[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013021703A1 - 作業機械のエンジン制御システム - Google Patents

作業機械のエンジン制御システム Download PDF

Info

Publication number
WO2013021703A1
WO2013021703A1 PCT/JP2012/062417 JP2012062417W WO2013021703A1 WO 2013021703 A1 WO2013021703 A1 WO 2013021703A1 JP 2012062417 W JP2012062417 W JP 2012062417W WO 2013021703 A1 WO2013021703 A1 WO 2013021703A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
exhaust gas
sulfur concentration
sulfur
fuel
Prior art date
Application number
PCT/JP2012/062417
Other languages
English (en)
French (fr)
Inventor
吉田 肇
石井 元
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to CN201280034100.5A priority Critical patent/CN103703232A/zh
Priority to US14/125,108 priority patent/US20140116031A1/en
Priority to KR1020147000399A priority patent/KR20140047068A/ko
Priority to EP12822316.1A priority patent/EP2743481A1/en
Publication of WO2013021703A1 publication Critical patent/WO2013021703A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2066Control of propulsion units of the type combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • E02F9/268Diagnosing or detecting failure of vehicles with failure correction follow-up actions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • F02D31/008Electric control of rotation speed controlling fuel supply for idle speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/065Introducing corrections for particular operating conditions for engine starting or warming up for starting at hot start or restart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine control system for a work machine such as a hydraulic excavator, and more particularly to an engine control system for a work machine equipped with an exhaust gas aftertreatment device (hereinafter referred to as DPF) that collects particulate matter contained in engine exhaust gas. .
  • DPF exhaust gas aftertreatment device
  • DPF Diesel Particulate Filter
  • PM particulate matter
  • Patent Document 1 an exhaust gas analyzer is installed in an exhaust system in a work machine equipped with such a DPF, and the concentration of a substance such as sulfur dioxide in the exhaust gas is measured by the exhaust gas analyzer, and fuel identifying means is provided. The specification of the fuel used is described.
  • an exhaust gas analyzer is provided in the exhaust system, the concentration of a substance such as sulfur dioxide is measured by the exhaust gas analyzer, and the fuel to be used is determined by the fuel identifying means. I have identified.
  • the concentration of the sulfur dioxide substance is generally measured using a detection means such as an SOx sensor.
  • a detection means such as an SOx sensor.
  • the concentration of the dioxide is low.
  • the concentration of sulfur substances cannot be measured correctly.
  • the concentration of sulfur dioxide or the like cannot be measured correctly, there is a possibility that sulfur dioxide or the like is erroneously detected.
  • An engine control system is provided.
  • the present invention provides a diesel engine, an exhaust gas aftertreatment device provided in an exhaust system of the engine, a hydraulic pump driven by the engine, and a discharge from the hydraulic pump.
  • An exhaust gas purification system for a hydraulic working machine comprising a hydraulic system including at least one hydraulic actuator driven by pressurized oil, an exhaust temperature detection device for detecting the temperature of the exhaust gas of the engine, and the exhaust gas of the engine
  • a sulfur concentration detector that detects the sulfur concentration in the interior
  • an alarm device a control device that performs a sulfur concentration measurement process based on the detected value of the exhaust gas temperature detector and the detected value of the sulfur concentration detector
  • the exhaust gas temperature detected by the exhaust gas temperature detecting device in the sulfur concentration measurement process is exhausted.
  • the sulfur concentration in the engine is within a predetermined temperature range suitable for measuring the sulfur concentration in the engine
  • the sulfur concentration in the exhaust gas of the engine is measured using the sulfur concentration detector, and the sulfur concentration is determined in advance.
  • the alarm device is actuated when the threshold is exceeded.
  • the sulfur concentration in the engine exhaust gas is measured, thereby The sulfur concentration of the exhaust gas aftertreatment device is minimized by activating the alarm device when the sulfur concentration in the gas is measured correctly and the measured sulfur concentration is above a predetermined threshold.
  • the problem of the exhaust gas aftertreatment device can be prevented in advance.
  • the engine control system of the work machine further includes a key switch for starting the engine and a fuel oil amount detection device for detecting a remaining amount of fuel supplied to the engine.
  • the control device detects the remaining amount of fuel stored in the storage device when the engine is stopped last time and the remaining amount of fuel detected by the fuel oil amount detection device when the engine is started this time. The sulfur concentration measurement process is performed only when the remaining amount of fuel has increased.
  • the engine control system of the work machine further includes an engine speed instruction device that instructs the target engine speed of the engine, and the control device performs the sulfur concentration measurement process.
  • the engine speed is controlled. Regardless of the instruction of the target rotational speed by the number indicating device, the engine rotational speed is forcibly controlled to be a predetermined target rotational speed suitable for measuring the sulfur concentration in the exhaust gas.
  • the engine speed is forcibly set to a predetermined value suitable for measuring the sulfur concentration in the exhaust gas, regardless of the instruction of the target speed by the engine speed indicator.
  • the fixed control to achieve the target rotational speed ensures that the exhaust gas temperature is controlled within a predetermined temperature range suitable for the measurement of the sulfur concentration in the exhaust gas, and the measurement accuracy with the efficiency of the sulfur concentration measurement process Can be increased.
  • the present invention it is possible to correctly measure the sulfur concentration in the exhaust gas, which is harmful when the exhaust gas aftertreatment device functions normally, to minimize sulfur poisoning of the exhaust gas aftertreatment device, and It is possible to prevent problems with the post-processing apparatus.
  • the fuel supply is usually performed with the engine stopped.
  • the sulfur concentration measurement process is performed every time the engine is started after fuel supply. Necessity is automatically determined, and the sulfur concentration measurement process can be performed only when necessary. As a result, the frequency of the sulfur concentration measurement process can be reduced, and a decrease in the operating efficiency of the work machine due to the sulfur concentration measurement process can be minimized.
  • the engine rotation speed is forcibly measured to measure the sulfur concentration in the exhaust gas regardless of the target rotation speed instruction by the engine rotation speed instruction device.
  • the exhaust gas temperature is reliably controlled within a predetermined temperature range suitable for the measurement of the sulfur content concentration in the exhaust gas, and the efficiency of the sulfur content measurement process is controlled. Measurement accuracy can be improved.
  • the engine is automatically stopped to strongly encourage the operator to change the fuel when the fuel has a high sulfur concentration, and in this respect as well, sulfur poisoning of the exhaust gas aftertreatment device is minimized. Can be stopped.
  • FIG. 4 is a flowchart subsequent to the flowchart of FIG. 3, showing the processing contents of sulfur concentration detection control and engine control of the vehicle body control device. It is a figure which shows the relationship between an engine speed and exhaust gas temperature.
  • FIG. 1 is a diagram showing an entire drive system including an engine control system for a work machine according to a first embodiment of the present invention.
  • the drive system for a hydraulic excavator includes an engine 1, a hydraulic system 2, an exhaust gas aftertreatment device 3, and an engine control system 4.
  • the engine 1 is a diesel engine. As a part of the engine control system 4, the engine 1 includes a rotation speed detection device 43 that detects the actual rotation speed of the engine 1 and an electronic governor that controls fuel supplied to the engine 1. 45 (electronically controlled fuel injection device).
  • the hydraulic system 2 drives a driven member of a hydraulic excavator using the engine 1 as a power source, and includes a variable displacement main hydraulic pump 21 and a fixed displacement pilot pump 22 driven by the engine 1, and hydraulic pressure.
  • An actuator group 23 driven by the pressure oil discharged from the pump 21 to drive the driven member of the hydraulic excavator, and a main spool for controlling the flow (flow rate and direction) of the pressure oil supplied from the hydraulic pump 21 to the actuator group 23
  • a control valve device 24 including a group (flow control valve group), and a remote control valve group for generating a control pilot pressure for operating the main spool group of the control valve device 24 using the pressure oil from the pilot pump 22 as a hydraulic source.
  • an input operation lever device 25 is an input operation lever device 25.
  • the exhaust gas aftertreatment device 3 is attached to an exhaust pipe 31 that is a part of an exhaust system through which exhaust gas of the engine 1 flows, and includes a filter 32a and a filter 32a that collect particulate matter (PM) contained in the exhaust gas.
  • An oxidation catalyst 32b located on the upstream side is incorporated.
  • the exhaust gas aftertreatment device 3 includes an exhaust gas temperature detection device 33 that detects the temperature of the exhaust gas upstream of the filter 32a, and a pressure upstream and downstream of the filter 32a, respectively, as part of the engine control system 4.
  • Exhaust pressure detectors 34a and 34b that respectively detect the side pressures are provided.
  • the exhaust pressure detecting devices 34a and 34b constitute a differential pressure detecting device that detects a differential pressure across the upstream and downstream sides of the filter 32a (pressure loss of the filter 32a).
  • the engine control system 4 is provided in the exhaust pipe 31 of the engine 1, and a sulfur concentration detector 36 that detects the sulfur concentration in the exhaust gas of the engine 1, and a fuel oil amount detector 40 that detects the amount of fuel.
  • An engine control dial 41 (rotation speed indicating device) for instructing the target rotational speed of the engine 1, an alarm display device 42, the exhaust temperature detecting device 33, the exhaust pressure detecting devices 34a and 34b, and the rotational speed detecting device 43 described above.
  • the electronic governor 45, the key switch 46, the vehicle body control device 51, and the engine control device 52 are provided.
  • the vehicle body control device 51 includes a detection signal from the exhaust temperature detection device 33, a detection signal from the sulfur concentration detection device 36, a detection signal from the fuel oil amount detection device 40, and a command signal from the engine control dial 41. Then, a detection signal from the rotation speed detection device 43 and a command signal from the key switch 46 are input, a predetermined calculation process is performed, and the target rotation speed and sulfur content concentration indicated by the engine control dial 41 to the engine control device 52 are performed. While outputting one of the command signals for the target rotational speed for the measurement processing, and determining that the fuel having a high sulfur content is being used, an operation signal is output to the alarm display device 42.
