[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013021633A1 - Pigment for aqueous inks, aqueous ink composition containing same, and image and printed matter using same - Google Patents

Pigment for aqueous inks, aqueous ink composition containing same, and image and printed matter using same Download PDF

Info

Publication number
WO2013021633A1
WO2013021633A1 PCT/JP2012/005031 JP2012005031W WO2013021633A1 WO 2013021633 A1 WO2013021633 A1 WO 2013021633A1 JP 2012005031 W JP2012005031 W JP 2012005031W WO 2013021633 A1 WO2013021633 A1 WO 2013021633A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal compound
water
titanium dioxide
weight
white pigment
Prior art date
Application number
PCT/JP2012/005031
Other languages
French (fr)
Japanese (ja)
Inventor
友紀子 江上
和知 浩子
中山 徳夫
弘志 前川
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2013527898A priority Critical patent/JP6061097B2/en
Priority to US14/237,596 priority patent/US9023472B2/en
Publication of WO2013021633A1 publication Critical patent/WO2013021633A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • C09C1/3661Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • C09C1/0084Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound containing titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/041Grinding
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/007Metal oxide
    • C09D17/008Titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24893Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including particulate material
    • Y10T428/24901Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including particulate material including coloring matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a pigment for aqueous ink, an aqueous ink composition containing the same, and an image or printed matter thereof.
  • inkjet printing has attracted attention as a method for forming images such as letters, pictures and designs on a substrate such as a transparent film.
  • Ink jet printing is a printing method in which printing is performed by causing ink droplets to fly and adhere to a recording medium such as paper.
  • a white ink with high concealability, and as the pigment, an inorganic pigment, particularly titanium dioxide is often used.
  • inorganic pigments such as titanium dioxide have a high specific gravity, and therefore, when used for inkjet inks having a low viscosity, suppression of pigment settling becomes a problem.
  • the pigment settles there are problems such as clogging during ejection from the ink jet nozzle and poor storage stability of the ink.
  • Patent Document 1 discloses that a white pigment with excellent dispersibility can be obtained by coating the surface of titanium dioxide particles with porous silica.
  • silica having a small refractive index there is a problem that the whiteness decreases.
  • silica is known to be easily dissolved when alkaline, and there is a problem that ink adjustment conditions cannot be widely selected.
  • Patent Document 2 discloses a method of forming a white solid coating layer with a porous titanium dioxide pigment using an inkjet method.
  • the titanium dioxide pigment generally has a problem of being easily settled and having poor long-term storage stability.
  • Patent Document 3 discloses that whiteness can be maintained and storage stability can be ensured by using silica having a specific gravity smaller than that of titanium dioxide. However, since silica has inferior whiteness and hiding properties compared to titanium dioxide, it is necessary to use titanium dioxide together. As a result, it is difficult to ensure storage stability.
  • the present invention has been made in view of the above-described problems, and is a pigment for aqueous ink that is difficult to settle in an aqueous ink medium and has good white color developability, an aqueous ink composition containing the same, and an aqueous solution thereof
  • the present invention provides an image or printed matter obtained using the ink composition.
  • the present inventors have found that when a metal compound satisfying a specific condition is contained, a pigment for aqueous ink that is difficult to settle in an aqueous ink medium and has a good white color developability. As a result, the present invention was completed.
  • the following pigment for aqueous ink an aqueous ink composition containing the pigment, and an image or printed matter obtained using the aqueous ink composition are provided.
  • the metal compound (1) includes titanium dioxide and a metal compound (2) having a refractive index of 1.60 or more and 2.45 or less at a wavelength of 550 nm, When the total of the titanium dioxide and the metal compound (2) is 100% by weight, the content of the titanium dioxide is 50% by weight to 99% by weight, and the content of the metal compound (2) is 1% by weight. % To 50% by weight.
  • the peak value of the volume particle size distribution measured by the dynamic light scattering method of the metal compound (1) is in the range of 100 to 700 nm.
  • the pore volume of the metal compound (1) calculated by the BJH (Barrett-Joyner-Halenda) method is 0.1 ml / g or more and 0.65 ml / g or less.
  • BJH Barrett-Joyner-Halenda
  • the present invention it is possible to provide a white pigment for water-based ink that does not easily settle in a water-based ink medium and has good white color development.
  • the aqueous ink composition containing the pigment for aqueous ink of the present invention is excellent in storage stability.
  • the coating film obtained from the aqueous ink composition of the present invention is excellent in whiteness and / or hiding properties.
  • the white pigment for water-based ink of this embodiment contains a metal compound (1) that satisfies a specific condition.
  • the metal compound (1) of this embodiment contains titanium dioxide and a metal compound (2) having a refractive index of 1.60 or more and 2.45 or less at a wavelength of 550 nm.
  • the refractive index of titanium dioxide is 2.52 for the anatase type and 2.71 for the rutile type.
  • Examples of the metal compound (2) having a refractive index of 1.60 to 2.45 at a wavelength of 550 nm include CeO 2 (refractive index 2.2), zirconium dioxide (refractive index 2.05), and zinc sulfide (refractive index 2).
  • the whiteness is higher when the refractive index is higher. Further, it is known that the refractive index is additive, and that when the refractive index is mixed with the high refractive index, the refractive index decreases. In this embodiment, although the metal compound (2) having a low refractive index is added to the refractive index of titanium dioxide, the whiteness is equal or rather improved.
  • required by the Debye-Scherrer method of the powder X-ray analysis of the metal compound (1) of this embodiment is not specifically limited, For example, it can be 4 nm or more and 50 nm or less, and can be 4 nm or more and 15 nm.
  • the thickness is preferably 5 nm or more and particularly preferably 5 nm or more and 10 nm or less.
  • the crystallite size determined by the Debye-Scherrer method of the powder X-ray analysis of the metal compound (1) of the present embodiment is 4 nm or more, visible light scattering is likely to occur and the whiteness is improved. The following is preferable because dispersibility is improved.
  • the crystallite size determined by the Debye-Scherrer method of powder X-ray analysis of the metal compound (1) of the present embodiment can be controlled by the firing conditions, and if the firing temperature is increased and the firing time is lengthened, the crystallite The size tends to increase.
  • the metal compound (2) preferably has a specific gravity of 3.0 g / cm 3 or more and 6.0 g / cm 3 or less, more preferably 3.95 g / cm 3 or more and 6.0 g / cm 3 or less.
  • a metal compound (2) include zirconium dioxide (specific gravity 5.69), zinc sulfide (specific gravity 4.0), ZnO (specific gravity 5.6), Y 2 O 3 (specific gravity 5.03), aluminum oxide ( Specific gravity 3.97), BaSO 4 (specific gravity 4.45), 3Zr4 (PO 4 ) (specific gravity 3.32), ZrP 2 O 7 (specific gravity 3.14), (ZrO) 2P 2 O 7 (specific gravity 3.53) ), (ZrO) 2P 2 O 7 (specific gravity 3.88), Zr (PO 3) 4 ( specific gravity 3.18), and the like.
  • zirconium dioxide is particularly preferred.
  • the content of titanium dioxide is 50 wt% or more and 99 wt% or less with respect to the total weight of titanium dioxide and the metal compound (2).
  • the content is 1% by weight or more and 50% by weight or less.
  • the titanium dioxide content is 60 wt% or more and 95 wt% or less
  • the metal compound (2) content is 5 wt% or more and 40 wt% or less
  • the titanium dioxide content is 70 wt%.
  • the content of the metal compound (2) is 10% by weight or more and 30% by weight or less.
  • the metal compound (1) of the present embodiment may not contain components other than titanium dioxide and the metal compound (2), or may be contained within a range that does not impair the effects of the present invention.
  • the content is not particularly limited, but is, for example, in the range of 0% by weight to 10% by weight with respect to the total weight of titanium dioxide and the metal compound (2).
  • the metal compound (1) of the present embodiment when used as an ink jet pigment, it can be stably ejected from the ink jet nozzle without causing clogging, and the whiteness and concealment of the coating film can be maintained. It is preferable that the storage stability is ensured when the peak value of the volume particle size distribution measured by the dynamic light scattering method is in the range of 100 to 700 nm. Although the specific gravity of a metal compound such as titanium dioxide is generally high, in the present embodiment, it is nevertheless possible to form a white pigment for water-based ink that does not easily precipitate in the ink even in the particle size range. . *
  • the peak value of the volume particle size distribution measured by the dynamic light scattering method of the metal compound (1) of the present embodiment is in the range of 100 to 700 nm, preferably in the range of 150 to 400 nm.
  • the peak value of the volume particle size distribution of the metal compound (1) is 100 nm or more, since the visible light scattering ability is improved, the whiteness can be further improved.
  • the particle size peak of the metal compound (1) is 700 nm or less, clogging of the ink jet nozzle can be suppressed.
  • the pore characteristics of the metal compound (1) of this embodiment can be determined by nitrogen adsorption. From the measurement of nitrogen adsorption / desorption of particles, the specific surface area can be calculated by the BET (Brunauer-Emmett-Teller) method and the total pore volume can be calculated by the BJH (Barrett-Joyner-Halenda) method. Furthermore, the porosity can be calculated from the total pore volume.
  • BET Brunauer-Emmett-Teller
  • BJH Barrett-Joyner-Halenda
  • the pore volume of the metal compound (1) of the present embodiment is 0.1 ml / g or more and 0.65 ml / g or less, preferably 0.2 ml / g or more and 0.65 ml / g or less.
  • the pore volume increases, the apparent specific gravity decreases and sedimentation becomes difficult.
  • the pore volume is 0.1 ml / g or more, sedimentation is less likely to occur.
  • the pore volume is 0.65 ml / g or less, the structure can be maintained.
  • the specific surface area of the metal compound (1) of the present embodiment but is not limited particularly, preferably 70m 2 / g or more 250 meters 2 / g or less, 100 m 2 / g or more 200 meters 2 / g or less is more preferable.
  • the porosity of the metal compound (1) of the present embodiment is not particularly limited, but is preferably 20% or more and 90% or less, and more preferably 30% or more and 85% or less.
  • the white pigment of the present embodiment has an intensity ratio Ib / when the strongest peak intensities of diffraction lines derived from the titanium dioxide and the metal compound (2) are Ia and Ib, respectively. It is preferable that Ia is 0.02 or less from the viewpoint of improving the dispersibility or redispersibility of the pigment.
  • the metal compound (2) is amorphous, OH groups exist, or when a pigment is dispersed in a dispersion medium, OH groups are easily generated, and the affinity with the dispersion medium is improved. It is guessed.
  • a method for reducing the intensity ratio Ib / Ia for example, a method for lowering the firing temperature in the step (c) described later can be mentioned.
  • the white pigment for aqueous ink containing the metal compound (1) of this embodiment can be produced by a method including the following steps (a), (b) and (c). Furthermore, you may perform a process (d) after a process (c).
  • Step (a) The following step (a-1), step (a-2) or step (a-3) is performed.
  • Step (a-1) A sol-gel reaction of the metal compound precursor (Y) (hereinafter sometimes referred to as “component (Y)”) is performed.
  • organic polymer particles may or may not be used as a template for adjusting the pores.
  • the organic polymer particles used as the template are removed by baking in step (c).
  • the organic polymer particles are at least one selected from polyolefin-based, poly (meth) acrylic acid ester-based, polystyrene-based, polyurethane-based, polyacrylonitrile-based, polyvinyl chloride-based, polyvinylidene chloride-based, polyvinyl acetate-based and polybutadiene-based particles. Mention may be made of some water-insoluble polymer particles. Examples of the polyolefin type may include terminal branched copolymer particles described in WO2010 / 103856.
  • a titanium dioxide precursor, a metal compound (2) or a precursor thereof, water and / or a solvent (Z) that dissolves a part or all of water in an arbitrary ratio may be mixed to prepare a mixed composition, and a sol-gel reaction of the metal compound precursor is performed.
  • the mixed composition may contain a sol-gel reaction catalyst (W) for the purpose of promoting the hydrolysis / polycondensation reaction of the metal alkoxide.
  • Metal compound precursor (Y) examples include a titanium dioxide precursor and a precursor of the metal compound (2).
  • the metal compound precursor include metal alkoxides and / or partial hydrolysis condensates thereof, metal halides, metal acetates, metal nitrates, and metal sulfates.
  • R 1 represents a hydrogen atom, an alkyl group (such as a methyl group, an ethyl group, or a propyl group), an aryl group (such as a phenyl group or a tolyl group), or a carbon-carbon double bond-containing organic group (an acryloyl group or a methacryloyl group).
  • vinyl groups halogen-containing groups (halogenated alkyl groups such as chloropropyl group and fluoromethyl group), and the like.
  • R 2 represents a lower alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms.
  • M examples include metals such as titanium (Ti), zirconium (Zr), zinc (Zn), cerium (Ce), and yttrium (Y).
  • metal alkoxide examples include titanium methoxide, titanium ethoxide, titanium-n-propoxide, titanium-i-propoxide, titanium-n-butoxide, titanium-t-butoxide, zirconium methoxide, zirconium ethoxide, zirconium.
  • a partially hydrolyzed condensate of metal alkoxide is a compound obtained by polycondensation of one or more metal alkoxides partially hydrolyzed using a sol-gel reaction catalyst (W).
  • W sol-gel reaction catalyst
  • a partially hydrolyzed polycondensation compound of a metal alkoxide is preferably an alkoxytitanium condensate or an alkoxyzirconium condensate.
  • R 1 represents a hydrogen atom, an alkyl group (such as a methyl group, an ethyl group, or a propyl group), an alkoxy group (such as a methoxy group, an ethoxy group, a propoxy group, or a butoxy group), an aryl group (such as a phenyl group or a tolyl group).
  • a carbon-carbon double bond-containing organic group (acryloyl group, methacryloyl group, vinyl group and the like), a halogen-containing group (halogenated alkyl group such as chloropropyl group and fluoromethyl group) and the like.
  • Z represents F, Cl, Br, or I.
  • x and y represent an integer such that x + y ⁇ 4 and x is 2 or less.
  • M include titanium (Ti), zirconium (Zr), zinc (Zn), cerium (Ce), yttrium (Y), and the like.
  • titanium halide zirconium halide, zinc halide, cerium halide, yttrium halide and hydrates thereof.
  • metal acetate examples include titanium acetate, zirconium acetate, zinc acetate, cerium acetate, yttrium acetate, and hydrates thereof.
  • metal nitrate examples include titanium nitrate, zirconium nitrate, zinc nitrate, cerium nitrate, yttrium nitrate, and hydrates thereof.
  • metal sulfate examples include titanium sulfate, zirconium sulfate, zinc sulfate, cerium sulfate, yttrium sulfate, and hydrates thereof.
  • component (Z) includes both the component (Y) and the solvent used when mixing the sol-gel reaction catalyst (W) described later (hereinafter also referred to as “component (W)”). .
  • Water is not particularly limited, and distilled water, ion exchange water, city water, industrial water, and the like can be used, but it is preferable to use distilled water or ion exchange water.
  • the solvent for dissolving a part or all of water in an arbitrary ratio is not particularly limited as long as it is an organic solvent having an affinity for water and can disperse water-insoluble organic polymer particles.
  • organic solvent having an affinity for water and can disperse water-insoluble organic polymer particles.
  • methanol, ethanol, propyl alcohol, isopropyl alcohol, acetone, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylimidazolidinone, ethylene glycol, tetraethylene glycol, dimethylacetamide, N-methyl-2-pyrrolidone, tetrahydrofuran, dioxane, methyl ethyl ketone examples include cyclohexanone, cyclopentanone, 2-methoxyethanol (methyl cellosolve), 2-ethoxyethanol (ethyl cellosolve), and ethyl acetate.
  • methanol, ethanol, propyl alcohol, isopropyl alcohol, acetonitrile dimethyl sulfoxide, dimethylformamide, acetone, tetrahydrofuran, and dioxane are preferable because of their high affinity with water.
  • the amount of water to be added is usually in the range of, for example, 1 part by weight or more and 1000000 parts by weight or less, preferably 10 parts by weight with respect to 100 parts by weight of the mixture of the component (Y) and the component (W). It is the range of not less than 10000 parts by weight.
  • the amount of the solvent to be added is usually 1 part by weight or more with respect to 100 parts by weight of the mixture of the component (Y) and the component (W).
  • the range is 1 million parts by weight or less, preferably 10 parts by weight or more and 10,000 parts by weight or less.
  • the preferable reaction temperature at the time of hydrolysis polycondensation of metal alkoxides is 1 ° C. or more and 100 ° C. or less, more preferably 20 ° C. or more and 60 ° C. or less, and the reaction time is 10 minutes or more and 72 hours or less, More preferably, it is 1 hour or more and 24 hours or less.
  • Sol-gel reaction catalyst (W) In the mixed composition used in the present embodiment, for the purpose of accelerating the reaction in the hydrolysis / polycondensation reaction of the metal alkoxide, it may contain a catalyst for the hydrolysis / polycondensation reaction as shown below.
  • What is used as a catalyst for hydrolysis and polycondensation reactions of metal alkoxides is “the latest functional sol-gel technology by the sol-gel method” (Akira Hirashima, Comprehensive Technology Center, page 29) and “Sol-Gel”. It is a catalyst used in a general sol-gel reaction described in “The Science of Law” (Sakuo Sakuo, Agne Jofu Co., Ltd., page 154).
  • catalyst (W) acid catalyst, alkali catalyst, organotin compound, titanium tetraisopropoxide, diisopropoxytitanium bisacetylacetonate, zirconium tetrabutoxide, zirconium tetrakisacetylacetonate, aluminum triisopropoxide, aluminum tris
  • metal alkoxides such as ethyl acetonate and trimethoxyborane.
  • acid catalysts and alkali catalysts are preferably used.
  • acid catalysts include inorganic and organic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, succinic acid, tartaric acid, and toluenesulfonic acid
  • alkali catalysts include ammonium hydroxide, potassium hydroxide, and sodium hydroxide.
  • Alkali metal hydroxide quaternary ammonium hydroxide such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, ammonia, triethylamine, tributylamine, morpholine, pyridine, piperidine, ethylenediamine, diethylenetriamine, ethanolamine , Amines such as diethanolamine and triethanolamine, aminosilanes such as 3-aminopropyltriethoxysilane and N (2-aminoethyl) -3-aminopropyltrimethoxysilane And the like.
  • quaternary ammonium hydroxide such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, ammonia, triethylamine, tributylamine, morpholine, pyridine,
  • an acid catalyst such as hydrochloric acid or nitric acid, where the reaction proceeds relatively gently.
  • the amount of the catalyst used is preferably 0.001 mol or more and 0.05 mol or less, more preferably 0.001 mol or more and 0.04 mol or less, and still more preferably, with respect to 1 mol of the metal alkoxide of the component (Y). It is about 0.001 mol or more and 0.03 mol or less.
  • the mixed composition in the step (a-1) is used, for example, in the form of a sol-gel reactant obtained by performing a sol-gel reaction without removing the solvent (Z) in the presence of the catalyst (W). Can do.
  • Step (a-2) In step (a-2), a mixture containing metal compound nanoparticles and an aqueous medium is prepared.
  • the metal compound nanoparticles selected in the present embodiment contain titanium dioxide (TiO 2 ) and further contain a metal compound (2).
  • the metal compound (2) include zirconium dioxide (ZrO 2 ), zinc oxide (ZnO), zinc sulfide (ZnS), yttrium oxide (Y 2 O 3 ), magnesium oxide (MnO), aluminum oxide, and barium sulfate. It is done.
  • the metal compound (2) may be one type or two or more types.
  • Examples of the metal compound nanoparticles include a structure in which one or more kinds of inorganic ultrafine particles are coated with one or more kinds of other inorganic substances (core-shell structure), and a structure in which a crystal structure is formed with two or more kinds of components.
  • the particle diameter of the metal compound nanoparticles is preferably 1 nm to 50 nm, more preferably 1 nm to 20 nm, and still more preferably 1 nm to 10 nm.
  • a manufacturing method of a metal compound nanoparticle it can divide roughly into the crushing method and the synthesis method.
  • synthesis methods there are vapor phase methods such as evaporation condensation method and gas phase reaction method, liquid phase methods such as colloid method, homogeneous precipitation method, hydrothermal synthesis method and microemulsion method.
  • each metal compound nanoparticle is preferably dispersed in water or the like in a colloidal or slurry form.
  • a silane cup such as ⁇ -glycidoxypropyltrimethoxysilane or methacryloyloxypropyltrimethoxysilane is used.
  • the dispersion may be stabilized by a method such as adding a ring agent, an organic acid such as carboxylic acid, a polymer such as polyvinyl pyrrolidone or polyvinyl alcohol, or chemically bonding (surface modification) them to the surface of the fine particles.
  • a method such as adding a ring agent, an organic acid such as carboxylic acid, a polymer such as polyvinyl pyrrolidone or polyvinyl alcohol, or chemically bonding (surface modification) them to the surface of the fine particles.
  • Examples of the aqueous medium in which the metal compound nanoparticles are dispersed include water and / or a solvent that dissolves part or all of water in an arbitrary ratio.
  • the water is not particularly limited, and distilled water, ion exchange water, city water, industrial water, and the like can be used. In particular, it is preferable to use distilled water or ion exchange water.
  • the solvent for dissolving a part or all of water in an arbitrary ratio is not particularly limited as long as it is an organic solvent having an affinity for water.
  • organic solvent having an affinity for water.
  • methanol, ethanol, propyl alcohol, isopropyl alcohol, acetone, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylimidazolidinone, ethylene glycol, tetraethylene glycol, dimethylacetamide, N-methyl-2-pyrrolidone, tetrahydrofuran, dioxane, methyl ethyl ketone examples include cyclohexanone, cyclopentanone, 2-methoxyethanol (methyl cellosolve), 2-ethoxyethanol (ethyl cellosolve), and ethyl acetate.
  • methanol, ethanol, propyl alcohol, isopropyl alcohol, acetonitrile, dimethyl sulfoxide, dimethylformamide, acetone, tetrahydrofuran, and dioxane are preferable because of their high affinity with water.
  • Step (a-3) In the step (a-3), the titanium dioxide particles are surface-treated with the metal compound (2) or a precursor thereof.
  • Surface treatment refers to attaching, carrying or coating a surface treatment agent on the surface of titanium dioxide particles.
  • Titanium dioxide can be produced by various known methods such as the sulfuric acid method and the chlorine method. Commercially available titanium dioxide may also be used. Among these, in the sulfuric acid method, a titanium-containing ore is generally leached with sulfuric acid to obtain a titanium sulfate solution, and the titanium sulfate solution is hydrolyzed to obtain a hydrous titanium precipitate. The precipitate is calcined in the presence of an appropriate additive to obtain a precipitate having a desired crystal structure. At this time, a metal oxide film can be applied by surface treatment. When the resultant is finally pulverized and adjusted to a desired particle size, the desired titanium dioxide particles are obtained.
  • the primary particle diameter of titanium dioxide is not particularly limited, but can be, for example, 10 to 200 nm. In particular, a primary particle size of 60 nm or more is preferable because whiteness is further improved.
  • the metal compound (2) or its precursor Before the surface treatment with the metal compound (2) or its precursor, it is preferable to surface-treat the titanium dioxide particles with an inorganic phosphate compound.
  • inorganic phosphate compounds include phosphoric acid, ammonium phosphate, diammonium hydrogen phosphate, triammonium hydrogen phosphate, monopotassium phosphate, calcium monohydrogen phosphate, monosodium phosphate, dipotassium hydrogen phosphate
  • tripotassium hydrogen phosphate pyrophosphoric acid, tripolyphosphoric acid, tetrapolyphosphoric acid, trimetaphosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid, and salts thereof may be mentioned.
  • two or more of the various inorganic phosphate compounds described above may be used in combination.
  • phosphoric acid compounds phosphoric acid, ammonium phosphate, diammonium hydrogen phosphate, and triammonium hydrogen phosphate are more preferable.
  • an ammonium salt of phosphoric acid is preferable.
  • a treatment method a method of mixing titanium dioxide particles and an inorganic phosphate compound in a medium such as water, a method of mixing dried titanium dioxide particles and an inorganic phosphate compound, and spraying an inorganic phosphate compound on titanium dioxide.
  • the method, the method of immersing titanium dioxide in an inorganic phosphoric acid compound, etc. are mentioned.
  • the phosphoric acid compound preferably contains more than 1% by mass and 30% by mass or less, more preferably more than 5% by mass and 20% by mass or less of the titanium dioxide. It is processed by.
  • the surface treatment method using the metal compound (2) various known methods that are usually performed can be employed. For example, after adding the above-described water-soluble compound of metal to an aqueous slurry of titanium dioxide. A method of neutralizing and precipitating the above-mentioned metal hydrous oxide on the surface of titanium dioxide, followed by filtration and drying can be employed.
  • step (b) In step (b), the reaction solution obtained in step (a-1), the mixture obtained in step (a-2), or the surface treatment obtained in step (a-3) is applied.
  • the titanium dioxide particles are dried to obtain a powder.
  • the reaction solution or mixture of the present embodiment is heated and dried at a predetermined temperature to remove water or the solvent, and then the obtained solid is formed by a treatment such as pulverization or classification, or freeze-drying.
  • a treatment such as pulverization or classification, or freeze-drying.
  • a poor solvent such as methanol
  • the sol-gel reaction is completed by heating and drying, and a metal compound is formed.
  • the heating temperature for completing the sol-gel reaction is from room temperature to 300 ° C, more preferably from 80 ° C to 200 ° C.
  • the state in which the sol-gel reaction is completed is ideally a state in which all of them form MOM bonds, but some alkoxyl groups (M-OR 2 ) and M-OH groups are partially formed. Although it remains, it includes a state in which it has shifted to a solid (gel) state.
  • the metal compound nanoparticles are aggregated and bonded by heating and drying.
  • the heating temperature for promoting the aggregation and bonding of the metal compound nanoparticles is preferably from room temperature to 300 ° C., more preferably from 80 ° C. to 200 ° C. *
  • the heating temperature is preferably from room temperature to 300 ° C., more preferably from 80 ° C. to 200 ° C.
  • the powder obtained in the step (b) is fired.
  • the firing temperature is preferably 300 ° C. or higher and 1000 ° C. or lower, more preferably 400 ° C. or higher and 1000 ° C. or lower, further preferably 500 ° C. or higher and 800 ° C. or lower, and particularly preferably 500 ° C. or higher and 600 ° C. or lower.
  • the firing temperature is equal to or higher than the lower limit, the formation of titanium dioxide crystals can be sufficiently advanced.
  • the firing temperature is not more than the above upper limit, excessive sintering of the titanium dioxide crystal and collapse of the porous structure can be suppressed. Firing may be performed at a constant temperature, or may be gradually raised from room temperature.
  • the firing time can be changed according to the temperature, but it is preferably performed in the range of 1 to 24 hours. Firing may be performed in air or in an inert gas such as nitrogen or argon. Moreover, you may carry out under reduced pressure or in a vacuum.
  • the metal compound (1) used as the white pigment of the present embodiment is difficult to settle in an aqueous medium and has excellent whiteness.
  • the metal compound (2) is unevenly distributed on the surface of titanium dioxide, and the porous structure is maintained by preventing the titanium dioxide crystals from growing excessively during firing, and the pore volume is appropriate. This is presumed to be in the range.
  • Step (d) In the step (d), the metal compound (1) obtained in the step (c) is wet-pulverized to a desired particle size and dispersed in water to obtain an aqueous dispersion.
  • aqueous dispersions with pigments of the desired particle size -A disperser can be used.
  • pre-pulverization with a mortar Prior to filling the pulverizer / disperser, pre-pulverization with a mortar may be performed. Moreover, you may use the mixer for premixes.
  • the aqueous dispersion can be used as it is, but in order to remove a minute amount of coarse particles, centrifugal separation, pressure filtration, vacuum filtration and the like can also be used.
  • a surfactant or dispersant is not indispensable.
  • an anionic surfactant, a cationic surfactant, an amphoteric surfactant, a nonionic surfactant, a polymer dispersant, etc. are crushed. -You may coexist at the time of distributed processing.
  • Anionic surfactants include, for example, carboxylates, simple alkyl sulfonates, modified alkyl sulfonates, alkyl allyl sulfonates, alkyl sulfate esters, sulfated oils, sulfate esters, sulfated fatty acid monoglycerides, sulfated alkanol amides. Sulphated ethers, alkyl phosphate esters, alkyl benzene phosphonates, naphthalene sulfonic acid / formalin condensates.
  • Examples of cationic surfactants include simple amine salts, modified amine salts, tetraalkyl quaternary ammonium salts, modified trialkyl quaternary ammonium salts, trialkyl benzyl quaternary ammonium salts, and modified trialkyl benzyl quaternary salts.
  • Examples include quaternary ammonium salts, alkyl pyridinium salts, modified alkyl pyridinium salts, alkyl quinolinium salts, alkyl phosphonium salts, and alkyl sulfonium salts.
  • amphoteric surfactants examples include betaine, sulfobetaine, and sulfate betaine.
  • Nonionic surfactants include, for example, fatty acid monoglycerin ester, fatty acid polyglycol ester, fatty acid sorbitan ester, fatty acid sucrose ester, fatty acid alkanol amide, fatty acid polyethylene glycol glycol condensate, fatty acid amide polyethylene glycol condensate, Examples include fatty acid alcohol / polyethylene / glycol condensate, fatty acid amine / polyethylene / glycol condensate, fatty acid mercaptan / polyethylene / glycol condensate, alkyl / phenol / polyethylene / glycol condensate, and polypropylene / glycol / polyethylene / glycol condensate. . These surfactants can be used alone or in combination of two or more, and can also be used in combination with other additives.
  • An antifoaming agent may be added in order to suppress foaming during pulverization / dispersion.
  • antifoaming agents include silicones, polyethers, and alcohols. These antifoaming agents can be used alone or in combination of two or more.
  • the order of adding the dispersant is not particularly limited, but it is preferable to add the dispersant before or after the step (d).
  • the peak value of the volume particle size distribution measured by the dynamic light scattering method of the metal compound (1) is in the range of 100 to 700 nm as described above.
  • the pore volume of the metal compound (1) of the present embodiment is such that (C) the pore volume is in the range of 0.1 ml / g or more and 0.65 ml / g or less.
  • Such a structure has, for example, a so-called core-shell structure in which the titanium dioxide fine particles are coated with the metal component (2), or a structure in which the fine particles of the metal compound (2) are interposed between the titanium dioxide fine particles. Is considered to be achieved. It is known that titanium dioxide fine particles are likely to be crystallized and grow in the firing step. When such so-called particle growth occurs, there is a high possibility that the particles have a small pore volume.
  • the presence of the metal compound (2) suppresses crystal growth of the titanium dioxide fine particles, and as a result, so-called porous particles having a large pore volume are considered to be obtained.
  • the refractive index of the metal compound (2) of this embodiment is 1.60 or more and 2.45 or less.
  • the white pigment for aqueous ink of the present invention has high whiteness. It is presumed that this is also due to the structure as described above.
  • the specific gravity of the metal compound (2) of the present embodiment is preferably 3.0 g / cm 3 or more and 6.0 g / cm 3 or less.
  • the dispersibility as a water-based ink decreases.
  • the white pigment for water-based ink of this embodiment has a good dispersibility in water. It is presumed that this is also due to the formation of the structure as described above. Further, it is presumed that a component having a heavy specific gravity is preferable for forming the above structure because it is presumed that the particle growth rate tends to be slow because of its low mobility.
  • Aqueous ink composition contains the above-mentioned pigment for aqueous ink and water. Further, it may contain a water-soluble organic solvent, a lubricant, a polymer dispersant, a surfactant, other colorants, and other various additives.
  • the addition amount of the pigment for water-based ink of the present embodiment is preferably 1% by weight or more and 40% by weight or less, more preferably 3% by weight or more and 30% by weight or less with respect to the whole ink.
  • the dispersibility of the pigment particles and the clogging reliability are excellent, and by increasing the pigment concentration in the ink, an image with high hiding power can be obtained. can get.
  • Examples of the solvent of the aqueous ink composition of the present embodiment include water or a mixed solvent of water and a water-soluble organic solvent.
  • water pure water such as ion exchange water, ultrafiltration water, reverse osmosis water, distilled water, or ultrapure water can be used.
  • water sterilized by ultraviolet irradiation or addition of hydrogen peroxide is preferable because generation of mold and bacteria can be prevented when the ink composition is stored for a long period of time.
  • the water-soluble organic solvent is preferably a low-boiling organic solvent, and examples thereof include methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butanol, sec-butanol, tert-butanol, iso- Examples include butanol and n-pentanol.
  • a monohydric alcohol is particularly preferable.
  • the low boiling point organic solvent has an effect of shortening the drying time of the ink.
  • the amount of the low-boiling organic solvent added is preferably 0.5% by weight or more and 10% by weight or less, more preferably 1.5% by weight or more and 6% by weight or less of the aqueous ink composition.
  • the aqueous ink composition of the present embodiment preferably further contains a wetting agent such as a high boiling point organic solvent.
  • a wetting agent such as a high boiling point organic solvent.
  • the wetting agent include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, propylene glycol, butylene glycol, 1,2,6-hexanetriol, thioglycol, hexylene glycol, glycerin, trimethylolethane.
  • Polyhydric alcohols such as trimethylolpropane, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol Multivalent such as ethylene glycol monobutyl ether Alkyl ethers of alcohols, urea, 2-pyrrolidone, N- methyl-2-pyrrolidone, 1,3-dimethyl-2-like imidazolidinone.
  • the addition amount of these wetting agents is preferably 0.5% by weight or more and 40% by weight or less of the aqueous ink composition, and more preferably 2% by weight or more and 20% by weight or less.
  • the aqueous ink composition of this embodiment preferably contains a polymer dispersant.
  • the polymer dispersant include natural polymers. Specifically, proteins such as glue, gelatin, casein, albumin, natural rubbers such as gum arabic and tragacanth, glucosides such as savoni, alginic acid and propylene glycol alginate, triethanolamine alginate, and alginic acid derivatives such as ammonium alginate , Cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, and ethylhydroxycellulose.
  • polymer dispersant examples include synthetic polymers such as polyvinyl alcohols, polyvinyl pyrrolidones, polyacrylic acid, acrylic acid / acrylonitrile copolymers, potassium acrylate / acrylonitrile copolymers, vinyl acetate / acrylic.
  • Acid ester copolymers acrylic resins such as acrylic acid / acrylic ester copolymers, styrene / acrylic acid copolymers, styrene / methacrylic acid copolymers, styrene / methacrylic acid / acrylic acid ester copolymers, Styrene / acrylic resins such as styrene / ⁇ -methylstyrene / acrylic acid copolymer, styrene / ⁇ -methylstyrene / acrylic acid / acrylic acid ester copolymer, styrene / maleic acid copolymer, styrene / maleic anhydride copolymer Polymer, vinyl naphthalene / acrylic acid copolymer , Vinyl naphthalene / maleic acid copolymer, and vinyl acetate / ethylene copolymer, vinyl acetate / fatty acid vinyl / ethylene copolymer, vinyl
  • a copolymer of a monomer having a hydrophobic group and a monomer having a hydrophilic group, and a polymer comprising a monomer having both a hydrophobic group and a hydrophilic group in the molecular structure such as styrene / acrylic
  • An acid copolymer, a styrene / methacrylic acid copolymer, and the like are preferable.
  • the ink composition of this embodiment may further contain a surfactant.
  • a surfactant examples include the surfactants exemplified in the step (d). These can be used alone or in combination of two or more.
  • a polyolefin wax may be added in order to improve the fixing property to the recording medium and the water resistance.
  • a pH adjuster, an antiseptic, a fungicide, an antioxidant, a fixing resin, and the like may be added as necessary.
  • a light-colored ink can be obtained by adding an appropriate amount of pigment and / or dye other than the pigment for water-based ink of this embodiment.
  • the ink composition of the present embodiment can be produced by dispersing and mixing the above components by an appropriate method. After preparing a solution to which each ink component has been added and stirring sufficiently, the target ink composition can be obtained by performing filtration to remove coarse particles and foreign matters that cause clogging. For example, it can be produced by appropriately adding an additive or the like to the aqueous dispersion obtained in the step (d) as necessary.
  • water-based ink composition of the present embodiment examples include inkjet printing, offset printing, and gravure printing, which are particularly suitable for printing with an inkjet printer.
  • Images and printed matter can be obtained by printing on a substrate (substrate) using the aqueous ink composition of the present invention.
  • the substrate include paper, fiber products, plastics (including vinyl chloride, polyethylene terephthalate, polyolefins such as polyethylene and polypropylene), glass, ceramics, and metals.
  • the water-based ink composition of the present embodiment can satisfactorily hide the base. Furthermore, when the water-based ink composition of the present embodiment is a white ink, images and printed matter with high whiteness can be obtained. Moreover, after printing with the water-based ink composition of the present embodiment, good color developability of the color ink can be obtained by printing using various color inks.
  • Example 1 Synthesis of zirconium dioxide-containing titanium dioxide nanoparticles and preparation of aqueous dispersion
  • 120 g corresponding to Ti: 3.76 ⁇ 10 ⁇ 1 mol
  • titanium (IV) chloride solution (Wako Pure Chemicals, Ti: about 15%) was added to 4000 ml of ion-exchanged water and stirred at a temperature of 70 ° C. After 1 hour, a bluish titanium dioxide colloidal aqueous solution was obtained.
  • 15.6 g (Zr: 4.83 ⁇ 10 ⁇ 2 mol equivalent) of zirconium chloride octahydrate was added to this colloid solution, and the temperature of the aqueous colloidal solution was kept at 70 ° C.
  • Example 2 Using a wet type bead mill, a sintered body of zirconium dioxide-containing titanium dioxide powder obtained by the same method as in Example 1 was used so that the solid concentration was 19% by weight and the pH was around 9. The pulverization and dispersion treatment was performed in an aqueous solution. Grinding was performed while confirming the particle size, and the slurry was collected when the volume particle size distribution peak reached 240 nm.
  • Example 3 Using a wet type bead mill, a sintered body of zirconium dioxide-containing titanium dioxide powder obtained by the same method as in Example 1 was mixed with sodium hydroxide and a dispersing agent (No. 1). The pulverization / dispersion treatment was performed in an aqueous solution containing Charol AN103P) manufactured by Ichi Kogyo Seiyaku. The dispersant was added so that the dry weight was 2% by weight with respect to the pigment weight. Grinding was performed while confirming the particle size, and the slurry was collected when the volume particle size distribution peak reached 240 nm.
  • Example 4 Using a wet type bead mill, a sintered body of zirconium dioxide-containing titanium dioxide powder obtained by the same method as in Example 1 was used to add sodium hydroxide and a dispersant (No. 1) to a solid content concentration of 18% by weight. The pulverization / dispersion treatment was performed in an aqueous solution containing Charol AN103P) manufactured by Ichi Kogyo Seiyaku. The same procedure as in Example 3 was carried out except that the dispersant was added in a dry weight of 10% by weight with respect to the pigment weight.
  • Example 1 (Preparation of aqueous slurry)
  • Aluminum hydroxide-modified titanium dioxide powder (Ishihara Sangyo Co., Ltd., TTO-51 (A), aluminum hydroxide content 20% by weight) was analyzed by X-ray diffractometry in the same manner as in Example 1. Titanium dioxide was the main component and the crystal size was 11.1 nm.
  • the aluminum hydroxide-modified titanium dioxide powder was pulverized and dispersed in water using a wet type bead mill so that the solid content concentration was 10% by weight. Grinding was performed while confirming the particle size, and the slurry was recovered when the volume average diameter peak reached 260 nm.
  • Aluminum hydroxide has a refractive index of 1.57 and a specific gravity of 2.42 g / cm 3 .
  • Example 2 Preparation of aqueous slurry
  • Aluminum hydroxide-modified titanium dioxide powder (Ishihara Sangyo Co., Ltd., TTO-51 (A), aluminum hydroxide content 20% by weight) is mixed with water using a wet type bead mill so that the solid content concentration becomes 17% by weight.
  • the pulverization and dispersion treatment was performed in an aqueous sodium oxide solution. While confirming the particle size, pulverization was performed to prepare a slurry.
  • the resulting slurry had a high viscosity and was difficult to prepare as an ink. This is presumably because aluminum hydroxide was dissolved in an aqueous sodium hydroxide solution to form a solution in a gel state.
  • Titanium dioxide nanoparticles were synthesized in the same manner as in Example 1 except that zirconium chloride octahydrate was not added, and a titanium dioxide powder was prepared through a drying and firing process.
  • anatase type and rutile type titanium dioxide were mixed, the anatase type crystal size was 18.8 nm, and the rutile type crystal size was 26.3 nm. there were.
  • a sintered body of titanium dioxide powder that does not contain zirconium dioxide is pulverized in a sodium hydroxide aqueous solution using a wet type bead mill so that the solid content concentration is 20% by weight and the pH is around 12.8. Distributed processing was performed. Grinding was performed while confirming the particle size, and the slurry was recovered when the volume particle size distribution peak reached 300 nm.
  • Example 5 160 g of commercially available titanium dioxide powder (anatase / rutile type, primary particle size: 80 nm) was added to 480 g of ion-exchanged water, and 160 g of a 10 wt% hexametaphosphoric acid aqueous solution was further added and stirred at room temperature. To this slurry solution, 83.7 g of zirconium chloride oxide octahydrate was added. To this slurry solution was slowly added an aqueous sodium hydroxide solution to adjust the pH to 4.0 to 4.5, and the mixture was stirred as it was for 2 hours. The obtained slurry solution was filtered, solid content was taken out and dried.
  • the obtained powder is heated at a rate of 5 ° C. per minute from room temperature to 500 ° C. in an air atmosphere by using an electric furnace, and further calcined at 500 ° C. for 2 hours, whereby zirconium dioxide-coated titanium dioxide powder.
  • a sintered body was obtained.
  • Example 6 The same procedure as in Example 5 was performed except that the titanium oxide was changed to a commercially available titanium dioxide powder (anatase type, primary particle size: 180 nm), and the slurry was collected when the peak of the volume average diameter reached 226 nm.
  • Example 7 The same procedure as in Example 5 was performed except that the titanium oxide was changed to a commercially available titanium dioxide powder (rutile type, primary particle size: 35 nm), and the slurry was collected when the peak of the volume average diameter reached 348 nm.
  • Example 8 The same procedure as in Example 5 was conducted except that the titanium oxide was changed to a commercially available titanium dioxide powder (rutile type, primary particle size: 15 nm), and the slurry was collected when the peak of the volume average diameter reached 267 nm.
  • Titanium oxide was changed to commercially available titanium dioxide powder (anatase type primary particle size: 35 nm), and the same procedure as in Example 5 was carried out except that zirconium oxychloride octahydrate was not added. The slurry was collected when the peak reached 257 nm.
  • Comparative Example 5 Except that the firing was carried out at 1000 ° C., it was carried out in the same manner as in Comparative Example 4, and the slurry was collected when the volume average diameter peak reached 283 nm.
  • the aqueous dispersion was allowed to stand, and the sedimentation state of the particles was visually evaluated.
  • the evaluation criteria are as follows. ⁇ : Settling down gradually, but the water layer and the precipitate are not completely separated even after one week. ⁇ : Settling down gradually, but the aqueous layer and the precipitate are not completely separated even after one day. X: Immediately settles, and the aqueous layer and the precipitate are completely separated. XX: Cannot be evaluated due to high viscosity.
  • L * value is 80 or more AA: L * value is 75 or more and less than 80 A: L * value is 72 or more and less than 75 B: L * value is 68 or more and less than 72 C: L * value is 65 or more and less than 68 D: L * value is less than 65
  • the white pigment after baking or the white pigment which has not been fired was subjected to X-ray diffraction measurement using CuK ⁇ rays for the dried white pigment.
  • the intensity ratio when the height from the baseline of the peak of titanium dioxide appearing from 24 ° to 29 ° and the peak of the diffraction line derived from zirconium dioxide appearing from 29 ° to 32 ° is Ia and Ib, respectively. Ib / Ia was calculated.
  • Tables 1 and 2 show the evaluation results of Examples and Comparative Examples.
  • the numbers A and R shown in the column of the crystallite size of Example 5 and Comparative Example 5 represent the crystallite sizes of the anatase phase and the rutile phase, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A white pigment for aqueous inks of the present invention contains a metal compound (1) that satisfies the following conditions (A), (B) and (C). (A) The metal compound (1) contains titanium oxide and a metal compound (2) that has a refractive index at a wavelength of 550 nm of from 1.60 to 2.45 (inclusive), and when the total of the titanium oxide and the metal compound (2) is taken as 100% by weight, the content of the titanium oxide is from 50% by weight to 99% by weight (inclusive) and the content of the metal compound (2) is from 1% by weight to 50% by weight (inclusive). (B) The peak value of the volume-based particle size distribution of the metal compound (1) as measured by a dynamic light scattering method is within the range of 100-700 nm. (C) The pore volume of the metal compound (1) as calculated by a Barrett-Joyner-Halenda (BJH) method is from 0.1 ml/g to 0.65 ml/g (inclusive).

