16 stages and the feed plate 8 is 0 to 1. The reflux ratio has minimal ethyl ether azeotroping point boiling with acetaldehyde and cannot be separated remaining as a residue in acetaldehyde.
A coluna 3, no dito exemplo, é uma coluna extrativa especial, diferenciada. Pode-se dizer que se trata de uma coluna extrativa, porque o solvente, neste caso, rompe a azeotropia acetato de etila/água devido à formação das duas fases líquidas distintas na mistura capturando a água que permanece no fundo da coluna juntamente com o solvente na corrente FUND03 e, assim, seguindo para uma coluna de retificação para a recuperação do solvente puro. O acetato de etila é separado no topo da coluna de destilação com uma pureza em termos de composição molar de 99,9%. A água e o solvente permanecem no fundo da coluna de destilação. A coluna 3 apresenta 52 estágios, o prato de alimentação da corrente FUND01 é o 43° e o da corrente SOLVENTE, o 11°, com razão de refluxo de 0,52.  Column 3 in this example is a special, differentiated extractive column. It can be said to be an extractive column because the solvent in this case disrupts the ethyl acetate / water azeotropy due to the formation of the two distinct liquid phases in the mixture capturing the water remaining at the bottom of the column along with the solvent. in stream FUND03 and thus proceeding to a rectifying column for recovery of the pure solvent. Ethyl acetate is separated at the top of the distillation column with a molar composition purity of 99.9%. Water and solvent remain at the bottom of the distillation column. Column 3 has 52 stages, the FUND01 current feed plate is 43 ° and the SOLVENT current feed plate is 11 °, with a reflow ratio of 0.52.
A coluna 4 é uma coluna de destilação convencional para a retificação do solvente apresentando 22 estágios; sendo o prato de alimentação preferencial é o 12° e opera com razão de refluxo de 0,54. A corrente de topo AGUAP apresenta água com 100% de pureza, o solvente permanece no fundo da coluna na corrente SOLVENTP, também com uma pureza de 100%.  Column 4 is a conventional distillation column for solvent rectification having 22 stages; the preferred feeding plate being 12 ° and operating at a reflux ratio of 0.54. The AGUAP top stream has 100% pure water, the solvent remains at the bottom of the column in the SOLVENTP stream, also 100% pure.
O solvente puro obtido no fundo da coluna 4 é conduzido através da corrente SOLVENTETP ao trocador TROCA3 para se aproveitar a energia térmica liberada com a redução da temperatura que facilitará a separação na próxima coluna, daí é conduzido pela corrente SOLVENTE para coluna 3.  The pure solvent obtained at the bottom of column 4 is passed through the SOLVENTETP stream to the TROCA3 exchanger to take advantage of the thermal energy released by reducing the temperature that will facilitate separation in the next column, hence it is driven by the SOLVENT stream to column 3.
Exemplo 3 - Processo integrado para obtenção de acetato de etila, acetaldeído, hidrogénio, etileno e água de acordo com o sistema β. Example 3 - Integrated process for obtaining ethyl acetate, acetaldehyde, hydrogen, ethylene and water according to the β system.
Na configuração de planta β ocorre um maior gasto de energia, por possuir cinco colunas. Este sistema separa o acetaldeído em duas colunas permitindo, sem uso de solventes, a obtenção do mesmo com uma pureza de 99,87 % para a coluna que separa a maior parte do acetaldeído e 95,5% para a coluna onde foi encaminhada a maior parte do resíduo de éter etílico produzido.  In the β plant configuration there is a higher energy expenditure, as it has five columns. This system separates acetaldehyde into two columns allowing, without the use of solvents, to obtain it with a purity of 99.87% for the column that separates most of the acetaldehyde and 95.5% for the column where it was sent the largest. part of the ethyl ether residue produced.
