[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013012064A1 - Feedback circuit and power adjusting device - Google Patents

Feedback circuit and power adjusting device Download PDF

Info

Publication number
WO2013012064A1
WO2013012064A1 PCT/JP2012/068464 JP2012068464W WO2013012064A1 WO 2013012064 A1 WO2013012064 A1 WO 2013012064A1 JP 2012068464 W JP2012068464 W JP 2012068464W WO 2013012064 A1 WO2013012064 A1 WO 2013012064A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
circuit
value
upper limit
charging
Prior art date
Application number
PCT/JP2012/068464
Other languages
French (fr)
Japanese (ja)
Inventor
一男 石本
中島 武
中井 智通
博志 佐伯
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013012064A1 publication Critical patent/WO2013012064A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a feedback circuit used in a power adjustment device and a power adjustment device using the feedback circuit.
  • Patent Document 1 discloses a solar battery, a plurality of secondary batteries charged by the solar battery, and a secondary battery connected between each secondary battery and the solar battery.
  • a solar battery power supply device comprising: a charge switch for controlling charging of a secondary battery; a discharge switch connected between each secondary battery and a load; and a control circuit for controlling the charge switch and the discharge switch. It is disclosed.
  • the control circuit specifies the priority order of the secondary batteries to be charged by controlling a plurality of charge switches, charges the secondary battery with a higher priority before the secondary battery with a lower priority, It is disclosed that when a secondary battery having a higher rank is charged with a predetermined capacity, a secondary battery having a lower priority is charged.
  • the upper limit power value of charge power and the upper limit power value of discharge power for the secondary battery are different. Therefore, when the charge power path and the discharge power path are simply made a common transmission path, the lower power limit of the charge power and the discharge power is set as the upper limit power value of the charge power and the power upper limit value of the discharge power. Will be. For this reason, there is a possibility that the power upper limit value with the higher charge power and discharge power cannot be utilized to the maximum extent.
  • the charging power path and the discharging power path for the secondary battery are divided into separate paths, it is possible to set an upper limit power value for each. However, as the number of paths increases, the configuration of peripheral circuits and the like becomes complicated. May also lead to an increase in cost.
  • An object of the present invention is to provide a feedback circuit that makes it possible to share a transmission path for charging power and discharging power for a secondary battery while making maximum use of the capacity of the secondary battery, and power adjustment using the feedback circuit Is to provide a device.
  • the feedback circuit according to the present invention includes a charging power when charging power is transmitted to a common power transmission path through which charging power from the charging device to the secondary battery and discharging power from the secondary battery to the load device is transmitted.
  • a limiting circuit is provided that limits the charging power value with the upper limit value and limits the discharging power value with the discharging power upper limit value when the discharging power is transmitted to the common power transmission path.
  • a power adjustment device includes the feedback circuit and a setting circuit that sets a charging power upper limit value and a discharging power upper limit value, respectively.
  • charging power and discharging power can be limited by different power upper limit values in a common transmission path of charging power and discharging power. Thereby, it is possible to share the transmission path for the charging power and the discharging power for the secondary battery while making maximum use of the respective power upper limit values for the charging power and the discharging power.
  • FIG. 5 is a flowchart illustrating an operation procedure of a control unit in the embodiment according to the present invention.
  • 6 is a flowchart showing an operation procedure of the setting circuit in the embodiment according to the invention.
  • it is a figure which shows the bidirectionality of a switch circuit.
  • it is a figure which shows the modification of an electrical storage system.
  • it is a figure which shows the structure of the feedback circuit of the modification of an electrical storage system.
  • FIG. 1 is a diagram showing a power storage system 10 including a power adjustment device 30.
  • the power storage system 10 includes a charging device 20, a control device 25, a power storage device 28 including a power adjustment device 30, and a load device 40.
  • the power storage system 10 adjusts the power value supplied from the charging device 20 to the load device 40.
  • the power adjustment device 30 sets the charging power value P 1 flowing through the power transmission path 1, the charging power upper limit value P lim1 of the discharging power value P 2 , and the discharging power upper limit value P lim2. Will be described later.
  • the power transmission path 1 is a path for supplying charging power from the charging device 20 to the secondary battery 39 of the power storage device 28, and is also a path for supplying discharging power from the secondary battery 39 to the load device 40. That is, the power transmission path 1 is a common transmission path for transmitting charging power and discharging power.
  • the power transmission path 1 connects the terminal 5 of the power storage device 28 and the terminal 7 of the power storage device 28.
  • the power transmission path 2 is a path for supplying power from the solar cell module 11 of the charging device 20 to the power storage device 28 and the load device 40 side.
  • the power transmission path 2 connects the path switching circuit 13 of the charging device 20 and the connection point 6.
  • the power transmission path 3 is a path for supplying power from the system power source 14 of the charging device 20 to the power storage device 28 and the load device 40 side.
  • the power transmission path 3 connects the AC / DC conversion circuit 16 of the charging device 20 and the connection point 6.
  • the power transmission path 4 is a path for supplying power from the charging device 20 and the power storage device 28 to the load device 40.
  • the power transmission path 4 connects the load 44 and the connection point 6 via the switch circuit 42.
  • the charging device 20 includes a solar cell module 11, a series / parallel switching circuit 12, a path switching circuit 13, a system power source 14, a DC / AC conversion circuit 15, an AC / DC conversion circuit 16, and a switch circuit 17.
  • the switch circuit 18 is provided.
  • the charging device 20 supplies power from the solar cell module 11 and the system power source 14 to the power storage device 28 and the load device 40 side.
  • the solar cell module 11 is a power device that converts incident sunlight into electric power.
  • the solar cell module 11 includes two photoelectric conversion units 111 and 112 that convert sunlight into DC power.
  • the serial / parallel switching circuit 12 is a circuit that switches the connection relationship between the two photoelectric conversion units 111 and 112 to serial connection or parallel connection.
  • the path switching circuit 13 is a circuit for switching whether the DC power of the solar cell module 11 is supplied to the power storage device 28 and the load device 40 side or supplied to the system power source 14 side.
  • the grid power source 14 is a power facility for supplying power using a commercial distribution line network owned by a power company or the like.
  • the DC / AC conversion circuit 15 is a power conversion circuit disposed between the path switching circuit 13 and the system power source 14.
  • the DC / AC conversion circuit 15 can convert the direct current power of the solar cell module 11 into alternating current power and make it flow backward to the system power source 14.
  • the AC / DC conversion circuit 16 is a power conversion circuit disposed between the switch circuit 18 and the system power source 14.
  • the AC / DC conversion circuit 16 can convert AC power supplied from the system power source 14 into DC power and supply it to the power storage device 28 and the load device 40 side.
  • the switch circuit 17 is a circuit that cuts off or connects the power transmission path 2 under the control of the control device 25.
  • the switch circuit 18 is a circuit that cuts off or connects the power transmission path 3 under the control of the control device 25.
  • the load device 40 includes a switch circuit 42 and a load 44.
  • the switch circuit 42 is a circuit that cuts off or connects the power transmission path 4 under the control of the control device 25.
  • the load 44 is a lighting device or the like that operates with DC power.
  • the control device 25 controls the operation of each element constituting the power storage system 10.
  • the control device 25 outputs a switching signal for switching the photoelectric conversion units 111 and 112 to either serial connection or parallel connection to the series-parallel switching circuit 12 based on setting information from the outside. Further, the control device 25 switches a switching signal for switching the output of the series / parallel switching circuit 12 to be supplied to either the DC / AC conversion circuit 15 or the switch circuit 17 based on setting information from the outside. Is output to the path switching circuit 13.
  • control device 25 performs switching control of the switch circuits 17, 18, and 42 based on setting information from the outside. For example, when the control device 25 supplies power from the solar cell module 11 to the power storage device 28 and the load device 40 side, the switch circuit 17 and the switch circuit 42 are turned on, and the switch circuit 18 is turned off. Output a control signal. For example, when the power from the grid power source 14 is supplied to the power storage device 28 and the load device 40 side, the control device 25 turns on the switch circuit 18 and the switch circuit 42 and turns off the switch circuit 17. In addition, a control signal is output. The control device 25 controls the function of the power adjustment device 30 according to the state of the charging device 20 and the state of the load device 40.
  • the power storage device 28 includes a power adjustment device 30 and a secondary battery 39.
  • the secondary battery 39 is a storage battery that is charged by the charging power from the solar cell module 11 or the system power source 14. Then, the discharged power discharged from the secondary battery 39 is supplied to the load 44 of the load device 40.
  • the power adjustment device 30 includes a feedback circuit 31 and a setting circuit 32.
  • the setting circuit 32 will be described.
  • the feedback circuit 31 includes a power sensor 33 for charging power and discharging power for the secondary battery 39, a limiting circuit 34, and a switch circuit 35.
  • the feedback circuit 31 has a charging power value P 1 indicating the charging power value of the secondary battery 39 and a discharging power value P 2 indicating the discharging power value corresponding to the charging power upper limit value P lim1 and discharging power, respectively. Feedback control is performed so as not to exceed the power upper limit value Plim2 .
  • FIG. 2 is a diagram showing the configuration of the feedback circuit 31. As shown in FIG. 1
  • Power sensor 33 includes a secondary battery 39, a switch circuit 35 is placed between the amplifier circuit 342 of the limiting circuit 34, to constantly detect the charging power value P 1 and the charging power value P 2 in the power transmission path 1 It is a detection unit. Further, the power value detected by the power sensor 33 is supplied to the amplifier circuit 342 of the limit circuit 34.
  • the switch circuit 35 is a circuit that cuts off or connects the power transmission path 1. That is, the power transmission path 1 is connected when the switch circuit 35 is on, and the power transmission path 1 is cut off when the switch circuit 35 is off. A specific configuration and the like of the switch circuit 35 will be described later.
  • the limiting circuit 34 includes an amplification circuit 342, an A / D conversion circuit 344, a control unit 346, and a level shift circuit 348.
  • the amplification circuit 342 is a circuit disposed between the power sensor 33 and the A / D conversion circuit 344.
  • the amplifier circuit 342 amplifies the power value detected by the power sensor 33 and supplies the amplified power value to the A / D conversion circuit 344.
  • the A / D conversion circuit 344 is a circuit disposed between the amplification circuit 342 and the control unit 346.
  • the A / D conversion circuit 344 converts the power value amplified by the amplification circuit 342 from an analog value to a digital value and supplies the converted value to the control unit 346.
  • the number of bits of the A / D conversion circuit 344 is, for example, 12 bits, and the resolution is higher than that of an A / D conversion circuit 363 described later, and more accurate A / D conversion can be performed.
  • the level shift circuit 348 is a circuit disposed between the control unit 346 and the switch circuit 35.
  • the level shift circuit 348 converts the level of the output signal supplied from the control unit 346 and supplies it to the switch circuit 35 as a control signal for turning on or off the switch circuit 35.
  • the control unit 346 uses the output of the A / D conversion circuit 344 and the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 input from the setting circuit 32 as input signals. Then, the control unit 346 outputs a signal that is a source of the control signal of the switch circuit 35 to the level shift circuit 348.
  • the control unit 346 uses a feedback path connecting the power sensor 33, the amplifier circuit 342, the A / D conversion circuit 344, the control unit 346, the level shift circuit 348, and the switch circuit 35, and uses the charging power value P 1 and the discharging power value P.
  • a control circuit 2 performs switching control of the switch circuit 35 so as not to exceed the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 set by the setting circuit 32.
  • the control unit 346 can be configured using a CPU, for example, but may be configured using other circuits. For example, a combination circuit can be used.
  • FIG. 3 is a flowchart showing an operation procedure of the control unit 346.
  • Control unit 346 based on the detection signal obtained from the power sensor 33, power value flowing through the power transmission path 1, it is determined whether the charging power value P 1 (S2).
  • the control unit 346 outputs a signal for turning on the switch circuit 35 before performing the process of S2.
  • the power sensor 33 is set so that the direction in which the charging power flows is a positive value, the discharging power flowing in the opposite direction to the charging power is detected as a negative value, and thus the charging power value P 1 And the discharge power value P 2 can be distinguished.
  • the charging power upper limit value P lim1> determines whether the charging power value P 1 (S4 ).
  • step S4 If it is determined in step S4 that the charging power upper limit value P lim1 > the charging power value P 1 , a signal for always turning on the switch circuit 35 is output (S8).
  • step S4 If it is determined in step S4 that the charging power upper limit value P lim1 > charging power value P 1 is not satisfied, a signal for repeatedly turning on or off the switch circuit 35 with a duty ratio of P lim1 / P 1. Is output (S10).
  • step S6 If it is determined in step S6 that the discharge power upper limit value P lim2 > discharge power value P 2 , the process proceeds to step S8.
  • step S6 If it is determined in step S6 that the discharge power upper limit value P lim2 > discharge power value P 2 is not satisfied, a signal for repeatedly turning on or off the switch circuit 35 with a duty ratio of P lim2 / P 2 is generated. Output (S12).
  • the process returns to S2 via the return process.
  • the control unit 346 can determine whether the power value flowing through the power transmission path 1 is the charging power value P 1 or the discharging power value P 2 . Then, until it is determined power value flowing through the power transmission path 1 is the charging power value P 1, when the charging power value P 1 exceeds the charging power upper limit value P lim1 is a charging power upper limit value P lim1 By performing feedback control that appropriately changes the duty ratio, the charging power value P 1 is limited to be equal to or less than the charging power upper limit value P lim1 .
  • the discharge power value P 2 is limited to be equal to or less than the discharge power upper limit value P lim2 .