Description

水性インク用顔料、それを含有する水性インク組成物、およびその画像または印刷物Aqueous ink pigment, aqueous ink composition containing the same, and image or printed matter thereof
 本発明は、水性インク用顔料、それを含有する水性インク組成物、およびその画像または印刷物に関する。 The present invention relates to a pigment for aqueous ink, an aqueous ink composition containing the same, and an image or printed matter thereof.
 透明フィルムなどの基材に、文字、絵、図柄などの画像を形成する方法として、近年、インクジェット印刷が注目されている。インクジェット印刷は、インクの小滴を飛翔させ、紙などの記録媒体に付着させて印刷をおこなう印刷方法である。そのような基材に印刷をする場合、印刷物の発色をよくするために、下地を隠蔽する必要がある。下地を隠蔽するためには、隠蔽性の高い白色インクを用いることが一般的であり、その顔料としては無機顔料、とくに二酸化チタンを用いることが多い。 In recent years, inkjet printing has attracted attention as a method for forming images such as letters, pictures and designs on a substrate such as a transparent film. Ink jet printing is a printing method in which printing is performed by causing ink droplets to fly and adhere to a recording medium such as paper. When printing on such a substrate, it is necessary to conceal the substrate in order to improve the color of the printed matter. In order to conceal the base, it is common to use a white ink with high concealability, and as the pigment, an inorganic pigment, particularly titanium dioxide is often used.
特開平10-130527号公報Japanese Patent Laid-Open No. 10-130527 特開2008-200854号公報JP 2008-200854 A 特開2010-174100号公報JP 2010-174100 A
 しかしながら、二酸化チタンを始めとする無機顔料は比重が高いため、低粘度であるインクジェット用インクに用いる場合、顔料沈降の抑制が課題となる。顔料が沈降すると、インクジェットノズルからの吐出時に目詰まりを起こしたり、インクの貯蔵安定性が悪くなったりするなどの問題がある。 However, inorganic pigments such as titanium dioxide have a high specific gravity, and therefore, when used for inkjet inks having a low viscosity, suppression of pigment settling becomes a problem. When the pigment settles, there are problems such as clogging during ejection from the ink jet nozzle and poor storage stability of the ink.
 顔料沈降を抑制するために、二酸化チタンの粒径を小さくすると、沈降は軽減することができるが、白色の発色性が低下してしまうため、隠蔽性も低下して、白色インクの隠蔽力が格段に落ちるという問題がある。 If the particle size of titanium dioxide is reduced in order to suppress pigment settling, the settling can be reduced, but since the white color developability is lowered, the hiding power is also lowered and the hiding power of the white ink is reduced. There is a problem that it falls dramatically.
 特許文献1には、二酸化チタン粒子表面に、多孔質シリカを被覆することにより、分散性の優れた白色顔料が得られることが開示されている。しかしながら、屈折率の小さなシリカで被覆すると、白色度が低下するという問題がある。また、シリカは、アルカリ性では溶解し易いことが知られており、インク調整条件を広く選択できないという問題がある。 Patent Document 1 discloses that a white pigment with excellent dispersibility can be obtained by coating the surface of titanium dioxide particles with porous silica. However, when coated with silica having a small refractive index, there is a problem that the whiteness decreases. In addition, silica is known to be easily dissolved when alkaline, and there is a problem that ink adjustment conditions cannot be widely selected.
 特許文献2には、インクジェット方式を用いて多孔質二酸化チタン顔料により、白色ベタ塗り層を形成する方法が開示されている。しかしながら、本件には二酸化チタン顔料の詳細について述べられていないが、一般に二酸化チタン顔料は沈降し易く、長期に渡る保存安定性が悪いという問題がある。 Patent Document 2 discloses a method of forming a white solid coating layer with a porous titanium dioxide pigment using an inkjet method. However, although the details of the titanium dioxide pigment are not described in this case, the titanium dioxide pigment generally has a problem of being easily settled and having poor long-term storage stability.
 特許文献3には、二酸化チタンより比重の小さなシリカを使用することで、白色度を保ち、貯蔵安定性を確保することができることが開示されている。しかしながら、シリカは二酸化チタンに比べて、白色度、隠蔽性ともに劣るため、二酸化チタンを併用する必要があり、結果として貯蔵安定性の確保が難しいという問題がある。 Patent Document 3 discloses that whiteness can be maintained and storage stability can be ensured by using silica having a specific gravity smaller than that of titanium dioxide. However, since silica has inferior whiteness and hiding properties compared to titanium dioxide, it is necessary to use titanium dioxide together. As a result, it is difficult to ensure storage stability.
 本発明は上述のような課題に鑑みてなされたものであり、水性インク媒体中で沈降しにくく、かつ白色の発色性が良好な水性インク用顔料、それを含有する水性インク組成物、その水性インク組成物を用いて得られる画像または印刷物を提供するものである。 The present invention has been made in view of the above-described problems, and is a pigment for aqueous ink that is difficult to settle in an aqueous ink medium and has good white color developability, an aqueous ink composition containing the same, and an aqueous solution thereof The present invention provides an image or printed matter obtained using the ink composition.
 本発明者らは上記課題を達成すべく鋭意検討した結果、特定の条件を満たす金属化合物を含有させると、水性インク媒体中で沈降しにくく、かつ白色の発色性が良好な水性インク用顔料が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that when a metal compound satisfying a specific condition is contained, a pigment for aqueous ink that is difficult to settle in an aqueous ink medium and has a good white color developability. As a result, the present invention was completed.
 すなわち、本発明によれば、以下に示す水性インク用顔料、それを含有する水性インク組成物、その水性インク組成物を用いて得られる画像または印刷物が提供される。 That is, according to the present invention, the following pigment for aqueous ink, an aqueous ink composition containing the pigment, and an image or printed matter obtained using the aqueous ink composition are provided.
[1]下記の(A)、(B)および(C)の条件を満たす金属化合物(1)を含有する水性インク用白色顔料。
(A)上記金属化合物(1)は、二酸化チタンと、波長550nmにおける屈折率が1.60以上2.45以下である金属化合物(2)と、を含み、
 上記二酸化チタンと上記金属化合物(2)の合計を100重量%としたとき、上記二酸化チタンの含有率が50重量%以上99重量%以下であり、上記金属化合物(2)の含有率が1重量%以上50重量%以下である。
(B)上記金属化合物(1)の動的光散乱法により測定される体積粒度分布のピーク値が100~700nmの範囲にある。
(C)上記金属化合物(1)のBJH(Barrett-Joyner-Halenda)法により算出される細孔容積が0.1ml/g以上0.65ml/g以下である。
[2]上記[1]に記載の水性インク用白色顔料において、
 上記金属化合物(2)の比重が3.0g/cm以上6.0g/cm以下である水性インク用白色顔料。
[3]上記[1]または[2]に記載の水性インク用白色顔料において、
 上記金属化合物(2)が二酸化ジルコニウムである水性インク用白色顔料。
[4]上記[1]乃至[3]のいずれかに記載の水性インク用白色顔料において、
 当該水性インク用白色顔料のCuKα線によるX線回折測定において、
 上記二酸化チタンおよび上記金属化合物(2)に由来する回折線の最強ピーク強度をそれぞれIおよびIとしたとき、ピーク強度比I/Iが0.02以下である水性インク用白色顔料。
[5]上記[1]乃至[4]のいずれかに記載の水性インク用白色顔料を含有する水性インク組成物。
[6]上記[5]に記載の水性インク組成物において、
 当該水性インク組成物がインクジェット印刷用である水性インク組成物。
[7]上記[5]または[6]に記載の水性インク組成物を基材上に印刷した画像または印刷物。
[1] A white pigment for aqueous ink containing a metal compound (1) that satisfies the following conditions (A), (B), and (C).
(A) The metal compound (1) includes titanium dioxide and a metal compound (2) having a refractive index of 1.60 or more and 2.45 or less at a wavelength of 550 nm,
When the total of the titanium dioxide and the metal compound (2) is 100% by weight, the content of the titanium dioxide is 50% by weight to 99% by weight, and the content of the metal compound (2) is 1% by weight. % To 50% by weight.
(B) The peak value of the volume particle size distribution measured by the dynamic light scattering method of the metal compound (1) is in the range of 100 to 700 nm.
(C) The pore volume of the metal compound (1) calculated by the BJH (Barrett-Joyner-Halenda) method is 0.1 ml / g or more and 0.65 ml / g or less.
[2] The white pigment for water-based ink according to [1] above,
A white pigment for aqueous ink, wherein the specific gravity of the metal compound (2) is 3.0 g / cm 3 or more and 6.0 g / cm 3 or less.
[3] In the white pigment for water-based ink according to [1] or [2] above,
A white pigment for aqueous ink, wherein the metal compound (2) is zirconium dioxide.
[4] In the white pigment for aqueous ink according to any one of [1] to [3],
In the X-ray diffraction measurement by CuKα ray of the white pigment for water-based ink,
When the respective I a and I b the strongest peak intensity of the diffraction lines derived from the titanium dioxide and the metal compound (2), a white pigment for aqueous ink peak intensity ratio I b / I a is 0.02 or less .
[5] An aqueous ink composition containing the white pigment for aqueous ink according to any one of [1] to [4].
[6] In the water-based ink composition as described in [5] above,
An aqueous ink composition, wherein the aqueous ink composition is for inkjet printing.
[7] An image or printed matter obtained by printing the water-based ink composition according to [5] or [6] on a substrate.
 本発明によれば水性インク媒体中で沈降しにくく、白色の発色性が良好な水性インク用白色顔料を提供することができる。また、本発明の水性インク用顔料を含有する水性インク組成物は貯蔵安定性に優れている。また、本発明の水性インク組成物から得られる塗膜は白色度および/または隠蔽性に優れている。 According to the present invention, it is possible to provide a white pigment for water-based ink that does not easily settle in a water-based ink medium and has good white color development. The aqueous ink composition containing the pigment for aqueous ink of the present invention is excellent in storage stability. In addition, the coating film obtained from the aqueous ink composition of the present invention is excellent in whiteness and / or hiding properties.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態によってさらに明らかになる。
 以下に、本実施形態における水性インク用顔料、それを含有する水性インク組成物、およびその画像または印刷物について順に説明する。また、「~」はとくに断りがなければ、以上から以下を表す。
The above-described object and other objects, features, and advantages will be further clarified by the preferred embodiments described below.
Hereinafter, the pigment for water-based ink, the water-based ink composition containing the pigment, and the image or printed matter thereof in this embodiment will be described in order. Further, “˜” represents the following from the above unless otherwise specified.
1.水性インク用白色顔料
(金属化合物)
 本実施形態の水性インク用白色顔料は、特定の条件を満たす金属化合物(1)を含有している。本実施形態の金属化合物(1)は、二酸化チタンと、波長550nmにおける屈折率が1.60以上2.45以下である金属化合物(2)と、を含んでいる。
 二酸化チタンの屈折率は、アナターゼ型が2.52であり、ルチル型が2.71である。
 波長550nmにおける屈折率が1.60以上2.45以下である金属化合物(2)としては、CeO(屈折率2.2)、二酸化ジルコニウム(屈折率2.05)、硫化亜鉛(屈折率2.38)、ZnO(屈折率1.95)、Y(屈折率1.87)、鉛白(屈折率2.01)、酸化マグネシウム(屈折率1.74)、酸化アルミニウム(屈折率1.63)、BaSO(屈折率1.60)、3Zr4(PO)(屈折率1.73)、ZrP(屈折率1.68)、(ZrO)2P(屈折率1.73)、(ZrO)2P(屈折率1.78)、Zr(PO(屈折率1.64)などが挙げられる。
1. White pigment for water-based ink (metal compound)
The white pigment for water-based ink of this embodiment contains a metal compound (1) that satisfies a specific condition. The metal compound (1) of this embodiment contains titanium dioxide and a metal compound (2) having a refractive index of 1.60 or more and 2.45 or less at a wavelength of 550 nm.
The refractive index of titanium dioxide is 2.52 for the anatase type and 2.71 for the rutile type.
Examples of the metal compound (2) having a refractive index of 1.60 to 2.45 at a wavelength of 550 nm include CeO 2 (refractive index 2.2), zirconium dioxide (refractive index 2.05), and zinc sulfide (refractive index 2). .38), ZnO (refractive index 1.95), Y 2 O 3 (refractive index 1.87), lead white (refractive index 2.01), magnesium oxide (refractive index 1.74), aluminum oxide (refractive index). 1.63), BaSO 4 (refractive index 1.60), 3Zr4 (PO 4 ) (refractive index 1.73), ZrP 2 O 7 (refractive index 1.68), (ZrO) 2P 2 O 7 (refractive index). 1.73), and the like (ZrO) 2P 2 O 7 (refractive index 1.78), Zr (PO 3) 4 ( refractive index 1.64).
 白色度は、屈折率が大きいものの方が、大きいことが知られている。また、屈折率は、加成性が成り立ち、屈折率の大きなものに、屈折率の小さなものを混ぜると、屈折率は低下することが知られている。本実施形態では、二酸化チタンの屈折率に対し、屈折率の低い金属化合物(2)を添加したにもかかわらず、白色度は同等かむしろ向上した。 It is known that the whiteness is higher when the refractive index is higher. Further, it is known that the refractive index is additive, and that when the refractive index is mixed with the high refractive index, the refractive index decreases. In this embodiment, although the metal compound (2) having a low refractive index is added to the refractive index of titanium dioxide, the whiteness is equal or rather improved.
 本実施形態の金属化合物(1)の粉末X線解析のデバイ・シェラー法で求められる結晶子サイズは、特に限定されるものではないが、例えば4nm以上50nm以下とすることができ、4nm以上15nm以下であることが好ましく、5nm以上10nm以下がとくに好ましい。本実施形態の金属化合物(1)の粉末X線解析のデバイ・シェラー法で求められる結晶子サイズが、4nm以上であると、可視光散乱が起きやすくなり、白色度が向上するため好ましく、15nm以下であると、分散性が向上するため好ましい。また、白色度をより向上させるため15nm以上、特に30nm以上とすることもできる。本実施形態の金属化合物(1)の粉末X線解析のデバイ・シェラー法で求められる結晶子サイズは、焼成条件により制御することができ、焼成温度を高く、焼成時間を長くすれば、結晶子サイズが大きくなる傾向にある。 Although the crystallite size calculated | required by the Debye-Scherrer method of the powder X-ray analysis of the metal compound (1) of this embodiment is not specifically limited, For example, it can be 4 nm or more and 50 nm or less, and can be 4 nm or more and 15 nm. The thickness is preferably 5 nm or more and particularly preferably 5 nm or more and 10 nm or less. When the crystallite size determined by the Debye-Scherrer method of the powder X-ray analysis of the metal compound (1) of the present embodiment is 4 nm or more, visible light scattering is likely to occur and the whiteness is improved. The following is preferable because dispersibility is improved. Moreover, in order to improve whiteness more, it can also be 15 nm or more, especially 30 nm or more. The crystallite size determined by the Debye-Scherrer method of powder X-ray analysis of the metal compound (1) of the present embodiment can be controlled by the firing conditions, and if the firing temperature is increased and the firing time is lengthened, the crystallite The size tends to increase.
 金属化合物(2)は、比重が3.0g/cm以上6.0g/cm以下であることが好ましく、3.95g/cm以上6.0g/cm以下であることがより好ましい。このような金属化合物(2)としては二酸化ジルコニウム(比重5.69)、硫化亜鉛(比重4.0)、ZnO(比重5.6)、Y(比重5.03)、酸化アルミニウム(比重3.97)、BaSO(比重4.45)、3Zr4(PO)(比重3.32)、ZrP(比重3.14)、(ZrO)2P(比重3.53)、(ZrO)2P(比重3.88)、Zr(PO(比重3.18)などが挙げられる。金属化合物(2)の中でも二酸化ジルコニウムがとくに好ましい。 The metal compound (2) preferably has a specific gravity of 3.0 g / cm 3 or more and 6.0 g / cm 3 or less, more preferably 3.95 g / cm 3 or more and 6.0 g / cm 3 or less. Examples of such a metal compound (2) include zirconium dioxide (specific gravity 5.69), zinc sulfide (specific gravity 4.0), ZnO (specific gravity 5.6), Y 2 O 3 (specific gravity 5.03), aluminum oxide ( Specific gravity 3.97), BaSO 4 (specific gravity 4.45), 3Zr4 (PO 4 ) (specific gravity 3.32), ZrP 2 O 7 (specific gravity 3.14), (ZrO) 2P 2 O 7 (specific gravity 3.53) ), (ZrO) 2P 2 O 7 ( specific gravity 3.88), Zr (PO 3) 4 ( specific gravity 3.18), and the like. Of the metal compounds (2), zirconium dioxide is particularly preferred.
 本実施形態の金属化合物(1)は、二酸化チタンと金属化合物(2)との合計重量に対して、二酸化チタンの含有率が50重量%以上99重量%以下であり、金属化合物(2)の含有率が1重量%以上50重量%以下である。好ましくは、二酸化チタンの含有率が60重量%以上95重量%以下であり、金属化合物(2)の含有率が5重量%以上40重量%以下であり、とくに好ましくは二酸化チタンの含有率が70重量%以上90重量%以下であり、金属化合物(2)の含有率が10重量%以上30重量%以下である。 In the metal compound (1) of the present embodiment, the content of titanium dioxide is 50 wt% or more and 99 wt% or less with respect to the total weight of titanium dioxide and the metal compound (2). The content is 1% by weight or more and 50% by weight or less. Preferably, the titanium dioxide content is 60 wt% or more and 95 wt% or less, the metal compound (2) content is 5 wt% or more and 40 wt% or less, and particularly preferably the titanium dioxide content is 70 wt%. The content of the metal compound (2) is 10% by weight or more and 30% by weight or less.
 本実施形態の金属化合物(1)は、二酸化チタンと金属化合物(2)以外の成分を含まなくてもよいし、また、本発明の効果を損なわない範囲で含んでもよい。その含量はとくに制限されるものではないが、二酸化チタンと金属化合物(2)との合計重量に対して、例えば0重量%以上10重量%以下の範囲である。 The metal compound (1) of the present embodiment may not contain components other than titanium dioxide and the metal compound (2), or may be contained within a range that does not impair the effects of the present invention. The content is not particularly limited, but is, for example, in the range of 0% by weight to 10% by weight with respect to the total weight of titanium dioxide and the metal compound (2).
 さらに、本実施形態の金属化合物(1)をインクジェットの顔料として用いる場合には、インクジェットノズルから目詰まりを起こさず安定的に吐出させ、かつ塗膜の白色度、隠蔽性を保つために、動的光散乱法により測定される体積粒度分布のピーク値が100~700nmの範囲で、貯蔵安定性が確保されていることが好ましい。二酸化チタンなどの金属化合物の比重は一般的に高いが、それにもかかわらず、本実施形態においては、その粒径範囲でもインク中で顔料が沈降しにくい水性インク用白色顔料を形成することができる。  Furthermore, when the metal compound (1) of the present embodiment is used as an ink jet pigment, it can be stably ejected from the ink jet nozzle without causing clogging, and the whiteness and concealment of the coating film can be maintained. It is preferable that the storage stability is ensured when the peak value of the volume particle size distribution measured by the dynamic light scattering method is in the range of 100 to 700 nm. Although the specific gravity of a metal compound such as titanium dioxide is generally high, in the present embodiment, it is nevertheless possible to form a white pigment for water-based ink that does not easily precipitate in the ink even in the particle size range. . *
 本実施形態の金属化合物(1)の動的光散乱法により測定される体積粒度分布のピーク値は100~700nmの範囲にあり、好ましくは150~400nmの範囲にある。金属化合物(1)の体積粒度分布のピーク値が100nm以上であると、可視光の散乱能力が向上するため、白色度をより向上させることができる。金属化合物(1)の粒径ピークが700nm以下であると、インクジェットノズルの目詰まりが起こるのを抑制することができる。 The peak value of the volume particle size distribution measured by the dynamic light scattering method of the metal compound (1) of the present embodiment is in the range of 100 to 700 nm, preferably in the range of 150 to 400 nm. When the peak value of the volume particle size distribution of the metal compound (1) is 100 nm or more, since the visible light scattering ability is improved, the whiteness can be further improved. When the particle size peak of the metal compound (1) is 700 nm or less, clogging of the ink jet nozzle can be suppressed.
 本実施形態の金属化合物(1)の細孔特性は窒素吸着によって求めることができる。粒子の窒素吸脱着測定から、比表面積をBET(Brunauer-Emmett-Teller)法で、全細孔容積をBJH(Barrett-Joyner-Halenda)法により算出できる。さらに空孔率は全細孔容積から算出できる。 The pore characteristics of the metal compound (1) of this embodiment can be determined by nitrogen adsorption. From the measurement of nitrogen adsorption / desorption of particles, the specific surface area can be calculated by the BET (Brunauer-Emmett-Teller) method and the total pore volume can be calculated by the BJH (Barrett-Joyner-Halenda) method. Furthermore, the porosity can be calculated from the total pore volume.