A coluna 1 é uma coluna de destilação convencional com 32 estágios, o prato de alimentação é o 11o, a razão de refluxo é de 3,01. É uma coluna que consome mais energia para fazer com que uma pequena quantidade de acetaldeído leve consigo a maior parte de éter etílico. The first column is a conventional distillation column with 32 stages, the feed plate 11 is, the reflux ratio is 3.01. It is a column that It takes more energy to make a small amount of acetaldehyde carry most ethyl ether with it.
Na coluna 2, do presente exemplo, o etileno permanece no topo da coluna de destilação com um pureza em termos de composição molar de 99,9% e no fundo da coluna tem-se a maior parte éter etílico que permanece junto com o acetaldeído com uma composição molar de 95,5% devido a azeotropia de mínimo ponto de ebulição como visto anteriormente entre acetaldeído e o éter etílico. É uma coluna convencional com convergência criogênica e apresenta 16 estágios, o prato de alimentação é 8o e a razão de refluxo 1. In column 2 of the present example, ethylene remains at the top of the distillation column with a purity of 99.9% molar composition and at the bottom of the column has most ethyl ether remaining together with acetaldehyde with a 95.5% molar composition due to minimum boiling azeotropy as seen above between acetaldehyde and ethyl ether. It is a conventional column with cryogenic convergence and has 16 stages, the feed plate is 8 o and the reflux ratio 1.
A coluna 3 é uma coluna de destilação azeotrópica. A coluna irá apresentar três fases: duas líquidas e uma fase vapor, apresentando 50 estágios, o prato de alimentação é o 39° e a razão de refluxo 1. O acetaldeído permanece no topo da coluna de destilação com uma pureza em termos de composição molar de 99,87%, sendo o resíduo de éter etílico a impureza, e no fundo da coluna tem-se o acetato de etila e a água.  Column 3 is an azeotropic distillation column. The column will have three phases: two liquid and one vapor phase, having 50 stages, the feed plate is 39 ° and the reflux ratio 1. Acetaldehyde remains at the top of the distillation column with a purity of molar composition. 99.87%, with the ethyl ether residue being impurity, and at the bottom of the column is ethyl acetate and water.
A composição molar de vapor da coluna 4 no presente exemplo é semelhante ao da coluna 3 da configuração a, uma coluna extrativa especial. The steam molar composition of column 4 in the present example is similar to that of column 3 of configuration a, a special extractive column.
No topo da coluna de destilação sai o acetato de etila com uma pureza em termos de composição molar de 99,9%. A coluna 4 apresenta 52 estágios, o prato de alimentação da corrente SOLVENTE é o11o, e o prato de alimentação da corrente FUND03 é o 44° e a razão de refluxo 0,54. At the top of the distillation column comes ethyl acetate of 99.9% molar composition purity. The column 52 has four stages, the feed plate of o11 is the solvent stream and the feed plate FUND03 the current is 44 ° and the reflux ratio 0.54.
A coluna 5 é uma coluna de destilação convencional para a retificação do solvente, apresentando 22 estágios e o prato de alimentação é o 7o, com razão de refluxo de 0,54. A corrente de topo AGUA apresenta água 100%; o solvente permanece no fundo da coluna na corrente SOLVENTE com uma pureza de 100%. The fifth column is a conventional distillation column for the rectification of the solvent, with 22 stages and the feed plate is 7, with a reflux ratio of 0.54. The AGUA top stream features 100% water; the solvent remains at the bottom of the column in the SOLVENT stream of 100% purity.
Esta coluna 5 é exatamente igual à coluna 4 da planta a, logo a água sai pura ao final, o processo é totalmente eficiente e os gastos energéticos são computados á água, e o solvente é recuperado e re-circulado ao processo nesta etapa.  This column 5 is exactly the same as column 4 of plant a, so the water comes out pure at the end, the process is totally efficient and the energy costs are computed to water, and the solvent is recovered and re-circulated to the process at this stage.

