WO2013027699A1 - Wind power generation device - Google Patents
Wind power generation device Download PDFInfo
- Publication number
- WO2013027699A1 WO2013027699A1 PCT/JP2012/070985 JP2012070985W WO2013027699A1 WO 2013027699 A1 WO2013027699 A1 WO 2013027699A1 JP 2012070985 W JP2012070985 W JP 2012070985W WO 2013027699 A1 WO2013027699 A1 WO 2013027699A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- voltage
- power
- converter
- control unit
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/10—Combinations of wind motors with apparatus storing energy
- F03D9/11—Combinations of wind motors with apparatus storing energy storing electrical energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Definitions
- the present invention relates to a wind power generator.
- the main object of the present invention is to suppress the consumption of electric power stored in a storage battery in a wind turbine generator.
- a wind turbine generator includes a windmill, a power generation unit that generates power by rotating the windmill, and converts electric power generated in the power generation unit into power for charging a storage battery.
- a power supply switching unit that activates the converter control unit by supplying power from the power supply unit to the converter control unit.
- FIG. 1 is a diagram illustrating the overall configuration of the wind turbine generator according to the first embodiment.
- FIG. 2 is a circuit diagram showing details of the first switching unit.
- FIG. 3 is a circuit diagram showing details of the second switching unit.
- FIG. 4 is a diagram illustrating a part of another example of the circuit unit.
- FIG. 5 is a diagram illustrating a part of still another example of the circuit unit.
- FIG. 6 is a diagram illustrating an overall configuration of the wind turbine generator according to the second embodiment.
- FIG. 7 is a circuit diagram illustrating a part of the first switching unit and the switching instruction unit.
- FIG. 8 is a circuit diagram illustrating a part of the second switching unit and the switching instruction unit.
- FIG. 9 is a diagram illustrating a part of another example of the circuit unit.
- FIG. 10 is a diagram illustrating an overall configuration of a wind turbine generator according to the third embodiment.
- FIG. 11 is a diagram illustrating the activation voltage detection unit.
- FIG. 12 is
- FIG. 1 is a diagram showing an overall configuration of a wind turbine generator 1 according to a first embodiment of the present invention.
- the wind turbine generator 1 includes a windmill 21, a generator 22, a circuit unit 3, and a storage battery 4.
- the rotating shaft of the windmill 21 is connected to the rotating part of the generator 22 directly or through a speed increasing gear.
- the rotating portion of the generator 22 rotates.
- the generator 22 has a three-phase output line. In the generator 22, variable-phase three-phase AC power corresponding to the rotational speed of the wind turbine 21 is generated.
- the circuit unit 3 includes an AC-DC converter 31, a DC-DC converter 32, a current / voltage detection unit 33, and an arithmetic device 30.
- the AC power output from the generator 22 is converted into DC power by the AC-DC converter 31.
- the DC power voltage is converted into a constant voltage by a DC-DC converter 32 which is a switching converter.
- the storage battery 4 is connected to the DC-DC converter 32 via the current / voltage detection unit 33, and stores electricity using the output current from the DC-DC converter 32.
- the DC-DC converter 32 is a conversion unit for charging.
- the generator 22 and the AC-DC converter 31 are regarded as portions that generate DC power, and these are referred to as “power generation unit 20”.
- the main part of the arithmetic unit 30 is realized by a microcomputer.
- the functions of the converter control unit 301 and the switching instruction unit 302 are realized by the arithmetic device 30.
- the current / voltage detector 33 samples the output current and output voltage from the DC-DC converter 32 at a predetermined sampling period. A signal from the current / voltage detection unit 33 is input to the converter control unit 301.
- the converter control unit 301 obtains output power from the DC-DC converter 32 and controls the DC-DC converter 32 by a PWM (Pulse Width Modulation) method. Thereby, high power generation efficiency in the generator 22 is realized.
- PWM Pulse Width Modulation
- the circuit unit 3 further includes a first switching unit 34, a regulator 35, a second switching unit 36, and a voltage detection unit 38.
- the circuit unit 3 is provided on one or a plurality of circuit boards.
- the first switching unit 34 is connected to the AC-DC converter 31, the switching instruction unit 302, and the regulator 35.
- the first switching unit 34 detects a voltage generated in the power generation unit 20 (hereinafter referred to as “power generation voltage”), and the power generation voltage exceeds a predetermined lower limit value (hereinafter referred to as “first lower limit value”). And the AC-DC converter 31 and the regulator 35 are connected.
- the regulator 35 is a constant voltage generator, for example, a series regulator.
- the regulator 35 changes the DC power from the AC-DC converter 31 to a constant voltage (for example, 5 V) for the arithmetic device 30.
- a part of the electric power generated in the power generation unit 20 is supplied to the arithmetic device 30, in particular, the microcomputer included in the arithmetic device 30 via the regulator 35.
- the arithmetic device 30 is activated and the converter control unit 301 and the switching instruction unit 302 are activated.
- the first switching unit 34 functions as a power switching unit (control unit power switching unit) of the control unit that is the arithmetic device 30.
- the first lower limit value is a control unit activation voltage that causes the control unit power supply switching unit to activate the converter control unit 301.
- the generated voltage is the control unit activation voltage
- the power generated by the power generation unit 20 is larger than the power consumption in the entire wind power generator 1. This prevents power consumption during power generation and improves power storage efficiency.
- the second switching unit 36 is connected to the storage battery 4, the switching instruction unit 302 and the regulator 35.
- the voltage detection unit 38 measures the power generation voltage output from the power generation unit 20 and inputs it to the arithmetic unit 30, particularly the switching instruction unit 302.
- the switching instruction unit 302 always monitors whether the generated voltage exceeds the upper limit value (hereinafter referred to as “first upper limit value”) larger than the first lower limit value.
- the switching instruction unit 302 When the power generation voltage generated by the power generation unit 20 exceeds the first upper limit value, the switching instruction unit 302 outputs a Hi (high) level signal to the second switching unit 36, and the second switching unit 36 passes the regulator 35 through the regulator 35. Power is supplied from the storage battery 4 to the computing device 30. In this way, the second switching unit 36 functions as another switching unit for power supply of the control unit that is the arithmetic device 30 (other control unit power supply switching unit). Further, the switching instruction unit 302 outputs a signal having a Hi level to the first switching unit 34, and the first switching unit 34 stops the power supply from the power generation unit 20 to the arithmetic device 30. Thereby, destruction of the regulator 35 and the discrete circuit including the regulator 35 due to high voltage is prevented.
- the switching instruction unit 302 since the switching instruction unit 302 outputs a signal to the first switching unit 34 after outputting a signal to the second switching unit 36, the first upper limit value is a combination of two different upper limit values. Yes. Hereinafter, these upper limit values are referred to as “lower first upper limit value” and “upper first upper limit value”.
- the switching instruction unit 302 When the generated voltage exceeds the lower first upper limit value, the switching instruction unit 302 outputs a Hi signal to the second switching unit 36, and when the generated voltage exceeds the upper first upper limit value, the switching instruction unit 302 A Hi signal is output to the switching unit 34.
- the switching instruction unit 302 When the generated voltage is lower than the first upper limit value from the state exceeding the first upper limit value, the switching instruction unit 302 outputs a signal having a level Lo (low) to the first switching unit 34, and the first switching unit 34 Power is supplied from the power generation unit 20 to the arithmetic device 30 via the regulator 35. Further, the switching instruction unit 302 outputs a signal having a level Lo to the second switching unit 36, and the power supply from the storage battery 4 to the arithmetic device 30 is stopped by the second switching unit 36.
- the switching instruction unit 302 when the generated voltage falls below the upper first upper limit value, the switching instruction unit 302 outputs a Lo signal to the first switching unit 34, and when the generated voltage falls below the lower first upper limit value, the switching instruction unit 302 302 outputs a Lo signal to the second switching unit 34.
- the first lower limit value is also a control unit stop voltage at which the control unit power switching unit stops the supply of power from the power generation unit 20 that is the power supply unit to the converter control unit 301.
- the control unit activation voltage and the control unit stop voltage may be different.
- FIG. 2 is a circuit diagram showing details of the first switching unit 34.
- the first switching unit 34 includes two n-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) 511 and 513 and one p-channel MOSFET 512.
- MOSFETs Metal-Oxide-Semiconductor Field-Effect Transistors
- the MOSFET 511 is turned on and the potential at the point 52 decreases.
- the MOSFET 512 is turned on, and power is supplied from the power generation unit 20 to the arithmetic device 30 via the regulator 35.
- a Lo signal is input from the switching instruction unit 302 to the MOSFET 513 via the resistor 523.
- the MOSFET 513 is turned on and the potential at the position 51 is lowered.
- the MOSFET 511 is turned off, the potential at the point 52 rises, the MOSFET 512 is also turned off, and the power supply from the regulator 35 to the arithmetic unit 30 is stopped.
- the first switching unit 34 starts power supply from the power generation unit 20 to the calculation device 30 without receiving an instruction from the calculation device 30, and calculates from the power generation unit 20 according to an instruction from the switching instruction unit 302. The power supply to the device 30 is stopped. Even if the first switching unit 34 automatically stops the supply of power to the arithmetic device 30 by the first switching unit 34 when the generated voltage increases, the first switching unit 34 does not receive an instruction from the switching instruction unit 302. Good.
- FIG. 3 is a circuit diagram showing details of the second switching unit 36.
- the second switching unit 36 includes one n-channel type MOSFET 611 and one p-channel type MOSFET 612.
- a Lo signal is input to the MOSFET 611 through the resistor 621.
- a Hi signal is input from the switching instruction unit 302 to the MOSFET 611, the MOSFET 611 is turned on.
- the potential at the point 61 is lowered and the MOSFET 612 is turned on.
- power is supplied from the storage battery 4 to the arithmetic device 30 via the regulator 35.
- the second switching unit 36 switches ON / OFF of the power supply from the storage battery 4 to the arithmetic device 30 in accordance with an instruction from the switching instruction unit 302. It should be noted that a minute overlap period is provided for switching between the power supply from the power generation unit 20 to the arithmetic device 30 and the power supply from the storage battery 4 to the arithmetic device 30, so the first switching unit 34 and the second switching In the unit 36, power is supplied to the regulator 35 via the diodes 531 and 631.
- the wind power generator 1 power is not supplied to the arithmetic device 30 in a state where the power generation unit 20 hardly generates power. Thereby, useless power consumption is prevented.
- the power generation unit 20 generates power by the rotation of the windmill 21, power is supplied from the power generation unit 20 to the computing device 30, so that consumption of power stored in the storage battery 4 is suppressed. As a result, the power generation efficiency when viewed in terms of electric power is improved. Further, it is not necessary to add a large-scale facility such as solar power generation in order to continue supplying power to the arithmetic device 30.
- FIG. 4 is a diagram showing a part of another example of the circuit unit 3. 4, components similar to those shown in FIG. 1 are given the same reference numerals, and those not shown in FIG. 1 indicate components added to the circuit unit 3 of FIG. Note that the first switching instruction unit 302 in FIG. 4 is the same as the switching instruction unit 302 in FIG. 1, and the components in the vicinity thereof are not shown.
- power is supplied from the storage battery 4 as power for driving the DC-DC converter 32.
- This power supply is performed under the control of the arithmetic device 30 after the arithmetic device 30 is activated.
- power supply from the power generation unit 20 and power supply from the storage battery 4 are switched as power for driving the DC-DC converter 32.
- a third switching unit 71, a regulator 72, and a fourth switching unit 73 are added to the circuit unit 3 of FIG. 1.
- the function of the second switching instruction unit 303 is added.
- the structures of the third switching unit 71 and the fourth switching unit 73 are the same as those shown in FIG. 3, and the power source is replaced with the power generation unit 20 in the third switching unit 71.
- the regulator 72 When a Hi signal is input from the second switching instruction unit 303 to the third switching unit 71, the regulator 72 generates a constant voltage (for example, 12V) for driving the DC-DC converter 32, and the power generation unit Power is supplied from 20 to the DC-DC converter 32.
- the Lo signal is input to the third switching unit 71, the power supply from the power generation unit 20 to the DC-DC converter 32 is stopped.
- the third switching unit 71 switches on / off the power supply from the power generation unit 20 to the DC-DC converter 32.
- the third switching unit 71 functions as a switching unit for the power source of the DC-DC converter 32 (converter power source switching unit).
- the fourth switching unit 73 When a Hi signal is input from the second switching instruction unit 303 to the fourth switching unit 73, power is supplied from the storage battery 4 to the DC-DC converter 32 via the regulator 72. When the Lo signal is input to the fourth switching unit 73, the power supply from the storage battery 4 to the DC-DC converter 32 is stopped. The fourth switching unit 73 switches ON / OFF of power supply from the storage battery 4 to the DC-DC converter 32. The fourth switching unit 73 functions as another switching unit for the power source of the DC-DC converter 32 (another converter power source switching unit).
- the voltage detector starts when the windmill 21 starts rotating and the arithmetic unit 30 is activated, and the generated voltage by the power generation unit 20 further rises and exceeds a predetermined lower limit (hereinafter referred to as “second lower limit”).
- a predetermined lower limit hereinafter referred to as “second lower limit”.
- the second lower limit value is a converter activation voltage that is a voltage when the DC-DC converter 32 that is the charging converter is activated.
- a signal from the second switching instruction unit 303 causes the fourth Driving power is also supplied from the storage battery 4 to the DC-DC converter 32 via the switching unit 73 and the regulator 72. Then, in response to a signal from the second switching instruction unit 303, the third switching unit 71 stops supplying driving power from the power generation unit 20 to the DC-DC converter 32. As a result, it is possible to prevent the regulator 72 from being damaged by applying a voltage higher than the allowable value to the regulator 72.
- the second upper limit value is a combination of two different upper limit values. It has become.
- these upper limit values are referred to as “lower second upper limit value” and “upper second upper limit value”.
- the second switching instruction unit 303 When the generated voltage exceeds the lower second upper limit value, the second switching instruction unit 303 outputs a Hi signal to the fourth switching unit 73, and when the generated voltage exceeds the upper second upper limit value, the second switching instruction unit. 303 outputs a Lo signal to the third switching unit 71.
- the third switching unit 73 and the regulator are controlled by a signal from the second switching instruction unit 303.
- Power for driving is supplied from the power generation unit 20 to the DC-DC converter 32 via 72.
- the fourth switching unit 73 stops supplying driving power from the storage battery 4 to the DC-DC converter 32.
- the second switching instruction unit 303 when the generated voltage falls below the upper second upper limit value, the second switching instruction unit 303 outputs a Hi signal to the third switching unit 71, and when the generated voltage falls below the lower second upper limit value, The 2 switching instruction unit 303 outputs a Lo signal to the fourth switching unit 73.
- the third switching unit 71 stops supplying driving power from the power generation unit 20 to the DC-DC converter 32 by a signal from the second switching instruction unit 303.
- the converter stop voltage when stopping the DC-DC converter 32 is equal to the converter activation voltage, but they may be different.
- the amount of power supplied from the storage battery 4 to the DC-DC converter 32 can be reduced, and the consumption of the power stored in the storage battery 4 is suppressed. As a result, power generation efficiency is improved. Further, by using an inexpensive regulator 72 having a low withstand voltage, an increase in manufacturing cost of the wind turbine generator 1 can be prevented.
- the fourth switching unit 73 is detected by a signal from the second switching instruction unit 303.
- the driving power may be supplied from the storage battery 4 to the DC-DC converter 32 via the regulator 72.
- the power source of the DC-DC converter 32 is sequentially switched from the storage battery 4 to the power generation unit 20 and the storage battery 4. Then, the power generation unit 20 and the storage battery 4 are sequentially switched.
- FIG. 5 is a diagram showing a part of still another example of the circuit unit 3.
- the circuit unit 3 is the same as the circuit unit 3 of FIG. 1 except that another regulator 35a is added.
- power is supplied from the regulator 35 to the DC-DC converter 32 at a voltage of, for example, 12V.
- the regulator 35 a is connected to the regulator 35, converts the voltage to 5 V, for example, and supplies power to the arithmetic device 30.
- the same power supply source switching as in the case of FIG. 1 can be performed simultaneously on the arithmetic unit 30 and the DC-DC converter 32.
- backflow prevention diodes are arranged between the branch point between the regulator 35 and the regulator 35a, the DC-DC converter 32, and between the branch point and the regulator 35a.
- FIG. 6 is a diagram showing an overall configuration of the wind turbine generator 1 according to the second embodiment of the present invention.
- the switching instruction unit 302 is provided as a dedicated circuit.
- the function of the converter control unit 301 is realized by the arithmetic device 30.
- the switching instruction unit 302 is connected to the power generation unit 20.
- Other components are the same as those of the wind power generator 1 of FIG.
- FIG. 7 is a circuit diagram showing a part of the first switching unit 34 and the switching instruction unit 302.
- the circuit unit 3 includes a voltage dividing circuit 81 as a part of the switching instruction unit 302.
- the voltage dividing circuit 81 includes two resistors 811 and 812 connected in series to the power generation unit 20. In the voltage dividing circuit 81, an output is obtained from between the resistors 811 and 812. The output is input to the first switching unit 34. That is, the position between the resistors 811 and 812 is connected to the gate of the MOSFET 513 through the resistor 523.
- the MOSFET 511 when the generated voltage exceeds the first lower limit value, the MOSFET 511 is turned on, the MOSFET 512 is also turned on, and power is supplied from the power generation unit 20 to the arithmetic device 30 via the regulator 35.
- a Hi signal is input from the voltage dividing circuit 81 to the MOSFET 513, and the power generation unit 20 is operated in the same manner as in the first embodiment. From the power supply to the converter control unit 301 of the arithmetic unit 30 is stopped. In other words, the first switching unit 34 stops the supply of power from the power generation unit 20 to the converter control unit 301 using the output from the voltage dividing circuit 81.
