[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013021445A1 - Vehicle, and vehicle control method - Google Patents

Vehicle, and vehicle control method Download PDF

Info

Publication number
WO2013021445A1
WO2013021445A1 PCT/JP2011/068044 JP2011068044W WO2013021445A1 WO 2013021445 A1 WO2013021445 A1 WO 2013021445A1 JP 2011068044 W JP2011068044 W JP 2011068044W WO 2013021445 A1 WO2013021445 A1 WO 2013021445A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
electrical machine
ehc
rotating electrical
power
Prior art date
Application number
PCT/JP2011/068044
Other languages
French (fr)
Japanese (ja)
Inventor
慶太 橋元
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2013527768A priority Critical patent/JP5641145B2/en
Priority to DE112011105505.6T priority patent/DE112011105505B4/en
Priority to US14/232,952 priority patent/US9225269B2/en
Priority to CN201180072666.2A priority patent/CN103717435B/en
Priority to PCT/JP2011/068044 priority patent/WO2013021445A1/en
Publication of WO2013021445A1 publication Critical patent/WO2013021445A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/06Limiting the traction current under mechanical overload conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/02Dynamic electric resistor braking
    • B60L7/06Dynamic electric resistor braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/12Emission reduction of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W2030/082Vehicle operation after collision
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a technology for quickly consuming electric power generated in a vehicle at the time of a vehicle collision.
  • a vehicle that travels by driving a traveling motor with electric power from a high-voltage battery is usually equipped with a control system that opens the system main relay and shuts off the high-voltage battery from other devices when the vehicle collides.
  • the power (charge) remains in the capacitors provided in the power control unit including the inverter and converter. There is sex.
  • Patent Document 1 discloses a technique for consuming electric power remaining in an inverter capacitor by an air conditioning motor at the time of a vehicle collision.
  • Patent Document 1 is merely a technique that consumes a relatively small amount of power remaining in the capacitor of the inverter at the time of a vehicle collision, and a relatively large counter electromotive force generated by the traveling motor at the time of the vehicle collision is early. It cannot be consumed.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to quickly consume the back electromotive force generated in the rotating electric machine at the time of a vehicle collision.
  • a vehicle includes an electrical resistance that converts electrical energy into thermal energy, a rotating electrical machine that is rotated by a reduction in the rotational speed of a wheel at the time of a vehicle collision and generates a counter electromotive force, and an electrical resistance and the rotating electrical machine.
  • a switching device including a switching circuit that switches an electrical connection state and a control device that controls the switching circuit are provided. The control device controls the switching circuit at the time of a vehicle collision to electrically connect the electrical resistance and the rotating electrical machine, thereby consuming the back electromotive force generated by the rotating electrical machine at the time of the vehicle collision with the electrical resistance.
  • the vehicle includes an engine, a power storage device that stores electric power for driving the rotating electrical machine, a converter that performs voltage conversion between the power storage device and the rotating electrical machine, and power conversion between the converter and the rotating electrical machine. And an inverter to perform.
  • the electric resistance is an electrically heatable catalyst device that purifies engine exhaust and is connected to a power line connecting the converter and the inverter.
  • the control device controls the switching device to control the rotating electrical machine and the catalytic device when the accumulated power consumption of the catalytic device exceeds a threshold value. Are electrically disconnected from each other.
  • control device electrically connects the rotating electrical machine and the catalytic device by controlling the switching circuit when the vehicle is in a collision and the current path connecting the catalytic device and the rotating electrical machine is not leaking. To do.
  • the switching device includes a backup power source for storing operating power of the switching circuit.
  • the vehicle further includes a first motor generator, a second motor generator that rotates in conjunction with the wheels, and a planetary gear device.
  • the planetary gear device includes a sun gear, a ring gear coupled to the second motor generator, a pinion gear engaged with the sun gear and the ring gear, and a carrier coupled to the engine and rotatably supporting the pinion gear.
  • the rotating electrical machine is a first motor generator.
  • a vehicle control method includes an electric resistance that consumes electric power, a rotating electric machine that is rotated by a torque transmitted from a wheel at the time of a vehicle collision and generates a counter electromotive force, and an electric resistance and the rotating electric machine.
  • a method of controlling a vehicle including a switching device that includes a switching circuit that switches an electrical connection state between the control circuit and a control device that controls the switching circuit, and determining whether or not the vehicle is in a collision; A step of controlling the switching circuit to electrically connect the electrical resistance and the rotating electrical machine when it is determined that the vehicle is in a collision, thereby consuming the back electromotive force generated in the rotating electrical machine at the time of the vehicle collision by the electrical resistance.
  • the back electromotive force generated by the rotating electrical machine at the time of a vehicle collision can be consumed at an early stage.
  • FIG. 1 is an overall block diagram of a vehicle 1 according to the present embodiment.
  • the vehicle 1 includes an engine 10, a first MG (Motor Generator) 20, a second MG 30, a power split device 40, a speed reducer 50, a power control unit (Power Control Unit, hereinafter referred to as “PCU”) 60, a battery. 70, a drive wheel 80, and an electronic control unit (Electronic Control Unit, hereinafter referred to as “ECU”) 200.
  • PCU Power Control Unit
  • ECU Electronic Control Unit
  • the engine 10 is an internal combustion engine that generates a driving force for rotating a crankshaft by combustion energy generated when an air-fuel mixture is combusted.
  • First MG 20 and second MG 30 are motor generators driven by alternating current.
  • the vehicle 1 travels by power output from at least one of the engine 10 and the second MG 30.
  • the driving force generated by the engine 10 is divided into two paths by the power split device 40. That is, one is a path transmitted to the drive wheel 80 via the speed reducer 50 and the other is a path transmitted to the first MG 20.
  • the power split device 40 includes a planetary gear including a sun gear, a pinion gear, a carrier, and a ring gear.
  • the pinion gear engages with the sun gear and the ring gear.
  • the carrier supports the pinion gear so as to be capable of rotating, and is connected to the crankshaft of the engine 10.
  • the sun gear is connected to the rotation shaft of the first MG 20.
  • the ring gear is connected to the rotation shaft of second MG 30 and speed reducer 50.
  • the engine 10, the first MG 20 and the second MG 30 are connected via the power split device 40 made of planetary gears, whereby the rotational speed of the engine 10 (hereinafter referred to as “engine rotational speed Ne”), the first MG 20 The rotational speed (hereinafter referred to as “first MG rotational speed Nm1”) and the rotational speed of the second MG 30 (hereinafter referred to as “second MG rotational speed Nm2”) are connected by a straight line in the nomographic chart (see FIG. 3 described later). .
  • the PCU 60 is controlled by a control signal from the ECU 200.
  • PCU 60 converts the DC power supplied from battery 70 into AC power that can drive first MG 20 and second MG 30.
  • PCU 60 outputs the converted AC power to first MG 20 and second MG 30, respectively.
  • first MG 20 and second MG 30 are driven by the electric power stored in battery 70.
  • the PCU 60 can also convert AC power generated by the first MG 20 and the second MG 30 into DC power and charge the battery 70 with the converted DC power.
  • the battery 70 is a direct current power source that stores electric power for driving the first MG 20 and the second MG 30, and includes, for example, a secondary battery such as nickel hydride or lithium ion.
  • the output voltage of the battery 70 is a high voltage of about 200V, for example. Note that a large-capacity capacitor may be used instead of the battery 70.
  • the vehicle 1 includes a collision sensor 2.
  • the collision sensor 2 detects an acceleration G acting on the vehicle 1 as information for determining a collision between the vehicle 1 and another object (hereinafter referred to as “vehicle collision”), and outputs the detection result to the ECU 200.
  • the vehicle 1 includes an exhaust passage 130. Exhaust gas discharged from the engine 10 passes through the exhaust passage 130 and is discharged to the atmosphere.
  • an electrically heated catalyst (Electric Heated Catalyst, hereinafter referred to as “EHC”) 140 is provided.
  • the EHC 140 is a catalyst configured such that the catalyst can be electrically heated by an electric heater (electric resistance that converts electric energy into heat energy).
  • the EHC 140 has a function of consuming a large amount of power to raise the temperature of the catalyst to a high temperature.
  • the EHC 140 includes an electric heater that generates heat by consuming electric power (eg, DC power of about 650 volts) after being boosted by the converter 61, and the electric heater raises the temperature of the catalyst to a high temperature.
  • Electric power eg, DC power of about 650 volts
  • Various known ones can be applied to the EHC 140.
  • the ECU 200 includes a CPU (Central Processing Unit) (not shown) and a memory, and is configured to execute a predetermined calculation process based on information stored in the memory.
  • a CPU Central Processing Unit
  • FIG. 2 is a diagram showing a circuit configuration of the first MG 20, the second MG 30, the PCU 60, the battery 70, and the EHC 140.
  • a system main relay (SMR) 71 is provided between the PCU 60 and the battery 70.
  • the SMR 71 is controlled by a control signal from the ECU 200 and switches between power supply and interruption between the battery 70 and the PCU 60.
  • the SMR 71 is controlled to be opened by the ECU 200 at the time of a vehicle collision. Thereby, the battery 70 is disconnected from the PCU 60 at the time of a vehicle collision.
