[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013015017A1 - シリコン含有膜の製造方法 - Google Patents

シリコン含有膜の製造方法 Download PDF

Info

Publication number
WO2013015017A1
WO2013015017A1 PCT/JP2012/064107 JP2012064107W WO2013015017A1 WO 2013015017 A1 WO2013015017 A1 WO 2013015017A1 JP 2012064107 W JP2012064107 W JP 2012064107W WO 2013015017 A1 WO2013015017 A1 WO 2013015017A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
gas
silicon
containing film
substrate
Prior art date
Application number
PCT/JP2012/064107
Other languages
English (en)
French (fr)
Inventor
敦志 東名
善之 奈須野
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/234,465 priority Critical patent/US20140154415A1/en
Priority to CN201280033941.4A priority patent/CN103650169A/zh
Priority to JP2013525611A priority patent/JP5705322B2/ja
Publication of WO2013015017A1 publication Critical patent/WO2013015017A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • a chemical vapor deposition (hereinafter sometimes referred to as “CVD”) method is generally used.
  • CVD chemical vapor deposition
  • some impurities adhere to the inner wall surface of the chamber of the CVD apparatus or the surface of a jig provided in the chamber. Due to the adhesion of impurities, foreign substances are mixed into the film grown in the chamber, and as a result, an increase in crystal defects in the film grown in the chamber may be caused.
  • the composition of the fluorine-based residue remaining in the chamber after dry cleaning varies depending on the state of the chamber (for example, the material of the member provided in the chamber, the temperature of the heater, the temperature of the inner wall of the chamber), or the film formation history.
  • fluorine-based residues are present in various forms in combination with other elements as fluorides, but it is not clear which compound should be focused on. Therefore, in order to remove the fluorine-based residue, it is necessary to establish some kind of monitoring method in order to identify the compound to be noted.
  • the method for producing a silicon-containing film according to the present invention includes a first step of carrying a substrate into the chamber, a second step of forming a silicon-containing film on the surface of the substrate in the chamber, and forming the silicon-containing film.
  • a third step of unloading the processed substrate from the chamber a fourth step of dry cleaning the inside of the chamber using a fluorine-containing gas, and a fluoride gas present in the chamber by supplying a reducing gas into the chamber.
  • the reducing gas is supplied into the chamber until the partial pressure of the CF 4 gas in the chamber at the end of the sixth step becomes A ⁇ (2.0 ⁇ 10 ⁇ 4 ) Pa or less.
  • FIG. 1 is a flowchart showing an example of a method for producing a silicon-containing film according to the present invention.
  • the present invention is not limited to the following items.
  • the method for producing a silicon-containing film according to the present invention includes a step of carrying a substrate into the chamber (“loading a substrate” in FIG. 1) S101 and a step of forming a silicon-containing film on the surface of the substrate in the chamber (FIG. 1 (“Formation of silicon-containing film”) S102, a step of carrying out the substrate on which the silicon-containing film is formed from the chamber (“unloading of substrate” in FIG. 1) S103, and a step of dry-cleaning the inside of the chamber (FIG. 1 "dry cleaning") S104, a step of reducing the fluoride present in the chamber ("fluoride reduction" in FIG.
  • the method for forming the silicon-containing film on the surface of the substrate is not particularly limited, and may be a CVD method or a plasma CVD method.
  • a source gas and a carrier gas that are raw materials for the silicon-containing film may be supplied into the chamber.
  • plasma CVD method plasma may be generated in the chamber while supplying the source gas and the carrier gas into the chamber.
  • the source gas and the carrier gas contact not only the surface of the substrate but also the inner wall surface of the chamber or the surface of a member provided in the chamber (hereinafter referred to as “the inner wall surface of the chamber” and “ The “surface of the member” is collectively referred to as “the inner wall surface of the chamber”). Therefore, impurities including at least one of the source gas and the carrier gas may adhere on the inner wall surface of the chamber.
  • the silicon-containing film deposited on the inner wall surface of the chamber in the above ⁇ formation of silicon-containing film> is fluorinated.
  • the generated fluoride include SiF 4 gas obtained by fluorinating Si deposited on the inner wall surface of the chamber in the above ⁇ Formation of silicon-containing film>, and in the above ⁇ Formation of silicon-containing film> Examples include HF gas in which hydrogen gas as a carrier gas is fluorinated, and CF 4 gas in which SiC deposited on the inner wall surface of the chamber in the above ⁇ formation of silicon-containing film> is fluorinated.
  • fluoride existing in the chamber means fluoride (fluoride gas such as SiF 4 gas, HF gas, and CF 4 gas) fixed on the inner wall surface of the chamber.
  • fluoride present in the chamber is reduced means that the fixed state between the inner wall surface of the chamber and the fluoride is released.
  • the reduced fluoride that is, the fluorinated gas released from the fixed state with the inner wall surface of the chamber
  • the reducing gas may be plasmatized or not plasmatized. However, if the reducing gas is not converted into plasma, the reduction treatment can be performed also on the fluoride fixed at a position away from the plasma discharge region on the inner wall surface of the chamber. Furthermore, if the reducing gas is not converted into plasma, a great effect can be obtained when the inner wall surface of the chamber is made of a SUS material.
  • the method for producing a silicon-containing film according to the present invention is not limited to the case where the inner wall surface of the chamber is made of a SUS-based material. The effect that the compound can be reduced) can be expected.
  • CF 4 gas existing in the chamber is removed from the chamber before the above ⁇ formation of silicon-containing film> is performed again.
  • the purpose is to discharge.
  • the reducing gas is preferably supplied into the chamber so as to satisfy at least one of the following conditions 1 to 3.
  • Condition 1 The supply time of the reducing gas is not less than 10 seconds and not more than 1800 seconds.
  • Condition 2 The flow rate of the reducing gas is not less than 1000 sccm and not more than 100,000 sccm.
  • Condition 3 The internal pressure of the chamber is not less than 300 Pa and not more than 5000 Pa.
  • the reducing gas supply condition satisfies at least one of the above conditions 1 to 3
  • the partial pressure of the CF 4 gas in the chamber at the end of the following ⁇ exhaust> is A ⁇ (2.0 ⁇ 10 ⁇ 4 ) Pa or less.
  • the amount of CF 4 gas remaining in the chamber at the end of the following ⁇ exhaust> can be reduced. Therefore, even if the above ⁇ formation of silicon-containing film> is performed again, it is possible to prevent the CF 4 gas (particularly C) from being taken into the growing silicon-containing film and thereby reducing the performance of the silicon-containing film.
  • a photoelectric conversion device or the like is manufactured by using the method for producing a silicon-containing film according to the present embodiment, a photoelectric conversion device or the like in which deterioration in performance (for example, reduction in maximum output) is prevented can be provided.
  • the above “2.0 ⁇ 10 ⁇ 4 ” is based on the results of Examples 1 to 3 described later.
  • the partial pressure of CF 4 gas in the chamber at the end of the following ⁇ exhaust> is A ⁇ (5.0 ⁇ 10 ⁇ 5 ) Pa or less.
  • A is the ultimate vacuum of the chamber, and is the total pressure in the chamber at the end of the following ⁇ exhaust> (that is, the sum of the partial pressures of all the gases present in the chamber).
  • This “A” may be appropriately set, but is preferably 10 Pa or less. This is because if “A” is 10 Pa or less, the partial pressure of CF 4 gas in the chamber at the end of the following ⁇ exhaust> can be reduced.
  • the method for measuring the partial pressure of CF 4 gas in the chamber is not particularly limited, but quadrupole mass spectrometry is suitable.
  • This reduction of fluoride is also preferably performed between the above ⁇ loading substrate> and ⁇ forming silicon-containing film>. Thereby, the partial pressure of the CF 4 gas in the chamber can be further reduced before the above ⁇ formation of silicon-containing film> is performed again. This can be said also in the following ⁇ exhaust>.
  • the CF 4 gas in the chamber at the end of the following ⁇ exhaust> is such that the partial pressure of the CF 4 gas in the chamber is A ⁇ (2.0 ⁇ 10 ⁇ 4 ) Pa or less. More preferably, the partial pressure of CF 4 gas in the chamber at the end of the following ⁇ exhaust> is A ⁇ ( 2.P ) so that the partial pressure of the four gases is A ⁇ (5.0 ⁇ 10 ⁇ 5 ) Pa or less. If the reducing gas is supplied into the chamber so as to be 5 ⁇ 10 ⁇ 5 ) Pa or higher, ⁇ reduction of fluoride> is completed. Thereafter, the following ⁇ exhaust> is performed.
  • the gas in the chamber is exhausted until the ultimate vacuum in the chamber reaches A (Pa).
  • a method for exhausting the gas is not particularly limited, but it is preferable to evacuate the chamber. Then, the above ⁇ loading substrate> may be performed again, or the following ⁇ hydrogen plasma treatment> may be performed, and then ⁇ loading substrate> may be performed again.
  • the method for generating hydrogen plasma is not particularly limited, and any method may be used as long as, for example, hydrogen gas is supplied into the chamber and voltage or microwave is applied.