Claims

1/8O 2013/029129 PCT/BR2011/000458 REIVINDICAÇÕES 1 / 8O 2013/029129 PCT / BR2011 / 000458 CLAIMS
1. Processo integrado de produção de acetato de etila, acetaldeído, hidrogénio, etileno e água caracterizado por compreender as seguintes etapas: 1. Integrated process for the production of ethyl acetate, acetaldehyde, hydrogen, ethylene and water, comprising the following steps:
(a) reação de desidrogenação e desidratação do etanol com um catalisador e alimentação de etanol no reator (PFRHIDRO); (a) ethanol dehydrogenation and dehydration reaction with a catalyst and reactor ethanol feed (PFRHIDRO);
(b) separação das misturas compreendendo:  (b) separating mixtures comprising:
(b1 ) uma separação entre acetaldeído com etileno (topo da coluna) e acetato de etila com água (fundo da coluna) (COLUNAI ) após etapa de reação (a);  (b1) a separation between ethylene acetaldehyde (top of the column) and ethyl acetate with water (bottom of the column) (COLUMN) after reaction step (a);
(b2) uma separação entre etileno (topo da coluna) e acetaldeído (fundo da coluna) (COLUNA2), obtido em (b1 ) na corrente do topo da coluna (COLUNAI);  (b2) a separation between ethylene (column top) and acetaldehyde (column bottom) (COLUMN2), obtained from (b1) in the column top stream (COLUMNI);
(b3) uma separação entre acetato de etila (topo da coluna) e água com etilenoglicol (fundo da coluna) (COLUNA3) obtida em (b1 ) na corrente do fundo da coluna (COLUNAI );  (b3) a separation between ethyl acetate (top of the column) and water with ethylene glycol (column bottom) (COLUMA3) obtained from (b1) in the column bottom stream (COLUNAI);
(b4) uma separação entre água (topo da coluna) e etilenoglicol (fundo da coluna) (COLUNA4) obtida em (b3) na corrente do fundo da coluna (COLUNA3).  (b4) a separation between water (top of the column) and ethylene glycol (bottom of the column) (COLUMA4) obtained from (b3) in the column bottom stream (COLUMA3).
(c) obtenção de etileno compreendendo:  (c) obtaining ethylene comprising:
(d ) separação do etileno (topo da coluna) do acetaldeído (fundo da coluna) (COLUNA2), obtido em (b1 ) na corrente do topo da coluna (COLUNAI ) e consequentente obtenção de etileno puro, de acordo com etapa (b2).  (d) separation of ethylene (column top) from acetaldehyde (column bottom) (COLUMA2) obtained from (b1) in the column top stream (COLUMAI) and consequently obtaining pure ethylene according to step (b2) .
(d) obtenção de acetaldeído compreendendo:  (d) obtaining acetaldehyde comprising:
(d1 ) separação do acetaldeído (fundo da coluna) do etileno (topo da coluna) (COLUNA2), obtido em (b1 ) na corrente do topo da coluna (COLUNAI ) e consequentente obtenção de acetaldeído puro, de acordo com etapa (b2).  (d1) separation of acetaldehyde (bottom of column) from ethylene (top of column) (COLUMN2) obtained from (b1) in the column top stream (COLUMNI) and consequently obtaining pure acetaldehyde according to step (b2) .
(e) obtenção de acetato de etila compreendendo:  (e) obtaining ethyl acetate comprising:
(e1 ) remoção de água (fundo da coluna) do acetato de etila (topo da coluna) (COLUNA3) obtida em (b1 ) na corrente do fundo da coluna (COLUNAI ) com adição de etilenoglicol e, consequentente obtenção de acetato de etila puro, de acordo com etapa (b3);  (e1) removal of water (bottom of the column) from ethyl acetate (top of the column) (COLUMA3) obtained from (b1) in the column bottom stream (COLUNAI) with the addition of ethylene glycol and thereby obtaining pure ethyl acetate according to step (b3);
(f) obtenção de hidrogénio compreendendo: 2/8(f) obtaining hydrogen comprising: 2/8
O 2013/029129 PCT/BR2011/000458 The 2013/029129 PCT / BR2011 / 000458
(f1 ) separação, através de um meio de separação, dos outros produtos após a etapa de reação (a). (f1) separating, by means of separation, the other products after reaction step (a).
2. Processo, de acordo com a reivindicação 1 , caracterizado pela corrente de alimentação na etapa de reação (a) compreender uma pressão preferencial de 1 ,355 bar e uma temperatura preferencial de 350° C.  Process according to Claim 1, characterized in that the feed stream in reaction step (a) comprises a preferential pressure of 1, 355 bar and a preferential temperature of 350 ° C.
3. Processo, de acordo com a reivindicação 2, caracterizado etapa de reação compreender uma corrente de alimentação preferencialmente com 32 kmol/h de etanol.  Process according to Claim 2, characterized in that the reaction step comprises a feed stream preferably with 32 kmol / h of ethanol.
4. Processo, de acordo com a reivindicação 1 , caracterizado pela etapa de separação (b) compreender uma etapa de separação (b1 ) entre acetaldeído com etileno (topo da coluna) e acetato de etila com água (fundo da coluna) (COLUNAI ) em uma faixa preferencial de temperatura entre 13 e 70° C, uma pressão preferencial atmosférica e, preferencialmente em 24 estágios.  Process according to Claim 1, characterized in that the separation step (b) comprises a separation step (b1) between ethylene acetaldehyde (top of the column) and water-ethyl acetate (bottom of the column) (COLUMN). in a preferred temperature range between 13 and 70 ° C, a preferred atmospheric pressure and preferably in 24 stages.
5. Processo, de acordo com qualquer uma das reivindicações de 1 a 4, caracterizado por compreender uma etapa de separação (b2) entre etileno Process according to any one of Claims 1 to 4, characterized in that it comprises a step of separating (b2) between ethylene.