- the Lo signal is input from the voltage dividing circuit 81 to the MOSFET 513, and the supply of power from the power generation unit 20 to the converter control unit 301 is resumed.
- the first switching unit 34 starts supplying power from the power generation unit 20 to the converter control unit 301 using the output from the voltage dividing circuit 81.
- the first switching unit 34 can be operated in the same manner as in the first embodiment.
- FIG. 8 is a circuit diagram showing a part of the second switching unit 36 and the switching instruction unit 302.
- the circuit unit 3 includes a voltage dividing circuit 82 as a part of the switching instruction unit 302.
- the voltage dividing circuit 82 includes two resistors 821 and 822 connected in series to the power generation unit 20. In the voltage dividing circuit 82, an output is obtained from between the resistors 821 and 822. The output is input to the second switching unit 36. That is, the position between the resistors 821 and 822 is connected to the gate of the MOSFET 611 through the resistor 621.
- the MOSFET 611 When the generated voltage exceeds the first upper limit value, the MOSFET 611 is turned on by the voltage dividing circuit 82 and the MOSFET 612 is also turned on by the voltage dividing circuit 82, and the computing device 30 is connected from the storage battery 4 via the regulator 35. Is supplied with power. In other words, the second switching unit 36 starts supplying power from the storage battery 4 to the converter control unit 301 of the arithmetic device 30 using the output from the voltage dividing circuit 82.
- a Lo signal is input from the voltage dividing circuit 82 to the MOSFET 611, and the supply of power from the storage battery 4 to the converter control unit 301 is stopped.
- the second switching unit 36 stops the supply of power from the storage battery 4 to the converter control unit 301 using the output from the voltage dividing circuit 82.
- the second switching unit 36 can be operated in the same manner as in the first embodiment. Since the first switching unit 34 and the second switching unit 36 operate in the same manner as in the first embodiment, wasteful power consumption is prevented. Further, destruction of the regulator 35 and the like when the generated voltage becomes too high is prevented. An inexpensive regulator with a low withstand voltage can be used as the regulator 35. By realizing the switching instruction unit 302 with a simple voltage dividing circuit using a resistor, the operation reliability of the circuit unit 3 is improved.
- the second embodiment is switched from the first embodiment.
- the instruction unit 302 is omitted.
- the first upper limit value that is switched by the voltage dividing circuit 81 is the same as in the first embodiment so that the power supply to the arithmetic device 30 including the converter control unit 301 is not interrupted during switching. It is slightly higher than the first upper limit value at which switching is performed by the voltage dividing circuit 82. That is, the upper first upper limit value is acquired by the voltage dividing circuit 81, and the lower first upper limit value is acquired by the voltage dividing circuit 82.
- FIG. 9 is a diagram showing a part of another example of the circuit unit 3, and corresponds to FIG. 9, the same components as those shown in FIG. 6 are denoted by the same reference numerals, and those not shown in FIG. 6 indicate components added to the circuit unit 3 of FIG.
- the first switching instruction unit 302 is the same as the switching instruction unit 302 in FIG. 6, and the components in the vicinity thereof are not shown.
- power supply from the power generation unit 20 to the DC-DC converter 32 and power supply from the storage battery 4 to the DC-DC converter 32 are switched.
- the second switching instruction unit 303 is a component independent of the arithmetic device 30.
- the configurations of the third switching unit 71, the fourth switching unit 73, and the second switching instruction unit 303 are the same as those shown in FIGS. 7 and 7 except that the switching unit is connected to the DC-DC converter 32 via the regulator 72. It is the same as 8. Of course, the ratio of the two resistance values of the voltage dividing circuit is changed as appropriate.
- the third switching unit 71, the fourth switching unit 73, and the second switching instruction unit 303 will be described with reference to the reference numerals in FIGS.
- the voltage dividing circuit 81 connected to the third switching unit 71 includes two resistors 811 and 812 connected in series to the power generation unit 20. In the voltage dividing circuit 81, an output is obtained from between the resistors 811 and 812. The output is input to the third switching unit 71.
- the MOSFET 511 When the generated voltage exceeds the second lower limit value, the MOSFET 511 is turned on, the MOSFET 512 is also turned on, and power is supplied from the power generation unit 20 to the DC-DC converter 32 via the regulator 72.
- a Hi signal is input to the MOSFET 513, and the supply of power from the power generation unit 20 to the DC-DC converter 32 is stopped. . In other words, the third switching unit 71 stops the supply of power from the power generation unit 20 to the DC-DC converter 32 using the output from the voltage dividing circuit 81.
- the third switching unit 71 uses the output from the voltage dividing circuit 81 to start supplying power from the power generation unit 20 to the DC-DC converter 32.
- the third switching unit 71 can be realized to perform the same operation as that shown in FIG.
- the voltage dividing circuit 82 connected to the fourth switching unit 73 includes two resistors 821 and 822 connected in series to the power generation unit 20. In the voltage dividing circuit 82, an output from between the resistors 821 and 822 is obtained. The output is input to the fourth switching unit 73.
- the MOSFET 611 When the generated voltage exceeds the second upper limit value, the MOSFET 611 is turned on, the MOSFET 612 is also turned on, and power is supplied from the storage battery 4 to the DC-DC converter 32 via the regulator 72.
- the fourth switching unit 73 starts supplying power from the storage battery 4 to the DC-DC converter 32 using the output from the voltage dividing circuit 82.
- the Lo signal is input to the MOSFET 611 and the supply of power from the storage battery 4 to the DC-DC converter 32 is stopped.
- the fourth switching unit 73 stops the supply of power from the storage battery 4 to the DC-DC converter 32 using the output from the voltage dividing circuit 82.
- the fourth switching unit 73 can be operated in the same manner as that shown in FIG. Since the third switching unit 71 and the fourth switching unit 73 operate in the same manner as shown in FIG. 4, wasteful power consumption is prevented. In addition, destruction of the regulator 72 and the like when the generated voltage becomes too high is prevented. An inexpensive regulator with a low withstand voltage can be used as the regulator 72. By realizing the second switching instruction unit 303 with a simple voltage dividing circuit using a resistor, the operation reliability of the circuit unit 3 is improved.
- the second upper limit value that is switched by the voltage dividing circuit 81 is the second upper limit value that is switched by the voltage dividing circuit 82 so that the power supply to the DC-DC converter 32 is not interrupted during switching. Slightly higher than. That is, the upper second upper limit value is acquired by the voltage dividing circuit 81, and the lower second upper limit value is acquired by the voltage dividing circuit 82.
- the first lower limit value may be smaller or larger than the second lower limit value or may be the same depending on the design of the circuit unit 3.
- the first upper limit value may be smaller or larger than the second upper limit value, or may be the same.
- the first lower limit value may be equal to the second lower limit value, only one voltage dividing circuit 81 is provided, and the voltage dividing circuit 81 can be connected to the first switching unit 34 and the third switching unit 71.
- the first upper limit value may be equal to the second upper limit value, only one voltage dividing circuit 82 is provided, and the voltage dividing circuit 82 can be connected to the second switching unit 36 and the fourth switching unit 73.
- FIG. 10 is a diagram showing an overall configuration of a wind turbine generator 1a according to the third embodiment of the present invention.
- the wind power generator 1 a includes a windmill 21, a generator 22, a circuit unit 3, and a storage battery 4.
- the windmill 21, the generator 22, and the storage battery 4 are the same as in the first embodiment.
- some lines are indicated by broken lines.
- the circuit unit 3 includes an AC-DC converter 31, a DC-DC converter 32, a current / voltage detection unit 33, an arithmetic device 30, a regulator 75, an activation voltage detection unit 761, and a voltage reduction unit 762. And including.
- the AC-DC converter 31, the DC-DC converter 32, and the current / voltage detector 33 are the same as those in the first embodiment.
- Circuit unit 3 further includes a charge switching unit 741 and a short relay unit 742.
- the charge switching unit 741 is disposed between the generator 22 and the short relay unit 742.
- the short relay unit 742 is disposed between the charge switching unit 741 and the AC-DC converter 31.
- the generator 22 and the AC-DC converter 31 are referred to as a “power generation unit 20”. Similar to the first embodiment, the circuit unit 3 is provided on one or a plurality of circuit boards.
- the charge switching unit 741 is a set of relay switches arranged on each of the three-phase output lines of the generator 22.
- the charging switching unit 741 switches ON / OFF of the output from the power generation unit 20 to the DC-DC converter 32 that is the charging conversion unit.
- the short relay unit 742 is a relay switch that shorts two of the three-phase output lines.
- the computing device 30 includes a converter control unit 301, a switching instruction unit 304, a short relay instruction unit 305, and a voltage value acquisition unit 306.
- the converter control unit 301 is the same as that in the first embodiment.
- the switching instruction unit 304 inputs a control signal to the charging switching unit 741.
- Short relay instruction unit 305 inputs a control signal to short relay unit 742.
- the regulator 75 includes a relay voltage converter 751 and a controller voltage converter 752. Precisely, each of the relay voltage converter 751 and the control voltage converter 752 functions as a switching regulator, and the regulator 75 is a regulator element group. Power is input from the storage battery 4 to the regulator 75.
- the relay voltage converter 751 converts the voltage of the storage battery 4 into a voltage suitable for the charge switching unit 741 and the short relay unit 742. For example, the voltage of 24V from the storage battery 4 is converted to 12V. Thereby, the relay voltage converter 751 supplies the switching power to the charge switching unit 741 and the short relay unit 742 using the power from the storage battery 4.
- the activation voltage detection unit 761 detects whether or not the generated voltage exceeds the voltage when the arithmetic device 30 is activated, as will be described later. This voltage is hereinafter referred to as “control unit activation voltage”. Although not shown, another AC-DC converter is provided between the activation voltage detection unit 761 and the voltage reduction unit 762 and the generator 22. When the activation voltage detection unit 761 detects that the generated voltage exceeds the control unit activation voltage, the control unit voltage conversion unit 752 of the regulator 75 is activated in response to a signal from the activation voltage detection unit 761. .
- the voltage conversion unit 752 for the control unit converts the voltage supplied from the storage battery 4 into a voltage for the converter control unit 301, that is, the voltage for the calculation device 30, while supplying power from the storage battery 4 to the calculation device 30 including the converter control unit 301. Supply.
- the control unit voltage conversion unit 752 converts a voltage of 24 V from the storage battery 4 into a voltage of 5 V for the arithmetic device 30.
- the converter control unit 301 is also activated.
- the activation voltage detection unit 761 and the control unit voltage conversion unit 752 function as a power supply switching unit of the converter control unit 301. In FIG. 10, these are shown as a “control unit power supply switching unit 763”. ing.
- the voltage reduction unit 762 generates a voltage lower than the generated voltage that is proportional to the generated voltage.
- the voltage from the voltage reduction unit 762 is a voltage that can be processed by the arithmetic device 30. This voltage is input to the voltage value acquisition unit 306.
- the voltage value acquisition unit 306 converts the magnitude of the analog voltage into a digital voltage value that can be processed in the arithmetic device 30.
- the converted numerical value that substantially indicates the generated voltage is input to the switching instruction unit 304 and the short relay instruction unit 305.
- the voltage reduction unit 762 and the voltage value acquisition unit 306 function as a power generation voltage detection unit 764 that detects a power generation voltage generated by the power generation unit 20.
- FIG. 11 is a diagram illustrating the activation voltage detection unit 761.
- Activation voltage detection unit 761 includes a Zener diode 765, a capacitor 766, and an activation voltage conversion unit 767.
- the Zener diode 765 is hereinafter simply referred to as “diode 765”.
- the diode 765 obtains a voltage whose upper limit is limited to the controller activation voltage. .
- the voltage is input to the activation voltage conversion unit 767.
- the activation voltage conversion unit 767 outputs 0 V when the input voltage is less than the control unit activation voltage, and is suitable for the regulator 75 when the input voltage is higher than the control unit activation voltage, for example, 10 V or more. For example, 2V is output as the voltage. That is, the activation voltage conversion unit 767 converts the voltage obtained by the diode 765 into a voltage that is a signal for activating the control unit voltage conversion unit 752. In this embodiment, a reset IC is used as the activation voltage conversion unit 767.
- the activation voltage conversion unit 767 By providing the activation voltage conversion unit 767, a constant voltage is input to the regulator 72, and malfunction of the arithmetic unit 30 due to ground noise or capacitor standby current is prevented. As a result, the arithmetic device 30 can be activated stably, and the load on the arithmetic device 30 can be reduced. Further, the control unit activation voltage and the voltage for activating the regulator 75 can be different voltages.
- the activation voltage detection unit 761 When the regulator 75 is capable of ON / OFF control depending on whether or not the voltage input from the activation voltage detection unit 761 exceeds a predetermined threshold value, the activation voltage detection unit 761 includes, as shown in FIG. It may be realized by a voltage dividing circuit. For example, among the resistors 768 and 769 connected in series, a voltage acting on one resistor 769, that is, an output from between two resistors is input to the regulator 75. Thus, the activation voltage detection unit 761 divides the generated voltage and inputs it to the regulator 75 including the control unit voltage conversion unit 752.
- the activation voltage detection unit 761 causes the generated voltage to fall below the control unit activation voltage in a windless or light wind state, and no voltage for activating the regulator 75 is input from the activation voltage detection unit 761. Therefore, although the voltage is given to the regulator 75 by the storage battery 4, the regulator 75 is not activated. Power is not supplied from the control unit voltage converter 752 to the arithmetic unit 30. Thereby, consumption of the electric power stored in the storage battery 4 in the windless or light wind state is prevented.
- the activation voltage detection unit 761 activates the regulator 75.
- the relay voltage conversion unit 751 of the regulator 75 converts the voltage from the storage battery 4 into a voltage for the relay switch and supplies the voltage to the charge switching unit 741 and the short relay unit 742.
- the control unit power supply switching unit 763 including the control unit voltage conversion unit 752 converts the voltage from the storage battery 4 into a voltage for the calculation device 30 and supplies power from the storage battery 4 to the calculation device 30.
- converter control unit 301, switching instruction unit 304, short relay instruction unit 305, and voltage value acquisition unit 306 are activated.
- the voltage value acquisition unit 306 digitizes the generated voltage and inputs it to the switching instruction unit 304 and the short relay instruction unit 305.
- the switching instruction unit 304 sends a signal to the charge switching unit 741.
- the charge switching unit 741 connects the generator 22 and the AC-DC converter 31.
- the converter control unit 301 controls the DC-DC converter 32 based on the signal from the current / voltage detection unit 33, and the storage battery 4 is charged with the generated power. Is called.
- the switching instruction unit 304 controls the charging switching unit 741 based on the generated voltage detected by the generated voltage detection unit 764.
- the power generated by the power generation unit 20 is preferably greater than or equal to the power consumption of the circuit unit 3 of the wind power generator 1a. Thereby, it is prevented that the power of the storage battery 4 is consumed in the whole wind power generator 1a although charging is started. Further, in order to reliably prevent power consumption at the charging start voltage, when the generated voltage is the control unit activation voltage, the power generated by the power generation unit 20 is larger than the power consumption in the entire wind power generator 1a. preferable. Thereby, consumption of the electric power of the storage battery 4 can be suppressed, and electrical storage efficiency can be improved.
- the charging switching unit 741 when the charging switching unit 741 is not provided, since the generated voltage exceeds the control unit activation voltage and charging is started at the same time, the generated power is generated at the time of the control unit activation voltage. It is preferable to exceed the power consumption of 1a.
- the switching instruction unit 304 stops applying voltage to the charge switching unit 741, and the charge switching unit 741 is turned off. Thereby, charging stops.
- the wind speed further decreases and the generated voltage falls below the control unit activation voltage, no voltage is input from the activation voltage detection unit 761 to the regulator 75, and the function of the regulator 75 stops.
- the supply of power from the control unit voltage converter 752 to the arithmetic device 30 is stopped, and the arithmetic device 30 stops.
- control unit stop voltage the control unit activation voltage and the control unit stop voltage are equal in this embodiment.
- the control unit activation voltage may be different from the control unit stop voltage.
- the control unit stop voltage may be lower than the control unit activation voltage in order to prevent the converter control unit 301 from being stopped once it is once activated.
- the control unit stop voltage is set higher than the control unit activation voltage.
- control unit power switching unit 763 supplies power from the storage battery 4 to the converter control unit 301. Stop.
- the short relay instruction unit 305 When the power generation voltage exceeds the power generation upper limit voltage higher than the charging start voltage, the short relay instruction unit 305 outputs a voltage as a signal to the short relay unit 742.
- the short relay unit 742 is connected to a two-phase output line among the three-phase output lines of the generator 22. In response to a signal from the short relay instruction unit 305, the short relay unit 742 connects the two-phase output lines to cause a short circuit. Due to the short circuit, a short brake, which is a great resistance to the rotation of the generator 22, acts. As a result, when the wind is too strong due to a gust or the like, the generated voltage is prevented from increasing excessively and an excessive load is applied to the electronic component, and the circuit unit 3 is protected.
- the short relay instruction unit 305 controls ON / OFF of the short relay unit 742 based on the voltage detected by the generated voltage detection unit 764.
- first lower limit value in the first and second embodiments different values may be used depending on whether the generated voltage increases or decreases.
- the destruction of the regulator 35 can be prevented more reliably from a sudden increase in the generated voltage. be able to.
- IGBTs Insulated Gate Bipolar Transistors
- MOSFETs Metal Gate Bipolar Transistors
- a part or all of the functions of the arithmetic unit 30 may be a dedicated electric circuit that does not use a microcomputer. Conversely, a part or all of the dedicated circuit may be realized by the arithmetic device 30.
- the AC-DC converter 31 may be provided not in the circuit unit 3 but in the generator 22. Further, the generator 22 itself may be a power generation unit that generates DC power. The generator 22 may generate multilayer AC power other than three phases.
- the third switching unit 71 of FIG. 4 may be provided as a structure according to FIG.
- one regulator may be provided as the regulators 35 and 72.