  • the vehicle body control device 51 inputs the detection signal from the exhaust temperature detection device 33, the detection signal from the sulfur concentration detection device 36, and the detection signal from the rotation speed detection device 43 via the engine control device 52.
  • the engine control device 52 receives the command signal for the target rotational speed from the vehicle body control device 51 and the detection signal for the engine rotational speed from the rotational speed detection device 43, performs predetermined calculation processing, and supplies the target fuel to the electronic governor 45. Outputs the injection amount control signal.
  • the electronic governor 45 controls the fuel injection amount supplied to the engine 1 based on the control signal, and controls so that the rotational speed of the engine 1 is maintained at the target rotational speed of the command signal from the vehicle body control device 51. .
  • the engine control device 52 receives detection signals from the differential pressure detection devices 34a and 34b, and performs control to regenerate the filter 32a (combustion removal of particulate matter collected by the filter 32a) as follows. .
  • the engine control device 52 determines whether or not the differential pressure across the filter 32a indicated by the detection signals from the differential pressure detection devices 34a and 34b has exceeded a regeneration start determination threshold value, and when it exceeds the regeneration start determination threshold value, the regeneration of the filter 32a is performed. Is determined to be necessary, and reproduction control is started.
  • This regeneration control is performed, for example, by performing regeneration fuel injection into the exhaust pipe 31. When fuel is injected into the exhaust pipe 31, part of the injected fuel burns to raise the temperature of the exhaust gas, and unburned fuel is supplied to the oxidation catalyst 32b and oxidized by the oxidation catalyst 32b.
  • the exhaust gas temperature further rises due to the reaction heat sometimes obtained, and the PM deposited on the filter 32a is burned and removed by the high-temperature exhaust gas.
  • the fuel injection for regeneration uses, for example, an in-cylinder (in-cylinder) injection system of the engine 1 by the electronic governor 45, and performs sub-injection (post-injection) that injects fuel in the expansion stroke after the main injection of multistage injection. Can be done. Further, a fuel injection device for regeneration may be installed in the exhaust pipe 31 and the fuel injection for regeneration may be performed by operating this fuel injection device.
  • This regeneration control is performed until the differential pressure across the filter 32a indicated by the detection signals from the differential pressure detectors 34a and 34b falls below the regeneration end determination threshold, and when the differential pressure across the filter 32a falls below the regeneration end determination threshold, the exhaust pipe The fuel injection for regeneration into 31 is stopped, and regeneration control is ended.
  • FIG. 2 is a diagram showing the external appearance of a hydraulic excavator provided with the drive system shown in FIG.
  • the hydraulic excavator includes a lower traveling body 100, an upper swing body 101, and a front work machine 102.
  • the lower traveling body 100 has left and right crawler traveling devices 103a and 103b, and is driven by left and right traveling motors 104a and 104b.
  • the upper swing body 101 is turnably mounted on the lower traveling body 100 by the swing motor 105, and the front work machine 102 is attached to the front portion of the upper swing body 101 so as to be able to be raised and lowered.
  • the upper swing body 101 is provided with an engine room 106 and a cabin (operating room) 107.
  • the engine 1, the hydraulic pump 21, the pilot pump 22, the exhaust gas aftertreatment device 3 and the like are arranged in the engine room 106.
  • Input operation levers 25 are arranged on the left and right sides of the driver's seat.
  • the vehicle body control device 51 and the engine control device 52 are disposed, for example, below the driver's seat in the cabin 107.
  • the front work machine 102 has an articulated structure having a boom 111, an arm 112, and a bucket 113.
  • the boom 111 rotates in the vertical direction by expansion and contraction of the boom cylinder 114.
  • the bucket 113 is rotated up and down and back and forth by the expansion and contraction of the bucket cylinder 116.
  • the left and right traveling motors 104a and 104b, the turning motor 105, the boom cylinder 114, the arm cylinder 115, and the bucket cylinder 116 constitute the actuator group 23 shown in FIG. ⁇
  • Control contents ⁇ FIG. 3 and FIG. 4 are flowcharts showing the processing contents of the sulfur concentration measurement process and engine control of the vehicle body control device 51.
  • Step S100 (FIG. 3)>
  • the vehicle body control device 51 inputs a command signal of the key switch 46, and when the key switch 46 is turned on, the program is activated and the processing shown in the flowcharts of FIGS. 3 and 4 is started.
  • Step S110 (FIG. 3)>
  • the vehicle body control device 51 inputs a detection signal from the fuel oil amount detection device 40 every time the engine is started when the key switch 46 is turned on in order to determine whether or not the sulfur concentration measurement processing is necessary, and the previous engine stop is performed.
  • the remaining amount of fuel stored in the storage device 51a of the vehicle body control device 51 (see step S330 in FIG. 4) is compared with the remaining amount of fuel at the time of starting the engine to determine whether the remaining amount of fuel has increased.
  • Step S120 (FIG. 3)> If it is determined in step S110 that the remaining amount of fuel at the start of the engine is increased, the vehicle body control device 51 determines that the sulfur concentration measurement process is necessary, and sets the fuel abnormality flag F. Reset to OFF.
  • Step S130 (FIG. 3)>
  • the vehicle body control device 51 performs a sulfur concentration measurement process.
  • the vehicle body control device 51 outputs a command signal for a predetermined target rotational speed Na suitable for measuring the sulfur concentration in the exhaust gas set in advance for the sulfur concentration measurement process.
  • the command signal for the target rotational speed Na is output in preference to the command signal for the target rotational speed from the engine control dial 41.
  • the target rotational speed Na is, for example, a rotational speed about the medium speed rotational speed.
  • the engine controller 52 When the engine control device 52 receives a command signal for the target engine speed Na, the engine controller 52 sends a control signal for the target fuel injection amount to the electronic governor 45 based on the target engine speed Na and the actual engine speed detected by the engine speed detector 43. Based on the control signal, the electronic governor 45 controls so that the rotational speed of the engine 1 becomes the target rotational speed Na.
  • the rotational speed of the engine 1 is forcibly set to sulfur in the exhaust gas. Fixed control is performed so that the target rotational speed Na is suitable for the measurement of the partial concentration.
  • Step S140 (FIG. 3)>
  • the vehicle body control device 51 inputs a detection signal from the rotational speed detection device 43, and the target rotational speed Na of the command signal from the vehicle body control device 51 and the actual rotational speed of the engine 1 detected by the rotational speed detection device 43.
  • N is compared to determine whether the actual engine speed N of the engine 1 is less than or equal to the target engine speed Na.
  • the procedure of step S140 is repeated.
  • Step S150 (FIG. 3)> Further, the vehicle body control device 51 inputs a detection signal from the exhaust temperature detection device 33, and uses a predetermined temperature range Texa to Texb suitable for measurement of the sulfur concentration in the exhaust gas set in advance and the exhaust temperature detection device 33. The detected temperature Tex of the exhaust gas is compared, and it is determined whether or not the temperature Tex of the exhaust gas is within a predetermined temperature range Texa to Texb suitable for measuring the sulfur concentration in the exhaust gas. If it is determined that the temperature Tex of the exhaust gas is not within the predetermined temperature range Texa to Texb, the procedure of steps S140 and S150 is repeated.
  • FIG. 5 is a diagram showing the relationship between the engine speed and the exhaust gas temperature.
  • the exhaust gas temperature increases as the engine speed increases. Even if the engine speed is constant, the exhaust gas temperature varies within a predetermined range depending on the environmental conditions (such as air temperature) and vehicle body conditions (such as the magnitude of the engine drag load such as whether or not an air conditioner is used). .
  • the target rotational speed Na by setting an appropriate value as the target rotational speed Na, it is possible to obtain an exhaust gas temperature in a predetermined temperature range Texa to Texb suitable for measuring the sulfur concentration in the exhaust gas.
  • Step S160 (FIG. 3)> If it is determined in step S140 that the actual engine speed is within the target engine speed range Na, and it is determined in step S150 that the exhaust gas temperature Texa is within the predetermined temperature range Texa to Texb, The control device 51 compares the subsequent elapsed time T with a preset target time Ta, and determines whether or not the elapsed time T has reached the target time Ta. If it is determined that the elapsed time T has not reached the target time Ta, the procedures of steps S140, S150, and S160 are repeated.
  • Step S170 (FIG. 3)> If it is determined in step S160 that the elapsed time T has reached the target time Ta, the vehicle body control device 51 inputs a detection signal from the sulfur concentration detection device 36 and sets the target sulfur in the preset exhaust gas. The sulfur concentration in the exhaust gas detected by the sulfur concentration detector 36 is compared with the sulfur concentration (threshold) to determine whether the sulfur concentration in the exhaust gas is equal to or higher than the target sulfur concentration (threshold). To do.
  • Step S180 (FIG. 3)>
  • the vehicle body control device 51 sets the fuel abnormality flag F to ON.
  • Step S190 (FIG. 3)>
  • the vehicle body control device 51 outputs an operation signal to the alarm display device 42 to indicate that the currently used fuel is a fuel having a high sulfur content and that it is necessary to immediately replace the fuel. 42 is displayed.
  • Step S200 (FIG. 3)>
  • the vehicle body control device 51 outputs a command signal for a target rotational speed Nb suitable for stopping the engine lower than the target rotational speed Na suitable for measuring the sulfur concentration in the exhaust gas described above.
  • the output of the command signal for the target rotational speed Nb is also given priority over the instruction for the target rotational speed from the engine control dial 41.
  • the target rotational speed Nb is, for example, a rotational speed that is about the low speed idle rotational speed.
