WO2013015017A1 - シリコン含有膜の製造方法 - Google Patents
シリコン含有膜の製造方法 Download PDFInfo
- Publication number
- WO2013015017A1 WO2013015017A1 PCT/JP2012/064107 JP2012064107W WO2013015017A1 WO 2013015017 A1 WO2013015017 A1 WO 2013015017A1 JP 2012064107 W JP2012064107 W JP 2012064107W WO 2013015017 A1 WO2013015017 A1 WO 2013015017A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chamber
- gas
- silicon
- containing film
- substrate
- Prior art date
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 121
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 121
- 239000010703 silicon Substances 0.000 title claims abstract description 121
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000000758 substrate Substances 0.000 claims abstract description 79
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims abstract description 56
- 238000005108 dry cleaning Methods 0.000 claims abstract description 27
- 239000007789 gas Substances 0.000 claims description 222
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 25
- 238000006243 chemical reaction Methods 0.000 claims description 20
- 239000001257 hydrogen Substances 0.000 claims description 17
- 229910052739 hydrogen Inorganic materials 0.000 claims description 17
- 229910052731 fluorine Inorganic materials 0.000 claims description 13
- 239000011737 fluorine Substances 0.000 claims description 13
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 12
- 238000009832 plasma treatment Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 7
- 238000005229 chemical vapour deposition Methods 0.000 claims description 6
- 239000012528 membrane Substances 0.000 claims 1
- 239000010408 film Substances 0.000 description 122
- 230000015572 biosynthetic process Effects 0.000 description 28
- 238000006722 reduction reaction Methods 0.000 description 20
- 238000005259 measurement Methods 0.000 description 9
- 229910021417 amorphous silicon Inorganic materials 0.000 description 8
- 239000012159 carrier gas Substances 0.000 description 8
- 239000012535 impurity Substances 0.000 description 7
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000011856 silicon-based particle Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000005173 quadrupole mass spectroscopy Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/24—Deposition of silicon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
- C23C16/4405—Cleaning of reactor or parts inside the reactor by using reactive gases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02529—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1804—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
- H01L31/182—Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/20—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
- H01L31/202—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/546—Polycrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- a chemical vapor deposition (hereinafter sometimes referred to as “CVD”) method is generally used.
- CVD chemical vapor deposition
- some impurities adhere to the inner wall surface of the chamber of the CVD apparatus or the surface of a jig provided in the chamber. Due to the adhesion of impurities, foreign substances are mixed into the film grown in the chamber, and as a result, an increase in crystal defects in the film grown in the chamber may be caused.
- the composition of the fluorine-based residue remaining in the chamber after dry cleaning varies depending on the state of the chamber (for example, the material of the member provided in the chamber, the temperature of the heater, the temperature of the inner wall of the chamber), or the film formation history.
- fluorine-based residues are present in various forms in combination with other elements as fluorides, but it is not clear which compound should be focused on. Therefore, in order to remove the fluorine-based residue, it is necessary to establish some kind of monitoring method in order to identify the compound to be noted.
- the method for producing a silicon-containing film according to the present invention includes a first step of carrying a substrate into the chamber, a second step of forming a silicon-containing film on the surface of the substrate in the chamber, and forming the silicon-containing film.
- a third step of unloading the processed substrate from the chamber a fourth step of dry cleaning the inside of the chamber using a fluorine-containing gas, and a fluoride gas present in the chamber by supplying a reducing gas into the chamber.
- the reducing gas is supplied into the chamber until the partial pressure of the CF 4 gas in the chamber at the end of the sixth step becomes A ⁇ (2.0 ⁇ 10 ⁇ 4 ) Pa or less.
- FIG. 1 is a flowchart showing an example of a method for producing a silicon-containing film according to the present invention.
- the present invention is not limited to the following items.
- the method for producing a silicon-containing film according to the present invention includes a step of carrying a substrate into the chamber (“loading a substrate” in FIG. 1) S101 and a step of forming a silicon-containing film on the surface of the substrate in the chamber (FIG. 1 (“Formation of silicon-containing film”) S102, a step of carrying out the substrate on which the silicon-containing film is formed from the chamber (“unloading of substrate” in FIG. 1) S103, and a step of dry-cleaning the inside of the chamber (FIG. 1 "dry cleaning") S104, a step of reducing the fluoride present in the chamber ("fluoride reduction" in FIG.
- the method for forming the silicon-containing film on the surface of the substrate is not particularly limited, and may be a CVD method or a plasma CVD method.
- a source gas and a carrier gas that are raw materials for the silicon-containing film may be supplied into the chamber.
- plasma CVD method plasma may be generated in the chamber while supplying the source gas and the carrier gas into the chamber.
- the source gas and the carrier gas contact not only the surface of the substrate but also the inner wall surface of the chamber or the surface of a member provided in the chamber (hereinafter referred to as “the inner wall surface of the chamber” and “ The “surface of the member” is collectively referred to as “the inner wall surface of the chamber”). Therefore, impurities including at least one of the source gas and the carrier gas may adhere on the inner wall surface of the chamber.