  • the treatment conditions of the hydrogen plasma treatment satisfy at least one of the following conditions 4 to 8.
  • Condition 4 This treatment time is 1 sec or more and 10,000 sec or less
  • Condition 5 The flow rate of hydrogen gas is 10,000 sccm or more and 100,000 sccm or less
  • Condition 6 The internal pressure of the chamber is 300 Pa or more and 800 Pa or less
  • Condition 7 The applied power is 0.03 W / Perform pulse discharge with a cm 2 or more and 0.1 W / cm 2 or less and a duty ratio of 5% or more and 50% or less.
  • Condition 8 The temperature of the heater for heating the substrate is 20 ° C. or more and 200 ° C. or less.
  • the processing time is less than 1 sec, the effect obtained by the generation of hydrogen plasma may not be sufficiently obtained.
  • the same can be said when the flow rate of hydrogen gas falls below 10,000 sccm and when the temperature of the heater falls below 20 ° C.
  • the processing time exceeds 10,000 sec, it is difficult to further reduce the amount of Si particles in the chamber, and thus the takt time may be prolonged.
  • the same can be said when the flow rate of hydrogen gas exceeds 100,000 sccm and when the temperature of the heater exceeds 200 ° C.
  • the condition 4 is preferably set as appropriate according to the duty ratio.
  • the method for producing a silicon-containing film according to the present invention is effective for mass production of a silicon-containing film, it can be used for a method for producing a photoelectric conversion device or a thin film transistor.
  • the method for manufacturing a photoelectric conversion device includes the method for manufacturing a silicon-containing film according to the present invention. Specifically, the substrate provided with the first electrode is carried into the chamber, and a p-type silicon layer, an i-type silicon layer, and an n-type silicon layer are sequentially stacked on the surface of the substrate, and a photoelectric conversion unit After that, the substrate on which the photoelectric conversion unit is manufactured is unloaded from the chamber. A photoelectric conversion device is obtained by providing a second electrode on the substrate carried out of the chamber. Further, after the inside of the chamber where the substrate is carried out is dry-cleaned, the fluoride present in the chamber is reduced. Thereafter, the substrate provided with the first electrode is carried into the chamber, and the above-described series of steps is performed.
  • a cathode electrode 3 and an anode electrode 4 are provided in the chamber 2 of the plasma CVD apparatus 1 so as to face each other.
  • a gas supply pipe 5 is connected to the cathode electrode 3, and a shower plate 3 ⁇ / b> A is provided on the side of the cathode electrode 3 facing the anode electrode 4.
  • the gas that has passed through the gas supply pipe 5 passes through the cathode electrode 3 and is jetted from the jetting surface of the shower plate 3 ⁇ / b> A toward the anode electrode 4.
  • a substrate 10 is provided on the surface of the anode electrode 4 facing the cathode electrode 3.
  • the gas supplied into the chamber 2 through the gas supply pipe 5 includes not only the raw material gas and carrier gas used in ⁇ Formation of silicon film> below, but also fluorine contained in ⁇ Dry cleaning> below. Also included are gases and reducing gases used in ⁇ fluoride reduction> below.
  • a high-frequency power source 6 is connected to the cathode electrode 3 through a matching circuit (not shown).
  • the anode electrode 4 is grounded. Thereby, plasma can be generated in the chamber 2.
  • the chamber 2 is provided with a discharge pipe 7. As a result, unnecessary gas in the chamber 2 passes through the discharge pipe 7 and is discharged out of the chamber 2.
  • Example 1 In Example 1, the amount of fluoride remaining in the chamber 2 was measured by changing the inflow time of SiH 4 gas (reducing gas).
  • a substrate 10 made of glass and provided with a transparent electrode was carried into the chamber 2 of the CVD apparatus 1 and provided on the upper surface of the anode electrode 4.
  • SiH 4 gas (raw material gas) and H 2 gas (carrier gas) are supplied into the chamber 2 through the gas supply pipe 5, and a silicon film (film thickness is 300 ⁇ m) 11 is formed on the upper surface of the substrate 10 by plasma CVD. Formed.
  • the conditions for forming the silicon film 11 were as follows.
  • SiH 4 gas flow rate 1 sccm H 2 gas flow rate: 10 sccm
  • Temperature in chamber 2 190 ° C Internal pressure of chamber 2: 600 Pa
  • Applied power to the high frequency power supply 6 3400W Frequency of the high frequency power supply 6: 11 MHz.
  • NF 3 gas flow rate 10 sccm
  • Ar gas flow rate 10 sccm
  • Temperature in chamber 2 160 ° C Internal pressure of chamber 2: 150 Pa
  • Applied power to the high frequency power source 6 18000W.
  • FIG. 3 is a graph showing the measurement results of the partial pressure of fluoride with respect to the supply time of SiH 4 gas, and L21, L22 and L23 in FIG. 3 are the fractions of CF 4 gas, HF gas and SiF 4 gas, respectively. The measurement result of pressure is shown.
  • SiH 4 gas and H 2 gas were supplied into the chamber 2 through the gas supply pipe 5. Thereby, an i-type amorphous silicon layer (thickness 280 nm) was formed on the upper surface of the p-type amorphous silicon layer.
  • SiH 4 gas, H 2 gas, and PH 3 gas were supplied into the chamber 2 through the gas supply pipe 5.
  • each flow rate of SiH 4 gas, H 2 gas, and PH 3 gas was adjusted so that phosphorus was doped by 0.2 atomic%.
  • an n-type amorphous silicon layer (thickness 25 nm) was formed on the upper surface of the i-type amorphous silicon layer.
  • the CF 4 present in the chamber 2 is reduced according to the method in the first embodiment except that the supply time of the SiH 4 gas is changed to 0 sec, 50 sec, 100 sec, 250 sec, 300 sec, 450 sec, 600 sec and 750 sec. did.
  • FIG. 4 is a graph showing measurement results of the partial pressure of CF 4 gas and the maximum output Pmax of the solar battery cell with respect to the supply time of SiH 4 gas.
  • L21 in FIG. 4 is L21 in FIG. 3, and L31 in FIG. 4 shows the result of this example.
  • FIG. 5 is a graph showing the relationship between the partial pressure of CF 4 gas and the maximum output Pmax of the solar battery cell. The total pressure in the chamber at the time of measuring the partial pressure of CF 4 gas was 1 Pa, as in Example 1 above.
  • the partial pressure of CF 4 gas is 5 ⁇ 10 ⁇ 4 Pa, and the maximum output Pmax of the solar battery cell is less than 142 W. It was.
  • the partial pressure of CF 4 gas decreased to 2 ⁇ 10 ⁇ 4 Pa, and Pmax increased to 143 W.
  • the partial pressure of CF 4 gas rapidly decreased to around 5 ⁇ 10 ⁇ 5 Pa, and Pmax rapidly increased to 146 W.
  • the partial pressure of CF 4 gas became lower than 5 ⁇ 10 ⁇ 5 Pa, and Pmax became higher than 146 W.
  • the partial pressure of CF 4 gas at the end of the ⁇ exhaust> is 2 ⁇ 10 -4 Pa or less, preferably CF 4 partial pressure 5 ⁇ 10 -5 gas at the end of the ⁇ exhaust> It can be said that it is preferable to reduce the CF 4 gas by supplying SiH 4 gas until it becomes Pa or lower.
  • an amorphous SiC film as well as an amorphous Si film may be used for the p-type silicon film formed first. This is because it is known that Pmax may be higher when a certain amount of C is positively added to the raw material gas.
  • the C source gas is not actively supplied, but the p-type silicon film is in a state in which a part of C contained in the gas remaining in the chamber is taken in. Is expected to have formed.
  • a suitable range for the partial pressure of CF 4 gas is 2.5 ⁇ 10 ⁇ 5 Pa or more and 2 ⁇ 10 ⁇ 4 Pa or less. It is done.
  • Example 3 Also in Example 3, attention was paid to the partial pressure of CF 4 gas in the chamber 2. Then, according to the same method as in Example 1 except that the SiH 4 gas was supplied with the substrate 10 provided on the upper surface of the anode electrode 4, the supply time of the SiH 4 gas and the distribution of the CF 4 gas were determined. The relationship with pressure was investigated.
  • the substrate 10 on which the silicon film is not formed is transferred to the chamber 2 of the plasma CVD apparatus 1 after performing the ⁇ substrate loading>, ⁇ silicon film formation>, ⁇ substrate unloading>, and ⁇ dry cleaning> in the first embodiment. Carried in.
  • SiH 4 gas and H 2 gas were supplied into the chamber 2 through the gas supply pipe 5. Then, after performing ⁇ exhaust> in Example 1 above, the partial pressure of CF 4 gas at each supply time of SiH 4 gas was measured using a quadrupole mass spectrometer.
  • FIG. 6 is a graph showing measurement results of the partial pressure of CF 4 gas with respect to the supply time of SiH 4 gas.
  • L21 in FIG. 6 is L21 in FIG. 3, and L51 in FIG. 6 shows the result of this example.
  • the partial pressure of CF 4 gas is supplied to the SiH 4 gas in a state where the substrate 10 is provided on the upper surface of the anode electrode 4
  • the SiH 4 gas was supplied in a state where the substrate 10 was not provided on the upper surface of the anode electrode 4 (L21). From this, it is considered that the CF 4 gas present in the portion where the substrate 10 is provided in the anode electrode 4 is not detected by the quadrupole mass spectrometer.
  • the SiH 4 gas when the SiH 4 gas is supplied in a state where the substrate 10 is provided on the upper surface of the anode electrode 4, the CF 4 gas existing in the portion of the anode electrode 4 where the substrate 10 is provided is not exposed to the SiH 4 gas. Therefore, it is considered that it is not reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 シリコン含有膜の製造方法は、基板の搬入工程(S101)と、シリコン含有膜の形成工程(S102)と、基板の搬出工程(S103)と、ドライクリーニング工程(S104)と、フッ化物の還元工程(S105)と、排気工程(S106)とを備えている。フッ化物の還元工程(S105)では、排気工程(S106)の終了時におけるチャンバ内のCF4ガスの分圧がA×(2.0×10-4)Pa以下となるまで還元ガスをチャンバ内に供給する。