  • the engine control device 52 outputs a control signal for the target fuel injection amount to the electronic governor 45 based on the target rotational speed Nb and the actual rotational speed detected by the rotational speed detection device 43, and the electronic governor 45 Based on the above, control is performed so that the rotational speed of the engine 1 becomes the target rotational speed Nb.
  • the command signal for the target rotational speed from the engine control dial 41 regardless of the target rotational speed instruction from the engine control dial 41.
  • the engine 1 is controlled so that the engine speed becomes the target engine speed Nb suitable for stopping the engine.
  • step S200 the elapsed time T after the command signal for the target rotational speed Nb is output to the engine control device 52 is compared with the target time Tb to determine whether the elapsed time T has reached the target time Tb. .
  • Step S220 (FIG. 3)> If it is determined in step S210 that the elapsed time T has reached the target time Tb, a stop signal for the engine 1 is output to the engine control device 52, and the engine 1 is automatically stopped.
  • Step S230 (FIG. 3)> If it is determined in step S110 that the remaining amount of fuel at the time of starting the engine has not increased, the vehicle body control device 51 determines that the sulfur concentration measurement process is unnecessary. Next, the vehicle body control device 51 determines whether or not the fuel abnormality flag F is OFF. If the fuel abnormality flag F is not OFF (if it is ON), the sulfur concentration in the exhaust gas is once increased in step S170. Since it is a case where the key switch 46 is turned on after the determination that the concentration is higher than the target sulfur concentration (threshold value) and the engine 1 is started, the process proceeds to step S190 to immediately display a warning and to steps S200 to S220. Then, a command signal for the target rotational speed Nb for stopping the engine is output to the engine control device 52, and the engine 1 is stopped after the target time Tb has elapsed.
  • step S310 If it is determined in step S170 that the sulfur concentration in the exhaust gas is not equal to or higher than the target sulfur concentration (threshold), or if it is determined in step S230 that the fuel abnormality flag F is OFF, FIG. Proceed to step S300.
  • step S300 normal engine speed control calculation is performed.
  • a command signal from the engine control dial 41 is input, a target speed based on the command signal is calculated, and a command signal for the target speed is output to the engine control device 52.
  • the vehicle body control device 51 may have an additional engine control function such as auto idle control.
  • the target rotational speed based on the command signal from the engine control dial 41 and the target engine control function One of the rotation speeds is output to the engine control device 52 as a command signal.
  • the engine control device 52 outputs a target fuel injection amount control signal to the electronic governor 45 based on the target rotational speed and the actual rotational speed detected by the rotational speed detection device 43, and the electronic governor 45 outputs the control signal to the control signal. Based on this, control is performed so that the rotational speed of the engine 1 becomes the target rotational speed.
  • Step S320 (FIG. 4)> Next, the vehicle body control device 51 inputs a command signal of the key switch 46 and determines whether or not the key switch 46 is turned OFF and the engine 1 is stopped.
  • Step S330 (FIG. 4)>
  • the vehicle body control device 51 inputs a detection signal from the fuel oil amount detection device 40, and stores the remaining fuel amount detected by the fuel oil amount detection device 40. Store in 51a.
  • the vehicle body control device 51 and the engine control device 52 constitute a control device that performs a sulfur concentration measurement process based on the detection value of the exhaust gas temperature detection device 33 and the detection value of the sulfur concentration detection device 36.
  • the device detects the sulfur content concentration detection device 36.
  • the sulfur concentration in the exhaust gas of the engine 1 is measured and the alarm device (alarm display device 42) is activated when the sulfur concentration is equal to or higher than a predetermined threshold value.
  • control device every time the engine is started when the key switch 46 is turned on, the remaining amount of fuel stored in the storage device 51a when the engine was stopped last time and the remaining amount of fuel detected by the fuel oil amount detection device 40 when the engine was started this time. And the sulfur concentration measurement process is performed only when the remaining amount of fuel is increased.
  • the control device controls the engine speed based on the target engine speed indicated by the engine speed indicating device (engine control dial 41).
  • the engine 1 is forcibly set to the sulfur content in the exhaust gas regardless of the instruction of the target engine speed by the engine speed instruction device (engine control dial 41).
  • the fixed control is performed so that a predetermined target rotational speed Na suitable for density measurement is obtained.
  • the vehicle body control device 51 resets the fuel abnormality flag F to OFF and sulfur.
  • the concentration measurement process is started (steps S100 ⁇ S110 ⁇ S120).
  • the target rotational speed of the engine 1 is fixedly controlled so as to be forcibly the target rotational speed Na suitable for the measurement of the sulfur concentration in the exhaust gas, and the actual rotational speed of the engine 1 is the target.
  • the exhaust gas temperature Tex falls within a predetermined temperature range Texa to Texb suitable for measuring the sulfur content concentration in the exhaust gas and the target time Ta has elapsed, and the sulfur content concentration in the exhaust gas is the target.
  • step S130 It is determined whether or not the sulfur content concentration (threshold value) or more (steps S130 ⁇ S140 ⁇ S150 ⁇ S160 ⁇ S170).
  • the vehicle body control device 51 determines that the sulfur concentration in the exhaust gas is not equal to or higher than the target sulfur concentration (threshold), and performs normal engine speed control. Calculation is performed (step S310). As a result, the operator can work by moving the excavator as usual.
  • the vehicle body control device 51 stores the remaining fuel amount detected by the fuel oil amount detection device 40 It memorize
  • the vehicle body control device 51 When the operator turns on the key switch 46 again and starts the engine 1 after interruption of work such as a lunch break or at the start of the next day's work, the remaining amount of fuel has not increased, and the fuel abnormality flag F is OFF. Therefore, the vehicle body control device 51 immediately performs normal engine speed control calculation (steps S100 ⁇ S110 ⁇ S230 ⁇ S310). As a result, the operator can work by moving the excavator as usual.
  • the vehicle body control device 51 resets the fuel abnormality flag F to OFF and the sulfur concentration
  • the measurement process is started (steps S100 ⁇ S110 ⁇ S120). Also in this sulfur concentration measurement process, the target rotational speed of the engine 1 is fixedly controlled to be forced to the target rotational speed Na, the actual rotational speed of the engine 1 becomes equal to or lower than the target rotational speed Na, and the exhaust gas temperature Tex.
  • Steps S130 ⁇ S140 ⁇ S150 ⁇ S160 ⁇ S170 the vehicle body control device 51 determines that the sulfur concentration in the exhaust gas is equal to or higher than the target sulfur concentration (threshold), and turns on the fuel abnormality flag F.
  • the alarm display unit 42 displays that the fuel currently in use is a fuel having a high sulfur concentration and that the fuel needs to be replaced immediately (steps S180 ⁇ S190).
  • the engine 1 is forcibly controlled to a target rotational speed Nb suitable for stopping the engine to reduce the rotational speed of the engine 1, and when this state passes the target time Tb, the engine is stopped (steps S200 ⁇ S210 ⁇ S220).
  • the device 51 immediately activates the alarm display device 42 to display that the fuel currently in use is a fuel having a high sulfur concentration and that it is necessary to immediately replace the fuel, and forcibly activate the engine 1.
  • the target engine speed Nb is controlled to decrease the engine speed, and when the target time Tb has elapsed, the engine is stopped (steps S100 ⁇ S110 ⁇ S230 ⁇ S190 ⁇ S200 ⁇ S210 ⁇ S220).
  • the exhaust gas aftertreatment is performed in order to measure the sulfur concentration in the exhaust gas of the engine 1.
  • the sulfur concentration in the exhaust gas which is harmful for the normal functioning of the device 3
  • the correctly measured sulfur concentration is equal to or greater than a predetermined threshold value.
  • the fuel remaining amount at the previous engine stop and the fuel remaining at the current engine start are compared, and only when the fuel remaining amount has increased, the sulfur concentration
  • the fuel supply is usually performed with the engine 1 stopped.
  • the sulfur concentration measurement process is performed every time the engine is started after the fuel supply. Is automatically determined, and the sulfur concentration measurement process can be performed only when necessary. As a result, the frequency of the sulfur concentration measurement process can be reduced, and a decrease in the operating efficiency of the work machine due to the sulfur concentration measurement process can be minimized.
  • the rotation speed of the engine 1 is forcibly set regardless of the instruction of the target rotation speed from the engine control dial 41 (engine rotation speed indicating device).
  • the exhaust gas temperature is reliably controlled within a predetermined temperature range suitable for the measurement of the sulfur content concentration in the exhaust gas, and the sulfur content concentration is measured. The measurement accuracy with the processing efficiency can be increased.
  • the fuel remaining amount is increased by comparing the fuel remaining amount at the previous engine stop with the fuel remaining amount at the current engine starting.
  • the exhaust gas temperature is always detected during normal operation (working), and the exhaust gas temperature falls within a predetermined temperature range suitable for measuring the sulfur concentration. Only at certain times may the sulfur concentration be measured. Even in this case, when the sulfur concentration is equal to or higher than a predetermined threshold value, the alarm display device 42 is operated to correctly measure the sulfur concentration in the exhaust gas, and the exhaust gas aftertreatment device 3 sulfur. Poisoning can be minimized and problems with the exhaust gas aftertreatment device 3 can be prevented.
  • a switch for instructing the sulfur concentration measurement process may be provided, and after the engine is started, the start of the sulfur concentration measurement process is instructed by an operator's switch operation, and the sulfur concentration measurement process may be performed.
  • the alarm display device 42 is provided as an alarm device, and the alarm display device 42 is provided with the content of the alarm (the fuel currently in use is a fuel having a high sulfur content and the fuel needs to be replaced immediately.
  • the fuel currently in use is a fuel having a high sulfur content and the fuel needs to be replaced immediately.
  • a speaker as an alarm device and notify the content of the alarm by voice.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

