[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013018853A1 - Conjugated polymer composition and photoelectric conversion element using same - Google Patents

Conjugated polymer composition and photoelectric conversion element using same Download PDF

Info

Publication number
WO2013018853A1
WO2013018853A1 PCT/JP2012/069664 JP2012069664W WO2013018853A1 WO 2013018853 A1 WO2013018853 A1 WO 2013018853A1 JP 2012069664 W JP2012069664 W JP 2012069664W WO 2013018853 A1 WO2013018853 A1 WO 2013018853A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated polymer
group
conjugated
polymer composition
photoelectric conversion
Prior art date
Application number
PCT/JP2012/069664
Other languages
French (fr)
Japanese (ja)
Inventor
淳裕 中原
雅典 三浦
隆文 伊澤
拓也 稲垣
杉岡 尚
明士 藤田
大木 弘之
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2013526953A priority Critical patent/JP5844368B2/en
Publication of WO2013018853A1 publication Critical patent/WO2013018853A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1428Side-chains containing oxygen containing acyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM

Definitions

  • the present invention relates to a conjugated polymer composition for forming an organic thin film and a photoelectric conversion element using the organic thin film.
  • Solar cells are attracting attention as a powerful energy source that is friendly to the environment.
  • inorganic materials such as single crystal silicon, polycrystalline silicon, amorphous silicon, and compound semiconductors are used as photoelectric conversion elements for solar cells.
  • These photoelectric conversion elements have a relatively high photoelectric conversion efficiency, but are expensive.
  • the main factor of this high cost is that the photoelectric conversion element is expensive due to the process of manufacturing the semiconductor thin film under high vacuum and high temperature. Therefore, organic solar cells using organic semiconductors such as conjugated polymers and organic crystals and organic dyes are being studied as semiconductor materials that are expected to simplify the manufacturing process. Since these organic semiconductor materials can be formed into a film by a coating method or a printing method, they are attracting attention because the manufacturing process is simplified, mass production is possible, and inexpensive organic solar cells can be obtained.
  • An organic solar cell has a structure in which an organic photoelectric conversion layer made of an organic thin film is provided between two different electrodes.
  • the organic photoelectric conversion layer is formed from a mixture of a bulk heterojunction structure of a conjugated polymer and a fullerene derivative.
  • a typical example is a composition containing poly (3-hexylthiophene) as a conjugated polymer and [6,6] -phenyl C 61 butyric acid methyl ester (PCBM) as a fullerene derivative.
  • the problem of the organic solar cell is to increase the photoelectric conversion efficiency.
  • the photoelectric conversion efficiency can be improved by changing the morphology of the organic photoelectric conversion layer.
  • a method of treating with heat or solvent vapor a method of devising a solvent for dissolving a conjugated polymer or fullerene derivative, a method of adding a high boiling point compound, a method of reducing the volatilization rate of the solvent, and the like can be mentioned.
  • Non-Patent Document 1 In the organic semiconductor composition of a low molecular compound and a high molecular compound disclosed in Patent Document 1, it is difficult to mix a low molecular compound and a conjugated polymer that is a high molecular compound, macrophase separation, The stability of the compound is low because the compound bleeds out.
  • one of the conjugated polymers is not a condensed ⁇ -conjugated skeleton but has a HOMO level mismatch, so that charge transfer does not occur smoothly, and as a result, high conversion efficiency is not obtained.
  • the present invention has been made to solve the above-described problems, and can form an ideal phase separation structure for a photoelectric conversion element, can form a good organic thin film with high solubility in a solvent.
  • An object of the present invention is to provide a possible conjugated polymer composition and a photoelectric conversion element having an excellent photoelectric conversion efficiency using an organic thin film containing the composition.
  • the conjugated polymer composition according to claim 1, which has been made to achieve the above object, includes a divalent heterocyclic group composed of a condensed ⁇ -conjugated skeleton in a main chain, and a fluorine atom.
  • the difference between the conjugated polymer having the maximum value and the conjugated polymer having the minimum value in the solubility parameter of each conjugated polymer is 0.6 or more and 2.0 or less.
  • the conjugated polymer composition according to claim 2 is the conjugated polymer composition according to claim 1, wherein the heterocyclic group is composed of a condensed ⁇ -conjugated skeleton containing at least one thiophene ring as part of a chemical structure. It is characterized by that.
  • the conjugated polymer composition according to claim 3 is the composition according to claim 2, wherein the conjugated polymer comprises a cyclopentadithiophene diyl group, a dithienopyrrole diyl group, a dithienosilole diyl group, a dithieno. It consists of a monomer unit containing at least one divalent heterocyclic group selected from a germoldiyl group, a benzodithiophenediyl group, a naphthodithiophenediyl group, a thienothiophenediyl group, and a thienopyrroledione group. And
  • a conjugated polymer composition according to a fourth aspect is the one according to any one of the first to third aspects, wherein two types of the conjugated polymers have at least 12 carbon atoms in the divalent heterocyclic group.
  • a side chain that is an alkyl group or an alkoxy group, and a side chain that is an alkyl group or an alkoxy group having a maximum of 8 carbon atoms are bonded to the same or different divalent heterocyclic group.
  • a conjugated polymer is the one according to any one of the first to third aspects, wherein two types of the conjugated polymers have at least 12 carbon atoms in the divalent heterocyclic group.
  • a side chain that is an alkyl group or an alkoxy group, and a side chain that is an alkyl group or an alkoxy group having a maximum of 8 carbon atoms are bonded to the same or different divalent heterocyclic group.
  • a conjugated polymer is the one according to any one of the first to third aspects, wherein two types of the
  • the conjugated polymer composition described in claim 5 is the conjugated polymer composition described in any one of claims 1 to 4, wherein two types of the conjugated polymers are obtained by replacing the divalent heterocyclic group with a fluorine-unsubstituted group.
  • the conjugated polymer composition according to claim 6 is the conjugated polymer composition according to any one of claims 1 to 5, wherein at least one of the conjugated polymers is a divalent complex having a condensed ⁇ -conjugated skeleton. It is a random copolymer comprising at least two types of monomer units having a cyclic group.
  • the conjugated polymer composition described in claim 7 is the one described in any one of claims 1 to 6, wherein the conjugated polymer having the maximum solubility parameter and the minimum included in the conjugated polymer composition.
  • An organic semiconductor composition according to claim 8 is characterized by containing the conjugated polymer composition according to any one of claims 1 to 7 and a fullerene derivative.
  • An organic thin film according to claim 9 is characterized by containing the conjugated polymer composition according to any one of claims 1 to 7.
  • the organic thin film element of Claim 10 equips a board
  • the photoelectric conversion element according to claim 11 is characterized in that the organic thin film according to claim 9 is sandwiched between at least two electrodes.
  • the conjugated polymer composition of the present invention contains at least two kinds of conjugated polymers, and a phase separation structure can be formed by adjusting their solubility parameters. With this phase separation structure, it is possible to form an organic thin film with high photoelectric conversion efficiency with controlled morphology.
  • the conjugated polymer composition can form a phase-separated structure, and can control a morphology, whereby a photoelectric conversion element with improved photoelectric conversion efficiency can be obtained.
  • the organic semiconductor composition of the present invention contains a fullerene derivative which is an electron-accepting material together with a conjugated polymer composition having high solubility in a solvent, and can form an ideal phase separation structure.
  • the morphology of the organic thin film of the present invention is controlled, and when used in a photoelectric conversion element, it is possible to produce a high-performance photoelectric conversion element by imparting excellent photoelectric conversion efficiency.
  • the photoelectric conversion element of the present invention includes an organic thin film containing a conjugated polymer composition that controls morphology and improves photoelectric conversion efficiency as an organic photoelectric conversion layer, has excellent photoelectric conversion performance, It can be applied to various photoelectric conversion devices using the optical rectification function.
  • the conjugated polymer composition of the present invention contains a mixture of at least two kinds of conjugated polymers, for example, conjugated polymer A and conjugated polymer B.
  • conjugated polymers is composed of a conjugated divalent monomer and includes a divalent heterocyclic group in its main chain.
  • a conjugated divalent monomer is a divalent group in which electrons in a bond in the molecule are delocalized.
  • the main chain refers to the longest chain in a compound composed of a divalent heterocyclic group.
  • At least two of these conjugated polymers contain a divalent heterocyclic group composed of a condensed ⁇ -conjugated skeleton in the main chain, and are side chains that are alkyl groups or alkoxy groups that may be substituted with fluorine atoms or hydroxyl groups. It is the structure which has. That is, the conjugated polymer composition of the present invention contains the conjugated polymer containing a divalent heterocyclic group composed of a condensed ⁇ -conjugated skeleton in the main chain as an essential component.
  • divalent heterocyclic group composed of a condensed ⁇ -conjugated skeleton examples include a dibenzosilolediyl group, a dibenzogermoldiyl group, a dibenzofurandiyl group, a carbazolediyl group, a benzothiadiazolediyl group, a benzotriazole group, Examples include pentadithiophene diyl group, dithienopyrrole diyl group, dithienosilole diyl group, dithienogermole diyl group, benzodithiophene diyl group, naphthodithiophene diyl group, thienothiophene diyl group, and thienopyrrole dione group. .
  • a condensed ⁇ -conjugated skeleton containing at least one thiophene ring as a part of the chemical structure is preferable from the viewpoint that the morphology is easily controlled and the performance as a photoelectric conversion element is high.
  • cyclopentadithiophene diyl group, dithienopyrrole diyl group, dithienosilole diyl group, dithienogermol diyl group, benzodithiophene diyl group, naphthodithiophene diyl group, thienothiophene diyl group, thienopyrrole A dione group is preferred.
  • any of the conjugated polymers contained in the conjugated polymer composition of the present invention is composed of a divalent monomer composed of a heterocyclic group having a monocyclic structure
  • photoelectric conversion Since efficiency is not high, it is not preferable.
  • the divalent heterocyclic group is an unsubstituted or substituted thiophenediyl group having a monocyclic structure
  • synthesis is easy, but the wavelength range of light to be absorbed is a short wavelength, and it was used for a photoelectric conversion element. In this case, the photoelectric conversion efficiency is not high, which is not preferable.
  • the conjugated polymer contained in the conjugated polymer composition has a charge transport that the main chain skeleton is a divalent heterocyclic group composed of the same condensed ⁇ -conjugated skeleton. From the viewpoint of
  • the conjugated polymer has a structure in which a plurality of divalent heterocyclic groups are linked (for example, monomer unit -ab-) as one unit. And is regarded as a conjugated divalent monomer unit composed of a condensed ⁇ -conjugated skeleton in the present invention. That is, the completely alternating copolymer of the monomer unit -a- and the monomer unit -b- is a homopolymer of the monomer unit -ab as long as it is a repeating unit having the same substituent. Shall be deemed.
  • a ring structure excluding substituents in one type of monomer unit including the embodiment of the monomer unit -ab- is constituted.
  • the total number of carbon atoms alone is preferably 6-30.
  • the alkyl group or alkoxy group which may be substituted with a fluorine atom or hydroxyl group as a side chain is at least the monomer unit -a- or the monomer unit. It suffices to bind to either of -b-.
  • -ab can be regarded as a conjugated divalent monomer composed of a condensed ⁇ -conjugated skeleton constituting a conjugated polymer.
  • the copolymerization rate is preferably 50% by mass or less, more preferably 30% by mass or less, and more preferably 20% by mass with respect to the conjugated polymer. % Or less is more preferable.
  • the copolymerization rate is too high, the performance of the photoelectric conversion element may deteriorate.
  • Specific examples of the divalent group other than the divalent heterocyclic group include an acetylene group and an arylene group.
  • the number average molecular weight of the conjugated polymer which is an essential component contained in the conjugated polymer composition, is the number average molecular weight in terms of polystyrene from the viewpoint of easy phase separation of the conjugated polymer composition, hole mobility and mechanical properties. It is preferably 10,000 g / mol or more, specifically 10,000 to 500,000 g / mol, more preferably 15,000 to 250,000 g / mol, and most preferably 20,000 to 150,000 g / mol.
  • a method for measuring the number average molecular weight known methods can be used, but measurement by size exclusion chromatography is preferred because it is simple and has a wide range of applicable polymers.
  • a standard polymer having a narrow molecular weight distribution and a known molecular weight can be used, but in the present invention, standard polystyrene is used and a polystyrene-equivalent number average molecular weight is adopted.
  • a known method can be used. That is, various coupling polymerizations can be used. Examples of the coupling reaction include Suzuki coupling, Kumada coupling, leek coupling, Stille coupling, Sonogashira coupling and the like.
  • the respective mass ratios of the conjugated polymer having the maximum solubility parameter and the conjugated polymer having the minimum solubility parameter are not particularly limited.
  • the mass ratio is preferably 95: 5 to 5:95, more preferably 90:10 to 10:90, and still more preferably 85:15 to 15:85.
  • the content of the conjugated polymer giving higher photoelectric conversion efficiency is larger.
  • the conjugated polymer composition preferably contains at least one crystalline conjugated polymer from the viewpoint of hole mobility.
  • the crystalline conjugated polymer referred to here is a polymer in which a part of the polymer is crystallized or in a liquid crystal state.
  • the crystalline polymer can be discriminated by X-ray diffraction or differential scanning calorimetry (DSC). In the present invention, it is determined that the weak polymer packing state, which is observed only by the aromatic ring ⁇ - ⁇ stack by the X-ray diffraction method, is also crystalline.
  • the conjugated polymer composition may contain a conjugated polymer having a structure other than the conjugated polymer which is an essential component.
  • the content is preferably 50% by mass or less, more preferably 30% by mass or less, from the viewpoint of controlling the morphology and the conversion efficiency of the photoelectric conversion element obtained by controlling the morphology, More preferably, it is at most mass%.
  • the conjugated polymer having a structure other than the conjugated polymer which is an essential component is preferably a conjugated polymer having a structure close to the structure of either the conjugated polymer A or the conjugated polymer B which is an essential component of the conjugated polymer composition.
  • the conjugated polymer composition may contain other non-conjugated polymers as long as it contains two or more kinds of conjugated polymers as essential components.
  • the content of the non-conjugated polymer is not particularly limited as long as it does not lower the conversion efficiency of the photoelectric conversion element, but is preferably 50% by mass or less, and 30% by mass or less with respect to the total mass of the conjugated polymer composition. Is more preferable, and is most preferably 10% by mass or less.
  • Such non-conjugated polymers are not involved in the solubility parameter in the present invention.
  • the difference between the conjugated polymer A having the maximum solubility parameter and the conjugated polymer B having the minimum solubility parameter is 0.6. It is the feature that it is 2.0 or less.
  • the difference between the maximum value and the minimum value of the solubility parameter is preferably 0.6 or more and 1.8 or less, more preferably 0.6 or more and 1.6 or less, and 0.7 or more and 1.6 or less. Is most preferable.
  • the conjugated polymer composition can be phase-separated.
  • the difference between the maximum and minimum solubility parameters is 2.0 or less. If the difference between the maximum value and the minimum value of the solubility parameter is greater than 2.0, the solubility of the conjugated polymer in the solvent will be significantly reduced, making it difficult to obtain a thin film, In some cases, the phase separation size becomes too large, and high conversion efficiency may not be obtained when a photoelectric conversion element is used.
  • the ideal phase separation structure means that the components which are two or more kinds of conjugated polymers contained in the conjugated polymer composition have a co-continuous structure. It is also important that one conjugated polymer domain of these phase separation structures contains more fullerene derivatives, which are electron accepting materials than the other domains. By forming such a morphology, charge can be carried to the electrode without recombination or deactivation, so that the short-circuit current density is increased and a high-performance photoelectric conversion element can be manufactured.
  • the method for controlling the solubility parameter can be controlled by the molecular structure of the conjugated polymer.
  • the solubility parameter can be adjusted by changing the main chain skeleton of each conjugated polymer. It is also possible to adjust the solubility parameter by changing the side chain structure and the side chain density.
  • the solubility parameter is controlled by changing the side chain structure, it can be controlled by the number of carbons in the side chain, the type of atoms bonded to the side chain carbon, and the functional group bonded to the side chain.
  • the side chain is an alkyl group or an alkoxy group which may be substituted with a fluorine atom or a hydroxyl group.
  • the side chain refers to a part having carbon branched from a conjugated main chain.
  • the number of carbon atoms in the side chain is preferably 1 or more, more preferably 2 or more, and even more preferably 3 or more. Further, the number of carbon atoms in the side chain is preferably 20 or less, and more preferably 16 or less.
  • the carbon number of the side chain means the carbon number per side chain bonded to the main chain.
  • the conjugated polymer has a plurality of different types of side chains
  • at least one of them may be an alkyl group or an alkoxy group which may be substituted with a fluorine atom or a hydroxyl group.
  • the content of the side chain other than the alkyl group or alkoxy group is not particularly limited as long as the difference in solubility parameter can be adjusted. Examples of such other side chains include acyl groups and ester groups.
  • solubility parameter it is not preferable to control the solubility parameter by the type of the functional group bonded to the carbon of the alkyl group or alkoxy group which may be substituted with a fluorine atom or a hydroxyl group as a side chain.
  • a functional group such as an ether group, an epoxy group, an amino group, an amide group, or an iodine atom is not preferable in that the packing of the polymer is inhibited, the crystallinity is lowered, and the hole movement does not occur smoothly.
  • a bulky functional group that is bonded to an alkyl group or alkoxy group that may be substituted with a fluorine atom or a hydroxyl group is not preferable in that crystallization is inhibited and hole movement does not occur smoothly.
  • fluorine atoms are useful because they do not inhibit crystallization, but rather promote crystallization.
  • a hydroxyl group is also useful because it can be expected to be crystallized by hydrogen bonding. However, when two or more hydroxyl groups are present per side chain, crystallization is inhibited by forming strong hydrogen bonds between them or by hydrogen bonding between side chains in one polymer. Since there are cases, it is not preferable.
  • Preferred examples of the alkyl group substituted with a hydroxyl group include a hydroxymethyl group, 2-hydroxyethyl group, 3-hydroxypropyl group, 3-hydroxyisopropyl group, 4-hydroxybutyl group, 3-hydroxybutyl group, 3 -Hydroxyisobutyl group, hydroxy tert-butyl group, 5-hydroxypentyl group, 4-hydroxyisopentyl group, 6-hydroxyhexyl group, 6-hydroxy-2-ethylhexyl group, 7-hydroxyheptyl group, 8-hydroxyoctyl group , 9-hydroxynonyl group, 10-hydroxydecyl group, 12-hydroxydodecyl group, 16-hydroxyhexadecyl group, 8-hydroxy-3,7-dimethyloctyl group, etc. other than ⁇ -hydroxyalkyl group and ⁇ -position An alkyl group having a hydroxy group It is.
  • Preferred alkoxy groups substituted with a hydroxyl group include, for example, hydroxymethoxy group, 2-hydroxyethoxy group, 3-hydroxypropoxy group, 3-hydroxyisopropoxy group, 4-hydroxybutoxy group, 3-hydroxybutoxy group, 3-hydroxyisobutoxy group, hydroxy tert-butoxy group, 5-hydroxypentyloxy group, 4-hydroxyisopentyloxy group, 6-hydroxyhexyloxy group, 6-hydroxy-2-ethylhexyloxy group, 7-hydroxyheptyloxy group Group, 8-hydroxyoctyloxy group, 9-hydroxynonyloxy group, 10-hydroxyoxy group, 12-hydroxydodecyloxy group, 16-hydroxyhexadecyloxy group, 8-hydroxy-3,7-dimethyloctyloxy group, etc. , An alkoxy group having a hydroxy group in addition ⁇ - hydroxyalkyl groups and ⁇ - positions.
  • conjugated polymers having different numbers of alkyl groups or alkoxy groups A combination of a conjugated polymer mainly containing side chains having 8 or less carbon atoms and a conjugated polymer mainly containing side chains having 12 to 20 carbon atoms is preferred, and has 3 to 8 carbon atoms. A combination of a conjugated polymer mainly containing the following side chains and a conjugated polymer mainly containing 12 to 20 side chains is more preferred. In the case of a conjugated polymer having a side chain with a small number of carbon atoms, it is possible to increase the value of the solubility parameter.
  • the solubility of the conjugated polymer in a solvent is reduced, which is a preferable organic thin film. Cannot be obtained.
  • the solubility parameter it is possible to reduce the value of the solubility parameter.
  • the number of carbon atoms is as large as 20 or more, it is difficult for the conjugated polymer chains to approach each other. This makes it difficult for the charges and excitons to move, and increases the number of components that do not contribute to photoelectric conversion, thereby reducing the short-circuit current density.
  • side chains do not need to be side chains in which all the side chains in the conjugated polymer are limited to these carbon numbers, and can be combined with other side chains.
  • the monomer unit of the conjugated polymer has a plurality of side chains
  • one conjugated polymer has a carbon number.
  • Preferred alkyl groups for adjusting the solubility parameter of the conjugated polymer by the number of carbons in the side chain include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group Tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, n-hexyl group, isohexyl group, 2-ethylhexyl group, n-heptyl group, n-octyl group, n-nonyl group, Examples include n-decyl group, n-hexadecyl group, 3,7-dimethyloctyl group, n-dodecyl group and the like.
  • Preferred alkoxy groups for adjusting the solubility parameter of the conjugated polymer by the number of carbons in the side chain include, for example, methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, n-butoxy group, n-hexyl group, Examples thereof include an n-octyloxy group, an n-decyloxy group, a 2-ethylhexyloxy group, an n-dodecyloxy group, an n-hexadecyloxy group, a 3,7-dimethyloctyloxy group, and an n-dodecyloxy group.
  • a side chain is preferred, a side chain containing 5 or more is more preferred, and a side chain containing 5 or more and 13 or less is more preferred.
  • the monomer unit of the conjugated polymer has a plurality of side chains, when comparing at least one side chain different from each other among the side chains contained in each monomer unit, one conjugated polymer contains 3 fluorine atoms. It is preferable to have at least one side chain.
  • a conjugated polymer composition having a desired difference in solubility parameter can be obtained by combining such a conjugated polymer having a side chain and a conjugated polymer having a side chain not containing a fluorine atom.
  • the solubility parameter of the conjugated polymer having a side chain containing a fluorine atom decreases as the number of fluorine atoms increases.
  • the solubility parameter can be increased.
  • the difference between the maximum value and the minimum value of the solubility parameter becomes small.
  • preferred fluorinated alkyl groups include, for example, trifluoromethyl group, 2,2,2-trifluoroethyl group 2,2,2,1,1-pentafluoroethyl group, 4,4,4-trifluorobutyl group, 6,6,6-trifluorohexyl group, 5,5,6,6,6-pentafluoro Hexyl group, 7,7,7-trifluoroheptyl group, 4,4,5,5,6,6,7,7,7-nonafluoroheptyl group, 8,8,8-trifluorooctyl group, 7, ⁇ -trifluoromethylalkyl group and perfluoroalkyl group such as 7,8,8,8-pentafluorooctyl group, 5,5,6,6,7,7,8,8,8-nonafluorooctyl
  • preferred fluorinated alkoxy groups include, for example, trifluoromethoxy group, 2,2,2-trifluoroethoxy group 2,2,2,1,1-pentafluoroethoxy group, 4,4,4-trifluorobutoxy group, 6,6,6-trifluorohexyloxy group, 5,5,6,6,6-penta Fluorohexyloxy group, 7,7,7-trifluoroheptyloxy group, 4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy group, 8,8,8-trifluorooctyl ⁇ -trifluoro such as oxy group, 7,7,8,8,8-pentafluorooctyloxy group, 5,5,6,6,7,7,8,8,8-nonafluorooctyloxy group Chiruarukok
  • the conjugated polymer which is an essential component constituting the conjugated polymer composition of the present invention may be a homopolymer comprising one type of monomer unit or a random copolymer having two or more types of monomer units. It may be a graft copolymer or a block copolymer.
  • the solubility parameter can also be controlled by using at least one of the conjugated polymers constituting the conjugated polymer composition as a homopolymer and the other as a copolymer.
  • at least one of the conjugated polymers is a random copolymer composed of at least two types of monomer units having a divalent heterocyclic group composed of a condensed ⁇ -conjugated skeleton.
  • the Bicerano method is used.
  • Other methods include, for example, Hildebrand method, Small method, Fedors method, Van Krevelen method, Hansen method, Hoy method, Ascadskii method, Okitsu method, etc., but in these methods the solubility parameter of the polymer having a heterocyclic ring Cannot be used because it cannot be calculated or is not accurate.
  • the calculation method by the Bicerano method is described in “Prediction of Polymer Properties, 3rd Ed.” (2002), CRC Press, written by Jozef Bicerano.
  • the unit of the solubility parameter is MPa 1/2 .
  • Various computer software can be used when calculating solubility parameters using the Bicerano method.
  • the conjugated polymer composition of the present invention needs to calculate a solubility parameter for each conjugated polymer contained.
  • the solubility parameter of the random copolymer is calculated as in the following formula (A).
  • [Solubility parameter of random copolymer] ⁇ ( ⁇ i ⁇ ⁇ i) (A)
  • ⁇ i Solubility parameter of a polymer consisting only of i units that are components of a random copolymer
  • a conjugated polymer composition containing each conjugated polymer with adjusted solubility parameters is useful as an organic semiconductor material, and can form an organic thin film with controlled morphology.
  • a fullerene derivative is preferably used as the electron-accepting material. Therefore, it becomes an organic semiconductor composition which forms an organic thin film by mixing at least the conjugated polymer composition of the present invention and a fullerene derivative.
  • the organic semiconductor composition of the present invention is a mixture of at least a conjugated polymer composition and a fullerene derivative in the presence of a solvent. This organic semiconductor composition is useful as a functional layer of a photoelectric conversion element.
  • fullerene derivative which is an electron-accepting material examples include C 60 , C 70 , C 84 and derivatives thereof. Specific structural examples of fullerene derivatives are shown in the following chemical formulas (a) to (nu).
  • the ratio of the conjugated polymer composition to the fullerene derivative is preferably 10 to 1000 parts by weight, and preferably 50 to 500 parts by weight with respect to 100 parts by weight of the conjugated polymer composition. More preferably.
  • the content of the third component is preferably 30% by mass or less, and preferably 10% by mass or less, based on the total weight of the conjugated polymer composition and the fullerene derivative, from the viewpoint of the performance of the photoelectric conversion element. preferable.
  • the method for mixing the conjugated polymer composition and the fullerene derivative is not particularly limited, but after adding to the solvent at a desired ratio, one or more methods such as heating, stirring, and ultrasonic irradiation are combined. And a method of dissolving and mixing in a solvent.
  • the solvent used when mixing the conjugated polymer composition and the fullerene derivative is not particularly limited as long as it is a solvent that can be mostly dissolved.
  • Specific examples include ethers such as tetrahydrofuran, halogen solvents such as methylene chloride and chloroform, and aromatic solvents such as benzene, toluene, orthoxylene, chlorobenzene, orthodichlorobenzene and pyridine.
  • the organic semiconductor composition containing the conjugated polymer composition of the present invention and the conjugated polymer composition and fullerene derivative can form an organic thin film by a known printing method or coating method.
  • a film formation method spin coating method, casting method, micro gravure coating method, gravure coating method, slot die coating method, bar coating method, roll coating method, dip coating method, spray coating method, screen printing method, A flexographic printing method, an offset printing method, an ink jet printing method, a nozzle coating method, a capillary coating method, and the like can be used.
  • An organic thin film containing a conjugated polymer composition is useful as an organic transistor, a photoelectric conversion element, or an organic thin film element.
  • the organic thin film element is, for example, one in which an organic thin film containing a conjugated polymer composition is attached to the substrate surface.
  • the film thickness of the organic thin film containing this conjugated polymer composition is difficult to determine in general depending on the intended use, but is usually 1 nm to 1 ⁇ m, preferably 2 nm to 1000 nm, more preferably 5 nm. It is ⁇ 500 nm, more preferably 20 nm to 300 nm.
  • the photoelectric conversion element of the present invention is an organic thin film containing the conjugated polymer composition of the present invention between at least two different electrodes, that is, a positive electrode 2 and a negative electrode 4 on a substrate 5.
  • a certain organic photoelectric conversion layer 3 is provided.
  • the photoelectric conversion element 1 may be one in which the positions of the positive electrode 2 and the negative electrode 4 are reversed depending on the type of the electrode.
  • the electrode of the photoelectric conversion element 1 has optical transparency in either the positive electrode 2 or the negative electrode 4.
  • the light transmittance of the electrode is not particularly limited as long as incident light reaches the organic photoelectric conversion layer 3 and an electromotive force is generated.
  • the thickness of the electrode may be in a range having light transmittance and conductivity, and varies depending on the electrode material, but is preferably 20 nm to 300 nm. Note that in the case where one electrode has light transparency, the light transmission property is not necessarily required as long as the other electrode has conductivity. Furthermore, the thickness of this electrode is not particularly limited.
  • the electrode material it is preferable to use a conductive material having a high work function for one electrode and a conductive material having a low work function for the other electrode.
  • An electrode using a conductive material having a large work function is the positive electrode 2.
  • Conductive materials with a large work function include metals such as gold, platinum, chromium and nickel, transparent metal oxides such as indium and tin, composite metal oxides (indium tin oxide (ITO), indium Zinc oxide (IZO), fluorine-doped tin oxide (FTO), etc.) are preferably used.
  • the conductive material used for the positive electrode 2 is preferably one that is in ohmic contact with the organic photoelectric conversion layer 3. Furthermore, when a hole transport layer described later is used, it is preferable that the conductive material used for the positive electrode 2 is in ohmic contact with the hole transport layer.
  • An electrode using a conductive material having a small work function is the negative electrode 4, and as the conductive material having a small work function, alkali metal or alkaline earth metal, specifically, lithium, magnesium, or calcium is used. . Tin, silver, and aluminum are also preferably used. Furthermore, an electrode made of an alloy made of the above metal or a laminate of the above metal is also preferably used. Further, it is possible to improve the extraction current by introducing a metal fluoride such as lithium fluoride or cesium fluoride into the interface between the negative electrode 4 and the electron transport layer.
  • the conductive material used for the negative electrode 4 is preferably one that is in ohmic contact with the organic photoelectric conversion layer 3. Furthermore, when the electron transport layer is used, it is preferable that the conductive material used for the negative electrode 4 is in ohmic contact with the electron transport layer.
  • the substrate 5 may be any substrate that does not change when the electrode is formed and the organic photoelectric conversion layer 3 is formed.
  • inorganic materials such as alkali-free glass and quartz glass, metal films such as aluminum, and any organic material such as polyester, polycarbonate, polyolefin, polyamide, polyimide, polyphenylene sulfide, polyparaxylene, epoxy resin and fluorine resin Films and plates produced by the method can be used. If an opaque substrate is used, the opposite electrode, i.e. the electrode far from the substrate, must be transparent or translucent.
  • the film thickness of the substrate 5 is not particularly limited, but is usually in the range of 1 ⁇ m to 10 mm.
  • the surface is cleaned and modified by physical means such as ultraviolet ozone treatment, corona discharge treatment, and plasma treatment. It is preferable to apply.
  • a method of chemically modifying the surface of the solid substrate such as a silane coupling agent, a titanate coupling agent, and a self-assembled monolayer is also effective.
  • the photoelectric conversion element 1 may be provided with a hole transport layer between the positive electrode 2 and the organic photoelectric conversion layer 3 as necessary.
  • conductive polymers such as polythiophene polymers, poly-p-phenylene vinylene polymers, polyfluorene polymers, phthalocyanine derivatives (H2Pc, CuPc, ZnPc, etc.), Low molecular organic compounds exhibiting p-type semiconductor properties such as porphyrin derivatives are preferably used.
  • PEDOT polyethylenedioxythiophene
  • PEDOT polyethylenedioxythiophene
  • PEDOT polyethylenedioxythiophene
  • PEDOT polystyrene sulfonate
  • the thickness of the hole transport layer is preferably 5 nm to 600 nm, more preferably 20 nm to 300 nm.
  • the photoelectric conversion element 1 may be provided with an electron transport layer between the negative electrode 4 and the organic photoelectric conversion layer 3 as necessary.
  • n-type semiconductor materials such as phenanthrene compounds such as bathocuproine, naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and N-type inorganic oxides such as titanium oxide, zinc oxide, and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used.
  • a layer made of a single n-type semiconductor material used for the bulk heterojunction layer can also be used.
  • the photoelectric conversion element 1 may further have an inorganic layer.
  • the material contained in the inorganic layer include titanium oxide, tin oxide, zinc oxide, iron oxide, tungsten oxide, zirconium oxide, hafnium oxide, strontium oxide, indium oxide, cerium oxide, yttrium oxide, lanthanum oxide, and vanadium oxide.
  • Metal oxides such as niobium oxide, tantalum oxide, gallium oxide, nickel oxide, strontium titanate, barium titanate, potassium niobate, sodium tantalate; silver iodide, silver bromide, copper iodide, copper bromide, Metal halides such as lithium fluoride; metals such as zinc sulfide, titanium sulfide, indium sulfide, bismuth sulfide, cadmium sulfide, zirconium sulfide, tantalum sulfide, molybdenum sulfide, silver sulfide, copper sulfide, tin sulfide, tungsten sulfide, and antimony sulfide Sulfides; cadmium selenide, selenium Metal selenides such as zirconium selenide, zinc selenide, titanium selenide, indium selenide, tungsten selenide, moly
  • the photoelectric conversion element 1 of the present invention has a photoelectric conversion function and an optical rectification function (photo It can be applied to various photoelectric conversion devices using diodes). For example, it is useful for photovoltaic cells (such as solar cells), electronic devices (such as optical sensors, optical switches, phototransistors), optical recording materials (such as optical memories), and the like.
  • photovoltaic cells such as solar cells
  • electronic devices such as optical sensors, optical switches, phototransistors
  • optical recording materials such as optical memories
  • the conjugated polymer A1 was synthesized according to the following reaction formula (1).
  • ethylhexyl as a substituent is abbreviated as EtHex or HexEt.
  • EtHex ethylhexyl
  • HexEt HexEt
  • 2,6-dibromo-4,4′-bis (2-ethylhexyl) -cyclopenta [2,1-b: 3,4-b ′] dithiophene (1.50 g, 2.68 mmol).
  • the reaction solution was poured into methanol (500 mL), the precipitated solid was collected by filtration, washed with water (100 mL) and methanol (100 mL), and the resulting solid was dried under reduced pressure to obtain a crude product. It was.
  • the crude product was washed with acetone (200 mL) and hexane (200 mL) using a Soxhlet extractor, and then extracted with chloroform (200 mL).
  • the obtained solution was poured into methanol (2 L), and the precipitated solid was collected by filtration and dried under reduced pressure to obtain a conjugated polymer A1 as a black purple solid (1.04 g, 41%).
  • the obtained conjugated polymer A1 was subjected to physicochemical analysis.
  • the molecular structure was identified by 1 H-NMR (nuclear magnetic resonance) measurement.
  • 1 H-NMR (270 MHz): ⁇ 8.10-7.95 (m, 2H), 7.80-7.61 (m, 2H), 2.35-2.12 (m, 4H), 1 .60-1.32 (m, 18H), 1.18-0.82 (m, 12H)
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • phenylboronic acid pinacol ester (273 mg, 1.34 mmol) was added, and the mixture was stirred at 80 ° C. for 18 hours.
  • the reaction solution was poured into methanol (500 mL), the precipitated solid was collected by filtration, washed with water (100 mL) and methanol (100 mL), and the resulting solid was dried under reduced pressure to obtain a crude product. It was.
  • the crude product was washed with acetone (200 mL) and hexane (200 mL) using a Soxhlet extractor, and then extracted with chloroform (200 mL).
  • the obtained solution was poured into methanol (2 L), and the precipitated solid was collected by filtration and dried under reduced pressure to obtain a conjugated polymer A2 as a black purple solid (1.03 g, 38%).
  • the conjugated polymer A3 was synthesized according to the following reaction formula (3).
  • 2,6-dibromo-4,4′-bis (2-ethylhexyl) -cyclopenta [2,1-b: 3,4-b ′] dithiophene (1.50 g, 2.68 mmol).
  • 4,7-bis (3,3,4,4-tetramethyl-2,5,1-dioxaborolan-1-yl) benzo [c] [1,2,5] thiadiazole (1.04 g, 2.
  • the reaction solution was poured into methanol (500 mL), the precipitated solid was collected by filtration, washed with water (100 mL) and methanol (100 mL), and the resulting solid was dried under reduced pressure to obtain a crude product. It was.
  • the crude product was washed with acetone (200 mL) and hexane (200 mL) using a Soxhlet extractor, and then extracted with chloroform (200 mL).
  • the obtained solution was poured into methanol (2 L), and the precipitated solid was collected by filtration and dried under reduced pressure to obtain a conjugated polymer A3 as a black purple solid (1.06, 42%).
  • the conjugated polymer A7 was synthesized according to the following reaction formula.
  • a well-dried eggplant flask A that had been purged with argon was treated with 25 mL of dehydrated and peroxide-removed THF, 1.865 g (5 mmol) of 2-bromo-5-iodo-3-hexylthiophene, and i-propyl.
  • 2.5 mL of a 2.0 M solution of magnesium chloride was added and stirred at 0 ° C. for 30 minutes to synthesize an organomagnesium compound solution represented by the chemical formula (a1) in the above reaction formula.
  • THF as a solvent was purified by distillation of dehydrated tetrahydrofuran (without stabilizer) manufactured by Wako Pure Chemical Industries, Ltd. in the presence of metallic sodium, and then on molecular sieves 5A manufactured by Wako Pure Chemical Industries, Ltd. for one day or more. Purification was carried out by contact. The polymer was purified using a preparative GPC column. As the apparatus, Recycling Preparative HPLC LC-908 manufactured by Japan Analytical Industry was used. The column type used was a series of two styrene polymer columns 2H-40 and 2.5H-40 manufactured by Nihon Analytical Industries. Further, chloroform was used as an elution solvent.
  • the conjugated polymer A10 was synthesized according to the following reaction formula.
  • 3-heptyl as a substituent is abbreviated as 3-Hep or Hep-3.
  • methyl as a substituent is abbreviated as Me.
  • the resulting conjugated polymer A10 was purified using a preparative GPC column.
  • a preparative GPC column As a device for purification, Recycling Preparative HPLC LC-908 manufactured by Japan Analytical Industry Co., Ltd. was used.
  • the type of the column is one in which two styrene polymer columns 2H-40 and 2.5H-40 manufactured by Nippon Analytical Industries, Ltd. are connected in series.
  • the column and injector were 145 ° C., and the elution solvent was chloroform.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the resulting conjugated polymer A10 (0.51 g, 86%) are both in terms of polystyrene based on measurement by gel permeation chromatography (GPC). Obtained by value.
  • GPC / V2000 manufactured by Waters was used as the GPC apparatus, and two columns of Shodex AT-G806MS manufactured by Showa Denko were connected in series as the column. The column and injector were 145 ° C., and o-dichlorobenzene was used as an elution solvent.
  • conjugated polymer A12 As a monomer constituting the conjugated polymer A12, 2,6-bis (trimethyltin) -4,8-dipropylbenzo [1,2-b: 4,5-b ′] dithiophene (0.45 g, 0.75 mmol) ) And 1- (4,6-dibromothieno [3,4-b] thiophen-2-yl) -2-ethylhexane-1-one (0.32 g, 0.75 mmol) A similar method was used to obtain conjugated polymer A12 (0.31 g, 77%).
  • Example 4 For each conjugated polymer composition obtained in Example 4 and Comparative Examples 9 and 10, 5.0 mg of the conjugated polymer composition and 7.5 mg of PC 71 BM (E110 manufactured by Frontier Carbon Co.) as an electron-accepting material were used. A solution containing the conjugated polymer composition and PC 71 BM was prepared in the same manner except that it was used.
  • PC 71 BM E110 manufactured by Frontier Carbon Co.
  • a glass substrate provided with an ITO film (resistance value 10 ⁇ / ⁇ ) with a thickness of 150 nm by sputtering was subjected to surface treatment by ozone UV treatment for 15 minutes.
  • a PEDOT: PSS aqueous solution (manufactured by HC Starck Co., Ltd .: CLEVIOS PH500) serving as a hole transport layer was formed on the substrate to a thickness of 40 nm by spin coating. After heating and drying at 140 ° C.
  • Tables 1 to 3 show the conjugated polymer composition and conjugated polymer used as a thin film forming material for the organic photoelectric conversion layer, the structure of the conjugated polymer constituting the conjugated polymer composition, its solubility parameter (SP value), and the conjugated polymer. The difference of the solubility parameter of A and B and the photoelectric conversion efficiency of the organic thin film solar cell were shown.
  • conjugated polymers constituting the conjugated polymer composition contain a divalent heterocyclic group composed of a condensed ⁇ -conjugated skeleton in the main chain, and the number average molecular weight of each conjugated polymer is at least 10,000 g /
  • the conjugated polymer composition of the present invention in which the difference between the maximum value (conjugated polymer A) and the minimum value (conjugated polymer B) among the solubility parameters of each conjugated polymer is 0.6 or more and 2.0 or less is used. It can be seen that the organic thin film solar cells (Examples 1 to 4) had high conversion efficiency.
  • Comparative Examples 1, 4 to 6, 9, and 10 have high conversion efficiency because they contain only one type of conjugated polymer containing a divalent heterocyclic group consisting of a condensed ⁇ -conjugated skeleton in the main chain. Absent.
  • Comparative Example 2 contains two types of conjugated polymers containing a divalent heterocyclic group composed of a condensed ⁇ -conjugated skeleton in the main chain, the solubility parameter of the conjugated polymer constituting the composition is the maximum value (conjugated) Since the difference between the polymer A) and the minimum value (conjugated polymer B) is not in the range of 0.6 or more and 2.0 or less, it can be seen that high conversion efficiency is not obtained.
  • Comparative Examples 3 and 7 do not contain a conjugated polymer containing a divalent heterocyclic group composed of a condensed ⁇ -conjugated skeleton in the main chain, the conversion efficiency is inferior.
  • the number average molecular weight of the conjugated polymer contained is less than 10,000 g / mol, and the conversion efficiency is inferior because the constituent requirements of the present invention are not satisfied.
  • the conjugated polymer composition of the present invention can be used as a photoelectric conversion layer of a photoelectric conversion element.
  • the photoelectric conversion element using the organic thin film containing the conjugated polymer composition is used widely as various optical sensors including a solar cell.
  • 1 is a photoelectric conversion element
  • 2 is a positive electrode
  • 3 is an organic photoelectric conversion layer
  • 4 is a negative electrode
  • 5 is a substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