Description

シリコン含有膜の製造方法
 本発明は、シリコン含有膜の製造方法に関する。
 薄膜太陽電池などに用いられるシリコン膜の形成方法として、一般に、化学的気相成長(Chemical Vapor Deposition(以下「CVD」と記すことがある))法が用いられる。CVD法によりシリコン膜を成長させると、CVD装置のチャンバの内壁面の上またはチャンバ内に設けられた冶具の表面の上などに何らかの不純物が付着する。この不純物の付着により、チャンバ内で成長する膜に対して異物が混入され、その結果、チャンバ内で成長する膜中の結晶欠陥の増加等を招くことがある。
 このような不具合の発生を抑制するために、たとえば特許文献1(特開2002-60951号公報)には、NF3等のフッ素含有ガスを用いてチャンバ内をドライクリーニングした後、チャンバ内のフッ素系残留物を水素プラズマで除去し、さらにその後、水素プラズマで除去されなかったチャンバ内のフッ素系残留物をシリコン膜の材料ガスのプラズマに包封させるという技術が開示されている。
特開2002-60951号公報
 ドライクリーニング後にチャンバ内に残留するフッ素系残留物の組成は、チャンバの状態(たとえばチャンバ内に設けられた部材の材質、ヒーターの温度、チャンバの内壁の温度)または成膜履歴などによって変化する。また、フッ素系残留物はフッ化物として他元素と結合して多様な形態で存在するが、どの化合物に着目すべきかが明確でなかった。したがって、フッ素系残留物を除去するためには、着目すべき化合物を特定するために何らかのモニタリング手法を確立する必要があった。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、ドライクリーニングを行なってから次の成膜(シリコン含有膜の形成)を行うまでの間に、チャンバ内のフッ化物量を低減可能なシリコン含有膜の製造方法を提供することである。
 本発明に係るシリコン含有膜の製造方法は、基板をチャンバ内に搬入する第1の工程と、チャンバ内において基板の表面上にシリコン含有膜を形成する第2の工程と、シリコン含有膜が形成された基板をチャンバ内から搬出する第3の工程と、フッ素含有ガスを用いてチャンバ内をドライクリーニングする第4の工程と、還元ガスをチャンバ内に供給してチャンバ内に存在するフッ化物を還元する第5の工程と、チャンバの到達真空度がA(Pa)になるまで当該チャンバ内のガスを排出する第6の工程とを備えている。第5の工程では、第6の工程の終了時におけるチャンバ内のCF4ガスの分圧がA×(2.0×10-4)Pa以下となるまで還元ガスをチャンバ内に供給する。
 第1の工程、第2の工程、第3の工程、第4の工程、第5の工程、および第6の工程を繰り返し行なうことが好ましい。
 第5の工程および第6の工程を第1の工程と第2の工程との間にも行なうことが好ましい。
 還元ガスは、SiH4ガスを含むことが好ましい。
 第5の工程を、還元ガスの供給時間が10秒以上1800秒以下である条件、還元ガスの流量が1000sccm(standard cc/min)以上100000sccm以下である条件、およびチャンバの内圧が300Pa以上5000Pa以下である条件のうちの少なくとも1つの条件で実施すれば良い。
 第6の工程の後に、チャンバ内において水素プラズマ処理を行なう第7の工程をさらに備えていることが好ましい。
 第7の工程を、水素プラズマ処理の処理時間が1sec以上10000sec以下である条件、水素ガスの流量が10000sccm以上100000sccm以下である条件、チャンバの内圧が300Pa以上800Pa以下である条件、印加電力が0.03W/cm2以上0.1W/cm2以下であり、且つデューティ比が5%以上50%以下であるパルス放電を行うという条件、および基板を加熱するヒーターの温度が20℃以上200℃以下である条件のうちの少なくとも1つの条件で実施すれば良い。ここで、デューティ比は(RFオンのパルス幅)÷(周期)で得られる。
 第2の工程は、化学気相成長法にしたがって基板の表面上にシリコン含有膜を形成することが好ましい。
 第5の工程では、第6の工程の終了時におけるチャンバ内のCF4ガスの分圧がA×(2.5×10-5)Pa以上となるまで還元ガスをチャンバ内に供給することが好ましい。
 本発明に係る光電変換装置の製造方法は、本発明に係るシリコン含有膜の製造方法を含む。
 本発明に係るシリコン含有膜の製造方法では、ドライクリーニングを行なってから次の成膜を行うまでの間に、チャンバ内のフッ化物量を低減可能である。
本発明に係るシリコン含有膜の製造方法の一例を示すフロー図である。 実施例1~3で使用されるCVD装置を模式的に示す断面図である。 SiH4ガスの供給時間に対するフッ化物の分圧の測定結果を示すグラフである。 SiH4ガスの供給時間に対するCF4ガスの分圧および太陽電池セルの最大出力Pmaxの各測定結果を示すグラフである。 CF4ガスの分圧と太陽電池セルの最大出力Pmaxとの関係を示すグラフである。 SiH4ガスの供給時間に対するCF4ガスの分圧の測定結果を示すグラフである。
 以下では、本発明に係るシリコン含有膜の製造方法および本発明に係る光電変換装置の製造方法を示す。なお、図1は、本発明に係るシリコン含有膜の製造方法の一例を示すフロー図である。本発明は、以下に示す事項に限定されない。
 <シリコン含有膜の製造方法>
 本発明に係るシリコン含有膜の製造方法は、基板をチャンバ内に搬入する工程(図1における「基板の搬入」)S101と、チャンバ内において基板の表面上にシリコン含有膜を形成する工程(図1における「シリコン含有膜の形成」)S102と、シリコン含有膜が形成された基板をチャンバ内から搬出する工程(図1における「基板の搬出」)S103と、チャンバ内をドライクリーニングする工程(図1における「ドライクリーニング」)S104と、チャンバ内に存在するフッ化物を還元する工程(図1における「フッ化物の還元」)S105と、チャンバ内を排気する工程(図1における「排気」)S106とを備えている。これらの工程は、同一のチャンバ内で繰り返し行なわれることが好ましく、基板の搬入工程S101、シリコン含有膜の形成工程S102、基板の搬出工程S103、ドライクリーニング工程S104、フッ化物の還元工程S105、および、排気工程S106の順に繰り返し行なわれることが好ましい。このように、本発明に係るシリコン含有膜の製造方法では、ドライクリーニングを行なってからチャンバ内に存在するフッ化物を還元し、その後、次の成膜工程(シリコン含有膜の形成工程)に移る。よって、本発明に係るシリコン含有膜の製造方法では、ドライクリーニングを行なってから次の成膜を行うまでの間に、チャンバ内のフッ化物量を低減可能である。
 また、本発明に係るシリコン含有膜の製造方法は、フッ化物の還元工程S105の後に、基板に対して水素プラズマ処理を行なう工程(図1における「水素プラズマ処理」)S107を備えていることが好ましい。これにより、ドライクリーニングを行なってから次の成膜を行うまでの間に、フッ化物の還元反応で生成されるSiパーティクル量を低減できる。
 <基板の搬入>
 基板の搬入工程S101では、基板をチャンバ内に搬入して、チャンバ内の所定の位置に固定する。
 基板の材料および形状などは特に限定されない。基板は、たとえば、ガラスなどからなることが好ましい。また、基板の成膜面は、平坦であっても良いし、凹凸を有していても良い。また、基板の平面形状は、矩形などの多角形であっても良いし、円形であっても良い。
 <シリコン含有膜の形成>
 シリコン含有膜の形成工程S102では、チャンバ内に設けられた基板の表面上にシリコン含有膜を形成する。
 シリコン含有膜を基板の表面上に形成する方法は特に限定されず、CVD法であっても良いし、プラズマCVD法であっても良い。CVD法によりシリコン含有膜を形成するときには、シリコン含有膜の原料となる原料ガスとキャリアガスとをチャンバ内に供給すれば良い。プラズマCVD法によりシリコン含有膜を形成するときには、上記原料ガスおよび上記キャリアガスをチャンバ内に供給させつつ、そのチャンバ内でプラズマを発生させれば良い。
 シリコン含有膜の材料は、特に限定されない。シリコン含有膜は、たとえば、シリコンのみからなる膜、p型不純物を含むシリコン膜(p型シリコン膜)、n型不純物を含むシリコン膜(n型シリコン膜)、炭化シリコン膜、または窒化シリコン膜などであっても良いし、これらの膜の積層構造を有していても良い。シリコン含有膜の原料ガスとしては、たとえば、SiH4ガスまたはSi26ガスなどを用いることができる。また、キャリアガスとしては、たとえば、窒素ガスまたは水素ガスなどを単独で用いても良いし、これらの混合ガスを用いても良い。
 シリコン含有膜の厚みは特に限定されず、0.001μm以上10μm以下であれば良く、好ましくは0.005μm以上5μm以下である。これにより、形成されたシリコン含有膜を光電変換装置の構成要素として使用できる。