  • the PCU 60 includes a converter 61, inverters 62 and 63, smoothing capacitors 64 and 65, and a discharge resistor 66.
  • Converter 61 is connected to battery 70 via positive line PL1 and negative line NL1.
  • Converter 61 is connected to inverters 62 and 63 via positive line PL2 and negative line NL1.
  • Converter 61 includes a reactor, two switching elements, and two diodes. Converter 61 is controlled by a control signal from ECU 200 and performs voltage conversion between battery 70 and inverters 62 and 63.
  • the inverter 62 is provided between the converter 61 and the first MG 20.
  • Inverter 63 is provided between converter 61 and second MG 30. Inverters 62 and 63 are connected to converter 61 in parallel.
  • Each of inverters 62 and 63 includes a three-phase upper and lower arm (switching element) and a diode connected in antiparallel to each switching element.
  • Each of the upper and lower arms of the inverters 62 and 63 is controlled by a control signal from the ECU 200, converts the DC power converted by the converter 61 into AC power, and outputs the AC power to the first MG 20 and the second MG 30, respectively.
  • the smoothing capacitor 64 is connected between the positive electrode line PL1 and the negative electrode line NL1, and smoothes the AC component of the voltage fluctuation between the positive electrode line PL1 and the negative electrode line NL1.
  • Smoothing capacitor 65 is connected between positive electrode line PL2 and negative electrode line NL1, and smoothes an AC component of voltage fluctuation between positive electrode line PL2 and negative electrode line NL1.
  • the discharge resistor 66 is connected between the positive electrode line PL2 and the negative electrode line NL1.
  • the discharge resistor 66 is used to remove residual charges from the smoothing capacitors 64 and 65. Therefore, the capacity of the discharge resistor 66 (the amount of power that can be consumed per unit time) is smaller than that of the EHC 140.
  • the EHC 140 is connected to a power line (positive line PL2, negative line NL1) between the converter 61 and the inverters 62 and 63 inside the PCU 60. More specifically, EHC 140 has one end connected to positive branch line PLehc that branches from positive line PL2, and the other end connected to negative branch line NLehc that branches from negative line NL1.
  • the EHC 140 includes an electric heater that generates heat by consuming electric power (eg, DC power of about 650 volts) after boosting the electric power of the battery 70 by the converter 61, and can consume very high electric power. EHC 140 is also heated by consuming power after AC power generated by first MG 20 or second MG 30 is converted to DC power by inverters 62 and 63.
  • electric power eg, DC power of about 650 volts
  • a switching device 100 is provided between the EHC 140 and the PCU 60.
  • the switching device 100 includes an EHC relay R1 provided on the positive branch line PLehc, an EHC relay R2 provided on the negative branch line NLehc, and a backup power supply 110 that stores operating power of the EHC relays R1 and R2 in an emergency. And a monitoring sensor 120 for monitoring the power consumption Pehc of the EHC 140.
  • the on / off operations of the EHC relays R1 and R2 are controlled by a control signal from the ECU 200.
  • Each EHC relay R1, R2 can be operated with electric power supplied from at least one of an auxiliary battery (not shown) and a backup power supply 110. Therefore, even when the power supply path from the auxiliary battery is interrupted in the event of a vehicle collision, the EHC relays R1 and R2 can be reliably operated by the backup power source 110.
  • a leakage detector 150 is connected to the negative branch line NLehc.
  • the leakage detector 150 detects a leakage in the energization path connecting the EHC 140 and the PCU 60 (hereinafter referred to as “EHC leakage”).
  • EHC leakage a leakage in the energization path connecting the EHC 140 and the PCU 60
  • Various known devices can be applied to the leakage detector 150.
  • the vehicle speed is suddenly reduced when a vehicle collision occurs.
  • the first MG 20 may be rotated by the sudden decrease in the vehicle speed and the first MG 20 may generate a back electromotive force.
  • FIG. 3 is a diagram showing on the collinear chart how the engine rotational speed Ne, the first MG rotational speed Nm1, and the second MG rotational speed Nm2 change during a vehicle collision.
  • the engine rotational speed Ne, the first MG rotational speed Nm1, and the second MG rotational speed Nm2 are connected by a straight line in the alignment chart. That is, the first MG rotation speed Nm1 is determined by the engine rotation speed Ne and the second MG rotation speed Nm2. Since the second MG 30 is connected to the drive wheels 80 via the speed reducer 50, the second MG rotation speed Nm2 is a value that is directly proportional to the vehicle speed.
  • the vehicle speed that is, the second MG rotation speed Nm2 decreases rapidly.
  • the already rotating engine 10 tries to maintain the same rotational speed by the law of inertia.
  • the SMR 71 is controlled to be in the open state by the ECU 200 and the battery 70 is disconnected from the PCU 60 at the time of a vehicle collision, the first MG 20 cannot output torque. Therefore, as indicated by collinear L2, at the time of a vehicle collision, the first MG rotation is caused by a sudden decrease in the second MG rotation speed Nm2 (the collinear L2 illustrated in FIG.
  • FIG 3 illustrates the case where the vehicle speed drops to 0 almost instantaneously).
  • the speed Nm1 increases rapidly, and the first MG 20 generates a large counter electromotive force due to the permanent magnet attached to the first MG 20. Therefore, at the time of a vehicle collision, it is desirable to consume the back electromotive force generated in the first MG 20 at an early stage.
  • the discharge resistor 66 when used as a device that consumes the counter electromotive force, the discharge resistor 66 is used for removing the residual charges of the smoothing capacitors 64 and 65, and thus has a relatively small capacity.
  • the capacity is insufficient to consume the back electromotive force of the large first MG 20 early.
  • an air conditioning motor (not shown) such as a device that consumes the back electromotive force is used, the rotation speed of the air conditioning motor is increased to a rotation speed at which the back electromotive force generated in the first traveling MG 20 can be consumed. Since it takes a considerable amount of time, the counter electromotive force generated in the traveling first MG 20 cannot be consumed early. Furthermore, there is a concern that the capacity of the air conditioning motor is insufficient.
  • the ECU 200 closes the EHC relays R1 and R2 at the time of a vehicle collision and electrically connects the EHC 140 and the first MG 20, so that the back electromotive force generated in the first MG 20 at the time of the vehicle collision is large in the EHC 140 To consume. This is the most characteristic point of the present invention.
  • FIG. 4 is a functional block diagram of the ECU 200 related to control at the time of vehicle collision.
  • ECU 200 includes a collision determination unit 210, an SMR blocking unit 220, and an EHC relay control unit 230.
  • the collision determination unit 210 determines whether a vehicle collision has occurred based on the detection result of the collision sensor 2 and outputs the determination result to the SMR blocking unit 220 and the EHC relay control unit 230.
  • the SMR blocking unit 220 opens the SMR 71 and electrically disconnects the battery 70 and the PCU 60.
  • the EHC relay control unit 230 determines the presence or absence of EHC leakage based on the leakage detector 150. Then, when there is no EHC leakage, EHC relay control unit 230 closes EHC relays R1 and R2 to electrically connect EHC 140 and first MG 20.
  • FIG. 5 is a diagram illustrating a flow of current supplied to the EHC 140 when the EHC relays R1 and R2 are closed at the time of a vehicle collision.
  • the first MG 20 is rotated by a sudden decrease in the second MG rotation speed Nm2, and a back electromotive force is generated in the first MG 20.
  • the current due to the counter electromotive force is supplied to the EHC 140 through the inverter 62 as shown in FIG. Thereby, the back electromotive force generated in the first MG 20 is consumed early in the EHC 140. At this time, since the current due to the counter electromotive force flows through the diode of the inverter 62, the current flows between the first MG 20 and the EHC 140 without operating the inverter 62. Further, in the present embodiment, EHC 140 is connected between converter 61 and inverter 62. Therefore, it is not necessary to operate the converter 61.
  • the EHC relay control unit 230 integrates the EHC power consumption Pehc from the monitoring sensor 120 after closing the EHC relays R ⁇ b> 1 and R ⁇ b> 2, and the integrated value of the EHC power consumption Pehc is a predetermined allowable value. Is exceeded, the EHC relays R1 and R2 are opened, and the EHC 140 and the first MG 20 are electrically disconnected. As a result, the back electromotive force generated in the first MG 20 is consumed by the EHC 140 until the first MG rotation speed Nm1 is reduced to some extent, and after the amount of power exceeding the allowable value is consumed by the EHC 140, the EHC 140 and the first MG 20 are electrically connected. Therefore, it is possible to suppress the overvoltage and overheating of the EHC 140 as being disconnected.
  • FIG. 6 is a flowchart showing a processing procedure of the ECU 200 for realizing the above-described function. This flowchart is repeatedly executed at a predetermined cycle while the ECU 200 is activated.
  • step (hereinafter, “step” is abbreviated as “S”), ECU 200 determines the presence or absence of a vehicle collision. If there is no vehicle collision (NO in S10), this process ends.
  • ECU 200 shuts off SMR 71 at S11.
  • ECU 200 determines the presence or absence of EHC leakage. If there is an EHC leakage (NO in S12), this process ends.
  • ECU 200 closes EHC relays R1 and R2 in S13. Thereby, as described above, the back electromotive force generated in the first MG 20 is consumed in the EHC 140.
  • ECU 200 integrates EHC power consumption Pehc.
  • ECU 200 determines whether or not the integrated value of EHC power consumption Pehc exceeds an allowable value. If the integrated value of EHC power consumption Pehc does not exceed the allowable value (NO in S15), the process returns to S14, and the integration of EHC power consumption Pehc is repeated.
  • ECU 200 opens EHC relays R1 and R2 in S16. Thereby, the overvoltage and overheating of EHC140 are suppressed.
  • the ECU 200 closes the EHC relays R1 and R2 and electrically connects the first MG 20 to the EHC 140 (electric resistance) that can consume a large amount of power. Connect to. Thereby, the back electromotive force generated in the first MG 20 at the time of a vehicle collision can be consumed early by the EHC 140.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