  • the charging power upper limit value P lim1 and discharging power upper limit value P lim2 been changed by the setting circuit 32 executes the above steps by the power upper limit value P lim1, P lim2 after the change.
  • the setting circuit 32 sets the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 so as not to exceed the capacity of the secondary battery 39.
  • the setting circuit 32 obtains SOC (State of Charge) indicating the storage state of the secondary battery 39, the temperature of the secondary battery 39, the degree of deterioration of the secondary battery 39, and the like.
  • SOC State of Charge
  • the setting circuit 32 changes the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 for the secondary battery 39 based on the SOC or the like acquired from the secondary battery 39.
  • the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 set by the setting circuit 32 are transmitted to the control unit 346 of the limiting circuit 34.
  • FIG. 4 is a flowchart showing an operation procedure of the setting circuit 32.
  • the setting circuit 32 initializes the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 so as to satisfy the relationship of P lim2 > P lim1 (S20).
  • step S22 it is determined whether or not the SOC of the secondary battery 39 is greater than a predetermined reference value A (S22).
  • the reference value A is set based on the overcharge limit of the secondary battery 39 and the like. If it is determined in step S22 that the SOC of the secondary battery 39 is not greater than the reference value A, the process proceeds to step S24.
  • step S22 if it is determined that the SOC of the secondary battery 39 is larger than the reference value A, the charging power upper limit P lim1 is reduced to prevent overcharging, and the discharging power upper limit value is set. P lim2 is increased (S26). After step S26, the process returns to step S22 via return processing. By the process of S26, the secondary battery 39 can be prevented from being overcharged.
  • step S24 it is determined whether or not the SOC of the secondary battery 39 is smaller than the reference value B (S24).
  • the reference value B is determined based on the overdischarge limit of the secondary battery 39 and the like. If it is determined in step S24 that the SOC of the secondary battery 39 is not smaller than the reference value B, the process returns to step S22 via return processing.
  • step S24 if it is determined that the SOC of the secondary battery 39 is smaller than the reference value B, the charging power upper limit value is satisfied while satisfying the relationship P lim2 > P lim1 in order to prevent overdischarge. P lim1 is increased and the discharge power upper limit P lim2 is decreased (S28). After step S28, the process returns to step S22 via return processing. By the process of S28, the secondary battery 39 can be prevented from being overdischarged.
  • the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 can be set to different values, and the charging power depends on the SOC value of the secondary battery 39.
  • the upper limit value P lim1 and the discharge power upper limit value P lim2 can be changed.
  • the switch circuit 35 connects the power sensor 33 and the terminal 7, and cuts off or connects the power transmission path 1. That is, the power transmission path 1 is connected when the switch circuit 35 is on, and the power transmission path 1 is cut off when the switch circuit 35 is off.
  • FIG. 5 is a diagram showing the bidirectionality of the switch circuit 35.
  • the switch circuit 35 includes a transistor 351, a switch unit 352, a power source 353, a transistor 354, a switch unit 355, and a power source 356.
  • the transistor 351 is provided in series with the transistor 354 between the power sensor 33 and the terminal 7.
  • the transistor 351 is an n-channel transistor configured using a power MOSFET.
  • the cathode terminal of the body diode 351a of the transistor 351 is connected to the cathode terminal of the body diode 354a of the transistor 354.
  • the switch unit 352 is disposed between the power source 353 and the transistor 351.
  • the switch unit 352 is controlled to be turned on or off by a control signal from the level shift circuit 348. When the switch unit 352 is turned on, the power value of the power source 353 is applied between the gate and the source of the transistor 351.
  • transistor 354, the switch unit 355, and the power source 356 have the same configurations as the transistor 351, the switch unit 352, and the power source 353, respectively, and thus detailed description thereof is omitted.
  • the switch unit 352 and the switch unit 355 are turned on and off by an on / off control signal from the level shift circuit 348.
  • the transistor 354 when charging power flows from the charging device 20 to the secondary battery 39, the transistor 354 is turned off and the transistor 351 is turned on. As a result, charging power flows through the body diode 354a of the transistor 354 and the drain-source of the transistor 351.
  • the transistor 351 when discharge power flows from the secondary battery 39 to the load 44, the transistor 351 is turned off and the transistor 354 is controlled to turn on. As a result, discharge power flows through the body diode 351a of the transistor 351 and the drain-source of the transistor 354.
  • the switch circuit 35 power flows in both directions.
  • the switch unit 352 and the switch unit 355 are turned off. Accordingly, the output power of the power source 353 and the power source 356 is not applied between the gate and the source of the transistor 351 and the transistor 354, respectively, and thus the transistor 351 and the transistor 354 are turned off. That is, when the switch circuit 35 is turned off, the common power transmission path 1 through which the discharge power and the charge power for the secondary battery 39 flow is cut off.
  • the upper limit power value of the charge power and the upper limit power value of the discharge power for the secondary battery 39 are different from each other.
  • the charging power path and the discharging power path for the secondary battery 39 are divided into separate paths, and the upper limit power value of the charging power and the upper limit power value of the discharging power are set. If the number of routes increases, the configuration of peripheral circuits may become complicated, and it may lead to an increase in cost.
  • the conventional technology has such a configuration as follows. There is a reason.
  • the lower power of the charge power and the discharge power is set as the power upper limit value of the power storage system 10. This is because there is a possibility that the power upper limit value with the higher charge power and discharge power cannot be utilized to the maximum extent.
  • charging power and discharging power are transmitted to the common power transmission path 1, and the charging power upper limit is set for each of the charging power value P 1 and the discharging power value P 2.
  • the value P lim1 and the discharge power upper limit value P lim2 can be set to different values. Then, as described in the explanation of the operation of the control unit 346 using FIG. 3, when the power value flowing through the power transmission path 1 is determined to be the charging power value P 1 , the charging power value P 1 is used for charging. It limits so that electric power upper limit Plim1 may not be exceeded.
  • the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 can be set to different values, and the charging power value P 1 and the discharging power value P 2 are respectively set to the charging power upper limit values P lim1 , Switching control of the switch circuit 35 is performed so as not to exceed the discharge power upper limit P lim2 .
  • the number of paths can be reduced, and the configuration of peripheral circuits can be simplified.
  • FIG. 6 is a diagram illustrating the power storage system 10a. Since the difference between the power storage system 10a and the power storage system 10 is the limiting circuit 36, the following description will be focused on the limiting circuit 36.
  • FIG. 7 is a diagram showing a configuration of the limiting circuit 36.
  • the limiting circuit 36 includes an amplifier circuit 361, a low-pass filter 362, an A / D conversion circuit 363, a comparison circuit 364, a D / A conversion circuit 365, a control unit 366, and a level shift circuit 367.
  • the amplifier circuit 361 and the level shift circuit 367 are the same as the amplifier circuit 342 and the level shift circuit 348 of the power storage system 10, and thus detailed description thereof is omitted.
  • the low pass filter 362 is disposed between the amplification circuit 361 and the A / D conversion circuit 363.
  • the low-pass filter 362 passes (filters) a low-frequency band component of the analog value, which is the power value amplified by the amplifier circuit 361, and supplies it to the A / D conversion circuit 363.
  • the A / D conversion circuit 363 is disposed between the low-pass filter 362 and the control unit 366.
  • the A / D conversion circuit 363 converts the power value filtered by the low-pass filter 362 from an analog value to a digital value and supplies the converted value to the control unit 366.
  • the A / D conversion circuit 363 has 10 bits, the resolution is lower than that of the A / D conversion circuit 344 described above. For this reason, since the A / D conversion accuracy is somewhat inferior, the power value after conversion becomes a coarser value than the power value after conversion by the A / D conversion circuit 344. In other words, the power value output from the A / D conversion circuit 363 is a smooth power value.
  • the A / D conversion circuit 363 is inexpensive because it has a lower resolution than the A / D conversion circuit 344, and thus has a cost advantage.
  • the D / A conversion circuit 365 is disposed between the control unit 366 and the comparison circuit 364.
  • the reference power value output from the control unit 366 is converted from a digital value to an analog value and supplied to the comparison circuit 364.
  • the comparison circuit 364 compares the power value input from the amplification circuit 361 with the reference power value input from the D / A conversion circuit 365. Specifically, the comparison circuit 364 outputs High when the power value input from the amplifier circuit 361 exceeds the reference power value input from the D / A conversion circuit 365, and the power value is the reference power. When it does not exceed the value, Low is output.
  • the control unit 366 receives the output of the A / D conversion circuit 363, the output of the comparison circuit 364, the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 input from the setting circuit 32 as input signals. To do. Then, the control unit 366 outputs a signal that is a source of the control signal of the switch circuit 35 to the level shift circuit 367.
  • the control unit 366 uses a feedback path connecting the power sensor 33, the amplifier circuit 361, the low-pass filter 362, the A / D conversion circuit 363, the control unit 366, the level shift circuit 367, and the switch circuit 35, and uses the charging power value P 1 and The control circuit performs switching control of the switch circuit 35 so that the discharge power value P 2 does not exceed the charge power upper limit value P lim1 and the discharge power upper limit value P lim2 set by the setting circuit 32.
  • the value output from the A / D conversion circuit 363 is a smooth power value as described above, but is similar to the control unit 346 in that the control unit 366 performs feedback control based on the power value. Detailed description of the specific control will be omitted.
  • the control unit 366 outputs a stop signal for forcibly turning off the switch circuit 35 while the output of the comparison circuit 364 is High.
  • the control unit 366 outputs a reference power value to be supplied to the D / A conversion circuit 365.
  • the reference power value is such that the charging power value P 1 and the discharging power value P 2 for the secondary battery 39 change sharply and exceed the charging power upper limit value P lim1 and the discharging power upper limit value P lim2.
  • the power value is obtained in advance in order to detect a steep power change that cannot be detected by the A / D conversion circuit 363.
  • the charging power value P 1 is the charging power. It limits so that upper limit Plim1 may not be exceeded. Also, when the power value through the power transmission path 1 is determined to discharge power value P 2 is discharge power value P 2 is limited so as not to exceed the discharge power limit value P lim2. Thereby, like the power storage system 10, the number of paths can be reduced, and the configuration of peripheral circuits and the like can be simplified.
  • the power storage system 10a similarly to the power storage system 10, if it is determined that the SOC of the secondary battery 39 is larger than the reference value A by the operation of the setting circuit 32, in order to prevent overcharging.
  • the charging power upper limit value P lim1 is decreased, and the discharging power upper limit value P lim2 is increased. If it is determined that the SOC of the secondary battery 39 is smaller than the reference value B, the charging power upper limit value P lim1 is increased and the discharging power upper limit value P lim2 is set to prevent overdischarge. Make it smaller.
  • the burden on the secondary battery 39 is reduced, so that deterioration of the characteristics of the secondary battery 39 can be prevented.
  • the charging power value P 1 and the discharging power value P 2 for the secondary battery 39 are obtained using the smooth power value converted by the A / D conversion circuit 363, which is cheaper than the A / D conversion circuit 344.
  • Switching control of the switch circuit 35 is performed so as not to exceed the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 . If the charging power value P 1 and the discharging power value P 2 for the secondary battery 39 change sharply and exceed the charging power upper limit value P lim1 and discharging power upper limit value P lim2 , in other words, For example, it is assumed that there is a steep power change that cannot be detected by the A / D conversion circuit 363.
  • the comparison circuit 364 that compares the power values detects that the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 have been exceeded. As a result, the comparison circuit 364 changes to High, the switch circuit 35 is forcibly turned off, and charging / discharging of the secondary battery 39 is stopped, so that the burden on the secondary battery 39 can be reduced. . Thus, it is possible to compensate for the inferior accuracy of the A / D conversion circuit 363 compared to the A / D conversion circuit 344. Therefore, in the power storage system 10a, it is possible to prevent the deterioration of the characteristics of the secondary battery 39 while securing the cost advantage.
  • the switch circuit 35 is described as being controlled by using a set of circuits including the D / A conversion circuit 365 and the comparison circuit 364. However, a plurality of sets of circuits are prepared and different threshold values are set. It may be detected.
  • the setting circuit 32 has been described as changing the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 based on the SOC acquired from the secondary battery 39.
  • it may be changed using other information.
  • the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 may be changed according to the deterioration state of the secondary battery 39.
  • the temperature of the secondary battery 39 is low, it is difficult to charge compared to a high state.
  • the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 may be changed according to the temperature of the secondary battery 39.
  • preliminary charging may be necessary. In this case, it is necessary to lower the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 .
  • the setting circuit 32 can change the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 based on the time zone of the facility where the power storage systems 10 and 10a are installed. .
  • the charging power upper limit P lim1 is set large so that the generated power can be charged to the maximum.
  • the charging power upper limit value P lim1 is set so as to lower the charging current value P 1 .
  • the characteristic deterioration of the secondary battery 39 can be suppressed, so that charging power is small.
  • the setting of the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 has been described as being performed by the setting circuit 32, but the setting is performed by the control unit 346 of the limiting circuit 34. Alternatively, it may be set in the control device 25.
  • the adjustment target by the power adjustment device 30 has been described as being electric power, but it may be current or voltage.
  • the load supplied with power from the charging device 20 and the power storage device 28 has been described as one of the loads 44. Of course, more loads may be connected. . Further, the type of load may be either a DC load or an AC load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