 なお、原料ガスおよびキャリアガスは、基板の表面だけでなくチャンバの内壁面またはチャンバ内に設けられた部材の表面にも接触する(以下では「チャンバの内壁面」と「チャンバ内に設けられた部材の表面」とを総称して「チャンバの内壁面など」と記す)。そのため、チャンバの内壁面などの上には、原料ガスおよびキャリアガスの少なくとも一方を含む不純物が付着することがある。
 不純物がチャンバの内壁面などの上に付着した状態でシリコン含有膜の形成を再度行なうと、不純物を構成する元素の一部が成長中のシリコン含有膜に取り込まれて、成長中のシリコン含有膜における結晶欠陥数が増加するなどの不具合が発生し、よって、シリコン含有膜の特性低下を引き起こすことがある。そこで、本発明に係るシリコン含有膜の製造方法では、下記<基板の搬出>の後に下記<ドライクリーニング>を行なう。
 <基板の搬出>
 基板の搬出工程S103では、シリコン含有膜が形成された基板をチャンバから搬出させる。チャンバから搬出された基板を用いて、たとえば光電変換装置などを製造することができる。
 <ドライクリーニング>
 ドライクリーニング工程S104では、フッ素含有ガスを用いて、チャンバ内をドライクリーニングする。フッ素含有ガスには、F2ガスだけに限らずフッ素とフッ素以外の元素とが結合されて構成された化合物ガスも含まれる。具体的には、フッ素含有ガスは、NF3ガス、F2ガス、またはC26ガスなどであれば良い。また、ドライクリーニングは、その方法に特に限定されず、放電電極(たとえば、互いに平行に配置された平板状の放電電極)を用いて行なわれても良いし、リモートプラズマ法により行なわれても良い。これにより、基板以外に付着したシリコン含有膜が除去される。
 しかし、このドライクリーニングにより、上記<シリコン含有膜の形成>でチャンバの内壁面などの上に堆積されたシリコン含有膜がフッ化される。生成されるフッ化物としては、たとえば、上記<シリコン含有膜の形成>でチャンバの内壁面などの上に堆積されたSiがフッ化されたSiF4ガス、上記<シリコン含有膜の形成>でのキャリアガスである水素ガスがフッ化されたHFガス、および上記<シリコン含有膜の形成>でチャンバの内壁面などの上に堆積されたSiCがフッ化されたCF4ガスなどが挙げられる。
 チャンバの内壁面などは、SUS(Steel Use Stainless)またはAlなどの金属からなることが多い。そのため、生成されたフッ化物はチャンバの内壁面などに固定(化学吸着)され、よって、真空排気などではチャンバから排出されない。この状態で上記<シリコン含有膜の形成>を再度行なうと、チャンバの内壁面などに固定されたフッ化物(SiF4ガス、HFガス、およびCF4ガスなど)が原料ガス中のSiH4ガスまたはSi26ガスなどによって還元されてチャンバの内部空間に放出されるため、放出されたフッ化物が成長中のシリコン含有膜に取り込まれるおそれがある。特に、CF4ガス由来のCが成長中のp型シリコン膜に過剰に取り込まれると、光電変換装置の開放電圧Vocの低下および直列抵抗Rsの増加を招き、よって、最大出力Pmaxの低下を引き起こす。そこで、本発明に係るシリコン含有膜の製造方法では、ドライクリーニングの後に下記<フッ化物の還元>を行なう。
 <フッ化物の還元>
 フッ化物の還元工程S105では、還元ガスをチャンバ内に供給する。これにより、チャンバ内に存在するフッ化物が還元される。ここで、「チャンバ内に存在するフッ化物」とは、チャンバの内壁面などに固定されたフッ化物(SiF4ガス、HFガス、およびCF4ガスなどのフッ化ガス)を意味している。また、「チャンバ内に存在するフッ化物が還元される」とは、チャンバの内壁面などとフッ化物との固定状態が解除されることである。そして、還元されたフッ化物(つまり、チャンバの内壁面などとの固定状態が解除されたフッ化ガス)は、真空排気によりチャンバの外へ排出される。よって、上記<シリコン含有膜の形成>を再度行なったときに、フッ化物が成長中のシリコン含有膜に取り込まれることを防止できる。
 還元ガスは、チャンバ内に存在するフッ化物を還元可能なガスであれば良く、SiH4ガスまたはSi26ガスなどであれば良い。還元ガスとして、これらのガスのいずれかを単独で用いても良いし、これらの混合ガスを用いても良い。
 還元ガスは、プラズマ化されていても良いし、プラズマ化されていなくても良い。しかし、還元ガスがプラズマ化されていなければ、チャンバの内壁面などのうちプラズマ放電領域から離れた箇所に固定されているフッ化物に対しても還元処理を施すことができる。さらに、還元ガスがプラズマ化されていなければ、チャンバの内壁面などがSUS系材料からなる場合に大きな効果を得ることができる。なお、本発明に係るシリコン含有膜の製造方法は、チャンバの内壁面などがSUS系材料からなる場合に限定されず、たとえばAl系材料からなる場合についても同様の効果(チャンバ内に存在するフッ化物を還元できる)という効果が期待できる。
 本発明に係るシリコン含有膜の製造方法では、上記<ドライクリーニング>で示したように、上記<シリコン含有膜の形成>を再度行なうまでに、チャンバ内に存在するCF4ガスをそのチャンバの外へ排出することを目的としている。還元ガスは、下記条件1~3のうちの少なくとも1つを満たすようにチャンバ内に供給されることが好ましい。
   条件1:還元ガスの供給時間が10秒以上1800秒以下である
   条件2:還元ガスの流量が1000sccm以上100000sccm以下である
   条件3:チャンバの内圧が300Pa以上5000Pa以下である。
 還元ガスの供給時間が10秒を下回ると、チャンバ内に存在するフッ化物を十分に還元させることが難しく、よって、下記<排気>の終了時におけるチャンバ内のCF4ガスの分圧がA×(2.0×10-4)Paを超えることがある。還元ガスの流量が1000sccmを下回った場合も同様のことが言える。一方、還元ガスの供給時間が1800秒を超えても、チャンバ内のCF4ガスの分圧の更なる低下を図ることは難しい。還元ガスの流量が100000sccmを超えた場合も同様のことが言える。
 チャンバの内圧が300Paを下回ると、フッ化物の還元反応が効率的に起こらず、タクトタイムの長期化を招き、シリコン含有膜の生産性が低下するという不具合を招くことがある。一方、チャンバの内圧が5000Paを超えると、チャンバに設けられた調圧バルブ、真空ポンプ、および除害装置などに大きな負荷がかかるという不具合を招くことがある。
 しかし、還元ガスの供給条件が上記条件1~3のうちの少なくとも1つを満たしていれば、下記<排気>の終了時におけるチャンバ内のCF4ガスの分圧がA×(2.0×10-4)Pa以下となる。これにより、下記<排気>の終了時にチャンバ内に残留するCF4ガスの量を少なくすることができる。よって、上記<シリコン含有膜の形成>を再度行なっても、CF4ガス(特にC)が成長中のシリコン含有膜に取り込まれてシリコン含有膜の性能が低下することを防止できる。したがって、本実施形態に係るシリコン含有膜の製造方法を用いて光電変換装置などを作製すれば、性能の低下(たとえば最大出力の低下)が防止された光電変換装置などを提供できる。なお、上記「2.0×10-4」は、後述の実施例1~3の結果に基づいている。
 また、還元ガスの供給条件が上記条件1~3のうちの少なくとも1つを満たしていれば、下記<排気>の終了時におけるチャンバ内のCF4ガスの分圧がA×(5.0×10-5)Pa以下となる場合もある。これにより、上記効果(上記<シリコン含有膜の形成>を再度行なっても、CF4ガス(特にC)が成長中のシリコン含有膜に取り込まれてシリコン含有膜の性能が低下することを防止できるということ)が顕著となる。
 また、還元ガスの供給条件が上記条件1~3のうちの少なくとも1つを満たしていれば、下記<排気>の終了時におけるチャンバ内のCF4ガスの分圧をA×(2.5×10-5)Pa以上とすることができる。よって、下記<排気>の終了時におけるチャンバ内のCF4ガスの分圧が低くなりすぎたことに起因する最大出力Pmaxの低下を防止することができる。
 ここで、上記「A」は、チャンバの到達真空度であり、下記<排気>の終了時におけるチャンバ内の全圧(つまり、チャンバ内に存在する全てのガスの分圧の総和)である。この「A」は、適宜設定されれば良いが、10Pa以下であることが好ましい。「A」が10Pa以下であれば、下記<排気>の終了時におけるチャンバ内のCF4ガスの分圧を低くすることができるからである。
 また、チャンバ内のCF4ガスの分圧の測定方法は、特に限定されないが、四重極型質量分析法が適している。
 このようなフッ化物の還元は、上記<ドライクリーニング>の後であって且つ上記<シリコン含有膜の形成>を再度行なう前に、行なわれれば良い。そのため、上記<ドライクリーニング>の後にこのフッ化物の還元を行ない、その後、上記<基板の搬入>を再度行なっても良い。または、上記<ドライクリーニング>の後に上記<基板の搬入>を再度行ない、その後、このフッ化物の還元を行なっても良い。別の言い方をすると、このフッ化物の還元は、シリコン含有膜が形成される基板がチャンバ内に設けられていない状態で行なわれても良いし、シリコン含有膜が形成される基板がチャンバ内に設けられた状態で行なわれても良い。これらのことは、下記<排気>においても言える。しかし、以下に示す理由から、シリコン含有膜が形成される基板がチャンバ内に設けられていない状態でフッ化物の還元を行なうことが好ましい。