A vehicle is provided with: an engine; an electrically heated catalyst (EHC); a first motor generator (MG) for generating a counter-electromotive force upon collision of the vehicle; a battery; a power control unit (PCU) including a converter and an inverter for conversion of power between the battery and the first MG; and an ECU (200). The PCU is connected to the battery via a system main relay (SMR). The EHC is connected between the converter and the inverter via an EHC relay. The ECU (200) determines whether vehicle collision has occurred (210). If the vehicle collision has occurred, the ECU opens the SMR so that the battery and the PCU are electrically separated from each other (220), while closing the EHC relay so that the EHC and the first MG are electrically connected to each other and the counter-electromotive force generated by the first MG upon vehicle collision can be consumed by the EHC (230).

Description

車両および車両の制御方法Vehicle and vehicle control method
 本発明は、車両衝突時に車両で生じる電力を早期に消費する技術に関する。 The present invention relates to a technology for quickly consuming electric power generated in a vehicle at the time of a vehicle collision.
 高圧バッテリの電力で走行用モータを駆動して走行する車両には、通常、車両衝突時にシステムメインリレーを開いて高圧バッテリを他の機器から遮断する制御システムが搭載される。しかし、高圧バッテリを遮断した後も、インバータやコンバータを含むパワーコントロールユニットに備えられるコンデンサなどには電力(電荷)が残っているため、そのコンデンサに残る電力の放電が遅れると漏電してしまう可能性がある。 A vehicle that travels by driving a traveling motor with electric power from a high-voltage battery is usually equipped with a control system that opens the system main relay and shuts off the high-voltage battery from other devices when the vehicle collides. However, even after shutting down the high-voltage battery, the power (charge) remains in the capacitors provided in the power control unit including the inverter and converter. There is sex.
 このような問題に鑑み、特開2010-93934号公報(特許文献1)には、車両衝突時に、インバータのコンデンサに残る電力を空調用モータで消費させる技術が開示されている。 In view of such problems, Japanese Patent Application Laid-Open No. 2010-93934 (Patent Document 1) discloses a technique for consuming electric power remaining in an inverter capacitor by an air conditioning motor at the time of a vehicle collision.
特開2010-93934号公報JP 2010-93934 A 特開2011-10406号公報JP 2011-10406 A 特開2005-20952号公報JP 2005-20952 A
 ところで、走行用モータと車輪との接続関係によっては、車両衝突時の車輪の回転速度(車速)の減少によって走行用モータが回転させられて走行用モータで比較的大きな逆起電力が生じる場合がある。しかしながら、特許文献1に開示された技術は、車両衝突時にインバータのコンデンサに残留する比較的小さい電力を消費する技術に過ぎず、車両衝突時に走行用モータで生じる比較的大きな逆起電力を早期に消費することはできない。すなわち、仮に、車両衝突時に走行用モータで生じる逆起電力を特許文献1のように空調用モータで消費すると、走行用モータで生じる逆起電力を消費可能な回転速度まで空調用モータの回転速度が上昇するまでには相当な時間がかかるため、走行用モータで生じる逆起電力を早期に消費することができない。 By the way, depending on the connection relationship between the traveling motor and the wheels, there may be a case where the traveling motor is rotated due to a decrease in the rotational speed (vehicle speed) of the wheel at the time of a vehicle collision and a relatively large back electromotive force is generated in the traveling motor. is there. However, the technique disclosed in Patent Document 1 is merely a technique that consumes a relatively small amount of power remaining in the capacitor of the inverter at the time of a vehicle collision, and a relatively large counter electromotive force generated by the traveling motor at the time of the vehicle collision is early. It cannot be consumed. That is, if the back electromotive force generated by the traveling motor at the time of a vehicle collision is consumed by the air conditioning motor as in Patent Document 1, the rotational speed of the air conditioning motor is reduced to a rotational speed at which the back electromotive force generated by the traveling motor can be consumed. Since it takes a considerable amount of time to rise, the counter electromotive force generated by the traveling motor cannot be consumed at an early stage.
 本発明は、上述の課題を解決するためになされたものであって、その目的は、車両衝突時に回転電機で生じる逆起電力を早期に消費することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to quickly consume the back electromotive force generated in the rotating electric machine at the time of a vehicle collision.
 この発明に係る車両は、電気エネルギを熱エネルギに変換する電気抵抗と、車両衝突時の車輪の回転速度の減少によって回転させられて逆起電力を生じる回転電機と、電気抵抗と回転電機との電気的な接続状態を切り替える切替回路を含む切替装置と、切替回路を制御する制御装置とを備える。制御装置は、車両衝突時に切替回路を制御して電気抵抗と回転電機とを電気的に接続することによって、車両衝突時に回転電機で生じる逆起電力を電気抵抗で消費させる。 A vehicle according to the present invention includes an electrical resistance that converts electrical energy into thermal energy, a rotating electrical machine that is rotated by a reduction in the rotational speed of a wheel at the time of a vehicle collision and generates a counter electromotive force, and an electrical resistance and the rotating electrical machine. A switching device including a switching circuit that switches an electrical connection state and a control device that controls the switching circuit are provided. The control device controls the switching circuit at the time of a vehicle collision to electrically connect the electrical resistance and the rotating electrical machine, thereby consuming the back electromotive force generated by the rotating electrical machine at the time of the vehicle collision with the electrical resistance.
 好ましくは、車両は、エンジンと、回転電機を駆動するための電力を蓄える蓄電装置と、蓄電装置と回転電機との間で電圧変換を行なうコンバータと、コンバータと回転電機との間で電力変換を行なうインバータとをさらに備える。電気抵抗は、コンバータおよびインバータを結ぶ電力線上に接続された、エンジンの排気を浄化する電気加熱可能な触媒装置である。 Preferably, the vehicle includes an engine, a power storage device that stores electric power for driving the rotating electrical machine, a converter that performs voltage conversion between the power storage device and the rotating electrical machine, and power conversion between the converter and the rotating electrical machine. And an inverter to perform. The electric resistance is an electrically heatable catalyst device that purifies engine exhaust and is connected to a power line connecting the converter and the inverter.
 好ましくは、制御装置は、回転電機と触媒装置とを電気的に接続した後、触媒装置の消費電力の累積値がしきい値を超えたときは、切替装置を制御して回転電機と触媒装置とを電気的に非接続とする。 Preferably, after electrically connecting the rotating electrical machine and the catalytic device, the control device controls the switching device to control the rotating electrical machine and the catalytic device when the accumulated power consumption of the catalytic device exceeds a threshold value. Are electrically disconnected from each other.
 好ましくは、制御装置は、車両衝突時であって、かつ触媒装置と回転電機とを結ぶ通電経路が漏電していないときに、切替回路を制御して回転電機と触媒装置とを電気的に接続する。 Preferably, the control device electrically connects the rotating electrical machine and the catalytic device by controlling the switching circuit when the vehicle is in a collision and the current path connecting the catalytic device and the rotating electrical machine is not leaking. To do.
 好ましくは、切替装置は、切替回路の作動電力を蓄えるバックアップ電源を内部に備える。 Preferably, the switching device includes a backup power source for storing operating power of the switching circuit.
 好ましくは、車両は、第1モータジェネレータと、車輪と連動して回転する第2モータジェネレータと、遊星歯車装置とをさらに備える。遊星歯車装置は、サンギヤと、第2モータジェネレータに連結されるリングギヤと、サンギヤおよびリングギヤに係合するピニオンギヤと、エンジンに連結されピニオンギヤを自転可能に支持するキャリアとを含む。回転電機は、第1モータジェネレータである。 Preferably, the vehicle further includes a first motor generator, a second motor generator that rotates in conjunction with the wheels, and a planetary gear device. The planetary gear device includes a sun gear, a ring gear coupled to the second motor generator, a pinion gear engaged with the sun gear and the ring gear, and a carrier coupled to the engine and rotatably supporting the pinion gear. The rotating electrical machine is a first motor generator.
 この発明の別の局面に係る車両の制御方法は、電力を消費する電気抵抗と、車両衝突時に車輪から伝達されるトルクで回転させられて逆起電力を生じる回転電機と、電気抵抗と回転電機との電気的な接続状態を切り替える切替回路を含む切替装置と、切替回路を制御する制御装置とを備えた車両の制御方法であって、車両衝突時であるか否かを判定するステップと、車両衝突時と判定された場合に切替回路を制御して電気抵抗と回転電機とを電気的に接続することによって、車両衝突時に回転電機で生じる逆起電力を電気抵抗で消費させるステップとを含む。 A vehicle control method according to another aspect of the present invention includes an electric resistance that consumes electric power, a rotating electric machine that is rotated by a torque transmitted from a wheel at the time of a vehicle collision and generates a counter electromotive force, and an electric resistance and the rotating electric machine. A method of controlling a vehicle including a switching device that includes a switching circuit that switches an electrical connection state between the control circuit and a control device that controls the switching circuit, and determining whether or not the vehicle is in a collision; A step of controlling the switching circuit to electrically connect the electrical resistance and the rotating electrical machine when it is determined that the vehicle is in a collision, thereby consuming the back electromotive force generated in the rotating electrical machine at the time of the vehicle collision by the electrical resistance. .