- the first switching unit 34 and the third switching unit 71 may be provided as one switching unit
- the second switching unit 36 and the fourth switching unit 73 may be provided as one switching unit.
- a timer is used when the power source that supplies power to the arithmetic unit 30 and the DC-DC converter 32 is switched between the power generation unit 20 and the storage battery 4.
- a minute time during which power is supplied from both sides may be secured. That is, the supply of power from the other power source may be stopped after a lapse of a minute fixed time after the supply of power from one power source is started.
- the first upper limit value and the second upper limit value need not be provided as a combination of the upper upper limit value and the lower upper limit value.
- the voltage dividing circuits 81 and 82 and the voltage reduction unit 762 in FIG. 12 are realized at low cost by using resistors, but may be realized by using elements other than resistors.
- Only one of the first switching instruction unit 302 and the second switching instruction unit 303 may be realized using a voltage dividing circuit. Further, only one of the part connected to the first switching part 34 and the part connected to the second switching part 36 of the switching instruction part 302 (or the first switching instruction part 302) is realized by the voltage dividing circuit, and the other However, it may be realized by the arithmetic unit 30. Similarly, only one of the part connected to the third switching unit 71 and the part connected to the fourth switching unit 73 of the second switching instruction unit 303 is realized by the voltage dividing circuit, and the other is operated by the arithmetic unit 30. It may be realized.
- the short relay unit 742 if charging is not performed while the short relay unit 742 is in the ON state, the short relay unit 742 is connected to a three-phase output line, and even if the three-phase output line is short-circuited to each other, Good.
- the short relay unit 742 shorts at least two-phase output lines.
- the power supply unit that supplies power to the converter control unit 301 when the generated voltage exceeds the control unit activation voltage is the power generation unit 20.
- the power supply unit is the storage battery 4.
- the power supply unit may be other than the power generation unit 20 or the storage battery 4.
- the present invention can be used for a wind power generator that generates power using wind power.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Control Of Eletrric Generators (AREA)
- Wind Motors (AREA)
Abstract
A wind power generation device comprises: a wind mill; a power generation unit for generating power by the rotation of the wind mill; a charging converter for converting the power generated by the power generation unit to power for charging a battery; a converter control unit for controlling the charging converter; a power supplying unit for supplying power to the converter control unit; and a control unit-power supply switching unit for, when the voltage of the power generated by the power generation unit exceeds a control unit activation voltage, activating the converter control unit by supplying power to the converter control unit from the power supplying unit.
Description
本発明は、風力発電装置に関する。
The present invention relates to a wind power generator.
風力発電装置では、発電効率を高めるために様々な制御が行われる。このような制御は、マイクロコンピュータ等の演算装置により実現され、従来より、演算装置には常に電力が供給される。しかし、演算装置への電源として蓄電池が用いられる場合、無風状態が続くと発電が長時間行われないため、蓄電池から電力が消費され続ける。
In wind power generators, various controls are performed to increase power generation efficiency. Such control is realized by an arithmetic device such as a microcomputer, and conventionally, power is always supplied to the arithmetic device. However, when a storage battery is used as a power source for the arithmetic device, if no wind continues, power generation is not performed for a long time, and thus power is continuously consumed from the storage battery.
そこで、例えば、実開昭62-285636号公報に開示される風力発電システムでは、太陽電池を設け、太陽電池からコントローラおよび界磁電流調整器に電力が供給されることにより、無風が継続することによるシステムダウンが防止される。
実開昭62-285636号公報
Therefore, for example, in the wind power generation system disclosed in Japanese Utility Model Publication No. 62-285636, a solar cell is provided, and no power is supplied by supplying power from the solar cell to the controller and the field current regulator. System down due to is prevented.
Japanese Utility Model Publication No. 62-285636
しかし、太陽電池を風力発電システムに設ける場合、システムが大掛かりとなり、部品数も大幅に増加し、発電コストが増大してしまう。また、風が吹かない間に制御部に電力が供給され続け、不必要に電力が消費される。
However, when a solar cell is provided in a wind power generation system, the system becomes large, the number of parts increases significantly, and the power generation cost increases. In addition, power is continuously supplied to the control unit while the wind is not blowing, and power is unnecessarily consumed.
本発明は、風力発電装置において、蓄電池に蓄えられた電力の消費を抑制することを主たる目的としている。
The main object of the present invention is to suppress the consumption of electric power stored in a storage battery in a wind turbine generator.
本発明の例示的な一の側面に係る風力発電装置は、風車と、前記風車の回転により発電を行う発電部と、前記発電部にて発生する電力を蓄電池への充電用の電力へと変換する充電用変換器と、前記充電用変換器を制御する変換器制御部と、前記変換器制御部に電力を供給する電力供給部と、前記発電部による発電電圧が制御部能動化電圧を上回った場合に、前記電力供給部から前記変換器制御部に電力を供給することにより、前記変換器制御部を能動化させる制御部電源スイッチング部と、を備える。
A wind turbine generator according to an exemplary aspect of the present invention includes a windmill, a power generation unit that generates power by rotating the windmill, and converts electric power generated in the power generation unit into power for charging a storage battery. A converter for charging, a converter control unit for controlling the converter for charging, a power supply unit for supplying power to the converter control unit, and a voltage generated by the power generation unit exceeds a control unit activation voltage. A power supply switching unit that activates the converter control unit by supplying power from the power supply unit to the converter control unit.
本発明では、蓄電池に蓄えられた電力の消費を抑制することができる。
In the present invention, consumption of electric power stored in the storage battery can be suppressed.
図1は、本発明の第1の実施形態に係る風力発電装置1の全体構成を示す図である。風力発電装置1は、風車21と、発電機22と、回路部3と、蓄電池4と、を含む。風車21の回転軸は、発電機22の回転部に直接的に、または、増速ギヤを介して接続される。風車21が風を受けて回転すると、発電機22の回転部が回転する。これにより、風車21により発生する運動エネルギーが、発電機22により電気エネルギーに変換される。発電機22は、3相の出力線を有する。発電機22では、風車21の回転速度に応じた可変周波数の3相の交流電力が発生する。
FIG. 1 is a diagram showing an overall configuration of a wind turbine generator 1 according to a first embodiment of the present invention. The wind turbine generator 1 includes a windmill 21, a generator 22, a circuit unit 3, and a storage battery 4. The rotating shaft of the windmill 21 is connected to the rotating part of the generator 22 directly or through a speed increasing gear. When the windmill 21 receives the wind and rotates, the rotating portion of the generator 22 rotates. Thereby, the kinetic energy generated by the windmill 21 is converted into electric energy by the generator 22. The generator 22 has a three-phase output line. In the generator 22, variable-phase three-phase AC power corresponding to the rotational speed of the wind turbine 21 is generated.
回路部3は、AC-DC変換器31と、DC-DC変換器32と、電流・電圧検知部33と、演算装置30と、を含む。発電機22から出力される交流電力は、AC-DC変換器31にて直流電力に変換される。直流電力の電圧は、スイッチングコンバータであるDC-DC変換器32により、一定の電圧に変換される。蓄電池4は、電流・電圧検知部33を介してDC-DC変換器32に接続され、DC-DC変換器32からの出力電流により蓄電を行う。
The circuit unit 3 includes an AC-DC converter 31, a DC-DC converter 32, a current / voltage detection unit 33, and an arithmetic device 30. The AC power output from the generator 22 is converted into DC power by the AC-DC converter 31. The DC power voltage is converted into a constant voltage by a DC-DC converter 32 which is a switching converter. The storage battery 4 is connected to the DC-DC converter 32 via the current / voltage detection unit 33, and stores electricity using the output current from the DC-DC converter 32.
このように、発電機22にて発生されてAC-DC変換器31から出力される電力は、DC-DC変換器32により蓄電池4への充電用の電力へと変換される。DC-DC変換器32は、充電用変換部である。なお、以下の説明では、発電機22とAC-DC変換器31とを直流電力を発生する部位と捉え、これらを「発電部20」と呼ぶ。
Thus, the electric power generated by the generator 22 and output from the AC-DC converter 31 is converted into electric power for charging the storage battery 4 by the DC-DC converter 32. The DC-DC converter 32 is a conversion unit for charging. In the following description, the generator 22 and the AC-DC converter 31 are regarded as portions that generate DC power, and these are referred to as “power generation unit 20”.
演算装置30は、主要部がマイクロコンピュータにより実現される。演算装置30により、変換器制御部301およびスイッチング指示部302の機能が実現される。電流・電圧検知部33は、所定のサンプリング周期にてDC-DC変換器32からの出力電流および出力電圧をサンプリングする。電流・電圧検知部33からの信号は、変換器制御部301に入力される。変換器制御部301は、DC-DC変換器32からの出力電力を求め、DC-DC変換器32をPWM(Pulse Width Modulation)方式にて制御する。これにより、発電機22における高い発電効率が実現される。
The main part of the arithmetic unit 30 is realized by a microcomputer. The functions of the converter control unit 301 and the switching instruction unit 302 are realized by the arithmetic device 30. The current / voltage detector 33 samples the output current and output voltage from the DC-DC converter 32 at a predetermined sampling period. A signal from the current / voltage detection unit 33 is input to the converter control unit 301. The converter control unit 301 obtains output power from the DC-DC converter 32 and controls the DC-DC converter 32 by a PWM (Pulse Width Modulation) method. Thereby, high power generation efficiency in the generator 22 is realized.
回路部3は、第1スイッチング部34と、レギュレータ35と、第2スイッチング部36と、電圧検知部38と、をさらに含む。回路部3は、1つまたは複数の回路基板上に設けられる。第1スイッチング部34は、AC-DC変換器31、スイッチング指示部302およびレギュレータ35に接続される。第1スイッチング部34は、発電部20にて発生する電圧(以下、「発電電圧」という。)を検知し、発電電圧が所定の下限値(以下、「第1下限値」という。)を上回るとAC-DC変換器31とレギュレータ35とを接続する。
The circuit unit 3 further includes a first switching unit 34, a regulator 35, a second switching unit 36, and a voltage detection unit 38. The circuit unit 3 is provided on one or a plurality of circuit boards. The first switching unit 34 is connected to the AC-DC converter 31, the switching instruction unit 302, and the regulator 35. The first switching unit 34 detects a voltage generated in the power generation unit 20 (hereinafter referred to as “power generation voltage”), and the power generation voltage exceeds a predetermined lower limit value (hereinafter referred to as “first lower limit value”). And the AC-DC converter 31 and the regulator 35 are connected.
レギュレータ35は、定電圧発生部であり、例えば、シリーズレギュレータである。レギュレータ35は、AC-DC変換器31からの直流電力を、演算装置30用の一定の電圧(例えば、5V)の電力に変更する。これにより、発電部20にて発生する電力の一部が、演算装置30、特に、演算装置30が有するマイクロコンピュータに、レギュレータ35を介して供給される。その結果、演算装置30が起動し、変換器制御部301およびスイッチング指示部302が能動化される。このように、第1スイッチング部34は、演算装置30である制御部の電源用のスイッチング部(制御部電源スイッチング部)として機能する。
The regulator 35 is a constant voltage generator, for example, a series regulator. The regulator 35 changes the DC power from the AC-DC converter 31 to a constant voltage (for example, 5 V) for the arithmetic device 30. Thereby, a part of the electric power generated in the power generation unit 20 is supplied to the arithmetic device 30, in particular, the microcomputer included in the arithmetic device 30 via the regulator 35. As a result, the arithmetic device 30 is activated and the converter control unit 301 and the switching instruction unit 302 are activated. In this manner, the first switching unit 34 functions as a power switching unit (control unit power switching unit) of the control unit that is the arithmetic device 30.
第1下限値は、制御部電源スイッチング部が変換器制御部301を能動化させる制御部能動化電圧である。発電電圧が制御部能動化電圧あるとき、発電部20による発電電力は、風力発電装置1全体における消費電力よりも大きい。これにより、発電中に電力が消費されることが防止され、蓄電効率が向上する。
The first lower limit value is a control unit activation voltage that causes the control unit power supply switching unit to activate the converter control unit 301. When the generated voltage is the control unit activation voltage, the power generated by the power generation unit 20 is larger than the power consumption in the entire wind power generator 1. This prevents power consumption during power generation and improves power storage efficiency.
第2スイッチング部36は、蓄電池4、スイッチング指示部302およびレギュレータ35に接続される。電圧検知部38は、発電部20から出力される発電電圧を測定し、演算装置30、特に、スイッチング指示部302に入力する。スイッチング指示部302は、上記第1下限値よりも大きい上限値(以下、「第1上限値」という。)を発電電圧が上回らないか常に監視する。
The second switching unit 36 is connected to the storage battery 4, the switching instruction unit 302 and the regulator 35. The voltage detection unit 38 measures the power generation voltage output from the power generation unit 20 and inputs it to the arithmetic unit 30, particularly the switching instruction unit 302. The switching instruction unit 302 always monitors whether the generated voltage exceeds the upper limit value (hereinafter referred to as “first upper limit value”) larger than the first lower limit value.
発電部20による発電電圧が第1上限値を上回ると、スイッチング指示部302は第2スイッチング部36にレベルがHi(高)の信号を出力し、第2スイッチング部36により、レギュレータ35を介して蓄電池4から演算装置30に電力が供給される。このように、第2スイッチング部36は、演算装置30である制御部の電源用の他のスイッチング部(他の制御部電源スイッチング部)として機能する。さらに、スイッチング指示部302は第1スイッチング部34にレベルがHiの信号を出力し、第1スイッチング部34により、発電部20から演算装置30への電力供給が停止される。これにより、高電圧によるレギュレータ35やレギュレータ35を含むディスクリート回路の破壊が防止される。
When the power generation voltage generated by the power generation unit 20 exceeds the first upper limit value, the switching instruction unit 302 outputs a Hi (high) level signal to the second switching unit 36, and the second switching unit 36 passes the regulator 35 through the regulator 35. Power is supplied from the storage battery 4 to the computing device 30. In this way, the second switching unit 36 functions as another switching unit for power supply of the control unit that is the arithmetic device 30 (other control unit power supply switching unit). Further, the switching instruction unit 302 outputs a signal having a Hi level to the first switching unit 34, and the first switching unit 34 stops the power supply from the power generation unit 20 to the arithmetic device 30. Thereby, destruction of the regulator 35 and the discrete circuit including the regulator 35 due to high voltage is prevented.
実際には、スイッチング指示部302が第2スイッチング部36に信号を出力した後に第1スイッチング部34に信号を出力するために、第1上限値は、互いに異なる2つの上限値の組み合わせとなっている。以下、これらの上限値を「下側第1上限値」および「上側第1上限値」と呼ぶ。そして、発電電圧が下側第1上限値を上回るとスイッチング指示部302が第2スイッチング部36にHiの信号を出力し、発電電圧が上側第1上限値を上回るとスイッチング指示部302が第1スイッチング部34にHiの信号を出力する。
Actually, since the switching instruction unit 302 outputs a signal to the first switching unit 34 after outputting a signal to the second switching unit 36, the first upper limit value is a combination of two different upper limit values. Yes. Hereinafter, these upper limit values are referred to as “lower first upper limit value” and “upper first upper limit value”. When the generated voltage exceeds the lower first upper limit value, the switching instruction unit 302 outputs a Hi signal to the second switching unit 36, and when the generated voltage exceeds the upper first upper limit value, the switching instruction unit 302 A Hi signal is output to the switching unit 34.
発電電圧が、第1上限値を上回る状態から第1上限値を下回ると、スイッチング指示部302は第1スイッチング部34にレベルがLo(低)の信号を出力し、第1スイッチング部34により、レギュレータ35を介して発電部20から演算装置30に電力が供給される。さらに、スイッチング指示部302は第2スイッチング部36にレベルがLoの信号を出力し、第2スイッチング部36により、蓄電池4から演算装置30への電力供給が停止される。正確には、発電電圧が上側第1上限値を下回ると、スイッチング指示部302が第1スイッチング部34にLoの信号を出力し、発電電圧が下側第1上限値を下回ると、スイッチング指示部302が第2スイッチング部34にLoの信号を出力する。
When the generated voltage is lower than the first upper limit value from the state exceeding the first upper limit value, the switching instruction unit 302 outputs a signal having a level Lo (low) to the first switching unit 34, and the first switching unit 34 Power is supplied from the power generation unit 20 to the arithmetic device 30 via the regulator 35. Further, the switching instruction unit 302 outputs a signal having a level Lo to the second switching unit 36, and the power supply from the storage battery 4 to the arithmetic device 30 is stopped by the second switching unit 36. More precisely, when the generated voltage falls below the upper first upper limit value, the switching instruction unit 302 outputs a Lo signal to the first switching unit 34, and when the generated voltage falls below the lower first upper limit value, the switching instruction unit 302 302 outputs a Lo signal to the second switching unit 34.
発電電圧が、第1下限値を上回る状態から第1下限値を下回ると、第1スイッチング部34により発電部20から演算装置30への電力供給が停止される。これにより、演算装置30の機能が停止する。第1下限値は、制御部電源スイッチング部が、電力供給部である発電部20から変換器制御部301への電力の供給を停止する制御部停止電圧でもある。制御部能動化電圧と制御部停止電圧とは異なってもよい。
When the power generation voltage falls below the first lower limit value from a state where the power generation voltage exceeds the first lower limit value, the power supply from the power generation unit 20 to the arithmetic device 30 is stopped by the first switching unit 34. Thereby, the function of the arithmetic unit 30 stops. The first lower limit value is also a control unit stop voltage at which the control unit power switching unit stops the supply of power from the power generation unit 20 that is the power supply unit to the converter control unit 301. The control unit activation voltage and the control unit stop voltage may be different.