Provided is a conjugated polymer composition whereby a phase-separated structure ideal for a photoelectric conversion element can be formed, and whereby a favorable organic thin film that is highly soluble in solvents can be formed. This conjugated polymer composition has a main chain including a divalent heterocyclic group comprising a fused-ring π-conjugated backbone, has a side chain which is an alkoxy group or alkyl group optionally substituted with a fluorine atom or hydroxyl group, and contains at least two types of conjugated polymers having a number average molecular weight in terms of polystyrene of at least 10,000 g/mol, wherein the difference between the conjugated polymer having the greatest value and the conjugated polymer having the lowest value for a solubility parameter of each of the conjugated polymers is 0.6 to 2.0.

Description

共役ポリマー組成物及びそれを用いた光電変換素子Conjugated polymer composition and photoelectric conversion element using the same
 本発明は、有機薄膜を形成する共役ポリマー組成物及びその有機薄膜による光電変換素子に関する。 The present invention relates to a conjugated polymer composition for forming an organic thin film and a photoelectric conversion element using the organic thin film.
 太陽電池は環境に優しい有力なエネルギー源として注目されている。現在、太陽電池の光電変換素子としては、単結晶シリコン、多結晶シリコン、アモルファスシリコン、化合物半導体などの無機物が使用されている。これらの光電変換素子は比較的高い光電変換効率を有するが、高価格なものである。このコスト高の主な要因は、高真空かつ高温下で半導体薄膜を製造するプロセスのせいで光電変換素子が高価なことにある。そこで、製造プロセスの簡略化が期待される半導体素材として、共役ポリマーや有機結晶などの有機半導体や有機色素を用いた有機太陽電池が検討されている。これらの有機半導体材料は、塗布法や印刷法により製膜できるため、製造プロセスが簡便化し、大量生産が可能で安価な有機太陽電池を得ることが可能であるとして注目されている。 Solar cells are attracting attention as a powerful energy source that is friendly to the environment. At present, inorganic materials such as single crystal silicon, polycrystalline silicon, amorphous silicon, and compound semiconductors are used as photoelectric conversion elements for solar cells. These photoelectric conversion elements have a relatively high photoelectric conversion efficiency, but are expensive. The main factor of this high cost is that the photoelectric conversion element is expensive due to the process of manufacturing the semiconductor thin film under high vacuum and high temperature. Therefore, organic solar cells using organic semiconductors such as conjugated polymers and organic crystals and organic dyes are being studied as semiconductor materials that are expected to simplify the manufacturing process. Since these organic semiconductor materials can be formed into a film by a coating method or a printing method, they are attracting attention because the manufacturing process is simplified, mass production is possible, and inexpensive organic solar cells can be obtained.
 有機太陽電池は、2つの異種電極間に有機薄膜からなる有機光電変換層が設けられた構造をしているものである。一般に有機光電変換層は、共役ポリマー及びフラーレン誘導体のバルクへテロジャンクション構造の混合物から形成されている。その代表例として、共役ポリマーとしてポリ(3-ヘキシルチオフェン)、フラーレン誘導体として[6,6]-フェニルC61酪酸メチルエステル(PCBM)を含む組成物が挙げられる。 An organic solar cell has a structure in which an organic photoelectric conversion layer made of an organic thin film is provided between two different electrodes. In general, the organic photoelectric conversion layer is formed from a mixture of a bulk heterojunction structure of a conjugated polymer and a fullerene derivative. A typical example is a composition containing poly (3-hexylthiophene) as a conjugated polymer and [6,6] -phenyl C 61 butyric acid methyl ester (PCBM) as a fullerene derivative.
 有機太陽電池の課題は、光電変換効率を高めることであり、特に有機光電変換層のモルフォロジを変えることで光電変換効率の向上につなげる報告がなされている。例えば、熱や溶媒蒸気により処理する方法、共役ポリマーやフラーレン誘導体を溶解させる溶媒を工夫する方法、高沸点化合物を添加する方法、溶媒の揮発速度を小さくする方法などが挙げられる。 The problem of the organic solar cell is to increase the photoelectric conversion efficiency. In particular, it has been reported that the photoelectric conversion efficiency can be improved by changing the morphology of the organic photoelectric conversion layer. For example, a method of treating with heat or solvent vapor, a method of devising a solvent for dissolving a conjugated polymer or fullerene derivative, a method of adding a high boiling point compound, a method of reducing the volatilization rate of the solvent, and the like can be mentioned.
 また光電変換効率を高める別の取り組みとしては、共役ポリマー組成物を用いてモルフォロジを制御することで光電変換効率の向上を目指す報告がなされている。しかし、これまでに報告されているものでは、共役ポリマー組成物の相分離を制御する方策がなく、共役ポリマー組成物を利用して光電変換素子の性能を向上させることは困難であった。 Also, as another effort to increase the photoelectric conversion efficiency, there has been a report aiming at improving the photoelectric conversion efficiency by controlling the morphology using a conjugated polymer composition. However, what has been reported so far has no way of controlling the phase separation of the conjugated polymer composition, and it has been difficult to improve the performance of the photoelectric conversion element using the conjugated polymer composition.
 例えば、特許文献1に開示されている低分子化合物と高分子化合物との有機半導体組成物では、低分子化合物と高分子化合物である共役ポリマーとが混合し難く、マクロ相分離したり、低分子化合物がブリードアウトしたりしてしまうため安定性が低い。非特許文献1では、一方の共役ポリマーが縮環π共役骨格でなくHOMOレベルのミスマッチがあるため電荷の移動がスムーズに起こらず、結果として高い変換効率が得られていない。また、特許文献2~4、非特許文献2~3に記載の光電変換素子においても、一方の共役ポリマーが縮環π共役骨格でなかったり、複素環骨格でなかったりするため、高い変換効率が得られていない。さらにフラーレン誘導体の代りにN型半導体である共役ポリマーを含有しているため、共役ポリマー組成物とフラーレン誘導体との組成物からなる光電変換素子と比較して変換効率が低い。加えて、これら共役ポリマーの相分離は、ミクロンサイズと大きなマクロ相分離であり、共役ポリマー組成物の相分離が制御されているとは言い難いものである。 For example, in the organic semiconductor composition of a low molecular compound and a high molecular compound disclosed in Patent Document 1, it is difficult to mix a low molecular compound and a conjugated polymer that is a high molecular compound, macrophase separation, The stability of the compound is low because the compound bleeds out. In Non-Patent Document 1, one of the conjugated polymers is not a condensed π-conjugated skeleton but has a HOMO level mismatch, so that charge transfer does not occur smoothly, and as a result, high conversion efficiency is not obtained. In the photoelectric conversion elements described in Patent Documents 2 to 4 and Non-Patent Documents 2 to 3, since one of the conjugated polymers is not a condensed π-conjugated skeleton or a heterocyclic skeleton, high conversion efficiency is achieved. Not obtained. Furthermore, since the conjugated polymer which is an N-type semiconductor is contained instead of the fullerene derivative, the conversion efficiency is low as compared with a photoelectric conversion element comprising a composition of a conjugated polymer composition and a fullerene derivative. In addition, the phase separation of these conjugated polymers is micron size and large macro phase separation, and it is difficult to say that the phase separation of the conjugated polymer composition is controlled.
特開2009-267372号公報JP 2009-267372 A 特開2010-074127号公報JP 2010-074127 A 特開2010-010438号公報JP 2010-010438 A 特開2008-091886号公報JP 2008-091886 A
 本発明は前記の課題を解決するためになされたもので、光電変換素子に対して理想的な相分離構造を形成可能で、溶媒への溶解性が高く、良好な有機薄膜を形成することが可能な共役ポリマー組成物、及びそれを含有する有機薄膜を用い優れた光電変換効率を有する光電変換素子を提供することを目的とする。 The present invention has been made to solve the above-described problems, and can form an ideal phase separation structure for a photoelectric conversion element, can form a good organic thin film with high solubility in a solvent. An object of the present invention is to provide a possible conjugated polymer composition and a photoelectric conversion element having an excellent photoelectric conversion efficiency using an organic thin film containing the composition.
 前記の目的を達成するためになされた、請求の範囲の請求項1に記載された共役ポリマー組成物は、縮環π共役骨格からなる二価の複素環基を主鎖に含み、かつフッ素原子または水酸基で置換されてもよいアルキル基またはアルコキシ基である側鎖を有し、ポリスチレン換算した数平均分子量が少なくとも10000g/モルである共役ポリマーの少なくとも2種類を含有する共役ポリマー組成物であって、それぞれの前記共役ポリマーの溶解度パラメーターにおける、最大値を有する共役ポリマーと最小値を有する共役ポリマーとの差が、0.6以上2.0以下であることを特徴とする。 The conjugated polymer composition according to claim 1, which has been made to achieve the above object, includes a divalent heterocyclic group composed of a condensed π-conjugated skeleton in a main chain, and a fluorine atom. Or a conjugated polymer composition containing at least two kinds of conjugated polymers having a side chain which is an alkyl group or an alkoxy group which may be substituted with a hydroxyl group and having a polystyrene-equivalent number average molecular weight of at least 10,000 g / mol. The difference between the conjugated polymer having the maximum value and the conjugated polymer having the minimum value in the solubility parameter of each conjugated polymer is 0.6 or more and 2.0 or less.
 請求項2に記載の共役ポリマー組成物は、請求項1に記載されたものであって、前記複素環基が、少なくとも一つのチオフェン環を化学構造の一部に含む縮環π共役骨格からなることを特徴とする。 The conjugated polymer composition according to claim 2 is the conjugated polymer composition according to claim 1, wherein the heterocyclic group is composed of a condensed π-conjugated skeleton containing at least one thiophene ring as part of a chemical structure. It is characterized by that.
 請求項3に記載の共役ポリマー組成物は、請求項2に記載されたものであって、前記共役ポリマーが、シクロペンタジチオフェンジイル基、ジチエノピロールジイル基、ジチエノシロールジイル基、ジチエノゲルモールジイル基、ベンゾジチオフェンジイル基、ナフトジチオフェンジイル基、チエノチオフェンジイル基、チエノピロールジオン基から選ばれる少なくとも一つの二価の複素環基を含有する単量体単位からなることを特徴とする。 The conjugated polymer composition according to claim 3 is the composition according to claim 2, wherein the conjugated polymer comprises a cyclopentadithiophene diyl group, a dithienopyrrole diyl group, a dithienosilole diyl group, a dithieno. It consists of a monomer unit containing at least one divalent heterocyclic group selected from a germoldiyl group, a benzodithiophenediyl group, a naphthodithiophenediyl group, a thienothiophenediyl group, and a thienopyrroledione group. And
 請求項4に記載の共役ポリマー組成物は、請求項1~3の何れかに記載されたものであって、前記共役ポリマーの2種類が、前記二価の複素環基に最少でも炭素数12のアルキル基またはアルコキシ基である側鎖が結合している共役ポリマーと、同種または異種の前記二価の複素環基に最大でも炭素数8のアルキル基またはアルコキシ基である側鎖が結合している共役ポリマーとであることを特徴とする。 A conjugated polymer composition according to a fourth aspect is the one according to any one of the first to third aspects, wherein two types of the conjugated polymers have at least 12 carbon atoms in the divalent heterocyclic group. A side chain that is an alkyl group or an alkoxy group, and a side chain that is an alkyl group or an alkoxy group having a maximum of 8 carbon atoms are bonded to the same or different divalent heterocyclic group. And a conjugated polymer.
 請求項5に記載された共役ポリマー組成物は、請求項1~4の何れかに記載されたものであって、前記共役ポリマーの2種類が、前記二価の複素環基にフッ素未置換であるアルキル基またはアルコキシ基である側鎖が結合している共役ポリマーと、同種または異種の前記二価の複素環基に最少でも3つのフッ素原子が置換されているアルキル基またはアルコキシ基である側鎖が結合している共役ポリマーとであることを特徴とする。 The conjugated polymer composition described in claim 5 is the conjugated polymer composition described in any one of claims 1 to 4, wherein two types of the conjugated polymers are obtained by replacing the divalent heterocyclic group with a fluorine-unsubstituted group. A conjugated polymer having a side chain that is an alkyl group or an alkoxy group, and a side that is an alkyl group or an alkoxy group in which at least three fluorine atoms are substituted on the same or different divalent heterocyclic group; It is characterized by being a conjugated polymer in which chains are bonded.
 請求項6に記載された共役ポリマー組成物は、請求項1~5の何れかに記載されたものであって、前記共役ポリマーのうち少なくとも1つが、縮環π共役骨格からなる二価の複素環基を有する少なくとも2種類の単量体単位からなるランダム共重合体である。 The conjugated polymer composition according to claim 6 is the conjugated polymer composition according to any one of claims 1 to 5, wherein at least one of the conjugated polymers is a divalent complex having a condensed π-conjugated skeleton. It is a random copolymer comprising at least two types of monomer units having a cyclic group.
 請求項7に記載された共役ポリマー組成物は、請求項1~6の何れかに記載されたものであって、前記共役ポリマー組成物に含まれる、最大値の溶解度パラメーターを有する共役ポリマーと最小値の溶解度パラメーターを有する共役ポリマーとの質量比が、最大値を有する共役ポリマー:最小値を有する共役ポリマー=95:5~5:95であることを特徴とする。 The conjugated polymer composition described in claim 7 is the one described in any one of claims 1 to 6, wherein the conjugated polymer having the maximum solubility parameter and the minimum included in the conjugated polymer composition. The mass ratio of the conjugated polymer having a value solubility parameter is characterized in that the conjugated polymer having the maximum value: the conjugated polymer having the minimum value = 95: 5 to 5:95.
 請求項8に記載された有機半導体組成物は、請求項1~7の何れかに記載の共役ポリマー組成物とフラーレン誘導体とを含有することを特徴とする。 An organic semiconductor composition according to claim 8 is characterized by containing the conjugated polymer composition according to any one of claims 1 to 7 and a fullerene derivative.
 請求項9に記載された有機薄膜は、請求項1~7の何れかに記載の共役ポリマー組成物を含有することを特徴とする。 An organic thin film according to claim 9 is characterized by containing the conjugated polymer composition according to any one of claims 1 to 7.
 請求項10に記載の有機薄膜素子は、請求項9に記載の有機薄膜を基板に備えることを特徴とする。 The organic thin film element of Claim 10 equips a board | substrate with the organic thin film of Claim 9. It is characterized by the above-mentioned.
 請求項11に記載の光電変換素子は、請求項9に記載の有機薄膜が、少なくとも2つの電極間に挟まれていることを特徴とする。 The photoelectric conversion element according to claim 11 is characterized in that the organic thin film according to claim 9 is sandwiched between at least two electrodes.
 本発明の共役ポリマー組成物は、少なくとも2種類の共役ポリマーを含み、それらの溶解度パラメーターを調整することにより、相分離構造を形成することができる。この相分離構造により、モルフォロジを制御した光電変換効率の高い有機薄膜を形成することができる。共役ポリマー組成物は、相分離構造の形成が可能であり、モルフォロジを制御できることで、光電変換効率の向上した光電変換素子を得ることができる。 The conjugated polymer composition of the present invention contains at least two kinds of conjugated polymers, and a phase separation structure can be formed by adjusting their solubility parameters. With this phase separation structure, it is possible to form an organic thin film with high photoelectric conversion efficiency with controlled morphology. The conjugated polymer composition can form a phase-separated structure, and can control a morphology, whereby a photoelectric conversion element with improved photoelectric conversion efficiency can be obtained.
 本発明の有機半導体組成物は、溶媒への溶解性が高い共役ポリマー組成物と共に電子受容性材料であるフラーレン誘導体が含有されており、理想的な相分離構造を形成することができる。 The organic semiconductor composition of the present invention contains a fullerene derivative which is an electron-accepting material together with a conjugated polymer composition having high solubility in a solvent, and can form an ideal phase separation structure.
 本発明の有機薄膜は、モルフォロジが制御されており、光電変換素子に用いた場合、優れた光電変換効率を付与し高い性能の光電変換素子を作製することができる。 The morphology of the organic thin film of the present invention is controlled, and when used in a photoelectric conversion element, it is possible to produce a high-performance photoelectric conversion element by imparting excellent photoelectric conversion efficiency.
 本発明の光電変換素子は、モルフォロジを制御し光電変換効率を向上させる共役ポリマー組成物を含有する有機薄膜を有機光電変換層として備えており、優れた光電変換性能を有し、光電変換機能や光整流機能を利用した種々の光電変換デバイスへ応用して用いることができる。 The photoelectric conversion element of the present invention includes an organic thin film containing a conjugated polymer composition that controls morphology and improves photoelectric conversion efficiency as an organic photoelectric conversion layer, has excellent photoelectric conversion performance, It can be applied to various photoelectric conversion devices using the optical rectification function.
本発明を適用する光電変換素子の模式断面図である。It is a schematic cross section of the photoelectric conversion element to which this invention is applied.
 以下、本発明を実施するための形態について詳細に説明するが、本発明の範囲はこれらの形態に限定されるものではない。 Hereinafter, modes for carrying out the present invention will be described in detail, but the scope of the present invention is not limited to these modes.
 本発明の共役ポリマー組成物は、少なくとも2種類の共役ポリマーの混合物、例えば共役ポリマーA及び共役ポリマーBを含有する。これらの共役ポリマーはいずれも共役した二価の単量体から構成され、その主鎖に二価の複素環基を含む。共役した二価の単量体とは、分子中の結合の電子が非局在化している二価の基である。また、主鎖とは、二価の複素環基からなる化合物における最も長い鎖をいう。これら共役ポリマーのうち少なくとも2つは、その主鎖に縮環π共役骨格からなる二価の複素環基を含み、かつフッ素原子または水酸基で置換されてもよいアルキル基またはアルコキシ基である側鎖を有する構造である。すなわち、本発明の共役ポリマー組成物は、縮環π共役骨格からなる二価の複素環基を主鎖に含む該共役ポリマーを必須成分として含有するものである。 The conjugated polymer composition of the present invention contains a mixture of at least two kinds of conjugated polymers, for example, conjugated polymer A and conjugated polymer B. Each of these conjugated polymers is composed of a conjugated divalent monomer and includes a divalent heterocyclic group in its main chain. A conjugated divalent monomer is a divalent group in which electrons in a bond in the molecule are delocalized. The main chain refers to the longest chain in a compound composed of a divalent heterocyclic group. At least two of these conjugated polymers contain a divalent heterocyclic group composed of a condensed π-conjugated skeleton in the main chain, and are side chains that are alkyl groups or alkoxy groups that may be substituted with fluorine atoms or hydroxyl groups. It is the structure which has. That is, the conjugated polymer composition of the present invention contains the conjugated polymer containing a divalent heterocyclic group composed of a condensed π-conjugated skeleton in the main chain as an essential component.
 縮環π共役骨格からなる二価の複素環基としては、具体的には、ジベンゾシロールジイル基、ジベンゾゲルモールジイル基、ジベンゾフランジイル基、カルバゾールジイル基、ベンゾチアジアゾールジイル基、ベンゾトリアゾール基、シクロペンタジチオフェンジイル基、ジチエノピロールジイル基、ジチエノシロールジイル基、ジチエノゲルモールジイル基、ベンゾジチオフェンジイル基、ナフトジチオフェンジイル基、チエノチオフェンジイル基、チエノピロールジオン基などが挙げられる。 Specific examples of the divalent heterocyclic group composed of a condensed π-conjugated skeleton include a dibenzosilolediyl group, a dibenzogermoldiyl group, a dibenzofurandiyl group, a carbazolediyl group, a benzothiadiazolediyl group, a benzotriazole group, Examples include pentadithiophene diyl group, dithienopyrrole diyl group, dithienosilole diyl group, dithienogermole diyl group, benzodithiophene diyl group, naphthodithiophene diyl group, thienothiophene diyl group, and thienopyrrole dione group. .
 これらの中でモルフォロジが制御し易く、光電変換素子としての性能が高いという点から、少なくとも一つのチオフェン環を化学構造の一部に含む縮環π共役骨格が好ましい。具体的には、シクロペンタジチオフェンジイル基、ジチエノピロールジイル基、ジチエノシロールジイル基、ジチエノゲルモールジイル基、ベンゾジチオフェンジイル基、ナフトジチオフェンジイル基、チエノチオフェンジイル基、チエノピロールジオン基が好ましい。 Among these, a condensed π-conjugated skeleton containing at least one thiophene ring as a part of the chemical structure is preferable from the viewpoint that the morphology is easily controlled and the performance as a photoelectric conversion element is high. Specifically, cyclopentadithiophene diyl group, dithienopyrrole diyl group, dithienosilole diyl group, dithienogermol diyl group, benzodithiophene diyl group, naphthodithiophene diyl group, thienothiophene diyl group, thienopyrrole A dione group is preferred.
 一方、本発明の共役ポリマー組成物に含まれる共役ポリマーのいずれもが、単環構造の複素環基からなる二価の単量体で構成される場合、光電変換素子に用いた場合に光電変換効率が高くないため好ましくない。例えば、二価の複素環基が単環構造の非置換または置換のチオフェンジイル基であると、合成が容易であるものの、吸収する光の波長範囲が短波長であり、光電変換素子に用いた場合、光電変換効率が高くないため好ましくない。 On the other hand, when any of the conjugated polymers contained in the conjugated polymer composition of the present invention is composed of a divalent monomer composed of a heterocyclic group having a monocyclic structure, when used in a photoelectric conversion element, photoelectric conversion Since efficiency is not high, it is not preferable. For example, when the divalent heterocyclic group is an unsubstituted or substituted thiophenediyl group having a monocyclic structure, synthesis is easy, but the wavelength range of light to be absorbed is a short wavelength, and it was used for a photoelectric conversion element. In this case, the photoelectric conversion efficiency is not high, which is not preferable.
 共役ポリマー組成物に含有される共役ポリマーのうち、必須成分として含有される共役ポリマーは、その主鎖骨格が互いに同じ縮環π共役骨格からなる二価の複素環基であることが、電荷輸送の観点から好ましい。 Among the conjugated polymers contained in the conjugated polymer composition, the conjugated polymer contained as an essential component has a charge transport that the main chain skeleton is a divalent heterocyclic group composed of the same condensed π-conjugated skeleton. From the viewpoint of
 この共役ポリマーの単量体単位は、共役ポリマー中に一定の繰返し構造を複数有する限り、二価の複素環基を複数連結した構造(例えば単量体単位-a-b-)を一つの単位とすることを含み、本発明における縮環π共役骨格からなる共役した二価の単量体単位と見なす。すなわち、単量体単位-a-と単量体単位-b-との完全交互共重合体は、置換基が同じである繰り返し単位である限り単量体単位-a-b-の単独ポリマーとみなすものとする。本発明の共役ポリマー組成物に含有される共役ポリマーA及び共役ポリマーBにおいて、単量体単位-a-b-の態様まで含む1種類の単量体単位中の置換基を除く環構造を構成する炭素原子のみの合計数は、6~30であると好ましい。このような単量体単位-a-b-の場合、側鎖であるフッ素原子若しくは水酸基で置換されていてもよいアルキル基またはアルコキシ基は、少なくとも単量体単位-a-または単量体単位-b-のどちらかに結合していればよい。 As long as the conjugated polymer has a plurality of constant repeating structures, the conjugated polymer has a structure in which a plurality of divalent heterocyclic groups are linked (for example, monomer unit -ab-) as one unit. And is regarded as a conjugated divalent monomer unit composed of a condensed π-conjugated skeleton in the present invention. That is, the completely alternating copolymer of the monomer unit -a- and the monomer unit -b- is a homopolymer of the monomer unit -ab as long as it is a repeating unit having the same substituent. Shall be deemed. In the conjugated polymer A and conjugated polymer B contained in the conjugated polymer composition of the present invention, a ring structure excluding substituents in one type of monomer unit including the embodiment of the monomer unit -ab- is constituted. The total number of carbon atoms alone is preferably 6-30. In such a monomer unit -ab-, the alkyl group or alkoxy group which may be substituted with a fluorine atom or hydroxyl group as a side chain is at least the monomer unit -a- or the monomer unit. It suffices to bind to either of -b-.
 より具体的には、例えば、シクロペンタジチオフェンジイル基とベンゾチアジアゾールジイル基とが交互に結合した場合、シクロペンタジチオフェンジイル基とベンゾチアジアゾールジイル基とを単量体単位-a-b-と見なし、-a-b-を、共役ポリマーを構成する縮環π共役骨格からなる共役した二価の単量体と見なすことができる。 More specifically, for example, when a cyclopentadithiophene diyl group and a benzothiadiazole diyl group are alternately bonded, the cyclopentadithiophene diyl group and the benzothiadiazole diyl group are combined with the monomer unit -ab- Therefore, -ab can be regarded as a conjugated divalent monomer composed of a condensed π-conjugated skeleton constituting a conjugated polymer.
 共役ポリマー中に二価の複素環基以外の二価の基を共重合することも可能である。二価の複素環基以外の二価の基を共重合する場合、その共重合率は、共役ポリマーに対して50質量%以下であると好ましく、30質量%以下であるとより好ましく、20質量%以下であるとさらに好ましい。共重合率が高すぎる場合、光電変換素子の性能が低下する場合がある。二価の複素環基以外の二価の基の具体例としては、アセチレン基及びアリーレン基が挙げられる。 It is also possible to copolymerize divalent groups other than divalent heterocyclic groups in the conjugated polymer. When divalent groups other than divalent heterocyclic groups are copolymerized, the copolymerization rate is preferably 50% by mass or less, more preferably 30% by mass or less, and more preferably 20% by mass with respect to the conjugated polymer. % Or less is more preferable. When the copolymerization rate is too high, the performance of the photoelectric conversion element may deteriorate. Specific examples of the divalent group other than the divalent heterocyclic group include an acetylene group and an arylene group.
