[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013024880A1 - 低含水性軟質眼用レンズおよびその製造方法 - Google Patents

低含水性軟質眼用レンズおよびその製造方法 Download PDF

Info

Publication number
WO2013024880A1
WO2013024880A1 PCT/JP2012/070775 JP2012070775W WO2013024880A1 WO 2013024880 A1 WO2013024880 A1 WO 2013024880A1 JP 2012070775 W JP2012070775 W JP 2012070775W WO 2013024880 A1 WO2013024880 A1 WO 2013024880A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ophthalmic lens
lens
hydrous soft
polymer
Prior art date
Application number
PCT/JP2012/070775
Other languages
English (en)
French (fr)
Inventor
瑠美子 北川
中村 正孝
覚 小笠原
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201280039912.9A priority Critical patent/CN103748504B/zh
Priority to ES12824340T priority patent/ES2877234T3/es
Priority to US14/239,071 priority patent/US9753187B2/en
Priority to JP2012545970A priority patent/JP6236782B2/ja
Priority to KR1020147002636A priority patent/KR20140048224A/ko
Priority to EP12824340.9A priority patent/EP2746836B1/en
Publication of WO2013024880A1 publication Critical patent/WO2013024880A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses or corneal implants; Artificial eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses or corneal implants; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/16Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a low hydrous soft ophthalmic lens and a method for producing the same.
  • a commercially available soft contact lens generally uses a hydrogel material having a moisture content of about 25% to about 80%.
  • a hydrous soft contact lens made of a hydrogel material contains water, a phenomenon occurs in which water evaporates from the contact lens. As a result, a certain percentage of contact lens wearers may feel more dry and uncomfortable than when they are naked. Some complained of symptoms called contact lens dry eye.
  • the hydrous soft contact lens made of a hydrogel material is easily contaminated by the components in tears and contains a large amount of water, so there is also a risk of bacterial propagation.
  • a platinum-based catalyst is added to a mixture of polydimethylsiloxane and methylhydrogenpolysiloxane having both molecular chain ends blocked with vinylmethylsilyl groups, A silicone rubber lens obtained by a method of heat-curing by a molding method is known (see Patent Document 1).
  • Patent Document 6 discloses a contact lens material made of a polymer obtained by copolymerizing a bifunctional organosiloxane macromer alone or with another monomer, and as a monomer used for copolymerization, Acrylic acid fluoroalkyl esters or methacrylic acid fluoroalkyl esters, and acrylic acid alkyl esters or methacrylic acid alkyl esters are disclosed.
  • silicone rubber lenses are widely used because they have defects such as peeling of the hydrophilic treatment layer applied to improve the hydrophobicity of the lens surface, and sticking to the cornea due to excessive elasticity. It was not reached until it was made.
  • a material mainly composed of polysiloxane having a plurality of polymerizable functional groups has high oxygen permeability and flexibility, and is considered to be one of materials suitable for contact lenses.
  • the adhesiveness remains on the surface of the lens after polymerization, there is a concern that the lens surface adheres to the cornea, and the balance between mechanical properties such as flexibility and bending resistance of the lens is insufficient.
  • Various methods for modifying the surface of a soft ophthalmic lens are known.
  • a method of coating and laminating two or more layers of polymer materials one by one is known (for example, (See Patent Documents 7 to 9).
  • the method of alternately coating two oppositely charged polymer materials one by one is called LbL method or the like, and each layer of material is non-covalently bonded to other layers of different materials. It is believed that.
  • the high oxygen-permeable soft ophthalmic lens that clearly shows the usefulness of this method is only of a silicone hydrogel material, and its usefulness for a low hydrous soft ophthalmic lens has not been known.
  • the conventional LbL coating is performed in multiple layers such as about 4 to 20 layers, which may increase the manufacturing process and increase the manufacturing cost.
  • Patent Document 10 discloses that the lens is irradiated with radiation in a state where a specific ethylene oxide derivative is in contact with the lens to be immobilized on the lens surface.
  • Patent Document 11 discloses that an ophthalmic lens is immersed in a hydrophilic compound solution containing a water-soluble peroxide and graft polymerization is performed.
  • Patent Document 12 discloses that a hydrogel substrate is immersed in a solution of a polymer compound and irradiated with ⁇ rays.
  • none of these Patent Documents 10 to 12 discloses a surface treatment for reducing or avoiding the phenomenon of sticking to the cornea during wearing.
  • Patent Document 13 discloses a phenomenon in which a layer made of an acidic polymer and a basic polymer (hereinafter referred to as a coating layer) is formed on at least a part of the surface of a soft ophthalmic lens substrate, thereby sticking to the cornea during wearing.
  • a coating layer a layer made of an acidic polymer and a basic polymer (hereinafter referred to as a coating layer) is formed on at least a part of the surface of a soft ophthalmic lens substrate, thereby sticking to the cornea during wearing.
  • the performance of the coating layer may be deteriorated during wearing or during scrubbing of the ophthalmic lens, and improvement is required.
  • the present invention has been made in view of the above, and can greatly reduce or avoid the phenomenon that the lens sticks to the cornea during wearing, and suppresses the performance degradation of the coating layer when scrubbed.
  • An object of the present invention is to provide a low hydrous soft ophthalmic lens that can be manufactured and a method for producing the same.
  • Another object of the present invention is to produce such a low hydrous soft ophthalmic lens at a low cost by a simple process.
  • the low hydrous soft ophthalmic lens according to the present invention is a low hydrous soft ophthalmic lens including a base material, wherein a layer made of a hydrophilic polymer is formed on at least a part of the surface of the base material, and at least A part of the layer is cross-linked.
  • the low hydrous soft ophthalmic lens according to the present invention includes a silicon-containing base material having a lens shape, and at least a part of the surface of the silicon-containing base material by coating the silicon-containing base material.
  • the N / Si element content ratio which is the ratio of the atomic content, is X
  • the N / Si element content ratio on the lens surface after the coating and before scrubbing is Y, and further on the lens surface after scrubbing.
  • N / Si element content ratio is Z, it is preferable to satisfy YX ⁇ 0.05 and ZX ⁇ 0.04.
  • X is synonymous with “N / Si element content ratio, which is the ratio of the nitrogen atom content to the silicon atom content in the uncoated portion of the substrate”.
  • the low hydrous soft ophthalmic lens according to the present invention includes a silicon-containing base material having a lens shape, and a layer made of a hydrophilic polymer formed on at least a part of the surface of the silicon-containing base material.
  • the hydrophilic polymer contains nitrogen atoms and does not contain silicon atoms, and the N / Si element content ratio, which is the ratio of the nitrogen atom content to the silicon atom content on the lens surface before scrubbing It is preferable that Y ⁇ Z ⁇ 0.05 is satisfied, where Y is Y and the N / Si element content ratio on the lens surface after scrubbing is Z.
  • the hydrophilic polymer is preferably an acidic polymer and / or a basic polymer.
  • the substrate is crosslinked between the base material and the layer.
  • a part of the layer is cross-linked by irradiating radiation with at least the acidic polymer and / or the basic polymer attached to the substrate. Is preferred.
  • the base material is mainly composed of a polymer of the following component A or a copolymer of the following component A and component B; component A: 1 molecule A polysiloxane compound having a plurality of polymerizable functional groups and a number average molecular weight of 6000 or more; Component B: a polymerizable monomer having a fluoroalkyl group.
  • the layer is formed by performing treatment once or twice with an acidic polymer solution and once or twice with a basic polymer solution for a total of three times. It is preferable that
  • the layer is formed by performing treatment with two kinds of acidic polymer solutions twice and treatment with a basic polymer solution once.
  • At least one hydrophilic polymer forming the layer is a polymer having a group selected from a hydroxyl group and an amide group.
  • the method for producing a low hydrous soft ophthalmic lens according to the present invention comprises the following steps 1 to 4 in this order; ⁇ Step 1> Polymerizing a mixture of monomers to obtain a low hydrous soft lens-shaped molding; ⁇ Step 2> A step of washing and removing excess basic polymer solution after contacting the molded body with the basic polymer solution; ⁇ Step 3> A step of washing and removing excess acidic polymer solution after contacting the molded body with the acidic polymer solution; ⁇ Step 4> A process of irradiating the molded body with radiation.
  • a layer comprising an acidic polymer and a basic polymer is formed on at least a part of the surface of the silicon-containing substrate with respect to the silicon-containing substrate having a lens shape.
  • the N / Si element content ratio which is the ratio of the nitrogen atom content, is X
  • the N / Si element content ratio on the lens surface after the coating and before scrubbing is Y
  • the lens surface after further scrubbing When the content ratio of N / Si element in Z is Z, it is preferable that YX ⁇ 0.05 and Z ⁇ X ⁇ 0.04 are satisfied.
  • the method for producing a low hydrous soft ophthalmic lens according to the present invention comprises an acidic polymer and a basic polymer on at least a part of the surface of the silicon-containing substrate with respect to the silicon-containing substrate having a lens shape.
  • the N / Si element content ratio which is the ratio of the nitrogen atom content to the ratio
  • the N / Si element content ratio on the lens surface after scrubbing is Z, Y ⁇ Z ⁇ 0.05 It is preferable to satisfy.
  • the monomer mixture is a polysiloxane compound having a plurality of polymerizable functional groups per molecule and having a number average molecular weight of 6000 or more, and fluoro A mixture containing Component B which is a polymerizable monomer having an alkyl group is preferred.
  • the method for producing a low hydrous soft ophthalmic lens further includes a step of irradiating the layer with radiation after the coating.
  • the radiation dose is preferably 1 kGy or more and 40 kGy or less.
  • the radiation is preferably ⁇ rays or electron beams.
  • the radiation is a ⁇ -ray with an irradiation dose of 1 kGy to 25 kGy, or an electron beam with an irradiation dose of 1 kGy to 40 kGy.
  • the phenomenon of sticking to the cornea during wearing which has been a problem in conventional low hydrous soft ophthalmic lenses, can be greatly reduced or avoided.
  • the low hydrous soft ophthalmic lens of the present invention since it is low in water, the risk of bacterial propagation can be reduced.
  • a low hydrous soft ophthalmic lens having high oxygen permeability, excellent water wettability, flexibility, excellent wearing feeling, and excellent mechanical properties such as bending resistance. Can be provided.
  • the low hydrous soft ophthalmic lens of the present invention has an advantage that it can be produced at a low cost by a simple process.
  • the low hydrous soft ophthalmic lens of the present invention has a coating layer durability because a layer made of a hydrophilic polymer is formed on at least a part of the surface and at least a part of the layer is crosslinked. There is an advantage of improving the performance.
  • FIG. 1 is a schematic view of an apparatus for measuring a dynamic friction force between a sample film and artificial leather.
  • the low water content means that the water content is 10% by mass or less.
  • the soft means that the tensile elastic modulus is 10 MPa or less.
  • the moisture content is, for example, the mass in the dry state of the contact lens-shaped test piece, and the mass (mass in the wet state) when the surface moisture of the wet test piece with the borate buffer is wiped off. [ ⁇ (Mass in wet state) ⁇ (mass in dry state) ⁇ / mass in wet state] (% by mass).
  • the wet state means a state in which the sample is immersed in pure water or borate buffer at room temperature (23 ° C. to 25 ° C.) for 24 hours or more.
  • the measurement of physical property values in a wet state is performed as soon as possible after the sample is taken out from pure water or borate buffer.
  • the dry state means a state in which a wet sample is vacuum-dried at 40 ° C. for 16 hours.
  • the degree of vacuum in the vacuum drying is 2 hPa or less.
  • the measurement of physical property values in a dry state is performed as soon as possible after the vacuum drying.
  • the borate buffer is a “salt solution” described in Example 1 of JP-T-2004-517163. Specifically, 8.48 g of sodium chloride, 9.26 g of boric acid, 1.0 g of sodium borate (sodium tetraborate decahydrate), and 0.10 g of ethylenediaminetetraacetic acid were dissolved in pure water to make 1000 mL. It is.
  • the low hydrous soft ophthalmic lens of the present invention has a feature that the wearer's eye feels dry and small, and is comfortable to wear because of its low hydrous property. Moreover, since the low hydrous soft ophthalmic lens of the present invention has a low hydrous content, it has an advantage that the risk of bacterial propagation is low.
  • the water content is more preferably 5% by mass or less, further preferably 2% by mass or less, and most preferably 1% by mass or less. If the water content is too high, it is not preferable because the dryness of the eyes of the ophthalmic lens wearer increases and the risk of bacterial growth increases.
  • the lower limit of the tensile elastic modulus of the low hydrous soft ophthalmic lens of the present invention is preferably 0.01 MPa or more, and more preferably 0.1 or more.
  • the upper limit of the tensile modulus of the low hydrous soft ophthalmic lens of the present invention is preferably 5 MPa or less, more preferably 3 MPa or less, further preferably 2 MPa or less, even more preferably 1 MPa or less, and most preferably 0.6 MPa or less. preferable. If the tensile modulus is too small, it tends to be too soft and difficult to handle. On the other hand, if the tensile elastic modulus is too large, it tends to be too hard to wear.
  • the tensile elastic modulus is 2 MPa or less, a good wearing feeling is obtained, and when it is 1 MPa or less, a further wearing feeling is obtained, which is preferable.
  • the tensile modulus is measured on a sample in a wet state with a borate buffer.
  • the tensile elongation (breaking elongation) of the low hydrous soft ophthalmic lens of the present invention is preferably 100% to 1000%, more preferably 200% to 700%. If the tensile elongation is small, the low hydrous soft ophthalmic lens is easily broken, which is not preferable. When the tensile elongation is too large, the low hydrous soft ophthalmic lens tends to be easily deformed, which is not preferable. The tensile elongation is measured on a sample in a wet state with a borate buffer.
  • the ophthalmic lens has a dynamic contact angle (during advance, immersion speed: 0.1 mm / sec) of preferably 100 ° or less, more preferably 90 ° or less, and further preferably 80 ° or less. From the viewpoint of preventing the wearer from sticking to the cornea, the dynamic contact angle is preferably lower, preferably 65 ° or less, more preferably 60 ° or less, further preferably 55 ° or less, and 50 ° or less. More preferred is 45 ° or less.
  • the dynamic contact angle is measured against a borate buffer in a sample wet with borate buffer.
  • the liquid film holding time on the surface of the ophthalmic lens is long.
  • the liquid film holding time means that the liquid film on the surface of the ophthalmic lens is not cut when the ophthalmic lens immersed in the borate buffer is pulled up from the liquid and held in the air so that the diameter direction is vertical. It is the time that is held.
  • the liquid film holding time is preferably 5 seconds or longer, more preferably 10 seconds or longer, and most preferably 20 seconds or longer.
  • the diameter is the diameter of a circle formed by the edge of the ophthalmic lens.
  • the surface of the ophthalmic lens preferably has excellent slipperiness.
  • the friction measured by the method shown in the examples of the present specification is small.
  • the friction is preferably 60 gf (0.59 N) or less, more preferably 50 gf (0.49 N) or less, further preferably 40 gf (0.39 N) or less, and most preferably 30 gf (0.29 N) or less.
  • the friction is preferably 5 gf (0.049 N) or more, preferably 10 gf (0.098 N) or more. Friction is measured on samples wet with borate buffer.
  • the antifouling property of the ophthalmic lens can be evaluated by mucin adhesion, lipid (methyl palmitate) adhesion, and artificial tears immersion test.
  • the mucin adhesion amount is preferably 5 ⁇ g / cm 2 or less, more preferably 4 ⁇ g / cm 2 or less, and most preferably 3 ⁇ g / cm 2 or less.
  • the low hydrous soft ophthalmic lens preferably has high oxygen permeability.
  • the oxygen permeability coefficient [ ⁇ 10 ⁇ 11 (cm 2 / sec) mLO 2 / (mL ⁇ hPa)] is preferably 50 to 2000, more preferably 100 to 1500, still more preferably 200 to 1000, and most preferably 300 to 700. . If the oxygen permeability is excessively increased, other physical properties such as mechanical properties may be adversely affected, which is not preferable.
  • the oxygen permeability coefficient is measured on a dry sample.
  • the low hydrous soft ophthalmic lens of the present invention includes a lens-shaped molded body (hereinafter referred to as a base material), and a low-molecular layer having a hydrophilic polymer layer formed on at least a part of the surface of the base material. It is a hydrous soft ophthalmic lens, and at least a part of the layer is crosslinked.
  • the hydrophilic polymer is, for example, an acidic polymer and / or a basic polymer.
  • the base material preferably contains 5% by mass or more of silicon atoms in order to have high oxygen permeability and to obtain strong adhesion without using a covalent bond with the polymer coated on the surface.
  • a substrate containing 5% by mass or more of silicon atoms is referred to as a silicon-containing substrate.
  • the silicon atom content (% by mass) is calculated based on the dry substrate mass (100% by mass).
  • the silicon atom content of the substrate is preferably 5% by mass to 36% by mass, more preferably 7% by mass to 30% by mass, further preferably 10% by mass to 30% by mass, and most preferably 12% by mass to 26% by mass. . If the content of silicon atoms is too large, the tensile elastic modulus may increase, which is not preferable.
  • the content of silicon atoms in the substrate can be measured by the following method.
  • the sufficiently dried substrate is weighed in a platinum crucible, sulfuric acid is added, and heat ashing is performed with a hot plate and a burner.
  • the ashed product is melted with sodium carbonate, and water is added to dissolve it by heating.
  • nitric acid is added and the volume is adjusted with water.
  • a silicon atom is measured by ICP emission spectroscopic analysis, and content in a base material is calculated
  • the base material is a polymer of component A which is a polysiloxane compound having a plurality of polymerizable functional groups per molecule and a number average molecular weight of 6000 or more, or a compound having the component A and a polymerizable functional group.
  • the main component is a copolymer with a compound different from Component A.
  • the main component means a component that is contained in an amount of 50% by mass or more based on the mass of the base material in a dry state (100% by mass).
  • the polysiloxane compound is a compound having a bond represented by Si—O—Si—O—Si.
  • the hydrophilic polymer is a polymer that satisfies any of the following conditions.
  • the moisture content is a value not including the mass of water adhering to the surface.
  • the silicon-containing substrate contains silicon, carbon, oxygen atoms and the like, elements such as Si, C, and O are detected when elemental analysis of the surface of the substrate is performed.
  • hydrophilic polymers such as an acidic polymer and a basic polymer used for forming a coating layer in the present invention are organic compounds, and at least one of the polymers contains a nitrogen atom and does not contain a silicon atom. Further, when a polymer in which the nitrogen element content in the coating layer is higher than the nitrogen element content contained in the silicon-containing substrate is used, the nitrogen element content per unit region increases after coating. In that case, the adhesion amount of the coating layer can be evaluated by the increase amount of the nitrogen element content.
  • Elemental analysis of the substrate or the lens surface after coating can be performed using X-ray photoelectron spectroscopy (hereinafter abbreviated as XPS).
  • XPS X-ray photoelectron spectroscopy
  • the constituent elements of a sample and their electronic states can be analyzed by irradiating the sample surface with X-rays and measuring the energy of photoelectrons generated thereby. More specifically, when the sample is irradiated with X-rays, the X-rays penetrate to a depth of several ⁇ m from the sample surface, but the depth from the sample surface is in the range of approximately several nm to several tens of nm. Only photoelectrons can escape. Therefore, only photoelectrons generated in the immediate vicinity of the surface are detected.
  • the chemical state of the lens surface in the nano order can be analyzed by XPS.
  • the excitation X-ray is preferably Al or Mg, and Al is used in the present invention.
  • the photoelectron escape angle is 90 °.
  • the ratio of the specific element content to the total element content detected is obtained.
  • the silicon content after coating generally detected is smaller than the silicon content before coating.
  • this parameter is referred to as an N / Si element content ratio.
  • the difference between Y and X is the amount of adhesion of the hydrophilic polymer as the coating layer. It becomes an indicator.
  • YX is preferably 0.05 or more, more preferably 0.07 or more, and most preferably 0.08 or more.
  • the N / Si element content ratio (X) on the lens surface before coating cannot be directly measured from the lens after coating, the value measured as follows can be substituted. That is, first, the coated lens is divided into two equal parts with a sharp and clean blade, and the cross section of the lens is taken out. The cross section of this lens is arcuate. Next, X is obtained by measuring the N / Si element content ratio at a point near the arcuate apex of the cross section and near the center in the thickness direction of the cross section.
  • ZX is a rub. It becomes an index of washing durability.
  • ZX is preferably 0.04 or more, more preferably 0.05 or more, and most preferably 0.06 or more.
  • (YZ) is preferably 0.05 or less, more preferably 0.04 or less, further preferably 0.03 or less, and 0.02 or less. Is particularly preferred.
  • the boundary values indicating the preferred ranges of YX, ZX, and YZ are calculated by measuring X, Y, and Z up to three digits after the decimal point and using these X, Y, and Z.
  • YX, ZX, and YZ are values obtained by rounding off the third decimal place.
  • content (mass%) of a silicon atom is calculated on the basis (100 mass%) of the base-material mass in a dry state.
  • the lower limit of the silicon element content of the silicon-containing substrate is preferably 5% by mass or more, more preferably 7% by mass or more, further preferably 10% by mass or more, and most preferably 12% by mass or more.
  • 36 mass% or less is preferable, 30 mass% or less is more preferable, and 26 mass% or less is the most preferable.
  • the tensile elastic modulus may increase, which is not preferable.
  • the silicon-containing substrate is a polymer of component A which is a polysiloxane compound having a plurality of polymerizable functional groups per molecule, or a compound having component A and a polymerizable functional group, which is different from component A. It is preferable to use a copolymer with a compound as a main component.
  • component A is a polysiloxane compound having a plurality of polymerizable functional groups per molecule, or a compound having component A and a polymerizable functional group, which is different from component A.
  • a copolymer with a compound as a main component.
  • Component B polymerizable monomer having a fluoroalkyl group
  • Component M a monofunctional monomer having one polymerizable functional group per molecule and a siloxanyl group
  • Component C Component different from Component A, Component B, and Component M, Any combination of the above is preferable.
  • the main component means a component that is contained in an
  • the number average molecular weight of component A is preferably 6000 or more.
  • the inventors have found that when the number average molecular weight of component A is in this range, a low hydrous soft ophthalmic lens excellent in mechanical properties such as flexibility and wear feeling and bending resistance can be obtained. It was.
  • the number average molecular weight of the component A polysiloxane compound is preferably 8000 or more because a low hydrous soft ophthalmic lens having excellent mechanical properties such as bending resistance can be obtained.
  • the number average molecular weight of component A is preferably in the range of 8000 to 100,000, more preferably in the range of 9000 to 70000, and still more preferably in the range of 10,000 to 50000.
  • the low hydrous soft ophthalmic lens of the present invention is an optical product, it is preferably highly transparent. As a criterion for transparency, it is preferable that the material is transparent and free from turbidity when visually observed. Further, when the ophthalmic lens is observed with a lens projector, it is preferable that almost no turbidity is observed, and most preferable that no turbidity is observed.
  • the dispersity (the value obtained by dividing the mass average molecular weight by the number average molecular weight) is preferably 6 or less, more preferably 3 or less, still more preferably 2 or less, and most preferably 1.5 or less.
  • the diameter is the diameter of a circle formed by the edge of the lens.
  • the molding ratio is preferably in the range of 0.85 to 2.0, more preferably in the range of 0.9 to 1.5, and most preferably in the range of 0.91 to 1.3.
  • the number average molecular weight of component A is a polystyrene-equivalent number average molecular weight measured by a gel permeation chromatography method (GPC method) using chloroform as a solvent.
  • GPC method gel permeation chromatography method
  • the mass average molecular weight and the dispersity are also measured by the same method.
  • the number average molecular weight, the mass average molecular weight, and the degree of dispersion are measured in the same manner.
  • a mass average molecular weight may be represented by Mw and a number average molecular weight may be represented by Mn.
  • molecular weight 1000 may be described as 1 kD.
  • the notation “Mw33 kD” represents “mass average molecular weight 33000”.
  • Component A is a polysiloxane compound having a plurality of polymerizable functional groups.
  • the number of the polymerizable functional group of component A may be two or more per molecule, but two per molecule are preferable from the viewpoint of easily obtaining a more flexible (low elastic modulus) ophthalmic lens. .
  • a structure having a polymerizable functional group at both ends of the molecular chain is preferable.
  • polymerizable functional group of Component A a functional group capable of radical polymerization is preferable, and one having a carbon-carbon double bond is more preferable.
  • preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, ⁇ -alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid Examples include acid residues and citraconic acid residues. Of these, a (meth) acryloyl group is most preferred because of its high polymerizability.
  • (meth) acryloyl represents both methacryloyl and acryloyl, and the same applies to terms such as (meth) acryl and (meth) acrylate.
  • Component A preferably has a structure represented by the following formula (A1).
  • X 1 and X 2 each independently represent a polymerizable functional group.
  • R 1 to R 8 each independently represents a substituent selected from hydrogen, an alkyl group having 1 to 20 carbon atoms, a phenyl group, and a fluoroalkyl group having 1 to 20 carbon atoms.
  • L 1 and L 2 each independently represents a divalent group.
  • a and b each independently represent the number of repeating units.
  • X 1 and X 2 are preferably radical polymerizable functional groups, preferably those having a carbon-carbon double bond.
  • preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, ⁇ -alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid Examples include acid residues and citraconic acid residues. Of these, a (meth) acryloyl group is most preferred because of its high polymerizability.
  • R 1 to R 8 include hydrogen; a C 1-20 carbon atom such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, decyl group, dodecyl group, octadecyl group, etc.
  • Alkyl group phenyl group, trifluoromethyl group, trifluoroethyl group, trifluoropropyl group, tetrafluoropropyl group, hexafluoroisopropyl group, pentafluorobutyl group, heptafluoropentyl group, nonafluorohexyl group, hexafluorobutyl group , Heptafluorobutyl group, octafluoropentyl group, nonafluoropentyl group, dodecafluoroheptyl group, tridecafluoroheptyl group, dodecafluorooctyl group, tridecafluorooctyl group, hexadecafluorodecyl group, heptadecafluorodecyl group, Tetrafluorop Propyl group, a pentafluoropropyl group, tetradecanoyl per
  • L 1 and L 2 are preferably divalent groups having 1 to 20 carbon atoms.
  • the group represented by the following formulas (LE1) to (LE12) is preferable because the compound of the formula (A1) has an advantage that it can be easily obtained with high purity.
  • the following formulas (LE1), (LE3), (LE9) ) And (LE11) are more preferred, groups represented by the following formulas (LE1) and (LE3) are more preferred, and groups represented by the following formula (LE1) are most preferred.
  • the following formula (LE1) ⁇ (LE12) is left ends bind to the polymerizable functional group X 1 or X 2, is depicted as an end of the right side is attached to the silicon atom.
  • a and b each independently represent the number of each repeating unit. a and b each independently preferably ranges from 0 to 1500.
  • the total value of a and b (a + b) is preferably 80 or more, more preferably 100 or more, more preferably 100 to 1400, more preferably 120 to 950, and still more preferably 130 to 700.
  • R 1 to R 8 are all methyl groups
  • b 0, and a is preferably 80 to 1500, more preferably 100 to 1400, more preferably 120 to 950, and still more preferably 130 to 700.
  • the value of a is determined by the molecular weight of the polysiloxane compound of component A.
  • Component B which is a polymerizable monomer having a fluoroalkyl group described above, has water and oil repellency properties due to a decrease in critical surface tension caused by the fluoroalkyl group. This has the effect of suppressing contamination of the ophthalmic lens surface with components such as proteins and lipids in tear fluid.
  • Component B has an effect of giving a low hydrous soft ophthalmic lens that is flexible and excellent in wearing feeling and excellent in mechanical properties such as bending resistance.
  • fluoroalkyl group of Component B are trifluoromethyl group, trifluoroethyl group, trifluoropropyl group, tetrafluoropropyl group, hexafluoroisopropyl group, pentafluorobutyl group, heptafluoropentyl group, nonafluoro group.
  • it is a C2-C8 fluoroalkyl group such as a trifluoroethyl group, a tetrafluoropropyl group, a hexafluoroisopropyl group, an octafluoropentyl group, and a dodecafluorooctyl group, most preferably trifluoroethyl group It is a group.
  • the polymerizable functional group of Component B is preferably a radical polymerizable functional group, more preferably a carbon-carbon double bond.
  • preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, ⁇ -alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid
  • acid residue and citraconic acid residue include a (meth) acryloyl group because of high polymerizability among them.
  • (Meth) acrylic acid fluoroalkyl ester is most preferred as Component B because it is highly effective in obtaining a low hydrous soft ophthalmic lens excellent in mechanical properties such as flexibility and wear resistance and bending resistance. is there.
  • Specific examples of such (meth) acrylic acid fluoroalkyl esters include trifluoroethyl (meth) acrylate, tetrafluoroethyl (meth) acrylate, trifluoropropyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, and pentafluoropropyl.
  • Trifluoroethyl (meth) acrylate, tetrafluoroethyl (meth) acrylate, hexafluoroisopropyl (meth) acrylate, octafluoropentyl (meth) acrylate, and dodecafluorooctyl (meth) acrylate are preferably used. Most preferred is trifluoroethyl (meth) acrylate.
  • the B component of the present invention may be used alone or in combination of two or more.
  • the content of Component B in the copolymer is preferably 10 to 500 parts by weight, more preferably 20 to 400 parts by weight, and still more preferably 20 to 200 parts by weight with respect to 100 parts by weight of Component A.
  • the amount of component B used is too small, the resulting ophthalmic lens tends to become cloudy or mechanical properties such as bending resistance tend to be insufficient.
  • the copolymer used for the substrate described above is a copolymer obtained by further copolymerizing component M, which is a monofunctional monomer having one polymerizable functional group and siloxanyl group per molecule. May be used.
  • the siloxanyl group means a group having a Si—O—Si bond.
  • the siloxanyl group of component M is preferably linear. If the siloxanyl group is linear, the shape recoverability of the resulting low hydrous soft ophthalmic lens is improved.
  • the straight chain is a structure represented by a single linearly connected Si— (O—Si) n ⁇ 1 —O—Si bond starting from a silicon atom bonded to a group having a polymerizable group. (Where n represents an integer of 2 or more).
  • n is preferably an integer of 3 or more, more preferably 4 or more, further preferably 5 or more, and most preferably 6 or more.
  • “the siloxanyl group is linear” means that the siloxanyl group has the above linear structure and does not have a Si—O—Si bond that does not satisfy the conditions of the linear structure. means.
  • the base material is preferably composed mainly of a copolymer containing the component M having a number average molecular weight of 300 to 120,000.
  • the main component means a component that is contained in an amount of 50% by mass or more based on the mass of the base material in a dry state (100% by mass).
  • the number average molecular weight of component M is preferably 300 to 120,000. When the number average molecular weight of the component M is in this range, a base material that is flexible (low elastic modulus), excellent in wearing feeling, and excellent in mechanical properties such as bending resistance can be obtained.
  • the number average molecular weight of component M is more preferably 500 or more because a base material excellent in mechanical properties such as bending resistance and excellent in shape recoverability can be obtained.
  • the number average molecular weight of the component M is more preferably in the range of 1000 to 25000, and still more preferably in the range of 5000 to 15000.
  • the number average molecular weight of the component M When the number average molecular weight of the component M is too small, mechanical properties such as bending resistance and shape recovery tend to be low, and particularly when the number is less than 500, bending resistance and shape recovery may be low. When the number average molecular weight of the component M is too large, flexibility and transparency tend to decrease, which is not preferable.
  • a radical polymerizable functional group is preferable, and one having a carbon-carbon double bond is more preferable.
  • preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, ⁇ -alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid Examples include acid residues and citraconic acid residues. Of these, a (meth) acryloyl group is most preferred because of its high polymerizability.
  • Component M preferably has a structure represented by the following formula (ML1).
  • X 3 represents a polymerizable functional group.
  • R 11 to R 19 each independently represents a substituent selected from hydrogen, an alkyl group having 1 to 20 carbon atoms, a phenyl group, and a fluoroalkyl group having 1 to 20 carbon atoms.
  • L 3 represents a divalent group.
  • c and d each independently represents an integer of 0 to 700. However, c and d are not 0 at the same time.
  • X 3 is preferably a radical polymerizable functional group, and preferably has a carbon-carbon double bond.
  • preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, ⁇ -alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid Examples include acid residues and citraconic acid residues. Of these, a (meth) acryloyl group is most preferred because of its high polymerizability.
  • the polymerizable functional group of Component M is more preferably copolymerizable with the polymerizable functional group of Component A because a low hydrous soft ophthalmic lens having good mechanical properties can be easily obtained.
  • the component A are uniformly copolymerized, it is easy to obtain a low hydrous soft ophthalmic lens having good surface characteristics. Therefore, it is more preferably the same as the polymerizable functional group of the component A.
  • R 11 to R 19 are hydrogen; those having 1 to 20 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, decyl group, dodecyl group, octadecyl group and the like.
  • Alkyl group phenyl group, trifluoromethyl group, trifluoroethyl group, trifluoropropyl group, tetrafluoropropyl group, hexafluoroisopropyl group, pentafluorobutyl group, heptafluoropentyl group, nonafluorohexyl group, hexafluorobutyl group , Heptafluorobutyl group, octafluoropentyl group, nonafluoropentyl group, dodecafluoroheptyl group, tridecafluoroheptyl group, dodecafluorooctyl group, tridecafluorooctyl group, hexadecafluorodecyl group, heptadecafluorodecyl group, Tetrafluo Propyl group, a pentafluoropropyl group, tetradecanoyl perflu
  • L 3 is preferably a divalent group having 1 to 20 carbon atoms.
  • the group represented by the following formulas (LE1) to (LE12) is preferable because the compound of the formula (ML1) has an advantage of being easily obtained with high purity, and among them, the following formulas (LE1), (LE3), (LE9) ) And (LE11) are more preferred, groups represented by the following formulas (LE1) and (LE3) are more preferred, and groups represented by the following formula (LE1) are most preferred.
  • the following formula (LE1) ⁇ (LE12) the terminal of the left is attached to the polymerizable functional group X 3, is depicted as an end of the right side is attached to the silicon atom.
  • the total value of c and d (c + d) is preferably 3 or more, more preferably 10 or more, more preferably 10 to 500, more preferably 30 to 300, and still more preferably 50 to 200.
  • c is preferably 3 to 700, more preferably 10 to 500, more preferably 30 to 300, and further preferably 50 to 200. In this case, the value of c is determined by the molecular weight of component M.
  • the substrate of the low hydrous soft ophthalmic lens of the present invention only one type of component M may be used, or two or more types may be used in combination.
  • the base material of the low hydrous soft ophthalmic lens of the present invention contains an appropriate amount of the component M, the crosslinking density is reduced, the degree of freedom of the polymer is increased, and an appropriately soft base material having a low elastic modulus is obtained. Can be realized.
  • a crosslinking density will become high and a base material will become hard.
  • there is too much content of the component M since it will become too soft and it will become easy to tear, it is unpreferable.
  • the mass ratio of the component M to the component A is 5 to 200 parts by mass, more preferably 7 to 150 parts by mass of the component M with respect to 100 parts by mass of the component A. It is preferable that the amount is 10 parts by mass, most preferably 10 to 100 parts by mass.
  • content of the component M is less than 5 mass parts with respect to 100 mass parts of component A, a crosslinking density will become high and a base material will become hard.
  • content of Component M exceeds 200 parts by mass with respect to 100 parts by mass of Component A, it is not preferable because it becomes too soft and easily broken.
  • a layer made of a hydrophilic polymer (hereinafter referred to as a coating layer) is formed on at least a part of the surface of the substrate, and at least one layer in the layer is formed.
  • the part is cross-linked, but the cross-linking is preferably generated by irradiation with radiation.
  • at least a part may be crosslinked between the substrate and the layer. Thereby, good wettability and easy slipperiness are imparted to the surface of the lens, and an excellent wearing feeling can be given.
  • irradiation with radiation may simultaneously generate cross-links in a part of the base material.
  • the raw material of the base material of the low hydrous soft ophthalmic lens of the present invention contains an appropriate amount of the component M, the crosslinking density is reduced and the degree of freedom of the polymer is increased. There is an advantage that an excessive increase in the elastic modulus of the material can be suppressed and a moderately soft low elastic substrate can be obtained.
  • the component C which is a component different from the component A, the component B, and the component M, is used as the copolymer used for the base material
  • the component C has a glass transition point of the copolymer at room temperature or What lowers to 0 degrees C or less is good. Since these reduce the cohesive energy, they have the effect of imparting rubber elasticity and softness to the copolymer.
  • the polymerizable functional group of Component C is preferably a radical polymerizable functional group, and more preferably has a carbon-carbon double bond.
  • preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, ⁇ -alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid
  • acid residue and citraconic acid residue include a (meth) acryloyl group because of high polymerizability among them.
  • component C suitable for improving mechanical properties such as flexibility and bending resistance are (meth) acrylic acid alkyl esters, preferably (meth) acrylic acid having an alkyl group having 1 to 20 carbon atoms. Specific examples thereof include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, tert-butyl (meth) acrylate, isobutyl (meth) ) Acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-heptyl (meth) acrylate, n-nonyl (meth) acrylate, n-decyl (meth) acrylate , Isodecyl (meth) acrylate, n-lauryl (meth)
  • (Meth) acrylate, n-octyl (meth) acrylate, n-lauryl (meth) acrylate, and n-stearyl (meth) acrylate are more preferred. If the carbon number of the alkyl group is too large, the transparency of the resulting lens may be lowered, which is not preferable.
  • the monomer described below can be copolymerized as component C as desired.
  • the monomer for improving the mechanical properties include aromatic vinyl compounds such as styrene, tert-butyl styrene, and ⁇ -methyl styrene.
  • Examples of the monomer for improving the surface wettability include methacrylic acid, acrylic acid, itaconic acid, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl methacrylate, 2-hydroxypropyl acrylate, glycerol methacrylate, polyethylene Glycol methacrylate, N, N-dimethylacrylamide, N-methylacrylamide, dimethylaminoethyl methacrylate, methylenebisacrylamide, diacetone acrylamide, N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylacetamide, and N-vinyl-N- And methyl acetamide.
  • Examples of the monomer for improving the dimensional stability of the lens include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, pentaerythritol tetramethacrylate, and bisphenol A dimethacrylate.
  • Component C is preferably used in an amount of 0.001 to 400 parts by weight, more preferably 0.01 to 300 parts by weight, still more preferably 0.01 to 200 parts by weight, and most preferably 0 to 100 parts by weight of Component A. 0.01 to 30 parts by mass.
  • amount of component C used is too small, it is difficult to obtain the effect expected of component C.
  • amount of component C used is too large, the resulting ophthalmic lens tends to become cloudy or mechanical properties such as bending resistance tend to be insufficient.
  • the low hydrous soft ophthalmic lens of the present invention further comprises components such as an ultraviolet absorber, a dye, a coloring agent, a wetting agent, a slip agent, a pharmaceutical and nutritional supplement component, a compatibilizing component, an antibacterial component, and a release agent. May be. Any of the above-described components can be contained in a non-reactive form or a copolymerized form.
  • the eye of the ophthalmic lens wearer can be protected from harmful ultraviolet rays.
  • the ophthalmic lens is colored to facilitate identification and improve convenience during handling.
  • any of the above-described components can be contained in a non-reactive form or a copolymerized form.
  • the above components are copolymerized, that is, when a UV absorber having a polymerizable group or a colorant having a polymerizable group is used, the component is copolymerized and immobilized on the base material, so that elution is possible This is preferable because the property is reduced.
  • the base material is preferably composed of a component selected from an ultraviolet absorber and a colorant, and two or more other components C (hereinafter referred to as component Ck).
  • component Ck is selected from at least one kind of (meth) acrylic acid alkyl ester having 1 to 10 carbon atoms and at least one kind from the monomer for improving the surface wettability.
  • the preferred amount to be used is 0.01 to 20 parts by weight, more preferably 0.05 to 10 parts by weight, and even more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of Component A. It is.
  • the preferred amount of use is 0.00001 to 5 parts by weight, more preferably 0.0001 to 1 part by weight, and still more preferably 0.0001 to 0.5 parts by weight with respect to 100 parts by weight of Component A Part.
  • the amount of component Ck used is preferably 0.1 to 100 parts by weight, more preferably 1 to 80 parts by weight, and still more preferably 2 to 50 parts by weight with respect to 100 parts by weight of component A.
  • the amount of the component Ck used is too small, there is a tendency that it becomes difficult to obtain a transparent substrate due to insufficient affinity with the ultraviolet absorber or the colorant. Even when the amount of component Ck used is too large, the resulting ophthalmic lens tends to be clouded or have insufficient mechanical properties such as bending resistance, which is not preferable.
  • the base material of the low hydrous soft ophthalmic lens of the present invention preferably has a crosslinking degree in the range of 2.0 to 18.3.
  • the degree of crosslinking is represented by the following formula (Q1).
  • Qn represents the total millimolar amount of monomers having n polymerizable groups per molecule
  • Wn represents the total mass (kg) of monomers having n polymerizable groups per molecule.
  • the degree of cross-linking of the substrate of the present invention is less than 2.0, it is too soft and difficult to handle, and if it exceeds 18.3, it is too hard and the feeling of wearing tends to be unfavorable.
  • a more preferable range of the degree of crosslinking is 3.5 to 16.0, a further preferable range is 8.0 to 15.0, and a most preferable range is 9.0 to 14.0.
  • a method for producing a substrate of a low hydrous soft ophthalmic lens that is, a lens-shaped molded body
  • a known method can be used. For example, a method of once obtaining a round bar or a plate-like polymer and processing it into a desired shape by cutting or the like, a mold polymerization method, a spin cast polymerization method, or the like can be used.
  • the lens is obtained by cutting, freezing cutting at a low temperature is suitable.
  • a method for producing an ophthalmic lens by polymerizing a raw material composition containing component A by a mold polymerization method will be described below.
  • a raw material composition is filled in a gap between two mold members having a certain shape.
  • the material for the mold member include resin, glass, ceramics, and metal.
  • an optically transparent material is preferable, and therefore resin or glass is preferably used.
  • a gasket may be used to give a constant thickness to the ophthalmic lens and prevent liquid leakage of the raw material composition filled in the gap.
  • the mold filled with the raw material composition in the gap is subsequently irradiated with active light such as ultraviolet rays, visible light, or a combination thereof, or heated in an oven or a liquid tank, etc. Is polymerized.
  • active light such as ultraviolet rays, visible light, or a combination thereof
  • Is polymerized There may be a method in which two polymerization methods are used in combination. That is, heat polymerization can be performed after photopolymerization, or photopolymerization can be performed after heat polymerization.
  • light containing ultraviolet light such as light from a mercury lamp or ultraviolet lamp (for example, FL15BL, Toshiba) is irradiated for a short time (usually 1 hour or less).
  • the temperature of the composition is gradually raised from around room temperature, and the temperature is raised to 60 ° C. to 200 ° C. over several hours to several tens of hours. In order to maintain the quality and quality, and to improve reproducibility.
  • a thermal polymerization initiator or a photopolymerization initiator typified by a peroxide or an azo compound in order to facilitate the polymerization.
  • thermal polymerization those having optimum decomposition characteristics at a desired reaction temperature are selected.
  • azo initiators and peroxide initiators having a 10-hour half-life temperature of 40 to 120 ° C. are suitable.
  • Photoinitiators for photopolymerization include carbonyl compounds, peroxides, azo compounds, sulfur compounds, halogen compounds, and metal salts thereof. These polymerization initiators are used alone or in combination.
  • the amount of the polymerization initiator is preferably up to 5% by mass with respect to the polymerization mixture.
  • a polymerization solvent can be used.
  • Various organic and inorganic solvents can be used as the solvent.
  • solvents include water; methyl alcohol, ethyl alcohol, normal propyl alcohol, isopropyl alcohol, normal butyl alcohol, isobutyl alcohol, t-butyl alcohol, t-amyl alcohol, tetrahydrolinalol, ethylene glycol, diethylene glycol, triethylene glycol, Alcohol solvents such as tetraethylene glycol and polyethylene glycol; methyl cellosolve, ethyl cellosolve, isopropyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, polyethylene glycol monomethyl ether, ethylene glycol dimethyl ether, diethylene glycol di Glycol ether solvents such as tilether, triethylene glycol dimethyl ether and polyethylene glycol dimethyl ether; ester solvents
  • a layer made of a hydrophilic polymer such as an acidic polymer and a basic polymer (hereinafter referred to as a coating layer) is formed on at least a part of the substrate surface.
  • a hydrophilic polymer such as an acidic polymer and a basic polymer (hereinafter referred to as a coating layer)
  • at least one polymer preferably contains a nitrogen atom and does not contain a silicon atom.
  • the hydrophilic polymers include polyvinylpyrrolidone, polyacrylamide, polydimethylacrylamide, poly (N-methylvinylacetamide), polyalkylene glycol, polyvinyl alcohol, polyvinyl acetate, polyvinyl Suitable examples include caprolactam, various cellulose derivatives, and various polysaccharides. Although the above mainly gave examples of homopolymers, these copolymers are also suitable.
  • hydrophilic polymers acidic polymers and basic polymers are particularly suitable.
  • an acidic polymer and a basic polymer it is preferable that at least one acidic polymer and at least one basic polymer contain a nitrogen atom and no silicon atom. It is more preferable that all of the acidic polymer and the basic polymer do not contain a silicon atom.
  • the term “containing” as used herein means that it is contained or not contained as an atom constituting the polymer, and does not intend a compound simply mixed with these polymers or atoms contained in the solvent of these polymers. . In any case, a material having a nitrogen element content in the coating layer larger than the nitrogen element content in the silicon-containing substrate is used.
  • the “layer” means an aggregate of molecules formed on the surface of the substrate. Microscopically, the “layer” of the present invention does not need to have a uniform structure in the plane direction or the depth direction, and does not need to have a structure in which the respective polymers are stacked flat. For example, in the layer of the present invention, there may be a portion where the acidic polymer and / or the basic polymer are not present microscopically. Moreover, arbitrary 2 or more types chosen from an acidic polymer, a basic polymer, and a base material may be mixed, or the clear interface of a layer may not exist.
  • the thickness of the layer made of the hydrophilic polymer is preferably 100 ⁇ m or less, more preferably 10 ⁇ m or less, even more preferably 1 ⁇ m or less, and particularly preferably 0.5 ⁇ m or less because an excessively thick layer tends to be optically nonuniform.
  • the thickness is preferably 0.1 nm or more, more preferably 1 nm or more, further preferably 10 nm or more, and particularly preferably 50 nm or more.
  • the thickness of the layer made of the hydrophilic polymer means a thickness in a dry state, and can be obtained by a technique such as an electron microscope.
  • the coating layer is crosslinked at least partially in the layer. Moreover, at least one part may be bridge
  • crosslinking means that the polymers are bonded by creating a bridge structure using their own functional groups or crosslinking agents.
  • any of the following (1) or (2) or a combination thereof can be applied.
  • (1) It is determined whether at least a part of the layer is cross-linked by an instrumental analysis method.
  • (2) The polymer contained in the coating layer is dissolved in a solvent or solution that can be dissolved if the polymer is a simple substance, and insoluble matter including a crosslinked product of the polymer is observed.
  • the model molded body of the coating layer is exposed to the same conditions (or substantially the same conditions) as the step in which crosslinking is formed in the coating layer, and then the crosslinking is performed by the method (1) or (2). You may determine the presence or absence of.
  • Examples of the model molded body of the coating layer include a polymer film-shaped molded body (molded body I) contained in the coating layer. Moreover, you may use what formed the molded object I on the film-form molded object (molded object II) of the same (or substantially the same) material as the said base material. The latter model molded body is useful for determining that the substrate and the coating layer are cross-linked.
  • the cross-linking is preferably caused by irradiating radiation with at least a hydrophilic polymer attached to the substrate.
  • the radiation is preferably various ion beams, electron beams, positron beams, X-rays, gamma ( ⁇ ) rays, and neutron beams, and more preferably electron beams and ⁇ rays. Most preferred is gamma rays.
  • the lens surface is also provided with good wettability and slipperiness. And can give an excellent feeling of wearing.
  • the low hydrous soft ophthalmic lens of the present invention after immersing a contact lens-shaped test piece in a borate buffer solution, pulling up the test piece from the borate buffer solution, as a sensitivity evaluation when rubbing a predetermined number of times with the index finger, There is very good slipperiness or excellent slipperiness (medium between moderate slipperiness and very good slipperiness).
  • the test piece is pulled up from the borate buffer solution so that the diameter direction is perpendicular to the air.
  • the diameter is the diameter of a circle formed by the edge of the contact lens.
  • a coating layer made of a hydrophilic polymer is formed on the surface even if the base material is neutral even though it is low hydrous and soft. It is possible to impart sufficient wettability, slipperiness and antifouling property to the lens surface. As a result, the phenomenon of the lens sticking to the cornea during wearing can be greatly reduced or avoided.
  • the coating layer of the low hydrous soft ophthalmic lens of the present invention does not need to have a covalent bond with the base material. It is preferable that the coating layer does not have a covalent bond with the base material because it can be manufactured in a simple process. Even if the coating layer does not have a covalent bond with the substrate, it has practical durability.
  • the durability of a low hydrous soft ophthalmic lens is determined by, for example, creating a depression in the center of the palm of an adult male and placing a sample (contact lens shape) there, adding a predetermined cleaning solution there if necessary, After rubbing the front and back 100 times with the index finger of one hand, the water wettability, the slipperiness, and the coating amount are evaluated while the sample is immersed in a borate buffer.
  • a coating layer irradiated with radiation is provided on the surface of the low hydrous soft ophthalmic lens, it has good water wettability and easy slip even after the above-described scrubbing treatment.
  • the scrubbing method is determined in consideration of an assumed method of using a contact lens.
  • the coating layer of the low hydrous soft ophthalmic lens of the present invention is formed by treating the surface of the substrate with a hydrophilic polymer solution (“solution” means an aqueous solution) described in detail below.
  • solution means an aqueous solution
  • the aqueous solution is a solution containing water as a main component.
  • the hydrophilic polymer solution of the present invention is usually one type (one type means a group of polymers produced by one synthesis reaction. Even with one type (same) polymer, solutions having different concentrations are used. It is not regarded as one type, and even if the constituent monomer types are the same, the polymer synthesized by changing the compounding ratio is not one type).
  • the coating layer is preferably composed of one or more kinds of acidic polymers and one or more kinds of basic polymers. It is more preferable to use two or more kinds of acidic polymers or two or more kinds of basic polymers because properties such as slipperiness and antifouling properties are easily developed on the ophthalmic lens surface. In particular, when two or more kinds of acidic polymers and one or more kinds of basic polymers are used, the tendency becomes stronger, which is more preferable.
  • the coating layer is preferably formed by performing treatment with one or more acidic polymer solutions one or more times and treatment with one or more basic polymer solutions one or more times.
  • the coating layer is preferably treated 1 to 5 times, more preferably 1 to 3 times, and still more preferably 1 each of the treatment with one or more acidic polymer solutions and the treatment with one or more basic polymer solutions. Formed on the surface of the substrate by performing twice. The number of treatments with the acidic polymer solution and the number of treatments with the basic polymer solution may be different.
  • the total of the treatment with the acidic polymer solution and the treatment with the basic polymer solution is preferably 2 or 3 times.
  • the coating layer according to the low hydrous soft ophthalmic lens of the present invention is preferably subjected to treatment with two types of acidic polymer solutions once and treatment with a basic polymer solution once.
  • the inventors have also confirmed that, when the coating layer is only treated with either one of the acidic polymer solution or the basic polymer solution, almost no expression of wettability or slipperiness is observed.
  • the basic polymer a homopolymer or copolymer having a plurality of basic groups along the polymer chain can be suitably used.
  • the basic group an amino group and a salt thereof are preferable.
  • suitable examples of such basic polymers include poly (allylamine), poly (vinylamine), poly (ethyleneimine), poly (vinylbenzyltrimethylamine), polyaniline, poly (aminostyrene), poly (N, N Amino group-containing (meth) acrylate polymers such as -dialkylaminoethyl methacrylate), amino group-containing (meth) acrylamide polymers such as poly (N, N-dimethylaminopropylacrylamide), and salts thereof.
  • copolymers that is, a copolymer of basic monomers constituting the above basic polymer, or a copolymer of a basic monomer and another monomer
  • these copolymers are also preferably used. be able to.
  • the basic monomer constituting the copolymer is preferably a monomer having an allyl group, a vinyl group, and a (meth) acryloyl group in terms of high polymerizability. Most preferred are monomers having a (meth) acryloyl group.
  • suitable basic monomers constituting the copolymer include allylamine, vinylamine (N-vinylcarboxylic acid amide as a precursor), vinylbenzyltrimethylamine, amino group-containing styrene, amino group-containing (meth) acrylate. Amino group-containing (meth) acrylamide, and salts thereof.
  • amino group-containing (meth) acrylates amino group-containing (meth) acrylamides, and salts thereof are more preferable because of their high polymerizability.
  • N, N-dimethylaminoethyl methacrylate, N, N-dimethylaminopropylacrylamide And their salts are most preferred.
  • the basic polymer may be a polymer having a quaternary ammonium structure.
  • the polymer compound having a quaternary ammonium structure when used for coating a soft ophthalmic lens, it can impart antimicrobial properties to the soft ophthalmic lens.
  • the acidic polymer a homopolymer or copolymer having a plurality of acidic groups along the polymer chain can be suitably used.
  • the group having acidity a carboxyl group, a sulfonic acid group, and a salt thereof are preferable, and a carboxyl group and a salt thereof are most preferable.
  • suitable examples of such acidic polymers include polymethacrylic acid, polyacrylic acid, poly (vinyl benzoic acid), poly (thiophene-3-acetic acid), poly (4-styrene sulfonic acid), polyvinyl sulfonic acid, Poly (2-acrylamido-2-methylpropanesulfonic acid) and salts thereof.
  • these copolymers that is, copolymers of acidic monomers constituting the acidic polymer, or copolymers of acidic monomers and other monomers
  • these copolymers that is, copolymers of acidic monomers constituting the acidic polymer, or copolymers of
  • the acidic monomer constituting the copolymer is preferably a monomer having an allyl group, a vinyl group, and a (meth) acryloyl group in terms of high polymerizability.
  • Monomers having an acryloyl group are most preferred.
  • suitable acidic monomers constituting the copolymer include (meth) acrylic acid, vinyl benzoic acid, styrene sulfonic acid, vinyl sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, and these It is salt. Of these, (meth) acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, and salts thereof are more preferable, and (meth) acrylic acid and salts thereof are most preferable.
  • At least one of the basic polymer and the acidic polymer is a polymer having a group selected from an amide group and a hydroxyl group.
  • the basic polymer and / or the acidic polymer has an amide group, it is preferable because a surface having not only wettability but also slipperiness can be formed.
  • the basic polymer and / or the acidic polymer has a hydroxyl group, it is preferable because a surface excellent not only in wettability but also in antifouling property against tears can be formed.
  • the acidic polymer and the basic polymer are polymers having a group selected from a hydroxyl group and an amide group. That is, it is preferable that the low hydrous soft ophthalmic lens includes two or more selected from an acidic polymer having a hydroxyl group, a basic polymer having a hydroxyl group, an acidic polymer having an amide group, and a basic polymer having an amide group. . In this case, it is preferable because the effect of forming a slippery surface or the effect of forming a surface excellent in antifouling property against tears can be more remarkably exhibited.
  • the coating layer contains at least one selected from an acidic polymer having a hydroxyl group and a basic polymer having a hydroxyl group, and at least one selected from an acidic polymer having an amide group and a basic polymer having an amide group. More preferably. In this case, it is preferable because both the effect of forming a slippery surface and the effect of forming a surface excellent in antifouling property against tears can be exhibited.
  • Examples of the basic polymer having an amide group include polyamides having an amino group, partially hydrolyzed chitosan, and a copolymer of a basic monomer and a monomer having an amide group.
  • Examples of the acidic polymer having an amide group include a polyamide having a carboxyl group and a copolymer of an acidic monomer and a monomer having an amide group.
  • Examples of the basic polymer having a hydroxyl group include an aminopolysaccharide such as chitin, a copolymer of a basic monomer and a monomer having a hydroxyl group, and the like.
  • Examples of the acidic polymer having a hydroxyl group include polysaccharides having acidic groups such as hyaluronic acid, chondroitin sulfate, carboxymethylcellulose, and carboxypropylcellulose, and copolymers of acidic monomers and monomers having amide groups.
  • a monomer having an amide group a monomer having a (meth) acrylamide group and N-vinylcarboxylic acid amide (including cyclic ones) are preferable from the viewpoint of ease of polymerization.
  • Preferable examples of such monomers include N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylacetamide, N-methyl-N-vinylacetamide, N-vinylformamide, N, N-dimethylacrylamide, N, N-diethyl Mention may be made of acrylamide, N-isopropylacrylamide, N- (2-hydroxyethyl) acrylamide, acryloylmorpholine, and acrylamide. Among these, N-vinylpyrrolidone and N, N-dimethylacrylamide are preferable from the viewpoint of slipperiness, and N, N-dimethylacrylamide is most preferable.
  • the monomer having a hydroxyl group examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxyethyl (meth) acrylamide, glycerol (meth) acrylate, caprolactone-modified 2-hydroxy
  • examples thereof include ethyl (meth) acrylate, N- (4-hydroxyphenyl) maleimide, hydroxystyrene, and vinyl alcohol (a carboxylic acid vinyl ester as a precursor).
  • a monomer having a (meth) acryloyl group is preferable from the viewpoint of ease of polymerization, and a (meth) acrylic acid ester monomer is more preferable.
  • hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and glycerol (meth) acrylate are preferred in terms of antifouling properties against tears, and hydroxyethyl (meth) acrylate is the most preferred. preferable.
  • Preferred examples of the copolymer of the basic monomer and the monomer having an amide group include N, N-dimethylaminoethyl methacrylate / N-vinylpyrrolidone copolymer, N, N-dimethylaminoethyl methacrylate / N, N-dimethyl.
  • Most preferred is N, N-dimethylaminopropylacrylamide / N, N-dimethylacrylamide copolymer.
  • the copolymer of the acidic monomer and the monomer having an amide group include (meth) acrylic acid / N-vinylpyrrolidone copolymer, (meth) acrylic acid / N, N-dimethylacrylamide copolymer, 2- Acrylamide-2-methylpropanesulfonic acid / N-vinylpyrrolidone copolymer and 2-acrylamido-2-methylpropanesulfonic acid / N, N-dimethylacrylamide copolymer. Most preferred is a (meth) acrylic acid / N, N-dimethylacrylamide copolymer.
  • the copolymer of the basic monomer and the monomer having a hydroxyl group include N, N-dimethylaminoethyl methacrylate / hydroxyethyl (meth) acrylate copolymer, N, N-dimethylaminoethyl methacrylate / glycerol (meth).
  • Acrylate copolymers N, N-dimethylaminopropylacrylamide / hydroxyethyl (meth) acrylate, and N, N-dimethylaminopropylacrylamide / glycerol (meth) acrylate copolymers.
  • Most preferred is N, N-dimethylaminoethyl methacrylate / hydroxyethyl (meth) acrylate copolymer.
  • the copolymer of the acidic monomer and the monomer having a hydroxyl group include (meth) acrylic acid / hydroxyethyl (meth) acrylate copolymer, (meth) acrylic acid / glycerol (meth) acrylate copolymer, 2- Acrylamide-2-methylpropanesulfonic acid / hydroxyethyl (meth) acrylate copolymer and 2-acrylamido-2-methylpropanesulfonic acid / glycerol (meth) acrylate copolymer. Most preferred is a (meth) acrylic acid / hydroxyethyl (meth) acrylate copolymer.
  • the copolymerization ratio is [mass of basic monomer or acidic monomer] / [mass of other monomer] of 1/99 to 99 / 1 is preferable, 2/98 to 90/10 is more preferable, and 10/90 to 80/20 is still more preferable.
  • the copolymerization ratio is within this range, functions such as easy slipperiness and antifouling property against tears are easily developed.
  • the molecular weight of the acidic polymer and the basic polymer can be changed to change various properties of the coating layer, such as thickness. Specifically, increasing the molecular weight generally increases the thickness of the coating layer. However, if the molecular weight is too large, handling may increase due to increased viscosity. Therefore, the acidic polymer and basic polymer used in the present invention preferably have a molecular weight of 2000 to 150,000. More preferably, the molecular weight is 5000 to 100,000, and even more preferably 75,000 to 100,000.
  • the molecular weight of the acidic polymer and the basic polymer is a mass average molecular weight in terms of polyethylene glycol measured by a gel permeation chromatography method (aqueous solvent).
  • coating layer can be accomplished in a number of ways, as described, for example, in WO 99/35520, WO 01/57118 or US Patent Publication No. 2001-0045676.
  • one or more acidic polymer solutions and one or more basic polymer solutions are preferably applied 1 to 5 times each on the surface of a lens-shaped molded body (base material). Are each applied 1 to 3 times, more preferably 1 to 2 times to form a coating layer, and the coating layer is further irradiated with radiation (preferably ⁇ rays).
  • the number of application steps of the acidic polymer solution and the application step of the basic polymer solution may be different.
  • the application step of one or more acidic polymer solutions and the application step of one or more basic polymer solutions are a total of 2 or 3 times. It has been found that excellent wettability and slipperiness can be imparted with a very small number of times. This is very important industrially from the viewpoint of shortening the manufacturing process. In that sense, the total of the application step of the acidic polymer solution and the application step of the basic polymer solution is preferably twice or three times.
  • the coating layer is preferably applied in a configuration selected from the following configurations 1 to 4.
  • the following notation indicates that each coating process is performed on the surface of the molded body in order from the left.
  • Configuration 1 Application of basic polymer solution / Application of acidic polymer solution
  • Configuration 2 Application of acidic polymer solution / Application of basic polymer solution
  • Configuration 3 Application of basic polymer solution / Application of acidic polymer solution /
  • Basic polymer solution Coating 4 Application of acidic polymer solution / Application of basic polymer solution / Application of acidic polymer solution Among these configurations, the low water content soft ophthalmic lens obtained in the above configurations 1 and 4 is particularly excellent in wetting. It is more preferable to show the property.
  • the surface of the substrate may be untreated or treated.
  • that the surface of the substrate has been treated means that the surface of the substrate is subjected to surface treatment or surface modification by a known method.
  • Suitable examples of the surface treatment or surface modification include plasma treatment, chemical modification, chemical functionalization, and plasma coating.
  • One preferred embodiment of the method for producing a low hydrous soft ophthalmic lens of the present invention includes the following steps 1 to 4 in this order.
  • ⁇ Step 1> A step of polymerizing a mixture of monomers to obtain a low hydrous soft lens-shaped molding.
  • ⁇ Step 2> A step of washing and removing excess basic polymer solution after bringing the molded body into contact with the basic polymer solution.
  • ⁇ Step 3> A step of washing and removing excess acidic polymer solution after bringing the molded body into contact with the acidic polymer solution.
  • ⁇ Step 4> A process of irradiating the molded body with radiation.
  • a layer composed of the acidic polymer and the basic polymer can be formed on the molded body. Thereafter, it is preferable to sufficiently wash away excess polymer.
  • various coating methods such as a dipping method (dip method), a brush coating method, a spray coating method, a spin coating method, a die coating method, and a squeegee method can be used. Applicable.
  • the immersion time can be changed according to many factors.
  • the immersion of the shaped body in the acidic polymer solution or the basic polymer solution is preferably performed for 1 to 30 minutes, more preferably 2 to 20 minutes, and most preferably 1 to 5 minutes.
  • the concentration of the acidic polymer solution and the basic polymer solution can be varied depending on the nature of the acidic polymer or basic polymer, the desired coating layer thickness, and many other factors.
  • the concentration of the preferred acidic polymer or basic polymer is 0.001 to 10% by mass, more preferably 0.005 to 5% by mass, still more preferably 0.01 to 3% by mass, and most preferably 0.7 to 1%. 3% by mass.
  • the pH of the acidic polymer solution and the basic polymer solution is preferably 2 to 5, more preferably 2.5 to 4.5.
  • the washing and removal of excess acidic polymer and basic polymer is generally performed by rinsing the molded body after coating with clean water or an organic solvent.
  • the rinsing is preferably performed by immersing the molded body in water or an organic solvent, or by exposing it to a water flow or an organic solvent flow. Although rinsing may be completed in one step, it has been found that it is more efficient to perform the rinsing step multiple times.
  • Rinsing is preferably performed in steps 2-5. It is preferred to spend 1-3 minutes for each immersion in the rinse solution.
  • Pure water is also preferred as the rinsing solution, but is preferably buffered to a pH of 2-7, more preferably 2-5, and even more preferably 2.5-4.5 to increase the adhesion of the coating layer.
  • An aqueous solution is also preferably used.
  • a step of drying or removing the excess rinsing solution may be included.
  • the molded body can be dried to some extent by simply leaving the molded body in an air atmosphere, but it is preferable to enhance drying by sending a gentle air flow to the surface.
  • the flow rate of the air flow can be adjusted as a function of the strength of the material to be dried and the mechanical fixing of the material. It is not necessary to dry the molded body completely. Here, rather than drying the molded body, it is important to remove droplets of the solution adhered to the surface of the molded body. Therefore, it is only necessary to dry to the extent that the film of water or solution on the surface of the molded body is removed, which is preferable because the process time can be shortened.
  • the acidic polymer and the basic polymer are preferably applied alternately. By alternately applying, it is possible to obtain a low hydrous soft ophthalmic lens having excellent wettability and slipperiness that cannot be obtained by only one of them, and also excellent wearing feeling.
  • the coating layer can be asymmetric.
  • asymmetric means having a coating layer different between the first surface of the low hydrous soft ophthalmic lens and the second surface opposite to the first surface.
  • the “different coating layer” means that the coating layer formed on the first surface and the coating layer formed on the second surface have different surface characteristics or functionality.
  • the thickness of the coating layer can be adjusted by adding one or more salts such as sodium chloride to the acidic polymer solution or the basic polymer solution.
  • a preferable salt concentration is 0.1 to 2.0% by mass. As the salt concentration increases, the polyelectrolyte takes a more spherical conformation. However, if the concentration is too high, the polymer electrolyte does not deposit well even if it is deposited on the surface of the molded body. A more preferable salt concentration is 0.7 to 1.3% by mass.
  • the irradiation of radiation may be performed in a state where the molded body is immersed in the coating liquid, or may be performed after the molded body is drawn out of the coating liquid and washed. Moreover, it is also preferable to perform radiation irradiation in a state where the molded body is immersed in a liquid other than the coating liquid. In this case, it is preferable because the irradiation rays act more efficiently.
  • the solvent for the liquid used for immersing the coated molded body is applicable to various organic and inorganic solvents and is not particularly limited.
  • Examples include water, methanol, ethanol, propanol, 2-propanol, butanol, tert-butanol, tert-amyl alcohol, various alcohol solvents such as 3,7-dimethyl-3-octanol, benzene, toluene, xylene, etc.
  • water is most preferred.
  • aqueous liquid in addition to pure water, physiological saline, phosphate buffer (preferably pH 7.1 to 7.3).
  • phosphate buffer preferably pH 7.1 to 7.3
  • boric acid buffer solutions preferably pH 7.1 to 7.3
  • the radiation various ion beams, electron beams, positron beams, X-rays, ⁇ rays and neutron beams are preferable, electron beams and ⁇ rays are more preferable, and ⁇ rays are most preferable.
  • the dose is preferably 1 kGy or more, and more preferably 5 kGy or more.
  • the dose is preferably 25 kGy or less.
  • the low hydrous soft ophthalmic lens of the present invention is useful as an ophthalmic lens such as a low hydrous soft contact lens, an intraocular lens, an artificial cornea, a corneal inlay, a corneal onlay, and an eyeglass lens. Among them, it is particularly suitable for a low water content soft contact lens.
  • Coating amount evaluation The coating amount was evaluated using X-ray photoelectron spectroscopy (XPS). The measurement was performed under the following conditions. Device: ESCALAB220iXL Excitation X-ray: monochromatic Al K ⁇ 1,2 line (1486.6 eV) X-ray diameter: 1mm Photoelectron escape angle: 90 ° (inclination of detector with respect to sample surface) Sample measurement location: near the center of the contact lens Obtain element information on the material surface (several nm) from the binding energy value of bound electrons in the material, and the ratio of the silicon element content to the nitrogen element content (N / Si element content ratio) )
  • the monomer concentration was 20% by mass.
  • the inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours.
  • the solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours.
  • the ethyl acetate layer was transferred to a 100 mL eggplant flask and evaporated with a 20 ° C. evaporator. Then, it dried at 40 degreeC and 16 hours with the vacuum dryer, and obtained acid type UniBlue A [presumed structural formula (M1)].
  • the monomer mixture was obtained by filtering with a membrane filter (0.45 ⁇ m) to remove insoluble matters.
  • This monomer mixture was put into a test tube, deaerated while being stirred with a touch mixer at a reduced pressure of 20 Torr (27 hPa), and then returned to atmospheric pressure with argon gas. This operation was repeated three times. Inject a monomer mixture into a contact lens mold made of transparent resin (base curve side polypropylene, front curve side ZEONOR) in a nitrogen atmosphere glove box, and use fluorescent lamps (Toshiba, FL-6D, daylight color, 6W, 4) And polymerized by light irradiation (1.01 mW / cm 2 , 20 minutes).
  • the entire mold was immersed in a 60% by mass isopropyl alcohol aqueous solution, and the contact lens-shaped molded body was peeled from the mold.
  • the molded product thus obtained was immersed in a large excess of 80% by mass isopropyl alcohol aqueous solution at 60 ° C. for 2 hours. Further, the molded body was immersed in a large excess amount of 50% by mass isopropyl alcohol aqueous solution at room temperature (25 ° C.) for 30 minutes, and then immersed in a large excess amount of 25% by mass isopropyl alcohol aqueous solution at room temperature (same as above) for 30 minutes. Next, it was immersed in a large excess of pure water for 2 hours or more at room temperature (same as above).
  • the diameter of the edge part of the obtained lens was about 14 mm, and the thickness of the center part was about 0.07 mm.
  • Component A is polydimethylsiloxane having methacryloyl groups at both ends (FM7726, JNC, compound of the above formula (M2), mass average molecular weight 29 kD, number average molecular weight 26 kD) (40 parts by mass), and component B is trifluoroethyl acrylate ( Biscoat 3F, Osaka Organic Chemical Industry (45 parts by mass), Component C as 2-ethylhexyl acrylate (3 parts by mass), Component C as dimethylaminoethyl acrylate (1 part by mass), Component C as an ultraviolet absorber having a polymerizable group Agent (RUVA-93, Otsuka Chemical) (1 part by mass), as component C, acid type Uniblue A (0.04 part by mass) of Reference Example 1, polymerization initiator “Irgacure” (registered trademark) 819 (Ciba Specialty) Chemicals, 0.75 parts by mass) and t-amyl alcohol (10 parts
  • the monomer mixture was obtained by filtering with a membrane filter (0.45 ⁇ m) to remove insoluble matters. This monomer mixture was put into a test tube, deaerated while being stirred with a touch mixer at a reduced pressure of 20 Torr (27 hPa), and then returned to atmospheric pressure with argon gas. This operation was repeated three times. Inject a monomer mixture into a contact lens mold made of transparent resin (base curve side polypropylene, front curve side ZEONOR) in a nitrogen atmosphere glove box, and use fluorescent lamps (Toshiba, FL-6D, daylight color, 6W, 4) And polymerized by light irradiation (1.01 mW / cm 2 , 20 minutes).
  • the entire mold was immersed in a 60% by mass isopropyl alcohol aqueous solution, and the contact lens-shaped molded body was peeled from the mold.
  • the molded product thus obtained was immersed in a large excess of 80% by mass isopropyl alcohol aqueous solution at 60 ° C. for 2 hours. Further, the molded body was immersed in a large excess amount of 50% by mass isopropyl alcohol aqueous solution at room temperature (23 ° C.) for 30 minutes, and then immersed in a large excess amount of 25% by mass isopropyl alcohol aqueous solution at room temperature (same as above) for 30 minutes. Next, it was immersed in a large excess of pure water for 2 hours or more at room temperature (same as above).
  • the diameter of the edge part of the obtained lens was about 14 mm, and the thickness of the center part was about 0.07 mm.
  • Example 1 The molded body obtained in Reference Example 3 was immersed in a PAA solution at room temperature (25 ° C.) for 30 minutes, and then lightly rinsed with pure water in a beaker. The molded body was transferred to a beaker containing new pure water and put on an ultrasonic cleaner (30 seconds). Furthermore, it was rinsed lightly in a beaker containing fresh pure water. Subsequently, the same operation was repeated in the order of the PEI solution and the p (DMAA / AA) solution. After finishing the coating operation, the molded body coated in a borate buffer in a sealed vial was immersed and irradiated with ⁇ rays. The gamma ray dose was 35 kGy. The evaluation results are shown in Table 1.
  • Example 2 The molded body obtained in Reference Example 3 was immersed in a PAA solution at room temperature (25 ° C.) for 30 minutes, and then lightly rinsed with pure water in a beaker. The molded body was transferred to a beaker containing new pure water and put on an ultrasonic cleaner (30 seconds). Furthermore, it was rinsed lightly in a beaker containing fresh pure water. Subsequently, the same operation was repeated in the order of the PEI solution and the PAA solution. After finishing the coating operation, the molded body coated in a borate buffer in a sealed vial was immersed and irradiated with ⁇ rays. The gamma ray dose was 35 kGy. The evaluation results are shown in Table 1.
  • Example 3 The molded body obtained in Reference Example 4 was immersed in a PAA solution at room temperature (25 ° C.) for 30 minutes, and then lightly rinsed with pure water in a beaker. The molded body was transferred to a beaker containing new pure water and put on an ultrasonic cleaner (30 seconds). Furthermore, it was rinsed lightly in a beaker containing fresh pure water. Subsequently, the same operation was repeated in the order of the PEI solution and the p (DMAA / AA) solution. After finishing the coating operation, the molded body coated in a borate buffer in a sealed vial was immersed and irradiated with ⁇ rays. The gamma ray dose was 35 kGy. The evaluation results are shown in Table 1.
  • Example 4 The molded body obtained in Reference Example 4 was immersed in a PAA solution at room temperature (25 ° C.) for 30 minutes, and then lightly rinsed with pure water in a beaker. The molded body was transferred to a beaker containing new pure water and put on an ultrasonic cleaner (30 seconds). Furthermore, it was rinsed lightly in a beaker containing fresh pure water. Subsequently, the same operation was repeated in the order of the PEI solution and the PAA solution. After finishing the coating operation, the molded body coated in a borate buffer in a sealed vial was immersed and irradiated with ⁇ rays. The gamma ray dose was 35 kGy. The evaluation results are shown in Table 1.
  • Comparative Example 4 A commercially available soft contact lens “O 2 OPTIX” (registered trademark) (manufactured by CIBA Vision) was lightly rinsed with pure water in a beaker. Next, the sample was transferred to a beaker containing fresh pure water and subjected to an ultrasonic cleaner (30 seconds). Furthermore, it was rinsed lightly in a beaker containing fresh pure water. The evaluation results are shown in Table 1.
  • Example 5 The molded body obtained in Reference Example 7 was immersed in a PAA solution at room temperature (23 ° C.) for 30 minutes, and then lightly rinsed with pure water in a beaker. The molded body was transferred to a beaker containing new pure water and put on an ultrasonic cleaner (30 seconds). Furthermore, it was rinsed lightly in a beaker containing fresh pure water. Subsequently, the same operation was repeated in the order of the PEI solution and the p (DMAA / AA) solution. After finishing the coating operation, the coated molded body was put in a closed vial and irradiated with 25 kGy of ⁇ rays. Using this molded body, the coating amount, water content, contact angle, water wettability, and slipperiness were evaluated. The evaluation results are shown in Table 2.
  • the symbol X in Table 2 indicates the N / Si element content ratio on the lens surface before coating
  • the symbol Y indicates the N / Si element content ratio on the lens surface before scrubbing the product after coating.
  • Symbol Z indicates the N / Si element content ratio on the lens surface after the coated product has been scrubbed.
  • Example 6 The molded body obtained in Reference Example 7 was immersed in a PAA solution at room temperature (23 ° C.) for 30 minutes, and then lightly rinsed with pure water in a beaker. The molded body was transferred to a beaker containing new pure water and put on an ultrasonic cleaner (30 seconds). Furthermore, it was rinsed lightly in a beaker containing fresh pure water. Subsequently, the same operation was repeated in the order of the PEI solution and the p (DMAA / AA) solution. After finishing the coating operation, the coated molded body was put in a closed vial and irradiated with 10 kGy of ⁇ rays.
  • Example 7 A depression was made in the center of the palm, the molded body obtained in Example 5 was placed, and rubbed 100 times on the front and back with the index finger of the other hand while flowing water. Using this molded body, the coating amount, water content, contact angle, water wettability, and slipperiness were evaluated. The evaluation results are shown in Table 2.
  • Example 8 A molded body was prepared in the same manner as in Example 5 except that the radiation applied to the molded body after coating was changed to 1 kGy ⁇ -ray, and the scrubbing treatment was performed in the same manner as in Example 7 to evaluate the coating amount. went. The evaluation results are shown in Table 2.
  • Example 9 A molded body was prepared in the same manner as in Example 5 except that the radiation applied to the molded body after coating was changed to an electron beam of 1 kGy, and the scrubbing treatment was performed in the same manner as in Example 7 to evaluate the coating amount. went. The evaluation results are shown in Table 2.
  • Example 10 A molded body was prepared in the same manner as in Example 5 except that the radiation applied to the molded body after coating was changed to a 10 kGy electron beam, and the scrubbing treatment was performed in the same manner as in Example 7 to evaluate the coating amount. went. The evaluation results are shown in Table 2.
  • Example 11 A molded body was prepared in the same manner as in Example 5, except that the radiation applied to the molded body after coating was changed to an electron beam of 40 kGy, and the scrubbing treatment was performed in the same manner as in Example 7 to evaluate the coating amount. went. The evaluation results are shown in Table 2.
  • Example 8 A molded body was prepared in the same manner as in Example 5 except that the radiation irradiated to the molded body after coating was changed to 0.3 kGy ⁇ -rays. Evaluation was performed. The evaluation results are shown in Table 2.
  • Example 9 A molded body was prepared in the same manner as in Example 5 except that the radiation applied to the molded body after coating was changed to 40 kGy ⁇ rays, and the scrubbing treatment was performed in the same manner as in Example 7 to evaluate the coating amount. went. The evaluation results are shown in Table 2.
  • Example 10 A molded body was prepared in the same manner as in Example 5 except that the radiation irradiated to the molded body after coating was changed to 50 kGy ⁇ -rays. The contact angle, water wettability, and slipperiness were evaluated. The evaluation results are shown in Table 2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Manufacturing & Machinery (AREA)
  • Epidemiology (AREA)
  • Mechanical Engineering (AREA)
  • Dermatology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Surgery (AREA)
  • Eyeglasses (AREA)
  • Materials For Medical Uses (AREA)
  • Dispersion Chemistry (AREA)

Abstract

 装用時にレンズが角膜に貼り付く現象を大幅に低減ないし回避することができると共に、低含水性軟質眼用レンズを擦り洗いした際のコーティング層の性能低下を抑制することができる低含水性軟質眼用レンズおよびその製造方法を提供する。低含水性軟質眼用レンズは、ポリシロキサン化合物を含む基材の表面の少なくとも一部に、親水性ポリマーからなる層を有し、該層内の少なくとも一部が架橋されている。

Description

低含水性軟質眼用レンズおよびその製造方法
 本発明は、低含水性軟質眼用レンズおよびその製造方法に関する。
 市販の軟質眼用レンズの代表例としてソフトコンタクトレンズがある。市販のソフトコンタクトレンズには25%程度~80%程度の含水率を有するハイドロゲル素材が一般的に用いられている。しかしながら、ハイドロゲル素材からなる含水性ソフトコンタクトレンズは、水を含んでいるためにコンタクトレンズから水が蒸発する現象が生じる。これにより、ある一定割合のコンタクトレンズ装用者は裸眼のときよりも強い乾燥感をおぼえ、不快と感じる場合があった。中にはコンタクトレンズドライアイといわれる症状を訴える者も存在した。また、ハイドロゲル素材からなる含水性ソフトコンタクトレンズは、涙液中の成分によって汚染されやすく、しかも多量の水を含んでいることから細菌繁殖のリスクもあった。
 一方、高酸素透過性の低含水性ソフトコンタクトレンズとしては、例えば分子鎖両末端がビニルメチルシリル基で封鎖されたポリジメチルシロキサンとメチルハイドロジェンポリシロキサンとの混合物に白金系の触媒を加え、モールディング法で加熱硬化させる方法で得られるシリコーンラバーレンズが知られている(特許文献1参照)。
 また、複数の重合性官能基を有するポリシロキサンを主体とした酸素透過性の高いコンタクトレンズ材料も特許文献2~6等に記載されている。このうち、特許文献6には、2官能性有機シロキサンマクロマー単独で、または他のモノマーと共重合させて得られる重合体からなるコンタクトレンズ材料が開示されており、共重合に用いられるモノマーとしてはアクリル酸フルオロアルキルエステルまたはメタクリル酸フルオロアルキルエステル、およびアクリル酸アルキルエステルまたはメタクリル酸アルキルエステルが開示されている。
 しかしながら、従来の高酸素透過性の低含水性ソフトコンタクトレンズにも次のような問題点が見られた。まずシリコーンラバーレンズについては、レンズ表面の疎水性を改善するために施した親水化処理層が剥離したり、弾力性が大きすぎるために角膜への固着が起こるなどの欠点があって、広く実用化されるまでには到らなかった。
 また、複数の重合性官能基を有するポリシロキサンを主体とする材料は、酸素透過性が高く、柔軟性も持ち合わせており、コンタクトレンズに適する材料の1つと考えられる。しかしながら、重合後のレンズ表面に粘着性が残るために角膜に固着する懸念があり、またレンズの柔軟性と耐折り曲げ性などの機械物性のバランスが不十分であった。
 軟質眼用レンズの表面を改質する方法に関しては、種々知られているが、その中で二種類以上のポリマー材料の層を1層ずつコーティングして積層する方法が知られている(例えば、特許文献7~9を参照)。中でも二つの反対の荷電を有するポリマー材料を1層ずつ交互にコーティングする方法は、LbL法などと呼ばれ、材料の各々の層が、異なる材料の他の層と非共有結合的に結合されると考えられている。しかしながら、この方法の有用性が明示されている高酸素透過性軟質眼用レンズは、シリコーンハイドロゲル素材のものだけであり、低含水性軟質眼用レンズに対する有用性は知られていなかった。また従来のLbLコーティングは4層~20層程度といった多層で行われており、製造工程が長くなり製造コストの増大を招くおそれがあった。
 また、眼用レンズ表面の別の改質方法に関して、特許文献10には、レンズに特定のエチレンオキサイド誘導体を接触させた状態で放射線照射して、レンズ表面に固定化することが開示されている。また、特許文献11には、眼用レンズを、水溶性過酸化物を含有する親水性化合物溶液中に浸漬してグラフト重合することが開示されている。さらに、特許文献12には、ハイドロゲル基材を高分子化合物の溶液中に浸漬し、γ線を照射することが開示されている。
 しかしながら、これらの特許文献10~12のいずれにも、装用時に角膜に貼り付く現象を低減又は回避するための表面処理については、一切開示されていない。
 一方、特許文献13には、軟質眼用レンズ基材の表面の少なくとも一部に、酸性ポリマーおよび塩基性ポリマーからなる層(以下コーティング層)を形成することにより、装用時に角膜に貼り付く現象を大幅に低減ないし回避することができ、且つ、簡便なプロセスで安価に製造することができる軟質眼用レンズの製造方法が開示されている。
 しかしながら、2週間装用や1ヶ月装用の使い捨て眼用レンズの場合、装用中や眼用レンズの擦り洗い中に、上記コーティング層の性能が低下する可能性があり、改善が必要とされていた。
特開昭54-81363号公報 特開昭54-24047号公報 特開昭56-51715号公報 特開昭59-229524号公報 特開平2-188717号公報 特開平5-5861号公報 特表2002-501211号公報 特表2005-538418号公報 特表2009-540369号公報 特開2005-309228号公報 特開2000-10055号公報 特開2008-122937号公報 国際公開第2011/102356号
 本発明は、上記に鑑みてなされたものであって、装用時にレンズが角膜に貼り付く現象を大幅に低減ないし回避することができると共に、擦り洗いした際のコーティング層の性能低下を抑制することができる低含水性軟質眼用レンズおよびその製造方法を提供することを目的とする。また、本発明は、そのような低含水性軟質眼用レンズを簡便なプロセスで安価に製造することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は下記の構成を有する。
 本発明に係る低含水性軟質眼用レンズは、基材を含む低含水性軟質眼用レンズであって、該基材の表面の少なくとも一部に、親水性ポリマーからなる層が形成され、少なくとも該層内の一部が架橋されていることを特徴とする。
 また、本発明に係る低含水性軟質眼用レンズは、レンズ形状をなす珪素含有基材と、前記珪素含有基材に対してコーティングを施すことにより、前記珪素含有基材の表面の少なくとも一部に形成された親水性ポリマーからなる層と、を備え、前記親水性ポリマーは、窒素原子を含有し、且つ珪素原子を含有せず、前記コーティング前のレンズ表面における前記珪素原子の含有率に対する窒素原子の含有率の割合であるN/Si元素含有比をXとし、前記コーティングの後、擦り洗い前のレンズ表面における前記N/Si元素含有比をYとし、さらに擦り洗いした後のレンズ表面における前記N/Si元素含有比をZとしたとき、Y-X≧0.05、且つ、Z-X≧0.04を満たすことが好ましい。
 なお、前記Xは「前記基材のコーティングが施されていない部分における珪素原子の含有率に対する窒素原子の含有率の割合であるN/Si元素含有比」と同義である。
 また、本発明に係る低含水性軟質眼用レンズは、レンズ形状をなす珪素含有基材と、前記珪素含有基材の表面の少なくとも一部に形成された親水性ポリマーからなる層と、を備え、前記親水性ポリマーは、窒素原子を含有し、且つ珪素原子を含有せず、擦り洗い前のレンズ表面における前記珪素原子の含有率に対する窒素原子の含有率の割合であるN/Si元素含有比をYとし、擦り洗い後のレンズ表面における前記N/Si元素含有比をZとしたとき、Y-Z≦0.05を満たす、ことが好ましい。
 上記低含水性軟質眼用レンズにおいて、前記親水性ポリマーが、酸性ポリマーおよび/または塩基性ポリマーであることが好ましい。
 上記低含水性軟質眼用レンズにおいて、前記基材と前記層との間で少なくとも一部が架橋されていることが好ましい。
 上記低含水性軟質眼用レンズにおいて、前記層内の一部は、前記基材に少なくとも前記酸性ポリマーおよび/または前記塩基性ポリマーを付着させた状態で放射線を照射することにより架橋されていることが好ましい。
 上記低含水性軟質眼用レンズにおいて、前記基材が、下記成分Aの重合体、または下記成分Aおよび成分Bとの共重合体を主成分とすることを特徴とする;成分A:1分子あたり複数の重合性官能基を有し、数平均分子量が6000以上のポリシロキサン化合物;成分B:フルオロアルキル基を有する重合性モノマー。
 上記低含水性軟質眼用レンズにおいて、前記層が、酸性ポリマー溶液による処理を1回または2回、および塩基性ポリマー溶液による処理を1回または2回、合計で3回処理を行うことにより形成されていることが好ましい。
 上記低含水性軟質眼用レンズにおいて、前記層が、2種の酸性ポリマー溶液による処理を2回および塩基性ポリマー溶液による処理を1回行うことにより形成されていることが好ましい。
 上記低含水性軟質眼用レンズにおいて、前記層を形成する少なくとも1種の親水性ポリマーが、水酸基およびアミド基から選ばれた基を有するポリマーであることが好ましい。
 本発明に係る低含水性軟質眼用レンズの製造方法は、下記工程1~工程4をこの順に含むことを特徴とする;
<工程1>
 モノマーの混合物を重合して低含水性軟質のレンズ形状の成型体を得る工程;
<工程2>
 成型体を塩基性ポリマー溶液に接触させた後、余剰の該塩基性ポリマー溶液を洗浄除去する工程;
<工程3>
 成型体を酸性ポリマー溶液に接触させた後、余剰の該酸性ポリマー溶液を洗浄除去する工程;
<工程4>
 成型体に放射線を照射する工程。
 本発明に係る低含水性軟質眼用レンズの製造方法は、レンズ形状をなす珪素含有基材に対し、該珪素含有基材の表面の少なくとも一部に、酸性ポリマーおよび塩基性ポリマーからなる層をコーティングにより形成する工程を含み、前記塩基性ポリマーおよび酸性ポリマーの少なくとも1つのポリマーは、窒素原子を含有し、且つ珪素原子を含有せず、前記コーティング前のレンズ表面における前記珪素原子の含有率に対する窒素原子の含有率の割合であるN/Si元素含有比をXとし、前記コーティングの後、擦り洗い前のレンズ表面における前記N/Si元素含有比をYとし、さらに擦り洗いした後のレンズ表面における前記N/Si元素含有比をZとしたとき、Y-X≧0.05、且つ、Z-X≧0.04を満たす、ことが好ましい。
 また、本発明に係る低含水性軟質眼用レンズの製造方法は、レンズ形状をなす珪素含有基材に対し、該珪素含有基材の表面の少なくとも一部に、酸性ポリマーおよび塩基性ポリマーからなる層をコーティングにより形成する工程を含み、前記塩基性ポリマーおよび酸性ポリマーの少なくとも1つのポリマーは、窒素原子を含有し、且つ珪素原子を含有せず、前記コーティング後のレンズ表面における前記珪素原子の含有率に対する窒素原子の含有率の割合であるN/Si元素含有比をYとし、さらに擦り洗いした後のレンズ表面における前記N/Si元素含有比をZとしたとき、Y-Z≦0.05を満たす、ことが好ましい。
 上記低含水性軟質眼用レンズの製造方法において、前記モノマーの混合物が、1分子あたり複数の重合性官能基を有し、数平均分子量が6000以上のポリシロキサン化合物である成分A、および、フルオロアルキル基を有する重合性モノマーである成分Bを含む混合物であることが好ましい。
 上記低含水性軟質眼用レンズの製造方法は、前記コーティングの後、前記層に放射線を照射する工程をさらに含むことが好ましい。
 上記低含水性軟質眼用レンズの製造方法において、前記放射線の照射量が1kGy以上40kGy以下であることが好ましい。
 上記低含水性軟質眼用レンズの製造方法において、前記放射線がγ線または電子線であることが好ましい。
 上記低含水性軟質眼用レンズの製造方法において、前記放射線が、照射量1kGy以上25kGy以下のγ線、または照射量1kGy以上40kGy以下の電子線であることが好ましい。
 本発明の低含水性軟質眼用レンズによれば、従来の低含水性軟質眼用レンズにおいて問題とされていた、装用時に角膜に貼り付く現象を大幅に低減ないし回避することができる。また、本発明の低含水性軟質眼用レンズによれば、低含水であることから細菌の繁殖リスクを低減することができる。また、本発明の好ましい態様によれば、高い酸素透過性を有し、水濡れ性に優れ、柔軟で装用感に優れ、しかも耐折り曲げ性などの機械物性に優れた低含水性軟質眼用レンズを提供することができる。また、本発明の低含水性軟質眼用レンズは簡便なプロセスで安価に製造できるという利点もある。また、本発明の低含水性軟質眼用レンズは、表面の少なくとも一部に、親水性ポリマーからなる層が形成され、少なくとも該層内の一部が架橋されていることから、コーティング層の耐久性が向上する利点がある。
図1は、サンプルのフィルムと人工皮革の間の動摩擦力を測定する装置の模式図である。
 以下に、本発明に係る低含水性軟質眼用レンズおよびその製造方法の実施の形態を説明する。なお、この実施の形態によりこの発明が限定されるものではない。
 本発明の低含水性軟質眼用レンズにおいて、低含水性とは含水率が10質量%以下であることを意味する。また、軟質とは引張弾性率が10MPa以下であることを意味する。
 ここで、含水率は、例えば、コンタクトレンズ形状の試験片の乾燥状態での質量と、ホウ酸緩衝液による湿潤状態の試験片の表面水分を拭き取った際の質量(湿潤状態での質量)とから、[{(湿潤状態での質量)-(乾燥状態での質量)}/湿潤状態での質量](質量%)により与えられる。
 本明細書において、湿潤状態とは、試料を室温(23℃~25℃)の純水あるいはホウ酸緩衝液中に24時間以上浸漬した状態を意味する。湿潤状態での物性値の測定は、試料を純水中あるいはホウ酸緩衝液中から取り出した後、可及的速やかに実施される。
 また、本明細書において、乾燥状態とは、湿潤状態の試料を40℃で16時間真空乾燥した状態を意味する。該真空乾燥における真空度は2hPa以下とする。乾燥状態での物性値の測定は、上記真空乾燥の後、可及的速やかに実施される。
 本明細書においてホウ酸緩衝液とは、特表2004-517163号公報の実施例1中に記載の「塩溶液」である。具体的には塩化ナトリウム8.48g、ホウ酸9.26g、ホウ酸ナトリウム(四ホウ酸ナトリウム十水和物)1.0g、およびエチレンジアミン四酢酸0.10gを純水に溶かして1000mLとした水溶液である。
 本発明の低含水性軟質眼用レンズは、低含水性であることから、装用者の眼の乾燥感が小さく装用感に優れるという特徴を有する。また本発明の低含水性軟質眼用レンズは、低含水性であることから、細菌の繁殖リスクが小さいという利点を有する。含水率は5質量%以下がより好ましく2質量%以下がさらに好ましく、1質量%以下が最も好ましい。含水率が高すぎると、眼用レンズ装用者の眼の乾燥感が大きくなったり、細菌の繁殖リスクが高まるなどするために好ましくない。
 本発明の低含水性軟質眼用レンズの引張弾性率の下限は、0.01MPa以上が好ましく、0.1以上がより好ましい。一方、本発明の低含水性軟質眼用レンズの引張弾性率の上限は、5MPa以下が好ましく、3MPa以下がより好ましく、2MPa以下がさらに好ましく、1MPa以下がよりいっそう好ましく、0.6MPa以下が最も好ましい。引っ張り弾性率が小さすぎると、軟らかすぎてハンドリングが難しくなる傾向がある。一方、引っ張り弾性率が大きすぎると、硬すぎて装用感が悪くなる傾向がある。引っ張り弾性率2MPa以下になると良好な装用感が得られ、1MPa以下になるとさらに良好な装用感が得られるので好ましい。引張弾性率は、ホウ酸緩衝液による湿潤状態の試料にて測定される。
 本発明の低含水性軟質眼用レンズの引張伸度(破断伸度)は100%~1000%が好ましく、200%~700%がより好ましい。引張伸度が小さいと、低含水性軟質眼用レンズが破れやすくなるので好ましくない。引張伸度が大きすぎる場合には、低含水性軟質眼用レンズが変形しやすくなる傾向があり好ましくない。引張伸度は、ホウ酸緩衝液による湿潤状態の試料にて測定される。
 眼用レンズは、動的接触角(前進時、浸漬速度:0.1mm/sec)が100゜以下が好ましく、90゜以下がより好ましく、80゜以下がさらに好ましい。装用者の角膜への貼り付きを防止する観点からは、動的接触角はより低いことが好ましく、65゜以下が好ましく、60゜以下がより好ましく、55゜以下がさらに好ましく、50゜以下が一層好ましく、45゜以下が最も好ましい。動的接触角は、ホウ酸緩衝液による湿潤状態の試料にて、ホウ酸緩衝液に対して測定される。
 また、装用者の角膜への貼り付きを防止する観点からは、眼用レンズの表面の液膜保持時間が長いことが好ましい。ここで、液膜保持時間とは、ホウ酸緩衝液に浸漬した眼用レンズを液から引き上げ、空中に直径方向が垂直になるように保持した際に、眼用レンズ表面の液膜が切れずに保持される時間である。液膜保持時間は、5秒以上が好ましく、10秒以上がさらに好ましく、20秒以上が最も好ましい。ここで、直径とは、眼用レンズの縁部が構成する円の直径である。
 装用者の角膜への貼り付きを防止する観点からは、眼用レンズの表面が優れた易滑性を有することが好ましい。易滑性を表す指標としては、本明細書の実施例に示した方法で測定される摩擦が小さい方が好ましい。摩擦は、60gf(0.59N)以下が好ましく、50gf(0.49N)以下がより好ましく、40gf(0.39N)以下がさらに好ましく、30gf(0.29N)以下が最も好ましい。また、摩擦が極端に小さいと脱着用時の取扱が難しくなる傾向があるので、摩擦は5gf(0.049N)以上、好ましくは10gf(0.098N)以上であることが好ましい。摩擦は、ホウ酸緩衝液による湿潤状態の試料にて測定される。
 眼用レンズの、防汚性は、ムチン付着、脂質(パルミチン酸メチル)付着、および人工涙液浸漬試験により、評価することができる。これらの評価による付着量が少ないものほど、装用感に優れるとともに、細菌繁殖リスクが低減されるために好ましい。ムチン付着量は5μg/cm以下が好ましく、4μg/cm以下がより好ましく、3μg/cm以下が最も好ましい。
 眼用レンズ装用者の眼への大気からの酸素供給の観点から、低含水性軟質眼用レンズは高い酸素透過性を有することが好ましい。酸素透過係数[×10-11(cm/sec)mLO/(mL・hPa)]は50~2000が好ましく、100~1500がより好ましく、200~1000がさらに好ましく、300~700が最も好ましい。酸素透過性を大きくしすぎると機械物性などの他の物性に悪影響が出る場合があり好ましくない。酸素透過係数は、乾燥状態の試料にて測定される。
 本発明の低含水性軟質眼用レンズは、レンズ形状の成型体(以下、基材と呼ぶ)を含み、該基材の表面の少なくとも一部に、親水性ポリマーからなる層が形成された低含水性軟質眼用レンズであり、少なくとも該層内の一部が架橋されている。上記親水性ポリマーは、例えば酸性ポリマーおよび/又は塩基性ポリマーである。
 基材は、高い酸素透過性を有するため、および、表面にコーティングされるポリマーとの間に共有結合を介さずに強固な密着性を得るために、珪素原子を5質量%以上含むことが好ましい。以下、珪素原子を5質量%以上含む基材を珪素含有基材と呼ぶ。
 珪素原子の含有量(質量%)は、乾燥状態の基材質量を基準(100質量%)として算出される。基材の珪素原子含有率は5質量%~36質量%が好ましく、7質量%~30質量%がより好ましく、10質量%~30質量%がさらに好ましく、12質量%~26質量%が最も好ましい。珪素原子の含有率が大きすぎる場合は引張弾性率が大きくなる場合があり好ましくない。
 基材における珪素原子の含有量は以下の方法で測定することができる。十分乾燥した基材を白金るつぼに秤取し、硫酸を加えてホットプレートおよびバーナーで加熱灰化する。灰化物を炭酸ナトリウムで融解し、水を加えて加熱溶解した後、硝酸を加え水で定容する。この溶液について、ICP発光分光分析法により珪素原子を測定し、基材中の含有量を求める。
 基材は、1分子あたり複数の重合性官能基を有し、数平均分子量が6000以上のポリシロキサン化合物である成分Aの重合体、または、上記成分Aおよび重合性官能基を有する化合物であって、成分Aとは異なる化合物との共重合体を主成分とすることが好ましい。ここで、主成分とは乾燥状態の基材質量を基準(100質量%)として50質量%以上含まれる成分であることを意味する。ここで、ポリシロキサン化合物とは Si-O-Si-O-Siで表される結合を有する化合物である。
 本発明において、親水性ポリマーとは、次のいずれかの条件を満たすポリマーである。
 (1)25℃において0.01質量%以上の濃度で水に溶解するポリマー。ただし溶解過程においては加熱してもよい。
 (2)コーティング層を形成したときに、25℃において該コーティング層の含水率が10質量%以上となるポリマー。ただし該コーティング層の乾燥質量を基準とする。ここで含水率とは、表面に付着した水の質量は含まない値である。
 珪素含有基材は珪素、炭素、酸素原子等を含有するため、基材の表面の元素分析を行うと、Si、C、O等の元素が検出される。一方、本発明においてコーティング層の形成のために用いられる酸性ポリマーおよび塩基性ポリマー等の親水性ポリマーは有機化合物であり、少なくともその1つのポリマーは窒素原子を含有し、かつ珪素原子を含有しない。さらに、コーティング層における窒素元素含有率が珪素含有基材に含まれる窒素元素含有率よりも多くなるポリマーを用いると、コーティングを行った後、単位領域あたりの窒素の元素含有率は増加する。その場合、コーティング層の付着量を窒素元素含有率の増加量で評価することができる。
 上記基材またはコーティング後のレンズ表面の元素分析は、X線光電子分光法(以下、XPSと略す)を用いて行うことができる。XPSにおいては、サンプル表面にX線を照射し、それによって生じる光電子のエネルギーを測定することで、サンプルの構成元素とその電子状態とを分析することができる。より詳細には、X線を試料に照射すると、X線は試料表面から数μmの深さの領域まで侵入するが、試料表面からの深さが概ね数nmから数十nmの範囲である場合に限り、光電子が脱出することができる。従って、表面のごく近傍で発生した光電子のみが検出される。この現象を利用して、XPSによりナノオーダーでのレンズ表面の化学状態を分析することができる。ここで、励起X線はAl、Mgが好ましく、本発明においてはAlを用いる。また、光電子脱出角度(試料表面に対する検出器の傾き)は90°とする。
 XPS分析では、検出された全元素含有量に対する特定の元素含有量の割合が得られる。また、上記の通りレンズ表面から数nmの深さの領域におけるデータを得るものであるため、一般に検出されるコーティング後の珪素含有量は、コーティング前の珪素含有量に比べて少なくなる。
 従って、コーティングによる親水性ポリマーの層の増加量を窒素の増加量を用いて純粋に比較する場合、XPSにより得られる窒素元素含有率(%)、珪素元素含有率(%)をそれぞれR(N)、R(Si)とすると、パラメータR(N)/R(Si)(=窒素元素含有率/珪素元素含有率)が有用である。以下、このパラメータをN/Si元素含有比という。
 コーティング前のN/Si元素含有比をX、コーティング後のN/Si元素含有比をYとしたとき、YとXとの差(Y-X)はコーティング層である親水性ポリマーの付着量の指標となる。Y-Xは0.05以上が好ましく、0.07以上がより好ましく、0.08以上が最も好ましい。
 コーティング前のレンズ表面におけるN/Si元素含有比(X)は、コーティング後のレンズからは直接測定できないことから、次のようにして測定した値で代用することができる。すなわち、先ずコーティング後のレンズを鋭利かつ清浄な刃物で2等分にしてレンズの断面を出す。このレンズの断面は、弓状となる。次に、当該断面の弓状の頂点付近かつ断面の厚み方向の中心付近の地点においてN/Si元素含有比の測定を行うことにより、Xを求める。
 また、レンズの実際の使用条件を考慮して、コーティング後のレンズに、後述する条件で行う所定の擦り洗いを施した後のN/Si元素含有比をZとしたとき、Z-Xは擦り洗い耐久性の指標となる。Z-Xは0.04以上が好ましく、0.05以上がより好ましく、0.06以上が最も好ましい。
 また、レンズの実際の使用条件を考慮して、上記コーティング後、擦り洗い前のレンズ表面におけるN/Si元素含有比(Y)と、擦り洗い後のレンズ表面におけるN/Si元素含有比(Z)との差(Y-Z)は、0.05以下であることが好ましく、0.04以下であることがより好ましく、0.03以下であることがさらに好ましく、0.02以下であることが特に好ましい。
 ここで、上記Y-X、Z-X、Y-Zの好ましい各範囲を示す境界値は、X、Y、Zを小数点以下3桁まで測定し、これらのX、Y、Zを用いて算出したY-X、Z-X、Y-Zの小数点以下第3位を四捨五入して求めた値である。
 なお、本発明において珪素原子の含有量(質量%)は、乾燥状態の基材質量を基準(100質量%)として算出される。珪素含有基材の珪素元素含有量の下限としては、上記の通り5質量%以上が好ましく、また、7質量%以上がより好ましく、10質量%以上がさらに好ましく、12質量%以上が最も好ましい。また、上限としては、36質量%以下が好ましく、30質量%以下がより好ましく、26質量%以下が最も好ましい。珪素原子の含有量が多すぎる場合は引張弾性率が大きくなる場合があり好ましくない。
 珪素含有基材は、1分子あたり複数の重合性官能基を有するポリシロキサン化合物である成分Aの重合体、または、上記成分Aおよび重合性官能基を有する化合物であって、成分Aとは異なる化合物との共重合体を主成分とすることが好ましい。成分Aとは異なる化合物としては、
 成分B:フルオロアルキル基を有する重合性モノマー、
 成分M:1分子あたり1個の重合性官能基、およびシロキサニル基を有する単官能モノマー、
 成分C:成分A、成分B、成分Mとは異なる成分、
の任意の組み合わせであることが好ましい。
 ここで、主成分とは乾燥状態の基材質量を基準(100質量%)として50質量%以上含まれる成分であることを意味する。
 成分Aの数平均分子量は6000以上であることが好ましい。発明者らは、成分Aの数平均分子量がこの範囲にあることで、柔軟で装用感に優れ、しかも耐折り曲げ性などの機械物性に優れた低含水性軟質眼用レンズが得られることを見出した。成分Aのポリシロキサン化合物の数平均分子量は、耐折り曲げ性などの機械物性により優れた低含水性軟質眼用レンズが得られることから、8000以上が好ましい。成分Aの数平均分子量は8000~100000の範囲にあることが好ましく、9000~70000の範囲にあることがより好ましく、10000~50000の範囲にあることが一層好ましい。成分Aの数平均分子量が小さすぎる場合には耐折り曲げ性などの機械物性が低くなる傾向があり、特に6000未満では耐折り曲げ性が低くなる。成分Aの数平均分子量が大きすぎる場合には、柔軟性や透明性が低下する傾向があり好ましくない。
 本発明の低含水性軟質眼用レンズは、光学製品であるので、透明性が高いことが好ましい。透明性の基準としては、目視した際に透明で濁りがないことが好ましい。さらに眼用レンズは、レンズ投影機で観察した場合、濁りがほとんど観察されないことが好ましく、濁りが全く観察されないことが最も好ましい。
 成分Aの分散度(質量平均分子量を数平均分子量で除した値)は、6以下が好ましく、3以下がより好ましく、2以下がさらに好ましく、1.5以下が最も好ましい。成分Aの分散度が小さい場合、他の成分との相溶性が向上し、得られるレンズの透明性が向上する、得られるレンズに含まれる抽出可能な成分が減る、レンズ成型に伴う収縮率が小さくなる、などの利点が生じる。レンズ成型に伴う収縮率は、レンズ成型比=[レンズ直径]/[モールドの空隙部の直径]で評価することができる。ここで、直径とは、レンズの縁部が構成する円の直径である。レンズ成型比は、1に近いほど高品位のレンズを安定に製造することが容易となる。成型比は0.85~2.0の範囲が好ましく、0.9~1.5の範囲がより好ましく、0.91~1.3の範囲が最も好ましい。
 本発明において、成分Aの数平均分子量は、クロロホルムを溶媒として用いたゲル浸透クロマトグラフィー法(GPC法)で測定されるポリスチレン換算の数平均分子量である。質量平均分子量および分散度(質量平均分子量を数平均分子量で除した値)も同様の方法で測定される。また、他の成分についても、同様の方法で数平均分子量、質量平均分子量、および分散度が測定される。
 なお、本明細書においては、質量平均分子量をMw、数平均分子量をMnで表す場合がある。また分子量1000を1kDと表記することがある。例えば「Mw33kD」という表記は「質量平均分子量33000」を表す。
 成分Aは、複数の重合性官能基を有するポリシロキサン化合物である。成分Aの重合性官能基の数は、1分子あたり2個以上であればよいが、より柔軟(低弾性率)な眼用レンズが得られやすいという観点からは、1分子あたり2個が好ましい。特に分子鎖の両末端に重合性官能基を有する構造が好ましい。
 成分Aの重合性官能基としては、ラジカル重合可能な官能基が好ましく、炭素炭素二重結合を有するものがより好ましい。好ましい重合性官能基の例としては、ビニル基、アリル基、(メタ)アクリロイル基、α-アルコキシメチルアクリロイル基、マレイン酸残基、フマル酸残基、イタコン酸残基、クロトン酸残基、イソクロトン酸残基、およびシトラコン酸残基などである。これらの中でも高い重合性を有することから(メタ)アクリロイル基が最も好ましい。
 なお、本明細書において(メタ)アクリロイルという語はメタクリロイルおよびアクリロイルの両方を表すものであり、(メタ)アクリル、(メタ)アクリレートなどの語も同様である。
 成分Aとしては、下記式(A1)の構造を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(A1)中、XおよびXはそれぞれ独立に重合性官能基を表す。R~Rはそれぞれ独立に、水素、炭素数1~20のアルキル基、フェニル基、および炭素数1~20のフルオロアルキル基から選ばれた置換基を表す。LおよびLは、それぞれ独立に2価の基を表す。aおよびbは、それぞれ独立に各繰返し単位の数を表す。
 XおよびXとしては、ラジカル重合可能な官能基が好ましく、炭素炭素二重結合を有するものが好ましい。好ましい重合性官能基の例としては、ビニル基、アリル基、(メタ)アクリロイル基、α-アルコキシメチルアクリロイル基、マレイン酸残基、フマル酸残基、イタコン酸残基、クロトン酸残基、イソクロトン酸残基、およびシトラコン酸残基などである。これらの中でも高い重合性を有することから(メタ)アクリロイル基が最も好ましい。
 R~Rの好適な具体例は、水素;メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、デシル基、ドデシル基、オクタデシル基などの炭素数1~20のアルキル基;フェニル基、トリフルオロメチル基、トリフルオロエチル基、トリフルオロプロピル基、テトラフルオロプロピル基、ヘキサフルオロイソプロピル基、ペンタフルオロブチル基、ヘプタフルオロペンチル基、ノナフルオロヘキシル基、ヘキサフルオロブチル基、ヘプタフルオロブチル基、オクタフルオロペンチル基、ノナフルオロペンチル基、ドデカフルオロヘプチル基、トリデカフルオロヘプチル基、ドデカフルオロオクチル基、トリデカフルオロオクチル基、ヘキサデカフルオロデシル基、ヘプタデカフルオロデシル基、テトラフルオロプロピル基、ペンタフルオロプロピル基、テトラデカフルオロオクチル基、ペンタデカフルオロオクチル基、オクタデカフルオロデシル基、およびノナデカフルオロデシル基などの炭素数1~20のフルオロアルキル基である。これらの中で、眼用レンズに良好な機械物性と高酸素透過性を与えるという観点からさらに好ましいのは、水素およびメチル基であり、最も好ましいのはメチル基である。
 LおよびLとしては、炭素数1~20の2価の基が好ましい。中でも式(A1)の化合物が高純度で得られやすい利点を有することから、下記式(LE1)~(LE12)で表される基が好ましく、中でも下記式(LE1)、(LE3)、(LE9)および(LE11)で表される基がより好ましく、下記式(LE1)および(LE3)で表される基がさらに好ましく、下記式(LE1)で表される基が最も好ましい。なお、下記式(LE1)~(LE12)は、左側が重合性官能基XまたはXに結合する末端、右側が珪素原子に結合する末端として描かれている。
Figure JPOXMLDOC01-appb-C000002
 式(A1)中、aおよびbは、それぞれ独立に各繰返し単位の数を表す。aおよびbはそれぞれ独立に0~1500の範囲が好ましい。aとbの合計値(a+b)は、80以上が好ましく、100以上がより好ましく、100~1400がより好ましく、120~950がより好ましく、130~700がさらに好ましい。
 R~Rが全てメチル基の場合、b=0であり、aは、80~1500が好ましく、100~1400がより好ましく、120~950がより好ましく、130~700がさらに好ましい。この場合、aの値は、成分Aのポリシロキサン化合物の分子量によって決まる。
 本発明の成分Aは1種類のみ用いてもよいし、2種類以上を組み合わせて用いてもよい。
 成分Aと共重合させる他の化合物として、上述したフルオロアルキル基を有する重合性モノマーである成分Bは、フルオロアルキル基に起因する臨界表面張力の低下により、撥水撥油性の性質を持ち、これにより、眼用レンズ表面が涙液中のタンパク質や脂質などの成分によって汚染されることを抑える効果がある。また、成分Bは、柔軟で装用感に優れ、しかも耐折り曲げ性などの機械物性に優れた低含水性軟質眼用レンズを与える効果がある。成分Bのフルオロアルキル基の好適な具体例は、トリフルオロメチル基、トリフルオロエチル基、トリフルオロプロピル基、テトラフルオロプロピル基、ヘキサフルオロイソプロピル基、ペンタフルオロブチル基、ヘプタフルオロペンチル基、ノナフルオロヘキシル基、ヘキサフルオロブチル基、ヘプタフルオロブチル基、オクタフルオロペンチル基、ノナフルオロペンチル基、ドデカフルオロヘプチル基、トリデカフルオロヘプチル基、ドデカフルオロオクチル基、トリデカフルオロオクチル基、ヘキサデカフルオロデシル基、ヘプタデカフルオロデシル基、テトラフルオロプロピル基、ペンタフルオロプロピル基、テトラデカフルオロオクチル基、ペンタデカフルオロオクチル基、オクタデカフルオロデシル基、およびノナデカフルオロデシル基などの炭素数1~20のフルオロアルキル基である。より好ましくは、炭素数2~8のフルオロアルキル基、例えば、トリフルオロエチル基、テトラフルオロプロピル基、ヘキサフルオロイソプロピル基、オクタフルオロペンチル基、およびドデカフルオロオクチル基であり、最も好ましくはトリフルオロエチル基である。
 成分Bの重合性官能基としてはラジカル重合可能な官能基が好ましく、炭素炭素二重結合を有するものがより好ましい。好ましい重合性官能基の例としては、ビニル基、アリル基、(メタ)アクリロイル基、α-アルコキシメチルアクリロイル基、マレイン酸残基、フマル酸残基、イタコン酸残基、クロトン酸残基、イソクロトン酸残基、およびシトラコン酸残基などであるが、これらの中でも高い重合性を有することから(メタ)アクリロイル基が最も好ましい。
 柔軟で装用感に優れ、しかも耐折り曲げ性などの機械物性に優れた低含水性軟質眼用レンズが得られる効果が大きいことから、成分Bとして最も好ましいのは(メタ)アクリル酸フルオロアルキルエステルである。かかる(メタ)アクリル酸フルオロアルキルエステルの具体例としては、トリフルオロエチル(メタ)アクリレート、テトラフルオロエチル(メタ)アクリレート、トリフルオロプロピル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ペンタフルオロプロピル(メタ)アクリレート、ヘキサフルオロブチル(メタ)アクリレート、ヘキサフルオロイソプロピル(メタ)アクリレート、ヘプタフルオロブチル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ノナフルオロペンチル(メタ)アクリレート、ドデカフルオロペンチル(メタ)アクリレート、ドデカフルオロヘプチル(メタ)アクリレート、ドデカフルオロオクチル(メタ)アクリレート、およびトリデカフルオロヘプチル(メタ)アクリレートが挙げられる。トリフルオロエチル(メタ)アクリレート、テトラフルオロエチル(メタ)アクリレート、ヘキサフルオロイソプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ドデカフルオロオクチル(メタ)アクリレートが好ましく用いられる。最も好ましくはトリフルオロエチル(メタ)アクリレートである。
 本発明のB成分は1種類のみ用いてもよいし、2種類以上組み合わせて用いてもよい。
 共重合体中における成分Bの好ましい含有量は、成分A100質量部に対して、10~500質量部、より好ましくは20~400質量部、さらに好ましくは20~200質量部である。成分Bの使用量が少なすぎる場合は、得られる眼用レンズに白濁が生じたり、耐折り曲げ性などの機械物性が不十分になったりする傾向がある。
 さらにまた、上述した基材に用いる共重合体として、成分Aに加えて、1分子あたり1個の重合性官能基、およびシロキサニル基を有する単官能モノマーである成分Mをさらに共重合させたものを用いてもよい。本明細書において、シロキサニル基とはSi-O-Si結合を有する基を意味する。
 成分Mのシロキサニル基は直鎖状であることが好ましい。シロキサニル基が直鎖状であれば、得られる低含水性軟質眼用レンズの形状回復性が向上する。ここで直鎖状とは、重合性基を有する基と結合した珪素原子を起点とする、一本の線状に連なるSi-(O-Si)n-1-O-Si結合で示される構造を指す(ただし、nは2以上の整数を表す)。得られる医療デバイスが十分な形状回復性を得るためにはnは3以上の整数が好ましく、4以上がより好ましく、5以上がさらに好ましく、6以上が最も好ましい。ここで、「シロキサニル基が直鎖状である」とはシロキサニル基が上記の直鎖状構造を有し、且つ直鎖状構造の条件を満たさないSi-O-Si結合を有さないことを意味する。
 基材は、数平均分子量が300~120000である成分Mを含む共重合体を主成分とすることが好ましい。ここで、主成分とは乾燥状態の基材質量を基準(100質量%)として50質量%以上含まれる成分であることを意味する。
 成分Mの数平均分子量は、300~120000であることが好ましい。成分Mの数平均分子量がこの範囲にあることで、柔軟(低弾性率)で装用感に優れ、しかも耐折り曲げ性などの機械物性に優れた基材が得られる。成分Mの数平均分子量は、耐折り曲げ性などの機械物性により優れ、且つ形状回復性に優れた基材が得られることから、500以上がより好ましい。成分Mの数平均分子量は、1000~25000の範囲にあることがより好ましく、5000~15000の範囲にあることが一層好ましい。成分Mの数平均分子量が小さすぎる場合には耐折り曲げ性や形状回復性などの機械物性が低くなる傾向があり、特に500未満では耐折り曲げ性、および形状回復性が低くなることがある。成分Mの数平均分子量が大きすぎる場合には、柔軟性や透明性が低下する傾向があり好ましくない。
 成分Mの重合性官能基としては、ラジカル重合可能な官能基が好ましく、炭素炭素二重結合を有するものがより好ましい。好ましい重合性官能基の例としては、ビニル基、アリル基、(メタ)アクリロイル基、α-アルコキシメチルアクリロイル基、マレイン酸残基、フマル酸残基、イタコン酸残基、クロトン酸残基、イソクロトン酸残基、およびシトラコン酸残基などである。これらの中でも高い重合性を有することから(メタ)アクリロイル基が最も好ましい。
 成分Mとしては、下記式(ML1)の構造を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(ML1)中、Xは重合性官能基を表す。R11~R19はそれぞれ独立に、水素、炭素数1~20のアルキル基、フェニル基、および炭素数1~20のフルオロアルキル基から選ばれた置換基を表す。Lは2価の基を表す。cおよびdは、それぞれ独立に0~700の整数を表す。ただしcとdは同時に0ではない。
 Xとしては、ラジカル重合可能な官能基が好ましく、炭素炭素二重結合を有するものが好ましい。好ましい重合性官能基の例としては、ビニル基、アリル基、(メタ)アクリロイル基、α-アルコキシメチルアクリロイル基、マレイン酸残基、フマル酸残基、イタコン酸残基、クロトン酸残基、イソクロトン酸残基、およびシトラコン酸残基などである。これらの中でも高い重合性を有することから(メタ)アクリロイル基が最も好ましい。
 また、成分Mの重合性官能基は、良好な機械物性の低含水性軟質眼用レンズが得られやすいことから、成分Aの重合性官能基と共重合可能であることがより好ましく、成分Mと成分Aが均一に共重合されることで良好な表面特性を有する低含水性軟質眼用レンズが得られやすいことから、成分Aの重合性官能基と同一であることがさらに好ましい。
 R11~R19の好適な具体例は、水素;メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、デシル基、ドデシル基、オクタデシル基などの炭素数1~20のアルキル基;フェニル基、トリフルオロメチル基、トリフルオロエチル基、トリフルオロプロピル基、テトラフルオロプロピル基、ヘキサフルオロイソプロピル基、ペンタフルオロブチル基、ヘプタフルオロペンチル基、ノナフルオロヘキシル基、ヘキサフルオロブチル基、ヘプタフルオロブチル基、オクタフルオロペンチル基、ノナフルオロペンチル基、ドデカフルオロヘプチル基、トリデカフルオロヘプチル基、ドデカフルオロオクチル基、トリデカフルオロオクチル基、ヘキサデカフルオロデシル基、ヘプタデカフルオロデシル基、テトラフルオロプロピル基、ペンタフルオロプロピル基、テトラデカフルオロオクチル基、ペンタデカフルオロオクチル基、オクタデカフルオロデシル基、およびノナデカフルオロデシル基などの炭素数1~20のフルオロアルキル基である。これらの中で、低含水性軟質眼用レンズに良好な機械物性と高酸素透過性を与えるという観点からさらに好ましいのは、水素およびメチル基であり、最も好ましいのはメチル基である。
 Lとしては、炭素数1~20の2価の基が好ましい。中でも式(ML1)の化合物が高純度で得られやすい利点を有することから、下記式(LE1)~(LE12)で表される基が好ましく、中でも下記式(LE1)、(LE3)、(LE9)および(LE11)で表される基がより好ましく、下記式(LE1)および(LE3)で表される基がさらに好ましく、下記式(LE1)で表される基が最も好ましい。なお、下記式(LE1)~(LE12)は、左側が重合性官能基Xに結合する末端、右側が珪素原子に結合する末端として描かれている。
Figure JPOXMLDOC01-appb-C000004
 式(ML1)中、cとdの合計値(c+d)は、3以上が好ましく、10以上がより好ましく、10~500がより好ましく、30~300がより好ましく、50~200がさらに好ましい。
 R11~R18が全てメチル基の場合、d=0であり、cは、3~700が好ましく、10~500がより好ましく、30~300がより好ましく、50~200がさらに好ましい。この場合、cの値は、成分Mの分子量によって決まる。
 本発明の低含水性軟質眼用レンズの基材において、成分Mは1種類のみ用いてもよいし、2種類以上組み合わせて用いてもよい。
 本発明の低含水性軟質眼用レンズの基材が適当な量の成分Mを含有することにより、架橋密度が減少してポリマーの自由度が大きくなり、適度に柔らかい低弾性率の基材を実現することができる。これに対し、成分Mの含有量が少なすぎると架橋密度が高くなり、基材が硬くなる。また、成分Mの含有量が多すぎると軟らかくなりすぎ、破れやすくなるため好ましくない。
 また、本発明の低含水性軟質眼用レンズの基材において、成分Mと成分Aとの質量比は、成分A100質量部に対して成分Mが5~200質量部、より好ましくは7~150質量部、最も好ましくは10~100質量部、であることが好ましい。成分Mの含有量が、成分A100質量部に対し5質量部を下まわると、架橋密度が高くなり、基材が硬くなる。また、成分Mの含有量が、成分A100質量部に対し200質量部を超えると、軟らかくなりすぎ、破れやすくなるため好ましくない。
 ここで、本発明の低含水性軟質眼用レンズは、基材表面の少なくとも一部に、親水性ポリマーからなる層(以下、コーティング層と呼ぶ)が形成されており、少なくとも該層内の一部が架橋されていることを特徴とするが、該架橋は好ましくは放射線の照射により生成する。本発明の低含水性軟質眼用レンズにおいては、上記基材と上記層との間で少なくとも一部が架橋されていることもある。これにより、レンズの表面に良好な濡れ性と易滑性が付与され、優れた装用感を与えることができる。しかしながら、放射線の照射は同時に基材内の一部にも架橋を生成する可能性があり、基材内で過度の架橋が生成すると、基材の弾性率が上がって柔軟さが損なわれるために好ましくない。しかしながら本発明の低含水性軟質眼用レンズの基材の原料が適当な量の成分Mを含有することにより、架橋密度が減少してポリマーの自由度が大きくなり、放射線を照射した際の基材の弾性率の過度の上昇を抑制することができ、適度に柔らかい低弾性率の基材を得ることができるという利点がある。
 また、上述したように、基材に用いる共重合体として、成分A、成分B、成分Mとは異なる成分である成分Cを用いる場合、成分Cは、共重合体のガラス移転点を室温あるいは0℃以下に下げるものがよい。これらは凝集エネルギーを低下させるので、共重合体にゴム弾性と柔らかさを与える効果がある。
 成分Cの重合性官能基としてはラジカル重合可能な官能基が好ましく、炭素炭素二重結合を有するものがより好ましい。好ましい重合性官能基の例としては、ビニル基、アリル基、(メタ)アクリロイル基、α-アルコキシメチルアクリロイル基、マレイン酸残基、フマル酸残基、イタコン酸残基、クロトン酸残基、イソクロトン酸残基、およびシトラコン酸残基などであるが、これらの中でも高い重合性を有することから(メタ)アクリロイル基が最も好ましい。
 成分Cとして、柔軟性や耐折り曲げ性などの機械的特性の改善のために好適な例は、(メタ)アクリル酸アルキルエステル、好ましくはアルキル基の炭素数が1~20の(メタ)アクリル酸アルキルエステルであり、その具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-ヘプチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、n-ドデシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、およびn-ステアリル(メタ)アクリレート等を挙げることができ、より好ましくは、n-ブチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、n-ラウリル(メタ)アクリレート、n-ステアリル(メタ)アクリレートである。これらの中でアルキル基の炭素数が1~10の(メタ)アクリル酸アルキルエステルはさらに好ましい。アルキル基の炭素数が大きすぎると得られるレンズの透明性が低下する場合があり好ましくない。
 さらに、機械的性質、表面濡れ性、レンズの寸法安定性などを向上させるためには、所望に応じ、以下に述べるモノマーを成分Cとして共重合させることができる。
 機械的性質を向上させるためのモノマーとしては、例えばスチレン、tert-ブチルスチレン、α-メチルスチレンなどの芳香族ビニル化合物等が挙げられる。
 表面濡れ性を向上させるためのモノマーとしては、例えばメタクリル酸、アクリル酸、イタコン酸、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシプロピルアクリレート、グリセロールメタクリレート、ポリエチレングリコールメタクリレート、N,N-ジメチルアクリルアミド、N-メチルアクリルアミド、ジメチルアミノエチルメタクリレート、メチレンビスアクリルアミド、ダイアセトンアクリルアミド、N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルアセトアミド、およびN-ビニル-N-メチルアセトアミド等が挙げられる。中でもN,N-ジメチルアクリルアミド、N-メチルアクリルアミド、ジメチルアミノエチルメタクリレート、メチレンビスアクリルアミド、ダイアセトンアクリルアミド、N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルアセトアミド、およびN-ビニル-N-メチルアセトアミドなどのアミド基を含有するモノマーが好ましい。
 レンズの寸法安定性を向上させるためのモノマーとしては、例えばエチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールテトラメタクリレート、ビスフェノールAジメタクリレート、ビニルメタクリレート、アクリルメタクリレートおよびこれらのメタクリレート類に対応するアクリレート類、ジビニルベンゼン、トリアリルイソシアヌレート等が挙げられる。
 成分Cは、1種類のみ用いてもよいし、2種類以上を組み合わせて用いてもよい。
 成分Cの好ましい使用量は、成分A100質量部に対して、0.001~400質量部、より好ましくは0.01~300質量部、さらに好ましくは0.01~200質量部、最も好ましくは0.01~30質量部である。成分Cの使用量が少なすぎる場合は成分Cに期待する効果が得られにくくなる。成分Cの使用量が多すぎる場合は得られる眼用レンズに白濁が生じたり耐折り曲げ性などの機械物性が不十分になったりする傾向がある。
 本発明の低含水性軟質眼用レンズは、紫外線吸収剤、色素、着色剤、湿潤剤、スリップ剤、医薬および栄養補助成分、相溶化成分、抗菌成分、離型剤等の成分をさらに含んでいてもよい。上記した成分はいずれも、非反応性形態または共重合形態で含有され得る。
 紫外線吸収剤を含む場合、眼用レンズ装用者の眼を有害紫外線から保護することができる。また、着色剤を含む場合、眼用レンズが着色されて、識別が容易になり、取扱時の利便性が向上する。
 上記した成分はいずれも、非反応性形態または共重合形態で含有され得る。上記成分を共重合した場合、すなわち重合性基を有する紫外線吸収剤、重合性基を有する着色剤などを使用した場合は、該成分が基材に共重合されて固定化されるので溶出の可能性が小さくなるので好ましい。
 基材は、紫外線吸収剤および着色剤から選ばれる成分、ならびに、これら以外の2種類以上の成分C(以下、成分Ck)からなることが好ましい。その場合、成分Ckとしては、炭素数1~10の(メタ)アクリル酸アルキルエステルから少なくとも1種類、上記表面濡れ性を向上させるためのモノマーから少なくとも1種類が選ばれることが好ましい。成分Ckを2種類以上使用することにより、紫外線吸収剤や着色剤との親和性が増し、透明な基材を得ることが容易になる。
 紫外線吸収剤を用いる場合、その好ましい使用量は、成分A100質量部に対して、0.01~20質量部、より好ましくは0.05~10質量部、さらに好ましくは0.1~2質量部である。着色剤を用いる場合、その好ましい使用量は、成分A100質量部に対して、0.00001~5質量部、より好ましくは0.0001~1質量部、さらに好ましくは0.0001~0.5質量部である。紫外線吸収剤や着色剤の含有量が少なすぎる場合は、紫外線吸収効果や着色効果が得られにくくなる。逆に、多すぎる場合はこれらの成分を基材中に溶解せしめることが難しくなる。成分Ckの好ましい使用量は、それぞれ、成分A100質量部に対して、0.1~100質量部、より好ましくは1~80質量部、さらに好ましくは2~50質量部である。成分Ckの使用量が少なすぎる場合は、紫外線吸収剤や着色剤との親和性が不足して透明な基材を得るのが難しくなる傾向がある。成分Ckの使用量が多すぎる場合も得られる眼用レンズに白濁が生じたり耐折り曲げ性などの機械物性が不十分になったりする傾向があり好ましくない。
 また、本発明の低含水性軟質眼用レンズの基材は、架橋度が2.0~18.3の範囲であることが好ましい。架橋度は、下記式(Q1)で表される。
Figure JPOXMLDOC01-appb-C000005
 式(Q1)において、Qnは1分子あたりn個の重合性基を有するモノマーの合計ミリモル量、Wnは1分子あたりn個の重合性基を有するモノマーの合計質量(kg)を表す。また、モノマーの分子量が分布を有する場合は、数平均分子量を用いてミリモル量を計算することとする。
 本発明の基材の架橋度が、2.0より小さくなると、柔らかすぎてハンドリングが難しくなり、18.3より大きくなると硬すぎて装用感が悪くなる傾向があるので好ましくない。架橋度のより好ましい範囲は3.5~16.0であり、さらに好ましい範囲は8.0~15.0であり、最も好ましい範囲は9.0~14.0である。
 低含水性軟質眼用レンズの基材、すなわちレンズ形状の成型体を製造する方法としては、公知の方法を使用することができる。例えば、いったん、丸棒や板状の重合体を得て、これを切削加工等によって所望の形状に加工する方法、モールド重合法、およびスピンキャスト重合法などを使用することができる。レンズを切削加工で得る場合には、低温での冷凍切削が好適である。
 一例として、成分Aを含む原料組成物をモールド重合法により重合して眼用レンズを製造する方法について、次に説明する。まず、一定の形状を有する2枚のモールド部材間の空隙に原料組成物を充填する。モールド部材の材料としては、樹脂、ガラス、セラミックス、金属等が挙げられる。光重合を行う場合は光学的に透明な素材が好ましいので、樹脂またはガラスが好ましく使用される。モールド部材の形状や原料組成物の性状によっては、眼用レンズに一定の厚みを与え、且つ、空隙に充填した原料組成物の液モレを防止するために、ガスケットを用いてもよい。空隙に原料組成物を充填したモールドは、続いて紫外線、可視光線またはこれらの組み合わせなどの活性光線を照射されるか、もしくはオーブンや液槽中などで加熱されることにより、充填した原料組成物を重合する。2通りの重合方法を併用する方法もありうる。すなわち、光重合の後に加熱重合したり、または加熱重合後に光重合することもできる。光重合の具体的態様は、例えば水銀ランプや紫外線ランプ(例えばFL15BL、東芝)の光のような紫外線を含む光を短時間(通常は1時間以下)照射する。熱重合を行う場合には、組成物を室温付近から徐々に昇温し、数時間ないし数十時間かけて60℃~200℃の温度まで高めて行く条件が、眼用レンズの光学的な均一性および品位を保持し、且つ再現性を高めるために好まれる。
 重合に際しては、重合をしやすくするために過酸化物やアゾ化合物に代表される熱重合開始剤または光重合開始剤を添加することが好ましい。熱重合を行う場合は、所望の反応温度において最適な分解特性を有するものが選択される。一般的には、10時間半減期温度が40~120℃のアゾ系開始剤および過酸化物系開始剤が好適である。光重合を行う場合の光開始剤としてはカルボニル化合物、過酸化物、アゾ化合物、硫黄化合物、ハロゲン化合物、およびこれらの金属塩などを挙げることができる。これらの重合開始剤は単独で、または混合して用いられる。重合開始剤の量は、重合混合物に対し最大で5質量%までが好ましい。
 重合する際は、重合溶媒を使用することができる。溶媒としては有機系、無機系の各種溶媒が適用可能である。溶媒の例としては、水;メチルアルコール、エチルアルコール、ノルマルプロピルアルコール、イソプロピルアルコール、ノルマルブチルアルコール、イソブチルアルコール、t-ブチルアルコール、t-アミルアルコール、テトラヒドロリナロール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコールおよびポリエチレングリコール等のアルコール系溶媒;メチルセロソルブ、エチルセロソルブ、イソプロピルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、ポリエチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルおよびポリエチレングリコールジメチルエーテル等のグリコールエーテル系溶媒;酢酸エチル、酢酸ブチル、酢酸アミル、乳酸エチルおよび安息香酸メチル等のエステル系溶媒;ノルマルヘキサン、ノルマルヘプタンおよびノルマルオクタン等の脂肪族炭化水素系溶媒;シクロへキサンおよびエチルシクロへキサン等の脂環族炭化水素系溶媒;アセトン、メチルエチルケトンおよびメチルイソブチルケトン等のケトン系溶媒;ベンゼン、トルエンおよびキシレン等の芳香族炭化水素系溶媒;並びに石油系溶媒が挙げられる。これらの溶媒は単独で用いてもよく、また2種以上を混合して用いてもよい。
 本発明の低含水性軟質眼用レンズは、基材表面の少なくとも一部に、酸性ポリマーおよび塩基性ポリマー等の親水性ポリマーからなる層(以下、コーティング層と呼ぶ)が形成されている。これら親水性ポリマーの内、少なくとも一種のポリマーは窒素原子を含有し、且つ珪素原子を含有しないことが好ましい。
 表面の濡れ性、および易滑性の観点から、親水性ポリマーとしては、ポリビニルピロリドン、ポリアクリルアミド、ポリジメチルアクリルアミド、ポリ(N-メチルビニルアセトアミド)、ポリアルキレングリコール、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルカプロラクタム、各種セルロース誘導体、および各種多糖類が、好適な例として挙げられる。以上は主としてホモポリマーの例を挙げたが、これらのコポリマーも好適である。
 親水性ポリマーの中でも、酸性ポリマーおよび塩基性ポリマーは特に好適である。
 好ましい例として、酸性ポリマーおよび塩基性ポリマーを使用する場合、少なくとも1つの酸性ポリマーおよび少なくとも1つの塩基性ポリマーが窒素原子を含有し、且つ珪素原子を含有しないことが好ましい。また、酸性ポリマーおよび塩基性ポリマーの全てが珪素原子を含有しないことがより好ましい。ここでいう「含有」とは、ポリマーを構成する原子として含有する、あるいは含有しないことをいい、これらのポリマーと単に混合した化合物、またはこれらのポリマーの溶媒に含まれる原子を意図するものではない。いずれにしても、コーティング層における窒素元素含有率が珪素含有基材の窒素元素含有率よりも大きいものが用いられる。本発明において「層」とは基材表面上に形成される分子の集合体を意味する。本発明の「層」は微視的には平面方向や深さ方向に均一な構造を有している必要はなく、また各ポリマーが平らに積み重なった構造である必要はない。例えば、本発明の層においては微視的に酸性ポリマーおよび/または塩基性ポリマーが存在しない部分があってもよい。また酸性ポリマー、塩基性ポリマー、および基材から選ばれた任意の2種以上が混在したり、層の明確な界面が存在しない場合もありうる。
 親水性ポリマーからなる層の厚みは、厚すぎると光学的に不均一になりやすいことから100μm以下が好ましく、10μm以下がより好ましく、1μm以下がさらに好ましく、0.5μm以下が特に好ましい。一方、層の厚みが薄すぎると表面の親水性が不足しやすいことから、0.1nm以上が好ましく、1nm以上がより好ましく、10nm以上がさらに好ましく、50nm以上が特に好ましい。ここで親水性ポリマーからなる層の厚みは、乾燥状態での厚みを意味し、電子顕微鏡などの手法で求めることができる。
 上記コーティング層は、少なくとも層内の一部において架橋されている。また、上記基材とコーティング層との間で少なくとも一部が架橋されていることもある。ここで、架橋とは、ポリマー同士が自らの官能基又は架橋剤を用いて橋架け構造を作って結合することである。
 本発明においては、コーティング層が架橋されていることを判定する方法として、下記(1)または(2)のいずれか、あるいはこれらの組み合わせを適用することができる。
 (1)機器分析的手法により層内の少なくとも一部が架橋されているか否かを判定する。
 (2)コーティング層に含まれるポリマーを、該ポリマー単体であれば溶解可能な溶媒ないし溶液に溶解させ、該ポリマーの架橋物を含む不溶物を観測する。
 なお、コーティング層のモデル成形体を、上記コーティング層において架橋が形成される工程と同一の条件(または実質同一の条件)に暴露し、その後、上記(1)または(2)の方法で、架橋の有無を判定してもよい。コーティング層のモデル成形体としては、例えばコーティング層に含まれるポリマーのフィルム状成形体(成形体I)が挙げられる。また、上記基材と同一(ないし実質同一)材質のフィルム状成形体(成形体II)の上に成形体Iが形成されたものを用いてもよい。後者のモデル成形体は、基材とコーティング層の間で架橋されていることの判定に有用である。
 上記架橋は、基材に少なくとも親水性ポリマーを付着させた状態で放射線を照射することにより生じさせることが好ましい。放射線は、各種のイオン線、電子線、陽電子線、エックス線、ガンマ(γ)線、中性子線が好ましく、より好ましくは電子線およびγ線である。最も好ましくはγ線である。
 上述のようにコーティング層内やコーティング層と基材との間で架橋を生じさせることにより、上述した擦り洗い耐久性が付与される他、レンズの表面に良好な濡れ性と易滑性が付与され、優れた装用感を与えることができる。
 本発明の低含水性軟質眼用レンズは、コンタクトレンズ形状の試験片をホウ酸緩衝液に浸漬した後、試験片をホウ酸緩衝液から引き上げ、人差し指で所定回数擦った時の感応評価として、非常に優れた易滑性があり、又は、優れた易滑性がある(中程度の易滑性と非常に優れた易滑性との中間程度)。
 また、本発明の低含水性軟質眼用レンズは、コンタクトレンズ形状の試験片をホウ酸緩衝液に浸漬した後、試験片をホウ酸緩衝液から引き上げ、空中に直径方向が垂直になるように保持した際の表面の様子に対する目視観察において、表面の液膜が5秒以上保持されて切れる程度の水濡れ性を少なくとも有する。ここで、直径とは、コンタクトレンズの縁部が構成する円の直径である。
 本発明の低含水性軟質眼用レンズにおいては、低含水性且つ軟質であるにも関わらず、また基材が中性であっても、表面に親水性ポリマーからなるコーティング層を形成することによって、レンズ表面に十分な濡れ性、易滑性および防汚性を付与することが可能である。これにより、装用時にレンズが角膜に貼り付く現象を大幅に低減ないし回避することができる。
 本発明の低含水性軟質眼用レンズのコーティング層は、基材との間に共有結合を有する必要はない。簡便な工程での製造が可能となることから、コーティング層は基材との間に共有結合を有さないことが好ましい。コーティング層は、基材との間に共有結合を有さなくても、実用的な耐久性を有する。
 なお、低含水性軟質眼用レンズの耐久性は、例えば成人男性の手の平の中央に窪みを作ってそこにサンプル(コンタクトレンズ形状)を置き、そこに必要に応じて所定の洗浄液を加え、もう一方の手の人差し指の腹で表裏100回ずつ擦った後、サンプルをホウ酸緩衝液中に浸漬した状態で、上記水濡れ性、易滑性、およびコーティング量を判断することにより評価される。低含水性軟質眼用レンズの表面に、放射線が照射されたコーティング層を設けた場合、上述した擦り洗い処理を施した後でも、良好な水濡れ性および易滑性を有する。なお、上記擦り洗い方法は、想定されるコンタクトレンズの使用方法を考慮して定めたものである。
 本発明の低含水性軟質眼用レンズのコーティング層は、下記に詳細に説明する親水性ポリマー溶液(「溶液」は、水溶液を意味する)で基材表面を処理することにより形成する。ここで、水溶液とは、水を主たる成分とする溶液である。
 本発明の親水性ポリマー溶液は、通常、1種(1種とは、1の合成反応により製造されたポリマー群を意味する。1種(同一)のポリマーであっても、濃度が異なる溶液は1種とはみなさない。また、構成するモノマー種が同一であっても、配合比を変えて合成したポリマーは1種ではない)のポリマーを含有する溶液を意味する。
 コーティング層は、1種以上の酸性ポリマー、および1種以上の塩基性ポリマーからなることが好ましい。2種以上の酸性ポリマーまたは2種以上の塩基性ポリマーを用いると、眼用レンズ表面に易滑性や防汚性などの性質を発現させやすいためにより好ましい。特に2種以上の酸性ポリマーと1種以上の塩基性ポリマーを使用した場合にその傾向が強まるのでさらに好ましい。
 コーティング層は、1種以上の酸性ポリマー溶液による処理を1回以上、および1種以上の塩基性ポリマー溶液による処理を1回以上行うことにより形成されることが好ましい。
 また、コーティング層は、1種以上の酸性ポリマー溶液による処理および1種以上の塩基性ポリマー溶液による処理を、好ましくはそれぞれ1~5回、より好ましくはそれぞれ1~3回、さらに好ましくはそれぞれ1~2回行うことにより基材の表面に形成される。酸性ポリマー溶液による処理の回数と塩基性ポリマー溶液による処理の回数は異なっていてもよい。
 本発明の低含水性軟質眼用レンズにおいては、1種以上の酸性ポリマー溶液による処理および1種以上の塩基性ポリマー溶液による処理が合計2回または3回という極めて少ない回数で優れた濡れ性や易滑性を付与しうる。これは製造工程の短縮化という観点から、工業的に非常に重要な意味を持つ。その意味で、本発明の低含水性軟質眼用レンズにおいて、酸性ポリマー溶液による処理および塩基性ポリマー溶液による処理の合計は2回または3回が好ましい。
 本発明の低含水性軟質眼用レンズにかかるコーティング層は、2種の酸性ポリマー溶液による処理を各1回および塩基性ポリマー溶液による処理を1回行うことが好適である。
 発明者らは、コーティング層が、酸性ポリマー溶液および塩基性ポリマー溶液のいずれか一方による処理のみを行うだけでは、濡れ性や易滑性の発現がほとんど見られないことも確認している。
 塩基性ポリマーとしては、塩基性を有する複数の基をポリマー鎖に沿って有するホモポリマーまたは共重合ポリマーを好適に用いることができる。塩基性を有する基としてはアミノ基およびその塩が好適である。たとえば、このような塩基性ポリマーの好適な例は、ポリ(アリルアミン)、ポリ(ビニルアミン)、ポリ(エチレンイミン)、ポリ(ビニルベンジルトリメチルアミン)、ポリアニリン、ポリ(アミノスチレン)、ポリ(N,N-ジアルキルアミノエチルメタクリレート)などのアミノ基含有(メタ)アクリレート重合体、ポリ(N,N-ジメチルアミノプロピルアクリルアミド)などのアミノ基含有(メタ)アクリルアミド重合体およびこれらの塩などである。以上はホモポリマーの例であるが、これらの共重合体(すなわち上記塩基性ポリマーを構成する塩基性モノマーどうしの共重合体、あるいは塩基性モノマーと他のモノマーの共重合体)も好適に用いることができる。
 塩基性ポリマーが共重合体である場合、該共重合体を構成する塩基性モノマーとしては、重合性の高さという点でアリル基、ビニル基、および(メタ)アクリロイル基を有するモノマーが好ましく、(メタ)アクリロイル基を有するモノマーが最も好ましい。該共重合体を構成する塩基性モノマーとして好適なものを例示すれば、アリルアミン、ビニルアミン(前駆体としてN-ビニルカルボン酸アミド)、ビニルベンジルトリメチルアミン、アミノ基含有スチレン、アミノ基含有(メタ)アクリレート、アミノ基含有(メタ)アクリルアミド、およびこれらの塩である。これらの中でも重合性の高さからアミノ基含有(メタ)アクリレート、アミノ基含有(メタ)アクリルアミド、およびこれらの塩がより好ましく、N,N-ジメチルアミノエチルメタクリレート、N,N-ジメチルアミノプロピルアクリルアミド、およびこれらの塩が最も好ましい。
 塩基性ポリマーは、第四級アンモニウム構造を有するポリマーであってもよい。第四級アンモニウム構造を有するポリマー化合物は、軟質眼用レンズのコーティングに使用されると、軟質眼用レンズに抗微生物性を付与することができる。
 酸性ポリマーとしては、酸性を有する複数の基をポリマー鎖に沿って有するホモポリマーまたは共重合ポリマーを好適に用いることができる。酸性を有する基としては、カルボキシル基、スルホン酸基およびこれらの塩が好適であり、カルボキシル基およびその塩が最も好適である。たとえば、このような酸性ポリマーの好適な例は、ポリメタクリル酸、ポリアクリル酸、ポリ(ビニル安息香酸)、ポリ(チオフェン-3-酢酸)、ポリ(4-スチレンスルホン酸)、ポリビニルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)およびこれらの塩などである。以上はホモポリマーの例であるが、これらの共重合体(すなわち上記酸性ポリマーを構成する酸性モノマーどうしの共重合体、あるいは酸性モノマーと他のモノマーの共重合体)も好適に用いることができる。
 酸性ポリマーが共重合体である場合、該共重合体を構成する酸性モノマーとしては、重合性の高さという点でアリル基、ビニル基、および(メタ)アクリロイル基を有するモノマーが好ましく、(メタ)アクリロイル基を有するモノマーが最も好ましい。該共重合体を構成する酸性モノマーとして好適なものを例示すれば、(メタ)アクリル酸、ビニル安息香酸、スチレンスルホン酸、ビニルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、およびこれらの塩である。これらの中で、(メタ)アクリル酸、2-アクリルアミド-2-メチルプロパンスルホン酸、およびこれらの塩がより好ましく、最も好ましいのは(メタ)アクリル酸、およびその塩である。
 塩基性ポリマーおよび酸性ポリマーのうちの少なくとも1種が、アミド基および水酸基から選ばれた基を有するポリマーであることが好ましい。塩基性ポリマーおよび/または酸性ポリマーがアミド基を有する場合、濡れ性のみならず易滑性のある表面を形成できるために好ましい。塩基性ポリマーおよび/または酸性ポリマーが水酸基を有する場合、濡れ性のみならず涙液に対する防汚性に優れた表面を形成できるために好ましい。
 上記酸性ポリマーおよび塩基性ポリマーのうちの2種以上が、水酸基およびアミド基から選ばれた基を有するポリマーであることがより好ましい。すなわち、低含水性軟質眼用レンズが、水酸基を有する酸性ポリマー、水酸基を有する塩基性ポリマー、アミド基を有する酸性ポリマーおよびアミド基を有する塩基性ポリマーから選ばれた2種以上を含むことが好ましい。この場合、易滑性のある表面が形成される効果、または涙液に対する防汚性に優れた表面を形成できる効果がより顕著に発現できるために好ましい。
 また、コーティング層が、水酸基を有する酸性ポリマーおよび水酸基を有する塩基性ポリマーから選ばれた少なくとも1種、ならびにアミド基を有する酸性ポリマーおよびアミド基を有する塩基性ポリマーから選ばれた少なくとも1種を含むことがさらに好ましい。この場合、易滑性のある表面が形成される効果、および涙液に対する防汚性に優れた表面を形成できる効果の両方が発現できるために好ましい。
 アミド基を有する塩基性ポリマーの例としては、アミノ基を有するポリアミド類、部分加水分解キトサン、塩基性モノマーとアミド基を有するモノマーの共重合体などを挙げることができる。
 アミド基を有する酸性ポリマーの例としては、カルボキシル基を有するポリアミド類、酸性モノマーとアミド基を有するモノマーの共重合体などを挙げることができる。
 水酸基を有する塩基性ポリマーの例としては、キチンなどのアミノ多糖類、塩基性モノマーと水酸基を有するモノマーの共重合体などを挙げることができる。
 水酸基を有する酸性ポリマーの例としては、ヒアルロン酸、コンドロイチン硫酸、カルボキシメチルセルロース、カルボキシプロピルセルロースなどの酸性基を有する多糖類、酸性モノマーとアミド基を有するモノマーの共重合体などを挙げることができる。
 アミド基を有するモノマーとしては、重合の容易さの点で(メタ)アクリルアミド基を有するモノマーおよびN-ビニルカルボン酸アミド(環状のものを含む)が好ましい。かかるモノマーの好適な例としては、N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルアセトアミド、N-メチル-N-ビニルアセトアミド、N-ビニルホルムアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N-イソプロピルアクリルアミド、N-(2-ヒドロキシエチル)アクリルアミド、アクリロイルモルホリン、およびアクリルアミドを挙げることができる。これら中でも易滑性の点で好ましいのは、N-ビニルピロリドンおよびN,N-ジメチルアクリルアミドであり、N,N-ジメチルアクリルアミドが最も好ましい。
 水酸基を有するモノマーの好適な例としては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリルアミド、グリセロール(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、N-(4-ヒドロキシフェニル)マレイミド、ヒドロキシスチレン、ビニルアルコール(前駆体としてカルボン酸ビニルエステル)を挙げることができる。水酸基を有するモノマーとしては、重合の容易さの点で(メタ)アクリロイル基を有するモノマーが好ましく、(メタ)アクリル酸エステルモノマーはより好ましい。これらの中で、涙液に対する防汚性の点で好ましいのは、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、およびグリセロール(メタ)アクリレートであり、中でもヒドロキシエチル(メタ)アクリレートが最も好ましい。
 塩基性モノマーとアミド基を有するモノマーの共重合体として好ましい具体例は、N,N-ジメチルアミノエチルメタクリレート/N-ビニルピロリドン共重合体、N,N-ジメチルアミノエチルメタクリレート/N,N-ジメチルアクリルアミド共重合体、N,N-ジメチルアミノプロピルアクリルアミド/N-ビニルピロリドン共重合体、およびN,N-ジメチルアミノプロピルアクリルアミド/N,N-ジメチルアクリルアミド共重合体である。最も好ましくはN,N-ジメチルアミノプロピルアクリルアミド/N,N-ジメチルアクリルアミド共重合体である。
 酸性モノマーとアミド基を有するモノマーの共重合体として好ましい具体例は、(メタ)アクリル酸/N-ビニルピロリドン共重合体、(メタ)アクリル酸/N,N-ジメチルアクリルアミド共重合体、2-アクリルアミド-2-メチルプロパンスルホン酸/N-ビニルピロリドン共重合体、および2-アクリルアミド-2-メチルプロパンスルホン酸/N,N-ジメチルアクリルアミド共重合体である。最も好ましくは(メタ)アクリル酸/N,N-ジメチルアクリルアミド共重合体である。
 塩基性モノマーと水酸基を有するモノマーの共重合体として好ましい具体例は、N,N-ジメチルアミノエチルメタクリレート/ヒドロキシエチル(メタ)アクリレート共重合体、N,N-ジメチルアミノエチルメタクリレート/グリセロール(メタ)アクリレート共重合体、N,N-ジメチルアミノプロピルアクリルアミド/ヒドロキシエチル(メタ)アクリレート、およびN,N-ジメチルアミノプロピルアクリルアミド/グリセロール(メタ)アクリレート共重合体である。最も好ましくはN,N-ジメチルアミノエチルメタクリレート/ヒドロキシエチル(メタ)アクリレート共重合体である。
 酸性モノマーと水酸基を有するモノマーの共重合体として好ましい具体例は、(メタ)アクリル酸/ヒドロキシエチル(メタ)アクリレート共重合体、(メタ)アクリル酸/グリセロール(メタ)アクリレート共重合体、2-アクリルアミド-2-メチルプロパンスルホン酸/ヒドロキシエチル(メタ)アクリレート共重合体、および2-アクリルアミド-2-メチルプロパンスルホン酸/グリセロール(メタ)アクリレート共重合体である。最も好ましくは(メタ)アクリル酸/ヒドロキシエチル(メタ)アクリレート共重合体である。
 上記塩基性モノマーあるいは酸性モノマーと他のモノマーの共重合体を用いる場合、その共重合比率は[塩基性モノマーあるいは酸性モノマーの質量]/[他のモノマーの質量]が、1/99~99/1が好ましく、2/98~90/10がより好ましく、10/90~80/20がさらに好ましい。共重合比率がこの範囲にある場合に、易滑性や涙液に対する防汚性などの機能を発現しやすくなる。
 コーティング層の種々の特性、たとえば厚さを変えるために、酸性ポリマーおよび塩基性ポリマーの分子量を変えることができる。具体的には、分子量を増すと、一般にコーティング層の厚さは増す。しかし、分子量が大きすぎる場合、粘度増大により取り扱い難さが増す可能性がある。そのため、本発明で使用される酸性ポリマーおよび塩基性ポリマーは、2000~150000の分子量を有することが好ましい。より好ましくは、分子量5000~100000であり、さらに好ましくは、75000~100000である。酸性ポリマーおよび塩基性ポリマーの分子量は、ゲル浸透クロマトグラフィー法(水系溶媒)で測定されるポリエチレングリコール換算の質量平均分子量である。
 コーティング層の塗布は、たとえばWO99/35520、WO01/57118または米国特許公報第2001-0045676号に記載されているような多数の方法で達成することができる。
 次に、本発明の低含水性軟質眼用レンズの製造方法について説明する。本発明の低含水性軟質眼用レンズは、レンズ形状の成型体(基材)の表面に、1種以上の酸性ポリマー溶液と1種以上の塩基性ポリマー溶液をそれぞれ1~5回、より好ましくはそれぞれ1~3回、さらに好ましくはそれぞれ1~2回塗布してコーティング層を形成し、さらに、該コーティング層に対して放射線(好ましくはγ線)を照射することにより得られる。酸性ポリマー溶液の塗布工程と塩基性ポリマー溶液の塗布工程の回数は異なっていてもよい。
 発明者らは、本発明の低含水性軟質眼用レンズの製造方法において、1種以上の酸性ポリマー溶液の塗布工程および1種以上の塩基性ポリマー溶液の塗布工程が合計2回または3回という極めて少ない回数で優れた濡れ性や易滑性を付与しうることを見出した。これは製造工程の短縮化という観点から、工業的に非常に重要な意味を持つ。その意味で、酸性ポリマー溶液の塗布工程および塩基性ポリマー溶液の塗布工程の合計は2回または3回が好ましい。
 濡れ性、易滑性、および製造工程短縮の観点から、コーティング層の塗布は、下記の構成1~4から選ばれた構成で施されることが好ましい。下記の表記は、成型体表面に左から順に各塗布工程が施されることを表している。
 構成1:塩基性ポリマー溶液の塗布/酸性ポリマー溶液の塗布
 構成2:酸性ポリマー溶液の塗布/塩基性ポリマー溶液の塗布
 構成3:塩基性ポリマー溶液の塗布/酸性ポリマー溶液の塗布/塩基性ポリマー溶液の塗布
 構成4:酸性ポリマー溶液の塗布/塩基性ポリマー溶液の塗布/酸性ポリマー溶液の塗布
 これらの構成の中でも、構成1と構成4が、得られる低含水性軟質眼用レンズが特に優れた濡れ性を示すためにより好ましい。
 酸性ポリマー溶液および塩基性ポリマー溶液を塗布するにあたって、基材の表面は、未処理であっても、処理済みであってもよい。ここで基材の表面が処理済みであるとは、基材の表面を公知の手法によって表面処理または表面改質することをいう。表面処理または表面改質の好適な例としては、プラズマ処理、化学的改質、化学的官能化、およびプラズマコーティングなどである。
 本発明の低含水性軟質眼用レンズの製造方法の好ましい態様の1つは、下記工程1~工程4をこの順に含むものである。
<工程1>
モノマーの混合物を重合して低含水性軟質のレンズ形状の成型体を得る工程。
<工程2>
 成型体を塩基性ポリマー溶液に接触させた後、余剰の該塩基性ポリマー溶液を洗浄除去する工程。
<工程3>
 成型体を酸性ポリマー溶液に接触させた後、余剰の該酸性ポリマー溶液を洗浄除去する工程。
<工程4>
 成型体に放射線を照射する工程。
 上記のように、レンズ形状の成型体を酸性ポリマー溶液および塩基性ポリマー溶液に順次接触させることにより、該成型体上に酸性ポリマーおよび塩基性ポリマーからなる層を形成することができる。その後、余剰のポリマーを十分に洗浄除去することが好ましい。
 上記成型体を酸性ポリマー溶液または塩基性ポリマー溶液に接触させる方法としては、浸漬法(ディップ法)、刷毛塗り法、スプレーコーティング法、スピンコート法、ダイコート法、スキージ法などの種々のコーティング手法を適用できる。
 溶液の接触を浸漬法で行う場合、浸漬時間は、多くの因子に応じて変化させることができる。酸性ポリマー溶液または塩基性ポリマー溶液への成型体の浸漬は、好ましくは、1~30分間、より好ましくは2~20分間、そして最も好ましくは1~5分間の間行う。
 酸性ポリマー溶液および塩基性ポリマー溶液の濃度は、酸性ポリマーないし塩基性ポリマーの性質、所望のコーティング層の厚さ、およびその他の多数の因子に応じて変化させることができる。好ましい酸性ポリマーまたは塩基性ポリマーの濃度は、0.001~10質量%、より好ましくは0.005~5質量%、さらに好ましくは0.01~3質量%、そして最も好ましくは0.7~1.3質量%である。
 酸性ポリマー溶液および塩基性ポリマー溶液pHは、好ましくは2~5、より好ましくは2.5~4.5に維持すると良い。
 余剰の酸性ポリマーおよび塩基性ポリマーの洗浄除去は、一般に清浄な水または有機溶媒を用いて、コーティング後の成型体をすすぐことによって行われる。すすぎは該成型体を水または有機溶媒に浸漬したり、水流や有機溶媒流にさらすことで行うことが好ましい。すすぎは、1つの工程で完了させてもよいが、すすぎの工程を複数回行うほうが、効率的であることが認められた。2~5の工程ですすぎを行うのが好ましい。すすぎ溶液へのそれぞれの浸漬には、1~3分間を費やすのが好ましい。
 すすぎ溶液としては純水も好ましいが、コーティング層の密着を高めるために、好ましくは2~7、より好ましくは2~5、そしてさらにより好ましくは2.5~4.5のpHに緩衝された水溶液も好適に用いられる。
 過剰のすすぎ溶液の乾燥または除去を行う工程を含んでも良い。成型体を大気雰囲気下に単に放置することによって、成型体はある程度乾燥させることができるが、緩やかな空気流を表面に送ることによって、乾燥を亢進することが好ましい。空気流の流速は、乾燥する材料の強度、および材料の機械的固定(fixturing)の関数として調節することができる。成型体を完全に乾燥してしまう必要はない。ここでは、成型体の乾燥よりはむしろ、成型体表面に密着した溶液の液滴を除去することが重要である。したがって、成型体表面上の水または溶液の膜が除去される程度にまで乾燥するだけでよく、その方が工程時間の短縮のつながるために好ましい。
 酸性ポリマーと塩基性ポリマーとは交互に塗布することが好ましい。交互に塗布することで、どちらか一方のみでは得られない優れた濡れ性や易滑性、さらには優れた装用感を有する低含水性軟質眼用レンズを得ることができる。
 コーティング層は、非対称であることができる。ここで「非対称」とは、低含水性軟質眼用レンズの第一の面と反対側の第二の面とで異なるコーティング層を有することをいう。ここで「異なるコーティング層」とは、第一の面に形成されたコーティング層と第二の面に形成されたコーティング層とが、異なる表面特性または機能性を有することをいう。
 コーティング層の厚さは、塩化ナトリウムなどの一つまたはそれ以上の塩を酸性ポリマー溶液または塩基性ポリマー溶液に加えることによって、調節することができる。好ましい塩濃度は、0.1~2.0質量%である。塩の濃度が上昇するにつれて、高分子電解質は、より球状の立体構造をとる。しかし濃度が高くなりすぎると、高分子電解質は、成型体表面に、沈着するとしても良好には沈着しない。より好ましい塩濃度は、0.7~1.3質量%である。
 放射線の照射は、成型体をコーティング液に浸漬した状態で行っても良いし、成型体をコーティング液から引き出して洗浄した後で行っても良い。また、成型体をコーティング液以外の液体に浸漬した状態で放射線の照射を行うことも好ましく行われる。この場合、照射線がより効率的に作用するために好ましい。この場合、コーティングした成型体を浸漬するために使用する液体のための溶媒は有機系、無機系の各種溶媒が適用可能であり特に制限はない。例を挙げれば、水、メタノール、エタノール、プロパノール、2-プロパノール、ブタノール、tert-ブタノール、tert-アミルアルコール、3,7-ジメチル-3-オクタノールなどの各種アルコール系溶媒、ベンゼン、トルエン、キシレンなどの各種芳香族炭化水素系溶媒、ヘキサン、ヘプタン、オクタン、デカン、石油エーテル、ケロシン、リグロイン、パラファインなどの各種脂肪族炭化水素系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトンなどの各種ケトン系溶媒、酢酸エチル、酢酸ブチル、安息香酸メチル、フタル酸ジオクチル、二酢酸エチレングリコールなどの各種エステル系溶媒、ジエチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリエチレングリコール-ポリプロピレングリコールブロック共重合体、ポリエチレングリコール-ポリプロピレングリコールランダム共重合体などの各種グリコールエーテル系溶媒であり、これらは単独あるいは混合して使用することができる。これらのうち、最も好ましいのは水である。成型体を水系の液体に浸漬した状態で放射線の照射を行う場合、水系の液体としては、純水のほかに、生理食塩水、リン酸系の緩衝液(好ましくはpH7.1~7.3)、ホウ酸系の緩衝液(好ましくはpH7.1~7.3)が好適である。
 成型体を容器に密閉した状態で放射線を照射すれば、成型体の滅菌を同時に行うことができるという利点がある。
 放射線としては、各種のイオン線、電子線、陽電子線、エックス線、γ線、中性子線が好ましく、より好ましくは電子線およびγ線であり、最も好ましくはγ線を用いると良い。この場合、照射する放射線の線量は少なすぎると成型体とコーティング層の十分な結合が得られないことから、線量は1kGy以上が好ましく、5kGy以上がより好ましい。また、照射する放射線の線量が多すぎると成型体の物性低下を招くことから、線量は40kGy以下が好ましく、25kGy以下が好ましく、15kGy以下がより好ましい。特にγ線を用いる場合は、線量は25kGy以下とすることが好ましい。これにより、コーティング層内の少なくとも一部およびコーティング層と成型体との間の少なくとも一部が架橋され、コーティング層の耐久性(例えば擦り洗い耐久性)を向上させることができる。
 本発明の低含水性軟質眼用レンズは、低含水性ソフトコンタクトレンズ、眼内レンズ、人工角膜、角膜インレイ、角膜オンレイ、メガネレンズなどの眼用レンズとして有用である。中でも低含水性ソフトコンタクトレンズに特に好適である。
 以下、実施例により本発明の実施例を具体的に説明するが、本発明はこれによって限定されるものではない。
 分析方法および評価方法
(1)含水率
 コンタクトレンズ形状の試験片を使用した。試験片をホウ酸緩衝液に浸漬し室温で24時間以上おいた後、表面水分をワイピングクロス(日本製紙クレシア製”キムワイプ(登録商標)”)で拭き取って質量(Ww)を測定した。その後、試験片を真空乾燥器で40℃、16時間乾燥し質量(Wd)を測定した。次式にて含水率を求めた。得られた値が1%未満の場合は測定限界以下と判断し、「1%未満」と表記した。
   含水率(%)=100×(Ww-Wd)/Ww
(2)水濡れ性
 コンタクトレンズ形状の試験片を、室温でビーカー中のホウ酸緩衝液中に24時間以上浸漬した。試験片とホウ酸緩衝液の入ったビーカーを超音波洗浄器にかけた(30秒間)。試験片をホウ酸緩衝液から引き上げ、空中に直径方向が垂直になるように保持した際の表面の様子を目視観察し、表面の液膜保持時間を測定することにより下記の基準で判定した。ここで、直径とは、コンタクトレンズの縁部が構成する円の直径である。
   A:表面の液膜が20秒以上保持する。
   B:表面の液膜が10秒以上20秒未満で切れる。
   C:表面の液膜が5秒以上10秒未満で切れる。
   D:表面の液膜が1秒以上5秒未満で切れる。
   E:表面の液膜が瞬時に切れる(1秒未満)。
(3)易滑性
 コンタクトレンズ形状の試験片を、室温でビーカー中のホウ酸緩衝液中に24時間以上浸漬した。試験片とホウ酸緩衝液の入ったビーカーを超音波洗浄器にかけた(30秒間)。試験片をホウ酸緩衝液から引き上げ、人差し指で5回擦った時の感応評価で行った。
   A:非常に優れた易滑性がある。
   B:AとCの中間程度の易滑性がある。
   C:中程度の易滑性がある。
   D:易滑性がほとんど無い(CとEの中間程度)。
   E:易滑性が無い。
(4)擦り洗い耐久性(実施例1~4)
 手のひらの中央に窪みを作ってそこにホウ酸緩衝液による湿潤状態のサンプル(コンタクトレンズ形状)を置き、そこに洗浄液(ボシュロム、“レニュー(登録商標)”)を加えて、もう一方の手の人差し指の腹で表裏10回ずつ擦った。その後、さらに親指と人差し指でサンプルを挟み洗浄液をサンプルにかけながら両面を20回擦った。擦り洗い後のサンプルをホウ酸緩衝液中に浸漬した。その後、(3)易滑性評価を行った。
(5)コーティング量評価
 コーティング量は、X線光電子分光法(XPS)を用いて評価した。測定は以下の条件で行った。
 装置:ESCALAB220iXL
 励起X線:monochromatic Al Kα1,2線(1486.6eV)
 X線径:1mm
 光電子脱出角度:90°(試料表面に対する検出器の傾き)
 サンプル測定箇所:コンタクトレンズ中心付近
 物質中の束縛電子の結合エネルギー値から、物質表面(数nm)の元素情報を得て、窒素元素含有率に対する珪素元素含有率の割合(N/Si元素含有比)を求めた。
(6)静的接触角評価
 静的接触角の評価については、CONTACT-ANGLE METER(model CA-D、協和界面科学株式会社製)を用いて行った。
<合成例>
 実施例においてコーティングに供した共重合体の合成例を示すが、本合成例において共重合体の分子量は以下に示す条件で測定した。
(GPC測定条件)
   装置:島津製作所製 Prominence GPCシステム
   ポンプ:LC-20AD
   オートサンプラ:SIL-20AHT
   カラムオーブン:CTO-20A
   検出器:RID-10A
   カラム:東ソー社製GMPWXL(内径7.8mm×30cm、粒子径13μm)
   溶媒:水/メタノール=1/1(0.1N硝酸リチウム添加)
   流速:0.5mL/分
   測定時間:30分
   サンプル濃度:0.1質量%
   注入量:100μL
   標準サンプル:Agilent社製ポリエチレンオキシド標準サンプル(0.1kD~1258kD)。
(合成例1)
 以下、純水とは逆浸透膜で濾過して精製した水を表す。
<p(DMAA/AA):N,N-ジメチルアクリルアミド/アクリル酸(モル比2/1)>
 500mL三口フラスコにN,N-ジメチルアクリルアミド(59.50g、0.600mol)、アクリル酸(21.62g、0.300mol)、純水(325.20g)、重合開始剤VA-061(和光純薬、0.1408g、0.562mmol)、2-メルカプトエタノール(43.8μL、0.63mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、50℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液をエバポレータで400gまで濃縮し、2-プロパノール/n-ヘキサン=500mL/500mL中に注ぎ入れて静置後、上澄み液をデカンテーションで除いた。得られた固形分を2-プロパノール/n-ヘキサン=250mL/250mLで3回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:55kD、Mw:192kD(Mw/Mn=3.5)であった。
(参考例1)
 着色剤の作製
 50mLスクリュー瓶に20g純水を入れた。UniBlue A(品番298409、シグマアルドリッチ)を0.5g加え、37℃のインキュベータ中で溶解させた。溶解後、1N塩酸を4g添加し、pH試験紙でpH約1~2を確認した。酢酸エチルを24g添加し、軽く攪拌した。100mLナスフラスコに移し、静置した。UniBlue Aが酢酸エチル側に移るので下層の水層を捨てた。酢酸エチル層を100mLナスフラスコに移し、20℃のエバポレーターで蒸発させた。その後、真空乾燥器で40℃、16時間乾燥させ、酸型UniBlue A〔推定構造式(M1)〕を得た。
Figure JPOXMLDOC01-appb-C000006
(参考例2)
 コーティング溶液の調製
<PAA溶液>
 ポリアクリル酸(169-18591、和光純薬工業、分子量25万)を純水に溶解して1.2質量%水溶液とした。
<PEI溶液>
 ポリエチレンイミン(P3143、シグマアルドリッチ、分子量75万)を純水に溶解して1質量%水溶液とした。
<p(DMAA/AA)溶液>
 発明者らがラボで合成した合成例1のN,N-ジメチルアクリルアミド/アクリル酸を純水に溶解して1質量%水溶液とした。
(参考例3)
 成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(FM7726、JNC、式(M2)の化合物、質量平均分子量29kD、数平均分子量26kD)(50質量部)、成分Bとしてトリフルオロエチルアクリレート(ビスコート3F、大阪有機化学工業)(45質量部)、成分Cとして2-エチルヘキシルアクリレート(3質量部)、成分Cとしてジメチルアミノエチルアクリレート(1質量部)、成分Cとして重合性基を有する紫外線吸収剤(RUVA-93、大塚化学)(1質量部)、成分Cとして参考例1の酸型Uniblue A(0.04質量部)、重合開始剤“イルガキュア(登録商標)”819(チバ・スペシャルティ・ケミカルズ、0.75質量部)およびt-アミルアルコール(10質量部)を混合し撹拌した。メンブレンフィルター(0.45μm)でろ過して不溶分を除いてモノマー混合物を得た。このモノマー混合物を試験管に入れ、タッチミキサーで攪拌しながら減圧20Torr(27hPa)にして脱気を行い、その後アルゴンガスで大気圧に戻した。この操作を3回繰り返した。窒素雰囲気のグローブボックス中で透明樹脂(ベースカーブ側ポリプロピレン、フロントカーブ側ゼオノア)製のコンタクトレンズ用モールドにモノマー混合物を注入し、蛍光ランプ(東芝、FL-6D、昼光色、6W、4本)を用いて光照射(1.01mW/cm、20分間)して重合した。重合後に、モールドごと60質量%イソプロピルアルコール水溶液中に浸漬して、モールドからコンタクトレンズ形状の成型体を剥離した。それによって得られた成型体を、大過剰量の80質量%イソプロピルアルコール水溶液に60℃、2時間浸漬した。さらに、成型体を大過剰量の50質量%イソプロピルアルコール水溶液に室温(25℃)で30分間浸漬し、次に大過剰量の25質量%イソプロピルアルコール水溶液に室温(同上)で30分間浸漬し、次に大過剰量の純水に室温(同上)で2時間以上浸漬した。得られたレンズの縁部の直径は約14mm、中心部の厚みは約0.07mmであった。
Figure JPOXMLDOC01-appb-C000007
(参考例4)
 成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(FM7726、JNC、式(M2)の化合物、質量平均分子量29kD、数平均分子量26kD)(50質量部)、成分Bとしてトリフルオロエチルアクリレート(ビスコート3F、大阪有機化学工業)(48.5質量部)、成分Cとしてメタクリル酸メチル(0.5質量部)、成分Cとして重合性基を有する紫外線吸収剤(RUVA-93、大塚化学)(1質量部)、重合開始剤“イルガキュア(登録商標)”819(チバ・スペシャルティ・ケミカルズ、0.75質量部)およびt-アミルアルコール(10質量部)を混合し撹拌した。その後、参考例3と同様の操作を行い、レンズを作製した。得られたレンズの縁部の直径は約14mm、中心部の厚みは約0.07mmであった。
(参考例5)
 メタクリル酸-2-ヒドロキシエチル(98質量部)、トリエチレングリコールジメタクリレート(1.0質量部)、光開始剤イルガキュア1850(1.0質量部)を混合し、撹拌した。その後、参考例3と同様の操作を行い、レンズを作製した。得られたレンズの縁部の直径は約14mm、中心部の厚みは約0.07mmであった。
(参考例6)
 式(M3)で表されるシリコーンモノマー(13.4質量部)、N,N-ジメチルアクリルアミド(37.0質量部)、式(M4)で表されるシリコーンモノマー(36.6質量部)、光開始剤イルガキュア1850(1.26質量部)、紫外線吸収剤(RUVA-93、大塚化学)(1.26質量部)メタクリル酸-2-ヒドロキシエチル(9.2質量部)、トリエチレングリコールジメタクリレート(1.26質量部)、式(M5)で表されるUniblue A(0.02質量部)、テトラヒドロリナロール(23.9質量部)を混合し撹拌した。その後、参考例3と同様の操作を行い、レンズを作製した。得られたレンズの縁部の直径約14mm、中心部の厚みは約0.07mmであった。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(参考例7)
 成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(FM7726、JNC、上式(M2)の化合物、質量平均分子量29kD、数平均分子量26kD)(40質量部)、成分Bとしてトリフルオロエチルアクリレート(ビスコート3F、大阪有機化学工業)(45質量部)、成分Cとして2-エチルヘキシルアクリレート(3質量部)、成分Cとしてジメチルアミノエチルアクリレート(1質量部)、成分Cとして重合性基を有する紫外線吸収剤(RUVA-93、大塚化学)(1質量部)、成分Cとして参考例1の酸型Uniblue A(0.04質量部)、重合開始剤“イルガキュア”(登録商標)819(チバ・スペシャルティ・ケミカルズ、0.75質量部)およびt-アミルアルコール(10質量部)、成分Mとして片末端にメタクリロイル基を有するポリジメチルシロキサン(FM0721、JNC、式(M6)の化合物、質量平均分子量6.8kD、数平均分子量6.5kD)(10質量部)、を混合し撹拌した。メンブレンフィルター(0.45μm)でろ過して不溶分を除いてモノマー混合物を得た。このモノマー混合物を試験管に入れ、タッチミキサーで攪拌しながら減圧20Torr(27hPa)にして脱気を行い、その後アルゴンガスで大気圧に戻した。この操作を3回繰り返した。窒素雰囲気のグローブボックス中で透明樹脂(ベースカーブ側ポリプロピレン、フロントカーブ側ゼオノア)製のコンタクトレンズ用モールドにモノマー混合物を注入し、蛍光ランプ(東芝、FL-6D、昼光色、6W、4本)を用いて光照射(1.01mW/cm、20分間)して重合した。重合後に、モールドごと60質量%イソプロピルアルコール水溶液中に浸漬して、モールドからコンタクトレンズ形状の成型体を剥離した。それによって得られた成型体を、大過剰量の80質量%イソプロピルアルコール水溶液に60℃、2時間浸漬した。さらに、成型体を大過剰量の50質量%イソプロピルアルコール水溶液に室温(23℃)で30分間浸漬し、次に大過剰量の25質量%イソプロピルアルコール水溶液に室温(同上)で30分間浸漬し、次に大過剰量の純水に室温(同上)で2時間以上浸漬した。得られたレンズの縁部の直径は約14mm、中心部の厚みは約0.07mmであった。
Figure JPOXMLDOC01-appb-C000011
(実施例1)
 参考例3で得られた成型体をPAA溶液に室温(25℃)で30分間浸漬した後、ビーカー中の純水で軽く濯ぎ洗いした。成型体を新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、PEI溶液、p(DMAA/AA)溶液の順に同様の操作を繰り返した。コーティング操作を終えた後、密閉バイアル瓶中のホウ酸緩衝液中にコーティングした成型体を浸漬した状態で入れ、γ線照射した。γ線線量は、35kGyであった。評価結果を表1に示した。
(実施例2)
 参考例3で得られた成型体をPAA溶液に室温(25℃)で30分間浸漬した後、ビーカー中の純水で軽く濯ぎ洗いした。成型体を新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、PEI溶液、PAA溶液の順に同様の操作を繰り返した。コーティング操作を終えた後、密閉バイアル瓶中のホウ酸緩衝液中にコーティングした成型体を浸漬した状態で入れ、γ線照射した。γ線線量は、35kGyであった。評価結果を表1に示した。
(実施例3)
 参考例4で得られた成型体をPAA溶液に室温(25℃)で30分間浸漬した後、ビーカー中の純水で軽く濯ぎ洗いした。成型体を新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、PEI溶液、p(DMAA/AA)溶液の順に同様の操作を繰り返した。コーティング操作を終えた後、密閉バイアル瓶中のホウ酸緩衝液中にコーティングした成型体を浸漬した状態で入れ、γ線照射した。γ線線量は、35kGyであった。評価結果を表1に示した。
(実施例4)
 参考例4で得られた成型体をPAA溶液に室温(25℃)で30分間浸漬した後、ビーカー中の純水で軽く濯ぎ洗いした。成型体を新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、PEI溶液、PAA溶液の順に同様の操作を繰り返した。コーティング操作を終えた後、密閉バイアル瓶中のホウ酸緩衝液中にコーティングした成型体を浸漬した状態で入れ、γ線照射した。γ線線量は、35kGyであった。評価結果を表1に示した。
Figure JPOXMLDOC01-appb-T000012
(比較例1)
 参考例3で得られた成型体をPAA溶液に室温(25℃)で30分間浸漬した後、ビーカー中の純水で軽く濯ぎ洗いした。成型体を新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、PEI溶液、p(DMAA/AA)溶液の順に同様の操作を繰り返した。コーティング操作を終えた後、コーティングした成型体を密閉バイアル瓶中のホウ酸緩衝液中に浸漬した状態で入れ、121℃で30分間、オートクレーブ滅菌を行った。評価結果を表1に示した。
(比較例2)
 参考例3で得られた成型体を密閉バイアル瓶中のホウ酸緩衝液中に浸漬した状態で入れ、γ線照射した。γ線線量は、35kGyであった。γ線照射後の成型体をビーカー中の純水で軽く濯ぎ洗いした。その後、PAA溶液に室温(25℃)で30分間浸漬した後、ビーカー中の純水で軽く濯ぎ洗いした。成型体を新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、PEI溶液、p(DMAA/AA)溶液の順に同様の操作を繰り返した。コーティング操作を終えた後、コーティングした成型体を密閉バイアル瓶中のホウ酸緩衝液中に浸漬した状態で入れ、121℃で30分間、オートクレーブ滅菌を行った。評価結果を表1に示した。
(比較例3)
 参考例4で得られた成型体を密閉バイアル瓶中のホウ酸緩衝液中に浸漬した状態で入れ、121℃で30分間、オートクレーブ滅菌を行った。評価結果を表1に示した。
(比較例4)
 市販品ソフトコンタクトレンズ“O OPTIX”(登録商標)(CIBA Vision社製)をビーカー中の純水で軽く濯ぎ洗いした。次に、新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。評価結果を表1に示した。
(比較例5)
 参考例5で得られた成型体を密閉バイアル瓶中のアルコックスL-6(エチレンオキサイド、Mw6万、明成化学工業株式会社製)0.8質量%水溶液中に浸漬した状態で入れ、121℃で30分間、オートクレーブ滅菌を行った。評価結果を表1に示した。
(比較例6)
 参考例5で得られた成型体を密閉バイアル瓶中のアルコックスL-11(エチレンオキサイド、Mw11万、明成化学工業株式会社製)0.8質量%水溶液中に浸漬した状態で入れ、121℃で30分間、オートクレーブ滅菌を行った。評価結果を表1に示した。
(比較例7)
 参考例5で得られた成型体を密閉バイアル瓶中のアルコックスEP-20(共重合体、質量%比エチレンオキサイド/プロピレンオキサイド=80/20、Mw80万、明成化学工業株式会社製)0.8質量%水溶液中に浸漬した状態で入れ、121℃で30分間、オートクレーブ滅菌を行った。評価結果を表1に示した。
(実施例5)
 参考例7で得られた成型体をPAA溶液に室温(23℃)で30分間浸漬した後、ビーカー中の純水で軽く濯ぎ洗いした。成型体を新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、PEI溶液、p(DMAA/AA)溶液の順に同様の操作を繰り返した。コーティング操作を終えた後、密閉バイアル瓶中にコーティングした成型体を入れ、25kGyのγ線を照射した。この成型体を用いて、コーティング量、含水率、接触角、水濡れ性、易滑性の評価を行った。各評価結果を表2に示した。
 なお、表2中の記号Xは、コーティング前のレンズ表面におけるN/Si元素含有比を示し、記号Yは、コーティング後の製品を擦り洗いする前のレンズ表面におけるN/Si元素含有比を示し、記号Zは、コーティング後の製品を擦り洗いした後のレンズ表面におけるN/Si元素含有比を示す。
(実施例6)
 参考例7で得られた成型体をPAA溶液に室温(23℃)で30分間浸漬した後、ビーカー中の純水で軽く濯ぎ洗いした。成型体を新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、PEI溶液、p(DMAA/AA)溶液の順に同様の操作を繰り返した。コーティング操作を終えた後、密閉バイアル瓶中にコーティングした成型体を入れ、10kGyのγ線を照射した。
 γ線照射後、手のひらの中央に窪みを作って成型体を置き、水を流しながらもう一方の手の人差し指の腹で表裏100回ずつ擦った。この成型体を用いて、コーティング量、含水率、接触角、水濡れ性、易滑性の評価を行った。評価結果を表2に示した。
(実施例7)
 手のひらの中央に窪みを作って実施例5で得られた成型体を置き、水を流しながらもう一方の手の人差し指の腹で表裏100回ずつ擦った。この成型体を用いて、コーティング量、含水率、接触角、水濡れ性、易滑性の評価を行った。評価結果を表2に示した。
(実施例8)
 コーティング後の成形体に照射する放射線を1kGyのγ線とした他は、実施例5と同様に成形体を作成し、実施例7と同様にして擦り洗い処理を行って、コーティング量の評価を行った。評価結果を表2に示した。
(実施例9)
 コーティング後の成形体に照射する放射線を1kGyの電子線とした他は、実施例5と同様に成形体を作成し、実施例7と同様にして擦り洗い処理を行って、コーティング量の評価を行った。評価結果を表2に示した。
(実施例10)
 コーティング後の成形体に照射する放射線を10kGyの電子線とした他は、実施例5と同様に成形体を作成し、実施例7と同様にして擦り洗い処理を行って、コーティング量の評価を行った。評価結果を表2に示した。
(実施例11)
 コーティング後の成形体に照射する放射線を40kGyの電子線とした他は、実施例5と同様に成形体を作成し、実施例7と同様にして擦り洗い処理を行って、コーティング量の評価を行った。評価結果を表2に示した。
(比較例8)
 コーティング後の成形体に照射する放射線を0.3kGyのγ線とした他は、実施例5と同様に成形体を作成し、実施例7と同様にして擦り洗い処理を行って、コーティング量の評価を行った。評価結果を表2に示した。
(比較例9)
 コーティング後の成形体に照射する放射線を40kGyのγ線とした他は、実施例5と同様に成形体を作成し、実施例7と同様にして擦り洗い処理を行って、コーティング量の評価を行った。評価結果を表2に示した。
(比較例10)
 コーティング後の成形体に照射する放射線を50kGyのγ線とした他は、実施例5と同様に成形体を作成し、実施例7と同様にして擦り洗い処理を行って、コーティング量、含水率、接触角、水濡れ性、易滑性の評価を行った。評価結果を表2に示した。
(比較例11)
 参考例7で得られた成型体をPAA溶液に室温(23℃)で30分間浸漬した後、ビーカー中の純水で軽く濯ぎ洗いした。成型体を新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、PEI溶液、p(DMAA/AA)溶液の順に同様の操作を繰り返した。その後、実施例7と同様にして擦り洗い処理を行って、コーティング量、含水率、接触角、水濡れ性、易滑性の評価を行った。評価結果を表2に示した。
(比較例12)
 参考例7で得られた成型体を用いて、コーティング量、含水率、接触角、水濡れ性、易滑性の評価を行った。評価結果を表2に示した。
Figure JPOXMLDOC01-appb-T000013
 1 人工皮革
 2 サンプルフィルム
 3 ゴム板
 4 鉄球の入ったプラスチック容器

Claims (17)

  1.  基材を含む低含水性軟質眼用レンズであって、
     該基材の表面の少なくとも一部に、親水性ポリマーからなる層が形成され、少なくとも該層内の一部が架橋されていることを特徴とする低含水性軟質眼用レンズ。
  2.  レンズ形状をなす珪素含有基材と、
     前記珪素含有基材に対してコーティングを施すことにより、前記珪素含有基材の表面の少なくとも一部に形成された親水性ポリマーからなる層と、
     を備え、
     前記親水性ポリマーは、窒素原子を含有し、且つ珪素原子を含有せず、
     前記コーティング前のレンズ表面における前記珪素原子の含有率に対する窒素原子の含有率の割合であるN/Si元素含有比をXとし、前記コーティングの後、擦り洗い前のレンズ表面における前記N/Si元素含有比をYとし、さらに擦り洗いした後のレンズ表面における前記N/Si元素含有比をZとしたとき、Y-X≧0.05、且つ、Z-X≧0.04を満たす、
    ことを特徴とする低含水性軟質眼用レンズ。
  3.  レンズ形状をなす珪素含有基材と、
     前記珪素含有基材の表面の少なくとも一部に形成された親水性ポリマーからなる層と、
     を備え、
     前記親水性ポリマーは、窒素原子を含有し、且つ珪素原子を含有せず、
     擦り洗い前のレンズ表面における前記珪素原子の含有率に対する窒素原子の含有率の割合であるN/Si元素含有比をYとし、擦り洗い後のレンズ表面における前記N/Si元素含有比をZとしたとき、Y-Z≦0.05を満たす、
    ことを特徴とする低含水性軟質眼用レンズ。
  4.  前記親水性ポリマーが、酸性ポリマーおよび/または塩基性ポリマーであることを特徴とする請求項1~3のいずれか1項に記載の低含水性軟質眼用レンズ。
  5.  前記基材と前記層との間で少なくとも一部が架橋されていることを特徴とする請求項1~4のいずれか1項に記載の低含水性軟質眼用レンズ。
  6.  前記層内の一部は、前記基材に少なくとも前記親水性ポリマーを付着させた状態で放射線を照射することにより架橋されていることを特徴とする請求項1~4のいずれか1項に記載の低含水性軟質眼用レンズ。
  7.  前記基材が、下記成分Aの重合体、または下記成分Aおよび成分Bとの共重合体を主成分とすることを特徴とする請求項1~6のいずれか1項に記載の低含水性軟質眼用レンズ;
     成分A:1分子あたり複数の重合性官能基を有し、数平均分子量が6000以上のポリシロキサン化合物;
     成分B:フルオロアルキル基を有する重合性モノマー。
  8.  前記層が、酸性ポリマー溶液による処理を1回または2回、および塩基性ポリマー溶液による処理を1回または2回、合計で3回処理を行うことにより形成されていることを特徴とする請求項1~7のいずれか1項に記載の低含水性軟質眼用レンズ。
  9.  前記層が、2種の酸性ポリマー溶液による処理を2回および塩基性ポリマー溶液による処理を1回行うことにより形成されていることを特徴とする請求項8に記載の低含水性軟質眼用レンズ。
  10.  前記層を形成する少なくとも1種の親水性ポリマーが、水酸基およびアミド基から選ばれた基を有するポリマーであることを特徴とする請求項1~3のいずれか1項に記載の低含水性軟質眼用レンズ。
  11.  下記工程1~工程4をこの順に含むことを特徴とする低含水性軟質眼用レンズの製造方法;
    <工程1>
     モノマーの混合物を重合して低含水性軟質のレンズ形状の成型体を得る工程;
    <工程2>
     成型体を塩基性ポリマー溶液に接触させた後、余剰の該塩基性ポリマー溶液を洗浄除去する工程;
    <工程3>
     成型体を酸性ポリマー溶液に接触させた後、余剰の該酸性ポリマー溶液を洗浄除去する工程;
    <工程4>
     成型体に放射線を照射する工程。
  12.  レンズ形状をなす珪素含有基材に対し、該珪素含有基材の表面の少なくとも一部に、酸性ポリマーおよび塩基性ポリマーからなる層をコーティングにより形成する工程を含み、
     前記塩基性ポリマーおよび酸性ポリマーの少なくとも1つのポリマーは、窒素原子を含有し、且つ珪素原子を含有せず、
     前記コーティング前のレンズ表面における前記珪素原子の含有率に対する窒素原子の含有率の割合であるN/Si元素含有比をXとし、前記コーティングの後、擦り洗い前のレンズ表面における前記N/Si元素含有比をYとし、さらに擦り洗いした後のレンズ表面における前記N/Si元素含有比をZとしたとき、Y-X≧0.05、且つ、Z-X≧0.04を満たす、
    ことを特徴とする低含水性軟質眼用レンズの製造方法。
  13.  前記モノマーの混合物が、1分子あたり複数の重合性官能基を有し、数平均分子量が6000以上のポリシロキサン化合物である成分A、および、フルオロアルキル基を有する重合性モノマーである成分Bを含む混合物であることを特徴とする請求項11または12に記載の低含水性軟質眼用レンズの製造方法。
  14.  前記コーティングの後、前記層に放射線を照射する工程をさらに含むことを特徴とする請求項12に記載の低含水性軟質眼用レンズの製造方法。
  15.  前記放射線の照射量が1kGy以上40kGy以下であることを特徴とする請求項11または14に記載の低含水性軟質眼用レンズの製造方法。
  16.  前記放射線がγ線または電子線であることを特徴とする請求項11、14、および15のいずれか1項に記載の低含水性軟質眼用レンズの製造方法。
  17.  前記放射線が、照射量1kGy以上25kGy以下のγ線、または照射量1kGy以上40kGy以下の電子線であることを特徴とする請求項15または16に記載の低含水性軟質眼用レンズの製造方法。
PCT/JP2012/070775 2011-08-17 2012-08-15 低含水性軟質眼用レンズおよびその製造方法 WO2013024880A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280039912.9A CN103748504B (zh) 2011-08-17 2012-08-15 低含水性软质眼用透镜及其制备方法
ES12824340T ES2877234T3 (es) 2011-08-17 2012-08-15 Lente ocular blanda con bajo contenido de humedad y método para su fabricación
US14/239,071 US9753187B2 (en) 2011-08-17 2012-08-15 Low hydrous soft ophthalmic lens and method for manufacturing the same
JP2012545970A JP6236782B2 (ja) 2011-08-17 2012-08-15 低含水性軟質眼用レンズおよびその製造方法
KR1020147002636A KR20140048224A (ko) 2011-08-17 2012-08-15 저함수성 연질 안용 렌즈 및 그의 제조 방법
EP12824340.9A EP2746836B1 (en) 2011-08-17 2012-08-15 Soft ocular lens having low moisture content, and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-178665 2011-08-17
JP2011178665 2011-08-17
JP2012045096 2012-03-01
JP2012-045096 2012-03-01

Publications (1)

Publication Number Publication Date
WO2013024880A1 true WO2013024880A1 (ja) 2013-02-21

Family

ID=47715196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070775 WO2013024880A1 (ja) 2011-08-17 2012-08-15 低含水性軟質眼用レンズおよびその製造方法

Country Status (8)

Country Link
US (1) US9753187B2 (ja)
EP (1) EP2746836B1 (ja)
JP (1) JP6236782B2 (ja)
KR (1) KR20140048224A (ja)
CN (1) CN103748504B (ja)
ES (1) ES2877234T3 (ja)
TW (1) TW201316081A (ja)
WO (1) WO2013024880A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017023374A (ja) * 2015-07-22 2017-02-02 東レ株式会社 医療デバイスおよびその製造方法
WO2020095539A1 (ja) * 2018-11-09 2020-05-14 東レ株式会社 医療デバイスおよびその製造方法
WO2021039519A1 (ja) * 2019-08-27 2021-03-04 東レ株式会社 医療デバイスの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494607A (zh) 2017-03-28 2019-11-22 得克萨斯农工大学系统 用于材料的涂层
TWI663197B (zh) * 2018-01-22 2019-06-21 亨泰光學股份有限公司 應用電漿誘導聚合接枝製備具薄膜之隱形眼鏡加工方法
TWI679227B (zh) * 2018-04-10 2019-12-11 亨泰光學股份有限公司 利用電漿輔助化學氣相沉積法製備薄膜於隱形眼鏡上之方法
CN108563038A (zh) * 2018-04-23 2018-09-21 青岛高新区尚达医药研究所 一种润滑抗菌型隐形眼镜及其制备方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424047A (en) 1977-07-25 1979-02-23 Bausch & Lomb Polysiloxane composition and contact lens
JPS5481363A (en) 1977-12-13 1979-06-28 Shin Etsu Chem Co Ltd Manufacture of silicone contact lens
JPS5651715A (en) 1979-09-13 1981-05-09 Bausch & Lomb Waterrabsorbing contact lens produced from polysiloxane*acrylic acid polymer
JPS59229524A (ja) 1983-04-28 1984-12-24 ミネソタ・マイニング・アンド・マニユフアクチユアリング・コンパニ− 付加ポリマ−製の眼用器具
JPH02188717A (ja) 1989-01-17 1990-07-24 Menikon:Kk 軟質眼用レンズ材料
JPH055861A (ja) 1991-06-28 1993-01-14 Asahi Chem Ind Co Ltd コンタクトレンズ材料
WO1999035520A1 (en) 1998-01-09 1999-07-15 Novartis Ag Coating of polymers
JP2000010055A (ja) 1998-06-19 2000-01-14 Seed Co Ltd 親水性眼用レンズ及びその製造方法
WO2001057118A2 (en) 2000-02-04 2001-08-09 Novartis Ag Process for coating a surface
US20010045676A1 (en) 2000-02-04 2001-11-29 Winterton Lynn Cook Method for modifying a surface
JP2002047365A (ja) * 2000-05-10 2002-02-12 Toray Ind Inc 表面処理プラスチック成形品の製造方法
JP2004517163A (ja) 2000-11-15 2004-06-10 ジヨンソン・アンド・ジヨンソン・ビジヨン・ケア・インコーポレーテツド 加水分解による劣化に対するシリコーンヒドロゲルの安定化方法
WO2004063795A1 (ja) * 2003-01-10 2004-07-29 Menicon Co., Ltd. 安全性の高いシリコーン含有眼用レンズ材料およびその製造方法
JP2005309228A (ja) 2004-04-23 2005-11-04 Asahi Kasei Corp 表面処理コンタクトレンズ
JP2005538418A (ja) 2002-09-11 2005-12-15 ノバルティス アクチエンゲゼルシャフト LbLコーティングを医療用デバイスに適用する方法
JP2006201263A (ja) * 2005-01-18 2006-08-03 Seed Co Ltd 非含水性軟質眼用レンズ材料およびそれを用いた非含水性軟質眼用レンズ
JP2008122937A (ja) 2006-10-19 2008-05-29 Toray Ind Inc 眼用レンズ
JP2009540369A (ja) 2006-06-08 2009-11-19 ノバルティス アクチエンゲゼルシャフト 良好なコーティング耐久性を有するシリコーンヒドロゲルコンタクトレンズを製造するための方法
WO2011102356A1 (ja) 2010-02-16 2011-08-25 東レ株式会社 低含水性軟質眼用レンズおよびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189546A (en) 1977-07-25 1980-02-19 Bausch & Lomb Incorporated Polysiloxane shaped article for use in biomedical applications
US4208506A (en) 1977-07-25 1980-06-17 Bausch & Lomb Incorporated Polyparaffinsiloxane shaped article for use in biomedical applications
US4153641A (en) 1977-07-25 1979-05-08 Bausch & Lomb Incorporated Polysiloxane composition and contact lens
US4543398A (en) 1983-04-28 1985-09-24 Minnesota Mining And Manufacturing Company Ophthalmic devices fabricated from urethane acrylates of polysiloxane alcohols
US4806382A (en) * 1987-04-10 1989-02-21 University Of Florida Ocular implants and methods for their manufacture
US4954586A (en) 1989-01-17 1990-09-04 Menicon Co., Ltd Soft ocular lens material
ES2072440T3 (es) * 1989-07-31 1995-07-16 Hoya Corp Lente de contacto.
SI0819258T1 (en) 1995-04-04 2002-04-30 Novartis Ag Extended wear ophthalmic lens
US5807944A (en) 1996-06-27 1998-09-15 Ciba Vision Corporation Amphiphilic, segmented copolymer of controlled morphology and ophthalmic devices including contact lenses made therefrom
US6451871B1 (en) * 1998-11-25 2002-09-17 Novartis Ag Methods of modifying surface characteristics
ATE441132T1 (de) * 1999-12-16 2009-09-15 Asahikasei Aime Co Ltd Zum tragen über lange zeiträume geeignete weiche kontaktlinsen
US6689480B2 (en) 2000-05-10 2004-02-10 Toray Industries, Inc. Surface-treated plastic article and method of surface treatment
EP2305744B1 (en) 2002-12-20 2016-08-24 Coloplast A/S A hydrophilic coating and a method for the preparation

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424047A (en) 1977-07-25 1979-02-23 Bausch & Lomb Polysiloxane composition and contact lens
JPS5481363A (en) 1977-12-13 1979-06-28 Shin Etsu Chem Co Ltd Manufacture of silicone contact lens
JPS5651715A (en) 1979-09-13 1981-05-09 Bausch & Lomb Waterrabsorbing contact lens produced from polysiloxane*acrylic acid polymer
JPS59229524A (ja) 1983-04-28 1984-12-24 ミネソタ・マイニング・アンド・マニユフアクチユアリング・コンパニ− 付加ポリマ−製の眼用器具
JPH02188717A (ja) 1989-01-17 1990-07-24 Menikon:Kk 軟質眼用レンズ材料
JPH055861A (ja) 1991-06-28 1993-01-14 Asahi Chem Ind Co Ltd コンタクトレンズ材料
JP2002501211A (ja) 1998-01-09 2002-01-15 ノバルティス ファーマ アクチエンゲゼルシャフト ポリマーのコーティング
WO1999035520A1 (en) 1998-01-09 1999-07-15 Novartis Ag Coating of polymers
JP2000010055A (ja) 1998-06-19 2000-01-14 Seed Co Ltd 親水性眼用レンズ及びその製造方法
WO2001057118A2 (en) 2000-02-04 2001-08-09 Novartis Ag Process for coating a surface
US20010045676A1 (en) 2000-02-04 2001-11-29 Winterton Lynn Cook Method for modifying a surface
JP2002047365A (ja) * 2000-05-10 2002-02-12 Toray Ind Inc 表面処理プラスチック成形品の製造方法
JP2004517163A (ja) 2000-11-15 2004-06-10 ジヨンソン・アンド・ジヨンソン・ビジヨン・ケア・インコーポレーテツド 加水分解による劣化に対するシリコーンヒドロゲルの安定化方法
JP2005538418A (ja) 2002-09-11 2005-12-15 ノバルティス アクチエンゲゼルシャフト LbLコーティングを医療用デバイスに適用する方法
WO2004063795A1 (ja) * 2003-01-10 2004-07-29 Menicon Co., Ltd. 安全性の高いシリコーン含有眼用レンズ材料およびその製造方法
JP2005309228A (ja) 2004-04-23 2005-11-04 Asahi Kasei Corp 表面処理コンタクトレンズ
JP2006201263A (ja) * 2005-01-18 2006-08-03 Seed Co Ltd 非含水性軟質眼用レンズ材料およびそれを用いた非含水性軟質眼用レンズ
JP2009540369A (ja) 2006-06-08 2009-11-19 ノバルティス アクチエンゲゼルシャフト 良好なコーティング耐久性を有するシリコーンヒドロゲルコンタクトレンズを製造するための方法
JP2008122937A (ja) 2006-10-19 2008-05-29 Toray Ind Inc 眼用レンズ
WO2011102356A1 (ja) 2010-02-16 2011-08-25 東レ株式会社 低含水性軟質眼用レンズおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2746836A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017023374A (ja) * 2015-07-22 2017-02-02 東レ株式会社 医療デバイスおよびその製造方法
WO2020095539A1 (ja) * 2018-11-09 2020-05-14 東レ株式会社 医療デバイスおよびその製造方法
WO2021039519A1 (ja) * 2019-08-27 2021-03-04 東レ株式会社 医療デバイスの製造方法
CN114158254A (zh) * 2019-08-27 2022-03-08 东丽株式会社 医疗设备的制造方法
CN114158254B (zh) * 2019-08-27 2022-11-18 东丽株式会社 医疗设备的制造方法
JP7509036B2 (ja) 2019-08-27 2024-07-02 東レ株式会社 医療デバイスの製造方法

Also Published As

Publication number Publication date
CN103748504A (zh) 2014-04-23
EP2746836B1 (en) 2021-05-26
ES2877234T3 (es) 2021-11-16
JP6236782B2 (ja) 2017-11-29
US20140333893A1 (en) 2014-11-13
US9753187B2 (en) 2017-09-05
EP2746836A1 (en) 2014-06-25
KR20140048224A (ko) 2014-04-23
TW201316081A (zh) 2013-04-16
EP2746836A4 (en) 2015-09-30
TWI561886B (ja) 2016-12-11
JPWO2013024880A1 (ja) 2015-03-05
CN103748504B (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
JP5954170B2 (ja) 低含水性軟質眼用レンズおよびその製造方法
JP6036299B2 (ja) 医療デバイスおよびその製造方法
JP6159768B2 (ja) 低含水性軟質コンタクトレンズおよび低含水性軟質コンタクトレンズの製造方法
JP6236782B2 (ja) 低含水性軟質眼用レンズおよびその製造方法
JP6338263B2 (ja) 低含水性軟質デバイスおよびその製造方法
JP6070193B2 (ja) 医療デバイスおよびその製造方法
JP6003653B2 (ja) 医療デバイスおよびその製造方法
JP6003082B2 (ja) 低含水性軟質デバイス、低含水性軟質デバイス用組成物およびこれらの製造方法
JP2013057932A (ja) 軟質樹脂デバイス
JP6241042B2 (ja) 医療デバイス

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012545970

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147002636

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14239071

Country of ref document: US