 シリコン含有膜が形成される基板がチャンバ内に設けられた状態でフッ化物を還元すると、チャンバの内壁面などのうち基板が設けられた部分(たとえばアノード電極の上面)は還元ガスに曝されないこととなる。この状態で上記一連の工程を繰り返すと、アノード電極の上面にはフッ化物が堆積することとなるので、アノード電極の上面に堆積されたフッ化物が基板の裏面に付着する。フッ化物が基板の裏面に付着した状態で基板の裏面などをレーザ加工すると、加工不良が発生することがある。
 また、シリコン含有膜が形成される基板がチャンバ内に設けられた状態でフッ化物を還元しても、わずかな量のSiH4ガスはアノード電極の上面へ回り込んでアノード電極の上面に固定される。そのため、上記<シリコン含有膜の形成>を再度行なったときに、アノード電極の上面に固定されていたフッ化物が還元されるおそれがあり、還元されたフッ化物が成長中のシリコン含有膜中に取り込まれることがある。これにより、シリコン含有膜の性能低下を招き、得られたシリコン含有膜を用いて作製される半導体装置(たとえば光電変換装置)の性能低下を引き起こすことがある。
 このフッ化物の還元は、上記<基板の搬入>と上記<シリコン含有膜の形成>との間にも行なわれることが好ましい。これにより、上記<シリコン含有膜の形成>を再度行なうまでに、チャンバ内におけるCF4ガスの分圧をさらに低下させることができる。このことは、下記<排気>においても言える。
 下記<排気>の終了時におけるチャンバ内のCF4ガスの分圧がA×(2.0×10-4)Pa以下となるように、好ましくは下記<排気>の終了時におけるチャンバ内のCF4ガスの分圧がA×(5.0×10-5)Pa以下となるように、より好ましくは下記<排気>の終了時におけるチャンバ内のCF4ガスの分圧がA×(2.5×10-5)Pa以上となるように、還元ガスをチャンバ内に供給すれば、<フッ化物の還元>は終了である。その後、下記<排気>を行う。
 <排気>
 排気工程S106では、チャンバの到達真空度がA(Pa)になるまで、チャンバ内のガスを排出する。ガスの排出方法は特に限定されないが、チャンバを真空排気することが好ましい。そして、上記<基板の搬入>を再度行なっても良いし、下記<水素プラズマ処理>を行なってから上記<基板の搬入>を再度行なっても良い。
 <水素プラズマ処理>
 水素プラズマ処理工程S107では、チャンバ内において基板に対して水素プラズマ処理を行なう。これにより、フッ化物の還元反応で生成したSiパーティクル量の低減という効果が得られる。したがって、次の成膜時に、成長中のシリコン含有膜中に混入するSiパーティクル量を低減できる。
 水素プラズマの発生方法は、特に限定されず、たとえば水素ガスをチャンバ内に供給して電圧またはマイクロ波を印加するという方法であれば良い。
 水素プラズマ処理の処理条件は、下記条件4~8のうちの少なくとも1つを満たしていることが好ましい。
   条件4:この処理時間を1sec以上10000sec以下で行なう
   条件5:水素ガスの流量が10000sccm以上100000sccm以下である
   条件6:チャンバの内圧が300Pa以上800Pa以下である
   条件7:印加電力が0.03W/cm2以上0.1W/cm2以下であり、且つデューティ比が5%以上50%以下であるパルス放電を行う
   条件8:基板を加熱するヒーターの温度が20℃以上200℃以下である。
 処理時間が1secを下回ると、水素プラズマの発生により得られる効果を十分に得ることができない場合がある。水素ガスの流量が10000sccmを下回った場合、およびヒーターの温度が20℃を下回った場合も同様のことが言える。一方、処理時間が10000secを超えても、チャンバ内のSiパーティクル量の更なる低減を図ることは難しく、よって、タクトタイムの長期化を招くことがある。水素ガスの流量が100000sccmを超えた場合、およびヒーターの温度が200℃を超えた場合も同様のことが言える。なお、条件4については、デューティ比に応じて適宜設定することが好ましい。
 チャンバの内圧が300Paを下回ると、水素プラズマが発生しにくくなる。印加電圧が0.03W/cm2を下回った場合、およびデューティ比が5%未満の場合も同様のことが言える。一方、チャンバの内圧が800Paを超えると、放電が広がりにくくなるという不具合の発生を招くことがある。また、印加電圧が0.1W/cm2を超えると、またデューティ比が50%を超えると、水素プラズマによるエッチング効果が強すぎて、逆にSiパーティクル量が増えてしまうことがある。
 <シリコン含有膜の製造方法の用途>
 本発明に係るシリコン含有膜の製造方法は、シリコン含有膜の量産に有効であるので、光電変換装置または薄膜トランジスタなどの製造方法に利用することができる。
 <光電変換装置の製造方法>
 本発明に係る光電変換装置の製造方法は、本発明に係るシリコン含有膜の製造方法を含む。具体的には、第1の電極が設けられた基板をチャンバ内に搬入して、その基板の表面上にp型シリコン層、i型シリコン層およびn型シリコン層を順に積層して光電変換部を作製し、その後、光電変換部が作製された基板をチャンバ内から搬出させる。チャンバ内から搬出された基板に第2の電極を設けて光電変換装置を得る。また、基板が搬出されたチャンバ内をドライクリーニングしてから、そのチャンバ内に存在するフッ化物を還元する。その後、第1の電極が設けられた基板をそのチャンバ内に搬入して、上記一連の工程を行なう。
 実施例1~3で使用するプラズマCVD装置の構成を簡潔に示す。図2は、実施例1~3で使用するプラズマCVD装置の構成を模式的に示す断面図である。
 図2に示すように、プラズマCVD装置1のチャンバ2の内には、カソード電極3とアノード電極4とが互いに対向するように設けられている。カソード電極3にはガス供給管5が接続されており、カソード電極3のうちアノード電極4と対向する側にはシャワープレート3Aが設けられている。そして、ガス供給管5内を通ったガスは、カソード電極3の内部を通って、シャワープレート3Aの噴出面からアノード電極4へ向かって噴出される。また、アノード電極4のうちカソード電極3と対向する面の上には、基板10が設けられる。
 ガス供給管5を介してチャンバ2の内部へ供給されるガスには、下記<シリコン膜の形成>で使用される原料ガスおよびキャリアガスだけでなく、下記<ドライクリーニング>で使用されるフッ素含有ガス、および下記<フッ化物の還元>で使用される還元ガスも含まれる。
 カソード電極3には、不図示の整合回路を介して高周波電源6が接続されている。一方、アノード電極4は、接地されている。これにより、チャンバ2内ではプラズマを発生させることができる。
 チャンバ2には、排出管7が設けられている。これにより、チャンバ2内の不要なガスは、排出管7内を通ってチャンバ2の外へ排出される。
 <実施例1>
 実施例1では、SiH4ガス(還元ガス)の流入時間を変えてチャンバ2内のフッ化物の残留量を測定した。
 <基板の搬入>
 ガラスからなり、且つ透明電極が設けられた基板10をCVD装置1のチャンバ2内に搬入して、アノード電極4の上面上に設けた。
 <シリコン膜の形成>
 ガス供給管5を介してSiH4ガス(原料ガス)とH2ガス(キャリアガス)とをチャンバ2内に供給し、プラズマCVD法により基板10の上面上にシリコン膜(膜厚が300μm)11を形成した。シリコン膜11の形成条件は以下の通りであった。
   SiH4ガスの流量:1sccm
   H2ガスの流量:10sccm
   チャンバ2内の温度:190℃
   チャンバ2の内圧:600Pa
   高周波電源6への印加電力:3400W
   高周波電源6の周波数:11MHz。
 <基板の搬出>
 シリコン膜11が形成された基板10をチャンバ2から搬出させた。
 <ドライクリーニング>
 ガス供給管5を介してNF3ガスとArガスとをチャンバ2内に供給して、チャンバ2内をドライクリーニングした。ドライクリーニングの条件は以下の通りであった。アノード電極4の上面からSi膜がなくなったところで、RF電力およびNF3ガスの供給を停止した。
   NF3ガスの流量:10sccm
   Arガスの流量:10sccm
   チャンバ2内の温度:160℃
   チャンバ2の内圧:150Pa
   高周波電源6への印加電力:18000W。
 <フッ化物の還元>
 ガス供給管5を介してSiH4ガスとH2ガスとをチャンバ2内に供給した。SiH4ガスの供給条件は、以下の通りであった。
   SiH4ガスの流量:2sccm
   SiH4ガスの供給時間(sec):0、50、100、150、300、450、700
   チャンバ2内の温度:190℃