(topo da coluna) e acetaldeído (fundo da coluna) (COLUNA2) em uma faixa preferencial de temperatura entre - 105 e 20° C, uma pressão atmosférica e, preferencialmente em 16 estágios. (column top) and acetaldehyde (column bottom) (COLUMN2) in a preferred temperature range between -105 to 20 ° C, an atmospheric pressure, and preferably in 16 stages.
6. Processo, de acordo com a reivindicação 1 , caracterizado por compreender a alimentação de um solvente preferencialmente etilenoglicol durante separação (b3) entre acetato de etila (topo da coluna) e água (fundo da coluna) (COLUNA3) obtida em (b1 ) na corrente do fundo da coluna (COLUNAI ) e, consequente obtenção do etilenoglicol puro.  Process according to Claim 1, characterized in that it comprises feeding a preferably ethylene glycol solvent during separation (b3) between ethyl acetate (top of the column) and water (bottom of the column) (COLUMA3) obtained in (b1). in the column bottom stream (COLUMN) and consequently obtaining pure ethylene glycol.
7. Processo, de acordo com a reivindicação 6, caracterizado por compreender uma faixa preferencial de temperatura de 75 a 120° C, uma pressão atmosférica e, preferencialmente em 52 estágios.  Process according to Claim 6, characterized in that it comprises a preferred temperature range of 75 to 120 ° C, an atmospheric pressure and preferably in 52 stages.
8. Processo, de acordo com a reivindicação 1 , caracterizado por compreender uma separação (b4) entre água (topo da coluna) e etilenoglicol (fundo da coluna) (COLUNA4) obtida em (b3) na corrente do fundo da coluna (COLUNA3) em uma temperatura entre 98 e 95,5°C, uma pressão atmosférica e, preferencialmente em 22 estágios. 3/8Process according to Claim 1, characterized in that it comprises a separation (b4) between water (top of the column) and ethylene glycol (bottom of the column) (COLUMA4) obtained from (b3) in the bottom of the column (COLUMA3) stream. at a temperature between 98 and 95.5 ° C, an atmospheric pressure and preferably in 22 stages. 3/8
O 2013/029129 PCT/BR2011/000458 The 2013/029129 PCT / BR2011 / 000458
9. Processo, de acordo com a reivindicação 8, caracterizado pelo etilenoglicol ser recuperado e re-circulado, podendo alimentar novamente a etapa de separação da COLUNA 3. Process according to Claim 8, characterized in that the ethylene glycol is recovered and recirculated and can again feed the separation step of COLUMN 3.
10. Sistema integrado de produção de acetato de etila, acetaldeído, hidrogénio, etileno e água caracterizado por uma configuração α compreendendo:  10. An integrated ethyl acetate, acetaldehyde, hydrogen, ethylene and water production system characterized by an α configuration comprising:
(a) ao menos um meio de reação em leito fixo com catalisador do tipo hidrotalcita calcinada;  (a) at least one fixed bed reaction medium with calcined hydrotalcite catalyst;
(b) ao menos quatro meios de separação de misturas;  (b) at least four mixture separation means;
(b1 ) meios de separação compreendendo ao menos uma corrente adicional de solvente;  (b1) separating means comprising at least one additional solvent stream;
(c) meios de trocar calor;  (c) heat exchange means;
(d) meios de misturar solventes e reagentes;  (d) means for mixing solvents and reagents;
(e) meios de limpeza ou ativação de leito catalítico, limpeza de linha, ajuste de temperatura de reação e, monitoramento da queda de pressão no leito catalítico;  (e) catalytic bed cleaning or activation means, line cleaning, reaction temperature adjustment and monitoring of catalytic bed pressure drop;
(f) meios de separação do hidrogénio disponível.  (f) available hydrogen separation means.
11. Sistema, de acordo com a reivindicação 10, caracterizado por compreender ao menos um meio de reação preferencialmente reator multitubular em leito fixo com catalisador do tipo hidrotalcita calcinada.  System according to Claim 10, characterized in that it comprises at least one reaction medium, preferably a fixed bed multitubular reactor with calcined hydrotalcite-type catalyst.
12. Sistema, de acordo com a reivindicação 10, caracterizado por compreender ao menos quatro meios de separação de misturas preferencialmente colunas de destilação.  System according to Claim 10, characterized in that it comprises at least four mixture separation means, preferably distillation columns.
13. Sistema, de acordo com a reivindicação 10, caracterizado por compreender meios de separação compreendendo ao menos um destilador alimentado com uma corrente adicional de solvente preferencialmente etilenoglicol.  System according to Claim 10, characterized in that it comprises separation means comprising at least one distiller supplied with an additional solvent stream preferably ethylene glycol.
14. Sistema, de acordo com a reivindicação 10, caracterizado por compreender meios de trocar calor selecionado dentre troca em paralelo e em contra-corrente, preferencialmente trocadores de calor indireto em contra- corrente entre correntes resultantes do próprio processo. 4/8System according to claim 10, characterized in that it comprises heat exchange means selected from parallel and countercurrent exchange, preferably indirect countercurrent heat exchangers between currents resulting from the process itself. 4/8
O 2013/029129 PCT/BR2011/000458 The 2013/029129 PCT / BR2011 / 000458