図2は、第1スイッチング部34の詳細を示す回路図である。第1スイッチング部34は2つのnチャネル型のMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)511,513と、1つのpチャネル型のMOSFET512と、を含む。まず、風車21の回転が開始し、発電部20にて発生する発電電圧が上昇すると、点51の電位が抵抗521と抵抗522とによる分圧に応じて上昇する。発電電圧が第1下限値を上回ると、MOSFET511がON状態となり、点52の電位が下降する。その結果、MOSFET512がON状態となり、レギュレータ35を介して、発電部20から演算装置30に電力が供給される。
FIG. 2 is a circuit diagram showing details of the first switching unit 34. The first switching unit 34 includes two n-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) 511 and 513 and one p-channel MOSFET 512. First, when the rotation of the wind turbine 21 is started and the generated voltage generated in the power generation unit 20 is increased, the potential at the point 51 is increased according to the partial pressure by the resistor 521 and the resistor 522. When the generated voltage exceeds the first lower limit value, the MOSFET 511 is turned on and the potential at the point 52 decreases. As a result, the MOSFET 512 is turned on, and power is supplied from the power generation unit 20 to the arithmetic device 30 via the regulator 35.
一方、演算装置30が能動化される前および直後の状態では、スイッチング指示部302からは抵抗523を介してMOSFET513にLoの信号が入力される状態となっている。この状態から、スイッチング指示部302から第1スイッチング部34にHiの信号が入力されると、MOSFET513がON状態となり、位置51の電位が下がる。その結果、MOSFET511がOFF状態となり、点52の電位が上昇してMOSFET512もOFF状態となり、レギュレータ35からの演算装置30への電力供給が停止される。
On the other hand, before and after the arithmetic unit 30 is activated, a Lo signal is input from the switching instruction unit 302 to the MOSFET 513 via the resistor 523. In this state, when a Hi signal is input from the switching instruction unit 302 to the first switching unit 34, the MOSFET 513 is turned on and the potential at the position 51 is lowered. As a result, the MOSFET 511 is turned off, the potential at the point 52 rises, the MOSFET 512 is also turned off, and the power supply from the regulator 35 to the arithmetic unit 30 is stopped.
以上のように、第1スイッチング部34は、演算装置30からの指示を受けることなく発電部20から演算装置30への電力供給を開始し、スイッチング指示部302からの指示により発電部20から演算装置30への電力供給を停止する。なお、発電電圧が上昇した際の第1スイッチング部34による演算装置30への電力供給の停止は、スイッチング指示部302からの指示を受けることなく第1スイッチング部34により自動的に行われてもよい。
As described above, the first switching unit 34 starts power supply from the power generation unit 20 to the calculation device 30 without receiving an instruction from the calculation device 30, and calculates from the power generation unit 20 according to an instruction from the switching instruction unit 302. The power supply to the device 30 is stopped. Even if the first switching unit 34 automatically stops the supply of power to the arithmetic device 30 by the first switching unit 34 when the generated voltage increases, the first switching unit 34 does not receive an instruction from the switching instruction unit 302. Good.
図3は、第2スイッチング部36の詳細を示す回路図である。第2スイッチング部36は1つのnチャネル型のMOSFET611と、1つのpチャネル型のMOSFET612と、を含む。第1スイッチング部34により演算装置30が能動化された直後の状態では、抵抗621を介してMOSFET611にはLoの信号が入力されている。そして、スイッチング指示部302からMOSFET611にHiの信号が入力されると、MOSFET611がON状態となる。これにより、点61の電位が下降し、MOSFET612がON状態となる。その結果、レギュレータ35を介して、蓄電池4から演算装置30に電力が供給される。
FIG. 3 is a circuit diagram showing details of the second switching unit 36. The second switching unit 36 includes one n-channel type MOSFET 611 and one p-channel type MOSFET 612. In a state immediately after the arithmetic device 30 is activated by the first switching unit 34, a Lo signal is input to the MOSFET 611 through the resistor 621. When a Hi signal is input from the switching instruction unit 302 to the MOSFET 611, the MOSFET 611 is turned on. As a result, the potential at the point 61 is lowered and the MOSFET 612 is turned on. As a result, power is supplied from the storage battery 4 to the arithmetic device 30 via the regulator 35.
一方、スイッチング指示部302から第2スイッチング部36にLoの信号が入力されると、MOSFET611がOFF状態となり、点61の電位が上昇する。その結果、MOSFET612がOFF状態となり、レギュレータ35から演算装置30への電力供給が停止される。
On the other hand, when a Lo signal is input from the switching instruction unit 302 to the second switching unit 36, the MOSFET 611 is turned off and the potential at the point 61 rises. As a result, the MOSFET 612 is turned off, and power supply from the regulator 35 to the arithmetic device 30 is stopped.
以上のように、第2スイッチング部36は、スイッチング指示部302からの指示により、蓄電池4から演算装置30への電力供給のON/OFFを切り替える。なお、発電部20から演算装置30への電力供給と、蓄電池4から演算装置30への電力供給との切替には、微小なオーバーラップ期間が設けられるため、第1スイッチング部34および第2スイッチング部36では、ダイオード531,631を介してレギュレータ35にそれぞれ電力が供給される。
As described above, the second switching unit 36 switches ON / OFF of the power supply from the storage battery 4 to the arithmetic device 30 in accordance with an instruction from the switching instruction unit 302. It should be noted that a minute overlap period is provided for switching between the power supply from the power generation unit 20 to the arithmetic device 30 and the power supply from the storage battery 4 to the arithmetic device 30, so the first switching unit 34 and the second switching In the unit 36, power is supplied to the regulator 35 via the diodes 531 and 631.
風力発電装置1では、発電部20にて発電がほとんど行われない状態では、演算装置30に電力が供給されない。これにより、無駄な電力消費が防止される。風車21の回転により発電部20が発電を行うと、発電部20から演算装置30に電力が供給されるため、蓄電池4に蓄えられた電力の消費が抑制される。その結果、電力量で見たときの発電効率が向上する。また、演算装置30に電力を供給し続けるために太陽光発電といった大規模な設備を追加する必要もない。
In the wind power generator 1, power is not supplied to the arithmetic device 30 in a state where the power generation unit 20 hardly generates power. Thereby, useless power consumption is prevented. When the power generation unit 20 generates power by the rotation of the windmill 21, power is supplied from the power generation unit 20 to the computing device 30, so that consumption of power stored in the storage battery 4 is suppressed. As a result, the power generation efficiency when viewed in terms of electric power is improved. Further, it is not necessary to add a large-scale facility such as solar power generation in order to continue supplying power to the arithmetic device 30.
一方、発電部20にて発生する発電電圧が高くなりすぎた場合には、蓄電池4から演算装置30に電力が供給されて発電部20から演算装置30への電力の供給が停止されるため、レギュレータ35等の破壊が防止される。レギュレータ35として耐電圧の低い安価なものを利用することができ、風力発電装置1の製造コストの増大を防止することができる。
On the other hand, when the power generation voltage generated in the power generation unit 20 becomes too high, power is supplied from the storage battery 4 to the arithmetic device 30 and supply of power from the power generation unit 20 to the arithmetic device 30 is stopped. The destruction of the regulator 35 and the like is prevented. An inexpensive regulator with a low withstand voltage can be used as the regulator 35, and an increase in the manufacturing cost of the wind turbine generator 1 can be prevented.
図4は、回路部3の他の例の一部を示す図である。図4では、図1に示すものと同様の構成要素には同符号を付し、図1に示されないものは図1の回路部3に追加される構成要素を示す。なお、図4の第1スイッチング指示部302は、図1のスイッチング指示部302と同様であり、その周辺の構成要素の図示を省略している。
FIG. 4 is a diagram showing a part of another example of the circuit unit 3. 4, components similar to those shown in FIG. 1 are given the same reference numerals, and those not shown in FIG. 1 indicate components added to the circuit unit 3 of FIG. Note that the first switching instruction unit 302 in FIG. 4 is the same as the switching instruction unit 302 in FIG. 1, and the components in the vicinity thereof are not shown.
図1では図示を省略しているが、DC-DC変換器32の駆動用電力として、蓄電池4から電力が供給される。この電力供給は、演算装置30が能動化された後に演算装置30の制御により行われる。図4の回路部3では、DC-DC変換器32の駆動用電力として、発電部20からの電力供給と、蓄電池4からの電力供給とが切り替えられる。
Although not shown in FIG. 1, power is supplied from the storage battery 4 as power for driving the DC-DC converter 32. This power supply is performed under the control of the arithmetic device 30 after the arithmetic device 30 is activated. In the circuit unit 3 in FIG. 4, power supply from the power generation unit 20 and power supply from the storage battery 4 are switched as power for driving the DC-DC converter 32.
図4の回路部3では、図1の回路部3に、第3スイッチング部71と、レギュレータ72と、第4スイッチング部73と、が追加される。演算装置30では、第2スイッチング指示部303の機能が追加される。第3スイッチング部71および第4スイッチング部73の構造は、図3に示すものと同様であり、第3スイッチング部71では電源が発電部20に置き換えられる。
4, a third switching unit 71, a regulator 72, and a fourth switching unit 73 are added to the circuit unit 3 of FIG. 1. In the arithmetic device 30, the function of the second switching instruction unit 303 is added. The structures of the third switching unit 71 and the fourth switching unit 73 are the same as those shown in FIG. 3, and the power source is replaced with the power generation unit 20 in the third switching unit 71.
第2スイッチング指示部303から第3スイッチング部71にHiの信号が入力されると、レギュレータ72がDC-DC変換器32を駆動するための一定の電圧(例えば、12V)を発生し、発電部20からDC-DC変換器32に電力が供給される。第3スイッチング部71にLoの信号が入力されると、発電部20からDC-DC変換器32への電力供給が停止される。第3スイッチング部71により、発電部20からDC-DC変換器32への電力供給のON/OFFが切り替えられる。このように、第3スイッチング部71は、DC-DC変換器32の電源用のスイッチング部(変換器電源スイッチング部)として機能する。
When a Hi signal is input from the second switching instruction unit 303 to the third switching unit 71, the regulator 72 generates a constant voltage (for example, 12V) for driving the DC-DC converter 32, and the power generation unit Power is supplied from 20 to the DC-DC converter 32. When the Lo signal is input to the third switching unit 71, the power supply from the power generation unit 20 to the DC-DC converter 32 is stopped. The third switching unit 71 switches on / off the power supply from the power generation unit 20 to the DC-DC converter 32. As described above, the third switching unit 71 functions as a switching unit for the power source of the DC-DC converter 32 (converter power source switching unit).
第2スイッチング指示部303から第4スイッチング部73にHiの信号が入力されると、レギュレータ72を介して蓄電池4からDC-DC変換器32に電力が供給される。第4スイッチング部73にLoの信号が入力されると、蓄電池4からDC-DC変換器32への電力供給が停止される。第4スイッチング部73により、蓄電池4からDC-DC変換器32への電力供給のON/OFFが切り替えられる。第4スイッチング部73は、DC-DC変換器32の電源用の他のスイッチング部(他の変換器電源スイッチング部)として機能する。
When a Hi signal is input from the second switching instruction unit 303 to the fourth switching unit 73, power is supplied from the storage battery 4 to the DC-DC converter 32 via the regulator 72. When the Lo signal is input to the fourth switching unit 73, the power supply from the storage battery 4 to the DC-DC converter 32 is stopped. The fourth switching unit 73 switches ON / OFF of power supply from the storage battery 4 to the DC-DC converter 32. The fourth switching unit 73 functions as another switching unit for the power source of the DC-DC converter 32 (another converter power source switching unit).
風車21が回転を開始して演算装置30が能動化され、さらに発電部20による発電電圧が上昇して所定の下限値(以下、「第2下限値」という。)を上回ることが電圧検知部38による検知されると、第2スイッチング指示部303からの信号により、第3スイッチング部71およびレギュレータ72を介して発電部20にて発生する電力の一部が、DC-DC変換器32に駆動用の電力として供給される。これにより、DC-DC変換器32が能動化される。第2下限値は、充電用変換器であるDC-DC変換器32を能動化させるときの電圧である変換器能動化電圧である。
The voltage detector starts when the windmill 21 starts rotating and the arithmetic unit 30 is activated, and the generated voltage by the power generation unit 20 further rises and exceeds a predetermined lower limit (hereinafter referred to as “second lower limit”). When detected by the control unit 38, a part of the electric power generated in the power generation unit 20 via the third switching unit 71 and the regulator 72 is driven to the DC-DC converter 32 by the signal from the second switching instruction unit 303. It is supplied as power for use. As a result, the DC-DC converter 32 is activated. The second lower limit value is a converter activation voltage that is a voltage when the DC-DC converter 32 that is the charging converter is activated.
風車21の回転速度がさらに上昇し、発電部20による発電電圧が所定の上限値(以下、「第2上限値」という。)を上回ると、第2スイッチング指示部303からの信号により、第4スイッチング部73およびレギュレータ72を介して蓄電池4からもDC-DC変換器32に駆動用の電力が供給される。そして、第2スイッチング指示部303からの信号により、第3スイッチング部71が発電部20からDC-DC変換器32への駆動用の電力の供給を停止する。これにより、レギュレータ72に許容値以上の電圧が付与されてレギュレータ72が破壊されることが防止される。
When the rotational speed of the windmill 21 further increases and the power generation voltage generated by the power generation unit 20 exceeds a predetermined upper limit value (hereinafter referred to as “second upper limit value”), a signal from the second switching instruction unit 303 causes the fourth Driving power is also supplied from the storage battery 4 to the DC-DC converter 32 via the switching unit 73 and the regulator 72. Then, in response to a signal from the second switching instruction unit 303, the third switching unit 71 stops supplying driving power from the power generation unit 20 to the DC-DC converter 32. As a result, it is possible to prevent the regulator 72 from being damaged by applying a voltage higher than the allowable value to the regulator 72.
実際には、第2スイッチング指示部303が第4スイッチング部73に信号を出力した後に第3スイッチング部71に信号を出力するために、第2上限値は、互いに異なる2つの上限値の組み合わせとなっている。以下、これらの上限値を「下側第2上限値」および「上側第2上限値」と呼ぶ。そして、発電電圧が下側第2上限値を上回ると第2スイッチング指示部303が第4スイッチング部73にHiの信号を出力し、発電電圧が上側第2上限値を上回ると第2スイッチング指示部303が第3スイッチング部71にLoの信号を出力する。
Actually, in order to output a signal to the third switching unit 71 after the second switching instruction unit 303 outputs a signal to the fourth switching unit 73, the second upper limit value is a combination of two different upper limit values. It has become. Hereinafter, these upper limit values are referred to as “lower second upper limit value” and “upper second upper limit value”. When the generated voltage exceeds the lower second upper limit value, the second switching instruction unit 303 outputs a Hi signal to the fourth switching unit 73, and when the generated voltage exceeds the upper second upper limit value, the second switching instruction unit. 303 outputs a Lo signal to the third switching unit 71.
風車21の回転速度が減速し、発電部20による発電電圧が第2上限値を上回る状態から第2上限値を下回ると、第2スイッチング指示部303からの信号により、第3スイッチング部73およびレギュレータ72を介して発電部20からDC-DC変換器32に駆動用の電力が供給される。そして、第2スイッチング指示部303からの信号により、第4スイッチング部73が蓄電池4からDC-DC変換器32への駆動用の電力の供給を停止する。正確には、発電電圧が上側第2上限値を下回ると、第2スイッチング指示部303が第3スイッチング部71にHiの信号を出力し、発電電圧が下側第2上限値を下回ると、第2スイッチング指示部303が第4スイッチング部73にLoの信号を出力する。
When the rotational speed of the wind turbine 21 is reduced and the power generation voltage generated by the power generation unit 20 is lower than the second upper limit value from a state where the power generation voltage is higher than the second upper limit value, the third switching unit 73 and the regulator are controlled by a signal from the second switching instruction unit 303. Power for driving is supplied from the power generation unit 20 to the DC-DC converter 32 via 72. Then, in response to a signal from the second switching instruction unit 303, the fourth switching unit 73 stops supplying driving power from the storage battery 4 to the DC-DC converter 32. More precisely, when the generated voltage falls below the upper second upper limit value, the second switching instruction unit 303 outputs a Hi signal to the third switching unit 71, and when the generated voltage falls below the lower second upper limit value, The 2 switching instruction unit 303 outputs a Lo signal to the fourth switching unit 73.
風車21の回転速度がさらに低下すると、第2スイッチング指示部303からの信号により、第3スイッチング部71が発電部20からDC-DC変換器32への駆動用の電力の供給を停止する。本実施形態では、DC-DC変換器32を停止させる際の変換器停止電圧は、変換器能動化電圧に等しいが、これらは異なってもよい。
When the rotational speed of the windmill 21 further decreases, the third switching unit 71 stops supplying driving power from the power generation unit 20 to the DC-DC converter 32 by a signal from the second switching instruction unit 303. In this embodiment, the converter stop voltage when stopping the DC-DC converter 32 is equal to the converter activation voltage, but they may be different.
以上の動作により、蓄電池4からDC-DC変換器32への供給電力量を削減することができ、蓄電池4に蓄えられた電力の消費が抑制される。その結果、発電効率が向上する。また、レギュレータ72として耐電圧の低い安価なものを利用することで風力発電装置1の製造コストの増大を防止することができる。
By the above operation, the amount of power supplied from the storage battery 4 to the DC-DC converter 32 can be reduced, and the consumption of the power stored in the storage battery 4 is suppressed. As a result, power generation efficiency is improved. Further, by using an inexpensive regulator 72 having a low withstand voltage, an increase in manufacturing cost of the wind turbine generator 1 can be prevented.