 排気ガス後処理装置を正常に機能させる上で有害である排気ガス中の硫黄分を正しく測定し、排気ガス後処理装置の硫黄被毒を低減することができる作業機械のエンジン制御システムを提供する。 キースイッチ(46)がONするエンジン始動毎に、前回のエンジン停止時に記憶した燃料残量と今回のエンジン始動時に検出した燃料残量とを比較し、燃料残量が増えていた場合のみ硫黄分濃度測定処理を行う。この処理では、エンジン(1)の回転数を強制的に硫黄分濃度の測定に適した目標回転数Naとなるよう固定制御し、排気ガスの温度が硫黄分濃度の測定に適した所定の温度範囲Texa~Texbとなり、目標時間Taを経過すると、硫黄分濃度が閾値以上であるかどうかの判定を行い、硫黄分濃度が閾値以上である場合に警報表示装置(42)を作動させる。

Description

作業機械のエンジン制御システム
 本発明は油圧ショベル等の作業機械のエンジン制御システムに係わり、特にエンジンの排出ガスに含まれる粒子状物質を捕集する排気ガス後処理装置(以下DPF)を備えた作業機械のエンジン制御システムに関する。
 建設機械の代表例である油圧ショベル等の作業機械は、駆動源としてディーゼルエンジンを使用している。このディーゼルエンジンの使用に対しては、年々排気ガス規制が厳しくなっており、DPF(Diesel Particulate Filter )などの排気ガス後処理装置を装着して対処しているのが現状である。DPFとは、ディーゼルエンジンの排気系統に装着され、排出ガス中に含まれる粒子状物質(PM:パティキュレート・マター:以下適宜PMという)を捕集除去するフィルタを内蔵した装置であり、このDPFを装着した場合は、DPFで捕集されたPMを燃焼除去しDPFを再生させる手段(再生装置-例えば白金等の金属酸化触媒)を設けることが必須である。
 特許文献1には、このようなDPFを備えた作業機械において、排気系統に排気ガス分析装置を設置し、排気ガス分析装置により排気ガス中の二酸化硫黄等物質の濃度を測定し、燃料識別手段にて使用燃料を特定することが記載されている。
特開2010-65425号公報
 ディーゼルエンジンを使用する作業機械においては、排気ガス規制の強化に伴って、ユーザーが使用できる燃料についても軽油中の硫黄分濃度の使用規定があり、燃料性状にシビアになってきている。しかしながら、実際に使用されている燃料は、燃料保管中の管理状態等の問題で硫黄分が使用規定値を超えたものが使用されるケースが多々ある。
 硫黄分濃度の高い燃料を使用すると、エンジンから排出されるPM量が大幅に増加し、排気ガス後処理装置の再生頻度が多くなる。また、排気ガス中に含まれる二酸化硫黄等の被毒物質が酸化触媒の貴金属表面に付着する硫黄被毒により、排気ガス後処理装置の再生能力の低下や、硫黄被毒による排気ガス後処理装置の不具合が起きると言った問題点がある。
 特許文献1に記載の技術では、そのような課題に対し、排気系統に排気ガス分析装置を設け、排気ガス分析装置により二酸化硫黄等物質の濃度を測定して、燃料識別手段にて使用燃料を特定している。
 しかし、二酸化硫黄物質の濃度は、一般的にSOxセンサなどの検出手段を用いて測定されるが、作業機械が作業中であったり、エンジン回転数が高い状態などの高排気温度下では、二酸化硫黄物質の濃度を正しく測定することができない。特許文献1に記載の技術では、二酸化硫黄等の濃度が正しく測定できないことから、二酸化硫黄等を誤検知する可能性がある。
 本発明の目的は、排気ガス後処理装置を正常に機能させる上で有害である排気ガス中の硫黄分を正しく測定し、排気ガス後処理装置の硫黄被毒を低減することができる作業機械のエンジン制御システムを提供することである。
 (1)上記目的を達成するために、本発明は、ディーゼルエンジンと、このエンジンの排気系統に設けられた排気ガス後処理装置と、前記エンジンによって駆動される油圧ポンプ及びこの油圧ポンプから吐出される圧油により駆動される少なくとも1つの油圧アクチュエータを含む油圧システムとを備えた油圧作業機械の排気ガス浄化システムにおいて、エンジンの排気ガスの温度を検出する排気温度検出装置と、前記エンジンの排気ガス中の硫黄分濃度を検出する硫黄分濃度検出装置と、警報装置と、前記排気温度検出装置の検出値と前記硫黄分濃度検出装置の検出値に基づいて硫黄分濃度測定処理を行う制御装置とを備え、前記制御装置は、前記硫黄分濃度測定処理において、前記排気温度検出装置により検出した排気ガス温度が排気ガス中の硫黄分濃度の測定に適した所定の温度範囲にある場合に、前記硫黄分濃度検出装置を用いて前記エンジンの排気ガス中の硫黄分濃度を測定し、この硫黄分濃度が予め定めた閾値以上である場合に、前記警報装置を作動させるものとする。
 このように硫黄分濃度測定処理において、排気ガス温度が排気ガス中の硫黄分濃度の測定に適した所定の温度範囲にある場合にエンジンの排気ガス中の硫黄分濃度を測定することにより、排気ガス中の硫黄分濃度が正しく測定され、この正しく測定された硫黄分濃度が予め定めた閾値以上である場合に警報装置を作動させることにより、排気ガス後処理装置の硫黄被毒を最小限に留め、排気ガス後処理装置の不具合を未然に防止することができる。
 (2)上記(1)において、好ましくは、作業機械のエンジン制御システムは、エンジンを始動させるキースイッチと、前記エンジンに供給される燃料の残量を検出する燃料油量検出装置とを更に備え、前記制御装置は、前記キースイッチがONするエンジン始動毎に、前回のエンジン停止時に前記記憶装置に記憶した燃料残量と今回のエンジン始動時に前記燃料油量検出装置が検出した燃料残量とを比較し、燃料残量が増えていた場合のみ、前記硫黄分濃度測定処理を行う。
 このようにキースイッチがONするエンジン始動毎に、前回のエンジン停止時の燃料残量と今回のエンジン始動時の燃料残量とを比較し、燃料残量が増えていた場合のみ、硫黄分濃度測定処理を行うことにより、通常、燃料の給油は必ずエンジンを停止させて行う結果、燃料給油後のエンジン始動時は毎回硫黄分濃度測定処理を行うようになるため、硫黄分濃度測定処理の要否が自動的に判定され、必要なときにのみ硫黄分濃度測定処理を行うことができる。これにより硫黄分濃度測定処理の頻度を低減し、硫黄分濃度測定処理による作業機械の稼動効率の低下を極力抑えることができる。
 (3)上記(1)において、好ましくは、作業機械のエンジン制御システムは、前記エンジンの目標回転数を指示するエンジン回転数指示装置を更に備え、前記制御装置は、前記硫黄分濃度測定処理を行わないときは、前記エンジン回転数指示装置が指示する目標回転数に基づいて前記エンジンの回転数を制御する通常エンジン回転数制御を行い、前記硫黄分濃度測定処理を行うときは、前記エンジン回転数指示装置による目標回転数の指示に係わらず、前記エンジンの回転数を強制的に前記排気ガス中の硫黄分濃度の測定に適した所定の目標回転数となるよう固定制御する。
 このように硫黄分濃度測定処理を行うときは、エンジン回転数指示装置による目標回転数の指示に係わらず、エンジンの回転数を強制的に排気ガス中の硫黄分濃度の測定に適した所定の目標回転数となるよう固定制御することにより、排気ガス温度を排気ガス中の硫黄分濃度の測定に適した所定の温度範囲に確実に制御して、硫黄分濃度測定処理の効率との測定精度を高めることができる。
 (4)上記(1)~(3)のいずれかにおいて、また好ましくは、前記制御装置は、前記硫黄分濃度が予め定めた閾値以上である場合は、予め設定した所定の時間経過後に、前記エンジンを自動停止させる。
 このようにエンジンを自動停止させることにより、硫黄分濃度が高い燃料である場合にオペレータに燃料の交換を強く促し、この点でも排気ガス後処理装置の硫黄被毒を最小限に留めることができる。
 本発明によれば、排気ガス後処理装置を正常に機能させる上で有害である排気ガス中の硫黄分濃度を正しく測定し、排気ガス後処理装置の硫黄被毒を最小限に抑え、排気ガス後処理装置の不具合を未然に防止することができる。
 また、本発明によれば、通常、燃料の給油は必ずエンジンを停止させて行う結果、燃料給油後のエンジン始動時は毎回硫黄分濃度測定処理を行うようになるため、硫黄分濃度測定処理の要否が自動的に判定され、必要なときにのみ硫黄分濃度測定処理を行うことができる。これにより硫黄分濃度測定処理の頻度を低減し、硫黄分濃度測定処理による作業機械の稼動効率の低下を極力抑えることができる。
 また、本発明によれば、硫黄分濃度測定処理を行うときは、エンジン回転数指示装置による目標回転数の指示に係わらず、エンジンの回転数を強制的に排気ガス中の硫黄分濃度の測定に適した所定の目標回転数となるよう固定制御するため、排気ガス温度を排気ガス中の硫黄分濃度の測定に適した所定の温度範囲に確実に制御して、硫黄分濃度測定処理の効率と測定精度を高めることができる。
 更に、本発明によれば、エンジンを自動停止させることで、硫黄分濃度が高い燃料である場合にオペレータに燃料の交換を強く促し、この点でも排気ガス後処理装置の硫黄被毒を最小限に留めることができる。