A feedback circuit (31) is provided with a limiting circuit (36) that limits: a charging power value (P1) with a charging power upper limit value (Plim1) when charging power from a charging device (20) to a secondary battery (39) is transmitted through a common power transmission path (1) through which the charging power and discharging power from the secondary battery (39) to a load (40) are transmitted; and a discharging power value (P2) with a discharging power upper limit value (Plim2) when the discharging power is transmitted through the common power transmission path.

Description

フィードバック回路及び電力調整装置Feedback circuit and power adjustment device
 本発明は、電力調整装置に用いられるフィードバック回路及びそれを用いる電力調整装置に関する。 The present invention relates to a feedback circuit used in a power adjustment device and a power adjustment device using the feedback circuit.
 近年、二次電池を利用することで、エネルギの有効活用を行うことが考えられている。例えば、環境に優しいクリーンエネルギとして太陽電池モジュールの開発が盛んに行なわれているが、太陽光を電力に変換する太陽電池モジュールは蓄電機能を備えていないため、二次電池と組み合わせて使用されることがある。 In recent years, it has been considered to make effective use of energy by using secondary batteries. For example, solar cell modules have been actively developed as environmentally friendly clean energy, but solar cell modules that convert sunlight into electric power do not have a power storage function and are therefore used in combination with secondary batteries. Sometimes.
 本発明に関連する技術として、例えば、特許文献1には、太陽電池と、この太陽電池で充電される複数の二次電池と、各々の二次電池と太陽電池との間に接続されて二次電池の充電を制御する充電スイッチと、各々の二次電池と負荷との間に接続してなる放電スイッチと、充電スイッチと放電スイッチとを制御する制御回路とを備える太陽電池の電源装置が開示されている。ここでは、制御回路が、複数の充電スイッチを制御して充電する二次電池の優先順位を特定し、優先順位の高い二次電池を優先順位の低い二次電池よりも先に充電し、優先順位の高い二次電池が所定容量充電されると、優先順位の低い二次電池を充電するようにしてなることが開示されている。 As a technique related to the present invention, for example, Patent Document 1 discloses a solar battery, a plurality of secondary batteries charged by the solar battery, and a secondary battery connected between each secondary battery and the solar battery. A solar battery power supply device comprising: a charge switch for controlling charging of a secondary battery; a discharge switch connected between each secondary battery and a load; and a control circuit for controlling the charge switch and the discharge switch. It is disclosed. Here, the control circuit specifies the priority order of the secondary batteries to be charged by controlling a plurality of charge switches, charges the secondary battery with a higher priority before the secondary battery with a lower priority, It is disclosed that when a secondary battery having a higher rank is charged with a predetermined capacity, a secondary battery having a lower priority is charged.
特開2003-111301号公報JP 2003-111301 A
 ところで、一般的に、二次電池に対する充電電力の上限電力値及び放電電力の上限電力値は異なる。そこで、充電電力経路と放電電力経路を単純に共通の伝送経路にした場合には、充電電力と放電電力の低い方の電力上限値を充電電力の上限電力値及び放電電力の電力上限値と設定することとなる。このため、充電電力と放電電力の高い方の電力上限値を最大限に活用することができない可能性がある。これに対し、二次電池に対する充電電力経路と放電電力経路とを別々の経路に分ければ、それぞれに上限電力値の設定が可能であるが、経路数が増えると周辺回路の構成等が複雑になる可能性もあり、また、コスト増大にも繋がる可能性もある。 By the way, in general, the upper limit power value of charge power and the upper limit power value of discharge power for the secondary battery are different. Therefore, when the charge power path and the discharge power path are simply made a common transmission path, the lower power limit of the charge power and the discharge power is set as the upper limit power value of the charge power and the power upper limit value of the discharge power. Will be. For this reason, there is a possibility that the power upper limit value with the higher charge power and discharge power cannot be utilized to the maximum extent. On the other hand, if the charging power path and the discharging power path for the secondary battery are divided into separate paths, it is possible to set an upper limit power value for each. However, as the number of paths increases, the configuration of peripheral circuits and the like becomes complicated. May also lead to an increase in cost.
 本発明の目的は、二次電池の能力を最大限に活用しつつ、二次電池に対する充電電力及び放電電力の伝送経路を共通とすることを可能とするフィードバック回路、及び、これを用いる電力調整装置を提供することである。 An object of the present invention is to provide a feedback circuit that makes it possible to share a transmission path for charging power and discharging power for a secondary battery while making maximum use of the capacity of the secondary battery, and power adjustment using the feedback circuit Is to provide a device.
 本発明に係るフィードバック回路は、充電装置から二次電池への充電電力及び二次電池から負荷装置への放電電力が伝送される共通の電力伝送経路に充電電力が伝送されるときは充電用電力上限値で充電電力値を制限し、共通の電力伝送経路に放電電力が伝送されるときは放電用電力上限値で放電電力値を制限する制限回路を備える。 The feedback circuit according to the present invention includes a charging power when charging power is transmitted to a common power transmission path through which charging power from the charging device to the secondary battery and discharging power from the secondary battery to the load device is transmitted. A limiting circuit is provided that limits the charging power value with the upper limit value and limits the discharging power value with the discharging power upper limit value when the discharging power is transmitted to the common power transmission path.
 また、本発明に係る電力調整装置は、上記フィードバック回路と、充電用電力上限値及び放電用電力上限値をそれぞれ設定する設定回路と、を備える。 Also, a power adjustment device according to the present invention includes the feedback circuit and a setting circuit that sets a charging power upper limit value and a discharging power upper limit value, respectively.
 本発明によれば、充電電力及び放電電力の共通の伝送経路において、充電電力及び放電電力についてそれぞれ異なる電力上限値で制限することができる。これにより、充電電力及び放電電力についてのそれぞれの電力上限値を最大限に活用しつつ、二次電池に対する充電電力及び放電電力の伝送経路を共通とすることができる。 According to the present invention, charging power and discharging power can be limited by different power upper limit values in a common transmission path of charging power and discharging power. Thereby, it is possible to share the transmission path for the charging power and the discharging power for the secondary battery while making maximum use of the respective power upper limit values for the charging power and the discharging power.
本発明に係る実施の形態において、電力調整装置の蓄電システムを示す図である。In embodiment which concerns on this invention, it is a figure which shows the electrical storage system of an electric power adjustment apparatus. 本発明に係る実施の形態において、フィードバック回路の構成を示す図である。In an embodiment concerning the present invention, it is a figure showing composition of a feedback circuit. 本発明に係る実施の形態において、制御部の動作手順を示すフローチャートである。5 is a flowchart illustrating an operation procedure of a control unit in the embodiment according to the present invention. 本発明に係る実施の形態において、設定回路の動作手順を示すフローチャートである。6 is a flowchart showing an operation procedure of the setting circuit in the embodiment according to the invention. 本発明に係る実施の形態において、スイッチ回路の双方向性を示す図である。In embodiment which concerns on this invention, it is a figure which shows the bidirectionality of a switch circuit. 本発明に係る実施の形態において、蓄電システムの変形例を示す図である。In embodiment which concerns on this invention, it is a figure which shows the modification of an electrical storage system. 本発明に係る実施の形態において、蓄電システムの変形例のフィードバック回路の構成を示す図である。In embodiment which concerns on this invention, it is a figure which shows the structure of the feedback circuit of the modification of an electrical storage system.
 以下に図面を用いて、本発明に係る実施の形態を詳細に説明する。また、以下では、全ての図面において、同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。 Embodiments according to the present invention will be described below in detail with reference to the drawings. Also, in the following, in all the drawings, the same symbols are attached to the same elements, and the duplicate description is omitted. In the description in the text, the symbols described before are used as necessary.
 図1は、電力調整装置30を含む蓄電システム10を示す図である。蓄電システム10は、充電装置20と、制御装置25と、電力調整装置30を含む蓄電装置28と、負荷装置40とを備える。蓄電システム10は、充電装置20から負荷装置40に供給される電力値を調整する。なお、電力調整装置30は、電力伝送経路1を流れる充電電力値P1、放電電力値P2の充電用電力上限値Plim1,放電用電力上限値Plim2を設定するが、詳細な説明については後述する。 FIG. 1 is a diagram showing a power storage system 10 including a power adjustment device 30. The power storage system 10 includes a charging device 20, a control device 25, a power storage device 28 including a power adjustment device 30, and a load device 40. The power storage system 10 adjusts the power value supplied from the charging device 20 to the load device 40. The power adjustment device 30 sets the charging power value P 1 flowing through the power transmission path 1, the charging power upper limit value P lim1 of the discharging power value P 2 , and the discharging power upper limit value P lim2. Will be described later.
 最初に、蓄電システム10の各電力伝送経路について説明する。 First, each power transmission path of the power storage system 10 will be described.
 電力伝送経路1は、充電装置20から蓄電装置28の二次電池39に充電電力を供給するための経路であり、二次電池39から負荷装置40に放電電力を供給するための経路でもある。すなわち、電力伝送経路1は、充電電力及び放電電力を伝送する共通の伝送経路である。電力伝送経路1は、蓄電装置28の端子5と、蓄電装置28の端子7とを接続する。 The power transmission path 1 is a path for supplying charging power from the charging device 20 to the secondary battery 39 of the power storage device 28, and is also a path for supplying discharging power from the secondary battery 39 to the load device 40. That is, the power transmission path 1 is a common transmission path for transmitting charging power and discharging power. The power transmission path 1 connects the terminal 5 of the power storage device 28 and the terminal 7 of the power storage device 28.
 電力伝送経路2は、充電装置20の太陽電池モジュール11から蓄電装置28及び負荷装置40側に電力を供給するための経路である。電力伝送経路2は、充電装置20の経路切替回路13と、接続点6とを接続する。 The power transmission path 2 is a path for supplying power from the solar cell module 11 of the charging device 20 to the power storage device 28 and the load device 40 side. The power transmission path 2 connects the path switching circuit 13 of the charging device 20 and the connection point 6.
 電力伝送経路3は、充電装置20の系統電力源14から蓄電装置28及び負荷装置40側へ電力を供給するための経路である。電力伝送経路3は、充電装置20のAC/DC変換回路16と、接続点6とを接続する。 The power transmission path 3 is a path for supplying power from the system power source 14 of the charging device 20 to the power storage device 28 and the load device 40 side. The power transmission path 3 connects the AC / DC conversion circuit 16 of the charging device 20 and the connection point 6.
 電力伝送経路4は、充電装置20及び蓄電装置28から負荷装置40への電力を供給するための経路である。電力伝送経路4は、スイッチ回路42を介して負荷44と接続点6とを接続する。 The power transmission path 4 is a path for supplying power from the charging device 20 and the power storage device 28 to the load device 40. The power transmission path 4 connects the load 44 and the connection point 6 via the switch circuit 42.
 続いて、蓄電システム10の各構成について説明する。充電装置20は、太陽電池モジュール11と、直並列切替回路12と、経路切替回路13と、系統電力源14と、DC/AC変換回路15と、AC/DC変換回路16と、スイッチ回路17と、スイッチ回路18とを備える。充電装置20は、太陽電池モジュール11、系統電力源14の電力を蓄電装置28及び負荷装置40側に供給する。 Subsequently, each configuration of the power storage system 10 will be described. The charging device 20 includes a solar cell module 11, a series / parallel switching circuit 12, a path switching circuit 13, a system power source 14, a DC / AC conversion circuit 15, an AC / DC conversion circuit 16, and a switch circuit 17. The switch circuit 18 is provided. The charging device 20 supplies power from the solar cell module 11 and the system power source 14 to the power storage device 28 and the load device 40 side.
 太陽電池モジュール11は、入射された太陽光を電力に変換する電力機器である。太陽電池モジュール11は、太陽光を直流電力に変換する2つの光電変換部111,112を含む。 The solar cell module 11 is a power device that converts incident sunlight into electric power. The solar cell module 11 includes two photoelectric conversion units 111 and 112 that convert sunlight into DC power.
 直並列切替回路12は、2つの光電変換部111,112についての接続関係を直列接続または並列接続に切り替える回路である。 The serial / parallel switching circuit 12 is a circuit that switches the connection relationship between the two photoelectric conversion units 111 and 112 to serial connection or parallel connection.
 経路切替回路13は、太陽電池モジュール11の直流電力を蓄電装置28及び負荷装置40側へ供給するか、系統電力源14側へ供給するか、を切り替える回路である。 The path switching circuit 13 is a circuit for switching whether the DC power of the solar cell module 11 is supplied to the power storage device 28 and the load device 40 side or supplied to the system power source 14 side.
 系統電力源14は、電力会社等が保有する商用の配電線網を用いて電力を供給するための電力設備である。 The grid power source 14 is a power facility for supplying power using a commercial distribution line network owned by a power company or the like.
 DC/AC変換回路15は、経路切替回路13と系統電力源14との間に配置される電力変換回路である。DC/AC変換回路15によって、太陽電池モジュール11の直流電力を交流電力に変換して系統電力源14に逆潮流させることができる。 The DC / AC conversion circuit 15 is a power conversion circuit disposed between the path switching circuit 13 and the system power source 14. The DC / AC conversion circuit 15 can convert the direct current power of the solar cell module 11 into alternating current power and make it flow backward to the system power source 14.
 AC/DC変換回路16は、スイッチ回路18と系統電力源14との間に配置される電力変換回路である。AC/DC変換回路16によって、系統電力源14から供給された交流電力を直流電力に変換し、蓄電装置28及び負荷装置40側に供給することができる。 The AC / DC conversion circuit 16 is a power conversion circuit disposed between the switch circuit 18 and the system power source 14. The AC / DC conversion circuit 16 can convert AC power supplied from the system power source 14 into DC power and supply it to the power storage device 28 and the load device 40 side.
 スイッチ回路17は、制御装置25の制御によって電力伝送経路2を遮断または接続する回路である。スイッチ回路18は、制御装置25の制御によって電力伝送経路3を遮断または接続する回路である。 The switch circuit 17 is a circuit that cuts off or connects the power transmission path 2 under the control of the control device 25. The switch circuit 18 is a circuit that cuts off or connects the power transmission path 3 under the control of the control device 25.
 負荷装置40は、スイッチ回路42と、負荷44とを備える。スイッチ回路42は、制御装置25の制御によって電力伝送経路4を遮断または接続する回路である。負荷44は、直流電力で動作する照明機器等である。 The load device 40 includes a switch circuit 42 and a load 44. The switch circuit 42 is a circuit that cuts off or connects the power transmission path 4 under the control of the control device 25. The load 44 is a lighting device or the like that operates with DC power.