- the silicon-containing film deposited on the inner wall surface of the chamber in the above ⁇ formation of silicon-containing film> is fluorinated.
- the generated fluoride include SiF 4 gas obtained by fluorinating Si deposited on the inner wall surface of the chamber in the above ⁇ Formation of silicon-containing film>, and in the above ⁇ Formation of silicon-containing film> Examples include HF gas in which hydrogen gas as a carrier gas is fluorinated, and CF 4 gas in which SiC deposited on the inner wall surface of the chamber in the above ⁇ formation of silicon-containing film> is fluorinated.
- fluoride existing in the chamber means fluoride (fluoride gas such as SiF 4 gas, HF gas, and CF 4 gas) fixed on the inner wall surface of the chamber.
- fluoride present in the chamber is reduced means that the fixed state between the inner wall surface of the chamber and the fluoride is released.
- the reduced fluoride that is, the fluorinated gas released from the fixed state with the inner wall surface of the chamber
- the reducing gas may be plasmatized or not plasmatized. However, if the reducing gas is not converted into plasma, the reduction treatment can be performed also on the fluoride fixed at a position away from the plasma discharge region on the inner wall surface of the chamber. Furthermore, if the reducing gas is not converted into plasma, a great effect can be obtained when the inner wall surface of the chamber is made of a SUS material.
- the method for producing a silicon-containing film according to the present invention is not limited to the case where the inner wall surface of the chamber is made of a SUS-based material. The effect that the compound can be reduced) can be expected.
- CF 4 gas existing in the chamber is removed from the chamber before the above ⁇ formation of silicon-containing film> is performed again.
- the purpose is to discharge.
- the reducing gas is preferably supplied into the chamber so as to satisfy at least one of the following conditions 1 to 3.
- Condition 1 The supply time of the reducing gas is not less than 10 seconds and not more than 1800 seconds.
- Condition 2 The flow rate of the reducing gas is not less than 1000 sccm and not more than 100,000 sccm.
- Condition 3 The internal pressure of the chamber is not less than 300 Pa and not more than 5000 Pa.
- the reducing gas supply condition satisfies at least one of the above conditions 1 to 3
- the partial pressure of the CF 4 gas in the chamber at the end of the following ⁇ exhaust> is A ⁇ (2.0 ⁇ 10 ⁇ 4 ) Pa or less.
- the amount of CF 4 gas remaining in the chamber at the end of the following ⁇ exhaust> can be reduced. Therefore, even if the above ⁇ formation of silicon-containing film> is performed again, it is possible to prevent the CF 4 gas (particularly C) from being taken into the growing silicon-containing film and thereby reducing the performance of the silicon-containing film.
- a photoelectric conversion device or the like is manufactured by using the method for producing a silicon-containing film according to the present embodiment, a photoelectric conversion device or the like in which deterioration in performance (for example, reduction in maximum output) is prevented can be provided.
- the above “2.0 ⁇ 10 ⁇ 4 ” is based on the results of Examples 1 to 3 described later.
- the partial pressure of CF 4 gas in the chamber at the end of the following ⁇ exhaust> is A ⁇ (5.0 ⁇ 10 ⁇ 5 ) Pa or less.
- A is the ultimate vacuum of the chamber, and is the total pressure in the chamber at the end of the following ⁇ exhaust> (that is, the sum of the partial pressures of all the gases present in the chamber).
- This “A” may be appropriately set, but is preferably 10 Pa or less. This is because if “A” is 10 Pa or less, the partial pressure of CF 4 gas in the chamber at the end of the following ⁇ exhaust> can be reduced.
- the method for measuring the partial pressure of CF 4 gas in the chamber is not particularly limited, but quadrupole mass spectrometry is suitable.
- This reduction of fluoride is also preferably performed between the above ⁇ loading substrate> and ⁇ forming silicon-containing film>. Thereby, the partial pressure of the CF 4 gas in the chamber can be further reduced before the above ⁇ formation of silicon-containing film> is performed again. This can be said also in the following ⁇ exhaust>.
- the CF 4 gas in the chamber at the end of the following ⁇ exhaust> is such that the partial pressure of the CF 4 gas in the chamber is A ⁇ (2.0 ⁇ 10 ⁇ 4 ) Pa or less. More preferably, the partial pressure of CF 4 gas in the chamber at the end of the following ⁇ exhaust> is A ⁇ ( 2.P ) so that the partial pressure of the four gases is A ⁇ (5.0 ⁇ 10 ⁇ 5 ) Pa or less. If the reducing gas is supplied into the chamber so as to be 5 ⁇ 10 ⁇ 5 ) Pa or higher, ⁇ reduction of fluoride> is completed. Thereafter, the following ⁇ exhaust> is performed.
- the gas in the chamber is exhausted until the ultimate vacuum in the chamber reaches A (Pa).
- a method for exhausting the gas is not particularly limited, but it is preferable to evacuate the chamber. Then, the above ⁇ loading substrate> may be performed again, or the following ⁇ hydrogen plasma treatment> may be performed, and then ⁇ loading substrate> may be performed again.