15. Sistema, de acordo com a reivindicação 10, caracterizado por compreender meios de limpeza ou ativação de leito catalítico, limpeza de linha, ajuste de temperatura de reação e, monitoramento da queda de pressão no leito catalítico, preferencialmente através de alimentação com uma corrente de nitrogénio no elemento (a); System according to Claim 10, characterized in that it comprises means for cleaning or activating catalytic bed, line cleaning, reaction temperature adjustment and monitoring of pressure drop in the catalytic bed, preferably by feeding with a current. nitrogen in element (a);
16. Sistema, de acordo com a reivindicação 10, caracterizado por compreender meios de separação do hidrogénio disponível, preferencialmente flash ou reator de membranas.  System according to Claim 10, characterized in that it comprises available hydrogen separation means, preferably flash or membrane reactor.
17. Sistema, de acordo com a reivindicação 10, caracterizado pela dita configuração α compreender um processo de acordo com as reivindicações de System according to claim 10, characterized in that said configuration α comprises a process according to the claims of
1 a 9. 1 to 9.
18. Processo integrado de produção de acetato de etila, acetaldeído, hidrogénio, etileno e água caracterizado por compreender as seguintes etapas: 18. An integrated process for the production of ethyl acetate, acetaldehyde, hydrogen, ethylene and water comprising the following steps:
(a) reação de desidrogenação e desidratação do etanol com um catalisador e alimentação de etanol no reator (PFRHIDRO); (a) ethanol dehydrogenation and dehydration reaction with a catalyst and reactor ethanol feed (PFRHIDRO);
(b) separação das misturas compreendendo:  (b) separating mixtures comprising:
(b1 ) uma separação entre uma fração com preferencialmente15% de acetaldeído com etileno (topo da coluna) e outra fração com preferencialmente 85% do acetaldeído com acetato de etila e com água (fundo da coluna) (COLUNAI ) após etapa de reação (a);  (b1) a separation between a fraction with preferably 15% ethylene acetaldehyde (top of the column) and another fraction with preferably 85% ethyl acetate with water (column bottom) (COLUMN) after reaction step (a );
(b2) uma separação entre etileno (topo da coluna) e acetaldeído (fundo da coluna) (COLUNA2), obtido em (b1) na corrente do topo da coluna (COLUNAI );  (b2) a separation between ethylene (column top) and acetaldehyde (column bottom) (COLUMN2), obtained from (b1) in the column top stream (COLUMNI);
(b3) uma separação entre acetaldeído (topo da coluna) e acetato de etila com água (fundo da coluna) (COLUNA3) obtida em (b1 ) na corrente do fundo da coluna (COLUNAI );  (b3) a separation between acetaldehyde (top of the column) and ethyl acetate with water (bottom of the column) (COLUMA3) obtained from (b1) in the bottom of the column (COLUNAI) stream;
(b4) uma separação entre acetato de etila (topo da coluna) e água com etilenoglicol (fundo da coluna) (COLUNA4) obtida em (b3) na corrente do fundo da coluna (COLUNA3);  (b4) a separation between ethyl acetate (top of the column) and water with ethylene glycol (column bottom) (COLUMA4) obtained from (b3) in the column bottom stream (COLUMA3);
(b5) uma separação entre água (topo da coluna) e etilenoglicol (fundo da coluna) (COLUNA5) obtida em (b4) na corrente do fundo da coluna (COLUNA4). 5/8(b5) a separation between water (column top) and ethylene glycol (column bottom) (COLUMA5) obtained from (b4) in the column bottom stream (COLUMA4). 5/8
O 2013/029129 PCT/BR2011/000458 The 2013/029129 PCT / BR2011 / 000458
(c) obtenção de etileno compreendendo: (c) obtaining ethylene comprising:
(d ) separação do etileno (topo da coluna) do acetaldeído (fundo da coluna) (COLUNA2), obtido em (b1 ) na corrente do topo da coluna (COLUNAI ) e consequentente obtenção de etileno puro, de acordo com etapa (b2).  (d) separation of ethylene (column top) from acetaldehyde (column bottom) (COLUMA2) obtained from (b1) in the column top stream (COLUMAI) and consequently obtaining pure ethylene according to step (b2) .
(d) obtenção de acetaldeído compreendendo:  (d) obtaining acetaldehyde comprising:
(d1 ) separação do acetaldeído (fundo da coluna) do etileno (topo da coluna) (COLUNA2), obtido em (b1 ) na corrente do topo da coluna (COLUNAI ) e consequentente obtenção de acetaldeído puro, de acordo com etapa (b2);  (d1) separation of acetaldehyde (bottom of column) from ethylene (top of column) (COLUMA2) obtained from (b1) in the column top stream (COLUMAI) and consequently obtaining pure acetaldehyde according to step (b2) ;
(d2) separação do acetaldeído (topo da coluna) do acetato de etila com água (fundo da coluna) (COLUNA3) obtida em (b1 ) na corrente do fundo da coluna (COLUNAI ) e consequentente obtenção de acetaldeído puro, de acordo com etapa (b3).  (d2) separation of acetaldehyde (top of the column) from ethyl acetate with water (column bottom) (COLUMA3) obtained from (b1) in the column bottom stream (COLUNAI) and consequently obtaining pure acetaldehyde according to step (b3).
(e) obtenção de acetato de etila compreendendo:  (e) obtaining ethyl acetate comprising:
(e1 ) remoção de água (fundo da coluna) do acetato de etila (topo da coluna) (COLUNA4) obtida em (b3) na corrente do fundo da coluna (COLUNA3) com adição de etilenoglicol e, consequentente obtenção de acetato de etila puro, de acordo com etapa (b4);  (e1) removal of water (bottom of column) from ethyl acetate (top of column) (COLUMA4) obtained from (b3) in the column bottom stream (COLUMA3) with the addition of ethylene glycol and thereby obtaining pure ethyl acetate according to step (b4);
(f) obtenção de hidrogénio compreendendo:  (f) obtaining hydrogen comprising:
(f1 ) separação, através de um meio de separação, dos outros produtos após a etapa de reação (a).  (f1) separating, by means of separation, the other products after reaction step (a).
19. Processo, de acordo com a reivindicação de 13, caracterizado pela corrente de alimentação na etapa de reação (a) compreender uma pressão preferencial de 1 ,255 bar e uma temperatura preferencial de 350° C.  Process according to claim 13, characterized in that the feed stream in reaction step (a) comprises a preferential pressure of 1.255 bar and a preferred temperature of 350 ° C.
20. Processo, de acordo com a reivindicação 14, caracterizado etapa de reação compreender uma corrente de alimentação preferencialmente com 50 kmol/h de etanol.  Process according to Claim 14, characterized in that the reaction step comprises a feed stream preferably containing 50 kmol / h of ethanol.
21. Processo, de acordo com a reivindicação 13, caracterizado pela etapa de separação (b) compreender uma etapa de separação entre uma fração com preferencialmente 15% de acetaldeído e etileno (topo da coluna) e acetato de etila com água e outra fração com preferencialmente 85% do acetaldeído (fundo da coluna) (b1 ) (COLUNAI ) em uma faixa preferencial de 6/8Process according to Claim 13, characterized in that the separation step (b) comprises a separation step between a fraction with preferably 15% acetaldehyde and ethylene (top of the column) and ethyl acetate with water and another fraction with preferably 85% acetaldehyde (column bottom) (b1) (COLUMN) in a preferred range of 6/8
O 2013/029129 PCT/BR2011/000458 temperatura entre - 5 e 33° C, uma pressão preferencial de 0,955 bar e, preferencialmente, em 32 estágios. The temperature is between -5 and 33 ° C, a preferential pressure of 0.955 bar and preferably in 32 stages.
22. Processo, de acordo com a reivindicação 13, caracterizado por compreender uma etapa de separação (b2) entre etileno (topo da coluna) e acetaldeído (fundo da coluna) (COLUNA2) em uma faixa preferencial de temperatura entre - 105 e 20° C, uma pressão preferencial atmosférica e, preferencialmente em 16 estágios.  Process according to Claim 13, characterized in that it comprises a step of separating (b2) between ethylene (top of the column) and acetaldehyde (bottom of the column) (COLUMN2) in a preferred temperature range between -105 to 20 °. C is a preferential atmospheric pressure and preferably in 16 stages.
23. Processo, de acordo com a reivindicação 13, caracterizado por compreender uma etapa de separação (b3) entre acetaldeído (topo da coluna) e acetato de etila com água (fundo da coluna) (COLUNA3) obtida em (b1) na corrente do fundo da coluna (COLUNAI ) em uma faixa preferencial de temperatura entre 20 e 70°C, uma pressão preferencial atmosférica e, preferencialmente em 50 estágios.  Process according to Claim 13, characterized in that it comprises a step of separating (b3) between acetaldehyde (top of the column) and ethyl acetate with water (bottom of the column) (COLUMN3) obtained from (b1) in the flow stream. column bottom (COLUMN) in a preferred temperature range between 20 and 70 ° C, a preferred atmospheric pressure and preferably in 50 stages.
24. Processo, de acordo com a reivindicação 13, caracterizado pela obtenção de acetato de etila puro (e1 ) compreender alimentação de um solvente preferencialmente etilenoglicol durante separação (b3) entre acetato de etila (topo da coluna) e água com etilenoglicol (fundo da coluna) (COLUNA4) obtida em (b3) na corrente do topo da coluna (COLUNA3) e, consequente obtenção de acetato de etila puro, em uma faixa preferencial de temperatura de 75 a 118° C, uma pressão preferencial de 0,955 bar e, preferencialmente em 52 estágios.  Process according to claim 13, characterized in that obtaining pure ethyl acetate (e1) comprises feeding a solvent preferably ethylene glycol during separation (b3) between ethyl acetate (top of the column) and water with ethylene glycol (bottom of the column) (COLUMA4) obtained from (b3) in the column top stream (COLUMA3) and, consequently obtaining pure ethyl acetate, in a preferred temperature range of 75 to 118 ° C, a preferred pressure of 0.955 bar and, preferably in 52 stages.
25. Processo, de acordo com a reivindicação 13, caracterizado por compreender uma separação (b5) entre água (topo da coluna) e etilenoglicol (fundo da coluna) (COLUNA5) obtida em (b4) na corrente do fundo da coluna (COLUNA4) em uma faixa de temperatura preferencial entre 98 e 195,5° C, uma pressão preferencial de 0,955 bar e, preferencialmente em 22 estágios.  Process according to Claim 13, characterized in that it comprises a separation (b5) between water (column top) and ethylene glycol (column bottom) (COLUMA5) obtained from (b4) in the column bottom stream (COLUMA4). in a preferred temperature range between 98 and 195.5 ° C, a preferred pressure of 0.955 bar and preferably in 22 stages.
26. Processo, de acordo com a reivindicação 20, caracterizado pelo etilenoglicol ser recuperado e re-circulado, podendo alimentar novamente a etapa de separação da COLUNA 4.  Process according to Claim 20, characterized in that the ethylene glycol is recovered and recirculated and can again feed the separation step of COLUMN 4.
27. Sistema integrado de produção de acetato de etila, acetaldeído, hidrogénio, etileno e água caracterizado por uma configuração β compreendendo: 7/827. An integrated ethyl acetate, acetaldehyde, hydrogen, ethylene and water production system characterized by a β configuration comprising: 7/8
O 2013/029129 PCT/BR2011/000458 The 2013/029129 PCT / BR2011 / 000458