 共役ポリマー組成物に含有される必須成分である共役ポリマーの数平均分子量は、共役ポリマー組成物の相分離がし易い点、ホール移動度や力学的物性の観点から、ポリスチレン換算の数平均分子量で10000g/モル以上、具体的には10000~500000g/モルであると好ましく、15000~250000g/モルであるとより好ましく、20000~150000g/モルであると最も好ましい。数平均分子量が10000g/モル未満の低分子量共役ポリマーの場合、相分離し難く低分子量体が界面・表面にブリードアウトしてしまい、光電変換素子にした場合性能が低下してしまう。 The number average molecular weight of the conjugated polymer, which is an essential component contained in the conjugated polymer composition, is the number average molecular weight in terms of polystyrene from the viewpoint of easy phase separation of the conjugated polymer composition, hole mobility and mechanical properties. It is preferably 10,000 g / mol or more, specifically 10,000 to 500,000 g / mol, more preferably 15,000 to 250,000 g / mol, and most preferably 20,000 to 150,000 g / mol. In the case of a low molecular weight conjugated polymer having a number average molecular weight of less than 10,000 g / mol, the phase separation is difficult and the low molecular weight body bleeds out to the interface / surface, and the performance is lowered when a photoelectric conversion element is obtained.
 数平均分子量の測定方法としては、公知の方法を用いることができるが、簡便で適用できるポリマーの範囲が広いという点からサイズ排除クロマトグラフィーによる測定が好ましい。サイズ排除クロマトグラフィーによる測定の場合、標準ポリマーとしては分子量分布が狭く分子量が公知のポリマーであれば使用できるが、本発明では標準ポリスチレンを使用し、ポリスチレン換算の数平均分子量を採用する。 As a method for measuring the number average molecular weight, known methods can be used, but measurement by size exclusion chromatography is preferred because it is simple and has a wide range of applicable polymers. In the measurement by size exclusion chromatography, a standard polymer having a narrow molecular weight distribution and a known molecular weight can be used, but in the present invention, standard polystyrene is used and a polystyrene-equivalent number average molecular weight is adopted.
 前記共役ポリマーの合成方法としては、公知の方法を用いることが可能である。すなわち、各種カップリング重合を用いることが可能である。カップリング反応としてはスズキカップリング、クマダカップリング、ネギシカップリング、スティレカップリング、ソノガシラカップリングなどが挙げられる。 As a method for synthesizing the conjugated polymer, a known method can be used. That is, various coupling polymerizations can be used. Examples of the coupling reaction include Suzuki coupling, Kumada coupling, leek coupling, Stille coupling, Sonogashira coupling and the like.
 本発明の共役ポリマー組成物に必須成分として含有される共役ポリマーのうち、溶解度パラメーターの最大値を有する共役ポリマーと溶解度パラメーターの最小値を有する共役ポリマーとのそれぞれの質量比は、特に限定されないが、95:5~5:95質量比であると好ましく、90:10~10:90質量比であるとより好ましく、85:15~15:85質量比であるとさらに好ましい。共役ポリマー組成物に含まれる2種類以上の共役ポリマーの内、より高い光電変換効率を与える共役ポリマーの含量が多い方が好ましい。 Among the conjugated polymers contained as essential components in the conjugated polymer composition of the present invention, the respective mass ratios of the conjugated polymer having the maximum solubility parameter and the conjugated polymer having the minimum solubility parameter are not particularly limited. The mass ratio is preferably 95: 5 to 5:95, more preferably 90:10 to 10:90, and still more preferably 85:15 to 15:85. Of the two or more kinds of conjugated polymers contained in the conjugated polymer composition, it is preferable that the content of the conjugated polymer giving higher photoelectric conversion efficiency is larger.
 共役ポリマー組成物は、ホール移動度の観点から、少なくとも1種類の結晶性の前記共役ポリマーを含有していると好ましい。ここでいう結晶性の共役ポリマーとは、ポリマーの一部が結晶化しているまたは液晶状態のポリマーのことである。結晶性ポリマーの判別として、X線回折法や示差走査熱量測定(DSC)により分析することが可能である。本発明では芳香環π-πスタックのみX線回折法で観測されるような、弱いポリマーのパッキング状態も結晶性があると判断する。 The conjugated polymer composition preferably contains at least one crystalline conjugated polymer from the viewpoint of hole mobility. The crystalline conjugated polymer referred to here is a polymer in which a part of the polymer is crystallized or in a liquid crystal state. The crystalline polymer can be discriminated by X-ray diffraction or differential scanning calorimetry (DSC). In the present invention, it is determined that the weak polymer packing state, which is observed only by the aromatic ring π-π stack by the X-ray diffraction method, is also crystalline.
 共役ポリマー組成物には、必須成分である共役ポリマー以外の構造の共役ポリマーを含有していてもよい。その含有量は、モルフォロジの制御、またモルフォロジを制御することで得られる光電変換素子の変換効率が高いという観点から、50質量%以下であると好ましく、30質量%以下であるとより好ましく、20質量%以下であるとさらに好ましい。必須成分である共役ポリマー以外の構造の共役ポリマーとしては、共役ポリマー組成物の必須成分である例えば共役ポリマーA及び共役ポリマーBの何れかの構造と近い構造の共役ポリマーであることが好ましい。 The conjugated polymer composition may contain a conjugated polymer having a structure other than the conjugated polymer which is an essential component. The content is preferably 50% by mass or less, more preferably 30% by mass or less, from the viewpoint of controlling the morphology and the conversion efficiency of the photoelectric conversion element obtained by controlling the morphology, More preferably, it is at most mass%. The conjugated polymer having a structure other than the conjugated polymer which is an essential component is preferably a conjugated polymer having a structure close to the structure of either the conjugated polymer A or the conjugated polymer B which is an essential component of the conjugated polymer composition.
 さらに共役ポリマー組成物は、必須成分である共役ポリマーを2種類以上含有していれば、他の非共役なポリマーを含有していてもよい。非共役なポリマーの含有量は、光電変換素子の変換効率を低下させない範囲であれば特に制限されないが、共役ポリマー組成物全体の質量に対して50質量%以下であると好ましく、30質量%以下であるとより好ましく、10質量%以下であると最も好ましい。このような非共役ポリマーは、本発明における溶解度パラメーターには関与しない。 Furthermore, the conjugated polymer composition may contain other non-conjugated polymers as long as it contains two or more kinds of conjugated polymers as essential components. The content of the non-conjugated polymer is not particularly limited as long as it does not lower the conversion efficiency of the photoelectric conversion element, but is preferably 50% by mass or less, and 30% by mass or less with respect to the total mass of the conjugated polymer composition. Is more preferable, and is most preferably 10% by mass or less. Such non-conjugated polymers are not involved in the solubility parameter in the present invention.
 本発明の共役ポリマー組成物は、必須成分として含有する共役ポリマーの溶解度パラメーターのうち、最大値の溶解度パラメーターを有する共役ポリマーAと最小値の溶解度パラメーターを有する共役ポリマーBとの差が0.6以上2.0以下であることが特徴である。なかでも、溶解度パラメーターの最大値と最小値の差が、0.6以上1.8以下であると好ましく、0.6以上1.6以下であるとより好ましく、0.7以上1.6以下であると最も好ましい。 In the conjugated polymer composition of the present invention, among the solubility parameters of the conjugated polymer contained as an essential component, the difference between the conjugated polymer A having the maximum solubility parameter and the conjugated polymer B having the minimum solubility parameter is 0.6. It is the feature that it is 2.0 or less. Especially, the difference between the maximum value and the minimum value of the solubility parameter is preferably 0.6 or more and 1.8 or less, more preferably 0.6 or more and 1.6 or less, and 0.7 or more and 1.6 or less. Is most preferable.
 この溶解度パラメーターの最大値と最小値との差が0.6以上であれば、共役ポリマー組成物が相分離することが可能である。一方、0.6未満の場合、それぞれの共役ポリマーの極性が近く、相分離し難くなる。また、溶解度パラメーターの最大値と最小値との差が2.0以下であることも重要である。溶解度パラメーターの最大値と最小値との差が2.0より大きいと、共役ポリマーの溶媒への溶解性が著しく低下してしまい、薄膜を得ることが困難となったり、薄膜を作製した際、相分離サイズが大きくなり過ぎてしまい、光電変換素子とした場合に高い変換効率が得られなくなったりする場合がある。 If the difference between the maximum value and the minimum value of the solubility parameter is 0.6 or more, the conjugated polymer composition can be phase-separated. On the other hand, when it is less than 0.6, the polarities of the respective conjugated polymers are close to each other and phase separation is difficult. It is also important that the difference between the maximum and minimum solubility parameters is 2.0 or less. If the difference between the maximum value and the minimum value of the solubility parameter is greater than 2.0, the solubility of the conjugated polymer in the solvent will be significantly reduced, making it difficult to obtain a thin film, In some cases, the phase separation size becomes too large, and high conversion efficiency may not be obtained when a photoelectric conversion element is used.
 理想的な相分離構造とは、共役ポリマー組成物に含まれる2種以上の共役ポリマーである成分が共連続構造であることを指す。これら相分離構造の1つの共役ポリマードメインに他のドメインより多くの電子受容性材料であるフラーレン誘導体を含有する点も合わせて重要である。このようなモルフォロジを形成することで再結合や失活することなく電荷を電極まで運ぶことができるため、短絡電流密度が大きくなり、高い性能の光電変換素子を作製することができる。 The ideal phase separation structure means that the components which are two or more kinds of conjugated polymers contained in the conjugated polymer composition have a co-continuous structure. It is also important that one conjugated polymer domain of these phase separation structures contains more fullerene derivatives, which are electron accepting materials than the other domains. By forming such a morphology, charge can be carried to the electrode without recombination or deactivation, so that the short-circuit current density is increased and a high-performance photoelectric conversion element can be manufactured.
 溶解度パラメーターを制御する方法としては、共役ポリマーの分子構造により制御することができる。例えば、2種類の共役ポリマーからなる共役ポリマー組成物を考えた場合、それぞれ共役ポリマーの主鎖骨格を変更することで溶解度パラメーターを調節することが可能である。また、側鎖構造や側鎖密度を変えることで溶解度パラメーターを調整するすることも可能である。側鎖構造を変えて溶解度パラメーターを制御する場合、側鎖の炭素数、側鎖炭素に結合する原子の種類、側鎖に結合する官能基、いずれによっても制御可能であるが、共役ポリマーに結晶性を持たせるためには、側鎖が、フッ素原子若しくは水酸基で置換されていてもよいアルキル基またはアルコキシ基であることが重要である。ここで側鎖とは、共役した主鎖から枝分かれしている炭素を有する部分をいう。側鎖の炭素数は、1個上であると好ましく、2個以上であるとより好ましく、3個以上であるとさらに好ましい。また側鎖の炭素数は20個以下であると好ましく、16個以下であるとより好ましい。ここで、側鎖の炭素数とは主鎖に結合している側鎖1本あたりの炭素数をいう。 The method for controlling the solubility parameter can be controlled by the molecular structure of the conjugated polymer. For example, when a conjugated polymer composition composed of two types of conjugated polymers is considered, the solubility parameter can be adjusted by changing the main chain skeleton of each conjugated polymer. It is also possible to adjust the solubility parameter by changing the side chain structure and the side chain density. When the solubility parameter is controlled by changing the side chain structure, it can be controlled by the number of carbons in the side chain, the type of atoms bonded to the side chain carbon, and the functional group bonded to the side chain. In order to impart the property, it is important that the side chain is an alkyl group or an alkoxy group which may be substituted with a fluorine atom or a hydroxyl group. Here, the side chain refers to a part having carbon branched from a conjugated main chain. The number of carbon atoms in the side chain is preferably 1 or more, more preferably 2 or more, and even more preferably 3 or more. Further, the number of carbon atoms in the side chain is preferably 20 or less, and more preferably 16 or less. Here, the carbon number of the side chain means the carbon number per side chain bonded to the main chain.
 前記共役ポリマーが異なる種類の側鎖を複数有する場合、そのうちの少なくとも一つが、フッ素原子若しくは水酸基で置換されていてもよいアルキル基またはアルコキシ基であればよい。当該アルキル基またはアルコキシ基以外の側鎖の含有量は、溶解度パラメーターの差が調整できる範囲であれば特に制限しない。そのような他の側鎖としては、アシル基、エステル基などが挙げられる。 When the conjugated polymer has a plurality of different types of side chains, at least one of them may be an alkyl group or an alkoxy group which may be substituted with a fluorine atom or a hydroxyl group. The content of the side chain other than the alkyl group or alkoxy group is not particularly limited as long as the difference in solubility parameter can be adjusted. Examples of such other side chains include acyl groups and ester groups.
 側鎖であるフッ素原子若しくは水酸基で置換されていてもよいアルキル基またはアルコキシ基の炭素に結合する官能基の種類により溶解度パラメーターを制御することは好ましくない。例えば、エーテル基、エポキシ基、アミノ基、アミド基、ヨウ素原子などの官能基を導入するとポリマーのパッキングが阻害され、結晶化度が低下し、ホール移動がスムーズに起こらないという点で好ましくない。また、フッ素原子若しくは水酸基で置換されていてもよいアルキル基またはアルコキシ基に結合する官能基が嵩高い官能基の場合も、結晶化を阻害しホール移動がスムーズに起こらないという点で好ましくない。 It is not preferable to control the solubility parameter by the type of the functional group bonded to the carbon of the alkyl group or alkoxy group which may be substituted with a fluorine atom or a hydroxyl group as a side chain. For example, introduction of a functional group such as an ether group, an epoxy group, an amino group, an amide group, or an iodine atom is not preferable in that the packing of the polymer is inhibited, the crystallinity is lowered, and the hole movement does not occur smoothly. In addition, a bulky functional group that is bonded to an alkyl group or alkoxy group that may be substituted with a fluorine atom or a hydroxyl group is not preferable in that crystallization is inhibited and hole movement does not occur smoothly.
 一方、フッ素原子は、他のハロゲン原子と異なり結晶化を阻害せず、むしろ結晶化を促進する場合もあるため有用である。水酸基も水素結合による結晶化が期待できるため有用である。ただし、側鎖1本あたり水酸基が2個以上存在する場合、それら同士で強い水素結合を形成したり、1本のポリマー内の側鎖同士で水素結合したりすることで、結晶化を阻害する場合があるため好ましくない。 On the other hand, unlike other halogen atoms, fluorine atoms are useful because they do not inhibit crystallization, but rather promote crystallization. A hydroxyl group is also useful because it can be expected to be crystallized by hydrogen bonding. However, when two or more hydroxyl groups are present per side chain, crystallization is inhibited by forming strong hydrogen bonds between them or by hydrogen bonding between side chains in one polymer. Since there are cases, it is not preferable.
 水酸基で置換された好ましいアルキル基とは、具体例に、ヒドロキシメチル基、2-ヒドロキシエチル基、3-ヒドロキシプロピル基、3-ヒドロキシイソプロピル基、4-ヒドロキシブチル基、3-ヒドロキシブチル基、3-ヒドロキシイソブチル基、ヒドロキシtert-ブチル基、5-ヒドロキシペンチル基、4-ヒドロキシイソペンチル基、6-ヒドロキシヘキシル基、6-ヒドロキシ-2-エチルヘキシル基、7-ヒドロキシヘプチル基、8-ヒドロキシオクチル基、9-ヒドロキシノニル基、10-ヒドロキシデシル基、12-ヒドロキシドデシル基、16-ヒドロキシヘキサデシル基、8-ヒドロキシ-3,7-ジメチルオクチル基などの、ω-ヒドロキシアルキル基やω-位以外にヒドロキシ基を有するアルキル基が挙げられる。 Preferred examples of the alkyl group substituted with a hydroxyl group include a hydroxymethyl group, 2-hydroxyethyl group, 3-hydroxypropyl group, 3-hydroxyisopropyl group, 4-hydroxybutyl group, 3-hydroxybutyl group, 3 -Hydroxyisobutyl group, hydroxy tert-butyl group, 5-hydroxypentyl group, 4-hydroxyisopentyl group, 6-hydroxyhexyl group, 6-hydroxy-2-ethylhexyl group, 7-hydroxyheptyl group, 8-hydroxyoctyl group , 9-hydroxynonyl group, 10-hydroxydecyl group, 12-hydroxydodecyl group, 16-hydroxyhexadecyl group, 8-hydroxy-3,7-dimethyloctyl group, etc. other than ω-hydroxyalkyl group and ω-position An alkyl group having a hydroxy group It is.
 水酸基で置換された好ましいアルコキシ基とは、具体例に、ヒドロキシメトキシ基、2-ヒドロキシエトキシ基、3-ヒドロキシプロポキシ基、3-ヒドロキシイソプロポキシ基、4-ヒドロキシブトキシ基、3-ヒドロキシブトキシ基、3-ヒドロキシイソブトキシ基、ヒドロキシtert-ブトキシ基、5-ヒドロキシペンチルオキシ基、4-ヒドロキシイソペンチルオキシ基、6-ヒドロキシヘキシルオキシ基、6-ヒドロキシ-2-エチルヘキシルオキシ基、7-ヒドロキシヘプチルオキシ基、8-ヒドロキシオクチルオキシ基、9-ヒドロキシノニルオキシ基、10-ヒドロキシオキシ基、12-ヒドロキシドデシルオキシ基、16-ヒドロキシヘキサデシルオキシ基、8-ヒドロキシ-3,7-ジメチルオクチルオキシ基などの、ω-ヒドロキシアルキル基やω-位以外にヒドロキシ基を有するアルコキシ基が挙げられる。 Preferred alkoxy groups substituted with a hydroxyl group include, for example, hydroxymethoxy group, 2-hydroxyethoxy group, 3-hydroxypropoxy group, 3-hydroxyisopropoxy group, 4-hydroxybutoxy group, 3-hydroxybutoxy group, 3-hydroxyisobutoxy group, hydroxy tert-butoxy group, 5-hydroxypentyloxy group, 4-hydroxyisopentyloxy group, 6-hydroxyhexyloxy group, 6-hydroxy-2-ethylhexyloxy group, 7-hydroxyheptyloxy group Group, 8-hydroxyoctyloxy group, 9-hydroxynonyloxy group, 10-hydroxyoxy group, 12-hydroxydodecyloxy group, 16-hydroxyhexadecyloxy group, 8-hydroxy-3,7-dimethyloctyloxy group, etc. , An alkoxy group having a hydroxy group in addition ω- hydroxyalkyl groups and ω- positions.
 側鎖の炭素数により溶解度パラメーターの差を調整する場合、アルキル基またはアルコキシ基の炭素数が異なる共役ポリマーを組み合せることで所望の溶解度パラメーターの差に調整が可能である。炭素数が8個以下の側鎖を主に含有する共役ポリマーと炭素数が12個以上20個以下の側鎖を主に含有する共役ポリマーとの組み合せが好ましく、炭素数が3個以上8個以下の側鎖を主に含有する共役ポリマーと12個以上20個以下の側鎖を主に含有する共役ポリマーとの組み合わせがより好ましい。炭素数が少ない側鎖を有する共役ポリマーの場合、溶解度パラメーターの値を大きくすることが可能であるが、炭素数が少なすぎると共役ポリマーの溶媒への溶解性が低下してしまい、好ましい有機薄膜が得られない。また炭素数が多い側鎖を有する共役ポリマーの場合、溶解度パラメーターの値を小さくすることが可能であるが、炭素数が20個以上と多いと、共役ポリマー鎖同士が近づき難く、共役ポリマー鎖間の電荷や励起子の移動が起こり難くなったり、光電変換に寄与しない成分が増加してしまい短絡電流密度が低下したりしてしまう。これらの側鎖は、共役ポリマー中の側鎖すべてがこれらの炭素数に限定された側鎖である必要はなく、他の側鎖と組み合せることも可能である。また、共役ポリマーの単量体単位が複数の側鎖を有する場合、それぞれの単量体単位に含まれる側鎖のうち互いに異なる少なくとも1つの側鎖を比較したとき、一方の共役ポリマーが炭素数が8個以下の側鎖を有し、他方の共役ポリマーが炭素数12個以上20個以下の側鎖を有することが好ましい。 When adjusting the difference in solubility parameter depending on the number of carbons in the side chain, it is possible to adjust to the desired difference in solubility parameter by combining conjugated polymers having different numbers of alkyl groups or alkoxy groups. A combination of a conjugated polymer mainly containing side chains having 8 or less carbon atoms and a conjugated polymer mainly containing side chains having 12 to 20 carbon atoms is preferred, and has 3 to 8 carbon atoms. A combination of a conjugated polymer mainly containing the following side chains and a conjugated polymer mainly containing 12 to 20 side chains is more preferred. In the case of a conjugated polymer having a side chain with a small number of carbon atoms, it is possible to increase the value of the solubility parameter. However, if the number of carbon atoms is too small, the solubility of the conjugated polymer in a solvent is reduced, which is a preferable organic thin film. Cannot be obtained. In the case of a conjugated polymer having a side chain with a large number of carbon atoms, it is possible to reduce the value of the solubility parameter. However, if the number of carbon atoms is as large as 20 or more, it is difficult for the conjugated polymer chains to approach each other. This makes it difficult for the charges and excitons to move, and increases the number of components that do not contribute to photoelectric conversion, thereby reducing the short-circuit current density. These side chains do not need to be side chains in which all the side chains in the conjugated polymer are limited to these carbon numbers, and can be combined with other side chains. Further, when the monomer unit of the conjugated polymer has a plurality of side chains, when comparing at least one side chain different from each other among the side chains contained in each monomer unit, one conjugated polymer has a carbon number. Preferably have 8 side chains or less, and the other conjugated polymer has 12 to 20 carbon atoms.
 側鎖の炭素数により共役ポリマーの溶解度パラメーターを調整する場合に好ましいアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、n-ヘキシル基、イソヘキシル基、2-エチルヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ヘキサデシル基、3,7-ジメチルオクチル基、n-ドデシル基などが挙げられる。 Preferred alkyl groups for adjusting the solubility parameter of the conjugated polymer by the number of carbons in the side chain include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group Tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, n-hexyl group, isohexyl group, 2-ethylhexyl group, n-heptyl group, n-octyl group, n-nonyl group, Examples include n-decyl group, n-hexadecyl group, 3,7-dimethyloctyl group, n-dodecyl group and the like.
 側鎖の炭素数により共役ポリマーの溶解度パラメーターを調整する場合に好ましいアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブトキシ基、n-ヘキシル基、n-オクチルオキシ基、n-デシルオキシ基、2-エチルヘキシルオキシ基、n-ドデシルオキシ基、n-ヘキサデシルオキシ基、3,7-ジメチルオクチルオキシ基、n-ドデシルオキシ基などが挙げられる。 Preferred alkoxy groups for adjusting the solubility parameter of the conjugated polymer by the number of carbons in the side chain include, for example, methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, n-butoxy group, n-hexyl group, Examples thereof include an n-octyloxy group, an n-decyloxy group, a 2-ethylhexyloxy group, an n-dodecyloxy group, an n-hexadecyloxy group, a 3,7-dimethyloctyloxy group, and an n-dodecyloxy group.
 側鎖炭素に結合する原子の種類によって溶解度パラメーターの差を調整する場合、異なる原子が側鎖炭素に結合した側鎖を有する共役ポリマーを組み合せることで所望の溶解度パラメーターの差に調整することが可能である。その場合、フッ素は、最大のポーリングの電気陰性度を有するため特に有用である。フッ素原子を水素原子の代りに炭素と結合させる場合、フッ素原子の数は側鎖の炭素数にも依存するが、炭素数が6個以上の場合はフッ素原子の数が3個以上を含有する側鎖が好ましく、5個以上を含有する側鎖がより好ましく、5個以上13個以下を含有する側鎖がさらに好ましい。共役ポリマーの単量体単位が複数の側鎖を有する場合、それぞれの単量体単位に含まれる側鎖のうち互いに異なる少なくとも1つの側鎖を比較したとき、一方の共役ポリマーがフッ素原子を3個以上含有する側鎖を有することが好ましい。 When adjusting the difference in solubility parameter depending on the type of atoms bonded to the side chain carbon, it is possible to adjust the difference in the desired solubility parameter by combining conjugated polymers having side chains in which different atoms are bonded to the side chain carbon. Is possible. In that case, fluorine is particularly useful because it has the greatest Pauling electronegativity. When a fluorine atom is bonded to carbon instead of a hydrogen atom, the number of fluorine atoms depends on the number of carbons in the side chain, but when the number of carbon atoms is 6 or more, the number of fluorine atoms contains 3 or more. A side chain is preferred, a side chain containing 5 or more is more preferred, and a side chain containing 5 or more and 13 or less is more preferred. When the monomer unit of the conjugated polymer has a plurality of side chains, when comparing at least one side chain different from each other among the side chains contained in each monomer unit, one conjugated polymer contains 3 fluorine atoms. It is preferable to have at least one side chain.
 このような側鎖を有する共役ポリマーとフッ素原子を含有しない側鎖を有する共役ポリマーとを組み合せることで、所望の溶解度パラメーターの差を有する共役ポリマー組成物を得ることできる。この場合、フッ素原子を含有する側鎖を有する共役ポリマーの溶解度パラメーターは、フッ素原子の数が多いほど小さくなる。フッ素原子数が少ない側鎖を有する共役ポリマーの場合、溶解度パラメーターを大きくすることができるが、フッ素原子の数が少な過ぎると溶解度パラメーターの最大値と最小値との差が小さくなってしまう。一方、フッ素原子数が多い側鎖を有する共役ポリマーの場合、溶解度パラメーターを小さくすることができるが、フッ素原子の数が多すぎると溶解度パラメーターの最大値と最小値との差が大きくなりすぎてしまう。またフッ素原子の数が多すぎると共役ポリマーが溶媒へ溶解し難くなってしまう。これらフッ素原子を含有する側鎖は、共役ポリマー中の側鎖すべてがフッ素原子を含有する側鎖である必要はなく、他の側鎖と組み合せることも可能である。 A conjugated polymer composition having a desired difference in solubility parameter can be obtained by combining such a conjugated polymer having a side chain and a conjugated polymer having a side chain not containing a fluorine atom. In this case, the solubility parameter of the conjugated polymer having a side chain containing a fluorine atom decreases as the number of fluorine atoms increases. In the case of a conjugated polymer having a side chain with a small number of fluorine atoms, the solubility parameter can be increased. However, if the number of fluorine atoms is too small, the difference between the maximum value and the minimum value of the solubility parameter becomes small. On the other hand, in the case of a conjugated polymer having a side chain with a large number of fluorine atoms, the solubility parameter can be reduced, but if the number of fluorine atoms is too large, the difference between the maximum value and the minimum value of the solubility parameter becomes too large. End up. Moreover, when there are too many fluorine atoms, a conjugated polymer will become difficult to melt | dissolve in a solvent. These side chains containing fluorine atoms need not be side chains containing all fluorine atoms in the conjugated polymer, and can be combined with other side chains.