- the method for generating hydrogen plasma is not particularly limited, and any method may be used as long as, for example, hydrogen gas is supplied into the chamber and voltage or microwave is applied.
- the treatment conditions of the hydrogen plasma treatment satisfy at least one of the following conditions 4 to 8.
- Condition 4 This treatment time is 1 sec or more and 10,000 sec or less
- Condition 5 The flow rate of hydrogen gas is 10,000 sccm or more and 100,000 sccm or less
- Condition 6 The internal pressure of the chamber is 300 Pa or more and 800 Pa or less
- Condition 7 The applied power is 0.03 W / Perform pulse discharge with a cm 2 or more and 0.1 W / cm 2 or less and a duty ratio of 5% or more and 50% or less.
- Condition 8 The temperature of the heater for heating the substrate is 20 ° C. or more and 200 ° C. or less.
- the processing time is less than 1 sec, the effect obtained by the generation of hydrogen plasma may not be sufficiently obtained.
- the same can be said when the flow rate of hydrogen gas falls below 10,000 sccm and when the temperature of the heater falls below 20 ° C.
- the processing time exceeds 10,000 sec, it is difficult to further reduce the amount of Si particles in the chamber, and thus the takt time may be prolonged.
- the same can be said when the flow rate of hydrogen gas exceeds 100,000 sccm and when the temperature of the heater exceeds 200 ° C.
- the condition 4 is preferably set as appropriate according to the duty ratio.
- the method for producing a silicon-containing film according to the present invention is effective for mass production of a silicon-containing film, it can be used for a method for producing a photoelectric conversion device or a thin film transistor.
- the method for manufacturing a photoelectric conversion device includes the method for manufacturing a silicon-containing film according to the present invention. Specifically, the substrate provided with the first electrode is carried into the chamber, and a p-type silicon layer, an i-type silicon layer, and an n-type silicon layer are sequentially stacked on the surface of the substrate, and a photoelectric conversion unit After that, the substrate on which the photoelectric conversion unit is manufactured is unloaded from the chamber. A photoelectric conversion device is obtained by providing a second electrode on the substrate carried out of the chamber. Further, after the inside of the chamber where the substrate is carried out is dry-cleaned, the fluoride present in the chamber is reduced. Thereafter, the substrate provided with the first electrode is carried into the chamber, and the above-described series of steps is performed.
- a cathode electrode 3 and an anode electrode 4 are provided in the chamber 2 of the plasma CVD apparatus 1 so as to face each other.
- a gas supply pipe 5 is connected to the cathode electrode 3, and a shower plate 3 ⁇ / b> A is provided on the side of the cathode electrode 3 facing the anode electrode 4.
- the gas that has passed through the gas supply pipe 5 passes through the cathode electrode 3 and is jetted from the jetting surface of the shower plate 3 ⁇ / b> A toward the anode electrode 4.
- a substrate 10 is provided on the surface of the anode electrode 4 facing the cathode electrode 3.
- the gas supplied into the chamber 2 through the gas supply pipe 5 includes not only the raw material gas and carrier gas used in ⁇ Formation of silicon film> below, but also fluorine contained in ⁇ Dry cleaning> below. Also included are gases and reducing gases used in ⁇ fluoride reduction> below.
- a high-frequency power source 6 is connected to the cathode electrode 3 through a matching circuit (not shown).
- the anode electrode 4 is grounded. Thereby, plasma can be generated in the chamber 2.
- the chamber 2 is provided with a discharge pipe 7. As a result, unnecessary gas in the chamber 2 passes through the discharge pipe 7 and is discharged out of the chamber 2.
- Example 1 In Example 1, the amount of fluoride remaining in the chamber 2 was measured by changing the inflow time of SiH 4 gas (reducing gas).
- a substrate 10 made of glass and provided with a transparent electrode was carried into the chamber 2 of the CVD apparatus 1 and provided on the upper surface of the anode electrode 4.
- SiH 4 gas (raw material gas) and H 2 gas (carrier gas) are supplied into the chamber 2 through the gas supply pipe 5, and a silicon film (film thickness is 300 ⁇ m) 11 is formed on the upper surface of the substrate 10 by plasma CVD. Formed.
- the conditions for forming the silicon film 11 were as follows.
- SiH 4 gas flow rate 1 sccm H 2 gas flow rate: 10 sccm
- Temperature in chamber 2 190 ° C Internal pressure of chamber 2: 600 Pa
- Applied power to the high frequency power supply 6 3400W Frequency of the high frequency power supply 6: 11 MHz.
- NF 3 gas flow rate 10 sccm
- Ar gas flow rate 10 sccm
- Temperature in chamber 2 160 ° C Internal pressure of chamber 2: 150 Pa
- Applied power to the high frequency power source 6 18000W.
- FIG. 3 is a graph showing the measurement results of the partial pressure of fluoride with respect to the supply time of SiH 4 gas, and L21, L22 and L23 in FIG. 3 are the fractions of CF 4 gas, HF gas and SiF 4 gas, respectively. The measurement result of pressure is shown.