 本実施形態の金属化合物(1)の細孔容積は0.1ml/g以上0.65ml/g以下であり、好ましくは0.2ml/g以上0.65ml/g以下である。細孔容積が大きくなるに従い、見掛けの比重が小さくなるため、沈降し難くなる。細孔容積が0.1ml/g以上であると、沈降がより起こりにくくなる。また、細孔容積が0.65ml/g以下であると、構造を維持することができる。 The pore volume of the metal compound (1) of the present embodiment is 0.1 ml / g or more and 0.65 ml / g or less, preferably 0.2 ml / g or more and 0.65 ml / g or less. As the pore volume increases, the apparent specific gravity decreases and sedimentation becomes difficult. When the pore volume is 0.1 ml / g or more, sedimentation is less likely to occur. When the pore volume is 0.65 ml / g or less, the structure can be maintained.
 本実施形態の金属化合物(1)の比表面積はとくに限定されるものではないが、70m/g以上250m/g以下が好ましく、100m/g以上200m/g以下がより好ましい。
 本実施形態の金属化合物(1)の空孔率はとくに制限されるものではないが、20%以上90%以下が好ましく、30%以上85%以下がより好ましい。 
The specific surface area of the metal compound (1) of the present embodiment but is not limited particularly, preferably 70m 2 / g or more 250 meters 2 / g or less, 100 m 2 / g or more 200 meters 2 / g or less is more preferable.
The porosity of the metal compound (1) of the present embodiment is not particularly limited, but is preferably 20% or more and 90% or less, and more preferably 30% or more and 85% or less.
 本実施形態の白色顔料はCuKα線によるX線回折測定において、上記二酸化チタンおよび上記金属化合物(2)に由来する回折線の最強ピーク強度をそれぞれIaおよびIbとしたときに、その強度比Ib/Iaが0.02以下であることが、顔料の分散性の向上または再分散性の向上の観点から好ましい。 In the X-ray diffraction measurement by CuKα ray, the white pigment of the present embodiment has an intensity ratio Ib / when the strongest peak intensities of diffraction lines derived from the titanium dioxide and the metal compound (2) are Ia and Ib, respectively. It is preferable that Ia is 0.02 or less from the viewpoint of improving the dispersibility or redispersibility of the pigment.
 これは、金属化合物(2)が非晶性であるためOH基が存在し、もしくは顔料を分散媒に分散させた際にOH基が生成しやすくなり、分散媒との親和性が向上するためと推測される。強度比Ib/Iaを低下させる方法としては、例えば、後述する工程(c)における焼成温度を低くする方法を挙げることができる。 This is because since the metal compound (2) is amorphous, OH groups exist, or when a pigment is dispersed in a dispersion medium, OH groups are easily generated, and the affinity with the dispersion medium is improved. It is guessed. As a method for reducing the intensity ratio Ib / Ia, for example, a method for lowering the firing temperature in the step (c) described later can be mentioned.
(水性インク用白色顔料の製造方法)
 本実施形態の金属化合物(1)を含む水性インク用白色顔料は、以下の工程(a)、(b)および(c)を含む方法により製造することができる。さらに工程(c)の後に工程(d)をおこなってもよい。
 工程(a):下記の工程(a-1)、工程(a-2)あるいは工程(a-3)をおこなう。
  工程(a-1):金属化合物前駆体(Y)(以下、「成分(Y)」ということもある)のゾル-ゲル反応をおこなう。
  工程(a―2):金属化合物ナノ粒子および水系媒体を含有する混合物を調製する。
  工程(a-3):二酸化チタン粒子を金属化合物(2)またはその前駆体で表面処理する。 
 工程(b):工程(a)において得られた反応液または混合物を乾燥し粉体を得る。
 工程(c):工程(b)で得られた粉体を焼成し金属化合物(1)を得る。
 工程(d):工程(c)で得られた金属化合物(1)を所望の粒径に湿式粉砕し、水中への分散化をおこない、水系ディスパージョンを得る。
(Method for producing white pigment for water-based ink)
The white pigment for aqueous ink containing the metal compound (1) of this embodiment can be produced by a method including the following steps (a), (b) and (c). Furthermore, you may perform a process (d) after a process (c).
Step (a): The following step (a-1), step (a-2) or step (a-3) is performed.
Step (a-1): A sol-gel reaction of the metal compound precursor (Y) (hereinafter sometimes referred to as “component (Y)”) is performed.
Step (a-2): A mixture containing metal compound nanoparticles and an aqueous medium is prepared.
Step (a-3): The titanium dioxide particles are surface-treated with the metal compound (2) or a precursor thereof.
Step (b): The reaction solution or mixture obtained in step (a) is dried to obtain a powder.
Step (c): The powder obtained in the step (b) is fired to obtain the metal compound (1).
Step (d): The metal compound (1) obtained in the step (c) is wet-pulverized to a desired particle size and dispersed in water to obtain an aqueous dispersion.
 また、上記の製造方法において、細孔を調整する鋳型として有機ポリマー粒子を用いてもよいし、用いなくてもよい。鋳型として用いた有機ポリマー粒子は工程(c)で焼成除去される。
 有機ポリマー粒子としては、ポリオレフィン系、ポリ(メタ)アクリル酸エステル系、ポリスチレン系、ポリウレタン系、ポリアクリロニトリル系、ポリ塩化ビニル系、ポリ塩化ビニリデン系、ポリ酢酸ビニル系及びポリブタジエン系から選ばれる少なくとも1種の非水溶性ポリマー粒子を挙げることができる。ポリオレフィン系としては、WO2010/103856号公報記載の末端分岐型共重合体粒子を挙げることができる。
In the above production method, organic polymer particles may or may not be used as a template for adjusting the pores. The organic polymer particles used as the template are removed by baking in step (c).
The organic polymer particles are at least one selected from polyolefin-based, poly (meth) acrylic acid ester-based, polystyrene-based, polyurethane-based, polyacrylonitrile-based, polyvinyl chloride-based, polyvinylidene chloride-based, polyvinyl acetate-based and polybutadiene-based particles. Mention may be made of some water-insoluble polymer particles. Examples of the polyolefin type may include terminal branched copolymer particles described in WO2010 / 103856.
 以下、各工程を順に説明する。
[工程(a)]
[工程(a-1)]
 工程(a-1)においては、二酸化チタン前駆体、金属化合物(2)またはその前駆体、水および/または水の一部または全部を任意の割合で溶解する溶媒(Z)(以下、「成分(Z)」ということもある)を混合して混合組成物を調製するとともに、上記金属化合物前駆体のゾル-ゲル反応をおこなう。なお、混合組成物には、金属アルコキシドの加水分解・重縮合反応を促進させる目的で、ゾル-ゲル反応用触媒(W)を含ませてもよい。
Hereinafter, each process is demonstrated in order.
[Step (a)]
[Step (a-1)]
In the step (a-1), a titanium dioxide precursor, a metal compound (2) or a precursor thereof, water and / or a solvent (Z) that dissolves a part or all of water in an arbitrary ratio (hereinafter referred to as “component (Z) ”may be mixed to prepare a mixed composition, and a sol-gel reaction of the metal compound precursor is performed. The mixed composition may contain a sol-gel reaction catalyst (W) for the purpose of promoting the hydrolysis / polycondensation reaction of the metal alkoxide.
[金属化合物前駆体(Y)]
 金属化合物前駆体としては、二酸化チタン前駆体、金属化合物(2)の前駆体を挙げることができる。
 金属化合物前駆体としては、金属アルコキシドおよび/またはその部分加水分解縮合物、金属ハロゲン化物、金属アセテート、金属硝酸塩、金属硫酸塩が挙げられる。
[Metal compound precursor (Y)]
Examples of the metal compound precursor include a titanium dioxide precursor and a precursor of the metal compound (2).
Examples of the metal compound precursor include metal alkoxides and / or partial hydrolysis condensates thereof, metal halides, metal acetates, metal nitrates, and metal sulfates.
 本実施形態における金属アルコキシドは、下記式(1)で表される。
 (R)xM(OR)y    (1)
 式中、Rは、水素原子、アルキル基(メチル基、エチル基、プロピル基など)、アリール基(フェニル基、トリル基など)、炭素-炭素二重結合含有有機基(アクリロイル基、メタクリロイル基、ビニル基など)、ハロゲン含有基(クロロプロピル基、フルオロメチル基などのハロゲン化アルキル基など)などを表す。Rは、炭素数1以上6以下、好ましくは炭素数1以上4以下の低級アルキル基を表す。xおよびyは、x+y=4かつ、xは2以下となる整数を表す。
The metal alkoxide in this embodiment is represented by the following formula (1).
(R 1 ) xM (OR 2 ) y (1)
In the formula, R 1 represents a hydrogen atom, an alkyl group (such as a methyl group, an ethyl group, or a propyl group), an aryl group (such as a phenyl group or a tolyl group), or a carbon-carbon double bond-containing organic group (an acryloyl group or a methacryloyl group). And vinyl groups), halogen-containing groups (halogenated alkyl groups such as chloropropyl group and fluoromethyl group), and the like. R 2 represents a lower alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms. x and y are x + y = 4 and x represents an integer of 2 or less.
 Mとしては、チタン(Ti)、ジルコニウム(Zr)、亜鉛(Zn)、セリウム(Ce)、イットリウム(Y)などの金属などが挙げられる。 Examples of M include metals such as titanium (Ti), zirconium (Zr), zinc (Zn), cerium (Ce), and yttrium (Y).
 金属アルコキシドとしては、例えば、チタンメトキシド、チタンエトキシド、チタン-n-プロポキシド、チタン-i-プロポキシド、チタン-n-ブトキシド、チタン-t-ブトキシド、ジルコニウムメトキシド、ジルコニウムエトキシド、ジルコニウム-n-プロポキシド、ジルコニウム-i-プロポキシド、ジルコニウム-n-ブトキシド、ジルコニウム-t-ブトキシド、亜鉛メトキシド、亜鉛エトキシド、亜鉛-n-プロポキシド、亜鉛-i-プロポキシド、亜鉛-n-ブトキシド、亜鉛-t-ブトキシド、セリウムメトキシド、セリウムエトキシド、セリウム-n-プロポキシド、セリウム-i-プロポキシド、セリウム-n-ブトキシド、セリウム-t-ブトキシド、イットリウムメトキシド、イットリウムエトキシド、イットリウム-n-プロポキシド、イットリウム-i-プロポキシド、イットリウム-n-ブトキシド、イットリウム-t-ブトキシドなどが挙げられる。 Examples of the metal alkoxide include titanium methoxide, titanium ethoxide, titanium-n-propoxide, titanium-i-propoxide, titanium-n-butoxide, titanium-t-butoxide, zirconium methoxide, zirconium ethoxide, zirconium. -n-propoxide, zirconium-i-propoxide, zirconium-n-butoxide, zirconium-t-butoxide, zinc methoxide, zinc ethoxide, zinc-n-propoxide, zinc-i-propoxide, zinc-n-butoxide , Zinc-t-butoxide, cerium methoxide, cerium ethoxide, cerium-n-propoxide, cerium-i-propoxide, cerium-n-butoxide, cerium-t-butoxide, yttrium methoxide, yttrium ethoxide, yttrium -n-propoxide, yttrium-i-propoxide, yt Potassium -n- butoxide, such as yttrium -t--butoxide and the like.
 金属アルコキシドの部分加水分解縮合物は、これらの1種以上の金属アルコキシドにゾル-ゲル反応用触媒(W)を用いて部分的に加水分解されたものが、重縮合することにより得られる化合物であり、たとえば金属アルコキシドの部分加水分解重縮合化合物である。
 本実施形態において、金属アルコキシドの部分加水分解縮合物としては、アルコキシチタンの縮合物、アルコキシジルコニウムの縮合物が好ましい。
A partially hydrolyzed condensate of metal alkoxide is a compound obtained by polycondensation of one or more metal alkoxides partially hydrolyzed using a sol-gel reaction catalyst (W). For example, a partially hydrolyzed polycondensation compound of a metal alkoxide.
In the present embodiment, the partial hydrolysis condensate of metal alkoxide is preferably an alkoxytitanium condensate or an alkoxyzirconium condensate.
 本実施形態における金属ハロゲン化物としては、下記式(2)で表されるものを用いることができる。
 (R)xMZy    (2)
 式中、Rは、水素原子、アルキル基(メチル基、エチル基、プロピル基など)、アルコキシ基(メトキシ基、エトキシ基、プロポキシ基、ブトキシ基など)、アリール基(フェニル基、トリル基など)、炭素-炭素二重結合含有有機基(アクリロイル基、メタクリロイル基、ビニル基など)、ハロゲン含有基(クロロプロピル基、フルオロメチル基などのハロゲン化アルキル基など)などを表す。ZはF、Cl、Br、Iを表す。xおよびyは、x+y≦4かつ、xは2以下となる整数を表す。Mとしては、チタン(Ti)、ジルコニウム(Zr)、亜鉛(Zn)、セリウム(Ce)、イットリウム(Y)などが挙げられる。
As a metal halide in this embodiment, what is represented by following formula (2) can be used.
(R 1 ) xMZy (2)
In the formula, R 1 represents a hydrogen atom, an alkyl group (such as a methyl group, an ethyl group, or a propyl group), an alkoxy group (such as a methoxy group, an ethoxy group, a propoxy group, or a butoxy group), an aryl group (such as a phenyl group or a tolyl group). ), A carbon-carbon double bond-containing organic group (acryloyl group, methacryloyl group, vinyl group and the like), a halogen-containing group (halogenated alkyl group such as chloropropyl group and fluoromethyl group) and the like. Z represents F, Cl, Br, or I. x and y represent an integer such that x + y ≦ 4 and x is 2 or less. Examples of M include titanium (Ti), zirconium (Zr), zinc (Zn), cerium (Ce), yttrium (Y), and the like.
 具体例を挙げると、ハロゲン化チタン、ハロゲン化ジルコニウム、ハロゲン化亜鉛、ハロゲン化セリウム、ハロゲン化イットリウムおよびそれらの水和物が挙げられる。 Specific examples include titanium halide, zirconium halide, zinc halide, cerium halide, yttrium halide and hydrates thereof.
 金属アセテートとしては、酢酸チタン、酢酸ジルコニウム、酢酸亜鉛、酢酸セリウム、酢酸イットリウムあるいはそれらの水和物が挙げられる。 Examples of the metal acetate include titanium acetate, zirconium acetate, zinc acetate, cerium acetate, yttrium acetate, and hydrates thereof.
 金属硝酸塩としては、硝酸チタン、硝酸ジルコニウム、硝酸亜鉛、硝酸セリウム、硝酸イットリウムあるいはそれらの水和物が挙げられる。 Examples of the metal nitrate include titanium nitrate, zirconium nitrate, zinc nitrate, cerium nitrate, yttrium nitrate, and hydrates thereof.
 金属硫酸塩としては、硫酸チタン、硫酸ジルコニウム、硫酸亜鉛、硫酸セリウム、硫酸イットリウムあるいはそれらの水和物が挙げられる。 Examples of the metal sulfate include titanium sulfate, zirconium sulfate, zinc sulfate, cerium sulfate, yttrium sulfate, and hydrates thereof.
[水および/または水の一部または全部を任意の割合で溶解する溶媒(Z)]
 本実施形態の混合組成物において、成分(Z)は、金属化合物前駆体(Y)を、さらに加水分解させる目的で添加される。
[Solvent that dissolves water and / or a part or all of water in an arbitrary ratio (Z)]
In the mixed composition of the present embodiment, the component (Z) is added for the purpose of further hydrolyzing the metal compound precursor (Y).
 また、成分(Z)は、成分(Y)および後述するゾル-ゲル反応用触媒(W)(以下、「成分(W)」ということもある)を混合するときに使用する溶媒の両方を含む。 In addition, the component (Z) includes both the component (Y) and the solvent used when mixing the sol-gel reaction catalyst (W) described later (hereinafter also referred to as “component (W)”). .
 水についてはとくに制限されず、蒸留水、イオン交換水、市水、工業用水などを使用可能であるが、蒸留水やイオン交換水を使用することが好ましい。 Water is not particularly limited, and distilled water, ion exchange water, city water, industrial water, and the like can be used, but it is preferable to use distilled water or ion exchange water.
 水の一部または全部を任意の割合で溶解する溶媒としては、水と親和性を有する有機溶媒であって、非水溶性有機ポリマー粒子が分散可能なものであればとくに限定されない。例えばメタノール、エタノール、プロピルアルコール、イソプロピルアルコール、アセトン、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルイミダゾリジノン、エチレングリコール、テトラエチレングリコール、ジメチルアセトアミド、N-メチル-2-ピロリドン、テトラヒドロフラン、ジオキサン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-メトキシエタノール(メチルセルソルブ)、2-エトキシエタノール(エチルセルソルブ)、酢酸エチルなどが挙げられる。これらの中でも、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、アセトニトリルジメチルスルホキシド、ジメチルホルムアミド、アセトン、テトラヒドロフラン、ジオキサンは、水との親和性が高いため好ましい。 The solvent for dissolving a part or all of water in an arbitrary ratio is not particularly limited as long as it is an organic solvent having an affinity for water and can disperse water-insoluble organic polymer particles. For example, methanol, ethanol, propyl alcohol, isopropyl alcohol, acetone, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylimidazolidinone, ethylene glycol, tetraethylene glycol, dimethylacetamide, N-methyl-2-pyrrolidone, tetrahydrofuran, dioxane, methyl ethyl ketone, Examples include cyclohexanone, cyclopentanone, 2-methoxyethanol (methyl cellosolve), 2-ethoxyethanol (ethyl cellosolve), and ethyl acetate. Among these, methanol, ethanol, propyl alcohol, isopropyl alcohol, acetonitrile dimethyl sulfoxide, dimethylformamide, acetone, tetrahydrofuran, and dioxane are preferable because of their high affinity with water.
 水を用いる場合、添加する水の量は、通常は上記成分(Y)および上記成分(W)の混合物100重量部に対し、例えば1重量部以上1000000重量部以下の範囲であり、好ましくは10重量部以上10000重量部以下の範囲である。 When water is used, the amount of water to be added is usually in the range of, for example, 1 part by weight or more and 1000000 parts by weight or less, preferably 10 parts by weight with respect to 100 parts by weight of the mixture of the component (Y) and the component (W). It is the range of not less than 10000 parts by weight.
 水の一部または全部を任意の割合で溶解する溶媒としては、添加する溶媒の量は、通常は上記成分(Y)および上記成分(W)の混合物100重量部に対し、例えば1重量部以上1000000重量部以下の範囲であり、好ましくは10重量部以上10000重量部以下の範囲である。 As a solvent for dissolving a part or all of water in an arbitrary ratio, the amount of the solvent to be added is usually 1 part by weight or more with respect to 100 parts by weight of the mixture of the component (Y) and the component (W). The range is 1 million parts by weight or less, preferably 10 parts by weight or more and 10,000 parts by weight or less.
 また、金属アルコキシド類の加水分解重縮合時の好ましい反応温度は、1℃以上100℃以下であり、より好ましくは20℃以上60℃以下であり、反応時間は10分以上72時間以下であり、より好ましくは1時間以上24時間以下である。 Moreover, the preferable reaction temperature at the time of hydrolysis polycondensation of metal alkoxides is 1 ° C. or more and 100 ° C. or less, more preferably 20 ° C. or more and 60 ° C. or less, and the reaction time is 10 minutes or more and 72 hours or less, More preferably, it is 1 hour or more and 24 hours or less.
[ゾル-ゲル反応用触媒(W)]
 本実施形態で用いる混合組成物において、金属アルコキシドの加水分解・重縮合反応における反応を促進させる目的で、以下に示すような加水分解・重縮合反応の触媒となるものを含んでいてもよい。
[Sol-gel reaction catalyst (W)]
In the mixed composition used in the present embodiment, for the purpose of accelerating the reaction in the hydrolysis / polycondensation reaction of the metal alkoxide, it may contain a catalyst for the hydrolysis / polycondensation reaction as shown below.
 金属アルコキシドの加水分解・重縮合反応の触媒として使用されるものは、「最新ゾル-ゲル法による機能性薄膜作製技術」(平島碩著、株式会社総合技術センター、29頁)や「ゾル-ゲル法の科学」(作花済夫著、アグネ承風社、154頁)などに記載されている一般的なゾル-ゲル反応で用いられる触媒である。 What is used as a catalyst for hydrolysis and polycondensation reactions of metal alkoxides is “the latest functional sol-gel technology by the sol-gel method” (Akira Hirashima, Comprehensive Technology Center, page 29) and “Sol-Gel”. It is a catalyst used in a general sol-gel reaction described in “The Science of Law” (Sakuo Sakuo, Agne Jofu Co., Ltd., page 154).
 触媒(W)としては、酸触媒、アルカリ触媒、有機スズ化合物、チタニウムテトライソプロポキシド、ジイソプロポキシチタニウムビスアセチルアセトナート、ジルコニウムテトラブトキシド、ジルコニウムテトラキスアセチルアセトナート、アルミニウムトリイソプロポキシド、アルミニウムトリスエチルアセトナート、トリメトキシボランなどの金属アルコキシドなどが挙げられる。 As the catalyst (W), acid catalyst, alkali catalyst, organotin compound, titanium tetraisopropoxide, diisopropoxytitanium bisacetylacetonate, zirconium tetrabutoxide, zirconium tetrakisacetylacetonate, aluminum triisopropoxide, aluminum tris Examples thereof include metal alkoxides such as ethyl acetonate and trimethoxyborane.
 これら触媒の中でも、酸触媒、アルカリ触媒が好適に使用される。具体的には、酸触媒では塩酸、硝酸、硫酸、リン酸、酢酸、蓚酸、酒石酸、トルエンスルホン酸などの無機および有機酸類、アルカリ触媒では、水酸化アンモニウム、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属水酸化物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシドなどの4級アンモニウム水酸化物、アンモニア、トリエチルアミン、トリブチルアミン、モルホリン、ピリジン、ピペリジン、エチレンジアミン、ジエチレントリアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン類、3-アミノプロピルトリエトキシシラン、N(2-アミノエチル)-3-アミノプロピルトリメトキシシランなどのアミノシラン類などが挙げられる。 Among these catalysts, acid catalysts and alkali catalysts are preferably used. Specifically, acid catalysts include inorganic and organic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, succinic acid, tartaric acid, and toluenesulfonic acid, and alkali catalysts include ammonium hydroxide, potassium hydroxide, and sodium hydroxide. Alkali metal hydroxide, quaternary ammonium hydroxide such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, ammonia, triethylamine, tributylamine, morpholine, pyridine, piperidine, ethylenediamine, diethylenetriamine, ethanolamine , Amines such as diethanolamine and triethanolamine, aminosilanes such as 3-aminopropyltriethoxysilane and N (2-aminoethyl) -3-aminopropyltrimethoxysilane And the like.