 フッ素原子が側鎖炭素に結合した側鎖を設計して共役ポリマーの溶解度パラメーターを調整する場合、好ましいフッ素化アルキル基としては、例えば、トリフルオロメチル基、2,2,2-トリフルオロエチル基、2,2,2,1,1-ペンタフルオロエチル基、4,4,4-トリフルオロブチル基、6,6,6-トリフルオロヘキシル基、5,5,6,6,6-ペンタフルオロヘキシル基、7,7,7-トリフルオロヘプチル基、4,4,5,5,6,6,7,7,7-ノナフルオロヘプチル基、8,8,8-トリフルオロオクチル基、7,7,8,8,8-ペンタフルオロオクチル基、5,5,6,6,7,7,8,8,8-ノナフルオロオクチル基などの、ω-トリフルオロメチルアルキル基やパーフルオロアルキル基が挙げられる。 When adjusting the solubility parameter of a conjugated polymer by designing a side chain in which a fluorine atom is bonded to a side chain carbon, preferred fluorinated alkyl groups include, for example, trifluoromethyl group, 2,2,2- trifluoroethyl group 2,2,2,1,1-pentafluoroethyl group, 4,4,4-trifluorobutyl group, 6,6,6-trifluorohexyl group, 5,5,6,6,6-pentafluoro Hexyl group, 7,7,7-trifluoroheptyl group, 4,4,5,5,6,6,7,7,7-nonafluoroheptyl group, 8,8,8-trifluorooctyl group, 7, Ω-trifluoromethylalkyl group and perfluoroalkyl group such as 7,8,8,8-pentafluorooctyl group, 5,5,6,6,7,7,8,8,8-nonafluorooctyl group Can be mentioned
 フッ素原子が側鎖炭素に結合した側鎖を設計して共役ポリマーの溶解度パラメーターを調整する場合、好ましいフッ素化アルコキシ基としては、例えば、トリフルオロメトキシ基、2,2,2-トリフルオロエトキシ基、2,2,2,1,1-ペンタフルオロエトキシ基、4,4,4-トリフルオロブトキシ基、6,6,6-トリフルオロヘキシルオキシ基、5,5,6,6,6-ペンタフルオロヘキシルオキシ基、7,7,7-トリフルオロヘプチルオキシ基、4,4,5,5,6,6,7,7,7-ノナフルオロヘプチルオキシ基、8,8,8-トリフルオロオクチルオキシ基、7,7,8,8,8-ペンタフルオロオクチルオキシ基、5,5,6,6,7,7,8,8,8-ノナフルオロオクチルオキシ基などの、ω-トリフルオロメチルアルコキシ基やパーフルオロアルコキシ基が挙げられる。 When adjusting the solubility parameter of a conjugated polymer by designing a side chain in which a fluorine atom is bonded to a side chain carbon, preferred fluorinated alkoxy groups include, for example, trifluoromethoxy group, 2,2,2- trifluoroethoxy group 2,2,2,1,1-pentafluoroethoxy group, 4,4,4-trifluorobutoxy group, 6,6,6-trifluorohexyloxy group, 5,5,6,6,6-penta Fluorohexyloxy group, 7,7,7-trifluoroheptyloxy group, 4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy group, 8,8,8-trifluorooctyl Ω-trifluoro such as oxy group, 7,7,8,8,8-pentafluorooctyloxy group, 5,5,6,6,7,7,8,8,8-nonafluorooctyloxy group Chiruarukokishi group or perfluoroalkoxy group.
 本発明の共役ポリマー組成物を構成する必須成分である共役ポリマーは、1種類の単量体単位からなる単独重合体であってもよく、2種類以上の単量体単位を有するランダム共重合体、グラフト共重合体またはブロック共重合体であってもよい。共役ポリマー組成物を構成する前記共役ポリマーのうち少なくとも1つを単独重合体とし、他方を共重合体とすることによっても、溶解度パラメーターを制御することができる。好ましくは、前記共役ポリマーのうち少なくとも1つが、縮環π共役骨格からなる二価の複素環基を有する少なくとも2種類の単量体単位からなるランダム共重合体である共役ポリマー組成物である。 The conjugated polymer which is an essential component constituting the conjugated polymer composition of the present invention may be a homopolymer comprising one type of monomer unit or a random copolymer having two or more types of monomer units. It may be a graft copolymer or a block copolymer. The solubility parameter can also be controlled by using at least one of the conjugated polymers constituting the conjugated polymer composition as a homopolymer and the other as a copolymer. Preferably, in the conjugated polymer composition, at least one of the conjugated polymers is a random copolymer composed of at least two types of monomer units having a divalent heterocyclic group composed of a condensed π-conjugated skeleton.
 これらの溶解度パラメーターの測定方法や算出方法は幾つかあるが、本発明においては、Bicerano法を用いる。他の方法としては、例えば、Hildebrand法、Small法、Fedors法、Van Krevelen法、Hansen法、Hoy法、Ascadskii法、沖津法などが挙げられるが、これらの方法では複素環を有するポリマーの溶解度パラメーターは計算できなかったり、正確でなかったりするため使用できない。Bicerano法による算出方法は、Jozef Biceranoが書いた、“Prediction of Polymer Properties, 3rd Ed.”(2002)、CRC Pressに記載されている。また溶解度パラメーターの単位はMPa1/2である。Bicerano法を用いて溶解度パラメーターを算出する際、種々のコンピューターソフトウェアを用いることができる。コンピューターソフトウェアとして例えば、Scigress
Explorer Professional 7.6.0.52 (富士通株式会社)やPolymer-Design Tools(DTW Associates, Inc)が挙げられる。Bicerano法にてデータのない元素を取り扱う場合、周期律表の同族元素であって周期番号1つ小さい元素で代用することとする。例えば、ケイ素のデータがない場合は炭素で代用した構造にて算出された溶解度パラメーターを使用する。
There are several methods for measuring and calculating these solubility parameters. In the present invention, the Bicerano method is used. Other methods include, for example, Hildebrand method, Small method, Fedors method, Van Krevelen method, Hansen method, Hoy method, Ascadskii method, Okitsu method, etc., but in these methods the solubility parameter of the polymer having a heterocyclic ring Cannot be used because it cannot be calculated or is not accurate. The calculation method by the Bicerano method is described in “Prediction of Polymer Properties, 3rd Ed.” (2002), CRC Press, written by Jozef Bicerano. The unit of the solubility parameter is MPa 1/2 . Various computer software can be used when calculating solubility parameters using the Bicerano method. For example, Scigress as computer software
Explorer Professional 7.6.0.52 (Fujitsu Limited) and Polymer-Design Tools (DTW Associates, Inc). When dealing with elements that have no data in the Bicerano method, substitute elements that are the same element in the periodic table and that have a smaller cycle number. For example, when there is no silicon data, the solubility parameter calculated with the structure substituted with carbon is used.
 本発明の共役ポリマー組成物は、含有されるそれぞれの共役ポリマーに関して溶解度パラメーターを算出する必要がある。例えば、共役ポリマー組成物に含有される共役ポリマーがランダムコポリマーの場合には、下記数式(A)のように、ランダムコポリマーの溶解度パラメーターを計算する。
[ランダムコポリマーの溶解度パラメーター ] =Σ(δi × φi)・・・(A)
δi=ランダムコポリマーの成分であるiユニットだけからなるポリマーの溶解度パラメーター
φi=ランダムコポリマーの成分であるiユニットの重量分率(Σφi = 1)
The conjugated polymer composition of the present invention needs to calculate a solubility parameter for each conjugated polymer contained. For example, when the conjugated polymer contained in the conjugated polymer composition is a random copolymer, the solubility parameter of the random copolymer is calculated as in the following formula (A).
[Solubility parameter of random copolymer] = Σ (δi × φi) (A)
δi = Solubility parameter of a polymer consisting only of i units that are components of a random copolymer φi = Weight fraction of i units that are components of a random copolymer (Σφi = 1)
 溶解度パラメーターが調整された各共役ポリマーを含有する共役ポリマー組成物は、有機半導体材料として有用であり、モルフォロジを制御した有機薄膜を形成することができる。また、有機薄膜を形成する際に、共役ポリマー組成物以外に電子受容性材料を含有することが好ましい。特に、電子受容性材料としてフラーレン誘導体を用いることが好ましい。従って、少なくとも本発明の共役ポリマー組成物とフラーレン誘導体とを混合することで、有機薄膜を形成する有機半導体組成物となる。 A conjugated polymer composition containing each conjugated polymer with adjusted solubility parameters is useful as an organic semiconductor material, and can form an organic thin film with controlled morphology. Moreover, when forming an organic thin film, it is preferable to contain an electron-accepting material other than a conjugated polymer composition. In particular, a fullerene derivative is preferably used as the electron-accepting material. Therefore, it becomes an organic semiconductor composition which forms an organic thin film by mixing at least the conjugated polymer composition of the present invention and a fullerene derivative.
 本発明の有機半導体組成物は、溶媒存在下で、少なくとも共役ポリマー組成物とフラーレン誘導体とが混合されているものである。この有機半導体組成物は、光電変換素子の機能層として有用である。 The organic semiconductor composition of the present invention is a mixture of at least a conjugated polymer composition and a fullerene derivative in the presence of a solvent. This organic semiconductor composition is useful as a functional layer of a photoelectric conversion element.
 電子受容性材料であるフラーレン誘導体とは、C60、C70、C84及びその誘導体が挙げられる。フラーレンの誘導体の具体的な構造例を下記化学式(イ)~(ヌ)に示す。 Examples of the fullerene derivative which is an electron-accepting material include C 60 , C 70 , C 84 and derivatives thereof. Specific structural examples of fullerene derivatives are shown in the following chemical formulas (a) to (nu).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 本発明の有機半導体組成物において共役ポリマー組成物とフラーレン誘導体との割合は、共役ポリマー組成物100重量部に対して、フラーレン誘導体が10~1000重量部であると好ましく、50~500重量部であるとより好ましい。また共役ポリマー組成物及びフラーレン誘導体以外の第3成分を含有していてもよい。第3成分の含有量としては、光電変換素子の性能の観点から、共役ポリマー組成物とフラーレン誘導体との総和の重量に対して30質量%以下であると好ましく、10質量%以下であるとさらに好ましい。 In the organic semiconductor composition of the present invention, the ratio of the conjugated polymer composition to the fullerene derivative is preferably 10 to 1000 parts by weight, and preferably 50 to 500 parts by weight with respect to 100 parts by weight of the conjugated polymer composition. More preferably. Moreover, you may contain 3rd components other than a conjugated polymer composition and a fullerene derivative. The content of the third component is preferably 30% by mass or less, and preferably 10% by mass or less, based on the total weight of the conjugated polymer composition and the fullerene derivative, from the viewpoint of the performance of the photoelectric conversion element. preferable.
 共役ポリマー組成物とフラーレン誘導体との混合方法としては、特に限定されるものではないが、所望の比率で溶媒に添加した後、加熱、撹拌、超音波照射などの方法を1種または複数種組み合わせて溶媒中に溶解・混合させる方法が挙げられる。 The method for mixing the conjugated polymer composition and the fullerene derivative is not particularly limited, but after adding to the solvent at a desired ratio, one or more methods such as heating, stirring, and ultrasonic irradiation are combined. And a method of dissolving and mixing in a solvent.
 共役ポリマー組成物とフラーレン誘導体とを混合する際に用いる溶媒としては、大部分が溶解する溶媒であれば特に限定されない。具体例としては、テトラヒドロフラン等のエーテル類、メチレンクロライド、クロロホルム等のハロゲン溶媒、ベンゼン、トルエン、オルトキシレン、クロロベンゼン、オルトジクロロベンゼン、ピリジン等の芳香族系溶媒等が挙げられる。 The solvent used when mixing the conjugated polymer composition and the fullerene derivative is not particularly limited as long as it is a solvent that can be mostly dissolved. Specific examples include ethers such as tetrahydrofuran, halogen solvents such as methylene chloride and chloroform, and aromatic solvents such as benzene, toluene, orthoxylene, chlorobenzene, orthodichlorobenzene and pyridine.
 本発明の共役ポリマー組成物及びその共役ポリマー組成物とフラーレン誘導体とを含有する有機半導体組成物は、公知の印刷法や塗布法により有機薄膜を形成することができる。成膜手法としては、具体的に、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、スロットダイコート法、バーコート法、ロールコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ノズルコート法、キャピラリーコート法などを用いることができる。 The organic semiconductor composition containing the conjugated polymer composition of the present invention and the conjugated polymer composition and fullerene derivative can form an organic thin film by a known printing method or coating method. Specifically, as a film formation method, spin coating method, casting method, micro gravure coating method, gravure coating method, slot die coating method, bar coating method, roll coating method, dip coating method, spray coating method, screen printing method, A flexographic printing method, an offset printing method, an ink jet printing method, a nozzle coating method, a capillary coating method, and the like can be used.
 共役ポリマー組成物を含有する有機薄膜は、有機トランジスタや光電変換素子や有機薄膜素子として有用である。有機薄膜素子とは、例えば、共役ポリマー組成物を含有する有機薄膜が基材表面に付されているものである。この共役ポリマー組成物を含有する有機薄膜の膜厚は、目的とする用途により一概に定めることは困難であるが、通常、1nm~1μmであり、好ましくは2nm~1000nmであり、より好ましくは5nm~500nmであり、さらに好ましくは20nm~300nmである。光電変換素子として用いた場合、膜厚が薄すぎると光が十分に吸収されず、逆に厚すぎるとキャリアが電極へ到達し難くなり、高い変換効率が得られない。 An organic thin film containing a conjugated polymer composition is useful as an organic transistor, a photoelectric conversion element, or an organic thin film element. The organic thin film element is, for example, one in which an organic thin film containing a conjugated polymer composition is attached to the substrate surface. The film thickness of the organic thin film containing this conjugated polymer composition is difficult to determine in general depending on the intended use, but is usually 1 nm to 1 μm, preferably 2 nm to 1000 nm, more preferably 5 nm. It is ˜500 nm, more preferably 20 nm to 300 nm. When used as a photoelectric conversion element, if the film thickness is too thin, light is not sufficiently absorbed, and conversely if it is too thick, it becomes difficult for carriers to reach the electrode and high conversion efficiency cannot be obtained.
 本発明の共役ポリマー組成物から製膜される有機薄膜を有機光電変換層として用いた光電変換素子について例を挙げて説明する。 An example of a photoelectric conversion element using an organic thin film formed from the conjugated polymer composition of the present invention as an organic photoelectric conversion layer will be described.
 本発明の光電変換素子は、図1に示すように、基板5上で、少なくとも2つの異種電極、つまり正極2と負極4との間に、本発明の共役ポリマー組成物を含有する有機薄膜である有機光電変換層3を有するものである。この光電変換素子1は、その電極の種類によって、正極2及び負極4の位置が逆になるものであってもよい。 As shown in FIG. 1, the photoelectric conversion element of the present invention is an organic thin film containing the conjugated polymer composition of the present invention between at least two different electrodes, that is, a positive electrode 2 and a negative electrode 4 on a substrate 5. A certain organic photoelectric conversion layer 3 is provided. The photoelectric conversion element 1 may be one in which the positions of the positive electrode 2 and the negative electrode 4 are reversed depending on the type of the electrode.
 光電変換素子1の電極は、正極2または負極4の何れかに光透過性を有することが好ましい。電極の光透過性は、有機光電変換層3に入射光が到達して起電力が発生する程度であれば、特に限定されるものではない。電極の厚さは、光透過性と導電性とを有する範囲であればよく、電極素材によって異なるが20nm~300nmが好ましい。なお、一方の電極が光透過性を有する場合、もう一方の電極において導電性を有していれば必ずしも光透過性を有する必要はない。さらに、この電極の厚さは特に限定されるものではない。 It is preferable that the electrode of the photoelectric conversion element 1 has optical transparency in either the positive electrode 2 or the negative electrode 4. The light transmittance of the electrode is not particularly limited as long as incident light reaches the organic photoelectric conversion layer 3 and an electromotive force is generated. The thickness of the electrode may be in a range having light transmittance and conductivity, and varies depending on the electrode material, but is preferably 20 nm to 300 nm. Note that in the case where one electrode has light transparency, the light transmission property is not necessarily required as long as the other electrode has conductivity. Furthermore, the thickness of this electrode is not particularly limited.
 電極材料としては、一方の電極には仕事関数の大きな導電性素材、もう一方の電極には仕事関数の小さな導電性素材を使用することが好ましい。仕事関数の大きな導電性素材を用いた電極は正極2となる。この仕事関数の大きな導電性素材としては金、白金、クロム、ニッケルなどの金属のほか、透明性を有するインジウム、スズなどの金属酸化物、複合金属酸化物(インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)、フッ素ドープ酸化スズ(FTO)など)が好ましく用いられる。ここで、正極2に用いられる導電性素材は、有機光電変換層3とオーミック接合するものであることが好ましい。さらに、後述する正孔輸送層を用いた場合においては、正極2に用いられる導電性素材は正孔輸送層とオーミック接合するものであることが好ましい。 As the electrode material, it is preferable to use a conductive material having a high work function for one electrode and a conductive material having a low work function for the other electrode. An electrode using a conductive material having a large work function is the positive electrode 2. Conductive materials with a large work function include metals such as gold, platinum, chromium and nickel, transparent metal oxides such as indium and tin, composite metal oxides (indium tin oxide (ITO), indium Zinc oxide (IZO), fluorine-doped tin oxide (FTO), etc.) are preferably used. Here, the conductive material used for the positive electrode 2 is preferably one that is in ohmic contact with the organic photoelectric conversion layer 3. Furthermore, when a hole transport layer described later is used, it is preferable that the conductive material used for the positive electrode 2 is in ohmic contact with the hole transport layer.
 仕事関数の小さな導電性素材を用いた電極は負極4となるが、この仕事関数の小さな導電性素材としては、アルカリ金属やアルカリ土類金属、具体的にはリチウム、マグネシウム、カルシウムが使用される。また、錫や銀、アルミニウムも好ましく用いられる。さらに、前記の金属からなる合金や前記の金属の積層体からなる電極も好ましく用いられる。また、負極4と電子輸送層の界面にフッ化リチウムやフッ化セシウムなどの金属フッ化物を導入することで、取り出し電流を向上させることも可能である。ここで、負極4に用いられる導電性素材は、有機光電変換層3とオーミック接合するものであることが好ましい。さらに、電子輸送層を用いた場合においては、負極4に用いられる導電性素材は電子輸送層とオーミック接合するものであることが好ましい。 An electrode using a conductive material having a small work function is the negative electrode 4, and as the conductive material having a small work function, alkali metal or alkaline earth metal, specifically, lithium, magnesium, or calcium is used. . Tin, silver, and aluminum are also preferably used. Furthermore, an electrode made of an alloy made of the above metal or a laminate of the above metal is also preferably used. Further, it is possible to improve the extraction current by introducing a metal fluoride such as lithium fluoride or cesium fluoride into the interface between the negative electrode 4 and the electron transport layer. Here, the conductive material used for the negative electrode 4 is preferably one that is in ohmic contact with the organic photoelectric conversion layer 3. Furthermore, when the electron transport layer is used, it is preferable that the conductive material used for the negative electrode 4 is in ohmic contact with the electron transport layer.
 基板5は、電極を形成し、有機光電変換層3を形成する際に変化しないものであればよい。例えば、無アルカリガラス、石英ガラスなどの無機材料、アルミニウム等の金属フィルム、またポリエステル、ポリカーボネート、ポリオレフィン、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリパラキシレン、エポキシ樹脂やフッ素系樹脂などの有機材料から任意の方法によって作製されたフィルムや板が使用可能である。不透明な基板を用いる場合には、反対の電極、即ち基板から遠い方の電極が透明または半透明でなければならない。基板5の膜厚は特に限定されないが、通常1μm~10mmの範囲である。 The substrate 5 may be any substrate that does not change when the electrode is formed and the organic photoelectric conversion layer 3 is formed. For example, inorganic materials such as alkali-free glass and quartz glass, metal films such as aluminum, and any organic material such as polyester, polycarbonate, polyolefin, polyamide, polyimide, polyphenylene sulfide, polyparaxylene, epoxy resin and fluorine resin Films and plates produced by the method can be used. If an opaque substrate is used, the opposite electrode, i.e. the electrode far from the substrate, must be transparent or translucent. The film thickness of the substrate 5 is not particularly limited, but is usually in the range of 1 μm to 10 mm.
 また、前記基材の濡れ性、および有機層と基材との界面密着性を向上させるために、紫外線オゾン処理、コロナ放電処理、プラズマ処理などの物理的な手段により、表面の洗浄や改質を施すことが好ましい。また、固体基材表面に、シラン系カップリング剤、チタネート系カップリング剤、自己組織化単分子膜などの化学修飾を施す方法も同様に効果的である。 In addition, in order to improve the wettability of the base material and the interfacial adhesion between the organic layer and the base material, the surface is cleaned and modified by physical means such as ultraviolet ozone treatment, corona discharge treatment, and plasma treatment. It is preferable to apply. A method of chemically modifying the surface of the solid substrate such as a silane coupling agent, a titanate coupling agent, and a self-assembled monolayer is also effective.
 光電変換素子1は、必要に応じて正極2と有機光電変換層3の間に正孔輸送層を設けてもよい。正孔輸送層を形成する材料としては、ポリチオフェン系重合体、ポリ-p-フェニレンビニレン系重合体、ポリフルオレン系重合体などの導電性高分子や、フタロシアニン誘導体(H2Pc、CuPc、ZnPcなど)、ポルフィリン誘導体などのp型半導体特性を示す低分子有機化合物が好ましく用いられる。特に、ポリチオフェン系重合体であるポリエチレンジオキシチオフェン(PEDOT)やPEDOTにポリスチレンスルホネート(PSS)が添加されたものが好ましく用いられる。正孔輸送層は5nm~600nmの厚さが好ましく、より好ましくは20nm~300nmである。 The photoelectric conversion element 1 may be provided with a hole transport layer between the positive electrode 2 and the organic photoelectric conversion layer 3 as necessary. As the material for forming the hole transport layer, conductive polymers such as polythiophene polymers, poly-p-phenylene vinylene polymers, polyfluorene polymers, phthalocyanine derivatives (H2Pc, CuPc, ZnPc, etc.), Low molecular organic compounds exhibiting p-type semiconductor properties such as porphyrin derivatives are preferably used. In particular, polyethylenedioxythiophene (PEDOT), which is a polythiophene polymer, or PEDOT to which polystyrene sulfonate (PSS) is added is preferably used. The thickness of the hole transport layer is preferably 5 nm to 600 nm, more preferably 20 nm to 300 nm.
 光電変換素子1は、必要に応じて負極4と有機光電変換層3との間に電子輸送層を設けてもよい。電子輸送層を形成する材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型半導体材料、及び酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物及びフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。また、バルクへテロジャンクション層に用いたn型半導体材料単体からなる層を用いることもできる。 The photoelectric conversion element 1 may be provided with an electron transport layer between the negative electrode 4 and the organic photoelectric conversion layer 3 as necessary. As a material for forming the electron transport layer, n-type semiconductor materials such as phenanthrene compounds such as bathocuproine, naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and N-type inorganic oxides such as titanium oxide, zinc oxide, and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used. A layer made of a single n-type semiconductor material used for the bulk heterojunction layer can also be used.
 光電変換素子1は、さらに無機層を有していてもよい。該無機層に含まれる材料としては、例えば、酸化チタン、酸化スズ、酸化亜鉛、酸化鉄、酸化タングステン、酸化ジルコニウム、酸化ハフニウム、酸化ストロンチウム、酸化インジウム、酸化セリウム、酸化イットリウム、酸化ランタン、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化ガリウム、酸化ニッケル、チタン酸ストロンチウム、チタン酸バリウム、ニオブ酸カリウム、タンタル酸ナトリウム等の金属酸化物;ヨウ化銀、臭化銀、ヨウ化銅、臭化銅、フッ化リチウム等の金属ハロゲン化物;硫化亜鉛、硫化チタン、硫化インジウム、硫化ビスマス、硫化カドミウム、硫化ジルコニウム、硫化タンタル、硫化モリブデン、硫化銀、硫化銅、硫化スズ、硫化タングステン、硫化アンチモン等の金属硫化物;セレン化カドミウム、セレン化ジルコニウム、セレン化亜鉛、セレン化チタン、セレン化インジウム、セレン化タングステン、セレン化モリブデン、セレン化ビスマス、セレン化鉛等の金属セレン化物;テルル化カドミウム、テルル化タングステン、テルル化モリブデン、テルル化亜鉛、テルル化ビスマス等の金属テルル化物;リン化亜鉛、リン化ガリウム、リン化インジウム、リン化カドミウム等の金属リン化物;ガリウム砒素、銅-インジウム-セレン化物、銅-インジウム-硫化物、シリコン、ゲルマニウム等が挙げられ、また、これらの2種以上の混合物であってもよい。混合物としては、例えば酸化亜鉛と酸化スズとの混合物、及び酸化スズと酸化チタンとの混合物等が挙げられる。 The photoelectric conversion element 1 may further have an inorganic layer. Examples of the material contained in the inorganic layer include titanium oxide, tin oxide, zinc oxide, iron oxide, tungsten oxide, zirconium oxide, hafnium oxide, strontium oxide, indium oxide, cerium oxide, yttrium oxide, lanthanum oxide, and vanadium oxide. , Metal oxides such as niobium oxide, tantalum oxide, gallium oxide, nickel oxide, strontium titanate, barium titanate, potassium niobate, sodium tantalate; silver iodide, silver bromide, copper iodide, copper bromide, Metal halides such as lithium fluoride; metals such as zinc sulfide, titanium sulfide, indium sulfide, bismuth sulfide, cadmium sulfide, zirconium sulfide, tantalum sulfide, molybdenum sulfide, silver sulfide, copper sulfide, tin sulfide, tungsten sulfide, and antimony sulfide Sulfides; cadmium selenide, selenium Metal selenides such as zirconium selenide, zinc selenide, titanium selenide, indium selenide, tungsten selenide, molybdenum selenide, bismuth selenide, lead selenide; cadmium telluride, tungsten telluride, molybdenum telluride, telluride Metal tellurides such as zinc and bismuth telluride; metal phosphides such as zinc phosphide, gallium phosphide, indium phosphide and cadmium phosphide; gallium arsenide, copper-indium selenide, copper-indium sulfide, silicon , Germanium and the like, and a mixture of two or more of these may be used. Examples of the mixture include a mixture of zinc oxide and tin oxide, a mixture of tin oxide and titanium oxide, and the like.
 本発明の光電変換素子1は、光電変換機能、光整流機能 (photo
diode) などを利用した種々の光電変換デバイスへの応用が可能である。例えば光電池(太陽電池など)、電子素子(光センサ、光スイッチ、フォトトランジスタなど)、光記録材(光メモリなど)などに有用である。
The photoelectric conversion element 1 of the present invention has a photoelectric conversion function and an optical rectification function (photo
It can be applied to various photoelectric conversion devices using diodes). For example, it is useful for photovoltaic cells (such as solar cells), electronic devices (such as optical sensors, optical switches, phototransistors), optical recording materials (such as optical memories), and the like.
 以下、本発明の実施例を詳細に説明するが、本発明の範囲はこれらの形態に限定されるものではない。 Examples of the present invention will be described in detail below, but the scope of the present invention is not limited to these forms.