 本発明によれば、車両衝突時に回転電機で生じる逆起電力を早期に消費することができる。 According to the present invention, the back electromotive force generated by the rotating electrical machine at the time of a vehicle collision can be consumed at an early stage.
車両の全体ブロック図である。1 is an overall block diagram of a vehicle. 第1MG、第2MG、PCU、バッテリ、EHCの回路構成を示す図である。It is a figure which shows the circuit structure of 1st MG, 2nd MG, PCU, a battery, and EHC. エンジン回転速度Ne、第1MG回転速度Nm1、第2MG回転速度Nm2の変化の様子を共線図上に示した図である。It is the figure which showed the mode of the change of engine rotational speed Ne, 1st MG rotational speed Nm1, and 2nd MG rotational speed Nm2 on the nomograph. ECUの機能ブロック図である。It is a functional block diagram of ECU. 車両衝突時にEHCに供給される電流の流れを示す図である。It is a figure which shows the flow of the electric current supplied to EHC at the time of a vehicle collision. ECUの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of ECU.
 以下、本発明の実施例について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 図1は、本実施例に従う車両1の全体ブロック図である。車両1は、エンジン10と、第1MG(Motor Generator)20と、第2MG30と、動力分割装置40と、減速機50と、パワーコントロールユニット(Power Control Unit、以下「PCU」という)60と、バッテリ70と、駆動輪80と、電子制御ユニット(Electronic Control Unit、以下「ECU」という)200と、を備える。 FIG. 1 is an overall block diagram of a vehicle 1 according to the present embodiment. The vehicle 1 includes an engine 10, a first MG (Motor Generator) 20, a second MG 30, a power split device 40, a speed reducer 50, a power control unit (Power Control Unit, hereinafter referred to as “PCU”) 60, a battery. 70, a drive wheel 80, and an electronic control unit (Electronic Control Unit, hereinafter referred to as “ECU”) 200.
 エンジン10は、空気と燃料との混合気を燃焼させたときに生じる燃焼エネルギによってクランクシャフトを回転させる駆動力を発生する内燃機関である。第1MG20および第2MG30は、交流で駆動されるモータジェネレータである。 The engine 10 is an internal combustion engine that generates a driving force for rotating a crankshaft by combustion energy generated when an air-fuel mixture is combusted. First MG 20 and second MG 30 are motor generators driven by alternating current.
 車両1は、エンジン10および第2MG30の少なくとも一方から出力される動力によって走行する。エンジン10が発生する駆動力は、動力分割装置40によって2経路に分割される。すなわち、一方は減速機50を介して駆動輪80へ伝達される経路であり、もう一方は第1MG20へ伝達される経路である。 The vehicle 1 travels by power output from at least one of the engine 10 and the second MG 30. The driving force generated by the engine 10 is divided into two paths by the power split device 40. That is, one is a path transmitted to the drive wheel 80 via the speed reducer 50 and the other is a path transmitted to the first MG 20.
 動力分割装置40は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを含む遊星歯車から成る。ピニオンギヤは、サンギヤおよびリングギヤと係合する。キャリアは、ピニオンギヤを自転可能に支持するとともに、エンジン10のクランクシャフトに連結される。サンギヤは、第1MG20の回転軸に連結される。リングギヤは第2MG30の回転軸および減速機50に連結される。このように、エンジン10、第1MG20および第2MG30が、遊星歯車からなる動力分割装置40を介して連結されることで、エンジン10の回転速度(以下「エンジン回転速度Ne」という)、第1MG20の回転速度(以下「第1MG回転速度Nm1」という)および第2MG30の回転速度(以下「第2MG回転速度Nm2」という)は、共線図において直線で結ばれる関係になる(後述する図3参照)。 The power split device 40 includes a planetary gear including a sun gear, a pinion gear, a carrier, and a ring gear. The pinion gear engages with the sun gear and the ring gear. The carrier supports the pinion gear so as to be capable of rotating, and is connected to the crankshaft of the engine 10. The sun gear is connected to the rotation shaft of the first MG 20. The ring gear is connected to the rotation shaft of second MG 30 and speed reducer 50. In this way, the engine 10, the first MG 20 and the second MG 30 are connected via the power split device 40 made of planetary gears, whereby the rotational speed of the engine 10 (hereinafter referred to as “engine rotational speed Ne”), the first MG 20 The rotational speed (hereinafter referred to as “first MG rotational speed Nm1”) and the rotational speed of the second MG 30 (hereinafter referred to as “second MG rotational speed Nm2”) are connected by a straight line in the nomographic chart (see FIG. 3 described later). .
 PCU60は、ECU200からの制御信号によって制御される。PCU60は、バッテリ70から供給された直流電力を第1MG20および第2MG30を駆動可能な交流電力に変換する。PCU60は、変換された交流電力をそれぞれ第1MG20,第2MG30に出力する。これにより、バッテリ70に蓄えられた電力で第1MG20,第2MG30が駆動される。なお、PCU60は、第1MG20,第2MG30によって発電された交流電力を直流電力に変換し、変換された直流電力でバッテリ70を充電することも可能である。 The PCU 60 is controlled by a control signal from the ECU 200. PCU 60 converts the DC power supplied from battery 70 into AC power that can drive first MG 20 and second MG 30. PCU 60 outputs the converted AC power to first MG 20 and second MG 30, respectively. Thereby, first MG 20 and second MG 30 are driven by the electric power stored in battery 70. Note that the PCU 60 can also convert AC power generated by the first MG 20 and the second MG 30 into DC power and charge the battery 70 with the converted DC power.
 バッテリ70は、第1MG20,第2MG30を駆動するための電力を蓄える直流電源であり、たとえば、ニッケル水素やリチウムイオン等の二次電池から成る。バッテリ70の出力電圧は、たとえば200V程度の高い電圧である。なお、バッテリ70に代えて、大容量のキャパシタも採用可能である。 The battery 70 is a direct current power source that stores electric power for driving the first MG 20 and the second MG 30, and includes, for example, a secondary battery such as nickel hydride or lithium ion. The output voltage of the battery 70 is a high voltage of about 200V, for example. Note that a large-capacity capacitor may be used instead of the battery 70.
 さらに、車両1は、衝突センサ2を備える。衝突センサ2は、車両1と他の物体との衝突(以下「車両衝突」という)を判定するための情報として、車両1に作用する加速度Gを検出し、検出結果をECU200に出力する。 Furthermore, the vehicle 1 includes a collision sensor 2. The collision sensor 2 detects an acceleration G acting on the vehicle 1 as information for determining a collision between the vehicle 1 and another object (hereinafter referred to as “vehicle collision”), and outputs the detection result to the ECU 200.
 さらに、車両1は、排気通路130を備える。エンジン10から排出される排気ガスは、排気通路130を通って大気に排出される。 Furthermore, the vehicle 1 includes an exhaust passage 130. Exhaust gas discharged from the engine 10 passes through the exhaust passage 130 and is discharged to the atmosphere.
 排気通路130の途中には、電気加熱式触媒(Electrical Heated Catalyst、以下、「EHC」という)140が設けられる。EHC140は、電気ヒータ(電気エネルギを熱エネルギに変換する電気抵抗)によって触媒を電気的に加熱可能に構成された触媒である。EHC140は、大容量の電力を消費して触媒を高温まで昇温させる機能を有する。具体的には、EHC140は、コンバータ61による昇圧後の電力(たとえば650ボルト程度の直流電力)を消費して発熱する電気ヒータを備えており、この電気ヒータによって触媒を高温まで昇温させる。なお、EHC140には、種々の公知のものを適用することができる。 In the middle of the exhaust passage 130, an electrically heated catalyst (Electric Heated Catalyst, hereinafter referred to as “EHC”) 140 is provided. The EHC 140 is a catalyst configured such that the catalyst can be electrically heated by an electric heater (electric resistance that converts electric energy into heat energy). The EHC 140 has a function of consuming a large amount of power to raise the temperature of the catalyst to a high temperature. Specifically, the EHC 140 includes an electric heater that generates heat by consuming electric power (eg, DC power of about 650 volts) after being boosted by the converter 61, and the electric heater raises the temperature of the catalyst to a high temperature. Various known ones can be applied to the EHC 140.
 ECU200は、図示しないCPU(Central Processing Unit)およびメモリを内蔵し、当該メモリに記憶された情報に基づいて、所定の演算処理を実行するように構成される。 The ECU 200 includes a CPU (Central Processing Unit) (not shown) and a memory, and is configured to execute a predetermined calculation process based on information stored in the memory.
 図2は、第1MG20、第2MG30、PCU60、バッテリ70、EHC140の回路構成を示す図である。 FIG. 2 is a diagram showing a circuit configuration of the first MG 20, the second MG 30, the PCU 60, the battery 70, and the EHC 140.
 PCU60とバッテリ70との間には、システムメインリレー(SMR)71が設けられる。SMR71は、ECU200からの制御信号によって制御され、バッテリ70とPCU60との間での電力の供給と遮断とを切り替える。SMR71は、車両衝突時には、ECU200によって開状態に制御される。これにより、車両衝突時には、バッテリ70がPCU60から切り離される。 A system main relay (SMR) 71 is provided between the PCU 60 and the battery 70. The SMR 71 is controlled by a control signal from the ECU 200 and switches between power supply and interruption between the battery 70 and the PCU 60. The SMR 71 is controlled to be opened by the ECU 200 at the time of a vehicle collision. Thereby, the battery 70 is disconnected from the PCU 60 at the time of a vehicle collision.
 PCU60は、コンバータ61、インバータ62,63、平滑コンデンサ64,65、放電抵抗66を含む。 The PCU 60 includes a converter 61, inverters 62 and 63, smoothing capacitors 64 and 65, and a discharge resistor 66.
 コンバータ61は、正極線PL1および負極線NL1を介してバッテリ70に接続される。また、コンバータ61は、正極線PL2および負極線NL1を介してインバータ62,63に接続される。 Converter 61 is connected to battery 70 via positive line PL1 and negative line NL1. Converter 61 is connected to inverters 62 and 63 via positive line PL2 and negative line NL1.