本発明の第1の実施の形態における作業機械のエンジン制御システムを含む駆動システム全体を示す図である。 図1に示す駆動システムを備えた油圧ショベルの外観を示す図である。 車体制御装置の硫黄分濃度検出制御及びエンジン制御の処理内容を示すフローチャートである。 車体制御装置の硫黄分濃度検出制御及びエンジン制御の処理内容を示す,図3のフローチャートの続きのフローチャートである。 エンジン回転数と排気ガス温度との関係を示す図である。
 以下、本発明の実施の形態を図面を用いて説明する。以下の実施の形態は、本発明を作業機械(建設機械)の代表例である油圧ショベルに適用したものである。
<第1の実施の形態>
~構成~
 図1は本発明の第1の実施の形態における作業機械のエンジン制御システムを含む駆動システム全体を示す図である。
 図1において、本実施の形態に係わる油圧ショベルの駆動システムは、エンジン1と、油圧システム2と、排気ガス後処理装置3と、エンジン制御システム4とを備えている。
 エンジン1はディーゼルエンジンであり、エンジン1には、エンジン制御システム4の一部として、エンジン1の実回転数を検出する回転数検出装置43と、エンジン1に供給される燃料を制御する電子ガバナ45(電子制御式燃料噴射装置)とが設けられている。
 油圧システム2は、エンジン1を動力源として油圧ショベルの被駆動部材を駆動するものであり、エンジン1により駆動される可変容量型のメインの油圧ポンプ21及び固定容量型のパイロットポンプ22と、油圧ポンプ21から吐出される圧油によって駆動され油圧ショベルの被駆動部材を駆動するアクチュエータ群23と、油圧ポンプ21からアクチュエータ群23に供給される圧油の流れ(流量と方向)を制御するメインスプール群(流量制御弁群)を含むコントロールバルブ装置24と、パイロットポンプ22からの圧油を油圧源としてコントロールバルブ装置24のメインスプール群を操作するための制御パイロット圧を生成するリモコン弁群を備えた入力操作レバー装置25とを有している。
 排気ガス後処理装置3は、エンジン1の排気ガスが流れる排気系統の一部である排気管31に取り付けられ、排気ガスに含まれる粒子状物質(PM)を捕集するフィルタ32a及びフィルタ32aの上流側に位置する酸化触媒32bを内蔵している。また、排気ガス後処理装置3には、エンジン制御システム4の一部として、フィルタ32aの上流側の排気ガスの温度を検出する排気温度検出装置33と、それぞれフィルタ32aの上流側の圧力と下流側の圧力をそれぞれ検出する排気圧力検出装置34a,34bとが設けられている。排気圧力検出装置34a,34bはフィルタ32aの上流側と下流側の前後差圧(フィルタ32aの圧力損失)を検出する差圧検出装置を構成している。
 エンジン制御システム4は、エンジン1の排気管31に設けられ、エンジン1の排気ガス中の硫黄分濃度を検出する硫黄分濃度検出装置36と、燃料の油量を検出する燃料油量検出装置40と、エンジン1の目標回転数を指示するエンジンコントロールダイヤル41(回転数指示装置)と、警報表示装置42と、上述した排気温度検出装置33、排気圧力検出装置34a,34b、回転数検出装置43、電子ガバナ45と、キースイッチ46と、車体制御装置51及びエンジン制御装置52とを有している。
 車体制御装置51は、排気温度検出装置33からの検出信号と、硫黄分濃度検出装置36からの検出信号と、燃料油量検出装置40からの検出信号と、エンジンコントロールダイヤル41からの指令信号と、回転数検出装置43からの検出信号と、キースイッチ46からの指令信号とを入力し、所定の演算処理を行い、エンジン制御装置52にエンジンコントロールダイヤル41が指示する目標回転数と硫黄分濃度測定処理のための目標回転数のいずれかの指令信号を出力するとともに、硫黄分濃度の高い燃料を使用していると判断された場合は、警報表示装置42に作動信号を出力する。車体制御装置51は、排気温度検出装置33からの検出信号と硫黄分濃度検出装置36からの検出信号と回転数検出装置43からの検出信号をエンジン制御装置52を介して入力する。
 エンジン制御装置52は、車体制御装置51からの目標回転数の指令信号と、回転数検出装置43からのエンジン回転数の検出信号を入力し、所定の演算処理を行い、電子ガバナ45に目標燃料噴射量の制御信号を出力する。電子ガバナ45は、その制御信号に基づいてエンジン1に供給される燃料噴射量を制御し、エンジン1の回転数が車体制御装置51からの指令信号の目標回転数に維持されるように制御する。
 また、エンジン制御装置52は、差圧検出装置34a,34bからの検出信号を入力し、次のようにフィルタ32aを再生(フィルタ32aに捕集された粒子状物質の燃焼除去)する制御を行う。
 エンジン制御装置52は、差圧検出装置34a,34bからの検出信号が示すフィルタ32aの前後差圧が再生開始判定閾値を超えたかどうかを判定し、再生開始判定閾値を超えると、フィルタ32aの再生が必要であると判定して再生制御を開始する。この再生制御は、例えば排気管31内に再生用の燃料噴射を行うことにより行う。排気管31内に燃料が噴射されると、その噴射燃料の一部が燃焼して排気ガスの温度を上昇させるとともに、未燃燃料が酸化触媒32bに供給されて酸化触媒32bによって酸化され、そのときに得られる反応熱により排気ガス温度が更に上昇し、その高温の排気ガスによりフィルタ32aに堆積したPMが燃焼除去される。再生用の燃料噴射は、例えば、電子ガバナ45によるエンジン1の筒内(シリンダ内)噴射システムを利用し、多段噴射の主噴射後の膨張行程において燃料を噴射する副噴射(ポスト噴射)を実行することで行うことができる。また、排気管31に再生用の燃料噴射装置を設置し、この燃料噴射装置を作動させることで再生用の燃料噴射を行ってもよい。この再生制御は、差圧検出装置34a,34bからの検出信号が示すフィルタ32aの前後差圧が再生終了判定閾値を下回るまで行い、フィルタ32aの前後差圧が再生終了判定閾値を下回ると排気管31内への再生用の燃料噴射を停止し、再生制御を終了する。
 図2は、図1に示す駆動システムを備えた油圧ショベルの外観を示す図である。油圧ショベルは下部走行体100と上部旋回体101とフロント作業機102を備えている。下部走行体100は左右のクローラ式走行装置103a,103bを有し、左右の走行モータ104a,104bにより駆動される。上部旋回体101は旋回モータ105により下部走行体100上に旋回可能に搭載され、フロント作業機102は上部旋回体101の前部に俯仰可能に取り付けられている。上部旋回体101にはエンジンルーム106、キャビン(運転室)107が備えられ、エンジンルーム106にエンジン1、油圧ポンプ21、パイロットポンプ22、排気ガス後処理装置3等が配置され、キャビン107内の運転席の左右に入力操作レバー25が配置されている。車体制御装置51及びエンジン制御装置52は、例えばキャビン107内の運転席の下側に配置されている。
 フロント作業機102はブーム111、アーム112、バケット113を有する多関節構造であり、ブーム111はブームシリンダ114の伸縮により上下方向に回動し、アーム112はアームシリンダ115の伸縮により上下、前後方向に回動し、バケット113はバケットシリンダ116の伸縮により上下、前後方向に回動する。左右の走行モータ104a,104b、旋回モータ105、ブームシリンダ114、アームシリンダ115、バケットシリンダ116は図1に示すアクチュエータ群23を構成する。
~制御内容~
 図3及び図4は、車体制御装置51の硫黄分濃度測定処理及びエンジン制御の処理内容を示すフローチャートである。
 <ステップS100(図3)>
 車体制御装置51はキースイッチ46の指令信号を入力し、キースイッチ46がONとなるとプログラムが起動し、図3及び図4のフローチャートに示す処理が開始される。
 <ステップS110(図3)>
 まず、車体制御装置51は、硫黄分濃度測定処理の要否を判定するため、キースイッチ46がONするエンジン始動毎に、燃料油量検出装置40からの検出信号を入力し、前回のエンジン停止時に車体制御装置51の記憶装置51aに記憶した燃料残量(図4のステップS330参照)と今回のエンジン始動時の燃料残量とを比較し、燃料残量が増えているかどうかを判定する。
 <ステップS120(図3)>
 ステップS110において、今回のエンジン始動時の燃料残量が増えていると判定された場合は、車体制御装置51は、硫黄分濃度測定処理が必要な場合であると判定し、燃料異常フラグFをOFFにリセットする。
 <ステップS130(図3)>
 次いで、車体制御装置51は硫黄分濃度測定処理を行う。この硫黄分濃度測定処理においては、まず、車体制御装置51は、硫黄分濃度測定処理のために予め設定した排気ガス中の硫黄分濃度の測定に適した所定の目標回転数Naの指令信号をエンジン制御装置52に出力する。この目標回転数Naの指令信号の出力は、エンジンコントロールダイヤル41からの目標回転数の指令信号に優先して行う。目標回転数Naは例えば中速回転数程度の回転数である。