- SiH 4 gas and H 2 gas were supplied into the chamber 2 through the gas supply pipe 5. Thereby, an i-type amorphous silicon layer (thickness 280 nm) was formed on the upper surface of the p-type amorphous silicon layer.
- SiH 4 gas, H 2 gas, and PH 3 gas were supplied into the chamber 2 through the gas supply pipe 5.
- each flow rate of SiH 4 gas, H 2 gas, and PH 3 gas was adjusted so that phosphorus was doped by 0.2 atomic%.
- an n-type amorphous silicon layer (thickness 25 nm) was formed on the upper surface of the i-type amorphous silicon layer.
- the CF 4 present in the chamber 2 is reduced according to the method in the first embodiment except that the supply time of the SiH 4 gas is changed to 0 sec, 50 sec, 100 sec, 250 sec, 300 sec, 450 sec, 600 sec and 750 sec. did.
- FIG. 4 is a graph showing measurement results of the partial pressure of CF 4 gas and the maximum output Pmax of the solar battery cell with respect to the supply time of SiH 4 gas.
- L21 in FIG. 4 is L21 in FIG. 3, and L31 in FIG. 4 shows the result of this example.
- FIG. 5 is a graph showing the relationship between the partial pressure of CF 4 gas and the maximum output Pmax of the solar battery cell. The total pressure in the chamber at the time of measuring the partial pressure of CF 4 gas was 1 Pa, as in Example 1 above.
- the partial pressure of CF 4 gas is 5 ⁇ 10 ⁇ 4 Pa, and the maximum output Pmax of the solar battery cell is less than 142 W. It was.
- the partial pressure of CF 4 gas decreased to 2 ⁇ 10 ⁇ 4 Pa, and Pmax increased to 143 W.
- the partial pressure of CF 4 gas rapidly decreased to around 5 ⁇ 10 ⁇ 5 Pa, and Pmax rapidly increased to 146 W.
- the partial pressure of CF 4 gas became lower than 5 ⁇ 10 ⁇ 5 Pa, and Pmax became higher than 146 W.
- the partial pressure of CF 4 gas at the end of the ⁇ exhaust> is 2 ⁇ 10 -4 Pa or less, preferably CF 4 partial pressure 5 ⁇ 10 -5 gas at the end of the ⁇ exhaust> It can be said that it is preferable to reduce the CF 4 gas by supplying SiH 4 gas until it becomes Pa or lower.
- an amorphous SiC film as well as an amorphous Si film may be used for the p-type silicon film formed first. This is because it is known that Pmax may be higher when a certain amount of C is positively added to the raw material gas.
- the C source gas is not actively supplied, but the p-type silicon film is in a state in which a part of C contained in the gas remaining in the chamber is taken in. Is expected to have formed.
- a suitable range for the partial pressure of CF 4 gas is 2.5 ⁇ 10 ⁇ 5 Pa or more and 2 ⁇ 10 ⁇ 4 Pa or less. It is done.
- Example 3 Also in Example 3, attention was paid to the partial pressure of CF 4 gas in the chamber 2. Then, according to the same method as in Example 1 except that the SiH 4 gas was supplied with the substrate 10 provided on the upper surface of the anode electrode 4, the supply time of the SiH 4 gas and the distribution of the CF 4 gas were determined. The relationship with pressure was investigated.
- the substrate 10 on which the silicon film is not formed is transferred to the chamber 2 of the plasma CVD apparatus 1 after performing the ⁇ substrate loading>, ⁇ silicon film formation>, ⁇ substrate unloading>, and ⁇ dry cleaning> in the first embodiment. Carried in.
- SiH 4 gas and H 2 gas were supplied into the chamber 2 through the gas supply pipe 5. Then, after performing ⁇ exhaust> in Example 1 above, the partial pressure of CF 4 gas at each supply time of SiH 4 gas was measured using a quadrupole mass spectrometer.
- FIG. 6 is a graph showing measurement results of the partial pressure of CF 4 gas with respect to the supply time of SiH 4 gas.
- L21 in FIG. 6 is L21 in FIG. 3, and L51 in FIG. 6 shows the result of this example.
- the partial pressure of CF 4 gas is supplied to the SiH 4 gas in a state where the substrate 10 is provided on the upper surface of the anode electrode 4
- the SiH 4 gas was supplied in a state where the substrate 10 was not provided on the upper surface of the anode electrode 4 (L21). From this, it is considered that the CF 4 gas present in the portion where the substrate 10 is provided in the anode electrode 4 is not detected by the quadrupole mass spectrometer.