 反応性の観点から、比較的穏やかに反応が進行する塩酸、硝酸など、酸触媒を使用することが好ましい。触媒の使用量は、上記成分(Y)の金属アルコキシド1モルに対して、好ましくは0.001モル以上0.05モル以下、より好ましくは0.001モル以上0.04モル以下、さらに好ましくは0.001モル以上0.03モル以下の程度である。 From the viewpoint of reactivity, it is preferable to use an acid catalyst such as hydrochloric acid or nitric acid, where the reaction proceeds relatively gently. The amount of the catalyst used is preferably 0.001 mol or more and 0.05 mol or less, more preferably 0.001 mol or more and 0.04 mol or less, and still more preferably, with respect to 1 mol of the metal alkoxide of the component (Y). It is about 0.001 mol or more and 0.03 mol or less.
 工程(a-1)における混合組成物は、例えば、触媒(W)の存在下、溶媒(Z)を除去しないでゾル-ゲル反応させることによって得られるゾル-ゲル反応物の形態で使用することができる。 The mixed composition in the step (a-1) is used, for example, in the form of a sol-gel reactant obtained by performing a sol-gel reaction without removing the solvent (Z) in the presence of the catalyst (W). Can do.
[工程(a-2)]
 工程(a-2)においては、金属化合物ナノ粒子および水系媒体を含有する混合物を調製する。
[Step (a-2)]
In step (a-2), a mixture containing metal compound nanoparticles and an aqueous medium is prepared.
 本実施形態において選ばれる金属化合物ナノ粒子は、二酸化チタン(TiO)を含み、さらに金属化合物(2)を含んでいる。金属化合物(2)としては、二酸化ジルコニウム(ZrO)、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、酸化イットリウム(Y)、酸化マグネシウム(MnO)、酸化アルミニウム、硫酸バリウムなどが挙げられる。金属化合物(2)は1種類でも2種類以上でもよい。  The metal compound nanoparticles selected in the present embodiment contain titanium dioxide (TiO 2 ) and further contain a metal compound (2). Examples of the metal compound (2) include zirconium dioxide (ZrO 2 ), zinc oxide (ZnO), zinc sulfide (ZnS), yttrium oxide (Y 2 O 3 ), magnesium oxide (MnO), aluminum oxide, and barium sulfate. It is done. The metal compound (2) may be one type or two or more types.
 金属化合物ナノ粒子としては1種類の無機超微粒子の表面に他の無機物を1種類以上被覆した構造(コアーシェル構造)、2種類以上の成分により結晶構造を形成するものなどが挙げられる。 Examples of the metal compound nanoparticles include a structure in which one or more kinds of inorganic ultrafine particles are coated with one or more kinds of other inorganic substances (core-shell structure), and a structure in which a crystal structure is formed with two or more kinds of components.
 金属化合物ナノ粒子の粒子径は、好ましくは1nm以上50nm以下、より好ましくは1nm以上20nm以下、さらに好ましくは1nm以上10nm以下である。
 また金属化合物ナノ粒子の製造方法として、大きくは粉砕法と合成法に分けられる。さらに合成法としては蒸発凝縮法、気相反応法などの気相法、コロイド法、均一沈殿法、水熱合成法、マイクロエマルション法などの液相法などがある。
The particle diameter of the metal compound nanoparticles is preferably 1 nm to 50 nm, more preferably 1 nm to 20 nm, and still more preferably 1 nm to 10 nm.
Moreover, as a manufacturing method of a metal compound nanoparticle, it can divide roughly into the crushing method and the synthesis method. Further, as synthesis methods, there are vapor phase methods such as evaporation condensation method and gas phase reaction method, liquid phase methods such as colloid method, homogeneous precipitation method, hydrothermal synthesis method and microemulsion method.
 本実施形態に用いる金属化合物ナノ粒子の製造法はとくに制限されるものではないが、粒径、組成の均一性、不純物などの点から、合成法により製造したものが好ましい。
 それぞれの金属化合物ナノ粒子は、水などにコロイド状あるいはスラリー状に分散するのが好ましく、分散を安定に保つため、γ-グリシドオキシプロピルトリメトキシシランやメタクリロイルオキシプロピルトリメトキシシランなどのシランカップリング剤、カルボン酸などの有機酸、ポリビニルピロリドン、ポリビニルアルコールなどの高分子を添加、またはそれらを微粒子表面に化学的結合(表面修飾)させるなどの方法により分散安定化しても構わない。
Although the manufacturing method of the metal compound nanoparticle used for this embodiment is not restrict | limited in particular, The thing manufactured by the synthesis method is preferable from points, such as a particle size, a composition uniformity, and an impurity.
Each metal compound nanoparticle is preferably dispersed in water or the like in a colloidal or slurry form. In order to keep the dispersion stable, a silane cup such as γ-glycidoxypropyltrimethoxysilane or methacryloyloxypropyltrimethoxysilane is used. The dispersion may be stabilized by a method such as adding a ring agent, an organic acid such as carboxylic acid, a polymer such as polyvinyl pyrrolidone or polyvinyl alcohol, or chemically bonding (surface modification) them to the surface of the fine particles.
 金属化合物ナノ粒子を分散させる水性媒体としては、水および/または水の一部または全部を任意の割合で溶解する溶媒が挙げられる。水についてはとくに制限されず、蒸留水、イオン交換水、市水、工業用水などを使用可能である。とくに、蒸留水やイオン交換水を使用することが好ましい。 Examples of the aqueous medium in which the metal compound nanoparticles are dispersed include water and / or a solvent that dissolves part or all of water in an arbitrary ratio. The water is not particularly limited, and distilled water, ion exchange water, city water, industrial water, and the like can be used. In particular, it is preferable to use distilled water or ion exchange water.
 水の一部または全部を任意の割合で溶解する溶媒としては、水と親和性を有する有機溶媒であればとくに限定されない。例えばメタノール、エタノール、プロピルアルコール、イソプロピルアルコール、アセトン、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルイミダゾリジノン、エチレングリコール、テトラエチレングリコール、ジメチルアセトアミド、N-メチル-2-ピロリドン、テトラヒドロフラン、ジオキサン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-メトキシエタノール(メチルセルソルブ)、2-エトキシエタノール(エチルセルソルブ)、酢酸エチルなどが挙げられる。中でも、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、アセトン、テトラヒドロフラン、ジオキサンは、水との親和性が高いため、好ましい。 The solvent for dissolving a part or all of water in an arbitrary ratio is not particularly limited as long as it is an organic solvent having an affinity for water. For example, methanol, ethanol, propyl alcohol, isopropyl alcohol, acetone, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylimidazolidinone, ethylene glycol, tetraethylene glycol, dimethylacetamide, N-methyl-2-pyrrolidone, tetrahydrofuran, dioxane, methyl ethyl ketone, Examples include cyclohexanone, cyclopentanone, 2-methoxyethanol (methyl cellosolve), 2-ethoxyethanol (ethyl cellosolve), and ethyl acetate. Among these, methanol, ethanol, propyl alcohol, isopropyl alcohol, acetonitrile, dimethyl sulfoxide, dimethylformamide, acetone, tetrahydrofuran, and dioxane are preferable because of their high affinity with water.
[工程(a-3)]
 工程(a-3)では、二酸化チタン粒子を金属化合物(2)またはその前駆体で表面処理する。表面処理とは二酸化チタン粒子の表面に表面処理剤を付着、担持または被覆させることをいう。
[Step (a-3)]
In the step (a-3), the titanium dioxide particles are surface-treated with the metal compound (2) or a precursor thereof. Surface treatment refers to attaching, carrying or coating a surface treatment agent on the surface of titanium dioxide particles.
 二酸化チタンは、公知の種々の方法、例えば、硫酸法や塩素法などにより製造することができる。また、市販の二酸化チタンを用いてもよい。
 このうち、硫酸法では、一般にチタン含有鉱石を硫酸で浸出して硫酸チタン溶液を得て、この硫酸チタン溶液を加水分解して含水チタンの析出物を得る。そして、この析出物を適当な添加物の存在下でか焼して所望の結晶構造を有するものを得る。この際、表面処理して金属酸化物の被膜を付与することもできる。これにより得られたものを最終的に粉砕して所望の粒径に調整すると、目的とする二酸化チタン粒子が得られる。
Titanium dioxide can be produced by various known methods such as the sulfuric acid method and the chlorine method. Commercially available titanium dioxide may also be used.
Among these, in the sulfuric acid method, a titanium-containing ore is generally leached with sulfuric acid to obtain a titanium sulfate solution, and the titanium sulfate solution is hydrolyzed to obtain a hydrous titanium precipitate. The precipitate is calcined in the presence of an appropriate additive to obtain a precipitate having a desired crystal structure. At this time, a metal oxide film can be applied by surface treatment. When the resultant is finally pulverized and adjusted to a desired particle size, the desired titanium dioxide particles are obtained.
 一方、塩素法では、四塩化チタンのようなハロゲン化チタンを高温で気相酸化して得られた二酸化チタンを最終的に粉砕して所望の粒径に調整すると、目的とする二酸化チタン粒子が得られる。 On the other hand, in the chlorine method, when titanium dioxide obtained by vapor phase oxidation of titanium halide such as titanium tetrachloride at high temperature is finally pulverized and adjusted to a desired particle size, the target titanium dioxide particles are obtained. can get.
 二酸化チタンの一次粒子径は特に限定されるものではないが、例えば10~200nmとすることができる。特に60nm以上の一次粒子径であると、白色度が一層向上するため好ましい。 The primary particle diameter of titanium dioxide is not particularly limited, but can be, for example, 10 to 200 nm. In particular, a primary particle size of 60 nm or more is preferable because whiteness is further improved.
 金属化合物(2)またはその前駆体で表面処理する前に、無機リン酸化合物で二酸化チタン粒子を表面処理するのが好ましい。 Before the surface treatment with the metal compound (2) or its precursor, it is preferable to surface-treat the titanium dioxide particles with an inorganic phosphate compound.
 無機リン酸化合物の具体例としては、リン酸、リン酸アンモニウム、リン酸水素二アンモニウム、リン酸水素三アンモニウム、リン酸一カリウム、リン酸一水素カルシウム、リン酸一ナトリウム、リン酸水素二カリウム、リン酸水素三カリウム等の他に、ピロリン酸、トリポリリン酸、テトラポリリン酸、トリメタリン酸、テトラメタリン酸、ヘキサメタリン酸、およびこれらの塩等が挙げられる。なお、本実施形態では、上述の各種無機リン酸化合物が2種以上併用されてもよい。
 これらのリン酸化合物のなかでも、リン酸、リン酸アンモニウム、リン酸水素二アンモニウム、リン酸水素三アンモニウムがより好ましい。特に、リン酸のアンモニウム塩が好ましい。
Specific examples of inorganic phosphate compounds include phosphoric acid, ammonium phosphate, diammonium hydrogen phosphate, triammonium hydrogen phosphate, monopotassium phosphate, calcium monohydrogen phosphate, monosodium phosphate, dipotassium hydrogen phosphate In addition to tripotassium hydrogen phosphate, pyrophosphoric acid, tripolyphosphoric acid, tetrapolyphosphoric acid, trimetaphosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid, and salts thereof may be mentioned. In the present embodiment, two or more of the various inorganic phosphate compounds described above may be used in combination.
Among these phosphoric acid compounds, phosphoric acid, ammonium phosphate, diammonium hydrogen phosphate, and triammonium hydrogen phosphate are more preferable. In particular, an ammonium salt of phosphoric acid is preferable.
 処理方法としては、水等の媒体中で二酸化チタン粒子と無機リン酸化合物とを混合する方法、乾燥した二酸化チタン粒子と無機リン酸化合物とを混合する方法、二酸化チタンに無機リン酸化合物を吹き付ける方法、無機リン酸化合物中に二酸化チタンを浸漬する方法などが挙げられる。 As a treatment method, a method of mixing titanium dioxide particles and an inorganic phosphate compound in a medium such as water, a method of mixing dried titanium dioxide particles and an inorganic phosphate compound, and spraying an inorganic phosphate compound on titanium dioxide. The method, the method of immersing titanium dioxide in an inorganic phosphoric acid compound, etc. are mentioned.
 本実施形態の無機リン酸化合物で表面処理された二酸化チタンでは、二酸化チタンの好ましくは1質量%より多く30質量%以下、より好ましくは5質量%より多く20質量%以下が上述のリン酸化合物により処理されている。 In the titanium dioxide surface-treated with the inorganic phosphoric acid compound of the present embodiment, the phosphoric acid compound preferably contains more than 1% by mass and 30% by mass or less, more preferably more than 5% by mass and 20% by mass or less of the titanium dioxide. It is processed by.
 金属化合物(2)による表面処理方法としては、通常行なわれている種々の公知の方法を採用することができ、例えば、二酸化チタンの水性スラリー中に、上述の金属の水溶性化合物を添加した後に中和して、上述の金属の含水酸化物を二酸化チタンの表面上に沈殿させ、その後濾過、乾燥する方法を採用することができる。 As the surface treatment method using the metal compound (2), various known methods that are usually performed can be employed. For example, after adding the above-described water-soluble compound of metal to an aqueous slurry of titanium dioxide. A method of neutralizing and precipitating the above-mentioned metal hydrous oxide on the surface of titanium dioxide, followed by filtration and drying can be employed.
[工程(b)]
 工程(b)においては、上記工程(a-1)において得られた反応溶液、あるいは上記工程(a-2)において得られた混合物、あるいは上記工程(a-3)で得られた表面処理された二酸化チタン粒子を乾燥して粉体を得る。
[Step (b)]
In step (b), the reaction solution obtained in step (a-1), the mixture obtained in step (a-2), or the surface treatment obtained in step (a-3) is applied. The titanium dioxide particles are dried to obtain a powder.
 粉体の製造方法としては、本実施形態の反応溶液、混合物を所定温度で加熱乾燥し水または溶媒を除去した後、得られた固体を粉砕や分級などの処理により成形する方法、あるいは凍結乾燥法のように低温度で水または溶媒除去して乾燥した後、さらに所定の温度で加熱乾燥させ、得られた固体を粉砕や分級の処理により成形する方法、メタノールなどの貧溶媒を添加し凝集させたものをろ過・乾燥させる方法、さらにはスプレードライヤーにより、10μm以下の複合体微粒子を噴霧乾燥装置(スプレードライヤー)により噴霧し、溶媒を揮発させることにより粉体を得る方法などが挙げられる。 As a method for producing the powder, the reaction solution or mixture of the present embodiment is heated and dried at a predetermined temperature to remove water or the solvent, and then the obtained solid is formed by a treatment such as pulverization or classification, or freeze-drying. After removing water or solvent at low temperature and drying as in the method, heat drying at a predetermined temperature and then shaping the resulting solid by pulverization or classification, adding a poor solvent such as methanol to agglomerate Examples thereof include a method of filtering and drying the obtained product, and a method of obtaining powder by spraying composite fine particles of 10 μm or less with a spray drying device (spray dryer) using a spray dryer and volatilizing the solvent.
 上記工程(a-1)で得られた反応溶液を用いる場合は、加熱乾燥することによりゾル-ゲル反応が完結し、金属化合物が形成される。ゾル-ゲル反応を完結させるための加熱温度は室温以上300℃以下であり、より好ましくは80℃以上200℃以下である。 When using the reaction solution obtained in the above step (a-1), the sol-gel reaction is completed by heating and drying, and a metal compound is formed. The heating temperature for completing the sol-gel reaction is from room temperature to 300 ° C, more preferably from 80 ° C to 200 ° C.
 なお、ゾル-ゲル反応が完結した状態とは、理想的には全てがM-O-Mの結合を形成した状態であるが、一部アルコキシル基(M-OR)、M-OH基を残すものの、固体(ゲル)の状態に移行した状態を含むものである。 The state in which the sol-gel reaction is completed is ideally a state in which all of them form MOM bonds, but some alkoxyl groups (M-OR 2 ) and M-OH groups are partially formed. Although it remains, it includes a state in which it has shifted to a solid (gel) state.
 上記工程(a-2)で得られた混合物を用いる場合、加熱乾燥することにより金属化合物ナノ粒子が凝集結合する。金属化合物ナノ粒子の凝集結合を促進させるための加熱温度は室温以上300℃以下が好ましく、より好ましくは80℃以上200℃以下である。  When using the mixture obtained in the above step (a-2), the metal compound nanoparticles are aggregated and bonded by heating and drying. The heating temperature for promoting the aggregation and bonding of the metal compound nanoparticles is preferably from room temperature to 300 ° C., more preferably from 80 ° C. to 200 ° C. *
上記工程(a-3)で得られた表面処理された二酸化チタン粒子を用いる場合、加熱温度は室温以上300℃以下が好ましく、より好ましくは80℃以上200℃以下である。 When the surface-treated titanium dioxide particles obtained in the step (a-3) are used, the heating temperature is preferably from room temperature to 300 ° C., more preferably from 80 ° C. to 200 ° C.
[工程(c)]
 工程(c)においては、工程(b)で得られた粉体を焼成する。
 焼成温度は、好ましくは300℃以上1000℃以下、より好ましくは400℃以上1000℃以下、さらに好ましくは500℃以上800℃以下、特に好ましくは500℃以上600℃以下である。焼成温度が上記下限値以上であると、二酸化チタン結晶の形成を十分に進めることができる。一方、焼成温度が上記上限値以下であると、二酸化チタン結晶の過度の焼結や多孔構造の崩壊を抑制することができる。焼成は、一定温度でおこなっても良いし、室温から除々に昇温しても構わない。焼成の時間は、温度に応じて変えられるが、1時間から24時間の範囲でおこなうのが好ましい。焼成は空気中でおこなってもよいし、窒素、アルゴンなどの不活性ガス中でおこなってもよい。また、減圧下、または真空中でおこなっても構わない。
[Step (c)]
In the step (c), the powder obtained in the step (b) is fired.
The firing temperature is preferably 300 ° C. or higher and 1000 ° C. or lower, more preferably 400 ° C. or higher and 1000 ° C. or lower, further preferably 500 ° C. or higher and 800 ° C. or lower, and particularly preferably 500 ° C. or higher and 600 ° C. or lower. When the firing temperature is equal to or higher than the lower limit, the formation of titanium dioxide crystals can be sufficiently advanced. On the other hand, when the firing temperature is not more than the above upper limit, excessive sintering of the titanium dioxide crystal and collapse of the porous structure can be suppressed. Firing may be performed at a constant temperature, or may be gradually raised from room temperature. The firing time can be changed according to the temperature, but it is preferably performed in the range of 1 to 24 hours. Firing may be performed in air or in an inert gas such as nitrogen or argon. Moreover, you may carry out under reduced pressure or in a vacuum.
 本実施形態の白色顔料として用いる金属化合物(1)は水系媒体中で沈降しにくく、白色度が優れている。その原理は明らかではないが、金属化合物(2)が二酸化チタンの表面に偏在し、焼成時に二酸化チタンの結晶が過度に成長するのを防止することにより多孔構造が保たれ、細孔容積が適切な範囲にあるためであると推測される。 The metal compound (1) used as the white pigment of the present embodiment is difficult to settle in an aqueous medium and has excellent whiteness. Although the principle is not clear, the metal compound (2) is unevenly distributed on the surface of titanium dioxide, and the porous structure is maintained by preventing the titanium dioxide crystals from growing excessively during firing, and the pore volume is appropriate. This is presumed to be in the range.
[工程(d)]
 工程(d)では上記工程(c)で得られた金属化合物(1)を所望の粒径に湿式粉砕し、水中への分散化をおこない、水系ディスパージョンを得る。
[Step (d)]
In the step (d), the metal compound (1) obtained in the step (c) is wet-pulverized to a desired particle size and dispersed in water to obtain an aqueous dispersion.
 所望の粒径の顔料を有する水系ディスパージョンを作成することを目的として、ビーズミル、ジェットミル、ボールミル、サンドミル、アトライター、ロールミル、アジテーターミル、ヘンシェルミキサー、コロイドミル、超音波ホモジナイザー、オングミルなどの粉砕・分散機を用いることができる。上記の粉砕・分散機に充填する前に、乳鉢によるプレ粉砕をおこなってもよい。またプレミックス用のミキサーを用いてもよい。次の工程に対して、水性ディスパージョンをそのまま使うことができるが、微量の粗大粒子を除去するため、遠心分離、加圧濾過、および減圧濾過などを用いることもできる。 Grinding bead mills, jet mills, ball mills, sand mills, attritors, roll mills, agitator mills, Henschel mixers, colloid mills, ultrasonic homogenizers, ang mills, etc. for the purpose of creating aqueous dispersions with pigments of the desired particle size -A disperser can be used. Prior to filling the pulverizer / disperser, pre-pulverization with a mortar may be performed. Moreover, you may use the mixer for premixes. For the next step, the aqueous dispersion can be used as it is, but in order to remove a minute amount of coarse particles, centrifugal separation, pressure filtration, vacuum filtration and the like can also be used.
 分散安定化させるために、界面活性剤や分散剤の添加は不可欠ではないが、例えば、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、ノニオン界面活性剤、高分子分散剤などを粉砕・分散処理時に共存させても良い。 In order to stabilize the dispersion, addition of a surfactant or dispersant is not indispensable. For example, an anionic surfactant, a cationic surfactant, an amphoteric surfactant, a nonionic surfactant, a polymer dispersant, etc. are crushed. -You may coexist at the time of distributed processing.