(a) ao menos um meio de reação em leito fixo com catalisador do tipo hidrotalcita calcinada; (a) at least one fixed bed reaction medium with calcined hydrotalcite catalyst;
(b) ao menos cinco meios de separação de misturas;  (b) at least five mixture separation means;
(b1 ) meios de separação compreendendo ao menos uma corrente adicional de solvente;  (b1) separating means comprising at least one additional solvent stream;
(c) meios de trocar;  (c) means of exchange;
(d) meios de misturar solventes e reagentes;  (d) means for mixing solvents and reagents;
(e) meios de limpeza ou ativação de leito catalítico, limpeza de linha, ajuste de temperatura de reação e, monitoramento da queda de pressão no leito catalítico;  (e) catalytic bed cleaning or activation means, line cleaning, reaction temperature adjustment and monitoring of catalytic bed pressure drop;
(f) meios de separação do hidrogénio disponível.  (f) available hydrogen separation means.
28. Sistema, de acordo com a reivindicação 27, caracterizado por compreender ao menos um meio de reação preferencialmente reator multitubular em leito fixo com catalisador do tipo hidrotalcita calcinada;  System according to claim 27, characterized in that it comprises at least one reaction medium, preferably a fixed bed multitubular reactor with calcined hydrotalcite-type catalyst;
29. Sistema, de acordo com a reivindicação 27, caracterizado por compreender ao menos cinco meios de separação de misturas, preferencialmente colunas de destilação.  System according to claim 27, characterized in that it comprises at least five mixture separation means, preferably distillation columns.
30. Sistema, de acordo com a reivindicação 27, caracterizado por compreender meios de separação compreendendo ao menos um destilador alimentado com uma corrente adicional de solvente preferencialmente etilenoglicol.  A system according to claim 27, characterized in that it comprises separation means comprising at least one distiller supplied with an additional solvent stream preferably ethylene glycol.
31. Sistema, de acordo com a reivindicação 27, caracterizado por compreender meios de trocar calor selecionado dentre troca em paralelo e em contra-corrente, preferencialmente trocadores de calor indireto em contra- corrente entre correntes resultantes do próprio processo.  System according to Claim 27, characterized in that it comprises heat exchange means selected from parallel and countercurrent exchange, preferably indirect countercurrent heat exchangers between currents resulting from the process itself.
32. Sistema, de acordo com a reivindicação 27, caracterizado por compreender meios de limpeza ou ativação de leito catalítico, limpeza de linha, ajuste de temperatura de reação e, monitoramento da queda de pressão no leito catalítico, preferencialmente através de alimentação com uma corrente de nitrogénio no elemento (a). 8/8System according to claim 27, characterized in that it comprises means for cleaning or activating catalytic bed, line cleaning, reaction temperature adjustment and monitoring of pressure drop in the catalytic bed, preferably by feeding with a current. nitrogen in element (a). 8/8
O 2013/029129 PCT/BR2011/000458 The 2013/029129 PCT / BR2011 / 000458
33. Sistema, de acordo com a reivindicação 27, caracterizado por compreender meios de separação do hidrogénio disponível, preferencialmente flash ou reator de membranas. System according to claim 27, characterized in that it comprises available hydrogen separation means, preferably flash or membrane reactor.
34. Sistema, de acordo com a reivindicação 27, caracterizado pela dita configuração β compreender um processo de acordo com as reivindicações de System according to claim 27, characterized in that said configuration β comprises a process according to the claims of
18 a 26. 18 to 26.
35. Acetato de etila caracterizado por ser obtido com pureza preferencial entre 99,9% e 100% de acordo com qualquer um dos processos descritos nas reivindicações 1 e 18.  Ethyl acetate which is obtained with a preferential purity of between 99.9% and 100% according to any of the processes described in claims 1 and 18.
36. Acetaldeído caracterizado por ser obtido com pureza preferencial entre 95,5 a 99,9% de acordo com qualquer um dos processos descritos nas reivindicações 1 e 18.  Acetaldehyde characterized in that it is obtained with a purity of from 95.5 to 99.9% according to any of the processes described in claims 1 and 18.
37. Etileno caracterizado por ser obtido com pureza preferencial entre 99,9% e 100% de acordo com qualquer um dos processos descritos nas reivindicações 1 e 18.  Ethylene characterized in that it is obtained with preferential purity between 99.9% and 100% according to any of the processes described in claims 1 and 18.
38. Hidrogénio puro caracterizado por ser obtido de acordo com qualquer um dos processos descritos nas reivindicações 1 e 18.  Pure hydrogen characterized in that it is obtained according to any of the processes described in claims 1 and 18.
PCT/BR2011/000458 2011-08-31 2011-12-07 Integrated system for producing ethyl acetate, acetaldehyde, hydrogen and ethylene, integrated process for producing ethyl acetate, acetaldehyde, hydrogen and ethylene, and products thereby produced WO2013029129A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI1104013-0 2011-08-31
BRPI1104013-0A BRPI1104013B1 (en) 2011-08-31 2011-08-31 INTEGRATED SYSTEM FOR THE PRODUCTION OF ETHYL ACETATE, ACETALDEHYDE, HYDROGEN AND ETHYLENE, INTEGRATED PROCESS FOR OBTAINING ETHYL ACETATE, ACETALDEHYDE, HYDROGEN AND ETHYLENE