- the SiH 4 gas when the SiH 4 gas is supplied in a state where the substrate 10 is provided on the upper surface of the anode electrode 4, the CF 4 gas existing in the portion of the anode electrode 4 where the substrate 10 is provided is not exposed to the SiH 4 gas. Therefore, it is considered that it is not reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electromagnetism (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
第5の工程を、還元ガスの供給時間が10秒以上1800秒以下である条件、還元ガスの流量が1000sccm(standard cc/min)以上100000sccm以下である条件、およびチャンバの内圧が300Pa以上5000Pa以下である条件のうちの少なくとも1つの条件で実施すれば良い。
本発明に係るシリコン含有膜の製造方法は、基板をチャンバ内に搬入する工程(図1における「基板の搬入」)S101と、チャンバ内において基板の表面上にシリコン含有膜を形成する工程(図1における「シリコン含有膜の形成」)S102と、シリコン含有膜が形成された基板をチャンバ内から搬出する工程(図1における「基板の搬出」)S103と、チャンバ内をドライクリーニングする工程(図1における「ドライクリーニング」)S104と、チャンバ内に存在するフッ化物を還元する工程(図1における「フッ化物の還元」)S105と、チャンバ内を排気する工程(図1における「排気」)S106とを備えている。これらの工程は、同一のチャンバ内で繰り返し行なわれることが好ましく、基板の搬入工程S101、シリコン含有膜の形成工程S102、基板の搬出工程S103、ドライクリーニング工程S104、フッ化物の還元工程S105、および、排気工程S106の順に繰り返し行なわれることが好ましい。このように、本発明に係るシリコン含有膜の製造方法では、ドライクリーニングを行なってからチャンバ内に存在するフッ化物を還元し、その後、次の成膜工程(シリコン含有膜の形成工程)に移る。よって、本発明に係るシリコン含有膜の製造方法では、ドライクリーニングを行なってから次の成膜を行うまでの間に、チャンバ内のフッ化物量を低減可能である。
基板の搬入工程S101では、基板をチャンバ内に搬入して、チャンバ内の所定の位置に固定する。
シリコン含有膜の形成工程S102では、チャンバ内に設けられた基板の表面上にシリコン含有膜を形成する。
基板の搬出工程S103では、シリコン含有膜が形成された基板をチャンバから搬出させる。チャンバから搬出された基板を用いて、たとえば光電変換装置などを製造することができる。
ドライクリーニング工程S104では、フッ素含有ガスを用いて、チャンバ内をドライクリーニングする。フッ素含有ガスには、F2ガスだけに限らずフッ素とフッ素以外の元素とが結合されて構成された化合物ガスも含まれる。具体的には、フッ素含有ガスは、NF3ガス、F2ガス、またはC2F6ガスなどであれば良い。また、ドライクリーニングは、その方法に特に限定されず、放電電極(たとえば、互いに平行に配置された平板状の放電電極)を用いて行なわれても良いし、リモートプラズマ法により行なわれても良い。これにより、基板以外に付着したシリコン含有膜が除去される。
フッ化物の還元工程S105では、還元ガスをチャンバ内に供給する。これにより、チャンバ内に存在するフッ化物が還元される。ここで、「チャンバ内に存在するフッ化物」とは、チャンバの内壁面などに固定されたフッ化物(SiF4ガス、HFガス、およびCF4ガスなどのフッ化ガス)を意味している。また、「チャンバ内に存在するフッ化物が還元される」とは、チャンバの内壁面などとフッ化物との固定状態が解除されることである。そして、還元されたフッ化物(つまり、チャンバの内壁面などとの固定状態が解除されたフッ化ガス)は、真空排気によりチャンバの外へ排出される。よって、上記<シリコン含有膜の形成>を再度行なったときに、フッ化物が成長中のシリコン含有膜に取り込まれることを防止できる。
条件2:還元ガスの流量が1000sccm以上100000sccm以下である
条件3:チャンバの内圧が300Pa以上5000Pa以下である。
排気工程S106では、チャンバの到達真空度がA(Pa)になるまで、チャンバ内のガスを排出する。ガスの排出方法は特に限定されないが、チャンバを真空排気することが好ましい。そして、上記<基板の搬入>を再度行なっても良いし、下記<水素プラズマ処理>を行なってから上記<基板の搬入>を再度行なっても良い。
水素プラズマ処理工程S107では、チャンバ内において基板に対して水素プラズマ処理を行なう。これにより、フッ化物の還元反応で生成したSiパーティクル量の低減という効果が得られる。したがって、次の成膜時に、成長中のシリコン含有膜中に混入するSiパーティクル量を低減できる。
条件5:水素ガスの流量が10000sccm以上100000sccm以下である
条件6:チャンバの内圧が300Pa以上800Pa以下である
条件7:印加電力が0.03W/cm2以上0.1W/cm2以下であり、且つデューティ比が5%以上50%以下であるパルス放電を行う
条件8:基板を加熱するヒーターの温度が20℃以上200℃以下である。
本発明に係るシリコン含有膜の製造方法は、シリコン含有膜の量産に有効であるので、光電変換装置または薄膜トランジスタなどの製造方法に利用することができる。
本発明に係る光電変換装置の製造方法は、本発明に係るシリコン含有膜の製造方法を含む。具体的には、第1の電極が設けられた基板をチャンバ内に搬入して、その基板の表面上にp型シリコン層、i型シリコン層およびn型シリコン層を順に積層して光電変換部を作製し、その後、光電変換部が作製された基板をチャンバ内から搬出させる。チャンバ内から搬出された基板に第2の電極を設けて光電変換装置を得る。また、基板が搬出されたチャンバ内をドライクリーニングしてから、そのチャンバ内に存在するフッ化物を還元する。その後、第1の電極が設けられた基板をそのチャンバ内に搬入して、上記一連の工程を行なう。
実施例1では、SiH4ガス(還元ガス)の流入時間を変えてチャンバ2内のフッ化物の残留量を測定した。