 制御装置25は、蓄電システム10を構成する各要素の動作を制御する。制御装置25は、外部からの設定情報等に基づいて、光電変換部111,112について、直列接続または並列接続のいずれかに切り替えるための切替信号を、直並列切替回路12に出力する。また、制御装置25は、外部からの設定情報等に基づいて、直並列切替回路12の出力をDC/AC変換回路15またはスイッチ回路17のいずれか一方に供給されるように切り替えるための切替信号を、経路切替回路13に出力する。 The control device 25 controls the operation of each element constituting the power storage system 10. The control device 25 outputs a switching signal for switching the photoelectric conversion units 111 and 112 to either serial connection or parallel connection to the series-parallel switching circuit 12 based on setting information from the outside. Further, the control device 25 switches a switching signal for switching the output of the series / parallel switching circuit 12 to be supplied to either the DC / AC conversion circuit 15 or the switch circuit 17 based on setting information from the outside. Is output to the path switching circuit 13.
 また、制御装置25は、外部からの設定情報等に基づいて、スイッチ回路17,18,42のスイッチング制御を行う。例えば、制御装置25は、太陽電池モジュール11からの電力を蓄電装置28及び負荷装置40側に供給させる場合には、スイッチ回路17、スイッチ回路42をオンし、スイッチ回路18をオフするように、制御信号を出力する。また、制御装置25は、例えば、系統電力源14からの電力を蓄電装置28及び負荷装置40側に供給させる場合には、スイッチ回路18、スイッチ回路42をオンし、スイッチ回路17をオフするように、制御信号を出力する。また、制御装置25は、充電装置20の状態及び負荷装置40の状態に応じて電力調整装置30の機能を制御する。 Further, the control device 25 performs switching control of the switch circuits 17, 18, and 42 based on setting information from the outside. For example, when the control device 25 supplies power from the solar cell module 11 to the power storage device 28 and the load device 40 side, the switch circuit 17 and the switch circuit 42 are turned on, and the switch circuit 18 is turned off. Output a control signal. For example, when the power from the grid power source 14 is supplied to the power storage device 28 and the load device 40 side, the control device 25 turns on the switch circuit 18 and the switch circuit 42 and turns off the switch circuit 17. In addition, a control signal is output. The control device 25 controls the function of the power adjustment device 30 according to the state of the charging device 20 and the state of the load device 40.
 蓄電装置28は、電力調整装置30と二次電池39とを備える。ここで、二次電池39は、太陽電池モジュール11または系統電力源14からの充電電力によって充電される蓄電池である。そして、二次電池39から放電された放電電力は、負荷装置40の負荷44に供給される。 The power storage device 28 includes a power adjustment device 30 and a secondary battery 39. Here, the secondary battery 39 is a storage battery that is charged by the charging power from the solar cell module 11 or the system power source 14. Then, the discharged power discharged from the secondary battery 39 is supplied to the load 44 of the load device 40.
 電力調整装置30は、フィードバック回路31と、設定回路32とを備える。ここでは、まずフィードバック回路31について説明した後で、設定回路32について説明する。 The power adjustment device 30 includes a feedback circuit 31 and a setting circuit 32. Here, after first describing the feedback circuit 31, the setting circuit 32 will be described.
 フィードバック回路31は、二次電池39に対する充電電力及び放電電力についての電力センサ33と、制限回路34と、スイッチ回路35とを備える。フィードバック回路31は、二次電池39に対する充電電力の電力値を示す充電電力値P1及び放電電力の電力値を示す放電電力値P2が、それぞれ対応する充電用電力上限値Plim1及び放電用電力上限値Plim2を超えないようにフィードバック制御を行う。 The feedback circuit 31 includes a power sensor 33 for charging power and discharging power for the secondary battery 39, a limiting circuit 34, and a switch circuit 35. The feedback circuit 31 has a charging power value P 1 indicating the charging power value of the secondary battery 39 and a discharging power value P 2 indicating the discharging power value corresponding to the charging power upper limit value P lim1 and discharging power, respectively. Feedback control is performed so as not to exceed the power upper limit value Plim2 .
 図2は、フィードバック回路31の構成を示す図である。 FIG. 2 is a diagram showing the configuration of the feedback circuit 31. As shown in FIG.
 電力センサ33は、二次電池39と、スイッチ回路35と、制限回路34の増幅回路342との間に配置され、電力伝送経路1における充電電力値P1及び充電電力値P2を常時検出する検出部である。また、電力センサ33によって検出された電力値は、制限回路34の増幅回路342に供給される。 Power sensor 33 includes a secondary battery 39, a switch circuit 35 is placed between the amplifier circuit 342 of the limiting circuit 34, to constantly detect the charging power value P 1 and the charging power value P 2 in the power transmission path 1 It is a detection unit. Further, the power value detected by the power sensor 33 is supplied to the amplifier circuit 342 of the limit circuit 34.
 スイッチ回路35は、電力伝送経路1を遮断または接続する回路である。すなわち、スイッチ回路35がオンのときは電力伝送経路1を接続し、スイッチ回路35がオフのときは電力伝送経路1を遮断する。スイッチ回路35の具体的な構成等については後述する。 The switch circuit 35 is a circuit that cuts off or connects the power transmission path 1. That is, the power transmission path 1 is connected when the switch circuit 35 is on, and the power transmission path 1 is cut off when the switch circuit 35 is off. A specific configuration and the like of the switch circuit 35 will be described later.
 制限回路34は、増幅回路342と、A/D変換回路344と、制御部346と、レベルシフト回路348とを備える。 The limiting circuit 34 includes an amplification circuit 342, an A / D conversion circuit 344, a control unit 346, and a level shift circuit 348.
 増幅回路342は、電力センサ33とA/D変換回路344との間に配置される回路である。また、増幅回路342は、電力センサ33によって検出された電力値を増幅し、A/D変換回路344へと供給する。 The amplification circuit 342 is a circuit disposed between the power sensor 33 and the A / D conversion circuit 344. The amplifier circuit 342 amplifies the power value detected by the power sensor 33 and supplies the amplified power value to the A / D conversion circuit 344.
 A/D変換回路344は、増幅回路342と制御部346との間に配置される回路である。また、A/D変換回路344は、増幅回路342によって増幅された電力値を、アナログ値からデジタル値へと変換して制御部346へ供給する。なお、A/D変換回路344のビット数は、例えば、12ビットであり、後述するA/D変換回路363に比べて分解能が高く、より高精度なA/D変換を行うことができる。 The A / D conversion circuit 344 is a circuit disposed between the amplification circuit 342 and the control unit 346. In addition, the A / D conversion circuit 344 converts the power value amplified by the amplification circuit 342 from an analog value to a digital value and supplies the converted value to the control unit 346. Note that the number of bits of the A / D conversion circuit 344 is, for example, 12 bits, and the resolution is higher than that of an A / D conversion circuit 363 described later, and more accurate A / D conversion can be performed.
 レベルシフト回路348は、制御部346とスイッチ回路35との間に配置される回路である。また、レベルシフト回路348は、制御部346から供給された出力信号のレベル変換を行い、スイッチ回路35のオンまたはオフのための制御信号としてスイッチ回路35へ供給する。 The level shift circuit 348 is a circuit disposed between the control unit 346 and the switch circuit 35. The level shift circuit 348 converts the level of the output signal supplied from the control unit 346 and supplies it to the switch circuit 35 as a control signal for turning on or off the switch circuit 35.
 制御部346は、A/D変換回路344の出力と設定回路32から入力される充電用電力上限値Plim1及び放電用電力上限値Plim2を入力信号とする。そして、制御部346は、スイッチ回路35の制御信号の元となる信号をレベルシフト回路348に出力する。制御部346は、電力センサ33、増幅回路342、A/D変換回路344、制御部346、レベルシフト回路348及びスイッチ回路35を接続するフィードバック経路を用い、充電電力値P1及び放電電力値P2が、設定回路32によって設定された充電用電力上限値Plim1及び放電用電力上限値Plim2を超えないようにスイッチ回路35のスイッチング制御を行う制御回路である。なお、制御部346は、例えば、CPUを用いて構成することができるが、もちろん、その他の回路を用いて構成してもよい。例えば、組み合わせ回路を用いて構成することもできる。 The control unit 346 uses the output of the A / D conversion circuit 344 and the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 input from the setting circuit 32 as input signals. Then, the control unit 346 outputs a signal that is a source of the control signal of the switch circuit 35 to the level shift circuit 348. The control unit 346 uses a feedback path connecting the power sensor 33, the amplifier circuit 342, the A / D conversion circuit 344, the control unit 346, the level shift circuit 348, and the switch circuit 35, and uses the charging power value P 1 and the discharging power value P. A control circuit 2 performs switching control of the switch circuit 35 so as not to exceed the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 set by the setting circuit 32. The control unit 346 can be configured using a CPU, for example, but may be configured using other circuits. For example, a combination circuit can be used.
 ここで、制御部346の動作について、図3を用いて説明する。図3は、制御部346の動作手順を示すフローチャートである。 Here, the operation of the control unit 346 will be described with reference to FIG. FIG. 3 is a flowchart showing an operation procedure of the control unit 346.
 制御部346は、電力センサ33から取得する検出信号に基づいて、電力伝送経路1を流れる電力値が、充電電力値P1であるか否かを判断する(S2)。なお、制御部346は、S2の処理を行う前に、スイッチ回路35をオンさせるための信号を出力する。ここで、例えば、充電電力が流れる方向が正の値となるように電力センサ33を設定すると、充電電力とは反対方向に流れる放電電力が負の値として検出されるため、充電電力値P1と放電電力値P2の区別を行うことができる。 Control unit 346, based on the detection signal obtained from the power sensor 33, power value flowing through the power transmission path 1, it is determined whether the charging power value P 1 (S2). The control unit 346 outputs a signal for turning on the switch circuit 35 before performing the process of S2. Here, for example, if the power sensor 33 is set so that the direction in which the charging power flows is a positive value, the discharging power flowing in the opposite direction to the charging power is detected as a negative value, and thus the charging power value P 1 And the discharge power value P 2 can be distinguished.
 S2の工程において、電力伝送経路1を流れる電力値が充電電力値P1であると判断したときは、充電用電力上限値Plim1>充電電力値P1であるか否かを判断する(S4)。 In S2 of the step, when the power value through the power transmission path 1 is determined as the charging power value P 1, the charging power upper limit value P lim1> determines whether the charging power value P 1 (S4 ).
 そして、S4の工程において、充電用電力上限値Plim1>充電電力値P1であると判断した場合には、スイッチ回路35を常時オンさせるための信号を出力する(S8)。 If it is determined in step S4 that the charging power upper limit value P lim1 > the charging power value P 1 , a signal for always turning on the switch circuit 35 is output (S8).
 また、S4の工程において、充電用電力上限値Plim1>充電電力値P1でないと判断した場合には、Plim1/P1のDuty比でスイッチ回路35のオンまたはオフを繰り返させるための信号を出力する(S10)。 If it is determined in step S4 that the charging power upper limit value P lim1 > charging power value P 1 is not satisfied, a signal for repeatedly turning on or off the switch circuit 35 with a duty ratio of P lim1 / P 1. Is output (S10).
 S2の工程において、電力伝送経路1を流れる電力値が充電電力値P1でないと判断したときは、電力伝送経路1を流れる電力値は放電電力値P2であるので、放電用電力上限値Plim2>放電電力値P2であるか否かを判断する(S6)。 In S2 of the step, when the power value through the power transmission path 1 is determined not charging power value P 1, since the power value flowing through the power transmission path 1 is a discharge power value P 2, the discharge power upper limit value P lim2> it is determined whether or not the discharge power value P 2 (S6).
 そして、S6の工程において、放電用電力上限値Plim2>放電電力値P2であると判断した場合には、S8の工程へと進む。 If it is determined in step S6 that the discharge power upper limit value P lim2 > discharge power value P 2 , the process proceeds to step S8.
 また、S6の工程において、放電電力上限値Plim2>放電電力値P2でないと判断した場合には、Plim2/P2のDuty比でスイッチ回路35のオンまたはオフを繰り返させるための信号を出力する(S12)。 If it is determined in step S6 that the discharge power upper limit value P lim2 > discharge power value P 2 is not satisfied, a signal for repeatedly turning on or off the switch circuit 35 with a duty ratio of P lim2 / P 2 is generated. Output (S12).
 S8の工程とS10の工程とS12の工程の後は、それぞれリターン処理を介してS2へ戻る。このように、制御部346によれば、電力伝送経路1を流れる電力値が充電電力値P1、放電電力値P2のいずれであるかを判断することができる。そして、電力伝送経路1を流れる電力値が充電電力値P1と判断し、充電電力値P1が充電用電力上限値Plim1を超えた場合には、充電用電力上限値Plim1となるまでDuty比を適宜変更するフィードバック制御を行うことで、充電電力値P1が充電用電力上限値Plim1以下となるように制限する。また、電力伝送経路1を流れる電力値が放電電力値P2と判断し、放電電力値P2が放電用電力上限値Plim2を超えた場合には、放電用電力上限値Plim2となるまでDuty比を適宜変更するフィードバック制御を行うことで、放電電力値P2が放電用電力上限値Plim2以下となるように制限する。なお、設定回路32によって充電用電力上限値Plim1及び放電用電力上限値Plim2が変更された場合には、変更後の電力上限値Plim1,Plim2によって上記各工程を実行する。 After the steps S8, S10, and S12, the process returns to S2 via the return process. As described above, the control unit 346 can determine whether the power value flowing through the power transmission path 1 is the charging power value P 1 or the discharging power value P 2 . Then, until it is determined power value flowing through the power transmission path 1 is the charging power value P 1, when the charging power value P 1 exceeds the charging power upper limit value P lim1 is a charging power upper limit value P lim1 By performing feedback control that appropriately changes the duty ratio, the charging power value P 1 is limited to be equal to or less than the charging power upper limit value P lim1 . Moreover, until it is determined power value flowing through the power transmission path 1 is a discharge power value P 2, when the discharge power value P 2 exceeds the discharge power upper limit value P lim2 is a discharge power upper limit value P lim2 By performing feedback control that appropriately changes the duty ratio, the discharge power value P 2 is limited to be equal to or less than the discharge power upper limit value P lim2 . In the case where the charging power upper limit value P lim1 and discharging power upper limit value P lim2 been changed by the setting circuit 32 executes the above steps by the power upper limit value P lim1, P lim2 after the change.
 次に、設定回路32について説明する。設定回路32は、二次電池39の能力を超えないように充電用電力上限値Plim1及び放電用電力上限値Plim2を設定する。また、設定回路32は、二次電池39の蓄電状態を示すSOC(State of Charge)、二次電池39の温度、二次電池39の劣化程度等を取得する。そして、設定回路32は、二次電池39から取得したSOC等に基づいて、二次電池39に対する充電用電力上限値Plim1及び放電用電力上限値Plim2を変更する。設定回路32によって設定された充電用電力上限値Plim1及び放電用電力上限値Plim2は、制限回路34の制御部346に伝送される。 Next, the setting circuit 32 will be described. The setting circuit 32 sets the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 so as not to exceed the capacity of the secondary battery 39. In addition, the setting circuit 32 obtains SOC (State of Charge) indicating the storage state of the secondary battery 39, the temperature of the secondary battery 39, the degree of deterioration of the secondary battery 39, and the like. Then, the setting circuit 32 changes the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 for the secondary battery 39 based on the SOC or the like acquired from the secondary battery 39. The charging power upper limit value P lim1 and the discharging power upper limit value P lim2 set by the setting circuit 32 are transmitted to the control unit 346 of the limiting circuit 34.
 ここで、設定回路32の動作について、図4を用いて説明する。図4は、設定回路32の動作手順を示すフローチャートである。 Here, the operation of the setting circuit 32 will be described with reference to FIG. FIG. 4 is a flowchart showing an operation procedure of the setting circuit 32.