 コンバータ61は、リアクトルと、2つのスイッチング素子と、2つのダイオードとを含む。コンバータ61は、ECU200からの制御信号によって制御され、バッテリ70とインバータ62,63との間で電圧変換を行なう。 Converter 61 includes a reactor, two switching elements, and two diodes. Converter 61 is controlled by a control signal from ECU 200 and performs voltage conversion between battery 70 and inverters 62 and 63.
 インバータ62は、コンバータ61と第1MG20との間に設けられる。インバータ63は、コンバータ61と第2MG30との間に設けられる。インバータ62,63は、コンバータ61に対して互いに並列に接続される。 The inverter 62 is provided between the converter 61 and the first MG 20. Inverter 63 is provided between converter 61 and second MG 30. Inverters 62 and 63 are connected to converter 61 in parallel.
 インバータ62,63の各々は、三相の上下アーム(スイッチング素子)と、各スイッチング素子に逆並列に接続されたダイオードとを含む。インバータ62,63の各上下アームは、ECU200からの制御信号によって制御され、コンバータ61で電圧変換された直流電力を交流電力に変換してそれぞれ第1MG20、第2MG30に出力する。 Each of inverters 62 and 63 includes a three-phase upper and lower arm (switching element) and a diode connected in antiparallel to each switching element. Each of the upper and lower arms of the inverters 62 and 63 is controlled by a control signal from the ECU 200, converts the DC power converted by the converter 61 into AC power, and outputs the AC power to the first MG 20 and the second MG 30, respectively.
 平滑コンデンサ64は、正極線PL1と負極線NL1との間に接続され、正極線PL1および負極線NL1間の電圧変動の交流成分を平滑化する。平滑コンデンサ65は、正極線PL2と負極線NL1との間に接続され、正極線PL2および負極線NL1間の電圧変動の交流成分を平滑化する。 The smoothing capacitor 64 is connected between the positive electrode line PL1 and the negative electrode line NL1, and smoothes the AC component of the voltage fluctuation between the positive electrode line PL1 and the negative electrode line NL1. Smoothing capacitor 65 is connected between positive electrode line PL2 and negative electrode line NL1, and smoothes an AC component of voltage fluctuation between positive electrode line PL2 and negative electrode line NL1.
 放電抵抗66は、正極線PL2と負極線NL1との間に接続される。放電抵抗66は、平滑コンデンサ64,65の残留電荷を抜くことを用途とする。そのため、放電抵抗66の容量(単位時間あたりに消費可能な電力の大きさ)は、EHC140に比べて小さい。 The discharge resistor 66 is connected between the positive electrode line PL2 and the negative electrode line NL1. The discharge resistor 66 is used to remove residual charges from the smoothing capacitors 64 and 65. Therefore, the capacity of the discharge resistor 66 (the amount of power that can be consumed per unit time) is smaller than that of the EHC 140.
 EHC140は、PCU60の内部におけるコンバータ61とインバータ62,63との間の電力線(正極線PL2、負極線NL1)に接続される。より具体的には、EHC140は、一方の端部が正極線PL2から分岐する正極分岐線PLehcに接続され、他方の端部が負極線NL1から分岐する負極分岐線NLehcに接続される。 The EHC 140 is connected to a power line (positive line PL2, negative line NL1) between the converter 61 and the inverters 62 and 63 inside the PCU 60. More specifically, EHC 140 has one end connected to positive branch line PLehc that branches from positive line PL2, and the other end connected to negative branch line NLehc that branches from negative line NL1.
 EHC140は、バッテリ70の電力をコンバータ61で昇圧した後の電力(たとえば650ボルト程度の直流電力)を消費して発熱する電気ヒータを備えており、非常に高い電力を消費可能である。また、EHC140は、第1MG20あるいは第2MG30で発電された交流電力をインバータ62,63で直流電力に変換した後の電力を消費することによっても加熱される。 The EHC 140 includes an electric heater that generates heat by consuming electric power (eg, DC power of about 650 volts) after boosting the electric power of the battery 70 by the converter 61, and can consume very high electric power. EHC 140 is also heated by consuming power after AC power generated by first MG 20 or second MG 30 is converted to DC power by inverters 62 and 63.
 EHC140とPCU60との間には、切替装置100が設けられる。切替装置100は、正極分岐線PLehc上に設けられたEHCリレーR1と、負極分岐線NLehc上に設けられたEHCリレーR2と、EHCリレーR1,R2の作動電力を非常時に備えて蓄えるバックアップ電源110と、EHC140の消費電力Pehcを監視する監視センサ120とを内部に備える。各EHCリレーR1,R2のオンオフ動作は、ECU200からの制御信号によって制御される。なお、各EHCリレーR1,R2は、補機バッテリ(図示せず)およびバックアップ電源110の少なくともいずれか一方から供給される電力で作動することが可能である。そのため、車両衝突時に補機バッテリからの電力供給経路が遮断されたとしてもバックアップ電源110でEHCリレーR1,R2を確実に作動させることができる。 A switching device 100 is provided between the EHC 140 and the PCU 60. The switching device 100 includes an EHC relay R1 provided on the positive branch line PLehc, an EHC relay R2 provided on the negative branch line NLehc, and a backup power supply 110 that stores operating power of the EHC relays R1 and R2 in an emergency. And a monitoring sensor 120 for monitoring the power consumption Pehc of the EHC 140. The on / off operations of the EHC relays R1 and R2 are controlled by a control signal from the ECU 200. Each EHC relay R1, R2 can be operated with electric power supplied from at least one of an auxiliary battery (not shown) and a backup power supply 110. Therefore, even when the power supply path from the auxiliary battery is interrupted in the event of a vehicle collision, the EHC relays R1 and R2 can be reliably operated by the backup power source 110.
 さらに、負極分岐線NLehcには漏電検出器150が接続される。漏電検出器150は、EHC140とPCU60とを接続する通電経路の漏電(以下「EHC漏電」という)を検出する。なお、漏電検出器150には、種々の公知のものを適用することができる。 Furthermore, a leakage detector 150 is connected to the negative branch line NLehc. The leakage detector 150 detects a leakage in the energization path connecting the EHC 140 and the PCU 60 (hereinafter referred to as “EHC leakage”). Various known devices can be applied to the leakage detector 150.
 以上のような構造を有する車両1の走行中において、車両衝突が生じると車速が急減するが、この車速の急減によって第1MG20が回転させられて第1MG20が逆起電力を発生する場合がある。 While the vehicle 1 having the above structure is traveling, the vehicle speed is suddenly reduced when a vehicle collision occurs. However, the first MG 20 may be rotated by the sudden decrease in the vehicle speed and the first MG 20 may generate a back electromotive force.
 図3は、車両衝突時のエンジン回転速度Ne、第1MG回転速度Nm1、第2MG回転速度Nm2の変化の様子を共線図上に示した図である。 FIG. 3 is a diagram showing on the collinear chart how the engine rotational speed Ne, the first MG rotational speed Nm1, and the second MG rotational speed Nm2 change during a vehicle collision.
 上述したように、エンジン回転速度Ne、第1MG回転速度Nm1、第2MG回転速度Nm2は、共線図において直線で結ばれる関係になる。すなわち、第1MG回転速度Nm1は、エンジン回転速度Neおよび第2MG回転速度Nm2によって決まる。第2MG30は減速機50を介して駆動輪80に連結されているため、第2MG回転速度Nm2は車速に正比例する値である。 As described above, the engine rotational speed Ne, the first MG rotational speed Nm1, and the second MG rotational speed Nm2 are connected by a straight line in the alignment chart. That is, the first MG rotation speed Nm1 is determined by the engine rotation speed Ne and the second MG rotation speed Nm2. Since the second MG 30 is connected to the drive wheels 80 via the speed reducer 50, the second MG rotation speed Nm2 is a value that is directly proportional to the vehicle speed.
 エンジン10および第2MG30の動力での前進走行中(共線L1参照)において、車両衝突が生じると、車速すなわち第2MG回転速度Nm2が急減する。この際、既に回転しているエンジン10は慣性の法則により同じ回転速度を維持しようとする。一方、車両衝突時にはECU200によってSMR71が開状態に制御されてバッテリ70がPCU60から切り離されるため、第1MG20はトルクを出すことができない。そのため、共線L2に示すように、車両衝突時には、第2MG回転速度Nm2の急減(図3に示す共線L2は車速がほぼ瞬間的に0に落ち込む場合を例示している)によって第1MG回転速度Nm1が急増し、第1MG20に取り付けられている永久磁石により第1MG20は大きな逆起電力を発生する。したがって、車両衝突時には、第1MG20で生じる逆起電力を早期に消費することが望ましい。 When a vehicle collision occurs during forward traveling with the power of the engine 10 and the second MG 30 (see collinear L1), the vehicle speed, that is, the second MG rotation speed Nm2 decreases rapidly. At this time, the already rotating engine 10 tries to maintain the same rotational speed by the law of inertia. On the other hand, since the SMR 71 is controlled to be in the open state by the ECU 200 and the battery 70 is disconnected from the PCU 60 at the time of a vehicle collision, the first MG 20 cannot output torque. Therefore, as indicated by collinear L2, at the time of a vehicle collision, the first MG rotation is caused by a sudden decrease in the second MG rotation speed Nm2 (the collinear L2 illustrated in FIG. 3 illustrates the case where the vehicle speed drops to 0 almost instantaneously). The speed Nm1 increases rapidly, and the first MG 20 generates a large counter electromotive force due to the permanent magnet attached to the first MG 20. Therefore, at the time of a vehicle collision, it is desirable to consume the back electromotive force generated in the first MG 20 at an early stage.
 ところが、この逆起電力を消費する機器として放電抵抗66を用いると、放電抵抗66は平滑コンデンサ64,65の残留電荷を抜くことを用途とするためその容量は比較的小さく、駆動用で容量の大きい第1MG20の逆起電力を早期に消費するのには容量が不足する。また、逆起電力を消費する機器として図示しない空調用モータ(コンプレッサなど)を用いると、走行用の第1MG20で生じる逆起電力を消費可能な回転速度まで空調用モータの回転速度が上昇するまでには相当な時間がかかるため、走行用の第1MG20で生じる逆起電力を早期に消費することができない。さらに、空調用モータでは容量も不足することが懸念される。 However, when the discharge resistor 66 is used as a device that consumes the counter electromotive force, the discharge resistor 66 is used for removing the residual charges of the smoothing capacitors 64 and 65, and thus has a relatively small capacity. The capacity is insufficient to consume the back electromotive force of the large first MG 20 early. Further, when an air conditioning motor (not shown) such as a device that consumes the back electromotive force is used, the rotation speed of the air conditioning motor is increased to a rotation speed at which the back electromotive force generated in the first traveling MG 20 can be consumed. Since it takes a considerable amount of time, the counter electromotive force generated in the traveling first MG 20 cannot be consumed early. Furthermore, there is a concern that the capacity of the air conditioning motor is insufficient.