 エンジン制御装置52は、目標回転数Naの指令信号を入力すると、その目標回転数Naと回転数検出装置43により検出される実回転数に基づいて電子ガバナ45に目標燃料噴射量の制御信号を出力し、電子ガバナ45は、その制御信号に基づいて、エンジン1の回転数が目標回転数Naになるように制御する。これにより硫黄分濃度測定処理では、エンジンコントロールダイヤル41による目標回転数の指示に係わらず(その目標回転数の指令信号を無視して)、エンジン1の回転数が強制的に排気ガス中の硫黄分濃度の測定に適した目標回転数Naとなるように固定制御される。
 <ステップS140(図3)>
 次いで、車体制御装置51は、回転数検出装置43からの検出信号を入力し、車体制御装置51からの指令信号の目標回転数Naと回転数検出装置43により検出されるエンジン1の実回転数Nとを比較し、エンジン1の実回転数Nが目標回転数Na以下にあるかどうかを判定する。エンジン1の実回転数が目標回転数範囲Na以下にないと判定された場合は、ステップS140の手順を繰り返す。
 <ステップS150(図3)>
 また、車体制御装置51は、排気温度検出装置33からの検出信号を入力し、予め設定した排気ガス中の硫黄分濃度の測定に適した所定の温度範囲Texa~Texbと排気温度検出装置33により検出された排気ガスの温度Texとを比較し、排気ガスの温度Texが排気ガス中の硫黄分濃度の測定に適した所定の温度範囲Texa~Texbにあるかどうかを判定する。排気ガスの温度Texが所定の温度範囲Texa~Texbにないと判定された場合は、ステップS140及びS150の手順を繰り返す。
 図5は、エンジン回転数と排気ガス温度との関係を示す図である。エンジン回転数と排気ガス温度には相関関係があり、図示の如く、エンジン回転数が上昇するにしたがって排気ガス温度も上昇する関係にある。また、エンジン回転数が一定であっても、排気ガス温度はそのときの環境条件(気温等)や車体条件(エアコン使用の有無等のエンジン引き摺り負荷の大小等)によって所定の幅内で変化する。図5に示す如く、目標回転数Naとして適切な値を設定することにより、排気ガス中の硫黄分濃度の測定に適した所定の温度範囲Texa~Texbの排気ガス温度を得ることができる。
 <ステップS160(図3)>
 ステップS140において、エンジン1の実回転数が目標回転数範囲Na以下にあると判定され、ステップS150において、排気ガスの温度Texaが所定の温度範囲Texa~Texbにあると判定された場合は、車体制御装置51は、その後の経過時間Tと予め設定した目標時間Taとを比較し、経過時間Tが目標時間Taに達したかどうかを判定する。経過時間Tが目標時間Taに達していないと判定された場合は、ステップS140,S150及びS160の手順を繰り返す。
 <ステップS170(図3)>
 ステップS160において、経過時間Tが目標時間Taに達したと判定された場合は、車体制御装置51は、硫黄分濃度検出装置36からの検出信号を入力し、予め設定した排気ガス中の目標硫黄分濃度(閾値)と硫黄分濃度検出装置36により検出される排気ガス中の硫黄分濃度とを比較し、排気ガス中の硫黄分濃度が目標硫黄分濃度(閾値)以上であるかどうかを判定する。
 <ステップS180(図3)>
 ステップS170において、排気ガス中の硫黄分濃度が目標硫黄分濃度(閾値)以上であと判定された場合は、車体制御装置51は、燃料異常フラグFをONにセットする。
 <ステップS190(図3)>
 次いで、車体制御装置51は、警報表示装置42に作動信号を出力して、現在使用中の燃料は硫黄分濃度の高い燃料であることと、直ちに燃料を交換する必要があることを警報表示装置42に表示させる。
 <ステップS200(図3)>
 次いで、車体制御装置51は、エンジン1を停止させる準備として、上述した排気ガス中の硫黄分濃度の測定に適した目標回転数Naよりも低いエンジン停止に適した目標回転数Nbの指令信号をエンジン制御装置52に出力する。この目標回転数Nbの指令信号の出力も、エンジンコントロールダイヤル41による目標回転数の指示に優先して行う。目標回転数Nbは例えば低速アイドル回転数程度の回転数である。
 エンジン制御装置52は、この目標回転数Nbと回転数検出装置43により検出される実回転数に基づいて電子ガバナ45に目標燃料噴射量の制御信号を出力し、電子ガバナ45は、その制御信号に基づいて、エンジン1の回転数が目標回転数Nbになるように制御する。これにより現在使用中の燃料は硫黄分濃度の高い燃料であると判定された場合に、エンジンコントロールダイヤル41からの目標回転数の指示に係わらず、エンジンコントロールダイヤル41からの目標回転数の指令信号を無視して、エンジン1の回転数をエンジン停止に適した目標回転数Nbとなるよう制御する。
 <ステップS210(図3)>
 次いで、ステップS200において、目標回転数Nbの指令信号をエンジン制御装置52に出力した後の経過時間Tと目標時間Tbとを比較し、経過時間Tが目標時間Tbに達したかどうかを判定する。
 <ステップS220(図3)>
 ステップS210において、経過時間Tが目標時間Tbに達したと判定された場合は、エンジン1の停止信号をエンジン制御装置52に出力し、エンジン1を自動停止させる。
 <ステップS230(図3)>
 ステップS110において、今回のエンジン始動時の燃料残量が増えていないと判定された場合は、車体制御装置51は硫黄分濃度測定処理が不要であると判定する。次いで車体制御装置51は燃料異常フラグFがOFFであるかどうかを判定し、燃料異常フラグFがOFFでない場合(ONである場合)は、一度、ステップS170において、排気ガス中の硫黄分濃度が目標硫黄分濃度(閾値)以上であと判定された後にキースイッチ46をオンしてエンジン1の始動をした場合であるので、ステップS190に進んで直ちに警告表示を行うとともに、ステップS200~S220に進んでエンジン停止のための目標回転数Nbの指令信号をエンジン制御装置52に出力し、目標時間Tb経過後、エンジン1を停止させる。
 <ステップS310(図4)>
 ステップS170において、排気ガス中の硫黄分濃度が目標硫黄分濃度(閾値)以上でないと判定された場合、或いはステップS230において、燃料異常フラグFがOFFであると判定された場合は、図4のステップS300に進む。このステップS300では、通常のエンジン回転数制御演算を行う。この通常のエンジン回転数制御演算では、エンジンコントロールダイヤル41からの指令信号を入力し、その指令信号に基づく目標回転数を演算し、その目標回転数の指令信号をエンジン制御装置52に出力する。この場合、車体制御装置51がオートアイドル制御等の付加的なエンジン制御機能を備えていてもよく、この場合は、エンジンコントロールダイヤル41からの指令信号に基づく目標回転数とそのエンジン制御機能に目標回転数の一方を指令信号としてエンジン制御装置52に出力する。
 エンジン制御装置52は、その目標回転数と回転数検出装置43により検出される実回転数に基づいて電子ガバナ45に目標燃料噴射量の制御信号を出力し、電子ガバナ45は、その制御信号に基づいて、エンジン1の回転数が目標回転数になるように制御する。
 <ステップS320(図4)>
 次いで、車体制御装置51はキースイッチ46の指令信号を入力し、キースイッチ46がOFFとなってエンジン1が停止されたかどうかを判定する。
 <ステップS330(図4)>
 ステップS320において、エンジン1が停止されたと判定された場合は、車体制御装置51は燃料油量検出装置40からの検出信号を入力し、燃料油量検出装置40により検出した燃料残量を記憶装置51aに記憶する。
 以上において、車体制御装置51及びエンジン制御装置52は、排気温度検出装置33の検出値と硫黄分濃度検出装置36の検出値に基づいて硫黄分濃度測定処理を行う制御装置を構成し、この制御装置は、硫黄分濃度測定処理において、排気温度検出装置33により検出した排気ガス温度が排気ガス中の硫黄分濃度の測定に適した所定の温度範囲にある場合に、硫黄分濃度検出装置36を用いてエンジン1の排気ガス中の硫黄分濃度を測定し、この硫黄分濃度が予め定めた閾値以上である場合に、警報装置(警報表示装置42)を作動させる。
 また、上記制御装置は、キースイッチ46がONするエンジン始動毎に、前回のエンジン停止時に記憶装置51aに記憶した燃料残量と今回のエンジン始動時に燃料油量検出装置40が検出した燃料残量とを比較し、燃料残量が増えていた場合のみ、硫黄分濃度測定処理を行うものとなる。
 更に、上記制御装置は、硫黄分濃度測定処理を行わないときは、エンジン回転数指示装置(エンジンコントロールダイヤル41)が指示する目標回転数に基づいてエンジン1の回転数を制御する通常エンジン回転数制御を行い、硫黄分濃度測定処理を行うときは、エンジン回転数指示装置(エンジンコントロールダイヤル41)による目標回転数の指示に係わらず、エンジン1の回転数を強制的に排気ガス中の硫黄分濃度の測定に適した所定の目標回転数Naとなるよう固定制御するものとなる。