 最初に、設定回路32は、Plim2>Plim1の関係を満たすように充電用電力上限値Plim1と放電用電力上限値Plim2を初期設定する(S20)。 First, the setting circuit 32 initializes the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 so as to satisfy the relationship of P lim2 > P lim1 (S20).
 次に、二次電池39のSOCが予め定められた基準値Aよりも大きいか否かを判断する(S22)。基準値Aは、二次電池39の過充電限度等に基づいて設定される。S22の工程において、二次電池39のSOCが基準値Aよりも大きくないと判断すれば、S24の工程へと進む。 Next, it is determined whether or not the SOC of the secondary battery 39 is greater than a predetermined reference value A (S22). The reference value A is set based on the overcharge limit of the secondary battery 39 and the like. If it is determined in step S22 that the SOC of the secondary battery 39 is not greater than the reference value A, the process proceeds to step S24.
 S22の工程において、二次電池39のSOCが基準値Aよりも大きいと判断すれば、過充電となることを防止するために、充電用電力上限値Plim1を小さくし、放電用電力上限値Plim2を大きくする(S26)。S26の工程の後は、リターン処理を介してS22の工程へと戻る。S26の工程により、二次電池39が過充電状態となることを防止することができる。 In step S22, if it is determined that the SOC of the secondary battery 39 is larger than the reference value A, the charging power upper limit P lim1 is reduced to prevent overcharging, and the discharging power upper limit value is set. P lim2 is increased (S26). After step S26, the process returns to step S22 via return processing. By the process of S26, the secondary battery 39 can be prevented from being overcharged.
 S24の工程では、二次電池39のSOCが基準値Bよりも小さいか否かを判断する(S24)。基準値Bは、二次電池39の過放電限度等に基づいて定められる。S24の工程において、二次電池39のSOCが基準値Bよりも小さくないと判断すれば、リターン処理を介してS22の工程へと戻る。 In step S24, it is determined whether or not the SOC of the secondary battery 39 is smaller than the reference value B (S24). The reference value B is determined based on the overdischarge limit of the secondary battery 39 and the like. If it is determined in step S24 that the SOC of the secondary battery 39 is not smaller than the reference value B, the process returns to step S22 via return processing.
 S24の工程において、二次電池39のSOCが基準値Bよりも小さいと判断すれば、過放電となることを防止するために、Plim2>Plim1の関係を満たしつつ、充電用電力上限値Plim1を大きくし、放電用電力上限値Plim2を小さくする(S28)。S28の工程の後は、リターン処理を介してS22の工程へと戻る。S28の工程により、二次電池39が過放電状態となることを防止することができる。 In step S24, if it is determined that the SOC of the secondary battery 39 is smaller than the reference value B, the charging power upper limit value is satisfied while satisfying the relationship P lim2 > P lim1 in order to prevent overdischarge. P lim1 is increased and the discharge power upper limit P lim2 is decreased (S28). After step S28, the process returns to step S22 via return processing. By the process of S28, the secondary battery 39 can be prevented from being overdischarged.
 上記のように、設定回路32によれば、充電用電力上限値Plim1及び放電用電力上限値Plim2を異なる値に設定できるとともに、二次電池39のSOCの値に応じて、充電用電力上限値Plim1及び放電用電力上限値Plim2を変更することもできる。 As described above, according to the setting circuit 32, the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 can be set to different values, and the charging power depends on the SOC value of the secondary battery 39. The upper limit value P lim1 and the discharge power upper limit value P lim2 can be changed.
 次に、スイッチ回路35について説明する。スイッチ回路35は、電力センサ33と、端子7とを接続し、電力伝送経路1を遮断または接続する。すなわち、スイッチ回路35がオンのときは電力伝送経路1を接続し、スイッチ回路35がオフのときは電力伝送経路1を遮断する。 Next, the switch circuit 35 will be described. The switch circuit 35 connects the power sensor 33 and the terminal 7, and cuts off or connects the power transmission path 1. That is, the power transmission path 1 is connected when the switch circuit 35 is on, and the power transmission path 1 is cut off when the switch circuit 35 is off.
 図5は、スイッチ回路35の双方向性を示す図である。スイッチ回路35は、トランジスタ351と、スイッチ部352と、電力源353と、トランジスタ354と、スイッチ部355と、電力源356とを備える。 FIG. 5 is a diagram showing the bidirectionality of the switch circuit 35. The switch circuit 35 includes a transistor 351, a switch unit 352, a power source 353, a transistor 354, a switch unit 355, and a power source 356.
 トランジスタ351は、電力センサ33と端子7との間においてトランジスタ354と直列に接続されて設けられる。トランジスタ351は、パワーMOSFETを用いて構成されるnチャネルトランジスタである。ここで、トランジスタ351のボディーダイオード351aのカソード端子は、トランジスタ354のボディーダイオード354aのカソード端子と接続される。 The transistor 351 is provided in series with the transistor 354 between the power sensor 33 and the terminal 7. The transistor 351 is an n-channel transistor configured using a power MOSFET. Here, the cathode terminal of the body diode 351a of the transistor 351 is connected to the cathode terminal of the body diode 354a of the transistor 354.
 スイッチ部352は、電力源353とトランジスタ351の間に配置される。スイッチ部352は、レベルシフト回路348からの制御信号によってオンまたはオフされる制御がなされる。そして、スイッチ部352がオンされたときに、電力源353の電力値がトランジスタ351のゲート-ソース間に与えられる。 The switch unit 352 is disposed between the power source 353 and the transistor 351. The switch unit 352 is controlled to be turned on or off by a control signal from the level shift circuit 348. When the switch unit 352 is turned on, the power value of the power source 353 is applied between the gate and the source of the transistor 351.
 なお、トランジスタ354と、スイッチ部355と、電力源356は、それぞれトランジスタ351と、スイッチ部352と、電力源353と同じ構成であるため、詳細な説明は省略する。 Note that the transistor 354, the switch unit 355, and the power source 356 have the same configurations as the transistor 351, the switch unit 352, and the power source 353, respectively, and thus detailed description thereof is omitted.
 ここで、スイッチ回路35の動作について述べると、レベルシフト回路348からのオンオフ制御信号によってスイッチ部352及びスイッチ部355はオンオフする。 Here, the operation of the switch circuit 35 will be described. The switch unit 352 and the switch unit 355 are turned on and off by an on / off control signal from the level shift circuit 348.
 具体的には、充電装置20から二次電池39へ充電電力が流れる場合には、トランジスタ354がオフしトランジスタ351がオンするように制御される。これにより、トランジスタ354のボディーダイオード354aとトランジスタ351のドレイン-ソースを介して充電電力が流れることとなる。一方、二次電池39から負荷44に放電電力が流れる場合には、トランジスタ351がオフしトランジスタ354は、オンするように制御される。これにより、トランジスタ351のボディーダイオード351aとトランジスタ354のドレイン-ソースを介して放電電力が流れることとなる。このように、スイッチ回路35では双方向に電力が流れる。 Specifically, when charging power flows from the charging device 20 to the secondary battery 39, the transistor 354 is turned off and the transistor 351 is turned on. As a result, charging power flows through the body diode 354a of the transistor 354 and the drain-source of the transistor 351. On the other hand, when discharge power flows from the secondary battery 39 to the load 44, the transistor 351 is turned off and the transistor 354 is controlled to turn on. As a result, discharge power flows through the body diode 351a of the transistor 351 and the drain-source of the transistor 354. Thus, in the switch circuit 35, power flows in both directions.
 また、レベルシフト回路348からスイッチ部352及びスイッチ部355に対してそれぞれオフ制御信号が出力されると、スイッチ部352及びスイッチ部355はオフする。これにより、電力源353、電力源356の出力電力がそれぞれトランジスタ351、トランジスタ354のゲート-ソース間が与えられないためトランジスタ351、トランジスタ354がオフする。すなわち、スイッチ回路35がオフすることにより、二次電池39に対する放電電力及び充電電力が流れる共通の電力伝送経路1が遮断される。 Further, when an off control signal is output from the level shift circuit 348 to the switch unit 352 and the switch unit 355, the switch unit 352 and the switch unit 355 are turned off. Accordingly, the output power of the power source 353 and the power source 356 is not applied between the gate and the source of the transistor 351 and the transistor 354, respectively, and thus the transistor 351 and the transistor 354 are turned off. That is, when the switch circuit 35 is turned off, the common power transmission path 1 through which the discharge power and the charge power for the secondary battery 39 flow is cut off.
 続いて、上記構成の蓄電システム10の作用について説明する。 Subsequently, the operation of the power storage system 10 having the above configuration will be described.
 一般的に、二次電池39に対する充電電力値、放電電力値についての充電電力の上限電力値及び放電電力の上限電力値は異なる。ここで、従来技術では、二次電池39に対する充電電力経路と放電電力経路とを別々の経路に分けて、充電電力の上限電力値及び放電電力の上限電力値が設定することが考えられるが、経路数が増えると周辺回路の構成等が複雑になる可能性もあり、また、コスト増大にも繋がる可能性もあるが、従来技術がこのような構成であったのには、次のような理由がある。例えば、充電電力経路と放電電力経路を単純に共通の電力伝送経路にした場合には、二次電池39の特性に悪影響を及ぼさないようにするために、充電電力と放電電力の低い方の電力上限値を蓄電システム10の電力上限値と設定することとなる。これにより、充電電力と放電電力の高い方の電力上限値を最大限に活用することができない可能性があるためであった。 Generally, the upper limit power value of the charge power and the upper limit power value of the discharge power for the secondary battery 39 are different from each other. Here, in the prior art, it is considered that the charging power path and the discharging power path for the secondary battery 39 are divided into separate paths, and the upper limit power value of the charging power and the upper limit power value of the discharging power are set. If the number of routes increases, the configuration of peripheral circuits may become complicated, and it may lead to an increase in cost. However, the conventional technology has such a configuration as follows. There is a reason. For example, when the charge power path and the discharge power path are simply a common power transmission path, in order not to adversely affect the characteristics of the secondary battery 39, the lower power of the charge power and the discharge power The upper limit value is set as the power upper limit value of the power storage system 10. This is because there is a possibility that the power upper limit value with the higher charge power and discharge power cannot be utilized to the maximum extent.
 しかしながら、図1の構成の蓄電システム10によれば、共通の電力伝送経路1に充電電力及び放電電力が伝送され、充電電力値P1、放電電力値P2のそれぞれに対して充電用電力上限値Plim1及び放電用電力上限値Plim2を異なる値で設定することができる。そして、図3を用いた制御部346の動作説明の際に述べたように、電力伝送経路1を流れる電力値が充電電力値P1と判断した場合には、充電電力値P1が充電用電力上限値Plim1を超えないように制限する。また、電力伝送経路1を流れる電力値が放電電力値P2と判断した場合には、放電電力値P2が放電用電力上限値Plim2を超えないように制限する。このように、充電用電力上限値Plim1及び放電用電力上限値Plim2はそれぞれ異なる値が設定でき、さらに、充電電力値P1、放電電力値P2がそれぞれ充電用電力上限値Plim1,放電用電力上限値Plim2を超えないようにスイッチ回路35のスイッチング制御が行われる。これにより、充電用電力上限値Plim1及び放電用電力上限値Plim2のそれぞれを最大限に活用しつつ、充電電力及び放電電力を共通の電力伝送経路1に伝送させることができる。したがって、経路数を削減することができ、周辺回路の構成等も単純なものにすることができる。 However, according to the power storage system 10 having the configuration of FIG. 1, charging power and discharging power are transmitted to the common power transmission path 1, and the charging power upper limit is set for each of the charging power value P 1 and the discharging power value P 2. The value P lim1 and the discharge power upper limit value P lim2 can be set to different values. Then, as described in the explanation of the operation of the control unit 346 using FIG. 3, when the power value flowing through the power transmission path 1 is determined to be the charging power value P 1 , the charging power value P 1 is used for charging. It limits so that electric power upper limit Plim1 may not be exceeded. Also, when the power value through the power transmission path 1 is determined to discharge power value P 2 is discharge power value P 2 is limited so as not to exceed the discharge power limit value P lim2. Thus, the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 can be set to different values, and the charging power value P 1 and the discharging power value P 2 are respectively set to the charging power upper limit values P lim1 , Switching control of the switch circuit 35 is performed so as not to exceed the discharge power upper limit P lim2 . Thereby, it is possible to transmit the charging power and the discharging power to the common power transmission path 1 while maximally utilizing each of the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 . Therefore, the number of paths can be reduced, and the configuration of peripheral circuits can be simplified.
 次に、蓄電システム10の変形例である蓄電システム10aについて説明する。図6は、蓄電システム10aを示す図である。蓄電システム10aと蓄電システム10との相違は、制限回路36であるため、以下では、制限回路36を中心に説明する。 Next, a power storage system 10a that is a modification of the power storage system 10 will be described. FIG. 6 is a diagram illustrating the power storage system 10a. Since the difference between the power storage system 10a and the power storage system 10 is the limiting circuit 36, the following description will be focused on the limiting circuit 36.
 図7は、制限回路36の構成を示す図である。制限回路36は、増幅回路361と、ローパスフィルタ362と、A/D変換回路363と、比較回路364と、D/A変換回路365と、制御部366と、レベルシフト回路367とを備える。ここで、増幅回路361と、レベルシフト回路367は、蓄電システム10の増幅回路342と、レベルシフト回路348と同じものであるため、詳細な説明は省略する。 FIG. 7 is a diagram showing a configuration of the limiting circuit 36. The limiting circuit 36 includes an amplifier circuit 361, a low-pass filter 362, an A / D conversion circuit 363, a comparison circuit 364, a D / A conversion circuit 365, a control unit 366, and a level shift circuit 367. Here, the amplifier circuit 361 and the level shift circuit 367 are the same as the amplifier circuit 342 and the level shift circuit 348 of the power storage system 10, and thus detailed description thereof is omitted.
 ローパスフィルタ362は、増幅回路361とA/D変換回路363の間に配置される。ローパスフィルタ362は、増幅回路361によって増幅された電力値であるアナログ値のうち低周波数の帯域成分を通過(フィルタリング)させて、A/D変換回路363へ供給する。 The low pass filter 362 is disposed between the amplification circuit 361 and the A / D conversion circuit 363. The low-pass filter 362 passes (filters) a low-frequency band component of the analog value, which is the power value amplified by the amplifier circuit 361, and supplies it to the A / D conversion circuit 363.
 A/D変換回路363は、ローパスフィルタ362と制御部366との間に配置される。A/D変換回路363は、ローパスフィルタ362によってフィルタリングされた電力値をアナログ値からデジタル値へと変換して制御部366へ供給する。なお、A/D変換回路363のビット数は10ビットであるため、上述のA/D変換回路344に比べて分解能が低くなる。このため、A/D変換精度も多少劣るので変換後の電力値がA/D変換回路344による変換後の電力値よりも粗い値となる。換言すれば、A/D変換回路363から出力される電力値は平滑電力値となる。しかし、A/D変換回路363は、A/D変換回路344に比べて分解能が低い分、安価であるためコスト的なメリットがある。 The A / D conversion circuit 363 is disposed between the low-pass filter 362 and the control unit 366. The A / D conversion circuit 363 converts the power value filtered by the low-pass filter 362 from an analog value to a digital value and supplies the converted value to the control unit 366. Note that since the A / D conversion circuit 363 has 10 bits, the resolution is lower than that of the A / D conversion circuit 344 described above. For this reason, since the A / D conversion accuracy is somewhat inferior, the power value after conversion becomes a coarser value than the power value after conversion by the A / D conversion circuit 344. In other words, the power value output from the A / D conversion circuit 363 is a smooth power value. However, the A / D conversion circuit 363 is inexpensive because it has a lower resolution than the A / D conversion circuit 344, and thus has a cost advantage.