   チャンバ2の内圧:1400Pa
   高周波電源6への印加電力:0W。
 <排気>
 チャンバの到達真空度が1Pa以下となるまで、チャンバ2内のガスを排出管7からチャンバ2の外へ排出させた。そののち、四重極型質量分析計(日本エム・ケー・エス株式会社製、品番VISION 1000)を用いて、チャンバ2内に存在するフッ化物の分圧を測定した。その結果を図3に示す。
 図3は、SiH4ガスの供給時間に対するフッ化物の分圧の測定結果を示すグラフであり、図3中のL21、L22およびL23は、それぞれ、CF4ガス、HFガスおよびSiF4ガスの分圧の測定結果を示す。
 図3に示すように、チャンバ2内には、CF4ガスだけでなく、HFガスおよびSiF4ガスも存在していた。
 また、CF4ガスおよびHFガスでは、SiH4ガスの供給時間が長くなると分圧は低下した。一方、SiF4ガスでは、SiH4ガスの供給時間が長くなっても分圧は殆ど変化しなかった。このように、SiH4ガスを供給したときのフッ化物の分圧の変化は、当該フッ化物の種類によって異なることが分かった。
 <実施例2>
 実施例2では、チャンバ2内のCF4ガスの分圧に着目した。そして、SiH4ガスの供給時間を変えて太陽電池セルを作製し、その最大出力を測定した。
 <基板の搬入>
 SnO2膜(太陽電池セルの第1電極として機能)がガラス基板の上面上に熱CVDにより形成されたもの(旭硝子(株)、商品名:Asahi-U)を準備した。このガラス基板をチャンバ2内に搬入してアノード電極4の上面上に設置した。
 <シリコン膜の形成>
 ガス供給管5を介して、SiH4ガス、H2ガス及びB26ガスをチャンバ2内に供給した。このとき、ボロンが0.02原子%ドープされるように、SiH4ガス、H2ガス及びB26ガスの各流量を調整した。これにより、ガラス基板の上面上にp型アモルファスシリコン層(厚さ20nm)が形成された。
 次に、ガス供給管5を介して、SiH4ガスおよびH2ガスをチャンバ2内に供給した。これにより、p型アモルファスシリコン層の上面上にi型アモルファスシリコン層(厚さ280nm)が形成された。
 次に、ガス供給管5を介して、SiH4ガス、H2ガス、およびPH3ガスをチャンバ2内に供給した。このとき、リンが0.2原子%ドープされるように、SiH4ガス、H2ガス、およびPH3ガスの各流量を調整した。これにより、i型アモルファスシリコン層の上面上にn型アモルファスシリコン層(厚さ25nm)が形成された。
 その後、上述の方法にしたがって、n型アモルファスシリコン層の上面上に、p型微結晶シリコン層、i型微結晶シリコン層、およびn型微結晶シリコン層(いずれも厚さ1.6μm)を順に形成した。
 <基板の搬出>
 p型アモルファスシリコン層などが形成された基板をチャンバ2から搬出した後、n型微結晶シリコン層の上面上に、マグネトロンスパッタリング法により酸化亜鉛膜(厚さ50nm)と銀膜(厚さ115nm)とを順に形成した。このようにして太陽電池セルが作製された。
 <ドライクリーニング>
 上記実施例1での方法にしたがってチャンバ2をドライクリーニングした。
 <フッ化物の還元>
 SiH4ガスの供給時間を0sec、50sec、100sec、250sec、300sec、450sec、600secおよび750secに変更したことを除いては上記実施例1での方法にしたがって、チャンバ2内に存在するCF4を還元した。
 <排気>
 上記実施例1での方法にしたがって、チャンバ2内のガスをチャンバ2の外へ排出させた。
 その後、本実施例における<基板の搬入>、<シリコン膜の形成>および<基板の搬出>を順に行なった。それから、2回目の<シリコン膜の形成>で作製された太陽電池セルの最大出力を測定した。
 測定結果を図4および図5に示す。図4は、SiH4ガスの供給時間に対するCF4ガスの分圧および太陽電池セルの最大出力Pmaxの各測定結果を示すグラフである。図4中のL21は図3中のL21であり、図4中のL31は本実施例の結果を示す。図5は、CF4ガスの分圧と太陽電池セルの最大出力Pmaxとの関係を示すグラフである。なお、CF4ガスの分圧の測定時におけるチャンバ内の全圧は、上記実施例1と同じく、1Paであった。
 図4および図5に示すように、SiH4ガスの供給時間が0secのときは、CF4ガスの分圧は5×10-4Paであり、太陽電池セルの最大出力Pmaxは142W足らずであった。SiH4ガスを50sec間導入すると、CF4ガスの分圧は2×10-4Paまで減少し、Pmaxは143Wにまで上昇した。SiH4ガスをさらに供給すると、CF4ガスの分圧は5×10-5Pa付近まで急速に低下していき、Pmaxは急速に上昇して146Wとなった。SiH4ガスをさらに供給すると、CF4ガスの分圧は5×10-5Paよりも低くなり、Pmaxは146Wよりも大きくなった。このことから、<排気>の終了時におけるCF4ガスの分圧が2×10-4Pa以下となるまで、好ましくは<排気>の終了時におけるCF4ガスの分圧が5×10-5Pa以下となるまで、SiH4ガスを供給してCF4ガスを還元することが好ましいと言える。
 一方、図4および図5に示すように、SiH4ガスの供給時間を450secよりも長くして600secにすると、CF4ガスの分圧は3×10-5Paまで低下したにもかかわらず、太陽電池セルの最大出力Pmaxは却って低下を始めた。SiH4ガスの供給時間が700secであるときには、CF4ガスの分圧は2.5×10-5Paまで低下したにも関わらず、Pmaxは148Wを下回った。SiH4ガスの供給時間が700secである場合、Pmaxは、SiH4ガスの供給時間が0secである場合(CF4ガスの分圧は5×10-4Paであるの場合)のPmaxよりも十分高かった。しかし、SiH4ガスの供給時間が長ければ長いほど(CF4ガスの分圧が低ければ低いほど)変換効率が向上するというわけではなく、SiH4ガスの供給時間には最適範囲が存在していることが明らかになった。
 この理由については、明らかではないが、以下のように推察することが出来る。光電変換装置を形成するとき、最初に形成されるp型シリコン膜にはアモルファスSi膜だけでなくアモルファスSiC膜を用いることがある。なぜならば、ある程度のCを原料ガスに積極的に添加するほうがPmaxが高くなる場合があることが知られているからである。本実施例では、p型シリコン膜を形成するときにはCの原料ガスを積極的に供給していないが、チャンバー内に残留するガスに含まれるCの一部が取り込まれた状態でp型シリコン膜が形成されたと予想される。そのため、CF4ガスの分圧を必要以上に下げると、p型シリコン膜が形成される際に取り込まれるCの量が激減し、よって、Pmaxが低下したと考えられる。SiH4ガスの供給時間を長くすると、スループットが低下するという不具合も生じる。以上より、Pmaxの低下防止とスループットの低下防止とを両立するという観点から、CF4ガスの分圧の好適な範囲としては2.5×10-5Pa以上2×10-4Pa以下が考えられる。
 <実施例3>
 実施例3においても、チャンバ2内のCF4ガスの分圧に着目した。そして、基板10をアノード電極4の上面上に設けた状態でSiH4ガスを供給したことを除いては上記実施例1と同様の方法にしたがって、SiH4ガスの供給時間とCF4ガスの分圧との関係を調べた。
 上記実施例1における<基板の搬入>、<シリコン膜の形成>、<基板の搬出>および<ドライクリーニング>を行なってから、シリコン膜が形成されていない基板10をプラズマCVD装置1のチャンバ2内に搬入した。
 ガス供給管5を介してSiH4ガスとH2ガスとをチャンバ2内に供給した。その後、上記実施例1における<排気>を行ってから、四重極型質量分析計を用いてSiH4ガスの各供給時間におけるCF4ガスの分圧を測定した。
 測定結果を図6に示す。図6は、SiH4ガスの供給時間に対するCF4ガスの分圧の測定結果を示すグラフである。図6中のL21は図3中のL21であり、図6中のL51は本実施例の結果を示す。
 図6に示すように、SiH4ガスの供給時間が0(sec)であるとき、CF4ガスの分圧は、基板10がアノード電極4の上面上に設けられた状態でSiH4ガスを供給する場合(L51)の方が、基板10がアノード電極4の上面上に設けられていない状態でSiH4ガスを供給する場合(L21)よりも低かった。このことから、アノード電極4のうち基板10が設けられた部分に存在するCF4ガスは四重極型質量分析計に検出されていないと考えられる。よって、基板10がアノード電極4の上面上に設けられた状態でSiH4ガスを供給すると、アノード電極4のうち基板10が設けられた部分に存在するCF4ガスはSiH4ガスに曝されず、よって、還元されないと考えられる。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 CVD装置、2 チャンバ、3 カソード電極、4 アノード電極、5 ガス供給管、6 高周波発生源、7 排出管、10 基板、11 シリコン膜。