 共役ポリマー組成物に含有される共役ポリマーの合成を重合例1~9、及びそれを用いた本発明の共役ポリマー組成物を実施例1~3に示す。また、本発明の適用外を比較例1~8に示す。 Synthesis examples of conjugated polymers contained in the conjugated polymer composition are shown in Polymerization Examples 1 to 9, and conjugated polymer compositions of the present invention using the same are shown in Examples 1 to 3. Further, Comparative Examples 1 to 8 show that the present invention is not applicable.
(重合例1)
 下記反応式(1)に従い共役ポリマーA1の合成を行った。なお、以下の反応式中、置換基であるエチルヘキシルをEtHexまたはHexEtと略記する。
Figure JPOXMLDOC01-appb-C000002
 窒素雰囲気下、100mL三口フラスコに2,6-ジブロモ-4,4’-ビス(2-エチルヘキシル)-シクロペンタ[2,1-b:3,4-b’]ジチオフェン(1.50g,2.68mmol)、4,7-ビス(3,3,4,4-テトラメチル-2,5,1-ジオキサボロラン-1-イル)ベンゾ[c][1,2,5]チアジアゾール(1.04g,2.68mmol)、トルエン(50mL)、2M炭酸カリウム水溶液(25mL,50mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(61.9mg,53.5μmol)、aliquat336(2mg,4.95μmol)を加えた後に80℃で2時間攪拌した。その後、フェニルボロン酸ピナコールエステル(273mg,1.34mmol)を加え、80℃で18時間攪拌した。反応終了後、反応溶液をメタノール(500mL)に注ぎ、析出した固体を濾取し、水(100mL)、メタノール(100mL)で洗浄し、得られた固体を減圧乾燥することで粗生成物を得た。粗生成物を、ソックスレー抽出器を用いてアセトン(200mL)、ヘキサン(200mL)で洗浄した後に、クロロホルム(200mL)で抽出した。得られた溶液をメタノール(2L)に注ぎ、析出した固体を濾取した後に減圧乾燥することで黒紫色の固体として共役ポリマーA1を得た(1.04g,41%)。
(Polymerization example 1)
The conjugated polymer A1 was synthesized according to the following reaction formula (1). In the following reaction formula, ethylhexyl as a substituent is abbreviated as EtHex or HexEt.
Figure JPOXMLDOC01-appb-C000002
In a 100 mL three-necked flask under a nitrogen atmosphere, 2,6-dibromo-4,4′-bis (2-ethylhexyl) -cyclopenta [2,1-b: 3,4-b ′] dithiophene (1.50 g, 2.68 mmol). ), 4,7-bis (3,3,4,4-tetramethyl-2,5,1-dioxaborolan-1-yl) benzo [c] [1,2,5] thiadiazole (1.04 g, 2. 68 mmol), toluene (50 mL), 2M aqueous potassium carbonate solution (25 mL, 50 mmol), tetrakis (triphenylphosphine) palladium (0) (61.9 mg, 53.5 μmol), and aliquat 336 (2 mg, 4.95 μmol). Stir at 80 ° C. for 2 hours. Thereafter, phenylboronic acid pinacol ester (273 mg, 1.34 mmol) was added, and the mixture was stirred at 80 ° C. for 18 hours. After completion of the reaction, the reaction solution was poured into methanol (500 mL), the precipitated solid was collected by filtration, washed with water (100 mL) and methanol (100 mL), and the resulting solid was dried under reduced pressure to obtain a crude product. It was. The crude product was washed with acetone (200 mL) and hexane (200 mL) using a Soxhlet extractor, and then extracted with chloroform (200 mL). The obtained solution was poured into methanol (2 L), and the precipitated solid was collected by filtration and dried under reduced pressure to obtain a conjugated polymer A1 as a black purple solid (1.04 g, 41%).
 得られた共役ポリマーA1の理化学分析を行った。
 H-NMR(核磁気共鳴)測定により、分子構造を同定した。
H-NMR(270MHz):δ=8.10-7.95(m、2H)、7.80-7.61(m、2H)、2.35-2.12(m、4H)、1.60-1.32(m、18H)、1.18-0.82(m、12H)
 数平均分子量(Mn)及び重量平均分子量(Mw)は、何れも、ゲル・パーミエーション・クロマトグラフィー(GPC)による測定に基づき、ポリスチレン換算値で求めた。ここでは、GPC装置として、東ソー株式会社製のHLC-8320GPCを用い、カラムとして、東ソー株式会社製のTSKgel SuperMultiporeHZ-Mの2本を直列に繋いだものを用いた。これらの数平均分子量(Mn)及び重量平均分子量(Mw)の値を用いて、(Mw)/(Mn)により分散度(PDI)を求めた。
GPC(CHCl):Mn=19600g/mol、Mw=45500g/mol、PDI=2.32
 この理化学分析結果は、前記反応式(1)に示される化学構造を支持する。
The obtained conjugated polymer A1 was subjected to physicochemical analysis.
The molecular structure was identified by 1 H-NMR (nuclear magnetic resonance) measurement.
1 H-NMR (270 MHz): δ = 8.10-7.95 (m, 2H), 7.80-7.61 (m, 2H), 2.35-2.12 (m, 4H), 1 .60-1.32 (m, 18H), 1.18-0.82 (m, 12H)
The number average molecular weight (Mn) and the weight average molecular weight (Mw) were both determined in terms of polystyrene based on measurement by gel permeation chromatography (GPC). Here, an HLC-8320GPC manufactured by Tosoh Corporation was used as the GPC device, and a TSKgel SuperMultipore HZ-M manufactured by Tosoh Corporation was connected in series as the column. Using the values of the number average molecular weight (Mn) and the weight average molecular weight (Mw), the dispersity (PDI) was determined by (Mw) / (Mn).
GPC (CHCl 3 ): Mn = 19600 g / mol, Mw = 45500 g / mol, PDI = 2.32
This physicochemical analysis result supports the chemical structure shown in the reaction formula (1).
(重合例2)
 下記反応式(2)に従い共役ポリマーA2の合成を行った。
Figure JPOXMLDOC01-appb-C000003
 窒素雰囲気下、100mL三口フラスコに2,6-ジブロモ-4,4’-ビス(2-エチルヘキシル)-ジチエノ[3,2-b:2’,3’-d]ゲルモール(1.66g,2.68mmol)、4,7-ビス(3,3,4,4-テトラメチル-2,5,1-ジオキサボロラン-1-イル)ベンゾ[c][1,2,5]チアジアゾール(1.04g,2.68mmol)、トルエン(50mL)、2M炭酸カリウム水溶液(25mL,50mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(61.9mg,53.5μmol)、aliquat336(2mg,4.95μmol)を加えた後に80℃で2時間攪拌した。その後、フェニルボロン酸ピナコールエステル(273mg,1.34mmol)を加え、80℃で18時間攪拌した。反応終了後、反応溶液をメタノール(500mL)に注ぎ、析出した固体を濾取し、水(100mL)、メタノール(100mL)で洗浄し、得られた固体を減圧乾燥することで粗生成物を得た。粗生成物を、ソックスレー抽出器を用いてアセトン(200mL)、ヘキサン(200mL)で洗浄した後に、クロロホルム(200mL)で抽出した。得られた溶液をメタノール(2L)に注ぎ、析出した固体を濾取した後に減圧乾燥することで黒紫色の固体として共役ポリマーA2を得た(1.03g,38%)。
(Polymerization example 2)
The conjugated polymer A2 was synthesized according to the following reaction formula (2).
Figure JPOXMLDOC01-appb-C000003
Under a nitrogen atmosphere, 2,6-dibromo-4,4′-bis (2-ethylhexyl) -dithieno [3,2-b: 2 ′, 3′-d] germole (1.66 g, 2. 68 mmol), 4,7-bis (3,3,4,4-tetramethyl-2,5,1-dioxaborolan-1-yl) benzo [c] [1,2,5] thiadiazole (1.04 g, 2 .68 mmol), toluene (50 mL), 2M aqueous potassium carbonate solution (25 mL, 50 mmol), tetrakis (triphenylphosphine) palladium (0) (61.9 mg, 53.5 μmol), aliquat 336 (2 mg, 4.95 μmol) were added. The mixture was subsequently stirred at 80 ° C. for 2 hours. Thereafter, phenylboronic acid pinacol ester (273 mg, 1.34 mmol) was added, and the mixture was stirred at 80 ° C. for 18 hours. After completion of the reaction, the reaction solution was poured into methanol (500 mL), the precipitated solid was collected by filtration, washed with water (100 mL) and methanol (100 mL), and the resulting solid was dried under reduced pressure to obtain a crude product. It was. The crude product was washed with acetone (200 mL) and hexane (200 mL) using a Soxhlet extractor, and then extracted with chloroform (200 mL). The obtained solution was poured into methanol (2 L), and the precipitated solid was collected by filtration and dried under reduced pressure to obtain a conjugated polymer A2 as a black purple solid (1.03 g, 38%).
 重合例1と同様に、得られた共役ポリマーA2の理化学分析を行った。
H-NMR(270MHz)、δ=8.20-7.95(m、2H)、7.90-7.12(m、2H)、2.34-2.10(m、4H)、1.59-1.33(m、18H)、1.19-0.81(m、12H)
GPC(CHCl):Mn=17500g/mol、Mw=42400g/mol、PDI=2.42
 この理化学分析結果は、前記反応式(2)に示される化学構造を支持する。
In the same manner as in Polymerization Example 1, the obtained conjugated polymer A2 was subjected to physicochemical analysis.
1 H-NMR (270 MHz), δ = 8.20-7.95 (m, 2H), 7.90-7.12 (m, 2H), 2.34-2.10 (m, 4H), 1 .59-1.33 (m, 18H), 1.19-0.81 (m, 12H)
GPC (CHCl 3 ): Mn = 17500 g / mol, Mw = 42400 g / mol, PDI = 2.42
This physicochemical analysis result supports the chemical structure shown in the reaction formula (2).
(重合例3)
 下記反応式(3)に従い共役ポリマーA3の合成を行った。
Figure JPOXMLDOC01-appb-C000004
 窒素雰囲気下、100mL三口フラスコに2,6-ジブロモ-4,4’-ビス(2-エチルヘキシル)-シクロペンタ[2,1-b:3,4-b’]ジチオフェン(1.50g,2.68mmol)、4,7-ビス(3,3,4,4-テトラメチル-2,5,1-ジオキサボロラン-1-イル)ベンゾ[c][1,2,5]チアジアゾール(1.04g,2.68mmol)、フェニルブロマイド(42mg,0.26mmol)、トルエン(50mL)、2M炭酸カリウム水溶液(25mL,50mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(61.9mg,53.5μmol)、aliquat336(2mg,4.95μmol)を加えた後に80℃で2時間攪拌した。その後、フェニルブロマイド(210mg,1.34mmol)を加え、80℃で18時間攪拌した。反応終了後、反応溶液をメタノール(500mL)に注ぎ、析出した固体を濾取し、水(100mL)、メタノール(100mL)で洗浄し、得られた固体を減圧乾燥することで粗生成物を得た。粗生成物を、ソックスレー抽出器を用いてアセトン(200mL)、ヘキサン(200mL)で洗浄した後に、クロロホルム(200mL)で抽出した。得られた溶液をメタノール(2L)に注ぎ、析出した固体を濾取した後に減圧乾燥することで黒紫色の固体として共役ポリマーA3を得た(1.06,42%)。
(Polymerization example 3)
The conjugated polymer A3 was synthesized according to the following reaction formula (3).
Figure JPOXMLDOC01-appb-C000004
In a 100 mL three-necked flask under a nitrogen atmosphere, 2,6-dibromo-4,4′-bis (2-ethylhexyl) -cyclopenta [2,1-b: 3,4-b ′] dithiophene (1.50 g, 2.68 mmol). ), 4,7-bis (3,3,4,4-tetramethyl-2,5,1-dioxaborolan-1-yl) benzo [c] [1,2,5] thiadiazole (1.04 g, 2. 68 mmol), phenyl bromide (42 mg, 0.26 mmol), toluene (50 mL), 2M aqueous potassium carbonate solution (25 mL, 50 mmol), tetrakis (triphenylphosphine) palladium (0) (61.9 mg, 53.5 μmol), aliquat 336 ( 2 mg, 4.95 μmol) was added, followed by stirring at 80 ° C. for 2 hours. Thereafter, phenyl bromide (210 mg, 1.34 mmol) was added, and the mixture was stirred at 80 ° C. for 18 hours. After completion of the reaction, the reaction solution was poured into methanol (500 mL), the precipitated solid was collected by filtration, washed with water (100 mL) and methanol (100 mL), and the resulting solid was dried under reduced pressure to obtain a crude product. It was. The crude product was washed with acetone (200 mL) and hexane (200 mL) using a Soxhlet extractor, and then extracted with chloroform (200 mL). The obtained solution was poured into methanol (2 L), and the precipitated solid was collected by filtration and dried under reduced pressure to obtain a conjugated polymer A3 as a black purple solid (1.06, 42%).
 重合例1と同様に、得られた共役ポリマーA3の理化学分析を行った。
H-NMR(270MHz):δ=8.10-7.96(m、2H)、7.81-7.61(m、2H)、2.35-2.13(m、4H)、1.59-1.32(m、18H)、1.18-0.81(m、12H)
GPC(CHCl):Mn=7000g/mol、Mw=16500g/mol、PDI=2.36
 この理化学分析結果は、前記反応式(3)に示される化学構造を支持する。
In the same manner as in Polymerization Example 1, the obtained conjugated polymer A3 was subjected to physicochemical analysis.
1 H-NMR (270 MHz): δ = 8.10-7.96 (m, 2H), 7.81-7.61 (m, 2H), 2.35-2.13 (m, 4H), 1 .59-1.32 (m, 18H), 1.18-0.81 (m, 12H)
GPC (CHCl 3 ): Mn = 7000 g / mol, Mw = 16500 g / mol, PDI = 2.36
This physicochemical analysis result supports the chemical structure shown in the reaction formula (3).
(重合例4)
 下記反応式(4)に従い共役ポリマーA4の合成を行った。
Figure JPOXMLDOC01-appb-C000005
 窒素雰囲気下、100mL三口フラスコに2,6-ジブロモ-4,4’-ジヘキサデシルシクロペンタ[2,1-b:3,4-b’]ジチオフェン(2.05g,2.68mmol)、4,7-ビス(3,3,4,4-テトラメチル-2,5,1-ジオキサボロラン-1-イル)ベンゾ[c][1,2,5]チアジアゾール(1.04g,2.68mmol)、トルエン(50mL)、2M炭酸カリウム水溶液(25mL,50mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(61.9mg,53.5μmol)、aliquat336(2mg,4.95μmol)を加えた後に80℃で2時間攪拌した。その後、フェニルボロン酸ピナコールエステル(273mg,1.34mmol)を加え、80℃で18時間攪拌した。反応終了後、反応溶液をメタノール(500mL)に注ぎ、析出した固体を濾取し、水(100mL)、メタノール(100mL)で洗浄し、得られた固体を減圧乾燥することで粗生成物を得た。粗生成物を、ソックスレー抽出器を用いてアセトン(200mL)、ヘキサン(200mL)で洗浄した後に、クロロホルム(200mL)で抽出した。得られた溶液をメタノール(2L)に注ぎ、析出した固体を濾取した後に減圧乾燥することで黒紫色の固体として共役ポリマーA4を得た(1.11g,36%)。
(Polymerization example 4)
The conjugated polymer A4 was synthesized according to the following reaction formula (4).
Figure JPOXMLDOC01-appb-C000005
In a 100 mL three-necked flask under a nitrogen atmosphere, 2,6-dibromo-4,4′-dihexadecylcyclopenta [2,1-b: 3,4-b ′] dithiophene (2.05 g, 2.68 mmol), 4 , 7-bis (3,3,4,4-tetramethyl-2,5,1-dioxaborolan-1-yl) benzo [c] [1,2,5] thiadiazole (1.04 g, 2.68 mmol), Toluene (50 mL), 2M aqueous potassium carbonate solution (25 mL, 50 mmol), tetrakis (triphenylphosphine) palladium (0) (61.9 mg, 53.5 μmol), and aliquat 336 (2 mg, 4.95 μmol) were added at 80 ° C. Stir for 2 hours. Thereafter, phenylboronic acid pinacol ester (273 mg, 1.34 mmol) was added, and the mixture was stirred at 80 ° C. for 18 hours. After completion of the reaction, the reaction solution was poured into methanol (500 mL), the precipitated solid was collected by filtration, washed with water (100 mL) and methanol (100 mL), and the resulting solid was dried under reduced pressure to obtain a crude product. It was. The crude product was washed with acetone (200 mL) and hexane (200 mL) using a Soxhlet extractor, and then extracted with chloroform (200 mL). The obtained solution was poured into methanol (2 L), and the precipitated solid was collected by filtration and dried under reduced pressure to obtain conjugated polymer A4 as a black purple solid (1.11 g, 36%).
 重合例1と同様に、得られた共役ポリマーA4の理化学分析を行った。
H-NMR(270MHz):δ=8.13-7.95(m、2H)、7.82-7.35(m、2H)、3.04-2.89(m、4H)、2.34-2.13(m、8H)、1.55-1.42(m、12H)、1.35-1.09(m、36H)、0.82(m、6H)
GPC(CHCl):Mn=18900g/mol、Mw=37200g/mol、PDI=1.97
 この理化学分析結果は、前記反応式(4)に示される化学構造を支持する。
In the same manner as in Polymerization Example 1, the obtained conjugated polymer A4 was subjected to physicochemical analysis.
1 H-NMR (270 MHz): δ = 8.13-7.95 (m, 2H), 7.82-7.35 (m, 2H), 3.04-2.89 (m, 4H), 2 .34-2.13 (m, 8H), 1.55-1.42 (m, 12H), 1.35-1.09 (m, 36H), 0.82 (m, 6H)
GPC (CHCl 3 ): Mn = 18900 g / mol, Mw = 37200 g / mol, PDI = 1.97
This physicochemical analysis result supports the chemical structure shown in the reaction formula (4).
(重合例5)
 下記反応式(5)に従い共役ポリマーA5の合成を行った。
Figure JPOXMLDOC01-appb-C000006
 窒素雰囲気下、100mL三口フラスコに2,6-ジブロモ-4,4’-ビス(4,4,5,5,6,6,7,7,7-ノナフルオロヘプチル)-シクロペンタ[2,1-b:3,4-b’]ジチオフェン(2.29g,2.68mmol)、4,7-ビス(3,3,4,4-テトラメチル-2,5,1-ジオキサボロラン-1-イル)ベンゾ[c][1,2,5]チアジアゾール(1.04g,2.68mmol)、トルエン(50mL)、2M炭酸カリウム水溶液(25mL,50mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(61.9mg,53.5μmol)、aliquat336(2mg,4.95μmol)を加えた後に80℃で2時間攪拌した。その後、フェニルボロン酸ピナコールエステル(273mg,1.34mmol)を加え、80℃で18時間攪拌した。反応終了後、反応溶液をメタノール(500mL)に注ぎ、析出した固体を濾取し、水(100mL)、メタノール(100mL)で洗浄し、得られた固体を減圧乾燥することで粗生成物を得た。粗生成物を、ソックスレー抽出器を用いてアセトン(200mL)、ヘキサン(200mL)で洗浄した後に、クロロホルム(200mL)で抽出した。得られた溶液をメタノール(2L)に注ぎ、析出した固体を濾取した後に減圧乾燥することで黒紫色の固体として共役ポリマーA5を得た(1.20g,43%)。
(Polymerization Example 5)
The conjugated polymer A5 was synthesized according to the following reaction formula (5).
Figure JPOXMLDOC01-appb-C000006
In a 100 mL three-necked flask under a nitrogen atmosphere, 2,6-dibromo-4,4′-bis (4,4,5,5,6,6,7,7,7-nonafluoroheptyl) -cyclopenta [2,1- b: 3,4-b ′] dithiophene (2.29 g, 2.68 mmol), 4,7-bis (3,3,4,4-tetramethyl-2,5,1-dioxaborolan-1-yl) benzo [C] [1,2,5] thiadiazole (1.04 g, 2.68 mmol), toluene (50 mL), 2M aqueous potassium carbonate solution (25 mL, 50 mmol), tetrakis (triphenylphosphine) palladium (0) (61.9 mg) , 53.5 μmol) and aliquat 336 (2 mg, 4.95 μmol) were added, followed by stirring at 80 ° C. for 2 hours. Thereafter, phenylboronic acid pinacol ester (273 mg, 1.34 mmol) was added, and the mixture was stirred at 80 ° C. for 18 hours. After completion of the reaction, the reaction solution was poured into methanol (500 mL), the precipitated solid was collected by filtration, washed with water (100 mL) and methanol (100 mL), and the resulting solid was dried under reduced pressure to obtain a crude product. It was. The crude product was washed with acetone (200 mL) and hexane (200 mL) using a Soxhlet extractor, and then extracted with chloroform (200 mL). The obtained solution was poured into methanol (2 L), and the precipitated solid was collected by filtration and dried under reduced pressure to obtain a conjugated polymer A5 as a black purple solid (1.20 g, 43%).
 重合例1と同様に、得られた共役ポリマーA5の理化学分析を行った。
H-NMR(270MHz):δ=8.12-7.97(m、2H)、7.90-7.32(m、2H)、2.75(t、J=7.56Hz、4H)、2.31-1.92(m、8H)
GPC(CHCl):Mn=19200g/mol、Mw=42700g/mol、PDI=2.22
 この理化学分析結果は、前記反応式(5)に示される化学構造を支持する。
In the same manner as in Polymerization Example 1, the obtained conjugated polymer A5 was subjected to physicochemical analysis.
1 H-NMR (270 MHz): δ = 8.12-7.97 (m, 2H), 7.90-7.32 (m, 2H), 2.75 (t, J = 7.56 Hz, 4H) 2.31-1.92 (m, 8H)
GPC (CHCl 3 ): Mn = 1920 g / mol, Mw = 42700 g / mol, PDI = 2.22
This physicochemical analysis result supports the chemical structure shown in the reaction formula (5).
(重合例6)
 下記反応式に従い共役ポリマーA6の合成を行った。
Figure JPOXMLDOC01-appb-C000007
 窒素雰囲気下、100mL三口フラスコに2,6-ジブロモ-4,4’-ビス(6,6,6-トリフルオロヘキシル)-シクロペンタ[2,1-b:3,4-b’]ジチオフェン(1.64g,2.68mmol)、4,7-ビス(3,3,4,4-テトラメチル-2,5,1-ジオキサボロラン-1-イル)ベンゾ[c][1,2,5]チアジアゾール(1.04g,2.68mmol)、トルエン(50mL)、2M炭酸カリウム水溶液(25mL,50mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(61.9mg,53.5μmol)、aliquat336(2mg,4.95μmol)を加えた後に80℃で2時間攪拌した。その後、フェニルボロン酸ピナコールエステル(273mg,1.34mmol)を加え、80℃で18時間攪拌した。反応終了後、反応溶液をメタノール(500mL)に注ぎ、析出した固体を濾取し、水(100mL)、メタノール(100mL)で洗浄し、得られた固体を減圧乾燥することで粗生成物を得た。粗生成物を、ソックスレー抽出器を用いてアセトン(200mL)、ヘキサン(200mL)で洗浄した後に、クロロホルム(200mL)で抽出した。得られた溶液をメタノール(2L)に注ぎ、析出した固体を濾取した後に減圧乾燥することで黒紫色の固体として共役ポリマーA6を得た(1.18g,44%)。
(Polymerization Example 6)
The conjugated polymer A6 was synthesized according to the following reaction formula.
Figure JPOXMLDOC01-appb-C000007
In a 100 mL three-necked flask under a nitrogen atmosphere, 2,6-dibromo-4,4′-bis (6,6,6-trifluorohexyl) -cyclopenta [2,1-b: 3,4-b ′] dithiophene (1 .64 g, 2.68 mmol), 4,7-bis (3,3,4,4-tetramethyl-2,5,1-dioxaborolan-1-yl) benzo [c] [1,2,5] thiadiazole ( 1.04 g, 2.68 mmol), toluene (50 mL), 2M aqueous potassium carbonate (25 mL, 50 mmol), tetrakis (triphenylphosphine) palladium (0) (61.9 mg, 53.5 μmol), aliquat 336 (2 mg, 4. (95 μmol), and the mixture was stirred at 80 ° C. for 2 hours. Thereafter, phenylboronic acid pinacol ester (273 mg, 1.34 mmol) was added, and the mixture was stirred at 80 ° C. for 18 hours. After completion of the reaction, the reaction solution was poured into methanol (500 mL), the precipitated solid was collected by filtration, washed with water (100 mL) and methanol (100 mL), and the resulting solid was dried under reduced pressure to obtain a crude product. It was. The crude product was washed with acetone (200 mL) and hexane (200 mL) using a Soxhlet extractor, and then extracted with chloroform (200 mL). The obtained solution was poured into methanol (2 L), and the precipitated solid was collected by filtration and dried under reduced pressure to obtain conjugated polymer A6 as a black purple solid (1.18 g, 44%).
 重合例1と同様に、得られた共役ポリマーA6の理化学分析を行った。
H-NMR(270MHz):δ=8.12-7.97(m、2H)、7.90-7.32(m、2H)、2.75(t、J=7.56Hz、4H)、2.31-1.92(m、16H)
GPC(CHCl):Mn=20600g/mol、Mw=46000g/mol、PDI=2.23
 この理化学分析結果は、前記反応式(6)に示される化学構造を支持する。
In the same manner as in Polymerization Example 1, the obtained conjugated polymer A6 was subjected to physicochemical analysis.
1 H-NMR (270 MHz): δ = 8.12-7.97 (m, 2H), 7.90-7.32 (m, 2H), 2.75 (t, J = 7.56 Hz, 4H) 2.31-1.92 (m, 16H)
GPC (CHCl 3 ): Mn = 20600 g / mol, Mw = 46000 g / mol, PDI = 2.23
This physicochemical analysis result supports the chemical structure shown in the reaction formula (6).
(重合例7)
 下記反応式に従い共役ポリマーA7の合成を行った。
Figure JPOXMLDOC01-appb-C000008
 充分に乾燥させアルゴン置換したナスフラスコAに、脱水及び過酸化物除去処理を行なったTHF25mLと、2-ブロモ-5-ヨ-ド-3-ヘキシルチオフェン1.865g(5mmol)と、i-プロピルマグネシウムクロリドの2.0M溶液2.5mLを加えて、0℃で30分攪拌し、上記反応式中の化学式(a1)で示す有機マグネシウム化合物の溶液を合成した。
 乾燥させたアルゴン置換したナスフラスコBに、脱水及び過酸化物除去処理を行なったテトラヒドロフラン(THF)25mLとNiCl(dppp)27mg(0.05mmol)を加えて35℃に加熱した後、有機マグネシウム化合物溶液(a1)を添加した。35℃で1.5時間加熱攪拌した後、5M塩酸50mLを加えて室温で1時間攪拌した。この反応液をクロロホルム450mLで抽出し、有機層を重曹水100mL、蒸留水100mLの順で洗浄し、有機層を無水硫酸ナトリウムで乾燥後、濃縮乾固した。得られた黒紫色の固体を、クロロホルムの30mLに溶かし、メタノ-ルの300mLに再沈殿し、充分に乾燥したものを、分取用GPCカラムを用いて精製することにより共役ポリマーA7(690mg)を得た。
(Polymerization Example 7)
The conjugated polymer A7 was synthesized according to the following reaction formula.
Figure JPOXMLDOC01-appb-C000008
A well-dried eggplant flask A that had been purged with argon was treated with 25 mL of dehydrated and peroxide-removed THF, 1.865 g (5 mmol) of 2-bromo-5-iodo-3-hexylthiophene, and i-propyl. 2.5 mL of a 2.0 M solution of magnesium chloride was added and stirred at 0 ° C. for 30 minutes to synthesize an organomagnesium compound solution represented by the chemical formula (a1) in the above reaction formula.
To the dried argon-substituted eggplant flask B, 25 mL of tetrahydrofuran (THF) subjected to dehydration and peroxide removal treatment and 27 mg (0.05 mmol) of NiCl 2 (dppp) were added and heated to 35 ° C. Compound solution (a1) was added. After stirring with heating at 35 ° C. for 1.5 hours, 50 mL of 5M hydrochloric acid was added and stirred at room temperature for 1 hour. This reaction solution was extracted with 450 mL of chloroform, and the organic layer was washed with 100 mL of sodium bicarbonate water and 100 mL of distilled water in this order. The organic layer was dried over anhydrous sodium sulfate and concentrated to dryness. The obtained black-purple solid was dissolved in 30 mL of chloroform, reprecipitated into 300 mL of methanol, and sufficiently dried, and purified using a preparative GPC column to give a conjugated polymer A7 (690 mg). Got.
 なお、溶媒であるTHFは、和光純薬工業社製の脱水テトラヒドロフラン(安定剤不含)を、金属ナトリウム存在下蒸留精製を行なった後、和光純薬工業社製のモレキュラーシーブス5Aに一日以上接触させることで、精製を行った。また、重合体の精製には分取用のGPCカラムを用いて精製を行なった。装置は、Japan Analytical Industry社製のRecycling Preparative HPLC LC-908を用いた。なお、カラムの種類は、日本分析工業社製のスチレン系ポリマーカラム 2H-40及び2.5H-40を2本直列に接続したものを用いた。また、溶出溶媒はクロロホルムを用いた。 In addition, THF as a solvent was purified by distillation of dehydrated tetrahydrofuran (without stabilizer) manufactured by Wako Pure Chemical Industries, Ltd. in the presence of metallic sodium, and then on molecular sieves 5A manufactured by Wako Pure Chemical Industries, Ltd. for one day or more. Purification was carried out by contact. The polymer was purified using a preparative GPC column. As the apparatus, Recycling Preparative HPLC LC-908 manufactured by Japan Analytical Industry was used. The column type used was a series of two styrene polymer columns 2H-40 and 2.5H-40 manufactured by Nihon Analytical Industries. Further, chloroform was used as an elution solvent.
 重合例1と同様に、得られた共役ポリマーA7の理化学分析を行った。
H-NMR:δ=6.97(s、1H)、2.80(t、J=8.0Hz、2H)、1.89-1.27(m、10H)、0.91(t、J=6.8Hz、3H)
GPC(CHCl):Mn=21000g/mol、Mw=24150g/mol、PDI=1.15
 この理化学分析結果は、前記反応式(7)に示される化学構造を支持する。
In the same manner as in Polymerization Example 1, the obtained conjugated polymer A7 was subjected to physicochemical analysis.
1 H-NMR: δ = 6.97 (s, 1H), 2.80 (t, J = 8.0 Hz, 2H), 1.89-1.27 (m, 10H), 0.91 (t, J = 6.8Hz, 3H)
GPC (CHCl 3 ): Mn = 21000 g / mol, Mw = 24150 g / mol, PDI = 1.15
This physicochemical analysis result supports the chemical structure shown in the reaction formula (7).
(重合例8)
 2-ブロモ-5-ヨ-ド-3-ヘキシルチオフェン1.865g(5mmol)の代りに2-ブロモ-5-ヨード-3-(2-エチル)ヘキシルチオフェン2.005g(5mmol)を添加した以外は重合例7と同様にして共役ポリマーA8(710mg)を得た。
(Polymerization Example 8)
Except that 2.005 g (5 mmol) of 2-bromo-5-iodo-3- (2-ethyl) hexylthiophene was added instead of 1.865 g (5 mmol) of 2-bromo-5-iodo-3-hexylthiophene Gave conjugated polymer A8 (710 mg) in the same manner as in Polymerization Example 7.
 重合例1と同様に、得られた共役ポリマーA8の理化学分析を行った。
H-NMR:δ=6.97(s、1H)、2.80(t、J=8.0Hz、2H)、1.89-1.27(m、11H)、0.91(t、J=6.8Hz、6H)
GPC(CHCl):Mn=23600g/mol、Mw=28000g/mol、PDI=1.19
In the same manner as in Polymerization Example 1, the obtained conjugated polymer A8 was subjected to physicochemical analysis.
1 H-NMR: δ = 6.97 (s, 1H), 2.80 (t, J = 8.0 Hz, 2H), 1.89-1.27 (m, 11H), 0.91 (t, J = 6.8Hz, 6H)
GPC (CHCl 3 ): Mn = 2600 g / mol, Mw = 28000 g / mol, PDI = 1.19
(重合例9)
 2-ブロモ-5-ヨ-ド-3-ヘキシルチオフェン1.865g(5mmol)の代りに2-ブロモ-5-ヨード-3-フェノキシメチルチオフェン1.975g(5mmol)を添加した以外は重合例7と同様にして共役ポリマーA9(600mg)を得た。
(Polymerization Example 9)
Polymerization Example 7 except that 1.975 g (5 mmol) of 2-bromo-5-iodo-3-phenoxymethylthiophene was added instead of 1.865 g (5 mmol) of 2-bromo-5-iodo-3-hexylthiophene In the same manner as described above, conjugated polymer A9 (600 mg) was obtained.