ガラスからなり、且つ透明電極が設けられた基板10をCVD装置1のチャンバ2内に搬入して、アノード電極4の上面上に設けた。
ガス供給管5を介してSiH4ガス(原料ガス)とH2ガス(キャリアガス)とをチャンバ2内に供給し、プラズマCVD法により基板10の上面上にシリコン膜(膜厚が300μm)11を形成した。シリコン膜11の形成条件は以下の通りであった。
H2ガスの流量:10sccm
チャンバ2内の温度:190℃
チャンバ2の内圧:600Pa
高周波電源6への印加電力:3400W
高周波電源6の周波数:11MHz。
シリコン膜11が形成された基板10をチャンバ2から搬出させた。
ガス供給管5を介してNF3ガスとArガスとをチャンバ2内に供給して、チャンバ2内をドライクリーニングした。ドライクリーニングの条件は以下の通りであった。アノード電極4の上面からSi膜がなくなったところで、RF電力およびNF3ガスの供給を停止した。
Arガスの流量:10sccm
チャンバ2内の温度:160℃
チャンバ2の内圧:150Pa
高周波電源6への印加電力:18000W。
ガス供給管5を介してSiH4ガスとH2ガスとをチャンバ2内に供給した。SiH4ガスの供給条件は、以下の通りであった。
SiH4ガスの供給時間(sec):0、50、100、150、300、450、700
チャンバ2内の温度:190℃
チャンバ2の内圧:1400Pa
高周波電源6への印加電力:0W。
チャンバの到達真空度が1Pa以下となるまで、チャンバ2内のガスを排出管7からチャンバ2の外へ排出させた。そののち、四重極型質量分析計(日本エム・ケー・エス株式会社製、品番VISION 1000)を用いて、チャンバ2内に存在するフッ化物の分圧を測定した。その結果を図3に示す。
実施例2では、チャンバ2内のCF4ガスの分圧に着目した。そして、SiH4ガスの供給時間を変えて太陽電池セルを作製し、その最大出力を測定した。
SnO2膜(太陽電池セルの第1電極として機能)がガラス基板の上面上に熱CVDにより形成されたもの(旭硝子(株)、商品名:Asahi-U)を準備した。このガラス基板をチャンバ2内に搬入してアノード電極4の上面上に設置した。
ガス供給管5を介して、SiH4ガス、H2ガス及びB2H6ガスをチャンバ2内に供給した。このとき、ボロンが0.02原子%ドープされるように、SiH4ガス、H2ガス及びB2H6ガスの各流量を調整した。これにより、ガラス基板の上面上にp型アモルファスシリコン層(厚さ20nm)が形成された。
p型アモルファスシリコン層などが形成された基板をチャンバ2から搬出した後、n型微結晶シリコン層の上面上に、マグネトロンスパッタリング法により酸化亜鉛膜(厚さ50nm)と銀膜(厚さ115nm)とを順に形成した。このようにして太陽電池セルが作製された。
上記実施例1での方法にしたがってチャンバ2をドライクリーニングした。
SiH4ガスの供給時間を0sec、50sec、100sec、250sec、300sec、450sec、600secおよび750secに変更したことを除いては上記実施例1での方法にしたがって、チャンバ2内に存在するCF4を還元した。
上記実施例1での方法にしたがって、チャンバ2内のガスをチャンバ2の外へ排出させた。
実施例3においても、チャンバ2内のCF4ガスの分圧に着目した。そして、基板10をアノード電極4の上面上に設けた状態でSiH4ガスを供給したことを除いては上記実施例1と同様の方法にしたがって、SiH4ガスの供給時間とCF4ガスの分圧との関係を調べた。
Claims (10)
- 基板をチャンバ内に搬入する第1の工程(S101)と、
前記チャンバ内において前記基板の表面上に前記シリコン含有膜を形成する第2の工程(S102)と、
前記シリコン含有膜が形成された基板を前記チャンバ内から搬出する第3の工程(S103)と、
フッ素含有ガスを用いて前記チャンバ内をドライクリーニングする第4の工程(S104)と、
還元ガスを前記チャンバ内に供給して前記チャンバ内に存在するフッ化物を還元する第5の工程(S105)と、
前記チャンバの到達真空度がA(Pa)になるまで当該チャンバ内のガスを排出する第6の工程(S106)とを備え、
前記第5の工程では、前記第6の工程の終了時における前記チャンバ内のCF4ガスの分圧がA×(2.0×10-4)Pa以下となるまで前記還元ガスを前記チャンバ内に供給するシリコン含有膜の製造方法。 - 前記第1の工程(S101)、前記第2の工程(S102)、前記第3の工程(S103)、前記第4の工程(S104)、前記第5の工程(S105)、および前記第6の工程(S106)を繰り返し行なう請求項1に記載のシリコン含有膜の製造方法。
- 前記第5の工程(S105)および前記第6の工程(S106)を前記第1の工程(S101)と前記第2の工程(S102)との間にも行なう請求項1または2に記載のシリコン含有膜の製造方法。
- 前記還元ガスは、SiH4ガスを含む請求項1~3のいずれかに記載のシリコン含有膜の製造方法。
- 前記第5の工程(S105)を、
前記還元ガスの供給時間が10秒以上1800秒以下である条件、
前記還元ガスの流量が1000sccm以上100000sccm以下である条件、および
前記チャンバの内圧が300Pa以上5000Pa以下である条件のうちの少なくとも1つの条件で実施する請求項1~4のいずれかに記載のシリコン含有膜の製造方法。 - 前記第6の工程(S106)の後に、前記チャンバ内において水素プラズマ処理を行なう第7の工程(S107)をさらに備えている請求項1~5のいずれかに記載のシリコン含有膜の製造方法。
- 前記第7の工程(S107)を、
前記水素プラズマ処理の処理時間が1sec以上10000sec以下である条件、
水素ガスの流量が10000sccm以上100000sccm以下である条件、
前記チャンバの内圧が300Pa以上800Pa以下である条件、
印加電力が0.03W/cm2以上0.1W/cm2以下であり、且つデューティ比が5%以上50%以下であるパルス放電を行うという条件、および
前記基板を加熱するヒーターの温度が20℃以上200℃以下である条件のうちの少なくとも1つの条件で実施する請求項6に記載のシリコン含有膜の製造方法。 - 前記第2の工程(S102)は、化学気相成長法にしたがって前記基板の表面上に前記シリコン含有膜を形成する請求項1~7のいずれかに記載のシリコン含有膜の製造方法。
- 請求項1~8のいずれかに記載のシリコン含有膜の製造方法を含む光電変換装置の製造方法。