Claims (10)

  1.  基板をチャンバ内に搬入する第1の工程(S101)と、
     前記チャンバ内において前記基板の表面上に前記シリコン含有膜を形成する第2の工程(S102)と、
     前記シリコン含有膜が形成された基板を前記チャンバ内から搬出する第3の工程(S103)と、
     フッ素含有ガスを用いて前記チャンバ内をドライクリーニングする第4の工程(S104)と、
     還元ガスを前記チャンバ内に供給して前記チャンバ内に存在するフッ化物を還元する第5の工程(S105)と、
     前記チャンバの到達真空度がA(Pa)になるまで当該チャンバ内のガスを排出する第6の工程(S106)とを備え、
     前記第5の工程では、前記第6の工程の終了時における前記チャンバ内のCF4ガスの分圧がA×(2.0×10-4)Pa以下となるまで前記還元ガスを前記チャンバ内に供給するシリコン含有膜の製造方法。
  2.  前記第1の工程(S101)、前記第2の工程(S102)、前記第3の工程(S103)、前記第4の工程(S104)、前記第5の工程(S105)、および前記第6の工程(S106)を繰り返し行なう請求項1に記載のシリコン含有膜の製造方法。
  3.  前記第5の工程(S105)および前記第6の工程(S106)を前記第1の工程(S101)と前記第2の工程(S102)との間にも行なう請求項1または2に記載のシリコン含有膜の製造方法。
  4.  前記還元ガスは、SiH4ガスを含む請求項1~3のいずれかに記載のシリコン含有膜の製造方法。
  5.  前記第5の工程(S105)を、
      前記還元ガスの供給時間が10秒以上1800秒以下である条件、
      前記還元ガスの流量が1000sccm以上100000sccm以下である条件、および
      前記チャンバの内圧が300Pa以上5000Pa以下である条件のうちの少なくとも1つの条件で実施する請求項1~4のいずれかに記載のシリコン含有膜の製造方法。
  6.  前記第6の工程(S106)の後に、前記チャンバ内において水素プラズマ処理を行なう第7の工程(S107)をさらに備えている請求項1~5のいずれかに記載のシリコン含有膜の製造方法。
  7.  前記第7の工程(S107)を、
      前記水素プラズマ処理の処理時間が1sec以上10000sec以下である条件、
      水素ガスの流量が10000sccm以上100000sccm以下である条件、
      前記チャンバの内圧が300Pa以上800Pa以下である条件、
      印加電力が0.03W/cm2以上0.1W/cm2以下であり、且つデューティ比が5%以上50%以下であるパルス放電を行うという条件、および
      前記基板を加熱するヒーターの温度が20℃以上200℃以下である条件のうちの少なくとも1つの条件で実施する請求項6に記載のシリコン含有膜の製造方法。
  8.  前記第2の工程(S102)は、化学気相成長法にしたがって前記基板の表面上に前記シリコン含有膜を形成する請求項1~7のいずれかに記載のシリコン含有膜の製造方法。
  9.  請求項1~8のいずれかに記載のシリコン含有膜の製造方法を含む光電変換装置の製造方法。
  10.  前記第5の工程では、前記第6の工程の終了時における前記チャンバ内のCF4ガスの分圧がA×(2.5×10-5)Pa以上となるまで前記還元ガスを前記チャンバ内に供給する請求項9に記載の光電変換装置の製造方法。
PCT/JP2012/064107 2011-07-27 2012-05-31 シリコン含有膜の製造方法 WO2013015017A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/234,465 US20140154415A1 (en) 2011-07-27 2012-05-31 Method for manufacturing silicon-containing film
CN201280033941.4A CN103650169A (zh) 2011-07-27 2012-05-31 含硅薄膜的制造方法
JP2013525611A JP5705322B2 (ja) 2011-07-27 2012-05-31 シリコン含有膜の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011164253 2011-07-27
JP2011-164253 2011-07-27