 そこで、本実施例に従うECU200は、車両衝突時にEHCリレーR1,R2を閉じてEHC140と第1MG20とを電気的に接続することによって、車両衝突時に第1MG20で生じる逆起電力を消費電力の大きいEHC140で消費させる。この点が本発明の最も特徴的な点である。 Therefore, the ECU 200 according to the present embodiment closes the EHC relays R1 and R2 at the time of a vehicle collision and electrically connects the EHC 140 and the first MG 20, so that the back electromotive force generated in the first MG 20 at the time of the vehicle collision is large in the EHC 140 To consume. This is the most characteristic point of the present invention.
 図4は、車両衝突時の制御に関する部分のECU200の機能ブロック図である。ECU200は、衝突判定部210、SMR遮断部220、EHCリレー制御部230を含む。 FIG. 4 is a functional block diagram of the ECU 200 related to control at the time of vehicle collision. ECU 200 includes a collision determination unit 210, an SMR blocking unit 220, and an EHC relay control unit 230.
 衝突判定部210は、衝突センサ2の検出結果に基づいて車両衝突が生じたか否かを判定し、判定結果をSMR遮断部220、EHCリレー制御部230に出力する。 The collision determination unit 210 determines whether a vehicle collision has occurred based on the detection result of the collision sensor 2 and outputs the determination result to the SMR blocking unit 220 and the EHC relay control unit 230.
 SMR遮断部220は、車両衝突が生じたと判定された場合は、SMR71を開いてバッテリ70とPCU60とを電気的に切り離す。 When it is determined that a vehicle collision has occurred, the SMR blocking unit 220 opens the SMR 71 and electrically disconnects the battery 70 and the PCU 60.
 EHCリレー制御部230は、車両衝突が生じたと判定された場合は、漏電検出器150に基づいてEHC漏電の有無を判定する。そして、EHCリレー制御部230は、EHC漏電がない場合、EHCリレーR1,R2を閉じてEHC140と第1MG20とを電気的に接続する。 When it is determined that a vehicle collision has occurred, the EHC relay control unit 230 determines the presence or absence of EHC leakage based on the leakage detector 150. Then, when there is no EHC leakage, EHC relay control unit 230 closes EHC relays R1 and R2 to electrically connect EHC 140 and first MG 20.
 図5は、車両衝突時にEHCリレーR1,R2を閉じた場合にEHC140に供給される電流の流れを示す図である。上述したように、車両衝突時には、第2MG回転速度Nm2の急減によって第1MG20が回転させられて第1MG20で逆起電力が生じる。 FIG. 5 is a diagram illustrating a flow of current supplied to the EHC 140 when the EHC relays R1 and R2 are closed at the time of a vehicle collision. As described above, at the time of a vehicle collision, the first MG 20 is rotated by a sudden decrease in the second MG rotation speed Nm2, and a back electromotive force is generated in the first MG 20.
 この逆起電力による電流は、図5に示すように、インバータ62を通ってEHC140に供給される。これにより、第1MG20で生じた逆起電力がEHC140で早期に消費される。この際、逆起電力による電流は、インバータ62のダイオードを経由して流れるため、インバータ62を動作させなくても第1MG20とEHC140との間を流れる。さらに、本実施の形態では、EHC140がコンバータ61とインバータ62との間に接続されている。そのため、コンバータ61を動作させる必要もない。したがって、本実施の形態においては、車両衝突時にSMR71が遮断されても、また、車両衝突の影響でコンバータ61およびインバータ62が動作不能状態に陥ったとしても、第1MG20で生じた逆起電力をECU140で消費させることができる。 The current due to the counter electromotive force is supplied to the EHC 140 through the inverter 62 as shown in FIG. Thereby, the back electromotive force generated in the first MG 20 is consumed early in the EHC 140. At this time, since the current due to the counter electromotive force flows through the diode of the inverter 62, the current flows between the first MG 20 and the EHC 140 without operating the inverter 62. Further, in the present embodiment, EHC 140 is connected between converter 61 and inverter 62. Therefore, it is not necessary to operate the converter 61. Therefore, in the present embodiment, even if SMR 71 is interrupted at the time of a vehicle collision, or even if converter 61 and inverter 62 fall into an inoperable state due to the vehicle collision, the back electromotive force generated in first MG 20 is reduced. It can be consumed by the ECU 140.
 図4に戻って、EHCリレー制御部230は、EHCリレーR1,R2を閉じた後、監視センサ120からのEHC消費電力Pehcを積算し、EHC消費電力Pehcの積算値が予め定められた許容値を超えた場合には、EHCリレーR1,R2を開いてEHC140と第1MG20とを電気的に非接続とする。これにより、第1MG回転速度Nm1がある程度低下するまでは第1MG20で生じた逆起電力をEHC140で消費させつつ、許容値を超える電力量がEHC140で消費された後はEHC140と第1MG20とを電気的に非接続として、EHC140の過電圧や過熱を抑制することができる。 Returning to FIG. 4, the EHC relay control unit 230 integrates the EHC power consumption Pehc from the monitoring sensor 120 after closing the EHC relays R <b> 1 and R <b> 2, and the integrated value of the EHC power consumption Pehc is a predetermined allowable value. Is exceeded, the EHC relays R1 and R2 are opened, and the EHC 140 and the first MG 20 are electrically disconnected. As a result, the back electromotive force generated in the first MG 20 is consumed by the EHC 140 until the first MG rotation speed Nm1 is reduced to some extent, and after the amount of power exceeding the allowable value is consumed by the EHC 140, the EHC 140 and the first MG 20 are electrically connected. Therefore, it is possible to suppress the overvoltage and overheating of the EHC 140 as being disconnected.
 図6は、上述の機能を実現するためのECU200の処理手順を示すフローチャートである。このフローチャートは、ECU200の起動中に予め定められた周期で繰り返し実行される。 FIG. 6 is a flowchart showing a processing procedure of the ECU 200 for realizing the above-described function. This flowchart is repeatedly executed at a predetermined cycle while the ECU 200 is activated.
 ステップ(以下、ステップを「S」と略す)にて、ECU200は、車両衝突の有無を判定する。車両衝突がない場合(S10にてNO)、この処理は終了される。 In step (hereinafter, “step” is abbreviated as “S”), ECU 200 determines the presence or absence of a vehicle collision. If there is no vehicle collision (NO in S10), this process ends.
 車両衝突がある場合(S10にてYES)、ECU200は、S11にてSMR71を遮断する。 If there is a vehicle collision (YES at S10), ECU 200 shuts off SMR 71 at S11.
 S12にて、ECU200は、EHC漏電の有無を判定する。EHC漏電がある場合(S12にてNO)、この処理は終了される。 In S12, ECU 200 determines the presence or absence of EHC leakage. If there is an EHC leakage (NO in S12), this process ends.
 EHC漏電がない場合(S12にてYES)、ECU200は、S13にてEHCリレーR1,R2を閉じる。これにより、上述したように第1MG20で生じた逆起電力がEHC140で消費される。 If there is no EHC leakage (YES in S12), ECU 200 closes EHC relays R1 and R2 in S13. Thereby, as described above, the back electromotive force generated in the first MG 20 is consumed in the EHC 140.
 S14にて、ECU200は、EHC消費電力Pehcを積算する。
 S15にて、ECU200は、EHC消費電力Pehcの積算値が許容値を超えたか否かを判定する。EHC消費電力Pehcの積算値が許容値を超えていない場合(S15にてNO)、処理はS14に戻され、EHC消費電力Pehcを積算が繰り返される。
In S14, ECU 200 integrates EHC power consumption Pehc.
In S15, ECU 200 determines whether or not the integrated value of EHC power consumption Pehc exceeds an allowable value. If the integrated value of EHC power consumption Pehc does not exceed the allowable value (NO in S15), the process returns to S14, and the integration of EHC power consumption Pehc is repeated.
 EHC消費電力Pehcの積算値が許容値を超えている場合(S15にてYES)、ECU200は、S16にてEHCリレーR1,R2を開く。これにより、EHC140の過電圧や過熱が抑制される。 If the integrated value of EHC power consumption Pehc exceeds the allowable value (YES in S15), ECU 200 opens EHC relays R1 and R2 in S16. Thereby, the overvoltage and overheating of EHC140 are suppressed.
 以上のように、本実施例に従う車両1において、車両衝突が生じた場合、ECU200は、EHCリレーR1,R2を閉じて第1MG20を大容量の電力を消費可能なEHC140(電気抵抗)に電気的に接続させる。これにより、車両衝突時に第1MG20で生じる逆起電力をEHC140で早期に消費させることができる。 As described above, when a vehicle collision occurs in the vehicle 1 according to the present embodiment, the ECU 200 closes the EHC relays R1 and R2 and electrically connects the first MG 20 to the EHC 140 (electric resistance) that can consume a large amount of power. Connect to. Thereby, the back electromotive force generated in the first MG 20 at the time of a vehicle collision can be consumed early by the EHC 140.
 今回開示された実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 車両、2 衝突センサ、10 エンジン、20 第1MG、30 第2MG、40 動力分割装置、50 減速機、60 PCU、61 コンバータ、62,63 インバータ、64,65 平滑コンデンサ、66 放電抵抗、70 バッテリ、71 SMR、80 駆動輪、100 切替装置、110 バックアップ電源、120 監視センサ、130 排気通路、140 EHC、150 漏電検出器、200 ECU、210 衝突判定部、220 遮断部、230 リレー制御部、NL1 負極線、NLehc 負極分岐線、PL1,PL2 正極線、PLehc 正極分岐線、R1,R2 EHCリレー。 1 vehicle, 2 collision sensor, 10 engine, 20 1st MG, 30 2nd MG, 40 power split device, 50 speed reducer, 60 PCU, 61 converter, 62, 63 inverter, 64, 65 smoothing capacitor, 66 discharge resistance, 70 battery , 71 SMR, 80 drive wheels, 100 switching device, 110 backup power supply, 120 monitoring sensor, 130 exhaust passage, 140 EHC, 150 leakage detector, 200 ECU, 210 collision determination unit, 220 interruption unit, 230 relay control unit, NL1 Negative line, NLehc negative branch line, PL1, PL2 positive line, PLehc positive branch line, R1, R2 EHC relay.