 D/A変換回路365は、制御部366と比較回路364の間に配置される。制御部366から出力された基準電力値をデジタル値からアナログ値に変換して比較回路364に供給する。 The D / A conversion circuit 365 is disposed between the control unit 366 and the comparison circuit 364. The reference power value output from the control unit 366 is converted from a digital value to an analog value and supplied to the comparison circuit 364.
 比較回路364は、増幅回路361から入力される電力値と、D/A変換回路365から入力される基準電力値と、を比較する。具体的には、比較回路364は、増幅回路361から入力される電力値が、D/A変換回路365から入力される基準電力値を超える場合にはHighを出力し、当該電力値が基準電力値を超えない場合にはLowを出力する。 The comparison circuit 364 compares the power value input from the amplification circuit 361 with the reference power value input from the D / A conversion circuit 365. Specifically, the comparison circuit 364 outputs High when the power value input from the amplifier circuit 361 exceeds the reference power value input from the D / A conversion circuit 365, and the power value is the reference power. When it does not exceed the value, Low is output.
 制御部366は、A/D変換回路363の出力と、比較回路364の出力と、設定回路32から入力される充電用電力上限値Plim1及び放電用電力上限値Plim2と、を入力信号とする。そして、制御部366は、スイッチ回路35の制御信号の元となる信号をレベルシフト回路367に出力する。制御部366は、電力センサ33、増幅回路361、ローパスフィルタ362、A/D変換回路363、制御部366、レベルシフト回路367及びスイッチ回路35を接続するフィードバック経路を用い、充電電力値P1及び放電電力値P2が設定回路32によって設定された充電用電力上限値Plim1及び放電用電力上限値Plim2を超えないようにスイッチ回路35のスイッチング制御を行う制御回路である。なお、A/D変換回路363から出力される値は上記のように平滑電力値であるが、電力値に基づいて制御部366がフィードバック制御を行う点については、制御部346と同様であるため、具体的な制御の詳細な説明は省略する。 The control unit 366 receives the output of the A / D conversion circuit 363, the output of the comparison circuit 364, the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 input from the setting circuit 32 as input signals. To do. Then, the control unit 366 outputs a signal that is a source of the control signal of the switch circuit 35 to the level shift circuit 367. The control unit 366 uses a feedback path connecting the power sensor 33, the amplifier circuit 361, the low-pass filter 362, the A / D conversion circuit 363, the control unit 366, the level shift circuit 367, and the switch circuit 35, and uses the charging power value P 1 and The control circuit performs switching control of the switch circuit 35 so that the discharge power value P 2 does not exceed the charge power upper limit value P lim1 and the discharge power upper limit value P lim2 set by the setting circuit 32. Note that the value output from the A / D conversion circuit 363 is a smooth power value as described above, but is similar to the control unit 346 in that the control unit 366 performs feedback control based on the power value. Detailed description of the specific control will be omitted.
 また、制御部366は、比較回路364の出力がHighの期間中はスイッチ回路35を強制的にオフするための停止信号を出力する。なお、制御部366は、上記D/A変換回路365へ供給するための基準電力値を出力する。ここで、当該基準電力値は、二次電池39に対する充電電力値P1、放電電力値P2が急峻に変化して充電用電力上限値Plim1,放電用電力上限値Plim2を超えるような場合、換言すれば、A/D変換回路363では検出できないような急峻な電力変化があったことを検出するために予め求められた電力値である。 The control unit 366 outputs a stop signal for forcibly turning off the switch circuit 35 while the output of the comparison circuit 364 is High. The control unit 366 outputs a reference power value to be supplied to the D / A conversion circuit 365. Here, the reference power value is such that the charging power value P 1 and the discharging power value P 2 for the secondary battery 39 change sharply and exceed the charging power upper limit value P lim1 and the discharging power upper limit value P lim2. In other words, in other words, the power value is obtained in advance in order to detect a steep power change that cannot be detected by the A / D conversion circuit 363.
 続いて、上記構成の蓄電システム10aの作用について説明する。 Subsequently, the operation of the power storage system 10a having the above configuration will be described.
 蓄電システム10aにおいても、蓄電システム10と同様に、制御部366の制御により、電力伝送経路1を流れる電力値が充電電力値P1と判断した場合には、充電電力値P1が充電用電力上限値Plim1を超えないように制限する。また、電力伝送経路1を流れる電力値が放電電力値P2と判断した場合には、放電電力値P2が放電用電力上限値Plim2を超えないように制限する。これにより、蓄電システム10と同様に、経路数を削減することができ、周辺回路の構成等も単純なものにすることができる。 Also in the power storage system 10a, as in the power storage system 10, when the power value flowing through the power transmission path 1 is determined to be the charging power value P 1 by the control of the control unit 366, the charging power value P 1 is the charging power. It limits so that upper limit Plim1 may not be exceeded. Also, when the power value through the power transmission path 1 is determined to discharge power value P 2 is discharge power value P 2 is limited so as not to exceed the discharge power limit value P lim2. Thereby, like the power storage system 10, the number of paths can be reduced, and the configuration of peripheral circuits and the like can be simplified.
 また、蓄電システム10aにおいても、蓄電システム10と同様に、設定回路32の動作により、二次電池39のSOCが基準値Aよりも大きいと判断すれば、過充電となることを防止するために、充電用電力上限値Plim1を小さくし、放電用電力上限値Plim2を大きくする。また、二次電池39のSOCが基準値Bよりも小さいと判断すれば、過放電となることを防止するために、充電用電力上限値Plim1を大きくし、放電用電力上限値Plim2を小さくする。これにより、蓄電システム10と同様に、二次電池39に対する負担が軽減されるため二次電池39の特性の劣化を防止することができる。 Also, in the power storage system 10a, similarly to the power storage system 10, if it is determined that the SOC of the secondary battery 39 is larger than the reference value A by the operation of the setting circuit 32, in order to prevent overcharging. The charging power upper limit value P lim1 is decreased, and the discharging power upper limit value P lim2 is increased. If it is determined that the SOC of the secondary battery 39 is smaller than the reference value B, the charging power upper limit value P lim1 is increased and the discharging power upper limit value P lim2 is set to prevent overdischarge. Make it smaller. As a result, similarly to the power storage system 10, the burden on the secondary battery 39 is reduced, so that deterioration of the characteristics of the secondary battery 39 can be prevented.
 蓄電システム10aでは、A/D変換回路344に比べて安価なA/D変換回路363によって変換された平滑電力値を用いて、二次電池39に対する充電電力値P1、放電電力値P2が充電用電力上限値Plim1,放電用電力上限値Plim2を超えないようにスイッチ回路35のスイッチング制御を行っている。そして、仮に、二次電池39に対する充電電力値P1、放電電力値P2が急峻に変化して、充電用電力上限値Plim1,放電用電力上限値Plim2を超えるような場合、換言すれば、A/D変換回路363では検出できないような急峻な電力変化があったとする。このような場合には、電力値の比較を行なう比較回路364によって充電用電力上限値Plim1,放電用電力上限値Plim2を超えたことが検出される。これにより、比較回路364がHighへと変化してスイッチ回路35が強制的にオフされて、二次電池39への充放電が停止されるため二次電池39への負担を軽減することができる。これにより、A/D変換回路363がA/D変換回路344に比べて精度が劣る点を補うことができる。したがって、蓄電システム10aでは、コスト的なメリットを確保しつつ、二次電池39の特性の劣化を防止することができる。また、蓄電システム10aでは、比較回路364によって充電電力値P1、放電電力値P2の急峻な変化を検出するのでA/D変換回路363の時間的な分解能を下げることができ、制御部366の処理の負担を軽減することができる。なお、ここでは、D/A変換回路365と比較回路364とをあわせた一組の回路を用いてスイッチ回路35を制御するものとして説明したが、複数組の回路を用意してそれぞれ異なる閾値を検出するものとしてもよい。 In the power storage system 10a, the charging power value P 1 and the discharging power value P 2 for the secondary battery 39 are obtained using the smooth power value converted by the A / D conversion circuit 363, which is cheaper than the A / D conversion circuit 344. Switching control of the switch circuit 35 is performed so as not to exceed the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 . If the charging power value P 1 and the discharging power value P 2 for the secondary battery 39 change sharply and exceed the charging power upper limit value P lim1 and discharging power upper limit value P lim2 , in other words, For example, it is assumed that there is a steep power change that cannot be detected by the A / D conversion circuit 363. In such a case, the comparison circuit 364 that compares the power values detects that the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 have been exceeded. As a result, the comparison circuit 364 changes to High, the switch circuit 35 is forcibly turned off, and charging / discharging of the secondary battery 39 is stopped, so that the burden on the secondary battery 39 can be reduced. . Thus, it is possible to compensate for the inferior accuracy of the A / D conversion circuit 363 compared to the A / D conversion circuit 344. Therefore, in the power storage system 10a, it is possible to prevent the deterioration of the characteristics of the secondary battery 39 while securing the cost advantage. Further, in the power storage system 10a, since the comparison circuit 364 detects steep changes in the charging power value P 1 and the discharging power value P 2 , the temporal resolution of the A / D conversion circuit 363 can be lowered, and the control unit 366 The burden of processing can be reduced. Here, the switch circuit 35 is described as being controlled by using a set of circuits including the D / A conversion circuit 365 and the comparison circuit 364. However, a plurality of sets of circuits are prepared and different threshold values are set. It may be detected.
 なお、上記蓄電システム10,10aでは、設定回路32は、二次電池39から取得したSOCに基づいて、充電用電力上限値Plim1,放電用電力上限値Plim2を変更するものとして説明したが、もちろん、その他の情報を用いて変更してもよい。例えば、一般的に、新品の二次電池と使用中の二次電池とを比較すると、使用中の二次電池の方が新品の二次電池に比べると充電量が小さく、充電しにくい状態となる。したがって、二次電池39の劣化状態に応じて充電用電力上限値Plim1及び放電用電力上限値Plim2を変更するものとしてもよい。また、一般的に、二次電池39の温度が低い状態では高い状態に比べて充電しにくい状態となる。したがって、二次電池39の温度に応じて充電用電力上限値Plim1及び放電用電力上限値Plim2を変更するものとしてもよい。なお、二次電池39のSOCが低い場合には、予備充電が必要な場合があり、この場合には充電用電力上限値Plim1及び放電用電力上限値Plim2を下げる必要がある。 In the power storage systems 10 and 10a, the setting circuit 32 has been described as changing the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 based on the SOC acquired from the secondary battery 39. Of course, it may be changed using other information. For example, in general, when comparing a new secondary battery with a secondary battery in use, the secondary battery in use is less charged and more difficult to charge than a new secondary battery. Become. Therefore, the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 may be changed according to the deterioration state of the secondary battery 39. Further, in general, when the temperature of the secondary battery 39 is low, it is difficult to charge compared to a high state. Therefore, the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 may be changed according to the temperature of the secondary battery 39. When the SOC of the secondary battery 39 is low, preliminary charging may be necessary. In this case, it is necessary to lower the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 .
 上記以外にも、例えば、設定回路32は、蓄電システム10,10aが設置される施設の時間帯に基づいて、充電用電力上限値Plim1,放電用電力上限値Plim2を変更することができる。例えば、太陽電池モジュール11の発電電力が期待できる昼間は、発電電力を最大限に充電できるように充電用電力上限値Plim1を大きく設定する。また、安価な深夜電力にて充電する場合には深夜時間帯を通して、充電が完了すればよく、充電電流値P1を下げるように充電用電力上限値Plim1を設定する。なお、充電電力が小さいほど、二次電池39の特性劣化を抑制することができる。 In addition to the above, for example, the setting circuit 32 can change the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 based on the time zone of the facility where the power storage systems 10 and 10a are installed. . For example, during the daytime when the generated power of the solar cell module 11 can be expected, the charging power upper limit P lim1 is set large so that the generated power can be charged to the maximum. Further, in the case of charging with inexpensive late-night power, charging only needs to be completed through the late-night time zone, and the charging power upper limit value P lim1 is set so as to lower the charging current value P 1 . In addition, the characteristic deterioration of the secondary battery 39 can be suppressed, so that charging power is small.
 さらに、上記蓄電システム10,10aにおいて、充電用電力上限値Plim1,放電用電力上限値Plim2の設定は設定回路32が行うものとして説明したが、制限回路34の制御部346において設定してもよく、制御装置25において設定してもよい。 Further, in the power storage systems 10 and 10a , the setting of the charging power upper limit value P lim1 and the discharging power upper limit value P lim2 has been described as being performed by the setting circuit 32, but the setting is performed by the control unit 346 of the limiting circuit 34. Alternatively, it may be set in the control device 25.
 そして、上記蓄電システム10,10aにおいて、電力調整装置30による調整対象は電力であるものとして説明したが、電流であってもよく、電圧であってもよい。 In the power storage systems 10 and 10a, the adjustment target by the power adjustment device 30 has been described as being electric power, but it may be current or voltage.
 また、上記蓄電システム10,10aでは、充電装置20及び蓄電装置28から電力が供給される負荷は、負荷44の1つであるとして説明したが、もちろん、それ以上の負荷が接続されてもよい。また、負荷の種類はDC負荷、AC負荷のいずれであってもよい。 In the power storage systems 10 and 10a, the load supplied with power from the charging device 20 and the power storage device 28 has been described as one of the loads 44. Of course, more loads may be connected. . Further, the type of load may be either a DC load or an AC load.
 1,2,3,4 電力伝送経路、5   端子、6 接続点、7 端子、10,10a 蓄電システム、11 太陽電池モジュール、12 直並列切替回路、13 経路切替回路、14 系統電力源、15 DC/AC変換回路、16 AC/DC変換回路、17,18 スイッチ回路、20 充電装置、25 制御装置、26 制御回路、28 蓄電装置、30 電力調整装置、31 フィードバック回路、32 設定回路、33 電力センサ、34 制限回路、35 スイッチ回路、36 制限回路、39 二次電池、40 負荷装置、42 スイッチ回路、44 負荷、111,112 光電変換部、342 増幅回路、344 A/D変換回路、346 制御部、348 レベルシフト回路、351 トランジスタ、351a ボディーダイオード、352 スイッチ部、353 電力源、354 トランジスタ、354a ボディーダイオード、355 スイッチ部、356 電力源、361 増幅回路、362 ローパスフィルタ、363 A/D変換回路、364 比較回路、365 D/A変換回路、366 制御部、367 レベルシフト回路。 1, 2, 3, 4 Power transmission path, 5 terminal, 6 connection point, 7 terminal, 10, 10a power storage system, 11 solar cell module, 12 series-parallel switching circuit, 13 path switching circuit, 14 grid power source, 15 DC / AC conversion circuit, 16 AC / DC conversion circuit, 17, 18 switch circuit, 20 charging device, 25 control device, 26 control circuit, 28 power storage device, 30 power adjustment device, 31 feedback circuit, 32 setting circuit, 33 power sensor , 34 limit circuit, 35 switch circuit, 36 limit circuit, 39 secondary battery, 40 load device, 42 switch circuit, 44 load, 111, 112 photoelectric conversion unit, 342 amplification circuit, 344 A / D conversion circuit, 346 control unit 348 Level shift circuit, 351 transistor, 351a body Diode, 352 switch unit, 353 power source, 354 transistor, 354a body diode, 355 switch unit, 356 power source, 361 amplification circuit, 362 low-pass filter, 363 A / D conversion circuit, 364 comparison circuit, 365 D / A conversion circuit 366 Control unit, 367 Level shift circuit.