- 前記第5の工程では、前記第6の工程の終了時における前記チャンバ内のCF4ガスの分圧がA×(2.5×10-5)Pa以上となるまで前記還元ガスを前記チャンバ内に供給する請求項9に記載の光電変換装置の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/234,465 US20140154415A1 (en) | 2011-07-27 | 2012-05-31 | Method for manufacturing silicon-containing film |
CN201280033941.4A CN103650169A (zh) | 2011-07-27 | 2012-05-31 | 含硅薄膜的制造方法 |
JP2013525611A JP5705322B2 (ja) | 2011-07-27 | 2012-05-31 | シリコン含有膜の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011164253 | 2011-07-27 | ||
JP2011-164253 | 2011-07-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013015017A1 true WO2013015017A1 (ja) | 2013-01-31 |
Family
ID=47600877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/064107 WO2013015017A1 (ja) | 2011-07-27 | 2012-05-31 | シリコン含有膜の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20140154415A1 (ja) |
JP (1) | JP5705322B2 (ja) |
CN (1) | CN103650169A (ja) |
WO (1) | WO2013015017A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016184629A (ja) * | 2015-03-25 | 2016-10-20 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置およびプログラム |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106571289B (zh) * | 2015-10-13 | 2020-01-03 | 中芯国际集成电路制造(上海)有限公司 | 一种半导体器件及其制备方法、电子装置 |
US10440808B2 (en) * | 2015-11-17 | 2019-10-08 | Southwest Research Institute | High power impulse plasma source |
US10354845B2 (en) | 2016-02-18 | 2019-07-16 | Southwest Research Institute | Atmospheric pressure pulsed arc plasma source and methods of coating therewith |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09186149A (ja) * | 1995-12-28 | 1997-07-15 | Fujitsu Ltd | 半導体製造装置のクリーニング方法及び半導体装置の製造方法 |
JPH10172964A (ja) * | 1996-11-13 | 1998-06-26 | Applied Materials Inc | 高温処理チャンバ用リッドアセンブリ |
JP2004207466A (ja) * | 2002-12-25 | 2004-07-22 | Matsushita Electric Ind Co Ltd | プラズマ成膜装置及びそのクリーニング方法 |
WO2011013810A1 (ja) * | 2009-07-31 | 2011-02-03 | 株式会社 アルバック | 半導体装置の製造方法及び半導体装置の製造装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03130368A (ja) * | 1989-09-22 | 1991-06-04 | Applied Materials Inc | 半導体ウェーハプロセス装置の洗浄方法 |
JPH03186149A (ja) * | 1989-12-13 | 1991-08-14 | Matsushita Electric Ind Co Ltd | 加熱制御装置 |
JPH0793276B2 (ja) * | 1993-12-14 | 1995-10-09 | アプライド マテリアルズ インコーポレイテッド | 薄膜形成前処理方法および薄膜形成方法 |
EP0704551B1 (en) * | 1994-09-27 | 2000-09-06 | Applied Materials, Inc. | Method of processing a substrate in a vacuum processing chamber |
US6200412B1 (en) * | 1996-02-16 | 2001-03-13 | Novellus Systems, Inc. | Chemical vapor deposition system including dedicated cleaning gas injection |
KR20010104260A (ko) * | 2000-05-12 | 2001-11-24 | 조셉 제이. 스위니 | 화학 증착챔버 내부의 오염물을 제거하기 위한 가스 반응 |
JP4669605B2 (ja) * | 2000-11-20 | 2011-04-13 | 東京エレクトロン株式会社 | 半導体製造装置のクリーニング方法 |
US20090120457A1 (en) * | 2007-11-09 | 2009-05-14 | Surface Chemistry Discoveries, Inc. | Compositions and method for removing coatings and preparation of surfaces for use in metal finishing, and manufacturing of electronic and microelectronic devices |