Publications (1)

Publication Number Publication Date
WO2013029129A1 true WO2013029129A1 (en) 2013-03-07

Family

ID=47755127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2011/000458 WO2013029129A1 (en) 2011-08-31 2011-12-07 Integrated system for producing ethyl acetate, acetaldehyde, hydrogen and ethylene, integrated process for producing ethyl acetate, acetaldehyde, hydrogen and ethylene, and products thereby produced

Country Status (2)

Country Link
BR (1) BRPI1104013B1 (en)
WO (1) WO2013029129A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103191623A (en) * 2013-04-08 2013-07-10 安徽皖维高新材料股份有限公司 Method and device for recycling reaction offgas generated during vinyl acetate synthesis through biomass ethylene method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0407038A1 (en) * 1989-07-03 1991-01-09 Chemical Research & Licensing Company Method for the preparation of dialkyl ethers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0407038A1 (en) * 1989-07-03 1991-01-09 Chemical Research & Licensing Company Method for the preparation of dialkyl ethers

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BATISTA, M. S. ET AL.: "Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol", JOURNAL OF POWER SOURCES, vol. 124, no. 1, 2003, pages 99 - 103, XP004454598, DOI: doi:10.1016/S0378-7753(03)00599-8 *
BATISTA, M. S. ET AL.: "High efficiency steam reforming of ethanol by cobalt-based catalysts", JOURNAL OF POWER SOURCES, vol. 134, no. 1, 2004, pages 27 - 32, XP004517015, DOI: doi:10.1016/j.jpowsour.2004.01.052 *
GUIL-LÓPEZ ET AL.: "Hydrogen production by oxidative ethanol reforming on Co, Ni and Cu ex-hydrotalcite catalysts", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 36, no. 2, January 2011 (2011-01-01), pages 1512 - 1523, XP028132943, DOI: doi:10.1016/j.ijhydene.2010.10.084 *
LLORCA, J. ET AL.: "Efficient Production of Hydrogen over Supported Cobalt Catalysts from Ethanol Steam Reforming", JOURNAL OF CATALYSIS, vol. 209, no. 2, 2002, pages 306 - 317, XP008119354, DOI: doi:10.1006/jcat.2002.3643 *
NI, M. ET AL.: "A review on reforming bio-ethanol for hydrogen production", INT. J HYDROGEN ENERGY, vol. 32, no. 15, 2007, pages 3238 - 3247, XP022300503, DOI: doi:10.1016/j.ijhydene.2007.04.038 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103191623A (en) * 2013-04-08 2013-07-10 安徽皖维高新材料股份有限公司 Method and device for recycling reaction offgas generated during vinyl acetate synthesis through biomass ethylene method

Also Published As

Publication number Publication date
BRPI1104013B1 (en) 2019-03-12
BRPI1104013A2 (en) 2013-08-13

Similar Documents

Publication Publication Date Title
US9169186B2 (en) System and method for continuously producing polyoxymethylene dimethyl ethers
BR112014017395B1 (en) REACTIVE DISTILLATION METHOD AND PROCESS
BRPI0608502A2 (en) processes and equipment for the production of aromatic carboxylic acids
BRPI0721008A2 (en) METHOD FOR PREPARING ACRYLIC ACID FROM GLYCEROL
JP2012533555A (en) Butanol recovery from a mixture of butanol, water and organic extractant
CN112638849A (en) Process for the preparation of methanol from synthesis gas without carbon dioxide emissions
BR112018003036B1 (en) METHOD FOR PRODUCING A HIGHER ALCOHOL
US20180134642A1 (en) Process for preparing polyoxymethylene dimethyl ethers from formaldehyde and methanol in aqueous solutions
Liu et al. Process intensification by integration of distillation and vapor permeation or pervaporation-an academic and industrial perspective
Kiss et al. Revamping dimethyl ether separation to a single‐step process
BR102015016125B1 (en) method for producing dimethyl oxalate and method for producing dimethyl oxalate and dimethyl carbonate as a by-product
CN101121625A (en) Method for preparing ethylene by ethanol dehydration
BR112016011953B1 (en) PRODUCTION PROCESS OF 1,3-BUTADIENE FROM A LOAD UNDERSTANDING ETHANOL
CN106518675A (en) Dimethyl oxalate production method with byproduct (dimethyl carbonate)
CN102807500B (en) Method for liquid-phase preparation of N, N-dimethylacetamide
Kiss et al. Enhanced dimethyl ether synthesis by reactive distillation in a dividing-wall column
WO2020015321A1 (en) Method and device for separating isopropanol
JP2013525315A (en) Method for recovering organic tertiary amines from waste sulfuric acid using plug flow reactor
CN104119225A (en) New technology for producing ethyl acetate through reactive distillation by taking mixed ionic liquid as catalyst
WO2013029129A1 (en) Integrated system for producing ethyl acetate, acetaldehyde, hydrogen and ethylene, integrated process for producing ethyl acetate, acetaldehyde, hydrogen and ethylene, and products thereby produced
BRPI0922170B1 (en) process for purifying an aqueous stream from the fischer-tropsch reaction
CN105949026B (en) A kind of hybrid pentane precision separator
JP2009275019A (en) Method for refining water-alcohol composition
BR112016015130B1 (en) CONTINUOUS PROCESSES TO PREPARE N-BUTANOL
US10717045B2 (en) Removal of oxygen from hydrocarbon-containing gas mixtures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871695

Country of ref document: EP

Kind code of ref document: A1