なお、発電部20にて発生する発電電圧が第2下限値を下回る場合であっても蓄電池4への充電が可能である場合、第2スイッチング指示部303からの信号により、第4スイッチング部73およびレギュレータ72を介して蓄電池4からDC-DC変換器32に駆動用の電力が供給されてよい。この場合、風車21の回転速度が上昇するに従って、DC-DC変換器32の電源が、蓄電池4から、発電部20、蓄電池4へと順に切り替わり、風車21の回転速度が低下すると、蓄電池4から、発電部20、蓄電池4へと順に切り替わる。
Note that if the storage battery 4 can be charged even when the power generation voltage generated in the power generation unit 20 is lower than the second lower limit value, the fourth switching unit 73 is detected by a signal from the second switching instruction unit 303. The driving power may be supplied from the storage battery 4 to the DC-DC converter 32 via the regulator 72. In this case, as the rotational speed of the windmill 21 increases, the power source of the DC-DC converter 32 is sequentially switched from the storage battery 4 to the power generation unit 20 and the storage battery 4. Then, the power generation unit 20 and the storage battery 4 are sequentially switched.
図5は、回路部3のさらに他の例の一部を示す図である。回路部3は、もう1つのレギュレータ35aが追加されるという点を除いて図1の回路部3と同様である。図5の回路部3では、レギュレータ35から、例えば12Vの電圧にてDC-DC変換器32に電力が供給される。レギュレータ35aはレギュレータ35に接続され、電圧を例えば5Vに変換して電力を演算装置30に供給する。これにより、図1の場合と同様の電力供給源の切り替えを、演算装置30およびDC-DC変換器32に対して同時に行うことができる。
FIG. 5 is a diagram showing a part of still another example of the circuit unit 3. The circuit unit 3 is the same as the circuit unit 3 of FIG. 1 except that another regulator 35a is added. In the circuit unit 3 in FIG. 5, power is supplied from the regulator 35 to the DC-DC converter 32 at a voltage of, for example, 12V. The regulator 35 a is connected to the regulator 35, converts the voltage to 5 V, for example, and supplies power to the arithmetic device 30. As a result, the same power supply source switching as in the case of FIG. 1 can be performed simultaneously on the arithmetic unit 30 and the DC-DC converter 32.
正確には、レギュレータ35とレギュレータ35aとの間の分岐点と、DC-DC変換器32との間、および、当該分岐点とレギュレータ35aとの間に、それぞれ逆流防止用のダイオードが配置される。
Precisely, backflow prevention diodes are arranged between the branch point between the regulator 35 and the regulator 35a, the DC-DC converter 32, and between the branch point and the regulator 35a. .
図6は、本発明の第2の実施形態に係る風力発電装置1の全体構成を示す図である。風力発電装置1では、スイッチング指示部302が専用の回路として設けられる。変換器制御部301の機能は演算装置30により実現される。スイッチング指示部302は発電部20に接続される。他の構成要素は、図1の風力発電装置1と同様であり、同符号を付す。
FIG. 6 is a diagram showing an overall configuration of the wind turbine generator 1 according to the second embodiment of the present invention. In the wind power generator 1, the switching instruction unit 302 is provided as a dedicated circuit. The function of the converter control unit 301 is realized by the arithmetic device 30. The switching instruction unit 302 is connected to the power generation unit 20. Other components are the same as those of the wind power generator 1 of FIG.
図7は、第1スイッチング部34およびスイッチング指示部302の一部を示す回路図である。回路部3は、スイッチング指示部302の一部として、分圧回路81を含む。分圧回路81は、発電部20に対して直列接続された2つの抵抗811,812を含む。分圧回路81では、抵抗811,812の間から出力が得られる。出力は、第1スイッチング部34に入力される。すなわち、抵抗811,812の間の位置が、抵抗523を介してMOSFET513のゲートに接続される。
FIG. 7 is a circuit diagram showing a part of the first switching unit 34 and the switching instruction unit 302. The circuit unit 3 includes a voltage dividing circuit 81 as a part of the switching instruction unit 302. The voltage dividing circuit 81 includes two resistors 811 and 812 connected in series to the power generation unit 20. In the voltage dividing circuit 81, an output is obtained from between the resistors 811 and 812. The output is input to the first switching unit 34. That is, the position between the resistors 811 and 812 is connected to the gate of the MOSFET 513 through the resistor 523.
第1の実施形態と同様に、発電電圧が第1下限値を上回ると、MOSFET511がON状態となり、MOSFET512もON状態となり、レギュレータ35を介して、発電部20から演算装置30に電力が供給される。発電部20による発電電圧がさらに上昇して第1上限値を上回ると、分圧回路81からMOSFET513にHiの信号が入力される状態となり、第1の実施形態と同様の動作により、発電部20から演算装置30の変換器制御部301への電力の供給が停止される。換言すれば、第1スイッチング部34は、分圧回路81からの出力を利用して発電部20から変換器制御部301への電力の供給を停止する。
As in the first embodiment, when the generated voltage exceeds the first lower limit value, the MOSFET 511 is turned on, the MOSFET 512 is also turned on, and power is supplied from the power generation unit 20 to the arithmetic device 30 via the regulator 35. The When the power generation voltage generated by the power generation unit 20 further rises and exceeds the first upper limit value, a Hi signal is input from the voltage dividing circuit 81 to the MOSFET 513, and the power generation unit 20 is operated in the same manner as in the first embodiment. From the power supply to the converter control unit 301 of the arithmetic unit 30 is stopped. In other words, the first switching unit 34 stops the supply of power from the power generation unit 20 to the converter control unit 301 using the output from the voltage dividing circuit 81.
また、発電部20による発電電圧が第1上限値を下回った場合は、分圧回路81からMOSFET513にLoの信号が入力され、発電部20から変換器制御部301への電力の供給が再開される。換言すれば、第1スイッチング部34は、分圧回路81からの出力を利用して発電部20から変換器制御部301への電力の供給を開始する。
When the power generation voltage generated by the power generation unit 20 falls below the first upper limit value, the Lo signal is input from the voltage dividing circuit 81 to the MOSFET 513, and the supply of power from the power generation unit 20 to the converter control unit 301 is resumed. The In other words, the first switching unit 34 starts supplying power from the power generation unit 20 to the converter control unit 301 using the output from the voltage dividing circuit 81.
以上のように、分圧回路81を利用しても、第1スイッチング部34が第1の実施形態と同様の動作をすることが実現される。
As described above, even when the voltage dividing circuit 81 is used, the first switching unit 34 can be operated in the same manner as in the first embodiment.
図8は、第2スイッチング部36およびスイッチング指示部302の一部を示す回路図である。回路部3は、スイッチング指示部302の一部として、分圧回路82を含む。分圧回路82は、発電部20に対して直列接続された2つの抵抗821,822を含む。分圧回路82では、抵抗821,822の間から出力が得られる。出力は、第2スイッチング部36に入力される。すなわち、抵抗821,822の間の位置が、抵抗621を介してMOSFET611のゲートに接続される。
FIG. 8 is a circuit diagram showing a part of the second switching unit 36 and the switching instruction unit 302. The circuit unit 3 includes a voltage dividing circuit 82 as a part of the switching instruction unit 302. The voltage dividing circuit 82 includes two resistors 821 and 822 connected in series to the power generation unit 20. In the voltage dividing circuit 82, an output is obtained from between the resistors 821 and 822. The output is input to the second switching unit 36. That is, the position between the resistors 821 and 822 is connected to the gate of the MOSFET 611 through the resistor 621.
発電電圧が第1上限値を上回ると、第1の実施形態と同様に、分圧回路82により、MOSFET611がON状態となり、MOSFET612もON状態となり、レギュレータ35を介して、蓄電池4から演算装置30に電力が供給される。換言すれば、第2スイッチング部36は、分圧回路82からの出力を利用して蓄電池4から演算装置30の変換器制御部301への電力の供給を開始する。
When the generated voltage exceeds the first upper limit value, the MOSFET 611 is turned on by the voltage dividing circuit 82 and the MOSFET 612 is also turned on by the voltage dividing circuit 82, and the computing device 30 is connected from the storage battery 4 via the regulator 35. Is supplied with power. In other words, the second switching unit 36 starts supplying power from the storage battery 4 to the converter control unit 301 of the arithmetic device 30 using the output from the voltage dividing circuit 82.
また、発電部20による発電電圧が第1上限値を下回った場合、分圧回路82からMOSFET611にLoの信号が入力され、蓄電池4から変換器制御部301への電力の供給が停止される。換言すれば、第2スイッチング部36は、分圧回路82からの出力を利用して蓄電池4から変換器制御部301への電力の供給を停止する。
Further, when the voltage generated by the power generation unit 20 falls below the first upper limit value, a Lo signal is input from the voltage dividing circuit 82 to the MOSFET 611, and the supply of power from the storage battery 4 to the converter control unit 301 is stopped. In other words, the second switching unit 36 stops the supply of power from the storage battery 4 to the converter control unit 301 using the output from the voltage dividing circuit 82.
以上のように、分圧回路82を利用しても、第2スイッチング部36が第1の実施形態と同様の動作をすることが実現される。第1スイッチング部34および第2スイッチング部36が第1の実施形態と同様に動作することにより、無駄な電力消費が防止される。また、発電電圧が高くなりすぎた場合のレギュレータ35等の破壊が防止される。レギュレータ35として耐電圧の低い安価なものを利用することができる。スイッチング指示部302を抵抗を利用する単純な分圧回路にて実現することにより、回路部3の動作の信頼性が向上する。
As described above, even when the voltage dividing circuit 82 is used, the second switching unit 36 can be operated in the same manner as in the first embodiment. Since the first switching unit 34 and the second switching unit 36 operate in the same manner as in the first embodiment, wasteful power consumption is prevented. Further, destruction of the regulator 35 and the like when the generated voltage becomes too high is prevented. An inexpensive regulator with a low withstand voltage can be used as the regulator 35. By realizing the switching instruction unit 302 with a simple voltage dividing circuit using a resistor, the operation reliability of the circuit unit 3 is improved.
なお、分圧回路81を第1スイッチング部34の一部と捉え、分圧回路82を第2スイッチング部36の一部と捉えた場合、第2の実施形態は、第1の実施形態からスイッチング指示部302を省いた構造となる。
When the voltage dividing circuit 81 is regarded as a part of the first switching unit 34 and the voltage dividing circuit 82 is regarded as a part of the second switching unit 36, the second embodiment is switched from the first embodiment. The instruction unit 302 is omitted.
実際には、スイッチング時に変換器制御部301を含む演算装置30への電力供給が途絶えないように、第1の実施形態と同様に、分圧回路81によりスイッチングが行われる第1上限値は、分圧回路82によりスイッチングが行われる第1上限値よりも僅かに高い。すなわち、分圧回路81により上側第1上限値が取得され、分圧回路82により下側第1上限値が取得される。
Actually, the first upper limit value that is switched by the voltage dividing circuit 81 is the same as in the first embodiment so that the power supply to the arithmetic device 30 including the converter control unit 301 is not interrupted during switching. It is slightly higher than the first upper limit value at which switching is performed by the voltage dividing circuit 82. That is, the upper first upper limit value is acquired by the voltage dividing circuit 81, and the lower first upper limit value is acquired by the voltage dividing circuit 82.
図9は、回路部3の他の例の一部を示す図であり、図4に対応する。図9では、図6に示すものと同様の構成要素には同符号を付し、図6に示さないものは図6の回路部3に追加される構成要素を示す。第1スイッチング指示部302は、図6のスイッチング指示部302と同様であり、その周辺の構成要素の図示を省略している。図4と同様に、図9の回路部3では、発電部20からDC-DC変換器32への電力供給と、蓄電池4からDC-DC変換器32への電力供給とが切り替えられる。
FIG. 9 is a diagram showing a part of another example of the circuit unit 3, and corresponds to FIG. 9, the same components as those shown in FIG. 6 are denoted by the same reference numerals, and those not shown in FIG. 6 indicate components added to the circuit unit 3 of FIG. The first switching instruction unit 302 is the same as the switching instruction unit 302 in FIG. 6, and the components in the vicinity thereof are not shown. As in FIG. 4, in the circuit unit 3 in FIG. 9, power supply from the power generation unit 20 to the DC-DC converter 32 and power supply from the storage battery 4 to the DC-DC converter 32 are switched.
第2スイッチング指示部303は、演算装置30から独立した構成要素である。第3スイッチング部71、第4スイッチング部73および第2スイッチング指示部303の構成は、スイッチング部がレギュレータ72を介してDC-DC変換器32に接続されるという点を除いて、図7および図8と同様である。もちろん、分圧回路の2つの抵抗の値の比は、適宜変更される。以下、図7および図8の符号を参照して、第3スイッチング部71、第4スイッチング部73および第2スイッチング指示部303を説明する。
The second switching instruction unit 303 is a component independent of the arithmetic device 30. The configurations of the third switching unit 71, the fourth switching unit 73, and the second switching instruction unit 303 are the same as those shown in FIGS. 7 and 7 except that the switching unit is connected to the DC-DC converter 32 via the regulator 72. It is the same as 8. Of course, the ratio of the two resistance values of the voltage dividing circuit is changed as appropriate. Hereinafter, the third switching unit 71, the fourth switching unit 73, and the second switching instruction unit 303 will be described with reference to the reference numerals in FIGS.
第3スイッチング部71に接続される分圧回路81は、発電部20に対して直列接続された2つの抵抗811,812を含む。分圧回路81では、抵抗811,812の間から出力が得られる。出力は、第3スイッチング部71に入力される。発電電圧が第2下限値を上回ると、MOSFET511がON状態となり、MOSFET512もON状態となり、レギュレータ72を介して、発電部20からDC-DC変換器32に電力が供給される。発電部20による発電電圧がさらに上昇して第2上限値を上回ると、MOSFET513にHiの信号が入力される状態となり、発電部20からDC-DC変換器32への電力の供給が停止される。換言すれば、第3スイッチング部71は、分圧回路81からの出力を利用して発電部20からDC-DC変換器32への電力の供給を停止する。
The voltage dividing circuit 81 connected to the third switching unit 71 includes two resistors 811 and 812 connected in series to the power generation unit 20. In the voltage dividing circuit 81, an output is obtained from between the resistors 811 and 812. The output is input to the third switching unit 71. When the generated voltage exceeds the second lower limit value, the MOSFET 511 is turned on, the MOSFET 512 is also turned on, and power is supplied from the power generation unit 20 to the DC-DC converter 32 via the regulator 72. When the voltage generated by the power generation unit 20 further rises and exceeds the second upper limit value, a Hi signal is input to the MOSFET 513, and the supply of power from the power generation unit 20 to the DC-DC converter 32 is stopped. . In other words, the third switching unit 71 stops the supply of power from the power generation unit 20 to the DC-DC converter 32 using the output from the voltage dividing circuit 81.
また、発電部20による発電電圧が第2上限値を下回った場合は、MOSFET513にLoの信号が入力され、発電部20からDC-DC変換器32への電力の供給が再開される。換言すれば、第3スイッチング部71は、分圧回路81からの出力を利用して発電部20からDC-DC変換器32への電力の供給を開始する。
Further, when the voltage generated by the power generation unit 20 falls below the second upper limit value, a Lo signal is input to the MOSFET 513, and the supply of power from the power generation unit 20 to the DC-DC converter 32 is resumed. In other words, the third switching unit 71 uses the output from the voltage dividing circuit 81 to start supplying power from the power generation unit 20 to the DC-DC converter 32.
以上のように、分圧回路81を利用しても、第3スイッチング部71が、図4に示すものと同様の動作をすることが実現される。
As described above, even when the voltage dividing circuit 81 is used, the third switching unit 71 can be realized to perform the same operation as that shown in FIG.
第4スイッチング部73に接続される分圧回路82は、発電部20に対して直列接続された2つの抵抗821,822を含む。分圧回路82では、抵抗821,822の間からの出力が得られる。出力は、第4スイッチング部73に入力される。発電電圧が第2上限値を上回ると、MOSFET611がON状態となり、MOSFET612もON状態となり、レギュレータ72を介して、蓄電池4からDC-DC変換器32に電力が供給される。換言すれば、第4スイッチング部73は、分圧回路82からの出力を利用して蓄電池4からDC-DC変換器32への電力の供給を開始する。
The voltage dividing circuit 82 connected to the fourth switching unit 73 includes two resistors 821 and 822 connected in series to the power generation unit 20. In the voltage dividing circuit 82, an output from between the resistors 821 and 822 is obtained. The output is input to the fourth switching unit 73. When the generated voltage exceeds the second upper limit value, the MOSFET 611 is turned on, the MOSFET 612 is also turned on, and power is supplied from the storage battery 4 to the DC-DC converter 32 via the regulator 72. In other words, the fourth switching unit 73 starts supplying power from the storage battery 4 to the DC-DC converter 32 using the output from the voltage dividing circuit 82.
また、発電部20による発電電圧が第2上限値を下回った場合、MOSFET611にLoの信号が入力され、蓄電池4からDC-DC変換器32への電力の供給が停止される。換言すれば、第4スイッチング部73は、分圧回路82からの出力を利用して蓄電池4からDC-DC変換器32への電力の供給を停止する。
Further, when the voltage generated by the power generation unit 20 falls below the second upper limit value, the Lo signal is input to the MOSFET 611 and the supply of power from the storage battery 4 to the DC-DC converter 32 is stopped. In other words, the fourth switching unit 73 stops the supply of power from the storage battery 4 to the DC-DC converter 32 using the output from the voltage dividing circuit 82.
以上のように、分圧回路82を利用しても、第4スイッチング部73が図4に示すものと同様の動作をすることが実現される。第3スイッチング部71および第4スイッチング部73が図4に示すものと同様に動作することにより、無駄な電力消費が防止される。また、発電電圧が高くなりすぎた場合のレギュレータ72等の破壊が防止される。レギュレータ72として耐電圧の低い安価なものを利用することができる。第2スイッチング指示部303を抵抗を利用する単純な分圧回路にて実現することにより、回路部3の動作の信頼性が向上する。
As described above, even when the voltage dividing circuit 82 is used, the fourth switching unit 73 can be operated in the same manner as that shown in FIG. Since the third switching unit 71 and the fourth switching unit 73 operate in the same manner as shown in FIG. 4, wasteful power consumption is prevented. In addition, destruction of the regulator 72 and the like when the generated voltage becomes too high is prevented. An inexpensive regulator with a low withstand voltage can be used as the regulator 72. By realizing the second switching instruction unit 303 with a simple voltage dividing circuit using a resistor, the operation reliability of the circuit unit 3 is improved.