Claims (7)

  1.  電気エネルギを熱エネルギに変換する電気抵抗(140)と、
     車両衝突時の車輪(80)の回転速度の減少によって回転させられて逆起電力を生じる回転電機(20)と、
     前記電気抵抗と前記回転電機との電気的な接続状態を切り替える切替回路(R1,R2)を含む切替装置(100)と、
     前記切替回路を制御する制御装置(200)とを備え、
     前記制御装置は、車両衝突時に前記切替回路を制御して前記電気抵抗と前記回転電機とを電気的に接続することによって、車両衝突時に前記回転電機で生じる逆起電力を前記電気抵抗で消費させる、車両。
    An electrical resistance (140) that converts electrical energy into thermal energy;
    A rotating electrical machine (20) that is rotated by a decrease in the rotational speed of the wheel (80) at the time of a vehicle collision and generates a counter electromotive force;
    A switching device (100) including a switching circuit (R1, R2) for switching an electrical connection state between the electric resistance and the rotating electrical machine;
    A control device (200) for controlling the switching circuit,
    The control device controls the switching circuit at the time of a vehicle collision to electrically connect the electrical resistance and the rotating electrical machine, thereby consuming a back electromotive force generated by the rotating electrical machine at the electrical resistance at the time of a vehicle collision. ,vehicle.
  2.  前記車両は、
     エンジン(10)と、
     前記回転電機を駆動するための電力を蓄える蓄電装置(70)と、
     前記蓄電装置と前記回転電機との間で電圧変換を行なうコンバータ(61)と、
     前記コンバータと前記回転電機との間で電力変換を行なうインバータ(62)とをさらに備え、
     前記電気抵抗は、前記コンバータおよび前記インバータを結ぶ電力線(PL2,NL1)上に接続された、前記エンジンの排気を浄化する電気加熱可能な触媒装置である、請求項1に記載の車両。
    The vehicle is
    An engine (10);
    A power storage device (70) for storing electric power for driving the rotating electrical machine;
    A converter (61) for performing voltage conversion between the power storage device and the rotating electrical machine;
    An inverter (62) that performs power conversion between the converter and the rotating electrical machine;
    2. The vehicle according to claim 1, wherein the electric resistance is an electrically heatable catalyst device that purifies exhaust gas of the engine connected to a power line (PL <b> 2, NL <b> 1) that connects the converter and the inverter.
  3.  前記制御装置は、前記回転電機と前記触媒装置とを電気的に接続した後、前記触媒装置の消費電力の累積値がしきい値を超えたときは、前記切替装置を制御して前記回転電機と前記触媒装置とを電気的に非接続とする、請求項2に記載の車両。 After the electrical connection between the rotating electrical machine and the catalyst device, the control device controls the switching device to control the switching electrical machine when the accumulated power consumption of the catalyst device exceeds a threshold value. The vehicle according to claim 2, wherein the catalyst device is electrically disconnected from the vehicle.
  4.  前記制御装置は、車両衝突時であって、かつ前記触媒装置と前記回転電機とを結ぶ通電経路が漏電していないときに、前記切替回路を制御して前記回転電機と前記触媒装置とを電気的に接続する、請求項2に記載の車両。 The control device controls the switching circuit to electrically connect the rotating electrical machine and the catalyst device when a vehicle collision occurs and when an energization path connecting the catalyst device and the rotating electrical machine is not leaking. The vehicle according to claim 2, wherein the vehicles are connected together.
  5.  前記切替装置は、前記切替回路の作動電力を蓄えるバックアップ電源(110)を内部に備える、請求項2に記載の車両。 The vehicle according to claim 2, wherein the switching device includes a backup power source (110) for storing operating power of the switching circuit.
  6.  前記車両は、
     第1モータジェネレータ(20)と、
     前記車輪と連動して回転する第2モータジェネレータ(30)と、
     遊星歯車装置(40)とをさらに備え、
     前記遊星歯車装置は、サンギヤと、前記第2モータジェネレータに連結されるリングギヤと、前記サンギヤおよび前記リングギヤに係合するピニオンギヤと、前記エンジンに連結され前記ピニオンギヤを自転可能に支持するキャリアとを含み、
     前記回転電機は、前記第1モータジェネレータである、請求項2に記載の車両。
    The vehicle is
    A first motor generator (20);
    A second motor generator (30) that rotates in conjunction with the wheels;
    A planetary gear device (40),
    The planetary gear device includes a sun gear, a ring gear coupled to the second motor generator, a pinion gear engaged with the sun gear and the ring gear, and a carrier coupled to the engine and rotatably supporting the pinion gear. ,
    The vehicle according to claim 2, wherein the rotating electrical machine is the first motor generator.
  7.  電力を消費する電気抵抗(140)と、車両衝突時に車輪(80)から伝達されるトルクで回転させられて逆起電力を生じる回転電機(20)と、前記電気抵抗と前記回転電機との電気的な接続状態を切り替える切替回路(R1,R2)を含む切替装置(100)と、前記切替回路を制御する制御装置(200)とを備えた車両の制御方法であって、
     車両衝突時であるか否かを判定するステップと、
     車両衝突時と判定された場合に前記切替回路を制御して前記電気抵抗と前記回転電機とを電気的に接続することによって、車両衝突時に前記回転電機で生じる逆起電力を前記電気抵抗で消費させるステップとを含む、車両の制御方法。
    An electric resistance (140) that consumes electric power, a rotating electric machine (20) that is rotated by torque transmitted from the wheels (80) at the time of a vehicle collision and generates a counter electromotive force, and the electric resistance between the electric resistance and the rotating electric machine A vehicle control method comprising a switching device (100) including a switching circuit (R1, R2) for switching a general connection state, and a control device (200) for controlling the switching circuit,
    Determining whether the vehicle is in collision;
    By controlling the switching circuit to electrically connect the electrical resistance and the rotating electrical machine when it is determined that the vehicle is in a collision, the back electromotive force generated in the rotating electrical machine is consumed by the electrical resistance at the time of the vehicle collision. And a vehicle control method.
PCT/JP2011/068044 2011-07-20 2011-08-08 Vehicle, and vehicle control method WO2013021445A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013527768A JP5641145B2 (en) 2011-08-08 2011-08-08 Vehicle and vehicle control method
DE112011105505.6T DE112011105505B4 (en) 2011-08-08 2011-08-08 A vehicle having a catalyst device for consuming energy in a vehicle collision and method for controlling such a vehicle
US14/232,952 US9225269B2 (en) 2011-07-20 2011-08-08 Vehicle and method for controlling vehicle
CN201180072666.2A CN103717435B (en) 2011-08-08 2011-08-08 The control method of vehicle and vehicle
PCT/JP2011/068044 WO2013021445A1 (en) 2011-08-08 2011-08-08 Vehicle, and vehicle control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/068044 WO2013021445A1 (en) 2011-08-08 2011-08-08 Vehicle, and vehicle control method