CN101540272B (zh) * | 2009-04-24 | 2010-09-01 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 一种去除腔室副产物的等离子清洗方法和等离子处理系统 |
-
2012
- 2012-05-31 WO PCT/JP2012/064107 patent/WO2013015017A1/ja active Application Filing
- 2012-05-31 JP JP2013525611A patent/JP5705322B2/ja not_active Expired - Fee Related
- 2012-05-31 US US14/234,465 patent/US20140154415A1/en not_active Abandoned
- 2012-05-31 CN CN201280033941.4A patent/CN103650169A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09186149A (ja) * | 1995-12-28 | 1997-07-15 | Fujitsu Ltd | 半導体製造装置のクリーニング方法及び半導体装置の製造方法 |
JPH10172964A (ja) * | 1996-11-13 | 1998-06-26 | Applied Materials Inc | 高温処理チャンバ用リッドアセンブリ |
JP2004207466A (ja) * | 2002-12-25 | 2004-07-22 | Matsushita Electric Ind Co Ltd | プラズマ成膜装置及びそのクリーニング方法 |
WO2011013810A1 (ja) * | 2009-07-31 | 2011-02-03 | 株式会社 アルバック | 半導体装置の製造方法及び半導体装置の製造装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016184629A (ja) * | 2015-03-25 | 2016-10-20 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置およびプログラム |
Also Published As
Publication number | Publication date |
---|---|
US20140154415A1 (en) | 2014-06-05 |
JP5705322B2 (ja) | 2015-04-22 |
CN103650169A (zh) | 2014-03-19 |
JPWO2013015017A1 (ja) | 2015-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI674617B (zh) | 用於在電漿清潔製程之後執行電漿處理製程的方法 | |
KR102688002B1 (ko) | 금속 오염을 제어하기 위한 챔버의 인-시튜 cvd 및 ald 코팅 | |
JP4553891B2 (ja) | 半導体層製造方法 | |
JP5705322B2 (ja) | シリコン含有膜の製造方法 | |
WO2011132775A1 (ja) | 薄膜太陽電池の製造方法 | |
WO2009012159A1 (en) | Clean rate improvement by pressure controlled remote plasma source | |
JP5520834B2 (ja) | パッシベーション膜の成膜方法、及び太陽電池素子の製造方法 | |
JP6609324B2 (ja) | 光電変換装置の製造方法 | |
JP2000252218A (ja) | プラズマcvd装置およびシリコン系薄膜光電変換装置の製造方法 | |
KR20080026746A (ko) | 증착 챔버 세정 방법 | |
CN111129223B (zh) | 一种新型的超晶格红外探测器制备方法 | |
JP2012074669A (ja) | 太陽電池の製造方法 | |
WO2013105416A1 (ja) | シリコン含有膜の製造方法および光電変換装置の製造方法 | |
JP2006202945A (ja) | 半導体製造装置 | |
JP2011199156A (ja) | 真空チャンバのプラズマクリーニング方法およびプラズマcvd成膜装置 | |
CN100393913C (zh) | 一种多晶硅刻蚀中的干法清洗工艺 | |
CN113481486A (zh) | 一种镀膜方法 | |
JP2011096962A (ja) | 薄膜太陽電池の製造方法および製造装置 | |
JP2013041909A (ja) | 薄膜太陽電池の製造方法、およびプラズマcvd装置の製膜室の調整方法 | |
JP2013004732A (ja) | プラズマcvd装置のクリーニング方法 | |
Yu et al. | Investigation of intrinsic hydrogenated amorphous silicon (a-si: H) thin films on textured silicon substrate with high quality passivation | |
JP5460080B2 (ja) | 薄膜形成装置のクリーニング方法 | |
JP2013030664A (ja) | プラズマcvd装置を用いた半導体装置の製造方法 | |
JP2009057636A (ja) | シリコン膜の製造方法及び太陽電池の製造方法 | |
JP2007027469A (ja) | 太陽電池素子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12816971 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013525611 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14234465 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12816971 Country of ref document: EP Kind code of ref document: A1 |