 アニオン界面活性剤として、例えば、カルボン酸塩、単純アルキル・スルフォネート、変性アルキル・スルフォネート、アルキル・アリル・スルフォネート、アルキル硫酸エステル塩、硫酸化油、硫酸エステル、硫酸化脂肪酸モノグリセライド、硫酸化アルカノール・アミド、硫酸化エーテル、アルキル燐酸エステル塩、アルキル・ベンゼン・フォスフォン酸塩、ナフタレンスルホン酸・ホルマリン縮合物などが挙げられる。 Anionic surfactants include, for example, carboxylates, simple alkyl sulfonates, modified alkyl sulfonates, alkyl allyl sulfonates, alkyl sulfate esters, sulfated oils, sulfate esters, sulfated fatty acid monoglycerides, sulfated alkanol amides. Sulphated ethers, alkyl phosphate esters, alkyl benzene phosphonates, naphthalene sulfonic acid / formalin condensates.
 カチオン界面活性剤として、例えば、単純アミン塩、変性アミン塩、テトラアルキル第4級アンモニウム塩、変性トリアルキル第4級アンモニウム塩、トリアルキル・ベンジル第4級アンモニウム塩、変性トリアルキル・ベンジル第4級アンモニウム塩、アルキル・ピリジニウム塩、変性アルキル・ピリジニウム塩、アルキル・キノリニウム塩、アルキル・フォスフォニウム塩、アルキル・スルフォニウム塩などが挙げられる。 Examples of cationic surfactants include simple amine salts, modified amine salts, tetraalkyl quaternary ammonium salts, modified trialkyl quaternary ammonium salts, trialkyl benzyl quaternary ammonium salts, and modified trialkyl benzyl quaternary salts. Examples include quaternary ammonium salts, alkyl pyridinium salts, modified alkyl pyridinium salts, alkyl quinolinium salts, alkyl phosphonium salts, and alkyl sulfonium salts.
 両性界面活性剤として、例えば、ベタイン、スルフォベタイン、サルフェートベタインなどが挙げられる。 Examples of amphoteric surfactants include betaine, sulfobetaine, and sulfate betaine.
 ノニオン界面活性剤として、例えば、脂肪酸モノグリセリン・エステル、脂肪酸ポリグリコール・エステル、脂肪酸ソルビタン・エステル、脂肪酸蔗糖エステル、脂肪酸アルカノール・アミド、脂肪酸ポリエチレン・グリコール縮合物、脂肪酸アミド・ポリエチレン・グリコール縮合物、脂肪酸アルコール・ポリエチレン・グリコール縮合物、脂肪酸アミン・ポリエチレン・グリコール縮合物、脂肪酸メルカプタン・ポリエチレン・グリコール縮合物、アルキル・フェノール・ポリエチレン・グリコール縮合物、ポリプロピレン・グリコール・ポリエチレン・グリコール縮合物などが挙げられる。これら界面活性剤は、単独または2種以上を併用することができ、他の添加剤とも併用することができる。 Nonionic surfactants include, for example, fatty acid monoglycerin ester, fatty acid polyglycol ester, fatty acid sorbitan ester, fatty acid sucrose ester, fatty acid alkanol amide, fatty acid polyethylene glycol glycol condensate, fatty acid amide polyethylene glycol condensate, Examples include fatty acid alcohol / polyethylene / glycol condensate, fatty acid amine / polyethylene / glycol condensate, fatty acid mercaptan / polyethylene / glycol condensate, alkyl / phenol / polyethylene / glycol condensate, and polypropylene / glycol / polyethylene / glycol condensate. . These surfactants can be used alone or in combination of two or more, and can also be used in combination with other additives.
 また、粉砕・分散化時の泡立ちを抑えるために、消泡剤を添加しても良い。消泡剤として、例えば、シリコーン系、ポリエーテル系、アルコール類などが挙げられる。これら消泡剤は、単独または2種以上を併用することができる。分散剤を添加する順序はとくに限定されないが、工程(d)の前後のいずれかに添加することが好ましい。
 金属化合物(1)の動的光散乱法により測定される体積粒度分布のピーク値は、上述したとおり、100~700nmの範囲にある。
An antifoaming agent may be added in order to suppress foaming during pulverization / dispersion. Examples of antifoaming agents include silicones, polyethers, and alcohols. These antifoaming agents can be used alone or in combination of two or more. The order of adding the dispersant is not particularly limited, but it is preferable to add the dispersant before or after the step (d).
The peak value of the volume particle size distribution measured by the dynamic light scattering method of the metal compound (1) is in the range of 100 to 700 nm as described above.
 本実施形態の金属化合物(1)の細孔容積は、上述したとおり、(C)細孔容積が0.1ml/g以上0.65ml/g以下の範囲にある。このような構造は、例えば、上記の二酸化チタン微粒子を金属成分(2)が被覆する様な所謂コアシェル構造や、二酸化チタン微粒子同士の間に金属化合物(2)の微粒子が介在する構造をとることによって達成されると考えられる。
 二酸化チタン微粒子は、焼成工程において、結晶化しやすく粒子成長する可能性があることが知られている。このような所謂粒子成長が発生すると、細孔容積の小さい粒子となってしまう可能性が高い。
As described above, the pore volume of the metal compound (1) of the present embodiment is such that (C) the pore volume is in the range of 0.1 ml / g or more and 0.65 ml / g or less. Such a structure has, for example, a so-called core-shell structure in which the titanium dioxide fine particles are coated with the metal component (2), or a structure in which the fine particles of the metal compound (2) are interposed between the titanium dioxide fine particles. Is considered to be achieved.
It is known that titanium dioxide fine particles are likely to be crystallized and grow in the firing step. When such so-called particle growth occurs, there is a high possibility that the particles have a small pore volume.
 本実施形態では、金属化合物(2)が存在することにより、二酸化チタン微粒子の結晶成長が抑制され、その結果、細孔容積の大きい所謂多孔質な粒子が得られると考えられる。 In this embodiment, the presence of the metal compound (2) suppresses crystal growth of the titanium dioxide fine particles, and as a result, so-called porous particles having a large pore volume are considered to be obtained.
 また本実施形態の金属化合物(2)の屈折率は1.60以上2.45以下である。一般に屈折率が低い成分は白色度が低い傾向があることが知られている。しかしながら本発明の水性インク用白色顔料は、高い白色度を有する。これも、上記の様な構造を有しているためではないかと推測される。
 本実施形態の金属化合物(2)の比重は、3.0g/cm以上6.0g/cm以下であることが好ましい。
Moreover, the refractive index of the metal compound (2) of this embodiment is 1.60 or more and 2.45 or less. In general, it is known that components having a low refractive index tend to have low whiteness. However, the white pigment for aqueous ink of the present invention has high whiteness. It is presumed that this is also due to the structure as described above.
The specific gravity of the metal compound (2) of the present embodiment is preferably 3.0 g / cm 3 or more and 6.0 g / cm 3 or less.
 通常、水より比重の重い成分を用いると、水性インクとしての分散性は低下するのが一般的と考えられる。しかしながら、本実施形態の水性インク用白色顔料は水に対する良好な分散性を有する。これも上記のような構造を形成しているためではないかと推測される。また、比重の重い成分はその運動性の低さから粒子成長速度が遅い傾向にあると推測されることからも上記の構造を形成するのに好ましいのではないかと推測される。 Usually, it is generally considered that when a component having a specific gravity heavier than water is used, the dispersibility as a water-based ink decreases. However, the white pigment for water-based ink of this embodiment has a good dispersibility in water. It is presumed that this is also due to the formation of the structure as described above. Further, it is presumed that a component having a heavy specific gravity is preferable for forming the above structure because it is presumed that the particle growth rate tends to be slow because of its low mobility.
 そして、既存品では酸化チタンにシリカ等の絶縁性物質を含有させることにより、酸化チタンの持つ光触媒機能を抑制し、光触媒機能由来の白色度低下を防ぎ、白色度を維持している。本発明記載の金属化合物(2)である二酸化ジルコニウム、硫化亜鉛、ZnO、鉛白、酸化アルミ、Y3、BaSO4を、酸化チタニアに含有させても、同様の効果があり、白色度の維持が可能と推測される。 In addition, in existing products, by containing an insulating substance such as silica in titanium oxide, the photocatalytic function of titanium oxide is suppressed, a decrease in whiteness derived from the photocatalytic function is prevented, and whiteness is maintained. Even if titanium dioxide, zirconium dioxide, zinc sulfide, ZnO, lead white, aluminum oxide, Y 2 O 3 and BaSO4, which are the metal compounds (2) described in the present invention are contained in titania, the same effect is obtained, Presumably possible to maintain.
2.水性インク組成物
 本実施形態の水性インク組成物は上記の水性インク用顔料、水を含んでいる。さらに水溶性有機溶剤、潤滑剤、高分子分散剤、界面活性剤、他の着色剤、その他各種添加剤を含んでもよい。
2. Aqueous ink composition The aqueous ink composition of this embodiment contains the above-mentioned pigment for aqueous ink and water. Further, it may contain a water-soluble organic solvent, a lubricant, a polymer dispersant, a surfactant, other colorants, and other various additives.
 本実施形態の水性インク用顔料の添加量は、インク全体に対して、好ましくは1重量%以上40重量%以下であり、より好ましくは3重量%以上30重量%以下である。本実施形態においては、このような高顔料濃度の場合であっても、顔料粒子の分散性や目詰まり信頼性に優れるとともに、インク中の顔料濃度を高くすることによって、隠蔽力の高い画像が得られる。 The addition amount of the pigment for water-based ink of the present embodiment is preferably 1% by weight or more and 40% by weight or less, more preferably 3% by weight or more and 30% by weight or less with respect to the whole ink. In this embodiment, even in the case of such a high pigment concentration, the dispersibility of the pigment particles and the clogging reliability are excellent, and by increasing the pigment concentration in the ink, an image with high hiding power can be obtained. can get.
 本実施形態の水性インク組成物の溶媒は、水または水と水溶性有機溶媒の混合溶媒が挙げられる。水は、イオン交換水、限外濾過水、逆浸透水、蒸留水などの純水、または超純水を用いることができる。また、紫外線照射、または過酸化水素添加などにより滅菌した水を用いることにより、インク組成物を長期保存する場合にカビやバクテリアの発生を防止することができるので好適である。また、水溶性有機溶媒は、好ましくは低沸点有機溶剤であり、その例としては、メタノール、エタノール、n-プロピルアルコール、iso-プロピルアルコール、n-ブタノール、sec-ブタノール、tert-ブタノール、iso-ブタノール、n-ペンタノールなどが挙げられる。とくに一価アルコールが好ましい。低沸点有機溶剤は、インクの乾燥時間を短くする効果がある。低沸点有機溶剤の添加量は水性インク組成物の0.5重量%以上10重量%以下が好ましく、1.5重量%以上6重量%以下がより好ましい。 Examples of the solvent of the aqueous ink composition of the present embodiment include water or a mixed solvent of water and a water-soluble organic solvent. As the water, pure water such as ion exchange water, ultrafiltration water, reverse osmosis water, distilled water, or ultrapure water can be used. In addition, the use of water sterilized by ultraviolet irradiation or addition of hydrogen peroxide is preferable because generation of mold and bacteria can be prevented when the ink composition is stored for a long period of time. The water-soluble organic solvent is preferably a low-boiling organic solvent, and examples thereof include methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butanol, sec-butanol, tert-butanol, iso- Examples include butanol and n-pentanol. A monohydric alcohol is particularly preferable. The low boiling point organic solvent has an effect of shortening the drying time of the ink. The amount of the low-boiling organic solvent added is preferably 0.5% by weight or more and 10% by weight or less, more preferably 1.5% by weight or more and 6% by weight or less of the aqueous ink composition.
 本実施形態の水性インク組成物は、さらに高沸点有機溶媒などの湿潤剤を含むことが好ましい。湿潤剤の好ましい例としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、プロピレングリコール、ブチレングリコール、1,2,6-ヘキサントリオール、チオグリコール、ヘキシレングリコール、グリセリン、トリメチロールエタン、トリメチロールプロパンなどの多価アルコール類、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチエレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテルなどの多価アルコールのアルキルエーテル類、尿素、2-ピロリドン、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノンなどが挙げられる。 The aqueous ink composition of the present embodiment preferably further contains a wetting agent such as a high boiling point organic solvent. Preferred examples of the wetting agent include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, propylene glycol, butylene glycol, 1,2,6-hexanetriol, thioglycol, hexylene glycol, glycerin, trimethylolethane. Polyhydric alcohols such as trimethylolpropane, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol Multivalent such as ethylene glycol monobutyl ether Alkyl ethers of alcohols, urea, 2-pyrrolidone, N- methyl-2-pyrrolidone, 1,3-dimethyl-2-like imidazolidinone.
 これら湿潤剤の添加量は、水性インク組成物の0.5重量%以上40重量%以下が好ましく、2重量%以上20重量%以下がより好ましい。 The addition amount of these wetting agents is preferably 0.5% by weight or more and 40% by weight or less of the aqueous ink composition, and more preferably 2% by weight or more and 20% by weight or less.
 本実施形態の水性インク組成物は、高分子分散剤を含んでいるのが好ましい。高分子分散剤としては、天然高分子が挙げられる。具体的には、にかわ、ゼラチン、ガゼイン、アルブミンなどのタンパク質類、アラビアゴム、トラガントゴムなどの天然ゴム類、サボニなどのグルコシド類、アルギン酸およびアルギン酸プロピレングリコールエステルアルギン酸トリエタノールアミン、アルギン酸アンモニウムなどのアルギン酸誘導体、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、エチルヒドロキシセルロースなどのセルロース誘導体などが挙げられる。
 さらに、高分子分散剤の好ましい例として合成高分子が挙げられ、ポリビニルアルコール類、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸/アクリロニトリル共重合体、アクリル酸カリウム/アクリロニトリル共重合体、酢酸ビニル/アクリル酸エステル共重合体、アクリル酸/アクリル酸エステル共重合体などのアクリル酸系樹脂、スチレン/アクリル酸共重合体、スチレン/メタクリル酸共重合体、スチレン/メタクリル酸/アクリル酸エステル共重合体、スチレン/α-メチルスチレン/アクリル酸共重合体、スチレン/α-メチルスチレン/アクリル酸/アクリル酸エステル共重合体などのスチレン-アクリル樹脂、スチレン/マレイン酸共重合体、スチレン/無水マレイン酸共重合体、ビニルナフタレン/アクリル酸共重合体、ビニルナフタレン/マレイン酸共重合体、および酢酸ビニル/エチレン共重合体、酢酸ビニル/脂肪酸ビニル/エチレン共重合体、酢酸ビニル/マレイン酸エステル共重合体、酢酸ビニル/クロトン酸共重合体、酢酸ビニル/アクリル酸共重合体などの酢酸ビニル系共重合体およびそれらの塩が挙げられる。これらの中で、とくに疎水性基を持つモノマーと親水性基を持つモノマーとの共重合体、および疎水性基と親水性基を分子構造中に併せ持ったモノマーからなる重合体、例えばスチレン/アクリル酸共重合体、スチレン/メタクリル酸共重合体などが好ましい。
The aqueous ink composition of this embodiment preferably contains a polymer dispersant. Examples of the polymer dispersant include natural polymers. Specifically, proteins such as glue, gelatin, casein, albumin, natural rubbers such as gum arabic and tragacanth, glucosides such as savoni, alginic acid and propylene glycol alginate, triethanolamine alginate, and alginic acid derivatives such as ammonium alginate , Cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, and ethylhydroxycellulose.
Furthermore, preferred examples of the polymer dispersant include synthetic polymers such as polyvinyl alcohols, polyvinyl pyrrolidones, polyacrylic acid, acrylic acid / acrylonitrile copolymers, potassium acrylate / acrylonitrile copolymers, vinyl acetate / acrylic. Acid ester copolymers, acrylic resins such as acrylic acid / acrylic ester copolymers, styrene / acrylic acid copolymers, styrene / methacrylic acid copolymers, styrene / methacrylic acid / acrylic acid ester copolymers, Styrene / acrylic resins such as styrene / α-methylstyrene / acrylic acid copolymer, styrene / α-methylstyrene / acrylic acid / acrylic acid ester copolymer, styrene / maleic acid copolymer, styrene / maleic anhydride copolymer Polymer, vinyl naphthalene / acrylic acid copolymer , Vinyl naphthalene / maleic acid copolymer, and vinyl acetate / ethylene copolymer, vinyl acetate / fatty acid vinyl / ethylene copolymer, vinyl acetate / maleic acid ester copolymer, vinyl acetate / crotonic acid copolymer, Examples thereof include vinyl acetate copolymers such as vinyl acetate / acrylic acid copolymers and salts thereof. Among these, a copolymer of a monomer having a hydrophobic group and a monomer having a hydrophilic group, and a polymer comprising a monomer having both a hydrophobic group and a hydrophilic group in the molecular structure, such as styrene / acrylic An acid copolymer, a styrene / methacrylic acid copolymer, and the like are preferable.
 本実施形態のインク組成物は、さらに界面活性剤を含んでもよい。界面活性剤としては、工程(d)で例示した界面活性剤を挙げることができる。これらは単独使用または二種以上を併用することができる。記録媒体への定着性や耐水性を高めるために、ポリオレフィンワックスを添加しても良い。
その他、必要に応じて、pH調整剤、防腐剤、防かび剤、酸化防止剤、定着樹脂などを添加しても良い。
The ink composition of this embodiment may further contain a surfactant. Examples of the surfactant include the surfactants exemplified in the step (d). These can be used alone or in combination of two or more. A polyolefin wax may be added in order to improve the fixing property to the recording medium and the water resistance.
In addition, a pH adjuster, an antiseptic, a fungicide, an antioxidant, a fixing resin, and the like may be added as necessary.
 また、本実施形態においては、本実施形態の水性インク用顔料以外の顔料および/または染料を適当量添加することにより淡色系のインクとすることもできる。 In this embodiment, a light-colored ink can be obtained by adding an appropriate amount of pigment and / or dye other than the pigment for water-based ink of this embodiment.
 本実施形態のインク組成物は、上記の各成分を適当な方法により分散、混合することによって製造することができる。各インク成分を加えた溶液を調製し、充分に撹拌した後に、目詰まりの原因となる粗大粒子および異物を除去するために濾過をおこなって目的のインク組成物を得ることができる。例えば上記工程(d)で得られた水性ディスパージョンに必要に応じ添加剤などを適宜添加することにより製造することができる。 The ink composition of the present embodiment can be produced by dispersing and mixing the above components by an appropriate method. After preparing a solution to which each ink component has been added and stirring sufficiently, the target ink composition can be obtained by performing filtration to remove coarse particles and foreign matters that cause clogging. For example, it can be produced by appropriately adding an additive or the like to the aqueous dispersion obtained in the step (d) as necessary.
 本実施形態の水性インク組成物の用途としては、例えばインクジェット印刷用、オフセット印刷用、グラビア印刷などが挙げられるが、とくにインクジェットプリンタでの印刷に適している。 Examples of the use of the water-based ink composition of the present embodiment include inkjet printing, offset printing, and gravure printing, which are particularly suitable for printing with an inkjet printer.
3.画像、印刷物
 本発明の水性インク組成物を用いて基材(被印刷体)に印刷することにより画像、印刷物が得られる。基材としては、例えば紙、繊維製品、プラスチック(塩化ビニル、ポリエチレンテレフタレートや、ポリエチレン、ポリプロピレンなどのポリオレフィン類などを含む)、ガラス、セラミックス、金属などが挙げられる。
3. Images and printed matter Images and printed matter can be obtained by printing on a substrate (substrate) using the aqueous ink composition of the present invention. Examples of the substrate include paper, fiber products, plastics (including vinyl chloride, polyethylene terephthalate, polyolefins such as polyethylene and polypropylene), glass, ceramics, and metals.
 本実施形態の水性インク組成物は下地を良好に隠蔽することができる。さらに本実施形態の水性インク組成物が白色インクである場合は、白色度が高い画像、印刷物が得られる。また、本実施形態の水性インク組成物での印刷後、各種色インクを用いて印刷をおこなうことで色インクの良好な発色性を得ることができる。 The water-based ink composition of the present embodiment can satisfactorily hide the base. Furthermore, when the water-based ink composition of the present embodiment is a white ink, images and printed matter with high whiteness can be obtained. Moreover, after printing with the water-based ink composition of the present embodiment, good color developability of the color ink can be obtained by printing using various color inks.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment of this invention was described, these are illustrations of this invention and various structures other than the above can also be employ | adopted.
 以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例などに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to these examples.
(実施例1)
(二酸化ジルコニウム含有二酸化チタンナノ粒子の合成と水分散体の調製)