なお、分圧回路81を第3スイッチング部71の一部と捉え、分圧回路82を第4スイッチング部73の一部と捉えた場合、図9に示す構成は、図4に示すものから第2スイッチング指示部303を省いた構造となる。
When the voltage dividing circuit 81 is regarded as a part of the third switching unit 71 and the voltage dividing circuit 82 is regarded as a part of the fourth switching unit 73, the configuration shown in FIG. 2 The switching instruction unit 303 is omitted.
実際には、スイッチング時にDC-DC変換器32への電力供給が途絶えないように、分圧回路81によりスイッチングが行われる第2上限値は、分圧回路82によりスイッチングが行われる第2上限値よりも僅かに高い。すなわち、分圧回路81により上側第2上限値が取得され、分圧回路82により下側第2上限値が取得される。
Actually, the second upper limit value that is switched by the voltage dividing circuit 81 is the second upper limit value that is switched by the voltage dividing circuit 82 so that the power supply to the DC-DC converter 32 is not interrupted during switching. Slightly higher than. That is, the upper second upper limit value is acquired by the voltage dividing circuit 81, and the lower second upper limit value is acquired by the voltage dividing circuit 82.
なお、回路部3の設計に応じて、第1下限値は第2下限値よりも小さくても大きくてもよく、同じでもよい。第1上限値も第2上限値よりも小さくても大きくてもよく、同じでもよい。第1下限値が第2下限値に等しくてよい場合、分圧回路81を1つだけ設け、分圧回路81が第1スイッチング部34および第3スイッチング部71に接続可能である。同様に、第1上限値が第2上限値に等しくてよい場合、分圧回路82を1つだけ設け、分圧回路82が第2スイッチング部36および第4スイッチング部73に接続可能である。
Note that the first lower limit value may be smaller or larger than the second lower limit value or may be the same depending on the design of the circuit unit 3. The first upper limit value may be smaller or larger than the second upper limit value, or may be the same. When the first lower limit value may be equal to the second lower limit value, only one voltage dividing circuit 81 is provided, and the voltage dividing circuit 81 can be connected to the first switching unit 34 and the third switching unit 71. Similarly, when the first upper limit value may be equal to the second upper limit value, only one voltage dividing circuit 82 is provided, and the voltage dividing circuit 82 can be connected to the second switching unit 36 and the fourth switching unit 73.
図10は、本発明の第3の実施形態に係る風力発電装置1aの全体構成を示す図である。風力発電装置1aは、風車21と、発電機22と、回路部3と、蓄電池4と、を含む。風車21、発電機22および蓄電池4は第1の実施形態と同様である。図10では、一部の線を破線にて示す。
FIG. 10 is a diagram showing an overall configuration of a wind turbine generator 1a according to the third embodiment of the present invention. The wind power generator 1 a includes a windmill 21, a generator 22, a circuit unit 3, and a storage battery 4. The windmill 21, the generator 22, and the storage battery 4 are the same as in the first embodiment. In FIG. 10, some lines are indicated by broken lines.
回路部3は、AC-DC変換器31と、DC-DC変換器32と、電流・電圧検知部33と、演算装置30と、レギュレータ75と、能動化電圧検出部761と、電圧低減部762と、を含む。AC-DC変換器31、DC-DC変換器32および電流・電圧検知部33は、第1の実施形態と同様である。回路部3は、充電スイッチング部741と、ショートリレー部742と、をさらに含む。充電スイッチング部741は、発電機22とショートリレー部742との間に配置される。ショートリレー部742は、充電スイッチング部741とAC-DC変換器31との間に配置される。以下の説明では、第1の実施形態と同様に、発電機22とAC-DC変換器31とを「発電部20」と呼ぶ。第1の実施形態と同様に、回路部3は、1つまたは複数の回路基板上に設けられる。
The circuit unit 3 includes an AC-DC converter 31, a DC-DC converter 32, a current / voltage detection unit 33, an arithmetic device 30, a regulator 75, an activation voltage detection unit 761, and a voltage reduction unit 762. And including. The AC-DC converter 31, the DC-DC converter 32, and the current / voltage detector 33 are the same as those in the first embodiment. Circuit unit 3 further includes a charge switching unit 741 and a short relay unit 742. The charge switching unit 741 is disposed between the generator 22 and the short relay unit 742. The short relay unit 742 is disposed between the charge switching unit 741 and the AC-DC converter 31. In the following description, as in the first embodiment, the generator 22 and the AC-DC converter 31 are referred to as a “power generation unit 20”. Similar to the first embodiment, the circuit unit 3 is provided on one or a plurality of circuit boards.
充電スイッチング部741は、発電機22の3相の出力線のそれぞれに配置されたリレースイッチの集合である。充電スイッチング部741により、発電部20から充電用変換部であるDC-DC変換器32への出力のON/OFFが切り替えられる。ショートリレー部742は、3相の出力線のうちの2つをショートさせるリレースイッチである。
The charge switching unit 741 is a set of relay switches arranged on each of the three-phase output lines of the generator 22. The charging switching unit 741 switches ON / OFF of the output from the power generation unit 20 to the DC-DC converter 32 that is the charging conversion unit. The short relay unit 742 is a relay switch that shorts two of the three-phase output lines.
演算装置30は、変換器制御部301と、スイッチング指示部304と、ショートリレー指示部305と、電圧値取得部306と、を含む。変換器制御部301は第1の実施形態と同様である。スイッチング指示部304は、充電スイッチング部741に制御信号を入力する。ショートリレー指示部305は、ショートリレー部742に制御信号を入力する。
The computing device 30 includes a converter control unit 301, a switching instruction unit 304, a short relay instruction unit 305, and a voltage value acquisition unit 306. The converter control unit 301 is the same as that in the first embodiment. The switching instruction unit 304 inputs a control signal to the charging switching unit 741. Short relay instruction unit 305 inputs a control signal to short relay unit 742.
レギュレータ75は、リレー用電圧変換部751と、制御部用電圧変換部752と、を含む。正確には、リレー用電圧変換部751および制御部用電圧変換部752のそれぞれがスイッチングレギュレータとして機能する要素であり、レギュレータ75はレギュレータ要素群である。レギュレータ75には蓄電池4から電力が入力される。リレー用電圧変換部751は、蓄電池4の電圧を充電スイッチング部741およびショートリレー部742に適合する電圧に変換する。例えば、蓄電池4からの24Vの電圧を12Vに変換する。これにより、リレー用電圧変換部751は、蓄電池4からの電力を利用して充電スイッチング部741およびショートリレー部742にスイッチング用の電力を供給する。
The regulator 75 includes a relay voltage converter 751 and a controller voltage converter 752. Precisely, each of the relay voltage converter 751 and the control voltage converter 752 functions as a switching regulator, and the regulator 75 is a regulator element group. Power is input from the storage battery 4 to the regulator 75. The relay voltage converter 751 converts the voltage of the storage battery 4 into a voltage suitable for the charge switching unit 741 and the short relay unit 742. For example, the voltage of 24V from the storage battery 4 is converted to 12V. Thereby, the relay voltage converter 751 supplies the switching power to the charge switching unit 741 and the short relay unit 742 using the power from the storage battery 4.
能動化電圧検出部761は、後述するように、発電電圧が演算装置30を能動化する際の電圧を上回ったか否かを検出する。この電圧を以下、「制御部能動化電圧」と呼ぶ。図示を省略するが、能動化電圧検出部761および電圧低減部762と発電機22との間には、他のAC-DC変換器が設けられる。発電電圧が制御部能動化電圧を上回ったことを能動化電圧検出部761が検出すると、レギュレータ75の制御部用電圧変換部752が能動化電圧検出部761からの信号を受けて能動化される。
The activation voltage detection unit 761 detects whether or not the generated voltage exceeds the voltage when the arithmetic device 30 is activated, as will be described later. This voltage is hereinafter referred to as “control unit activation voltage”. Although not shown, another AC-DC converter is provided between the activation voltage detection unit 761 and the voltage reduction unit 762 and the generator 22. When the activation voltage detection unit 761 detects that the generated voltage exceeds the control unit activation voltage, the control unit voltage conversion unit 752 of the regulator 75 is activated in response to a signal from the activation voltage detection unit 761. .
制御部用電圧変換部752は、蓄電池4から与えられる電圧を変換器制御部301用、すなわち、演算装置30用の電圧に変換しつつ蓄電池4から変換器制御部301を含む演算装置30に電力を供給する。例えば、制御部用電圧変換部752は、蓄電池4からの24Vの電圧を演算装置30用の5Vの電圧に変換する。演算装置30が能動化されると、変換器制御部301も能動化される。このように、能動化電圧検出部761および制御部用電圧変換部752は、変換器制御部301の電源のスイッチング部として機能し、図10では、これらを「制御部電源スイッチング部763」として示している。
The voltage conversion unit 752 for the control unit converts the voltage supplied from the storage battery 4 into a voltage for the converter control unit 301, that is, the voltage for the calculation device 30, while supplying power from the storage battery 4 to the calculation device 30 including the converter control unit 301. Supply. For example, the control unit voltage conversion unit 752 converts a voltage of 24 V from the storage battery 4 into a voltage of 5 V for the arithmetic device 30. When the arithmetic unit 30 is activated, the converter control unit 301 is also activated. As described above, the activation voltage detection unit 761 and the control unit voltage conversion unit 752 function as a power supply switching unit of the converter control unit 301. In FIG. 10, these are shown as a “control unit power supply switching unit 763”. ing.
なお、制御部用電圧変換部752を設けることにより、設計変更により蓄電池4からの電圧が変更された場合であっても、制御部用電圧変換部752の変更のみで対応することができる。
In addition, even if the voltage from the storage battery 4 is changed due to a design change by providing the voltage conversion unit 752 for the control unit, it can be dealt with only by changing the voltage conversion unit 752 for the control unit.
電圧低減部762は、発電電圧に比例する当該発電電圧よりも低い電圧を発生する。電圧低減部762からの電圧は演算装置30にて処理可能な電圧である。この電圧は、電圧値取得部306に入力される。電圧値取得部306は、アナログの電圧の大きさを演算装置30内で処理可能なデジタルの電圧値に変換する。発電電圧を実質的に示す変換後の数値は、スイッチング指示部304およびショートリレー指示部305に入力される。このように、電圧低減部762および電圧値取得部306は、発電部20による発電電圧を検出する発電電圧検出部764として機能する。
The voltage reduction unit 762 generates a voltage lower than the generated voltage that is proportional to the generated voltage. The voltage from the voltage reduction unit 762 is a voltage that can be processed by the arithmetic device 30. This voltage is input to the voltage value acquisition unit 306. The voltage value acquisition unit 306 converts the magnitude of the analog voltage into a digital voltage value that can be processed in the arithmetic device 30. The converted numerical value that substantially indicates the generated voltage is input to the switching instruction unit 304 and the short relay instruction unit 305. Thus, the voltage reduction unit 762 and the voltage value acquisition unit 306 function as a power generation voltage detection unit 764 that detects a power generation voltage generated by the power generation unit 20.
次に、風力発電装置1aの細部の構成および動作について説明する。図11は、能動化電圧検出部761を示す図である。能動化電圧検出部761は、ツェナーダイオード765と、コンデンサ766と、能動化電圧変換部767と、を含む。ツェナーダイオード765を、以下単に、「ダイオード765」という。発電機22から図示省略のAC-DC変換器を介して発電電圧が能動化電圧検出部761に入力されると、ダイオード765により、上限が制御部能動化電圧に制限された電圧が取得される。当該電圧は、能動化電圧変換部767に入力される。
Next, the detailed configuration and operation of the wind turbine generator 1a will be described. FIG. 11 is a diagram illustrating the activation voltage detection unit 761. Activation voltage detection unit 761 includes a Zener diode 765, a capacitor 766, and an activation voltage conversion unit 767. The Zener diode 765 is hereinafter simply referred to as “diode 765”. When the generated voltage is input from the generator 22 to the activation voltage detector 761 via an AC-DC converter (not shown), the diode 765 obtains a voltage whose upper limit is limited to the controller activation voltage. . The voltage is input to the activation voltage conversion unit 767.
能動化電圧変換部767は、入力される電圧が制御部能動化電圧未満の場合は0Vを出力し、制御部能動化電圧以上の場合、例えば10V以上の場合には、レギュレータ75へに適した電圧として、例えば2Vを出力する。すなわち、能動化電圧変換部767は、ダイオード765にて得られる電圧を制御部用電圧変換部752を能動化させる信号である電圧に変換する。本実施形態では能動化電圧変換部767としてリセットICが利用される。
The activation voltage conversion unit 767 outputs 0 V when the input voltage is less than the control unit activation voltage, and is suitable for the regulator 75 when the input voltage is higher than the control unit activation voltage, for example, 10 V or more. For example, 2V is output as the voltage. That is, the activation voltage conversion unit 767 converts the voltage obtained by the diode 765 into a voltage that is a signal for activating the control unit voltage conversion unit 752. In this embodiment, a reset IC is used as the activation voltage conversion unit 767.
能動化電圧変換部767が設けられることにより、一定の電圧がレギュレータ72に入力され、グランドノイズやコンデンサの待機電流による演算装置30の誤動作が防止される。その結果、安定して演算装置30を能動化させることができ、演算装置30への負荷を減らすことができる。また、制御部能動化電圧とレギュレータ75を能動化する電圧とを異なる電圧とすることができる。
By providing the activation voltage conversion unit 767, a constant voltage is input to the regulator 72, and malfunction of the arithmetic unit 30 due to ground noise or capacitor standby current is prevented. As a result, the arithmetic device 30 can be activated stably, and the load on the arithmetic device 30 can be reduced. Further, the control unit activation voltage and the voltage for activating the regulator 75 can be different voltages.
レギュレータ75が、能動化電圧検出部761から入力される電圧が予め定められた閾値を超えるか否かでON/OFF制御可能な場合、能動化電圧検出部761は、図12に示すように、分圧回路により実現されてもよい。例えば、直列接続された抵抗768,769のうち、一方の抵抗769に作用する電圧、すなわち、2つの抵抗の間からの出力がレギュレータ75に入力される。これにより、能動化電圧検出部761は、発電電圧を分圧して制御部用電圧変換部752を含むレギュレータ75に入力する。
When the regulator 75 is capable of ON / OFF control depending on whether or not the voltage input from the activation voltage detection unit 761 exceeds a predetermined threshold value, the activation voltage detection unit 761 includes, as shown in FIG. It may be realized by a voltage dividing circuit. For example, among the resistors 768 and 769 connected in series, a voltage acting on one resistor 769, that is, an output from between two resistors is input to the regulator 75. Thus, the activation voltage detection unit 761 divides the generated voltage and inputs it to the regulator 75 including the control unit voltage conversion unit 752.
能動化電圧検出部761により、無風または微風状態では、発電電圧が制御部能動化電圧を下回り、能動化電圧検出部761からレギュレータ75を能動化する電圧は入力されない。したがって、レギュレータ75には蓄電池4により電圧が与えられているが、レギュレータ75は能動化されない。制御部用電圧変換部752から演算装置30には電力は供給されない。これにより、無風または微風状態において蓄電池4に蓄えられた電力の消費が防止される。
The activation voltage detection unit 761 causes the generated voltage to fall below the control unit activation voltage in a windless or light wind state, and no voltage for activating the regulator 75 is input from the activation voltage detection unit 761. Therefore, although the voltage is given to the regulator 75 by the storage battery 4, the regulator 75 is not activated. Power is not supplied from the control unit voltage converter 752 to the arithmetic unit 30. Thereby, consumption of the electric power stored in the storage battery 4 in the windless or light wind state is prevented.
演算装置30には電力が供給されないため、スイッチング指示部304から充電スイッチング部741には、リレースイッチをON状態にする信号は入力されない。発電機22とAC-DC変換器31とは接続されず、風車21は無負荷状態であるため、非常に弱い風であっても風車21の回転が開始する。その結果、後述の蓄電を容易に開始することができる。
Since power is not supplied to the arithmetic unit 30, a signal for turning on the relay switch is not input from the switching instruction unit 304 to the charging switching unit 741. Since the generator 22 and the AC-DC converter 31 are not connected and the windmill 21 is in a no-load state, the windmill 21 starts to rotate even with a very weak wind. As a result, the power storage described later can be easily started.
風車21の回転により発電部20による発電電圧が制御部能動化電圧を上回ると、能動化電圧検出部761によりレギュレータ75が能動化される。これにより、レギュレータ75のリレー用電圧変換部751は、蓄電池4からの電圧をリレースイッチ用の電圧に変換して充電スイッチング部741およびショートリレー部742に与える。制御部用電圧変換部752を含む制御部電源スイッチング部763は、蓄電池4からの電圧を演算装置30用の電圧に変換して蓄電池4から演算装置30に電力を供給する。その結果、変換器制御部301、スイッチング指示部304、ショートリレー指示部305および電圧値取得部306が能動化される。
When the generated voltage by the power generation unit 20 exceeds the control unit activation voltage due to the rotation of the windmill 21, the activation voltage detection unit 761 activates the regulator 75. As a result, the relay voltage conversion unit 751 of the regulator 75 converts the voltage from the storage battery 4 into a voltage for the relay switch and supplies the voltage to the charge switching unit 741 and the short relay unit 742. The control unit power supply switching unit 763 including the control unit voltage conversion unit 752 converts the voltage from the storage battery 4 into a voltage for the calculation device 30 and supplies power from the storage battery 4 to the calculation device 30. As a result, converter control unit 301, switching instruction unit 304, short relay instruction unit 305, and voltage value acquisition unit 306 are activated.