Claims (8)

  1.  充電装置から二次電池への充電電力及び前記二次電池から負荷装置への放電電力が伝送される共通の電力伝送経路に前記充電電力が伝送されるときは充電用電力上限値で充電電力値を制限し、
     前記共通の電力伝送経路に前記放電電力が伝送されるときは放電用電力上限値で放電電力値を制限する制限回路
     を備えるフィードバック回路。
    When the charging power is transmitted to a common power transmission path through which charging power from the charging device to the secondary battery and discharging power from the secondary battery to the load device is transmitted, the charging power value is a charging power upper limit value. Limit
    A feedback circuit comprising: a limiting circuit that limits a discharge power value with a discharge power upper limit value when the discharge power is transmitted to the common power transmission path.
  2.  請求項1に記載のフィードバック回路において、
     前記共通の電力伝送経路を遮断または接続するスイッチ回路と、
     前記共通の電力伝送経路に伝送される電力値を検出する検出部と、を備え、
     前記制限回路は、
     前記検出部によって検出された電力値が前記充電電力値の場合には、前記充電用電力上限値を超えないように前記スイッチ回路のスイッチング制御を行い、
     前記検出部によって検出された電力値が前記放電電力値の場合には、前記放電用電力上限値を超えないように前記スイッチ回路のスイッチング制御を行うフィードバック回路。
    The feedback circuit of claim 1, wherein
    A switch circuit for cutting off or connecting the common power transmission path;
    A detection unit for detecting a power value transmitted to the common power transmission path,
    The limiting circuit is:
    When the power value detected by the detection unit is the charging power value, the switching control of the switch circuit is performed so as not to exceed the charging power upper limit value,
    When the power value detected by the detection unit is the discharge power value, a feedback circuit that performs switching control of the switch circuit so as not to exceed the discharge power upper limit value.
  3.  請求項2に記載のフィードバック回路において、
     前記スイッチ回路は、
     前記共通の電力伝送経路に設けられる第1トランジスタと、
     前記第1トランジスタと直列接続され、ボディーダイオードの一方側端子が前記第1トランジスタのボディーダイオードの一方側端子と接続される第2トランジスタと、
     前記第1トランジスタをオンまたはオフするための第1スイッチ部と、
     前記第2トランジスタをオンまたはオフするための第2スイッチ部と、
     を含むフィードバック回路。
    The feedback circuit according to claim 2, wherein
    The switch circuit is
    A first transistor provided in the common power transmission path;
    A second transistor connected in series with the first transistor, wherein one terminal of the body diode is connected to one terminal of the body diode of the first transistor;
    A first switch for turning on or off the first transistor;
    A second switch unit for turning on or off the second transistor;
    Including feedback circuit.
  4.  請求項2または請求項3に記載のフィードバック回路において、
     前記制限回路は、
     前記検出部によって検出された電力値を増幅する増幅回路と、
     前記増幅回路の出力であるアナログ値をデジタル値に変換するA/D変換回路と、
     前記A/D変換回路の出力に基づいて前記スイッチング制御を行う制御回路と、
     を備えるフィードバック回路。
    The feedback circuit according to claim 2 or claim 3,
    The limiting circuit is:
    An amplification circuit that amplifies the power value detected by the detection unit;
    An A / D conversion circuit that converts an analog value that is an output of the amplifier circuit into a digital value;
    A control circuit for performing the switching control based on an output of the A / D conversion circuit;
    A feedback circuit comprising:
  5.  請求項2または請求項3に記載のフィードバック回路において、
     前記制限回路は、
     前記検出部によって検出された電力値を増幅する増幅回路と、
     前記増幅回路の出力であるアナログ値の低周波数領域を通過させるローパスフィルタと、
     前記ローパスフィルタの出力であるアナログ値をデジタル値に変換するA/D変換回路と、
     前記増幅回路の出力と予め定められた基準電力値とを比較する比較回路と、
     前記A/D変換回路の出力に基づいて前記スイッチング制御を行うとともに、前記比較回路の出力に基づいて前記スイッチ回路を強制的にオフさせる制御を行う制御回路と、
     を備えるフィードバック回路。
    The feedback circuit according to claim 2 or claim 3,
    The limiting circuit is:
    An amplification circuit that amplifies the power value detected by the detection unit;
    A low-pass filter that passes through a low frequency region of an analog value that is an output of the amplifier circuit;
    An A / D conversion circuit that converts an analog value that is an output of the low-pass filter into a digital value;
    A comparison circuit for comparing the output of the amplifier circuit with a predetermined reference power value;
    A control circuit that performs the switching control based on the output of the A / D conversion circuit, and performs the control to forcibly turn off the switch circuit based on the output of the comparison circuit;
    A feedback circuit comprising:
  6.  請求項1から請求項5のいずれか1に記載のフィードバック回路において、
     前記放電用電力上限値は、前記充電用電力上限値よりも大きいフィードバック回路。
    The feedback circuit according to any one of claims 1 to 5,
    The discharging power upper limit value is a feedback circuit larger than the charging power upper limit value.
  7.  請求項1から請求項6のいずれか1に記載のフィードバック回路において、
     前記放電用電力上限値及び前記充電用電力上限値は、前記二次電池の蓄電状態に応じて設定されるフィードバック回路。
    The feedback circuit according to any one of claims 1 to 6,
    The discharging power upper limit value and the charging power upper limit value are set according to a storage state of the secondary battery.
  8.  請求項1から請求項7のいずれか1に記載のフィードバック回路と、
     前記充電用電力上限値及び前記放電用電力上限値をそれぞれ設定する設定回路と、
     を備える電力調整装置。
    A feedback circuit according to any one of claims 1 to 7,
    A setting circuit configured to set the charging power upper limit value and the discharging power upper limit value, respectively;
    A power adjustment device comprising:
PCT/JP2012/068464 2011-07-21 2012-07-20 Feedback circuit and power adjusting device WO2013012064A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-160239 2011-07-21
JP2011160239 2011-07-21