 重合例1と同様に、得られた共役ポリマーA9の理化学分析を行った。
H-NMR:δ=7.40-6.70(m、6H)、5.20-4.80(m、2H)
GPC(CHCl):Mn=19300g/mol、Mw=23200g/mol、PDI=1.20
In the same manner as in Polymerization Example 1, the obtained conjugated polymer A9 was subjected to physicochemical analysis.
1 H-NMR: δ = 7.40-6.70 (m, 6H), 5.20-4.80 (m, 2H)
GPC (CHCl 3 ): Mn = 19300 g / mol, Mw = 23200 g / mol, PDI = 1.20
(重合例10)
 下記反応式に従い共役ポリマーA10の合成を行った。なお、以降の反応式中、置換基である3-ヘプチルを3-HepまたはHep-3と略記する。また、以降の反応式中、置換基であるメチルをMeと略記する。
Figure JPOXMLDOC01-appb-C000009
(Polymerization Example 10)
The conjugated polymer A10 was synthesized according to the following reaction formula. In the following reaction formulas, 3-heptyl as a substituent is abbreviated as 3-Hep or Hep-3. In the following reaction formulas, methyl as a substituent is abbreviated as Me.
Figure JPOXMLDOC01-appb-C000009
 窒素雰囲気下、50mlのナスフラスコに共役ポリマーA10を構成する単量体である2,6-ビス(トリメチルスズ)-4,8-ジドデシルベンゾ[1,2-b:4,5-b’]ジチオフェン(0.64g,0.75mmol)及び1-(4,6-ジブロモチエノ[3,4-b]チオフェン-2-イル)-2-エチルヘキサン-1-オン(0.32g,0.75mmol)と、DMF(6.2mL)、トルエン(25mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(9.2mg、7.8μmol)を加え、115℃で1時間30分加熱した。次に、末端封止剤として2,5-ジブロモチオフェン(1.84g,7.6mmol)を加え、115℃で16時間加熱した。反応終了後、反応溶液を濃縮し、メタノール(500mL)に注ぎ、析出した固体を濾取し、得られた固体を減圧乾燥することで粗生成物を得た。粗生成物を、ソックスレー抽出機を用いてアセトン(200ml)、ヘキサン(200mL)で洗浄した後に、クロロホルム(200mL)で抽出した。有機層を濃縮乾固し、得られた黒紫色の固体を、クロロホルム(30mL)に溶解させ、メタノール(300mL)で再沈殿した。 In a 50 ml eggplant flask under nitrogen atmosphere, 2,6-bis (trimethyltin) -4,8-didodecylbenzo [1,2-b: 4,5-b ′, which is a monomer constituting conjugated polymer A10 ] Dithiophene (0.64 g, 0.75 mmol) and 1- (4,6-dibromothieno [3,4-b] thiophen-2-yl) -2-ethylhexane-1-one (0.32 g, 0.75 mmol) ), DMF (6.2 mL), toluene (25 mL), tetrakis (triphenylphosphine) palladium (0) (9.2 mg, 7.8 μmol), and heated at 115 ° C. for 1 hour 30 minutes. Next, 2,5-dibromothiophene (1.84 g, 7.6 mmol) was added as a terminal blocking agent and heated at 115 ° C. for 16 hours. After completion of the reaction, the reaction solution was concentrated, poured into methanol (500 mL), the precipitated solid was collected by filtration, and the obtained solid was dried under reduced pressure to obtain a crude product. The crude product was washed with acetone (200 ml) and hexane (200 mL) using a Soxhlet extractor and then extracted with chloroform (200 mL). The organic layer was concentrated to dryness, and the resulting black purple solid was dissolved in chloroform (30 mL) and reprecipitated with methanol (300 mL).
 得られた共役ポリマーA10の精製には分取用のGPCカラムを用いて精製を行なった。精製用の装置は、Japan Analytical Industry(株)製のRecycling Preparative HPLC LC-908を用いた。なお、カラムの種類は、日本分析工業(株)製のスチレン系ポリマーカラム 2H-40及び2.5H-40を2本直列に接続したものである。また、カラム及びインジェクターは145℃とし、溶出溶媒はクロロホルムを用いた。 The resulting conjugated polymer A10 was purified using a preparative GPC column. As a device for purification, Recycling Preparative HPLC LC-908 manufactured by Japan Analytical Industry Co., Ltd. was used. The type of the column is one in which two styrene polymer columns 2H-40 and 2.5H-40 manufactured by Nippon Analytical Industries, Ltd. are connected in series. The column and injector were 145 ° C., and the elution solvent was chloroform.
 得られた共役ポリマーA10(0.51g,86%)の数平均分子量(Mn)及び重量平均分子量(Mw)は、何れも、ゲル・パーミエーション・クロマトグラフィー(GPC)による測定に基づき、ポリスチレン換算値で求めた。ここでは、いずれもGPC装置として、Waters製のGPC/V2000を用い、カラムとして、昭和電工製のShodex AT-G806MSの2本を直列に繋いだものを用いた。また、カラム及びインジェクターは145℃とし、溶出溶媒として、o-ジクロロベンゼンを用いた。 The number average molecular weight (Mn) and the weight average molecular weight (Mw) of the resulting conjugated polymer A10 (0.51 g, 86%) are both in terms of polystyrene based on measurement by gel permeation chromatography (GPC). Obtained by value. In this example, GPC / V2000 manufactured by Waters was used as the GPC apparatus, and two columns of Shodex AT-G806MS manufactured by Showa Denko were connected in series as the column. The column and injector were 145 ° C., and o-dichlorobenzene was used as an elution solvent.
H NMR (270MHz,CDCl): δ =7.60‐7.30 (br、 3H),3.30‐3.00 (Br、 5H),2.00‐1.10 (br、 52H),1.00‐0.70 (br、12H)
GPC(CHCl):Mn=14600g/mol、Mw=33100g/mol、PDI=2.27
1 H NMR (270 MHz, CDCl 3 ): δ = 7.60-7.30 (br, 3H), 3.30-3.00 (Br, 5H), 2.00-1.10 (br, 52H) , 1.00-0.70 (br, 12H)
GPC (CHCl 3 ): Mn = 14600 g / mol, Mw = 33100 g / mol, PDI = 2.27
(重合例11)
 下記反応式に従い共役ポリマーA11の合成を行った。
Figure JPOXMLDOC01-appb-C000010
(Polymerization Example 11)
The conjugated polymer A11 was synthesized according to the following reaction formula.
Figure JPOXMLDOC01-appb-C000010
 窒素雰囲気下、50mlのナスフラスコに共役ポリマーA11を構成する単量体である2,6-ビス(トリメチルスズ)-4,8-ビス(2-エチルヘキシルオキシ)ベンゾ[1,2-b:4,5-b’]ジチオフェン(0.41mg,0.53mmol)、2,6-ビス(トリメチルスズ)-4,8-ジプロピルベンゾ[1,2-b:4,5-b’]ジチオフェン(0.14mg,0.23mmol)および1-(4,6-ジブロモチエノ[3,4-b]チオフェン-2-イル)-2-エチルヘキサン-1-オン(0.32g,0.75mmol)、DMF(6.2mL)、クロロベンゼン(25mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(9.2mg、7.8μmol)を加え、135℃で1時間30分加熱した。反応終了後、反応溶液を濃縮し、メタノール(500mL)に注ぎ、析出した固体を濾取し、得られた固体を減圧乾燥することで粗生成物を得た。粗生成物を、ソックスレー抽出機を用いてアセトン(200ml)、ヘキサン(200mL)で洗浄した後に、クロロベンゼン(200mL)で抽出した。有機層を濃縮乾固し、得られた黒紫色の固体を、クロロベンゼン(30mL)に溶解させ、メタノール(300mL)で再沈殿した。前記重合例10と同様の方法及び条件で、得られた共役ポリマーA11の精製を行なった。 In a 50 ml eggplant flask under a nitrogen atmosphere, 2,6-bis (trimethyltin) -4,8-bis (2-ethylhexyloxy) benzo [1,2-b: 4 which is a monomer constituting the conjugated polymer A11 , 5-b ′] dithiophene (0.41 mg, 0.53 mmol), 2,6-bis (trimethyltin) -4,8-dipropylbenzo [1,2-b: 4,5-b ′] dithiophene ( 0.14 mg, 0.23 mmol) and 1- (4,6-dibromothieno [3,4-b] thiophen-2-yl) -2-ethylhexane-1-one (0.32 g, 0.75 mmol), DMF (6.2 mL), chlorobenzene (25 mL), tetrakis (triphenylphosphine) palladium (0) (9.2 mg, 7.8 μmol) were added, and the mixture was heated at 135 ° C. for 1 hour 30 minutes. After completion of the reaction, the reaction solution was concentrated, poured into methanol (500 mL), the precipitated solid was collected by filtration, and the obtained solid was dried under reduced pressure to obtain a crude product. The crude product was washed with acetone (200 ml) and hexane (200 mL) using a Soxhlet extractor and then extracted with chlorobenzene (200 mL). The organic layer was concentrated to dryness, and the resulting black purple solid was dissolved in chlorobenzene (30 mL) and reprecipitated with methanol (300 mL). The obtained conjugated polymer A11 was purified by the same method and conditions as in Polymerization Example 10.
前記重合例10と同様の方法及び条件で、得られた共役ポリマーA11の理化学分析を行った。以下の理化学分析結果は、前記反応式に示される化学構造を支持する。
H-NMR(270MHz,CDCl):δ=7.60-7.30(br,3H)、4.40-4.00(br,4H)、3.20-3.00(br,3H)、2.00-0.60(br,41H)
GPC(CHCl):Mn=44000g/モル、Mw=86400g/モル、PDI=2.99
The obtained conjugated polymer A11 was subjected to physicochemical analysis under the same methods and conditions as in Polymerization Example 10. The following physicochemical analysis results support the chemical structure shown in the above reaction formula.
1 H-NMR (270 MHz, CDCl 3 ): δ = 7.60-7.30 (br, 3H), 4.40-4.00 (br, 4H), 3.20-3.00 (br, 3H) ), 2.00-0.60 (br, 41H)
GPC (CHCl 3 ): Mn = 44000 g / mol, Mw = 86400 g / mol, PDI = 2.99
(重合例12)
下記反応式に従い共役ポリマーA12の合成を行った。
Figure JPOXMLDOC01-appb-C000011
(Polymerization example 12)
The conjugated polymer A12 was synthesized according to the following reaction formula.
Figure JPOXMLDOC01-appb-C000011
 共役ポリマーA12を構成する単量体として2,6-ビス(トリメチルスズ)-4,8-ジプロピルベンゾ[1,2-b:4,5-b’]ジチオフェン(0.45g,0.75mmol)及び1-(4,6-ジブロモチエノ[3,4-b]チオフェン-2-イル)-2-エチルヘキサン-1-オン(0.32g,0.75mmol)を用いた以外は重合例11と同様の方法を用いて共役ポリマーA12を得た(0.31g,77%)。 As a monomer constituting the conjugated polymer A12, 2,6-bis (trimethyltin) -4,8-dipropylbenzo [1,2-b: 4,5-b ′] dithiophene (0.45 g, 0.75 mmol) ) And 1- (4,6-dibromothieno [3,4-b] thiophen-2-yl) -2-ethylhexane-1-one (0.32 g, 0.75 mmol) A similar method was used to obtain conjugated polymer A12 (0.31 g, 77%).
 前記重合例11と同様の方法及び条件で、得られた共役ポリマーA12(0.31g,77%)の理化学分析を行った。以下の理化学分析結果は、前記反応式に示される化学構造を支持する。
1H NMR (270MHz,CDCl3): δ =7.60‐7.30 (br、 3H),3.30‐3.00 (Br、 5H),2.00‐1.10 (br、 12H),1.00‐0.70 (br、12H)
GPC(CHCl):Mn=10,400g/モル、Mw=24,400g/モル、PDI=2.34
The obtained conjugated polymer A12 (0.31 g, 77%) was subjected to physicochemical analysis in the same manner and under the same conditions as in Polymerization Example 11. The following physicochemical analysis results support the chemical structure shown in the above reaction formula.
1H NMR (270 MHz, CDCl3): δ = 7.60-7.30 (br, 3H), 3.30-3.00 (Br, 5H), 2.00-1.10 (br, 12H), 1 .00-0.70 (br, 12H)
GPC (CHCl 3 ): Mn = 10,400 g / mol, Mw = 24,400 g / mol, PDI = 2.34
(実施例1)
 共役ポリマーA1(Mn=19600g/モル)を2.5mgと共役ポリマーA4(Mn=18900g/モル)を2.5mgと溶媒としてクロロベンゼン1mLを加え40℃にて6時間かけて混合した。その後、室温20℃に冷却し、共役ポリマー組成物B1を作製した。
(Example 1)
2.5 mg of conjugated polymer A1 (Mn = 19600 g / mol), 2.5 mg of conjugated polymer A4 (Mn = 18900 g / mol) and 1 mL of chlorobenzene as a solvent were added and mixed at 40 ° C. for 6 hours. Then, it cooled to room temperature 20 degreeC and produced conjugated polymer composition B1.
(実施例2)
 共役ポリマーA4の代りに共役ポリマーA5(Mn=19200g/モル)を使用した以外は実施例1と同様にして共役ポリマー組成物B2を作製した。
(Example 2)
A conjugated polymer composition B2 was produced in the same manner as in Example 1 except that the conjugated polymer A5 (Mn = 1920 g / mol) was used instead of the conjugated polymer A4.
(実施例3)
 共役ポリマーA2(Mn=17500g/モル)を2.5mgと共役ポリマーA5を2.5mgと溶媒としてクロロベンゼン1mLを加え40℃にて6時間かけて混合した。その後、室温20℃に冷却し、共役ポリマー組成物B3を作製した。
(Example 3)
2.5 mg of conjugated polymer A2 (Mn = 17500 g / mol), 2.5 mg of conjugated polymer A5 and 1 mL of chlorobenzene as a solvent were added and mixed at 40 ° C. for 6 hours. Then, it cooled to room temperature 20 degreeC, and produced conjugated polymer composition B3.
(実施例4)
 共役ポリマーA10(Mn=14600g/モル)を2.5mgと共役ポリマーA11(Mn=44000g/モル)を2.5mgと溶媒として2.5%の体積分率にて1,8-ジヨードオクタンを混合したクロロベンゼン1mLを加え100℃にて6時間かけて混合した。その後、室温20℃に冷却し、共役ポリマー組成物B4を作製した。
(Example 4)
2.5 mg of conjugated polymer A10 (Mn = 14600 g / mol), 2.5 mg of conjugated polymer A11 (Mn = 44000 g / mol) and 2.5% volume fraction as a solvent, 1,8-diiodooctane 1 mL of mixed chlorobenzene was added and mixed at 100 ° C. for 6 hours. Then, it cooled to room temperature 20 degreeC and produced conjugated polymer composition B4.
(比較例1)
 共役ポリマーA4の代りに共役ポリマーA7(Mn=21000g/モル)を使用した以外は実施例1と同様にして共役ポリマー組成物B5を作製した。
(Comparative Example 1)
A conjugated polymer composition B5 was produced in the same manner as in Example 1 except that the conjugated polymer A7 (Mn = 21000 g / mol) was used instead of the conjugated polymer A4.
(比較例2)
 共役ポリマーA4の代りに共役ポリマーA6(Mn=20600g/モル)を使用した以外は実施例1と同様にして共役ポリマー組成物B6を作製した。
(Comparative Example 2)
A conjugated polymer composition B6 was prepared in the same manner as in Example 1 except that the conjugated polymer A6 (Mn = 20600 g / mol) was used instead of the conjugated polymer A4.
(比較例3)
 共役ポリマーA7を2.5mgと共役ポリマーA8(Mn=23600g/モル)を2.5mgと溶媒としてクロロベンゼン1mLを加え40℃にて6時間かけて混合した。その後、室温20℃に冷却し、共役ポリマー組成物B7を作製した。
(Comparative Example 3)
2.5 mg of conjugated polymer A7, 2.5 mg of conjugated polymer A8 (Mn = 23600 g / mol) and 1 mL of chlorobenzene as a solvent were added and mixed at 40 ° C. for 6 hours. Then, it cooled to room temperature 20 degreeC and produced conjugated polymer composition B7.
(比較例4)
 共役ポリマーA1を2.5mgとポリスチレン(トーヨースチロールG32;Mn=83800)を2.5mgと溶媒としてクロロベンゼン1mLを加え40℃にて6時間かけて混合した。その後、室温20℃に冷却し、共役ポリマー組成物B8を作製した。
(Comparative Example 4)
2.5 mg of conjugated polymer A1 and 2.5 mg of polystyrene (Toyostyrene G32; Mn = 83800) and 1 mL of chlorobenzene as a solvent were added and mixed at 40 ° C. for 6 hours. Then, it cooled to room temperature 20 degreeC and produced conjugated polymer composition B8.
(比較例5)
 共役ポリマーA5を2.5mgと共役ポリマーA9(Mn=19300g/モル)を2.5mgと溶媒としてクロロベンゼン1mLを加え40℃にて6時間かけて混合した。その後、室温20℃に冷却し、共役ポリマー組成物B9を作製した。
(Comparative Example 5)
2.5 mg of conjugated polymer A5, 2.5 mg of conjugated polymer A9 (Mn = 19300 g / mol) and 1 mL of chlorobenzene as a solvent were added and mixed at 40 ° C. for 6 hours. Then, it cooled to room temperature 20 degreeC, and produced conjugated polymer composition B9.
(比較例6)
 共役ポリマーA1を5.0mgと溶媒としてクロロベンゼン1mLを加え40℃にて6時間かけて混合した。その後、室温20℃に冷却し、共役ポリマーB10を作製した。
(Comparative Example 6)
5.0 mg of conjugated polymer A1 and 1 mL of chlorobenzene as a solvent were added and mixed at 40 ° C. for 6 hours. Then, it cooled to room temperature 20 degreeC, and produced conjugated polymer B10.
(比較例7)
 共役ポリマーA7を5.0mgと溶媒としてクロロベンゼン1mLを加え40℃にて6時間かけて混合した。その後、室温20℃に冷却し、共役ポリマーB11を作製した。
(Comparative Example 7)
5.0 mg of conjugated polymer A7 and 1 mL of chlorobenzene as a solvent were added and mixed at 40 ° C. for 6 hours. Then, it cooled to room temperature 20 degreeC, and produced conjugated polymer B11.
(比較例8)
 共役ポリマーA3(Mn=7000g/モル)を2.5mgと共役ポリマーA4を2.5mgと溶媒としてクロロベンゼン1mLを加え40℃にて6時間かけて混合した。その後、室温20℃に冷却し、共役ポリマー組成物B12を作製した。
(Comparative Example 8)
2.5 mg of conjugated polymer A3 (Mn = 7000 g / mol), 2.5 mg of conjugated polymer A4 and 1 mL of chlorobenzene as a solvent were added and mixed at 40 ° C. for 6 hours. Then, it cooled to room temperature 20 degreeC, and produced conjugated polymer composition B12.
(比較例9)
 共役ポリマーA12(Mn=10400g/モル)を2.5mgと溶媒として2.5%の体積分率にて1,8-ジヨードオクタンを混合したクロロベンゼン1mLを加え100℃にて6時間かけて混合した。その後、室温20℃に冷却し、共役ポリマー組成物B13を作製した。
(Comparative Example 9)
Add 2.5 mL of conjugated polymer A12 (Mn = 10400 g / mol) and 1 mL of chlorobenzene mixed with 1,8-diiodooctane at a volume fraction of 2.5% as a solvent, and mix at 100 ° C. for 6 hours. did. Then, it cooled to room temperature 20 degreeC, and produced conjugated polymer composition B13.
(比較例10)
 共役ポリマーA10を2.5mgと溶媒として2.5%の体積分率にて1,8-ジヨードオクタンを混合したクロロベンゼン1mLを加え40℃にて6時間かけて混合した。その後、室温100℃に冷却し、共役ポリマー組成物B14を作製した。
(Comparative Example 10)
1 mL of chlorobenzene mixed with 2.5 mg of conjugated polymer A10 and 1,8-diiodooctane at a volume fraction of 2.5% as a solvent was added and mixed at 40 ° C. for 6 hours. Then, it cooled to room temperature 100 degreeC and produced conjugated polymer composition B14.
(共役ポリマー組成物と電子受容性材料との混合溶液の製造)
 前記実施例1で作製した共役ポリマー組成物を5.0mg含有する溶液に電子受容性材料としてPCBM(フロンティアカーボン社製E100H)の20.0mgを添加し、40℃にて6時間かけて混合した。その後、室温20℃に冷却し、孔径0.45μmのPTFEフィルターで濾過して共役ポリマー組成物とPCBMとを含む溶液を製造した。
(Production of mixed solution of conjugated polymer composition and electron accepting material)
20.0 mg of PCBM (E100H manufactured by Frontier Carbon Corporation) was added as an electron-accepting material to a solution containing 5.0 mg of the conjugated polymer composition prepared in Example 1 and mixed at 40 ° C. for 6 hours. . Then, it cooled to room temperature 20 degreeC, and filtered with the PTFE filter with the hole diameter of 0.45 micrometer, and manufactured the solution containing a conjugated polymer composition and PCBM.
 実施例2~3および比較例1、2、4~6、8により得られた各共役ポリマー組成物についても同じ方法により、PCBMを含む溶液を製造した。 For each conjugated polymer composition obtained in Examples 2 to 3 and Comparative Examples 1, 2, 4 to 6 and 8, solutions containing PCBM were produced by the same method.
 比較例3、7により得られた各共役ポリマー組成物については共役ポリマー組成物を16.0mgと電子受容性材料としてPCBM(フロンティアカーボン社製E100H)を12.8mgとを使用した以外は同じ方法により、共役ポリマー組成物とPCBMとを含む溶液を製造した。 For each conjugated polymer composition obtained in Comparative Examples 3 and 7, the same method except that 16.0 mg of the conjugated polymer composition and 12.8 mg of PCBM (E100H manufactured by Frontier Carbon Co.) were used as the electron-accepting material. Thus, a solution containing the conjugated polymer composition and PCBM was produced.
 実施例4および比較例9、10により得られた各共役ポリマー組成物については共役ポリマー組成物を5.0mgと電子受容性材料としてPC71BM(フロンティアカーボン社製E110)を7.5mgとを使用した以外は同じ方法により、共役ポリマー組成物とPC71BMとを含む溶液を製造した。 For each conjugated polymer composition obtained in Example 4 and Comparative Examples 9 and 10, 5.0 mg of the conjugated polymer composition and 7.5 mg of PC 71 BM (E110 manufactured by Frontier Carbon Co.) as an electron-accepting material were used. A solution containing the conjugated polymer composition and PC 71 BM was prepared in the same manner except that it was used.
(有機太陽電池の作製、評価)
 スパッタ法により150nmの厚みでITO膜(抵抗値10Ω/□)を付けたガラス基板を15分間オゾンUV処理して表面処理を行った。基板上に正孔輸送層となるPEDOT:PSS水溶液(H.C.Starck社製:CLEVIOS PH500)をスピンコート法により40nmの厚さに成膜した。ホットプレートにより140℃で20分間加熱乾燥した後、次にスピンコートにより上記により製造した共役ポリマー組成物とPCBMとを含む溶液を塗布し、有機薄膜太陽電池の有機光電変換層(膜厚約100nm)を得た。3時間真空乾燥した後、比較例3、7に関しては120℃30分の熱アニールを施した。その後、真空蒸着機によりフッ化リチウムを膜厚1nmで蒸着し、次いでアルミニウムを5×5mmの正四角形マスクを介して膜厚100nmで蒸着した。蒸着のときの真空度は、すべて2×10-4Pa以下であった。これにより共役ポリマー組成物による光電変換素子である5×5mmの有機薄膜太陽電池を得た。
(Production and evaluation of organic solar cells)
A glass substrate provided with an ITO film (resistance value 10Ω / □) with a thickness of 150 nm by sputtering was subjected to surface treatment by ozone UV treatment for 15 minutes. A PEDOT: PSS aqueous solution (manufactured by HC Starck Co., Ltd .: CLEVIOS PH500) serving as a hole transport layer was formed on the substrate to a thickness of 40 nm by spin coating. After heating and drying at 140 ° C. for 20 minutes on a hot plate, a solution containing the conjugated polymer composition prepared above and PCBM was applied by spin coating, and an organic photoelectric conversion layer (film thickness of about 100 nm) of the organic thin film solar cell was applied. ) After vacuum drying for 3 hours, Comparative Examples 3 and 7 were subjected to thermal annealing at 120 ° C. for 30 minutes. Then, lithium fluoride was vapor-deposited with a film thickness of 1 nm by a vacuum vapor deposition machine, and then aluminum was vapor-deposited with a film thickness of 100 nm through a 5 × 5 mm regular square mask. The degree of vacuum at the time of vapor deposition was 2 × 10 −4 Pa or less. As a result, a 5 × 5 mm organic thin-film solar cell, which is a photoelectric conversion element using a conjugated polymer composition, was obtained.
(光電変換効率及び溶解度パラメーターの測定)
 得られた各実施例、比較例の有機薄膜太陽電池の光電変換効率を150Wのソーラシミュレーター(ペクセルテクノロジー社製、商品名PEC L11:AM1.5Gフィルター、放射照度100mW/cm)で測定した。測定結果を表1~表3に示す。また、各実施例の共役ポリマー組成物を構成する各共役ポリマーの溶解度パラメーターは、Bicerano法にてコンピューターソフトウェアScigress Explorer
Professional 7.6.0.52 (富士通製)を用いて計算した。各比較例のポリマー及び組成物についても同様の方法により溶解度パラメーターを測定した。結果を併せて表1~3に示す。
(Measurement of photoelectric conversion efficiency and solubility parameter)
The photoelectric conversion efficiencies of the organic thin film solar cells obtained in the respective Examples and Comparative Examples were measured with a 150 W solar simulator (Peccell Technology, trade name PEC L11: AM1.5G filter, irradiance 100 mW / cm 2 ). . The measurement results are shown in Tables 1 to 3. In addition, the solubility parameter of each conjugated polymer constituting the conjugated polymer composition of each example was calculated using the computer software Scigress Explorer according to the Bicerano method.
Calculation was performed using Professional 7.6.0.52 (Fujitsu). The solubility parameters of the polymers and compositions of each comparative example were measured by the same method. The results are also shown in Tables 1 to 3.
表1~表3には、有機光電変換層となる薄膜形成材料として使用した共役ポリマー組成物及び共役ポリマー、共役ポリマー組成物を構成する共役ポリマーの構造及びその溶解度パラメーター(SP値)、共役ポリマーA及びBの溶解度パラメーターの差、有機薄膜太陽電池の光電変換効率を示した。 Tables 1 to 3 show the conjugated polymer composition and conjugated polymer used as a thin film forming material for the organic photoelectric conversion layer, the structure of the conjugated polymer constituting the conjugated polymer composition, its solubility parameter (SP value), and the conjugated polymer. The difference of the solubility parameter of A and B and the photoelectric conversion efficiency of the organic thin film solar cell were shown.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 評価からわかるように、共役ポリマー組成物を構成する少なくとも2種類の共役ポリマーが縮環π共役骨格からなる二価の複素環基を主鎖に含み、各共役ポリマーの数平均分子量は少なくとも10000g/モルであり、各共役ポリマーの溶解度パラメーターのうち、最大値(共役ポリマーA)と最小値(共役ポリマーB)の差が0.6以上2.0以下である本発明の共役ポリマー組成物を用いた有機薄膜太陽電池(実施例1~4)は、高い変換効率であることがわかる。 As can be seen from the evaluation, at least two kinds of conjugated polymers constituting the conjugated polymer composition contain a divalent heterocyclic group composed of a condensed π-conjugated skeleton in the main chain, and the number average molecular weight of each conjugated polymer is at least 10,000 g / The conjugated polymer composition of the present invention in which the difference between the maximum value (conjugated polymer A) and the minimum value (conjugated polymer B) among the solubility parameters of each conjugated polymer is 0.6 or more and 2.0 or less is used. It can be seen that the organic thin film solar cells (Examples 1 to 4) had high conversion efficiency.
 一方、比較例1、4~6,9,10は縮環π共役骨格からなる二価の複素環基を主鎖に含む共役ポリマーを1種類しか含有していないため高い変換効率が得られていない。比較例2は縮環π共役骨格からなる二価の複素環基を主鎖に含む共役ポリマーを2種類含有しているものの、組成物を構成する共役ポリマーの溶解度パラメーターのうち、最大値(共役ポリマーA)と最小値(共役ポリマーB)との差が0.6以上2.0以下の範囲に入っていないため、高い変換効率が得られていないことがわかる。比較例3及び7は、縮環π共役骨格からなる二価の複素環基を主鎖に含む共役ポリマーを含有していないため、変換効率が劣ることがわかる。比較例8は、含有する共役ポリマーの数平均分子量が10000g/モル未満であり、本発明の構成要件を満たさないため、変換効率が劣ることがわかる。 On the other hand, Comparative Examples 1, 4 to 6, 9, and 10 have high conversion efficiency because they contain only one type of conjugated polymer containing a divalent heterocyclic group consisting of a condensed π-conjugated skeleton in the main chain. Absent. Although Comparative Example 2 contains two types of conjugated polymers containing a divalent heterocyclic group composed of a condensed π-conjugated skeleton in the main chain, the solubility parameter of the conjugated polymer constituting the composition is the maximum value (conjugated) Since the difference between the polymer A) and the minimum value (conjugated polymer B) is not in the range of 0.6 or more and 2.0 or less, it can be seen that high conversion efficiency is not obtained. Since Comparative Examples 3 and 7 do not contain a conjugated polymer containing a divalent heterocyclic group composed of a condensed π-conjugated skeleton in the main chain, the conversion efficiency is inferior. In Comparative Example 8, the number average molecular weight of the conjugated polymer contained is less than 10,000 g / mol, and the conversion efficiency is inferior because the constituent requirements of the present invention are not satisfied.
 本発明の共役ポリマー組成物は、光電変換素子の光電変換層として利用できるものである。また、その共役ポリマー組成物を含有する有機薄膜を用いた光電変換素子は、太陽電池をはじめとして各種の光センサとして汎用される。 The conjugated polymer composition of the present invention can be used as a photoelectric conversion layer of a photoelectric conversion element. Moreover, the photoelectric conversion element using the organic thin film containing the conjugated polymer composition is used widely as various optical sensors including a solar cell.
 1は光電変換素子、2は正極、3は有機光電変換層、4は負極、5は基板である。 1 is a photoelectric conversion element, 2 is a positive electrode, 3 is an organic photoelectric conversion layer, 4 is a negative electrode, and 5 is a substrate.