 塩化チタン(IV)溶液(和光純薬、Ti:約15%)120g(Ti:3.76×10-1mol相当)をイオン交換水4000mlに添加し、70℃の温度で攪拌した。1時間後、青みを帯びた二酸化チタンコロイド水溶液を得た。このコロイド溶液に塩化酸化ジルコニウム8水和物を15.6g(Zr:4.83×10-2mol相当)添加し、コロイド水溶液の温度を70℃に保ち、1時間攪拌をおこなった。その結果、青白色を帯びたゾル液が得られた。イオン透析によりコロイド水溶液のpHを2.5付近になるように洗浄をおこなって、固形分濃度6重量%の二酸化ジルコニウム含有二酸化チタンナノ粒子の水分散体を得た。水分散体を乾燥させて得られた粉体のリガク社製X-Ray diffractometer Multiflex 2kW(CuKα線λ=1.5418Å)を用いてX線回折スペクトル測定より分析し、シェラー定数を0.9としてデバイ・シェラー法にて解析したところ、アナターゼ型二酸化チタンの結晶構造であり、結晶サイズが約3nmであることを確認した。
(Example 1)
(Synthesis of zirconium dioxide-containing titanium dioxide nanoparticles and preparation of aqueous dispersion)
120 g (corresponding to Ti: 3.76 × 10 −1 mol) of titanium (IV) chloride solution (Wako Pure Chemicals, Ti: about 15%) was added to 4000 ml of ion-exchanged water and stirred at a temperature of 70 ° C. After 1 hour, a bluish titanium dioxide colloidal aqueous solution was obtained. 15.6 g (Zr: 4.83 × 10 −2 mol equivalent) of zirconium chloride octahydrate was added to this colloid solution, and the temperature of the aqueous colloidal solution was kept at 70 ° C. and stirred for 1 hour. As a result, a bluish white sol solution was obtained. The aqueous colloidal solution was washed by ion dialysis so that the pH of the colloidal solution was around 2.5, and an aqueous dispersion of zirconium dioxide-containing titanium dioxide nanoparticles having a solid content concentration of 6% by weight was obtained. The powder obtained by drying the aqueous dispersion was analyzed by X-ray diffraction spectrum measurement using an X-Ray diffractometer Multiflex 2 kW (CuKα ray λ = 1.5418 製) manufactured by Rigaku Corporation, and the Scherrer constant was set to 0.9. When analyzed by the Debye-Scherrer method, it was confirmed that the crystal structure of anatase-type titanium dioxide was about 3 nm.
(二酸化ジルコニウム含有二酸化チタン粉体の形成)
 固形分濃度6重量%の二酸化ジルコニウム含有二酸化チタンナノ粒子の水分散体をスプレードライヤー装置に流し込み、ノズル出口温度200℃で加圧(0.2MPa)し、噴霧・乾燥することで、二酸化ジルコニウム含有二酸化チタン粉体を得た。得られた粉体を、電気炉を用いて、空気雰囲気下、室温から500℃まで毎分5℃の速度で昇温し、さらに500℃で2時間焼成することによって二酸化ジルコニウム含有二酸化チタン粉体の焼結体を得た。この焼結体を走査型電子顕微鏡(SEM)によって観察したところ、0.5~20μmの粉体であることを確認した。この焼結体を上記と同様にX線回折法により分析したところ、アナターゼ型二酸化チタンの結晶構造であり、その結晶サイズは5.6nmであった。
(Formation of zirconium dioxide-containing titanium dioxide powder)
An aqueous dispersion of zirconium dioxide-containing titanium dioxide nanoparticles having a solid content concentration of 6% by weight is poured into a spray dryer apparatus, pressurized at a nozzle outlet temperature of 200 ° C. (0.2 MPa), sprayed and dried, and thus zirconium dioxide-containing dioxide. A titanium powder was obtained. The obtained powder is heated at a rate of 5 ° C. per minute from room temperature to 500 ° C. in an air atmosphere by using an electric furnace, and further calcined at 500 ° C. for 2 hours, whereby zirconium dioxide-containing titanium dioxide powder is obtained. A sintered body was obtained. When this sintered body was observed with a scanning electron microscope (SEM), it was confirmed to be a powder of 0.5 to 20 μm. When this sintered body was analyzed by the X-ray diffraction method in the same manner as described above, it was a crystal structure of anatase-type titanium dioxide, and the crystal size was 5.6 nm.
(水系スラリーの調製)
 二酸化ジルコニウム含有二酸化チタン粉体の焼結体を、湿式型ビーズミルを用いて、固形分濃度が10重量%となるように水中にて粉砕・分散処理をおこなった。粒度を確認しながら粉砕をおこない、体積粒度分布のピークが270nmになった時点でスラリーを回収した。
(Preparation of aqueous slurry)
The sintered body of zirconium dioxide-containing titanium dioxide powder was pulverized and dispersed in water using a wet type bead mill so that the solid content concentration was 10% by weight. Grinding was performed while confirming the particle size, and the slurry was recovered when the volume particle size distribution peak reached 270 nm.
(実施例2)
 実施例1と同様の方法で得られた二酸化ジルコニウム含有二酸化チタン粉体の焼結体を、湿式型ビーズミルを用いて、固形分濃度が19重量%、pHが9付近になるように水酸化ナトリウム水溶液中にて粉砕・分散処理をおこなった。粒度を確認しながら粉砕をおこない、体積粒度分布のピークが240nmになった時点でスラリーを回収した。
(Example 2)
Using a wet type bead mill, a sintered body of zirconium dioxide-containing titanium dioxide powder obtained by the same method as in Example 1 was used so that the solid concentration was 19% by weight and the pH was around 9. The pulverization and dispersion treatment was performed in an aqueous solution. Grinding was performed while confirming the particle size, and the slurry was collected when the volume particle size distribution peak reached 240 nm.
(実施例3)
 実施例1と同様の方法で得られた二酸化ジルコニウム含有二酸化チタン粉体の焼結体を、湿式型ビーズミルを用いて、固形分濃度が14重量%となるように水酸化ナトリウムと分散剤(第一工業製薬社製、シャロールAN103P)を含む水溶液中にて粉砕・分散処理をおこなった。分散剤は顔料重量に対して乾燥重量で2重量%になるように添加した。粒度を確認しながら粉砕をおこない、体積粒度分布のピークが240nmになった時点でスラリーを回収した。
(Example 3)
Using a wet type bead mill, a sintered body of zirconium dioxide-containing titanium dioxide powder obtained by the same method as in Example 1 was mixed with sodium hydroxide and a dispersing agent (No. 1). The pulverization / dispersion treatment was performed in an aqueous solution containing Charol AN103P) manufactured by Ichi Kogyo Seiyaku. The dispersant was added so that the dry weight was 2% by weight with respect to the pigment weight. Grinding was performed while confirming the particle size, and the slurry was collected when the volume particle size distribution peak reached 240 nm.
(実施例4)
 実施例1と同様の方法で得られた二酸化ジルコニウム含有二酸化チタン粉体の焼結体を、湿式型ビーズミルを用いて、固形分濃度が18重量%となるように水酸化ナトリウムと分散剤(第一工業製薬社製、シャロールAN103P)を含む水溶液中にて粉砕・分散処理をおこなった。分散剤を顔料重量に対して乾燥重量で10重量%になるように添加した以外は実施例3と同様におこなった。
(Example 4)
Using a wet type bead mill, a sintered body of zirconium dioxide-containing titanium dioxide powder obtained by the same method as in Example 1 was used to add sodium hydroxide and a dispersant (No. 1) to a solid content concentration of 18% by weight. The pulverization / dispersion treatment was performed in an aqueous solution containing Charol AN103P) manufactured by Ichi Kogyo Seiyaku. The same procedure as in Example 3 was carried out except that the dispersant was added in a dry weight of 10% by weight with respect to the pigment weight.
(比較例1)
(水系スラリーの調製)
 水酸化アルミニウム修飾二酸化チタン粉体(石原産業社製、TTO-51(A)、水酸化アルミニウム含有率20重量%)を、実施例1と同様にしてX線回折法により分析したところ、ルチル型二酸化チタンが主成分であり、結晶サイズは11.1nmであった。上記の水酸化アルミニウム修飾二酸化チタン粉体を湿式型ビーズミルを用いて、固形分濃度が10重量%となるように水中にて粉砕・分散処理をおこなった。粒度を確認しながら粉砕をおこない、体積平均径のピークが260nmになった時点でスラリーを回収した。
 なお水酸化アルミニウムの屈折率は1.57、比重は2.42g/cmである。
(Comparative Example 1)
(Preparation of aqueous slurry)
Aluminum hydroxide-modified titanium dioxide powder (Ishihara Sangyo Co., Ltd., TTO-51 (A), aluminum hydroxide content 20% by weight) was analyzed by X-ray diffractometry in the same manner as in Example 1. Titanium dioxide was the main component and the crystal size was 11.1 nm. The aluminum hydroxide-modified titanium dioxide powder was pulverized and dispersed in water using a wet type bead mill so that the solid content concentration was 10% by weight. Grinding was performed while confirming the particle size, and the slurry was recovered when the volume average diameter peak reached 260 nm.
Aluminum hydroxide has a refractive index of 1.57 and a specific gravity of 2.42 g / cm 3 .
(比較例2)
(水系スラリーの調製)
 水酸化アルミニウム修飾二酸化チタン粉体(石原産業社製、TTO-51(A)、水酸化アルミニウム含有率20重量%)を湿式型ビーズミルを用いて、固形分濃度が17重量%となるように水酸化ナトリウム水溶液中にて粉砕・分散処理をおこなった。粒度を確認しながら粉砕をおこない、スラリーを作製した。得られたスラリーは高粘度であり、インクとして調製するのは困難であった。これは水酸化アルミニウムが水酸化ナトリウム水溶液中で溶解したことで、ゲル状に溶液になったためと推測される。
(Comparative Example 2)
(Preparation of aqueous slurry)
Aluminum hydroxide-modified titanium dioxide powder (Ishihara Sangyo Co., Ltd., TTO-51 (A), aluminum hydroxide content 20% by weight) is mixed with water using a wet type bead mill so that the solid content concentration becomes 17% by weight. The pulverization and dispersion treatment was performed in an aqueous sodium oxide solution. While confirming the particle size, pulverization was performed to prepare a slurry. The resulting slurry had a high viscosity and was difficult to prepare as an ink. This is presumably because aluminum hydroxide was dissolved in an aqueous sodium hydroxide solution to form a solution in a gel state.
(比較例3)
 塩化酸化ジルコニウム8水和物を添加しなかったこと以外は、実施例1と同様にして二酸化チタンナノ粒子を合成し、乾燥・焼成工程を経て二酸化チタン粉体を調製した。実施例1と同様にしてX線回折法により分析したところ、アナターゼ型とルチル型の二酸化チタンが混合しており、アナターゼ型の結晶サイズは18.8nm、ルチル型の結晶サイズは26.3nmであった。
 二酸化ジルコニウムを含んでいない二酸化チタン粉体の焼結体を、湿式型ビーズミルを用いて、固形分濃度が20重量%、pHが12.8付近になるように水酸化ナトリウム水溶液中にて粉砕・分散処理をおこなった。粒度を確認しながら粉砕をおこない、体積粒度分布のピークが300nmになった時点でスラリーを回収した。
(Comparative Example 3)
Titanium dioxide nanoparticles were synthesized in the same manner as in Example 1 except that zirconium chloride octahydrate was not added, and a titanium dioxide powder was prepared through a drying and firing process. When analyzed by X-ray diffraction in the same manner as in Example 1, anatase type and rutile type titanium dioxide were mixed, the anatase type crystal size was 18.8 nm, and the rutile type crystal size was 26.3 nm. there were.
A sintered body of titanium dioxide powder that does not contain zirconium dioxide is pulverized in a sodium hydroxide aqueous solution using a wet type bead mill so that the solid content concentration is 20% by weight and the pH is around 12.8. Distributed processing was performed. Grinding was performed while confirming the particle size, and the slurry was recovered when the volume particle size distribution peak reached 300 nm.
(実施例5)
 イオン交換水480gに、市販の二酸化チタン粉体(アナターゼ/ルチル型、一次粒子径:80nm)160gを添加し、さらに、10wt%ヘキサメタリン酸水溶液160g添加し室温で攪拌した。このスラリー溶液に塩化酸化ジルコニウム8水和物83.7gを添加した。このスラリー溶液に、水酸化ナトリウム水溶液をゆっくり添加し、pHが4.0~4.5になるよう調整し、そのまま、2時間攪拌した。得られたスラリー溶液をろ過し、固形分を取り出し乾燥させた。得られた粉体を、電気炉を用いて、空気雰囲気下、室温から500℃まで毎分5℃の速度で昇温し、さらに500℃で2時間焼成することによって二酸化ジルコニウム被覆二酸化チタン粉体の焼結体を得た。
(Example 5)
160 g of commercially available titanium dioxide powder (anatase / rutile type, primary particle size: 80 nm) was added to 480 g of ion-exchanged water, and 160 g of a 10 wt% hexametaphosphoric acid aqueous solution was further added and stirred at room temperature. To this slurry solution, 83.7 g of zirconium chloride oxide octahydrate was added. To this slurry solution was slowly added an aqueous sodium hydroxide solution to adjust the pH to 4.0 to 4.5, and the mixture was stirred as it was for 2 hours. The obtained slurry solution was filtered, solid content was taken out and dried. The obtained powder is heated at a rate of 5 ° C. per minute from room temperature to 500 ° C. in an air atmosphere by using an electric furnace, and further calcined at 500 ° C. for 2 hours, whereby zirconium dioxide-coated titanium dioxide powder. A sintered body was obtained.
(水系スラリーの調製)
 得られた二酸化ジルコニウム被覆二酸化チタン粉体の焼結体を、湿式型ビーズミルを用いて、固形分濃度が20重量%となるように水酸化ナトリウムと分散剤(第一工業製薬社製、シャロールAN103P)を含む水溶液中にて粉砕・分散処理をおこなった。このとき、水酸化ナトリウムは、pHが8付近になるよう、分散剤は顔料重量に対して乾燥重量で2重量%になるように添加した。粒度を確認しながら粉砕をおこない、体積平均径のピークが309nmになった時点でスラリーを回収した。
(Preparation of aqueous slurry)
The obtained sintered body of zirconium dioxide-coated titanium dioxide powder was mixed with sodium hydroxide and a dispersant (Daiichi Kogyo Seiyaku Co., Ltd., Charol AN103P) using a wet type bead mill so that the solid concentration was 20% by weight. ) Was pulverized and dispersed in an aqueous solution. At this time, sodium hydroxide was added so that the pH was around 8 and the dispersant was 2 wt% in terms of dry weight relative to the pigment weight. Grinding was performed while confirming the particle size, and the slurry was collected when the peak volume average diameter reached 309 nm.
(実施例6)
 酸化チタンを市販の二酸化チタン粉体(アナターゼ型、一次粒子径:180nm)に変更した以外は実施例5と同様に実施し、体積平均径のピークが226nmになった時点でスラリーを回収した。
(Example 6)
The same procedure as in Example 5 was performed except that the titanium oxide was changed to a commercially available titanium dioxide powder (anatase type, primary particle size: 180 nm), and the slurry was collected when the peak of the volume average diameter reached 226 nm.
(実施例7)
 酸化チタンを市販の二酸化チタン粉体(ルチル型、一次粒子径:35nm)に変更した以外は実施例5と同様に実施し、体積平均径のピークが348nmになった時点でスラリーを回収した。
(Example 7)
The same procedure as in Example 5 was performed except that the titanium oxide was changed to a commercially available titanium dioxide powder (rutile type, primary particle size: 35 nm), and the slurry was collected when the peak of the volume average diameter reached 348 nm.
(実施例8)
 酸化チタンを市販の二酸化チタン粉体(ルチル型、一次粒子径:15nm)に変更した以外は実施例5と同様に実施し、体積平均径のピークが267nmになった時点でスラリーを回収した。
(Example 8)
The same procedure as in Example 5 was conducted except that the titanium oxide was changed to a commercially available titanium dioxide powder (rutile type, primary particle size: 15 nm), and the slurry was collected when the peak of the volume average diameter reached 267 nm.
(比較例4)
 酸化チタンを市販の二酸化チタン粉体(アナターゼ型 一次粒子径:35nm)に変更し、塩化酸化ジルコニウム8水和物を添加しなかったこと以外は実施例5と同様に実施し、体積平均径のピークが257nmになった時点でスラリーを回収した。
(Comparative Example 4)
Titanium oxide was changed to commercially available titanium dioxide powder (anatase type primary particle size: 35 nm), and the same procedure as in Example 5 was carried out except that zirconium oxychloride octahydrate was not added. The slurry was collected when the peak reached 257 nm.
(比較例5)
 焼成を1000℃で実施したこと以外は比較例4と同様に実施し、体積平均径のピークが283nmになった時点でスラリーを回収した。
(Comparative Example 5)
Except that the firing was carried out at 1000 ° C., it was carried out in the same manner as in Comparative Example 4, and the slurry was collected when the volume average diameter peak reached 283 nm.
(スラリーの評価方法)
(スラリーの粒度分布)
 実施例および比較例のスラリーを固形分濃度約0.1重量%になるように水で希釈し、1分間超音波処理をおこなった後、動的光散乱式ナノトラック粒度分析計(マイクロトラックUPA-EX150(日機装社製))を用いて体積平均径を測定した。
(Slurry evaluation method)
(Slurry particle size distribution)
The slurry of Examples and Comparative Examples was diluted with water to a solid content concentration of about 0.1% by weight, subjected to ultrasonic treatment for 1 minute, and then subjected to a dynamic light scattering nanotrack particle size analyzer (Microtrack UPA). -The volume average diameter was measured using EX150 (made by Nikkiso Co., Ltd.).
(比表面積、細孔容積)
 実施例および比較例のスラリーを乾燥させて粉体を回収し、オートソーブ3(カンタクローム社製)を使用し、液体窒素温度下(77K)における窒素ガス吸着法にて、比表面積(BET法)、細孔容積の測定をおこなった。
(Specific surface area, pore volume)
The slurry of Examples and Comparative Examples was dried to collect powder, and using Autosorb 3 (manufactured by Kantachrome), the specific surface area (BET method) was measured by the nitrogen gas adsorption method at a liquid nitrogen temperature (77 K). The pore volume was measured.
(分散性)
 水系ディスパーションを静置し、粒子の沈降状態を目視評価した。
 評価基準は以下のとおりである。
 ○:徐々に沈降するが、1週間後も水層と沈殿物が完全に分離しない。
 △:徐々に沈降するが、1日後も水層と沈殿物が完全に分離しない。 
 ×:直ちに沈降し、水層と沈殿物が完全に分離する。
 ××:高粘度で評価できない。
(Dispersibility)
The aqueous dispersion was allowed to stand, and the sedimentation state of the particles was visually evaluated.
The evaluation criteria are as follows.
○: Settling down gradually, but the water layer and the precipitate are not completely separated even after one week.
Δ: Settling down gradually, but the aqueous layer and the precipitate are not completely separated even after one day.
X: Immediately settles, and the aqueous layer and the precipitate are completely separated.
XX: Cannot be evaluated due to high viscosity.
(白色度)
 水系スラリーの乾燥重量10重量部に対して、定着用樹脂としてアクリルエマルジョン(アルマテックス)の乾燥重量が2重量部になるように添加した水系組成物を、バーコーターを用いてPETフィルム表面に2~3μm厚になるようにコートした。このPETフィルムを標準黒色板上に乗せて、分光色彩計( NF333、 日本電色工業社製)を用いて明度(L値)を測定した。L値は、白色度の指標となる。白色度の評価基準は、以下のとおりである。
 AAA:L値が80以上
 AA:L値が75以上80未満
 A :L値が72以上75未満
 B :L値が68以上72未満
 C :L値が65以上68未満
 D :L値が65未満
(Whiteness)
An aqueous composition added so that the dry weight of the acrylic emulsion (Almatex) as a fixing resin is 2 parts by weight with respect to the dry weight of 10 parts by weight of the aqueous slurry is applied to the PET film surface using a bar coater. Coat to a thickness of ˜3 μm. The PET film was placed on a standard black plate, and the lightness (L * value) was measured using a spectrocolorimeter (NF333, manufactured by Nippon Denshoku Industries Co., Ltd.). The L * value is an index of whiteness. The evaluation criteria for whiteness are as follows.
AAA: L * value is 80 or more AA: L * value is 75 or more and less than 80 A: L * value is 72 or more and less than 75 B: L * value is 68 or more and less than 72 C: L * value is 65 or more and less than 68 D: L * value is less than 65
(XRDのピーク強度比の測定法)
 焼成後の白色顔料、または、焼成していない白色顔料は乾燥後の白色顔料について、CuKα線によるX線回折測定を行った。24°から29°に現れる二酸化チタンのピーク、および、29°から32°に現れる二酸化ジルコニウムに由来する回折線のピークのベースラインからの高さをそれぞれIaおよびIbとしたときに、その強度比Ib/Iaを計算した。
(XRD peak intensity ratio measurement method)
The white pigment after baking or the white pigment which has not been fired was subjected to X-ray diffraction measurement using CuKα rays for the dried white pigment. The intensity ratio when the height from the baseline of the peak of titanium dioxide appearing from 24 ° to 29 ° and the peak of the diffraction line derived from zirconium dioxide appearing from 29 ° to 32 ° is Ia and Ib, respectively. Ib / Ia was calculated.
 実施例、比較例の評価結果を表1、表2に示す。なお、表2において、実施例5と比較例5の結晶子サイズの欄に示したAおよびRの数字は、アナターゼ相およびルチル相の結晶子サイズをそれぞれ表す。 Tables 1 and 2 show the evaluation results of Examples and Comparative Examples. In Table 2, the numbers A and R shown in the column of the crystallite size of Example 5 and Comparative Example 5 represent the crystallite sizes of the anatase phase and the rutile phase, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この出願は、2011年8月8日に出願された日本出願特願2011-172898号および2012年4月13日に出願された日本出願特願2012-091842号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2011-172898 filed on Aug. 8, 2011 and Japanese Application No. 2012-091842 filed on Apr. 13, 2012. , The entire disclosure of which is incorporated herein.