Publications (1)

Publication Number Publication Date
WO2013012064A1 true WO2013012064A1 (en) 2013-01-24

Family

ID=47558239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068464 WO2013012064A1 (en) 2011-07-21 2012-07-20 Feedback circuit and power adjusting device

Country Status (2)

Country Link
JP (1) JPWO2013012064A1 (en)
WO (1) WO2013012064A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187577A (en) * 1997-10-13 1999-07-09 Toyota Motor Corp Charge/discharge controller for secondary battery
JP2007236151A (en) * 2006-03-03 2007-09-13 Panasonic Ev Energy Co Ltd Charging/discharging control system for secondary battery, battery control apparatus, and program
JP2010104095A (en) * 2008-10-21 2010-05-06 Toyota Motor Corp Power supply system, vehicle equipped with the same, and control method of power supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187577A (en) * 1997-10-13 1999-07-09 Toyota Motor Corp Charge/discharge controller for secondary battery
JP2007236151A (en) * 2006-03-03 2007-09-13 Panasonic Ev Energy Co Ltd Charging/discharging control system for secondary battery, battery control apparatus, and program
JP2010104095A (en) * 2008-10-21 2010-05-06 Toyota Motor Corp Power supply system, vehicle equipped with the same, and control method of power supply system

Also Published As

Publication number Publication date
JPWO2013012064A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
US9013152B2 (en) Power stabilization system and power stabilizing method
KR101631065B1 (en) Battery system and method for connecting battery
US8638065B2 (en) Battery pack and battery pack system
JP5764260B2 (en) Battery system and method for supplying an intermediate voltage
US8872476B2 (en) Charging management system and charger with the same
US20120047386A1 (en) Control apparatus and control method
US20120038323A1 (en) Systems and methods for balancing battery cells
JP5602353B2 (en) Power supply for vehicle
JP2013078242A (en) Electric power supply device
AU2021200875A1 (en) Supercapacitor based energy storage device
JP2009109271A (en) Method of detecting temperature in power supply device
JP2008002983A (en) Power supply device for vehicle
US20150180260A1 (en) Power supply with current sharing control and the battery module
JP2014507924A (en) Rechargeable battery system and method of operating the same
JP5334531B2 (en) Pack battery
WO2014061421A1 (en) Equalization device
US20110025255A1 (en) Solar Power System For Charging Battery Pack
KR101570866B1 (en) battery charging system of solar module
CN108886328B (en) Active filter topology for cascaded inverters
US20070092763A1 (en) Fuel cell system
KR101969301B1 (en) Apparatus for controlling charging and discharging of batterry for dc grid
JP2013013277A (en) Power-adjusting device
WO2018138710A1 (en) Dc power supply system
WO2013012064A1 (en) Feedback circuit and power adjusting device
JP6795082B2 (en) DC power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12815595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013524750

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12815595

Country of ref document: EP

Kind code of ref document: A1