Claims (11)

  1.  縮環π共役骨格からなる二価の複素環基を主鎖に含み、かつフッ素原子または水酸基で置換されてもよいアルキル基またはアルコキシ基である側鎖を有し、ポリスチレン換算した数平均分子量が少なくとも10000g/モルである共役ポリマーの少なくとも2種類を含有する共役ポリマー組成物であって、
     それぞれの前記共役ポリマーの溶解度パラメーターにおける、最大値を有する共役ポリマーと最小値を有する共役ポリマーとの差が、0.6以上2.0以下であることを特徴とする共役ポリマー組成物。
    The main chain contains a divalent heterocyclic group consisting of a condensed π-conjugated skeleton, and has a side chain which is an alkyl group or an alkoxy group which may be substituted with a fluorine atom or a hydroxyl group, and the number average molecular weight in terms of polystyrene is A conjugated polymer composition containing at least two of the conjugated polymers that is at least 10,000 g / mol,
    A conjugated polymer composition, wherein a difference between a conjugated polymer having a maximum value and a conjugated polymer having a minimum value in a solubility parameter of each of the conjugated polymers is 0.6 or more and 2.0 or less.
  2.  前記複素環基が、少なくとも一つのチオフェン環を化学構造の一部に含む縮環π共役骨格からなることを特徴とする請求項1に記載の共役ポリマー組成物。 The conjugated polymer composition according to claim 1, wherein the heterocyclic group is composed of a condensed π-conjugated skeleton containing at least one thiophene ring as a part of the chemical structure.
  3.  前記共役ポリマーが、シクロペンタジチオフェンジイル基、ジチエノピロールジイル基、ジチエノシロールジイル基、ジチエノゲルモールジイル基、ベンゾジチオフェンジイル基、ナフトジチオフェンジイル基、チエノチオフェンジイル基、チエノピロールジオン基から選ばれる少なくとも一つの二価の複素環基を含有する単量体単位からなることを特徴とする請求項2に記載の共役ポリマー組成物。 The conjugated polymer is cyclopentadithiophene diyl group, dithienopyrrole diyl group, dithienosilole diyl group, dithienogermol diyl group, benzodithiophene diyl group, naphthodithiophene diyl group, thienothiophene diyl group, thienopyrrole The conjugated polymer composition according to claim 2, comprising a monomer unit containing at least one divalent heterocyclic group selected from dione groups.
  4.  前記共役ポリマーの2種類が、前記二価の複素環基に最少でも炭素数12のアルキル基またはアルコキシ基である側鎖が結合している共役ポリマーと、同種または異種の前記二価の複素環基に最大でも炭素数8のアルキル基またはアルコキシ基である側鎖が結合している共役ポリマーとであることを特徴とする請求項1~3の何れかに記載の共役ポリマー組成物。 Two types of the conjugated polymers are the same or different types of the divalent heterocyclic ring and the conjugated polymer in which a side chain that is an alkyl group or an alkoxy group having at least 12 carbon atoms is bonded to the divalent heterocyclic group. The conjugated polymer composition according to any one of claims 1 to 3, wherein the conjugated polymer is a conjugated polymer having a side chain which is an alkyl group or alkoxy group having a maximum of 8 carbon atoms bonded to the group.
  5.  前記共役ポリマーの2種類が、前記二価の複素環基にフッ素未置換であるアルキル基またはアルコキシ基である側鎖が結合している共役ポリマーと、同種または異種の前記二価の複素環基に最少でも3つのフッ素原子が置換されているアルキル基またはアルコキシ基である側鎖が結合している共役ポリマーとであることを特徴とする請求項1~4の何れかに記載の共役ポリマー組成物。 Two types of the conjugated polymers are the same or different types of the divalent heterocyclic group and the conjugated polymer in which a side chain that is an alkyl group or an alkoxy group that is fluorine-free is bonded to the divalent heterocyclic group. The conjugated polymer composition according to any one of claims 1 to 4, wherein the conjugated polymer has a side chain that is an alkyl group or an alkoxy group substituted with at least three fluorine atoms. object.
  6.  前記共役ポリマーのうち少なくとも1つが、縮環π共役骨格からなる二価の複素環基を有する少なくとも2種類の単量体単位からなるランダム共重合体である請求項1~5の何れかに記載の共役ポリマー組成物。 6. The random copolymer composed of at least two kinds of monomer units having at least one divalent heterocyclic group composed of a condensed π-conjugated skeleton among the conjugated polymers. Conjugated polymer composition.
  7.  前記共役ポリマー組成物に含まれる、最大値の溶解度パラメーターを有する共役ポリマーと最小値の溶解度パラメーターを有する共役ポリマーとの質量比が、最大値を有する共役ポリマー:最小値を有する共役ポリマー=95:5~5:95であることを特徴とする請求項1~6の何れかに記載の共役ポリマー組成物。 The mass ratio of the conjugated polymer having the maximum solubility parameter and the conjugated polymer having the minimum solubility parameter included in the conjugated polymer composition is conjugated polymer having the maximum value: conjugated polymer having the minimum value = 95: 7. The conjugated polymer composition according to claim 1, wherein the conjugated polymer composition is 5 to 5:95.
  8.  請求項1~7の何れかに記載の共役ポリマー組成物とフラーレン誘導体とを含有することを特徴とする有機半導体組成物。 An organic semiconductor composition comprising the conjugated polymer composition according to any one of claims 1 to 7 and a fullerene derivative.
  9.  請求項1~7の何れかに記載の共役ポリマー組成物を含有することを特徴とする有機薄膜。 An organic thin film comprising the conjugated polymer composition according to any one of claims 1 to 7.
  10.  請求項9に記載の有機薄膜を基板に備えることを特徴とする有機薄膜素子。 An organic thin film element comprising the organic thin film according to claim 9 on a substrate.
  11.  請求項9に記載の有機薄膜が、少なくとも2つの電極間に挟まれていることを特徴とする光電変換素子。 A photoelectric conversion element, wherein the organic thin film according to claim 9 is sandwiched between at least two electrodes.
PCT/JP2012/069664 2011-08-04 2012-08-02 Conjugated polymer composition and photoelectric conversion element using same WO2013018853A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013526953A JP5844368B2 (en) 2011-08-04 2012-08-02 Conjugated polymer composition and photoelectric conversion element using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-171001 2011-08-04
JP2011171001 2011-08-04