既述のように、電圧低減部762からの電圧を参照して、電圧値取得部306は、発電電圧を数値化してスイッチング指示部304およびショートリレー指示部305に入力する。風車21の回転数が上昇し、発電電圧が制御部能動化電圧よりも高い充電開始電圧を上回ると、スイッチング指示部304は充電スイッチング部741に信号を送る。これにより、充電スイッチング部741は、発電機22とAC-DC変換器31とを接続する。その結果、第1の実施形態と同様に、電流・電圧検知部33からの信号に基づいて変換器制御部301がDC-DC変換器32を制御し、蓄電池4への発電電力の充電が行われる。このように、スイッチング指示部304は、発電電圧検出部764にて検出された発電電圧に基づいて、充電スイッチング部741を制御する。
As described above, with reference to the voltage from the voltage reduction unit 762, the voltage value acquisition unit 306 digitizes the generated voltage and inputs it to the switching instruction unit 304 and the short relay instruction unit 305. When the number of rotations of the windmill 21 increases and the generated voltage exceeds the charge start voltage higher than the control unit activation voltage, the switching instruction unit 304 sends a signal to the charge switching unit 741. Thereby, the charge switching unit 741 connects the generator 22 and the AC-DC converter 31. As a result, as in the first embodiment, the converter control unit 301 controls the DC-DC converter 32 based on the signal from the current / voltage detection unit 33, and the storage battery 4 is charged with the generated power. Is called. As described above, the switching instruction unit 304 controls the charging switching unit 741 based on the generated voltage detected by the generated voltage detection unit 764.
発電電圧が充電開始電圧であるとき、発電部20による発電電力は、風力発電装置1aの回路部3の消費電力以上であることが好ましい。これにより、充電を開始しているにも関わらず風力発電装置1a全体では蓄電池4の電力を消費してしまうことが防止される。また、充電開始電圧時の電力消費を確実に防止するために、発電電圧が制御部能動化電圧の時に、発電部20による発電電力が、風力発電装置1a全体における消費電力よりも大きいことがより好ましい。これにより、蓄電池4の電力の消費を抑制することができ、蓄電効率を向上することができる。
When the generated voltage is the charging start voltage, the power generated by the power generation unit 20 is preferably greater than or equal to the power consumption of the circuit unit 3 of the wind power generator 1a. Thereby, it is prevented that the power of the storage battery 4 is consumed in the whole wind power generator 1a although charging is started. Further, in order to reliably prevent power consumption at the charging start voltage, when the generated voltage is the control unit activation voltage, the power generated by the power generation unit 20 is larger than the power consumption in the entire wind power generator 1a. preferable. Thereby, consumption of the electric power of the storage battery 4 can be suppressed, and electrical storage efficiency can be improved.
特に、本実施形態と異なり、充電スイッチング部741が設けられない場合は、発電電圧が制御部能動化電圧を上回ると同時に充電が開始されるため、制御部能動化電圧時に発電電力が風力発電装置1aの消費電力を上回ることが好ましい。
In particular, unlike the present embodiment, when the charging switching unit 741 is not provided, since the generated voltage exceeds the control unit activation voltage and charging is started at the same time, the generated power is generated at the time of the control unit activation voltage. It is preferable to exceed the power consumption of 1a.
風速が低下し、発電部20による発電電圧が充電開始電圧を下回ると、スイッチング指示部304は、充電スイッチング部741に電圧を与えることを停止し、充電スイッチング部741がOFF状態になる。これにより、充電が停止する。風速がさらに低下し、発電電圧が制御部能動化電圧を下回ると、能動化電圧検出部761からレギュレータ75に電圧が入力されなくなり、レギュレータ75の機能が停止する。制御部用電圧変換部752から演算装置30への電力の供給が停止し、演算装置30が停止する。
When the wind speed decreases and the voltage generated by the power generation unit 20 falls below the charging start voltage, the switching instruction unit 304 stops applying voltage to the charge switching unit 741, and the charge switching unit 741 is turned off. Thereby, charging stops. When the wind speed further decreases and the generated voltage falls below the control unit activation voltage, no voltage is input from the activation voltage detection unit 761 to the regulator 75, and the function of the regulator 75 stops. The supply of power from the control unit voltage converter 752 to the arithmetic device 30 is stopped, and the arithmetic device 30 stops.
演算装置30への電力供給が停止する発電電圧を「制御部停止電圧」と表現すると、本実施形態では制御部能動化電圧と制御部停止電圧とは等しい。しかし、制御部能動化電圧は制御部停止電圧と異なってもよい。例えば、変換器制御部301が一旦能動化された後に、すぐに停止することを防止するために、制御部停止電圧は制御部能動化電圧よりも低くてもよい。風速が低下した場合に変換器制御部301を早期に停止したい場合は、制御部停止電圧は制御部能動化電圧よりも高く設定される。いずれの場合においても、発電電圧が制御部能動化電圧を上回る状態から制御部停止電圧を下回った場合に、制御部電源スイッチング部763は、蓄電池4から変換器制御部301への電力の供給を停止する。第1の実施形態においても同様である。
If the generated voltage at which the power supply to the arithmetic unit 30 is stopped is expressed as “control unit stop voltage”, the control unit activation voltage and the control unit stop voltage are equal in this embodiment. However, the control unit activation voltage may be different from the control unit stop voltage. For example, the control unit stop voltage may be lower than the control unit activation voltage in order to prevent the converter control unit 301 from being stopped once it is once activated. When it is desired to stop the converter control unit 301 early when the wind speed decreases, the control unit stop voltage is set higher than the control unit activation voltage. In any case, when the generated voltage is lower than the control unit stop voltage from the state where the generated voltage exceeds the control unit activation voltage, the control unit power switching unit 763 supplies power from the storage battery 4 to the converter control unit 301. Stop. The same applies to the first embodiment.
発電電圧が、充電開始電圧よりも高い発電上限電圧を上回ると、ショートリレー指示部305は、ショートリレー部742に信号となる電圧を出力する。ショートリレー部742は、発電機22の3相の出力線のうちの2相の出力線に接続されている。ショートリレー指示部305からの信号により、ショートリレー部742は、2相の出力線を接続してショートさせる。ショートにより、発電機22の回転に大きな抵抗であるショートブレーキが作用する。これにより、突風等により風が強すぎる場合に、発電電圧が増大し過ぎて電子部品に過大な負荷が掛かることが防止され、回路部3が保護される。
When the power generation voltage exceeds the power generation upper limit voltage higher than the charging start voltage, the short relay instruction unit 305 outputs a voltage as a signal to the short relay unit 742. The short relay unit 742 is connected to a two-phase output line among the three-phase output lines of the generator 22. In response to a signal from the short relay instruction unit 305, the short relay unit 742 connects the two-phase output lines to cause a short circuit. Due to the short circuit, a short brake, which is a great resistance to the rotation of the generator 22, acts. As a result, when the wind is too strong due to a gust or the like, the generated voltage is prevented from increasing excessively and an excessive load is applied to the electronic component, and the circuit unit 3 is protected.
一方、ショートリレー部742により2相の出力線がショートした状態の間、ショートされていない残りの1相の出力線のみにて、AC-DC変換器31による直流電力の取得が行われ、蓄電池4に充電が行われる。このように、ショートブレーキが作動した状態にいても充電が継続される。その結果、風量が多いエリアでも安定して発電および充電を行うことができる。
On the other hand, while the two-phase output line is short-circuited by the short relay unit 742, DC power is acquired by the AC-DC converter 31 using only the remaining one-phase output line that is not short-circuited. 4 is charged. Thus, charging is continued even when the short brake is activated. As a result, power generation and charging can be performed stably even in an area with a large air volume.
発電電圧が発電上限電圧を下回ると、ショートリレー指示部305からショートリレー部742への電圧の入力が停止し、ショートブレーキが解除され、3相交流による発電へと戻る。以上のように、ショートリレー指示部305は、発電電圧検出部764にて検出された電圧に基づいて、ショートリレー部742のON/OFFを制御する。
When the power generation voltage falls below the power generation upper limit voltage, the input of the voltage from the short relay instruction unit 305 to the short relay unit 742 is stopped, the short brake is released, and the power generation returns to the three-phase alternating current. As described above, the short relay instruction unit 305 controls ON / OFF of the short relay unit 742 based on the voltage detected by the generated voltage detection unit 764.
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、様々な変形が可能である。
As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, A various deformation | transformation is possible.
上記第1および第2の実施形態における第1下限値は、発電電圧が上昇する場合と下降する場合とで異なる値が用いられてもよい。第1上限値、第2下限値、第2上限値に関しても同様である。すなわち、これらの値は1つの値には限定されない。例えば、発電電圧が上昇する際の第1上限値を、発電電圧が下降する際の第1上限値よりも低くすることにより、急激な発電電圧の上昇からより確実にレギュレータ35の破壊を防止することができる。
As the first lower limit value in the first and second embodiments, different values may be used depending on whether the generated voltage increases or decreases. The same applies to the first upper limit value, the second lower limit value, and the second upper limit value. That is, these values are not limited to one value. For example, by making the first upper limit value when the generated voltage rises lower than the first upper limit value when the generated voltage decreases, the destruction of the regulator 35 can be prevented more reliably from a sudden increase in the generated voltage. be able to.
第1ないし第4スイッチング部では、MOSFETに代えてIGBT(Insulated Gate Bipolar Transistor) が用いられてもよく、他のスイッチング回路が用いられてもよい。
In the first to fourth switching units, IGBTs (Insulated Gate Bipolar Transistors) may be used instead of MOSFETs, or other switching circuits may be used.
上記実施形態では、演算装置30の機能の一部または全部は、マイクロコンピュータを利用しない専用の電気回路であってもよい。逆に、専用の回路の一部または全部が、演算装置30にて実現されてもよい。AC-DC変換器31は、回路部3ではなく発電機22に設けられてもよい。また、発電機22自体が直流電力を発生する発電部であってもよい。発電機22は、3相以外の多層の交流電力を発生するものであってもよい。
In the above embodiment, a part or all of the functions of the arithmetic unit 30 may be a dedicated electric circuit that does not use a microcomputer. Conversely, a part or all of the dedicated circuit may be realized by the arithmetic device 30. The AC-DC converter 31 may be provided not in the circuit unit 3 but in the generator 22. Further, the generator 22 itself may be a power generation unit that generates DC power. The generator 22 may generate multilayer AC power other than three phases.
DC-DC変換器32からの電力は、もちろん、全てが蓄電池4に蓄電される必要はない。一部が外部の電力線へと出力されてよい。
Of course, not all of the electric power from the DC-DC converter 32 needs to be stored in the storage battery 4. A part may be output to an external power line.
図4の第3スイッチング部71は、図2に準じた構造として設けられてもよい。演算装置30とDC-DC変換器32とに入力される駆動用電力の電圧が同じである場合、レギュレータ35,72として1つのレギュレータが設けられてよい。この場合、第1スイッチング部34と第3スイッチング部71とが1つのスイッチング部として設けられ、第2スイッチング部36と第4スイッチング部73も1つのスイッチング部として設けられてよい。
The third switching unit 71 of FIG. 4 may be provided as a structure according to FIG. When the voltage of the driving power input to the arithmetic unit 30 and the DC-DC converter 32 is the same, one regulator may be provided as the regulators 35 and 72. In this case, the first switching unit 34 and the third switching unit 71 may be provided as one switching unit, and the second switching unit 36 and the fourth switching unit 73 may be provided as one switching unit.
上記第1および第2の実施形態では、演算装置30やDC-DC変換器32に電力を供給する電力源を、発電部20と蓄電池4との間にて切り替える際に、タイマを利用することにより、双方から電力が供給される微小な時間が確保されてもよい。すなわち、一方の電力源からの電力の供給が開始されてから微小な一定時間経過後に他方の電力源からの電力の供給が停止されてもよい。この場合、第1上限値や第2上限値は、上側上限値と下側上限値との組み合わせとして設けられる必要はない。
In the first and second embodiments, a timer is used when the power source that supplies power to the arithmetic unit 30 and the DC-DC converter 32 is switched between the power generation unit 20 and the storage battery 4. Thus, a minute time during which power is supplied from both sides may be secured. That is, the supply of power from the other power source may be stopped after a lapse of a minute fixed time after the supply of power from one power source is started. In this case, the first upper limit value and the second upper limit value need not be provided as a combination of the upper upper limit value and the lower upper limit value.
分圧回路81,82や図12の電圧低減部762は、抵抗を利用することにより低コストにて実現されるが、抵抗以外の素子を用いて実現されてもよい。
The voltage dividing circuits 81 and 82 and the voltage reduction unit 762 in FIG. 12 are realized at low cost by using resistors, but may be realized by using elements other than resistors.
第1スイッチング指示部302および第2スイッチング指示部303の一方のみが分圧回路を用いて実現されてもよい。また、スイッチング指示部302(または第1スイッチング指示部302)の第1スイッチング部34に接続される部位および第2スイッチング部36に接続される部位の一方のみが分圧回路にて実現され、他方が、演算装置30により実現されてもよい。同様に、第2スイッチング指示部303の第3スイッチング部71に接続される部位および第4スイッチング部73に接続される部位の一方のみが分圧回路にて実現され、他方が、演算装置30により実現されてもよい。
Only one of the first switching instruction unit 302 and the second switching instruction unit 303 may be realized using a voltage dividing circuit. Further, only one of the part connected to the first switching part 34 and the part connected to the second switching part 36 of the switching instruction part 302 (or the first switching instruction part 302) is realized by the voltage dividing circuit, and the other However, it may be realized by the arithmetic unit 30. Similarly, only one of the part connected to the third switching unit 71 and the part connected to the fourth switching unit 73 of the second switching instruction unit 303 is realized by the voltage dividing circuit, and the other is operated by the arithmetic unit 30. It may be realized.
第3の実施形態では、ショートリレー部742がON状態の間に充電を行わないのであれば、ショートリレー部742は3相の出力線に接続され、3相の出力線を互いにショートさせてもよい。ショートリレー部742は少なくとも2相の出力線をショートさせる。
In the third embodiment, if charging is not performed while the short relay unit 742 is in the ON state, the short relay unit 742 is connected to a three-phase output line, and even if the three-phase output line is short-circuited to each other, Good. The short relay unit 742 shorts at least two-phase output lines.
上記第1および第2の実施形態では、発電電圧が制御部能動化電圧を上回った際に変換器制御部301に電力を供給する電力供給部は、発電部20である。第3の実施形態では、電力供給部は蓄電池4である。電力供給部は発電部20や蓄電池4以外のものでもよい。
In the first and second embodiments, the power supply unit that supplies power to the converter control unit 301 when the generated voltage exceeds the control unit activation voltage is the power generation unit 20. In the third embodiment, the power supply unit is the storage battery 4. The power supply unit may be other than the power generation unit 20 or the storage battery 4.
上記実施形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。
The configurations in the above embodiment and each modification may be combined as appropriate as long as they do not contradict each other.
本発明は、風力を利用して発電を行う風力発電装置に利用することができる。
The present invention can be used for a wind power generator that generates power using wind power.
1,1a 風力発電装置
4 蓄電池
20 発電部
21 風車
22 発電機
30 演算装置
31 AC-DC変換器
32 DC-DC変換器
34 第1スイッチング部
35 レギュレータ
36 第2スイッチング部
71 第3スイッチング部
73 第4スイッチング部
81,82 分圧回路
301 変換器制御部
302 スイッチング指示部
303 第2スイッチング指示部
304 スイッチング指示部と、
305 ショートリレー指示部
306 電圧値取得部
741 充電スイッチング部
742 ショートリレー部
752 制御部用電圧変換部
761 能動化電圧検出部
762 電圧低減部
763 制御部電源スイッチング部
764 発電電圧検出部
765 ダイオード
767 能動化電圧変換部
768,769,811,812,821,822 抵抗 DESCRIPTION OFSYMBOLS 1,1a Wind power generator 4 Storage battery 20 Power generation part 21 Windmill 22 Generator 30 Arithmetic apparatus 31 AC-DC converter 32 DC-DC converter 34 1st switching part 35 Regulator 36 2nd switching part 71 3rd switching part 73 1st 4 switching unit 81, 82 voltage dividing circuit 301 converter control unit 302 switching instruction unit 303 second switching instruction unit 304 switching instruction unit,
305 ShortRelay Instruction Unit 306 Voltage Value Acquisition Unit 741 Charging Switching Unit 742 Short Relay Unit 752 Control Unit Voltage Conversion Unit 761 Activation Voltage Detection Unit 762 Voltage Reduction Unit 763 Control Unit Power Supply Switching Unit 764 Generation Voltage Detection Unit 765 Diode 767 Active Voltage conversion unit 768,769,811,812,821,822
4 蓄電池
20 発電部
21 風車
22 発電機
30 演算装置
31 AC-DC変換器
32 DC-DC変換器
34 第1スイッチング部
35 レギュレータ
36 第2スイッチング部
71 第3スイッチング部
73 第4スイッチング部
81,82 分圧回路
301 変換器制御部
302 スイッチング指示部
303 第2スイッチング指示部
304 スイッチング指示部と、
305 ショートリレー指示部
306 電圧値取得部
741 充電スイッチング部
742 ショートリレー部
752 制御部用電圧変換部
761 能動化電圧検出部
762 電圧低減部
763 制御部電源スイッチング部
764 発電電圧検出部
765 ダイオード
767 能動化電圧変換部
768,769,811,812,821,822 抵抗 DESCRIPTION OF
305 Short
Claims (24)
- 風車と、
前記風車の回転により発電を行う発電部と、
前記発電部にて発生する電力を蓄電池への充電用の電力へと変換する充電用変換器と、
前記充電用変換器を制御する変換器制御部と、
前記変換器制御部に電力を供給する電力供給部と、
前記発電部による発電電圧が制御部能動化電圧を上回った場合に、前記電力供給部から前記変換器制御部に電力を供給することにより、前記変換器制御部を能動化させる制御部電源スイッチング部と、
を備える、風力発電装置。 With a windmill,
A power generation unit that generates power by rotating the windmill;
A charging converter that converts the electric power generated in the power generation unit into electric power for charging a storage battery;
A converter control unit for controlling the converter for charging;
A power supply unit for supplying power to the converter control unit;
A control unit power switching unit that activates the converter control unit by supplying power from the power supply unit to the converter control unit when a power generation voltage by the power generation unit exceeds a control unit activation voltage When,
A wind turbine generator. - 発電電圧が前記制御部能動化電圧であるときに、前記発電部による発電電力が、風力発電装置全体における消費電力よりも大きい、請求項1に記載の風力発電装置。 The wind turbine generator according to claim 1, wherein when the generated voltage is the control unit activation voltage, the power generated by the power generator is larger than the power consumption in the entire wind turbine generator.