Publications (1)

Publication Number Publication Date
WO2013015017A1 true WO2013015017A1 (ja) 2013-01-31

Family

ID=47600877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064107 WO2013015017A1 (ja) 2011-07-27 2012-05-31 シリコン含有膜の製造方法

Country Status (4)

Country Link
US (1) US20140154415A1 (ja)
JP (1) JP5705322B2 (ja)
CN (1) CN103650169A (ja)
WO (1) WO2013015017A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184629A (ja) * 2015-03-25 2016-10-20 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106571289B (zh) * 2015-10-13 2020-01-03 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制备方法、电子装置
US10440808B2 (en) * 2015-11-17 2019-10-08 Southwest Research Institute High power impulse plasma source
US10354845B2 (en) 2016-02-18 2019-07-16 Southwest Research Institute Atmospheric pressure pulsed arc plasma source and methods of coating therewith

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09186149A (ja) * 1995-12-28 1997-07-15 Fujitsu Ltd 半導体製造装置のクリーニング方法及び半導体装置の製造方法
JPH10172964A (ja) * 1996-11-13 1998-06-26 Applied Materials Inc 高温処理チャンバ用リッドアセンブリ
JP2004207466A (ja) * 2002-12-25 2004-07-22 Matsushita Electric Ind Co Ltd プラズマ成膜装置及びそのクリーニング方法
WO2011013810A1 (ja) * 2009-07-31 2011-02-03 株式会社 アルバック 半導体装置の製造方法及び半導体装置の製造装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130368A (ja) * 1989-09-22 1991-06-04 Applied Materials Inc 半導体ウェーハプロセス装置の洗浄方法
JPH03186149A (ja) * 1989-12-13 1991-08-14 Matsushita Electric Ind Co Ltd 加熱制御装置
JPH0793276B2 (ja) * 1993-12-14 1995-10-09 アプライド マテリアルズ インコーポレイテッド 薄膜形成前処理方法および薄膜形成方法
EP0704551B1 (en) * 1994-09-27 2000-09-06 Applied Materials, Inc. Method of processing a substrate in a vacuum processing chamber
US6200412B1 (en) * 1996-02-16 2001-03-13 Novellus Systems, Inc. Chemical vapor deposition system including dedicated cleaning gas injection
KR20010104260A (ko) * 2000-05-12 2001-11-24 조셉 제이. 스위니 화학 증착챔버 내부의 오염물을 제거하기 위한 가스 반응
JP4669605B2 (ja) * 2000-11-20 2011-04-13 東京エレクトロン株式会社 半導体製造装置のクリーニング方法
US20090120457A1 (en) * 2007-11-09 2009-05-14 Surface Chemistry Discoveries, Inc. Compositions and method for removing coatings and preparation of surfaces for use in metal finishing, and manufacturing of electronic and microelectronic devices
CN101540272B (zh) * 2009-04-24 2010-09-01 北京北方微电子基地设备工艺研究中心有限责任公司 一种去除腔室副产物的等离子清洗方法和等离子处理系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09186149A (ja) * 1995-12-28 1997-07-15 Fujitsu Ltd 半導体製造装置のクリーニング方法及び半導体装置の製造方法
JPH10172964A (ja) * 1996-11-13 1998-06-26 Applied Materials Inc 高温処理チャンバ用リッドアセンブリ
JP2004207466A (ja) * 2002-12-25 2004-07-22 Matsushita Electric Ind Co Ltd プラズマ成膜装置及びそのクリーニング方法
WO2011013810A1 (ja) * 2009-07-31 2011-02-03 株式会社 アルバック 半導体装置の製造方法及び半導体装置の製造装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184629A (ja) * 2015-03-25 2016-10-20 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム

Also Published As

Publication number Publication date
US20140154415A1 (en) 2014-06-05
JP5705322B2 (ja) 2015-04-22
CN103650169A (zh) 2014-03-19
JPWO2013015017A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
TWI674617B (zh) 用於在電漿清潔製程之後執行電漿處理製程的方法
KR102688002B1 (ko) 금속 오염을 제어하기 위한 챔버의 인-시튜 cvd 및 ald 코팅
JP4553891B2 (ja) 半導体層製造方法
JP5705322B2 (ja) シリコン含有膜の製造方法
WO2011132775A1 (ja) 薄膜太陽電池の製造方法
WO2009012159A1 (en) Clean rate improvement by pressure controlled remote plasma source
JP5520834B2 (ja) パッシベーション膜の成膜方法、及び太陽電池素子の製造方法
JP6609324B2 (ja) 光電変換装置の製造方法
JP2000252218A (ja) プラズマcvd装置およびシリコン系薄膜光電変換装置の製造方法
KR20080026746A (ko) 증착 챔버 세정 방법
CN111129223B (zh) 一种新型的超晶格红外探测器制备方法
JP2012074669A (ja) 太陽電池の製造方法
WO2013105416A1 (ja) シリコン含有膜の製造方法および光電変換装置の製造方法
JP2006202945A (ja) 半導体製造装置
JP2011199156A (ja) 真空チャンバのプラズマクリーニング方法およびプラズマcvd成膜装置
CN100393913C (zh) 一种多晶硅刻蚀中的干法清洗工艺
CN113481486A (zh) 一种镀膜方法
JP2011096962A (ja) 薄膜太陽電池の製造方法および製造装置
JP2013041909A (ja) 薄膜太陽電池の製造方法、およびプラズマcvd装置の製膜室の調整方法
JP2013004732A (ja) プラズマcvd装置のクリーニング方法
Yu et al. Investigation of intrinsic hydrogenated amorphous silicon (a-si: H) thin films on textured silicon substrate with high quality passivation
JP5460080B2 (ja) 薄膜形成装置のクリーニング方法
JP2013030664A (ja) プラズマcvd装置を用いた半導体装置の製造方法
JP2009057636A (ja) シリコン膜の製造方法及び太陽電池の製造方法
JP2007027469A (ja) 太陽電池素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12816971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013525611

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14234465

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12816971

Country of ref document: EP

Kind code of ref document: A1