Publications (1)

Publication Number Publication Date
WO2013018853A1 true WO2013018853A1 (en) 2013-02-07

Family

ID=47629370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069664 WO2013018853A1 (en) 2011-08-04 2012-08-02 Conjugated polymer composition and photoelectric conversion element using same

Country Status (3)

Country Link
JP (1) JP5844368B2 (en)
TW (1) TW201317268A (en)
WO (1) WO2013018853A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189721A (en) * 2013-03-28 2014-10-06 Sumitomo Chemical Co Ltd Polymer compound
JP2014205737A (en) * 2013-04-11 2014-10-30 住友化学株式会社 Compound and electronic element using the same
CN109749061A (en) * 2018-12-24 2019-05-14 国家纳米科学中心 Join receptor type Polymer photovoltaic materials and its preparation and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091886A (en) * 2006-09-08 2008-04-17 Toray Ind Inc Material for photovoltaic element, and photovoltaic element
WO2009104781A1 (en) * 2008-02-18 2009-08-27 住友化学株式会社 Composition and organic photoelectric converter using the same
WO2009122956A1 (en) * 2008-03-31 2009-10-08 住友化学株式会社 Organic semiconductor composition, organic thin film and organic thin film element provided with organic thin film
WO2010102116A2 (en) * 2009-03-05 2010-09-10 Konarka Technologies, Inc. Photovoltaic cell having multiple electron donors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091886A (en) * 2006-09-08 2008-04-17 Toray Ind Inc Material for photovoltaic element, and photovoltaic element
WO2009104781A1 (en) * 2008-02-18 2009-08-27 住友化学株式会社 Composition and organic photoelectric converter using the same
WO2009122956A1 (en) * 2008-03-31 2009-10-08 住友化学株式会社 Organic semiconductor composition, organic thin film and organic thin film element provided with organic thin film
WO2010102116A2 (en) * 2009-03-05 2010-09-10 Konarka Technologies, Inc. Photovoltaic cell having multiple electron donors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189721A (en) * 2013-03-28 2014-10-06 Sumitomo Chemical Co Ltd Polymer compound
JP2014205737A (en) * 2013-04-11 2014-10-30 住友化学株式会社 Compound and electronic element using the same
CN109749061A (en) * 2018-12-24 2019-05-14 国家纳米科学中心 Join receptor type Polymer photovoltaic materials and its preparation and application
CN109749061B (en) * 2018-12-24 2021-08-17 国家纳米科学中心 Linked receptor type polymer photovoltaic material and preparation and application thereof

Also Published As

Publication number Publication date
JPWO2013018853A1 (en) 2015-03-05
TW201317268A (en) 2013-05-01
JP5844368B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5533646B2 (en) Material for photovoltaic element and photovoltaic element
KR101361312B1 (en) Electron-donating organic material for photovoltaic devices, material for photovoltaic devices, and photovoltaic devices
KR101548764B1 (en) Electron donating organic material, material for photovoltaic element, and photovoltaic element
JP5359173B2 (en) Electron donating organic material for photovoltaic element, photovoltaic element material and photovoltaic element
US9214635B2 (en) Anthradithiophene-based semiconducting polymers and methods thereof
JP5664200B2 (en) Conjugated polymer, electron donating organic material, photovoltaic device material and photovoltaic device using the same
JP5299023B2 (en) Material for photovoltaic element and photovoltaic element
JP5900084B2 (en) Electron donating organic material, photovoltaic device material using the same, and photovoltaic device
JP2013512985A (en) Conductive polymer introduced with pyrene compound and organic solar cell using the same
TW201602157A (en) Polymer, and solar cell manufactured using same
JP5691628B2 (en) Material for photovoltaic element and photovoltaic element
JP5736456B2 (en) Conjugated block copolymer and photoelectric conversion element using the same
WO2014031750A1 (en) Acenaphthylene imide-derived semiconductors
JP6074996B2 (en) Material for photovoltaic element and photovoltaic element
JP5844368B2 (en) Conjugated polymer composition and photoelectric conversion element using the same
JP2015220331A (en) Photoelectric conversion element
JP5476660B2 (en) Organic photoelectric conversion device and polymer useful for production thereof
JP2012241099A (en) Conjugated polymer, electron-releasing organic material employing the same, material for photovoltaic element and photovoltaic element
JP2015026716A (en) Method of manufacturing photoelectric conversion element
CN110536917B (en) Polymer and organic solar cell comprising same
JP5428670B2 (en) Material for photovoltaic element and photovoltaic element
JP2013207252A (en) Photoelectric conversion element
US20140378605A1 (en) Poly[[2,6-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene][3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]]
JP2012021150A (en) Method for producing high-molecular compound
JP2014051583A (en) Conjugated block copolymer and photoelectric conversion element using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013526953

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12820620

Country of ref document: EP

Kind code of ref document: A1