Publications (1)

Publication Number Publication Date
WO2013021445A1 true WO2013021445A1 (en) 2013-02-14

Family

ID=47667998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068044 WO2013021445A1 (en) 2011-07-20 2011-08-08 Vehicle, and vehicle control method

Country Status (4)

Country Link
JP (1) JP5641145B2 (en)
CN (1) CN103717435B (en)
DE (1) DE112011105505B4 (en)
WO (1) WO2013021445A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108859765A (en) * 2018-05-22 2018-11-23 江苏赛麟汽车科技有限公司 A kind of Novel motor controller low-tension supply electricity getting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6330782B2 (en) * 2015-10-27 2018-05-30 トヨタ自動車株式会社 Hybrid vehicle
CN106891729B (en) * 2017-03-21 2020-01-21 北京新能源汽车股份有限公司 Vehicle power-off control method and device and automobile

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050764A (en) * 2004-08-04 2006-02-16 Toyota Motor Corp Motor controller
JP2010183676A (en) * 2009-02-03 2010-08-19 Toyota Motor Corp Device and method for controlling vehicle
JP2011010406A (en) * 2009-06-24 2011-01-13 Toyota Motor Corp Power conversion device for vehicle, and vehicle mounted with the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2914061B2 (en) * 1992-12-07 1999-06-28 日産自動車株式会社 Hybrid car
JP3553146B2 (en) * 1994-08-22 2004-08-11 本田技研工業株式会社 Electric heating type catalyst controller
US6362535B1 (en) * 1999-08-11 2002-03-26 Bae Systems Method and apparatus for after-treatment of hev exhaust
US6381955B1 (en) * 2001-02-07 2002-05-07 Visteon Global Technologies, Inc. Method and system for providing electricity from an integrated starter-alternator to an electrically heated catalyst
JP2005020952A (en) * 2003-06-27 2005-01-20 Toyota Motor Corp Vehicle control device
DE102008010980A1 (en) * 2008-02-25 2009-08-27 Robert Bosch Gmbh Method and device for discharging a high-voltage network
JP4483976B2 (en) * 2008-05-12 2010-06-16 トヨタ自動車株式会社 Hybrid vehicle and control method of hybrid vehicle
JP2010093934A (en) * 2008-10-07 2010-04-22 Toyota Industries Corp Vehicle-mounted apparatus
DE102008061585B4 (en) * 2008-12-11 2019-02-21 Conti Temic Microelectronic Gmbh Vehicle with supply device of an electric motor and method for powering the electric motor
JP4900410B2 (en) * 2009-03-25 2012-03-21 トヨタ自動車株式会社 Vehicle control device
JP5094797B2 (en) * 2009-08-07 2012-12-12 日立オートモティブシステムズ株式会社 DC power supply smoothing capacitor discharge circuit
KR101144033B1 (en) * 2009-12-04 2012-05-23 현대자동차주식회사 Method for controlling motor control system for hybrid vehicle
JP4858607B2 (en) * 2009-12-14 2012-01-18 トヨタ自動車株式会社 Power supply
JP2012187959A (en) * 2011-03-09 2012-10-04 Toyota Motor Corp Hybrid vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050764A (en) * 2004-08-04 2006-02-16 Toyota Motor Corp Motor controller
JP2010183676A (en) * 2009-02-03 2010-08-19 Toyota Motor Corp Device and method for controlling vehicle
JP2011010406A (en) * 2009-06-24 2011-01-13 Toyota Motor Corp Power conversion device for vehicle, and vehicle mounted with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108859765A (en) * 2018-05-22 2018-11-23 江苏赛麟汽车科技有限公司 A kind of Novel motor controller low-tension supply electricity getting device

Also Published As

Publication number Publication date
CN103717435A (en) 2014-04-09
DE112011105505T5 (en) 2014-05-28
JP5641145B2 (en) 2014-12-17
JPWO2013021445A1 (en) 2015-03-05
DE112011105505B4 (en) 2017-04-13
CN103717435B (en) 2016-05-04

Similar Documents

Publication Publication Date Title
JP5011940B2 (en) Power supply device and vehicle
US9074509B2 (en) Control apparatus for vehicle
JP5761371B2 (en) Vehicle and vehicle control method
JP5246339B2 (en) Vehicle control device
JP5633645B2 (en) Vehicle control apparatus and vehicle control method
JP5660104B2 (en) vehicle
JP5716681B2 (en) Vehicle and vehicle control method
JP5928326B2 (en) Electric vehicle and control method of electric vehicle
US10618410B2 (en) Motor vehicle
US10099680B2 (en) Hybrid vehicle
US9225269B2 (en) Vehicle and method for controlling vehicle
JP5641145B2 (en) Vehicle and vehicle control method
JP2009286337A (en) Hybrid vehicle
JP2019131062A (en) Control device for vehicle
JP6365054B2 (en) Electric vehicle
WO2013031002A1 (en) Vehicle
JP2010215106A (en) Control system for hybrid vehicle
JP5673505B2 (en) vehicle
JP2012051515A (en) Hybrid vehicle
JP2007274840A (en) Power unit and method of controlling power unit
JP2005204363A (en) Power supply for vehicle
JP2014139038A (en) Vehicle
JP5621264B2 (en) Vehicle electrical system
JP2007228777A (en) Power supply control unit and vehicle
JP2007089264A (en) Motor driver

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180072666.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870521

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013527768

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14232952

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011105505

Country of ref document: DE

Ref document number: 1120111055056

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870521

Country of ref document: EP

Kind code of ref document: A1