Claims (7)

  1.  下記の(A)、(B)および(C)の条件を満たす金属化合物(1)を含有する水性インク用白色顔料。
    (A)前記金属化合物(1)は、二酸化チタンと、波長550nmにおける屈折率が1.60以上2.45以下である金属化合物(2)と、を含み、
     前記二酸化チタンと前記金属化合物(2)の合計を100重量%としたとき、前記二酸化チタンの含有率が50重量%以上99重量%以下であり、前記金属化合物(2)の含有率が1重量%以上50重量%以下である
    (B)前記金属化合物(1)の動的光散乱法により測定される体積粒度分布のピーク値が100~700nmの範囲にある
    (C)前記金属化合物(1)のBJH(Barrett-Joyner-Halenda)法により算出される細孔容積が0.1ml/g以上0.65ml/g以下である
    A white pigment for aqueous ink containing a metal compound (1) that satisfies the following conditions (A), (B), and (C).
    (A) The metal compound (1) includes titanium dioxide and a metal compound (2) having a refractive index of 1.60 or more and 2.45 or less at a wavelength of 550 nm,
    When the total of the titanium dioxide and the metal compound (2) is 100% by weight, the content of the titanium dioxide is 50% by weight to 99% by weight, and the content of the metal compound (2) is 1% by weight. The peak value of volume particle size distribution of the metal compound (1) measured by the dynamic light scattering method is in the range of 100 to 700 nm. (C) The metal compound (1) The pore volume calculated by the BJH (Barrett-Joyner-Halenda) method is from 0.1 ml / g to 0.65 ml / g
  2.  請求項1に記載の水性インク用白色顔料において、
     前記金属化合物(2)の比重が3.0g/cm以上6.0g/cm以下である水性インク用白色顔料。
    The white pigment for water-based ink according to claim 1,
    A white pigment for water-based ink, wherein the specific gravity of the metal compound (2) is 3.0 g / cm 3 or more and 6.0 g / cm 3 or less.
  3.  請求項1または2に記載の水性インク用白色顔料において、
     前記金属化合物(2)が二酸化ジルコニウムである水性インク用白色顔料。
    The white pigment for water-based ink according to claim 1 or 2,
    A white pigment for aqueous ink, wherein the metal compound (2) is zirconium dioxide.
  4.  請求項1乃至3のいずれか一項に記載の水性インク用白色顔料において、
     当該水性インク用白色顔料のCuKα線によるX線回折測定において、
     前記二酸化チタンおよび前記金属化合物(2)に由来する回折線の最強ピーク強度をそれぞれIおよびIとしたとき、ピーク強度比I/Iが0.02以下である水性インク用白色顔料。
    The white pigment for aqueous ink according to any one of claims 1 to 3,
    In the X-ray diffraction measurement by CuKα ray of the white pigment for water-based ink,
    A white pigment for aqueous ink in which the peak intensity ratio I b / I a is 0.02 or less, where I a and I b are the strongest peak intensities of diffraction lines derived from the titanium dioxide and the metal compound (2), respectively. .
  5.  請求項1乃至4のいずれか一項に記載の水性インク用白色顔料を含有する水性インク組成物。 An aqueous ink composition comprising the white pigment for aqueous ink according to any one of claims 1 to 4.
  6.  請求項5に記載の水性インク組成物において、
     当該水性インク組成物がインクジェット印刷用である水性インク組成物。
    The water-based ink composition according to claim 5,
    An aqueous ink composition, wherein the aqueous ink composition is for inkjet printing.
  7.  請求項5または6に記載の水性インク組成物を基材上に印刷した画像または印刷物。 An image or printed matter obtained by printing the water-based ink composition according to claim 5 or 6 on a substrate.
PCT/JP2012/005031 2011-08-08 2012-08-08 Pigment for aqueous inks, aqueous ink composition containing same, and image and printed matter using same WO2013021633A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013527898A JP6061097B2 (en) 2011-08-08 2012-08-08 Aqueous ink pigment, aqueous ink composition containing the same, and image or printed matter thereof
US14/237,596 US9023472B2 (en) 2011-08-08 2012-08-08 Aqueous ink pigment, aqueous ink composition containing the same, and images or printed matter thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-172898 2011-08-08
JP2011172898 2011-08-08
JP2012091842 2012-04-13
JP2012-091842 2012-04-13