- 発電電圧が前記制御部能動化電圧を上回る状態から制御部停止電圧を下回った場合に、前記制御部電源スイッチング部が、前記電力供給部から前記変換器制御部への電力の供給を停止する、請求項1または2に記載の風力発電装置。 When the generated voltage is lower than the control unit stop voltage from a state above the control unit activation voltage, the control unit power supply switching unit stops supplying power from the power supply unit to the converter control unit. The wind power generator according to claim 1 or 2.
- 前記制御部能動化電圧と前記制御部停止電圧とが等しい、請求項3に記載の風力発電装置。 The wind turbine generator according to claim 3, wherein the control unit activation voltage and the control unit stop voltage are equal.
- 前記電力供給部が、前記蓄電池である、請求項1ないし4のいずれかに記載の風力発電装置。 The wind power generator according to any one of claims 1 to 4, wherein the power supply unit is the storage battery.
- 前記発電部による発電電圧を検出する発電電圧検出部と、
前記発電部から前記充電用変換部への出力のON/OFFを切り替える充電スイッチング部と、
前記発電電圧検出部にて検出された発電電圧に基づいて、前記充電スイッチング部を制御するスイッチング指示部と、
をさらに備え、
発電電圧が、前記制御部能動化電圧よりも高い充電開始電圧を上回った場合に、前記スイッチング指示部の指示により、前記充電スイッチング部が、前記発電部と前記充電用変換部とを接続する、請求項1ないし5のいずれかに記載の風力発電装置。 A power generation voltage detection unit for detecting a power generation voltage by the power generation unit;
A charge switching unit that switches ON / OFF the output from the power generation unit to the charging conversion unit;
A switching instruction unit for controlling the charging switching unit based on the generated voltage detected by the generated voltage detection unit;
Further comprising
When the generated voltage exceeds a charging start voltage higher than the control unit activation voltage, the charge switching unit connects the power generation unit and the charging conversion unit according to an instruction from the switching instruction unit. The wind power generator according to any one of claims 1 to 5. - 前記発電電圧検出部が、
発電電圧に比例する当該発電電圧よりも低い電圧を発生する電圧低減部と、
前記電圧低減部からの電圧を、発電電圧を示す数値に変換して前記スイッチング指示部に入力する電圧値取得部と、
を備える、請求項6に記載の風力発電装置。 The generated voltage detector is
A voltage reduction unit that generates a voltage lower than the generated voltage proportional to the generated voltage;
A voltage value acquisition unit that converts the voltage from the voltage reduction unit into a numerical value indicating a generated voltage and inputs the converted value to the switching instruction unit;
The wind turbine generator according to claim 6, comprising: - 前記発電部が、
3相の出力線を有する発電機と、
前記発電機から出力される交流電力を直流電力に変換するAC-DC変換器と、
を備え、
前記風力発電装置が、
前記3相の出力線のうち少なくとも2相の出力線に接続されたショートリレー部と、
前記発電電圧検出部にて検出された発電電圧に基づいて、前記ショートリレー部を制御するショートリレー指示部と、
をさらに備え、
発電電圧が、前記充電開始電圧よりも高い発電上限電圧を上回った場合に、前記ショートリレー指示部が、前記ショートリレー部により前記少なくとも2相の出力線をショートさせる、請求項6または7に記載の風力発電装置。 The power generation unit is
A generator having a three-phase output line;
An AC-DC converter that converts AC power output from the generator into DC power;
With
The wind power generator is
A short relay section connected to at least two phase output lines of the three phase output lines;
Based on the generated voltage detected by the generated voltage detection unit, a short relay instruction unit that controls the short relay unit;
Further comprising
The short relay instruction unit causes the short relay unit to short-circuit the at least two-phase output lines when the generated voltage exceeds a power generation upper limit voltage higher than the charging start voltage. Wind power generator. - 前記少なくとも2相の出力線が、2相の出力線であり、
前記2相の出力線がショートした状態において、残りの1相の出力線により、前記蓄電池への充電が行われる、請求項8に記載の風力発電装置。 The at least two-phase output lines are two-phase output lines;
The wind turbine generator according to claim 8, wherein the storage battery is charged by the remaining one-phase output line in a state where the two-phase output line is short-circuited. - 前記制御部電源スイッチング部が、
発電電圧が前記制御部能動化電圧を上回ったか否かを検出する能動化電圧検出部と、
前記能動化電圧検出部からの信号を受けて能動化され、前記蓄電池から与えられる電圧を前記変換器制御部用の電圧に変換しつつ前記蓄電池から前記変換器制御部に電力を供給する制御部用電圧変換部と、
を備える、請求項1ないし9のいずれかに記載の風力発電装置。 The control unit power switching unit is
An activation voltage detection unit for detecting whether or not a generated voltage exceeds the control unit activation voltage;
A control unit that receives a signal from the activation voltage detection unit and is activated and supplies power from the storage battery to the converter control unit while converting a voltage supplied from the storage battery into a voltage for the converter control unit. Voltage converter for
The wind power generator according to claim 1, comprising: - 前記能動化電圧検出部が、
発電電圧から、上限が前記制御部能動化電圧に制限された電圧を取得するダイオードと、
前記ダイオードにて得られる電圧を前記制御部用電圧変換部を能動化させる信号の電圧に変換する能動化電圧変換部と、
を備える、請求項10に記載の風力発電装置。 The activation voltage detector is
A diode for obtaining a voltage whose upper limit is limited to the control unit activation voltage from the generated voltage;
An activation voltage conversion unit that converts a voltage obtained by the diode into a voltage of a signal that activates the voltage conversion unit for the control unit;
The wind turbine generator according to claim 10, comprising: - 前記能動化電圧検出部が、発電電圧を分圧して前記制御部用電圧変換部に入力する分圧回路、を備える、請求項10に記載の風力発電装置。 The wind power generator according to claim 10, wherein the activation voltage detecting unit includes a voltage dividing circuit that divides a generated voltage and inputs the divided voltage to the voltage converting unit for the control unit.
- 前記変換器制御部が、演算装置により実現される、請求項1ないし12のいずれかに記載の風力発電装置。 The wind power generator according to any one of claims 1 to 12, wherein the converter control unit is realized by an arithmetic device.
- 前記電力供給部が、前記発電部である、請求項1ないし4のいずれかに記載の風力発電装置。 The wind power generator according to any one of claims 1 to 4, wherein the power supply unit is the power generation unit.
- 前記蓄電池から前記変換器制御部への電力の供給のON/OFFを切り替える他の制御部電源スイッチング部と、
前記発電部による発電電圧が所定の上限値を上回った場合に、前記他の制御部電源スイッチング部により前記蓄電池から前記変換器制御部に電力を供給するとともに、前記制御部電源スイッチング部による前記発電部から前記変換器制御部への電力の供給を停止するスイッチング指示部と、
をさらに備える、請求項14に記載の風力発電装置。 Other control unit power supply switching unit for switching ON / OFF of power supply from the storage battery to the converter control unit,
When the power generation voltage by the power generation unit exceeds a predetermined upper limit value, power is supplied from the storage battery to the converter control unit by the other control unit power source switching unit, and the power generation by the control unit power source switching unit Switching instruction unit for stopping the supply of power from the unit to the converter control unit,
The wind turbine generator according to claim 14, further comprising: - 前記発電部による発電電圧が前記上限値を上回る状態から前記上限値を下回った場合に、前記スイッチング指示部が、前記制御部電源スイッチング部により前記発電部から前記変換器制御部に電力を供給するとともに、前記他の制御部電源スイッチング部による前記蓄電池から前記変換器制御部への電力の供給を停止する、請求項15に記載の風力発電装置。 The switching instruction unit supplies power from the power generation unit to the converter control unit by the control unit power supply switching unit when the generated voltage by the power generation unit falls below the upper limit value from a state where the power generation unit exceeds the upper limit value. The wind power generator according to claim 15, wherein supply of electric power from the storage battery to the converter control unit by the other control unit power supply switching unit is stopped.
- 前記発電部が、
発電機と、
前記発電機から出力される交流電力を直流電力に変換するAC-DC変換器と、
を備え、
前記変換器制御部および前記スイッチング指示部が、演算装置により実現され、
前記風力発電装置が、前記AC-DC変換器からの前記直流電力の電圧を、一定の電圧に変更して前記演算装置に電力を供給する定電圧発生部、
をさらに備える、請求項15または16に記載の風力発電装置。 The power generation unit is
A generator,
An AC-DC converter that converts AC power output from the generator into DC power;
With
The converter control unit and the switching instruction unit are realized by an arithmetic device,
A constant voltage generator for supplying the electric power to the arithmetic unit by changing the voltage of the direct-current power from the AC-DC converter to a constant voltage by the wind power generator;
The wind turbine generator according to claim 15 or 16, further comprising: - 前記スイッチング指示部が、前記発電部に対して直列接続された抵抗の間から出力を得る分圧回路、を備え、
前記発電部による発電電圧が前記上限値を上回った場合に、前記制御部電源スイッチング部が、前記分圧回路からの出力を利用して前記発電部から前記変換器制御部への電力の供給を停止する、請求項15または16に記載の風力発電装置。 The switching instruction unit includes a voltage dividing circuit that obtains an output from between resistors connected in series to the power generation unit,
When the voltage generated by the power generation unit exceeds the upper limit value, the control unit power supply switching unit uses the output from the voltage dividing circuit to supply power from the power generation unit to the converter control unit. The wind turbine generator according to claim 15 or 16, which stops. - 前記スイッチング指示部が、前記発電部に対して直列接続された抵抗の間から出力を得る他の分圧回路、を備え、
前記発電部による発電電圧が前記上限値を上回った場合に、前記他の制御部電源スイッチング部が、前記他の分圧回路からの出力を利用して前記蓄電池から前記変換器制御部に電力を供給する、請求項15、16および18のいずれかに記載の風力発電装置。 The switching instruction unit includes another voltage dividing circuit that obtains output from between resistors connected in series to the power generation unit,
When the generated voltage by the power generation unit exceeds the upper limit value, the other control unit power supply switching unit uses the output from the other voltage dividing circuit to supply power from the storage battery to the converter control unit. The wind turbine generator according to any one of claims 15, 16 and 18, which is supplied. - 前記発電部が、
発電機と、
前記発電機から出力される交流電力を直流電力に変換するAC-DC変換器と、
を備え、
前記変換器制御部が、演算装置により実現され、
前記風力発電装置が、前記AC-DC変換器からの前記直流電力の電圧を、一定の電圧に変更して前記演算装置に電力を供給する定電圧発生部、
をさらに備える、請求項18または19に記載の風力発電装置。 The power generation unit is
A generator,
An AC-DC converter that converts AC power output from the generator into DC power;
With
The converter control unit is realized by an arithmetic device,
A constant voltage generator for supplying electric power to the arithmetic unit by changing the voltage of the direct-current power from the AC-DC converter to a constant voltage;
The wind turbine generator according to claim 18 or 19, further comprising: - 前記発電部による発電電圧が所定の変換器能動化電圧を上回った場合に、前記発電部にて発生する電力を前記充電用変換器に供給することにより、前記充電用変換器を能動化させる変換器電源スイッチング部、
をさらに備える、請求項14ないし20のいずれかに記載の風力発電装置。 A conversion that activates the charging converter by supplying power generated in the power generation unit to the charging converter when a power generation voltage by the power generation unit exceeds a predetermined converter activation voltage. Power supply switching section,
The wind turbine generator according to any one of claims 14 to 20, further comprising: - 前記蓄電池から前記充電用変換器への電力供給のON/OFFを切り替える他の変換器電源スイッチング部と、
前記発電部による発電電圧が所定の他の上限値を上回った場合に、前記他の変換器電源スイッチング部により前記蓄電器から前記充電用変換器に電力を供給するとともに、前記変換器電源スイッチング部による前記発電部から前記充電用変換器への電力供給を停止する他のスイッチング指示部と、
をさらに備える、請求項21に記載の風力発電装置。 Other converter power source switching unit for switching ON / OFF of power supply from the storage battery to the charging converter,
When the power generation voltage by the power generation unit exceeds a predetermined other upper limit value, power is supplied from the capacitor to the charging converter by the other converter power source switching unit, and by the converter power source switching unit. Another switching instruction unit for stopping power supply from the power generation unit to the charging converter;
The wind turbine generator according to claim 21, further comprising: - 前記他のスイッチング指示部が、前記発電部に対して直列接続された抵抗の間から出力を得る分圧回路、を備え、
前記発電部による発電電圧が前記他の上限値を上回った場合に、前記変換器電源スイッチング部が、前記分圧回路からの出力を利用して前記発電部から前記充電用変換器への電力の供給を停止する、請求項22に記載の風力発電装置。 The other switching instruction unit includes a voltage dividing circuit that obtains an output from between resistors connected in series to the power generation unit,
When the voltage generated by the power generation unit exceeds the other upper limit value, the converter power supply switching unit uses the output from the voltage dividing circuit to generate electric power from the power generation unit to the charging converter. The wind turbine generator according to claim 22, wherein the supply is stopped. - 前記他のスイッチング指示部が、前記発電部に対して直列接続された抵抗の間から出力を得る他の分圧回路、を備え、
前記発電部による発電電圧が前記他の上限値を上回った場合に、前記他の変換器電源スイッチング部が、前記他の分圧回路からの出力を利用して前記蓄電池から前記充電用変換器に電力を供給する、請求項22または23に記載の風力発電装置。 The other switching instruction unit includes another voltage dividing circuit that obtains an output from between resistors connected in series to the power generation unit,
When the voltage generated by the power generation unit exceeds the other upper limit value, the other converter power source switching unit uses the output from the other voltage dividing circuit to convert the storage battery to the charging converter. The wind power generator according to claim 22 or 23 which supplies electric power.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280039422.9A CN103733468A (en) | 2011-08-19 | 2012-08-20 | Wind power generation device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011179973 | 2011-08-19 | ||
JP2011-179973 | 2011-08-19 | ||
JP2012-089131 | 2012-04-10 | ||
JP2012089131 | 2012-04-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013027699A1 true WO2013027699A1 (en) | 2013-02-28 |
Family
ID=47746439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/070985 WO2013027699A1 (en) | 2011-08-19 | 2012-08-20 | Wind power generation device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2013027699A1 (en) |
CN (1) | CN103733468A (en) |
WO (1) | WO2013027699A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004064855A (en) * | 2002-07-26 | 2004-02-26 | Hayashiya:Kk | Power supply device using photoelectric cell |
JP2004317279A (en) * | 2003-04-16 | 2004-11-11 | Riken Keiki Co Ltd | Gas sensing apparatus |
JP2009033892A (en) * | 2007-07-27 | 2009-02-12 | Panasonic Corp | Independent power supply system |
-
2012
- 2012-08-20 JP JP2013530012A patent/JPWO2013027699A1/en active Pending
- 2012-08-20 CN CN201280039422.9A patent/CN103733468A/en active Pending
- 2012-08-20 WO PCT/JP2012/070985 patent/WO2013027699A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004064855A (en) * | 2002-07-26 | 2004-02-26 | Hayashiya:Kk | Power supply device using photoelectric cell |
JP2004317279A (en) * | 2003-04-16 | 2004-11-11 | Riken Keiki Co Ltd | Gas sensing apparatus |
JP2009033892A (en) * | 2007-07-27 | 2009-02-12 | Panasonic Corp | Independent power supply system |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013027699A1 (en) | 2015-03-19 |
CN103733468A (en) | 2014-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK2821640T3 (en) | Pitch drive system with emergency power supply controlled by a switching device and method thereof | |
US9914617B2 (en) | Elevator power management to augment maximum power line power | |
US8432055B2 (en) | Wind turbine having a high-voltage ride through (HVRT) mode | |
KR101445023B1 (en) | Power conversion device | |
EP2479884B1 (en) | Wind power generation device | |
US8704392B2 (en) | Method and system for controlling an electric device of a wind turbine | |
WO2014051167A2 (en) | Electric power tool | |
CN106208071B (en) | Hybrid AC and DC distribution system and method of use | |
CN109428533B (en) | Motor drive device for controlling boost ratio of PWM converter | |
US20120293000A1 (en) | System and method for supplementing a generated DC power supply | |
WO2017043027A1 (en) | Power conversion device | |
US8723465B2 (en) | Blade pitch controlling drive for a wind turbine | |
JP4236969B2 (en) | Wind turbine start assist control device in wind power generator | |
JP2007068386A (en) | Hydroelectric power generator | |
WO2017110131A1 (en) | Output control device for wind power generation | |
WO2013027699A1 (en) | Wind power generation device | |
JP4684399B2 (en) | Wind power generator | |
JP2008005663A (en) | Wind-power generator | |
JP6628595B2 (en) | Assist control device for wind power generation | |
JP6184090B2 (en) | Hybrid electric vehicle power supply system | |
WO2019208728A1 (en) | System that interlinks with hydroelectric power generation line | |
JPH10191578A (en) | Photovoltaic power generation system | |
JP2008011588A (en) | Wind turbine generator | |
JP7239632B2 (en) | Grid-connected system | |
JP2019193513A (en) | Hydraulic power generation system interconnection system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12825004 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013530012 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12825004 Country of ref document: EP Kind code of ref document: A1 |