 また、上記制御装置は、硫黄分濃度が予め定めた閾値以上である場合は、予め設定した所定の時間Tb経過後に、エンジン1を自動停止させるものとなる。
~動作~
 次に、以上のように構成した本実施の形態の動作を説明する。
 <硫黄分濃度の低い通常燃料を給油した場合>
 まず、硫黄分濃度の低い通常燃料を給油した場合について説明する。
 燃料給油後、最初にキースイッチ46をONしてエンジン1を始動したときは、給油後で燃料残量が増えているため、車体制御装置51は、燃料異常フラグFをOFFにリセットして硫黄分濃度測定処理を開始する(ステップS100→S110→S120)。この硫黄分濃度測定処理では、エンジン1の目標回転数は強制的に排気ガス中の硫黄分濃度の測定に適した目標回転数Naとなるように固定制御され、エンジン1の実回転数が目標回転数Na以下となり、排気ガスの温度Texが排気ガス中の硫黄分濃度の測定に適した所定の温度範囲Texa~Texbとなり、かつ目標時間Taを経過すると、排気ガス中の硫黄分濃度が目標硫黄分濃度(閾値)以上であるかどうかの判定を行う(ステップS130→S140→S150→S160→S170)。この場合は、硫黄分濃度の低い通常燃料を使用しているため、車体制御装置51は排気ガス中の硫黄分濃度が目標硫黄分濃度(閾値)以上でないと判定し、通常のエンジン回転数制御演算を行う(ステップS310)。これによりオペレータは通常通り油圧ショベルを動かして作業を行うことができる。
 昼休み等の作業中断時或いは一日の作業終了時に、オペレータがエンジン停止のためキースイッチ46をOFFすると、車体制御装置51は、燃料油量検出装置40により検出したそのときの燃料残量を記憶装置51aに記憶する(ステップS320→S330)。
 昼休み等の作業中断後或いは翌日の作業開始時にオペレータが再びキースイッチ46をONしてエンジン1を始動したときは、給油後でなく燃料残量は増えておらず、かつ燃料異常フラグFはOFFであるため、車体制御装置51は直ちに通常のエンジン回転数制御演算を行う(ステップS100→S110→S230→S310)。これによりオペレータは通常通り油圧ショベルを動かして作業を行うことができる。
 その後キースイッチ46をOFFして、エンジンを停止させた場合も同様である。
<硫黄分濃度の高い燃料を給油した場合>
 次に、硫黄分濃度の高い燃料を給油した場合について説明する。
 燃料給油後、最初にキースイッチ46をONしてエンジン1を始動すると、給油後で燃料残量が増えているため、車体制御装置51は、燃料異常フラグFをOFFにリセットして硫黄分濃度測定処理を開始する(ステップS100→S110→S120)。この硫黄分濃度測定処理においても、エンジン1の目標回転数は強制的に目標回転数Naとなるように固定制御され、エンジン1の実回転数が目標回転数Na以下となり、排気ガスの温度Texが排気ガス中の硫黄分濃度の測定に適した所定の温度範囲Texa~Texbとなり、かつ目標時間Taを経過すると、排気ガス中の硫黄分濃度が目標硫黄分濃度(閾値)以上であるかどうかの判定を行う(ステップS130→S140→S150→S160→S170)。この場合は、硫黄分濃度の高い燃料を使用しているため、車体制御装置51は排気ガス中の硫黄分濃度が目標硫黄分濃度(閾値)以上であると判定し、燃料異常フラグFをONにセットし、かつ警報表示装置42に現在使用中の燃料は硫黄分濃度の高い燃料である旨と、直ちに燃料を交換する必要があることを表示させる(ステップS180→S190)。また、エンジン1を強制的にエンジン停止に適した目標回転数Nbに制御してエンジン1の回転数を低下させ、この状態が目標時間Tbを経過すると、エンジンを停止させる(ステップS200→S210→S220)。
 その後、オペレータが、万一、エンジン1を再始動しようとしてキースイッチ46をONした場合は、給油後でなく燃料残量は増えておらず、かつ燃料異常フラグFはONであるため、車体制御装置51は直ちに警報表示装置42を作動させて、現在使用中の燃料は硫黄分濃度の高い燃料である旨と、直ちに燃料を交換する必要があることを表示させ、かつエンジン1を強制的に目標回転数Nbに制御してエンジン1の回転数を低下させ、目標時間Tbを経過すると、エンジンを停止させる(ステップS100→S110→S230→S190→S200→S210→S220)。これによりオペレータは、硫黄分濃度の低い燃料に交換しない限り、エンジン1の再始動は無理であることが分かり、オペレータは燃料交換をせざるを得なくなる。
~効果~
 以上のように構成した本実施の形態によれば、次の効果が得られる。
 本実施の形態においては、排気ガス温度が排気ガス中の硫黄分濃度の測定に適した所定の温度範囲にある場合にエンジン1の排気ガス中の硫黄分濃度を測定するため、排気ガス後処理装置3を正常に機能させる上で有害である排気ガス中の硫黄分濃度が正しく測定され、この正しく測定された硫黄分濃度が予め定めた閾値以上である場合に警報表示装置42を作動させるため、排気ガス後処理装置3の硫黄被毒を最小限に抑え、排気ガス後処理装置3の不具合を未然に防止することができる。
 また、キースイッチ46がONするエンジン始動毎に、前回のエンジン停止時の燃料残量と今回のエンジン始動時の燃料残量とを比較し、燃料残量が増えていた場合のみ、硫黄分濃度測定処理を開始するため、通常、燃料の給油はエンジン1を停止して行う結果、燃料給油後のエンジン始動時は毎回硫黄分濃度測定処理を行うようになり、硫黄分濃度測定処理の要否が自動的に判定され、必要なときにのみ硫黄分濃度測定処理を行うことができる。これにより硫黄分濃度測定処理の頻度を低減し、硫黄分濃度測定処理による作業機械の稼動効率の低下を極力抑えることができる。
 また、硫黄分濃度測定処理を行うときは、エンジンコントロールダイヤル41(エンジン回転数指示装置)からの目標回転数の指示に係わらず、エンジン1の回転数を強制的に排気ガス中の硫黄分濃度の測定に適した所定の目標回転数となるように固定制御するため、排気ガス温度を排気ガス中の硫黄分濃度の測定に適した所定の温度範囲に確実に制御して、硫黄分濃度測定処理の効率との測定精度を高めることができる。
 更に、硫黄分濃度が高い場合はエンジン1を自動停止させることで、オペレータに燃料の交換を強く促し、この点でも排気ガス後処理装置3の硫黄被毒を最小限に留めることができる。
~バリエーション~
 以上の実施の形態は本発明の精神の範囲内で種々の変更が可能である。
 例えば、上記実施の形態では、キースイッチ46がONするエンジン始動毎に、前回のエンジン停止時の燃料残量と今回のエンジン始動時の燃料残量とを比較して、燃料残量が増えていた場合のみ、硫黄分濃度測定処理を行うようにしたが、通常の運転中(作業中)に常時排気ガス温度を検出し、排気ガス温度が硫黄分濃度の測定に適した所定の温度範囲にあるときにのみ、硫黄分濃度を測定してもよい。この場合でも、硫黄分濃度が予め定めた閾値以上である場合に、警報表示装置42を作動させるようにすることで、排気ガス中の硫黄分濃度を正しく測定し、排気ガス後処理装置3硫黄被毒を最小限に抑え、排気ガス後処理装置3の不具合を未然に防止することができる。
 また、キースイッチ46がONするエンジン始動毎に、前回のエンジン停止時の燃料残量と今回のエンジン始動時の燃料残量とを比較して、燃料残量が増えていた場合のみ、硫黄分濃度測定処理を行う代わりに、硫黄分濃度測定処理を指示するスイッチを設け、エンジン始動後にオペレータのスイッチ操作で硫黄分濃度測定処理の開始を指示し、硫黄分濃度測定処理を行ってもよい。
 更に、上記実施の形態では、警報装置として警報表示装置42を設け、警報表示装置42に警報の内容(現在使用中の燃料は硫黄分濃度の高い燃料であることと、直ちに燃料を交換する必要があること)を表示したが、警報装置としてスピーカを用い、音声で警報の内容を知らせてもよい。
1 エンジン
2 油圧システム
3 排気ガス後処理装置
4 エンジン制御システム
21 油圧ポンプ
22 パイロットポンプ
23 アクチュエータ群
24 コントロールバルブ装置
25 入力操作レバー装置
31 排気管(排気系統)
32a フィルタ
32b 酸化触媒
33 排気温度検出装置
34a,34b 排気圧力検出装置
36 硫黄分濃度検出装置
40 燃料油量検出装置
41 エンジンコントロールダイヤル
42 警報表示装置
43 回転数検出装置
45 電子ガバナ
46 キースイッチ
51 車体制御装置
51a 記憶装置
52 エンジン制御装置
100 下部走行体
101 上部旋回体
102 フロント作業機
103a,103b クローラ式走行装置
104a,104b 左右の走行モータ
105 旋回モータ
106 エンジンルーム
107 キャビン
111 ブーム
112 アーム
113 バケット
114 ブームシリンダ
115 アームシリンダ
116 バケットシリンダ