Publications (1)

Publication Number Publication Date
WO2013021633A1 true WO2013021633A1 (en) 2013-02-14

Family

ID=47668168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005031 WO2013021633A1 (en) 2011-08-08 2012-08-08 Pigment for aqueous inks, aqueous ink composition containing same, and image and printed matter using same

Country Status (3)

Country Link
US (1) US9023472B2 (en)
JP (1) JP6061097B2 (en)
WO (1) WO2013021633A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189645A (en) * 2013-03-27 2014-10-06 Seiko Epson Corp White-based pigment, white-based ink composition, ink set and ink jet recording method
JP2016138224A (en) * 2015-01-29 2016-08-04 セイコーエプソン株式会社 Ink composition
JP2016138225A (en) * 2015-01-29 2016-08-04 セイコーエプソン株式会社 Ink composition
WO2020054290A1 (en) * 2018-09-14 2020-03-19 富士フイルム株式会社 Ink composition, ink set and image recording method
JP2021080329A (en) * 2019-11-15 2021-05-27 Jnc株式会社 White thermosetting resin composition
JP2021120223A (en) * 2015-10-07 2021-08-19 花王株式会社 Inkjet recording method
JP2021521081A (en) * 2018-04-12 2021-08-26 クローダ インターナショナル パブリック リミティド カンパニー Titanium dioxide particles

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6065021B2 (en) * 2012-12-28 2017-01-25 セイコーエプソン株式会社 Surface-coated particles and uses thereof
WO2016101987A1 (en) 2014-12-22 2016-06-30 Hewlett-Packard Indigo B.V. Ink composition with pigment particles having a hydrophobic surface
US10570300B2 (en) * 2015-04-27 2020-02-25 Hewlett-Packard Development Company, L.P. White inks
US10464341B2 (en) 2015-04-27 2019-11-05 Hewlett-Packard Development Company, L.P. Fluid sets for inkjet imaging
US10414933B2 (en) 2015-04-27 2019-09-17 Hewlett-Packard Development Company, L.P. White inks
CN110283503B (en) * 2019-06-18 2020-11-20 山东交通学院 Coating for highway guardrail capable of effectively purifying automobile exhaust and preparation method thereof
US20220403184A1 (en) * 2019-11-29 2022-12-22 Ishihara Sangyo Kaisha, Ltd. Dispersion of titanium dioxide microparticles in organic solvent, method for producing same, and use of same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09296130A (en) * 1996-03-04 1997-11-18 Titan Kogyo Kk Photochromic white pigment and its production
JP2003160741A (en) * 2001-11-28 2003-06-06 Sanyu:Kk Inorganic white pigment
JP2004339388A (en) * 2003-05-16 2004-12-02 Toyo Ink Mfg Co Ltd Water-based white ink composition and printed matter
JP2008200854A (en) * 2007-02-16 2008-09-04 Seiko Epson Corp Inkjet recording method for recording patterned layer and white solid coating layer
JP2010174100A (en) * 2009-01-28 2010-08-12 Riso Kagaku Corp White ink for inkjet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3773220B2 (en) 1996-10-28 2006-05-10 石原産業株式会社 Titanium dioxide pigment and method for producing the same
US20060167135A1 (en) * 2005-01-25 2006-07-27 Lexmark International, Inc. Inkjet ink binder and inkjet ink composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09296130A (en) * 1996-03-04 1997-11-18 Titan Kogyo Kk Photochromic white pigment and its production
JP2003160741A (en) * 2001-11-28 2003-06-06 Sanyu:Kk Inorganic white pigment
JP2004339388A (en) * 2003-05-16 2004-12-02 Toyo Ink Mfg Co Ltd Water-based white ink composition and printed matter
JP2008200854A (en) * 2007-02-16 2008-09-04 Seiko Epson Corp Inkjet recording method for recording patterned layer and white solid coating layer
JP2010174100A (en) * 2009-01-28 2010-08-12 Riso Kagaku Corp White ink for inkjet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189645A (en) * 2013-03-27 2014-10-06 Seiko Epson Corp White-based pigment, white-based ink composition, ink set and ink jet recording method
JP2016138224A (en) * 2015-01-29 2016-08-04 セイコーエプソン株式会社 Ink composition
JP2016138225A (en) * 2015-01-29 2016-08-04 セイコーエプソン株式会社 Ink composition
JP2021120223A (en) * 2015-10-07 2021-08-19 花王株式会社 Inkjet recording method
JP7238010B2 (en) 2015-10-07 2023-03-13 花王株式会社 Inkjet recording method
JP2021521081A (en) * 2018-04-12 2021-08-26 クローダ インターナショナル パブリック リミティド カンパニー Titanium dioxide particles
JP7463289B2 (en) 2018-04-12 2024-04-08 クローダ インターナショナル パブリック リミティド カンパニー Titanium dioxide particles
WO2020054290A1 (en) * 2018-09-14 2020-03-19 富士フイルム株式会社 Ink composition, ink set and image recording method
JPWO2020054290A1 (en) * 2018-09-14 2021-08-30 富士フイルム株式会社 Ink composition, ink set and image recording method
JP2021080329A (en) * 2019-11-15 2021-05-27 Jnc株式会社 White thermosetting resin composition

Also Published As

Publication number Publication date
JPWO2013021633A1 (en) 2015-03-05
JP6061097B2 (en) 2017-01-18
US9023472B2 (en) 2015-05-05
US20140234595A1 (en) 2014-08-21

Similar Documents

Publication Publication Date Title
JP6061097B2 (en) Aqueous ink pigment, aqueous ink composition containing the same, and image or printed matter thereof
EP2367762B1 (en) Nanosized titaniumdioxide particles with a crystalline core, a metal oxide shell and a further shell bearing organic groups and method for preparing said core-shell-particles
US20180031739A1 (en) Nanometric tin-containing metal oxide particle and dispersion, and preparation method and application thereof
JP4922040B2 (en) Metal oxide fine particle aqueous dispersion and method for producing the same
EP3263651B1 (en) Dispersion of titanium oxide particles in organic solvent, and production method for same
CA2808352C (en) Process for producing dispersion of particles of rutile titanium oxide
TWI765016B (en) Method for manufacturing iron-containing rutile type titanium oxide fine particle dispersion, iron-containing rutile type titanium oxide fine particle and uses thereof
JP5897303B2 (en) Pigment for water-based ink
WO2009135748A1 (en) Indium tin oxide powder and dispersion thereof
JP2008031023A (en) Zirconia sol and method for producing the same
JP5205611B2 (en) Composition for dispersing oxide particles, composition in which particles are dispersed, method for producing the same, and anatase-type titanium oxide sintered body
US20050011409A1 (en) Inorganic oxide
JP6065021B2 (en) Surface-coated particles and uses thereof
JP6214412B2 (en) Core-shell type oxide fine particle dispersion, method for producing the same, and use thereof
JP4988964B2 (en) Method for producing silica-zirconia composite particles coated with a silica layer
JP2010180402A (en) Titanium dioxide pigment, method for producing the same, and printing ink composition
KR20080036109A (en) Composite titanic acid coating film and composite titanic acid-coated resin substrate
JP2013082609A (en) Modified zirconia fine-particle powder, dispersion sol of modified zirconia fine-particle, and method for manufacturing the same powder and dispersion sol
KR101763357B1 (en) Preparation method of rutile titanium dioxide powder
JP5133532B2 (en) Method for producing alumina organic solvent dispersion
JP2008239461A (en) Metal oxide fine particle dispersion material and method for manufacturing the same
KR101957129B1 (en) METHOD FOR MANUFACTURING OF CaCO3 COMPLEX COATED BY TiO2 ON CaCO3 SURFACE
JP2003095657A (en) Titanium oxide sol dispersed in organic solvent and method of manufacturing it
KR102019698B1 (en) Reformed zirconia fine particle, dispersion sol of reformed zirconia fine particle and its preparation method
WO2023190452A1 (en) Barium titanate particulate powder and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013527898

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14237596

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12821696

Country of ref document: EP

Kind code of ref document: A1