Claims (4)

  1.  ディーゼルエンジン(1)と、このエンジンの排気系統に設けられた排気ガス後処理装置(3)と、前記エンジンによって駆動される油圧ポンプ(21)及びこの油圧ポンプから吐出される圧油により駆動される少なくとも1つの油圧アクチュエータ(23)を含む油圧システム(2)とを備えた油圧作業機械の排気ガス浄化システムにおいて、
     前記エンジンの排気ガスの温度を検出する排気温度検出装置(33)と、
     前記エンジンの排気ガス中の硫黄分濃度を検出する硫黄分濃度検出装置(36)と、
     警報装置(42)と、
     前記排気温度検出装置の検出値と前記硫黄分濃度検出装置の検出値に基づいて硫黄分濃度測定処理を行う制御装置(51,52)とを備え、
     前記制御装置は、前記硫黄分濃度測定処理において、前記排気温度検出装置により検出した排気ガス温度が排気ガス中の硫黄分濃度の測定に適した所定の温度範囲にある場合に、前記硫黄分濃度検出装置を用いて前記エンジンの排気ガス中の硫黄分濃度を測定し、この硫黄分濃度が予め定めた閾値以上である場合に、前記警報装置を作動させることを特徴とする作業機械のエンジン制御システム。
  2.  請求項1記載の作業機械のエンジン制御システムにおいて、
     前記エンジン(1)を始動させるキースイッチ(46)と、
     前記エンジンに供給される燃料の残量を検出する燃料油量検出装置(40)とを更に備え、
     前記制御装置(51,52)は、前記キースイッチがONするエンジン始動毎に、前回のエンジン停止時に記憶装置(51a)に記憶した燃料残量と今回のエンジン始動時に前記燃料油量検出装置が検出した燃料残量とを比較し、燃料残量が増えていた場合のみ、前記硫黄分濃度測定処理を行うことを特徴とする作業機械のエンジン制御システム。
  3.  請求項1又は2記載の作業機械のエンジン制御システムにおいて、
     前記エンジン(1)の目標回転数を指示するエンジン回転数指示装置(41)を更に備え、
     前記制御装置(51,52)は、前記硫黄分濃度測定処理を行わないときは、前記エンジン回転数指示装置が指示する目標回転数に基づいて前記エンジンの回転数を制御する通常エンジン回転数制御を行い、前記硫黄分濃度測定処理を行うときは、前記エンジン回転数指示装置による目標回転数の指示に係わらず、前記エンジンの回転数を強制的に前記排気ガス中の硫黄分濃度の測定に適した所定の目標回転数となるよう固定制御することを特徴とする作業機械のエンジン制御システム。
  4.  請求項1~3のいずれか1項記載の作業機械のエンジン制御システムにおいて、
     前記制御装置(51,52)は、前記硫黄分濃度が予め定めた閾値以上である場合は、予め設定した所定の時間経過後に、前記エンジン(1)を自動停止させることを特徴とする作業機械のエンジン制御システム。
PCT/JP2012/062417 2011-08-08 2012-05-15 作業機械のエンジン制御システム WO2013021703A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280034100.5A CN103703232A (zh) 2011-08-08 2012-05-15 作业机械的发动机控制系统
US14/125,108 US20140116031A1 (en) 2011-08-08 2012-05-15 Engine control system for working machine
KR1020147000399A KR20140047068A (ko) 2011-08-08 2012-05-15 작업 기계의 엔진 제어 시스템
EP12822316.1A EP2743481A1 (en) 2011-08-08 2012-05-15 Engine control system for work machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-173290 2011-08-08
JP2011173290A JP2013036393A (ja) 2011-08-08 2011-08-08 作業機械のエンジン制御システム

Publications (1)

Publication Number Publication Date
WO2013021703A1 true WO2013021703A1 (ja) 2013-02-14

Family

ID=47668227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062417 WO2013021703A1 (ja) 2011-08-08 2012-05-15 作業機械のエンジン制御システム

Country Status (6)

Country Link
US (1) US20140116031A1 (ja)
EP (1) EP2743481A1 (ja)
JP (1) JP2013036393A (ja)
KR (1) KR20140047068A (ja)
CN (1) CN103703232A (ja)
WO (1) WO2013021703A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022568A1 (en) * 2013-08-14 2015-02-19 Toyota Jidosha Kabushiki Kaisha Control system and control method for internal combustion engine
WO2015025205A1 (en) * 2013-08-23 2015-02-26 Toyota Jidosha Kabushiki Kaisha Control device and control method for internal combustion engine
WO2015025202A1 (en) * 2013-08-23 2015-02-26 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
CN104405485A (zh) * 2013-06-28 2015-03-11 康明斯有限公司 提高scr系统的高抗硫性的模拟燃料硫传感器
US10551364B2 (en) 2014-02-20 2020-02-04 Toyota Jidosha Kabushiki Kaisha Control system and control method for internal combustion engine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9299109B2 (en) * 2014-07-17 2016-03-29 Kenneth Carl Steffen Winiecki Motor vehicle monitoring method for determining driver negligence of an engine
EP3228762B1 (en) * 2014-12-05 2019-03-13 Sumitomo Heavy Industries, Ltd. Shovel and shovel control method
CN113454319B (zh) * 2018-10-26 2023-10-03 K&N工程公司 涡轮增压控制系统
CN110761883A (zh) * 2019-12-27 2020-02-07 潍柴动力股份有限公司 预测硫中毒的方法及设备
CN114233471B (zh) * 2021-12-24 2022-11-22 湖南道依茨动力有限公司 高硫油的识别及后处理方法、装置和作业车辆
CN114856781A (zh) * 2022-05-09 2022-08-05 三一重机有限公司 作业机械发动机保护方法、装置及作业机械
CN116008483A (zh) * 2023-01-09 2023-04-25 一汽解放汽车有限公司 含硫量检测方法、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144754A (ja) * 2006-11-17 2008-06-26 Honda Motor Co Ltd 内燃機関の制御装置
JP2008255952A (ja) * 2007-04-09 2008-10-23 Toyota Motor Corp 内燃機関の硫黄濃度検出装置
JP2010065425A (ja) 2008-09-09 2010-03-25 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械の燃料監視装置
JP2010180765A (ja) * 2009-02-05 2010-08-19 Mitsubishi Electric Corp 内燃機関の制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291100A (ja) * 2004-03-31 2005-10-20 Mitsubishi Fuso Truck & Bus Corp エンジンの排ガス浄化装置
JP4379314B2 (ja) * 2004-11-26 2009-12-09 三菱自動車工業株式会社 内燃機関の排気浄化装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144754A (ja) * 2006-11-17 2008-06-26 Honda Motor Co Ltd 内燃機関の制御装置
JP2008255952A (ja) * 2007-04-09 2008-10-23 Toyota Motor Corp 内燃機関の硫黄濃度検出装置
JP2010065425A (ja) 2008-09-09 2010-03-25 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械の燃料監視装置
JP2010180765A (ja) * 2009-02-05 2010-08-19 Mitsubishi Electric Corp 内燃機関の制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104405485A (zh) * 2013-06-28 2015-03-11 康明斯有限公司 提高scr系统的高抗硫性的模拟燃料硫传感器
CN104405486A (zh) * 2013-06-28 2015-03-11 康明斯有限公司 提高scr系统的高抗硫性的模拟燃料硫传感器
WO2015022568A1 (en) * 2013-08-14 2015-02-19 Toyota Jidosha Kabushiki Kaisha Control system and control method for internal combustion engine
WO2015025205A1 (en) * 2013-08-23 2015-02-26 Toyota Jidosha Kabushiki Kaisha Control device and control method for internal combustion engine
WO2015025202A1 (en) * 2013-08-23 2015-02-26 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
US9903833B2 (en) 2013-08-23 2018-02-27 Toyota Jidosha Kabushiki Kaisha Control device and control method for internal combustion engine
US9970371B2 (en) 2013-08-23 2018-05-15 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
US10551364B2 (en) 2014-02-20 2020-02-04 Toyota Jidosha Kabushiki Kaisha Control system and control method for internal combustion engine

Also Published As

Publication number Publication date
US20140116031A1 (en) 2014-05-01
CN103703232A (zh) 2014-04-02
JP2013036393A (ja) 2013-02-21
KR20140047068A (ko) 2014-04-21
EP2743481A1 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
WO2013021703A1 (ja) 作業機械のエンジン制御システム
JP5235229B2 (ja) 粒子状物質除去フィルタの再生制御装置およびその再生制御方法
US8459008B2 (en) Working machine
KR101579313B1 (ko) 작업 기계의 배기 가스 정화 시스템
JP5658075B2 (ja) 作業機の排気浄化システム
JP2013036393A5 (ja)
KR101907727B1 (ko) 건설 기계
US20140251146A1 (en) Construction machine
JP5828579B2 (ja) 作業機の排気ガス浄化システム
JP2018035807A (ja) 建設機械
JP5388743B2 (ja) 作業機の表示装置
JP2010270699A (ja) 建設機械の排気浄化装置
JP5714300B2 (ja) 排気ガス浄化システム
JP2010007562A (ja) 建設機械の排ガス浄化システム
KR102116915B1 (ko) 건설 기계
JP2012097681A (ja) Dpfの制御装置
WO2024053365A1 (ja) 排気浄化装置、排気浄化方法および制御装置
JP2013113291A (ja) 作業機
JP2012097680A (ja) Dpfの制御装置
JP2010223132A (ja) 建設機械の排ガス後処理装置
JP2011007086A (ja) 建設機械の排ガス後処理装置
JP2010270610A (ja) 建設機械のdpf自己再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822316

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14125108

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012822316

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147000399

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE