[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013011813A1 - フロントライトおよびその製造方法ならびに該フロントライトを備えた反射型表示装置および該反射型表示装置を備えた電子機器 - Google Patents

フロントライトおよびその製造方法ならびに該フロントライトを備えた反射型表示装置および該反射型表示装置を備えた電子機器 Download PDF

Info

Publication number
WO2013011813A1
WO2013011813A1 PCT/JP2012/066440 JP2012066440W WO2013011813A1 WO 2013011813 A1 WO2013011813 A1 WO 2013011813A1 JP 2012066440 W JP2012066440 W JP 2012066440W WO 2013011813 A1 WO2013011813 A1 WO 2013011813A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
dots
layer
light guide
Prior art date
Application number
PCT/JP2012/066440
Other languages
English (en)
French (fr)
Inventor
寿史 渡辺
知子 寺西
俊樹 松岡
隆裕 中原
拓馬 友利
佐藤 英次
中村 浩三
鳴瀧 陽三
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/233,225 priority Critical patent/US9134475B2/en
Publication of WO2013011813A1 publication Critical patent/WO2013011813A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133616Front illuminating devices

Definitions

  • the present invention relates to a front light, a manufacturing method thereof, a reflective display device including the front light, and an electronic apparatus including the reflective display device.
  • Non-light-emitting display devices that display by reflecting ambient light such as external light, such as reflective liquid crystal display devices, electrophoretic display devices, or electrowetting display devices, display in a dark environment without ambient light Cannot be seen.
  • ambient light such as external light
  • some of such non-light emitting display devices have a front light for illuminating the display panel arranged on the front surface of the display panel.
  • the following two are listed as the performance required for the front light.
  • One is that the front light itself is transparent in order to see through the display device.
  • the other is that the light illuminated by the front light is mainly emitted to the display panel side and less light leaks to the user side.
  • the former can be realized by using a transparent light guide plate.
  • FIG. 22 is a diagram for explaining the light emission intensity in the conventional reflective display device 30.
  • the emission intensity of the emission light A toward the display panel 15 is 100 cd / m 2
  • the emission intensity of the emission light B toward the user is Assume a reflective display device 30 of 5 cd / m 2 .
  • the reflectance of the region 16 performing white display is 10%
  • the reflectance of the region 17 performing black display is 1%, that is, the contrast is 10.
  • the light C incident on the region 16 performing white display is reflected at a reflectance of 10% in the region 16 and the emitted intensity is 10 cd / m. 2 light is emitted.
  • the light D that has entered the region 17 performing black display is reflected at a reflectance of 1% in the region 17, and light having an emission intensity of 1 cd / m 2 is emitted.
  • the contrast is lowered to 2.5, and the display is deteriorated.
  • Table 1 shows the contrast of the reflective display device 30 when the emission intensity ratio (A / B) of the outgoing lights A and B from the front light 11 is changed.
  • the reflective display device 30 requires a contrast of 5 or more, and therefore, according to Table 1, the outgoing intensity ratio of the outgoing lights A and B needs to be larger than about 100.
  • Patent Document 1 discloses a device for suppressing light leaking from the front light to the user side.
  • a cross-sectional view of a reflective display device disclosed in Patent Document 1 is shown in FIG.
  • Patent Document 1 discloses a prism-type front light 11.
  • Light emitted from a light source 18 is guided by a light guide plate 19, and the prism formed on the light guide plate 19
  • a method of illuminating the display panel 15 by changing the light traveling direction (arrow E in the figure) is disclosed.
  • the light emitted from the light source 18 always includes light (arrow F in the figure) that leaks to the user side depending on how it hits the prism formed on the light guide plate 19. Therefore, in the front light 11 disclosed in Patent Document 1, the ratio of the emission intensity of the light emitted to the display panel 15 side and the emission intensity of the light leaking to the user side may be made larger than 100. Difficult to display with high contrast.
  • Patent Document 2 discloses another device for suppressing light leaking from the front light to the user side.
  • a cross-sectional view of a reflective display device disclosed in Patent Document 2 is shown in FIG.
  • Patent Document 2 discloses a front light 11 having a light guide plate 19 on which dots 14 composed of a reflective layer 12 and a dark color layer 13 are formed, and guides the light in the light guide plate 19.
  • a method for illuminating the display panel 15 by irradiating light on the reflective layer 12 (arrow G in the figure) is disclosed.
  • an object of the present invention is to provide a front light that realizes a display with high contrast regardless of the angle of the reflective display device, a manufacturing method thereof, and the front light. It is an object of the present invention to provide a reflective display device including the electronic device including the reflective display device.
  • a front light includes a light source that emits light to the outside, a light guide plate that guides light from the light source, and a light emission surface of the light guide plate.
  • a plurality of dots formed on the opposite surface, and each of the dots is formed in contact with the light guide plate and completely covers the light reflection layer, and a light reflection layer that emits light to the outside It is characterized by comprising a dark color layer that is in contact with the light guide plate without any gap and absorbs light.
  • the front light according to one aspect of the present invention has a plurality of dots each including a light reflection layer and a dark color layer.
  • the dark color layer completely covers the light reflection layer and is in contact with the light guide plate without any gap. Therefore, the dot is covered so that the light reflection layer cannot be seen from any angle.
  • the light emitted from the light source is guided through the light guide plate, is reflected by the light reflection layer of the dots, and is emitted to the light output surface side.
  • a part of the light emitted from the light source is guided to the user side through the light guide plate, but is absorbed by the dark color layer of the dots. Further, even when ambient light such as external light is incident on the front light, it is absorbed by the dark color layer of the dots.
  • the dark color layer absorbs the light leaking from the light guide plate to the user side and the ambient light incident on the front light. Can do. That is, since the light reflection layer is not exposed from the side surface of the dot, the light leaking from the light guide plate to the user side and the ambient light incident on the front light are reflected on the light reflection layer and are reflected on the user side. Emission can be prevented. As a result, when the front light according to one embodiment of the present invention is used, display with high contrast can be realized from any angle.
  • a reflective display device includes the above-described front light and a display panel disposed on the light emission surface side of the light guide plate. It is characterized by that.
  • an electronic device is characterized by including the above-described reflective display device in order to solve the above-described problems.
  • a method for manufacturing a front light includes a step of preparing a light source that emits light to the outside, and a light emission while guiding the light of the light source.
  • the front light since the light reflection layer of the dots is completely covered with the dark color layer, the light leaks from the light guide plate to the user side and enters the front light. Ambient light can be absorbed by the dark color layer. That is, since the light reflection layer is not exposed from the side surface of the dot, the light leaking from the light guide plate to the user side and the ambient light incident on the front light are reflected on the light reflection layer and are reflected on the user side. Emission can be prevented. As a result, when the front light according to one embodiment of the present invention is used, display with high contrast can be realized from any angle.
  • a front light that realizes a display with high contrast when viewed from any angle.
  • FIG. 1 A) in a figure is a perspective view which shows the reflective display apparatus which concerns on one Embodiment of this invention, (b) in a figure is a cross section which shows the reflective display apparatus which concerns on one Embodiment of this invention It is a figure and (c) is an enlarged view which shows the cross section of the dot on the light-guide plate which concerns on one Embodiment of this invention.
  • (A) in the figure is a diagram showing an example of arrangement when a plurality of dots are arranged so that the area density of dots per minimum unit area is constant, and (b) in the figure is the smallest unit.
  • FIG. 1 It is a figure which shows one example of arrangement
  • (A) in a figure is a figure which shows an example of the arrangement pattern of the dot on a light-guide plate,
  • (b) in the figure is an enlarged view of the arrangement pattern of (a) in the figure,
  • (C) is an enlarged view showing a cross section of dots on the light guide plate.
  • (A) in the figure is a diagram showing an example of an arrangement pattern of dots on the light guide plate, and (b) in the figure is a diagram showing a cross section along AA ′ shown in (a) in the figure. is there.
  • FIG. 1 It is a figure which shows the light irradiation amount of the front light which concerns on one Embodiment of this invention, and its distribution.
  • (A) in a figure is sectional drawing which shows the reflection type display apparatus which concerns on other embodiment of this invention
  • (b) in a figure is the dot on the light-guide plate which concerns on other embodiment of this invention. It is an enlarged view which shows the cross section.
  • (A) to (f) in the figure are diagrams showing a dot formation process using a photolithography process. It is an enlarged view which shows the cross section of the dot on the light-guide plate which concerns on other embodiment of this invention. It is an enlarged view which shows the cross section of the dot on the light-guide plate which concerns on other embodiment of this invention.
  • (A) in a figure is sectional drawing which shows the reflection type display apparatus which concerns on other embodiment of this invention
  • (b) in a figure is the dot on the light-guide plate which concerns on other embodiment of this invention. It is an enlarged view which shows the cross section.
  • (A) in a figure is sectional drawing which shows the reflection type display apparatus which concerns on other embodiment of this invention
  • (b) in a figure is the dot on the light-guide plate which concerns on other embodiment of this invention.
  • (A) in the figure shows a display panel having a detachable front light
  • (b) in the figure shows a display panel having a cover type front light. It is a figure for demonstrating the emitted light intensity in the conventional reflection type display apparatus.
  • Embodiment (Configuration of the reflective display device 10) A configuration of a reflective display device including a front light according to an embodiment of the present invention will be described with reference to FIG. (A) in FIG. 2 is a perspective view showing the reflective display device 10 according to an embodiment of the present invention.
  • FIG. 2B is a cross-sectional view showing the reflective display device 10 according to an embodiment of the present invention.
  • (C) in FIG. 2 is an enlarged view showing a cross section of the dot 4 on the light guide plate 9 according to an embodiment of the present invention.
  • the reflection type display apparatus 10 is arrange
  • FIG. A front light 1 is provided.
  • the front light 1 includes a light guide plate 9 and a light source 8 provided on at least one of the side surfaces 20c to 20f of the light guide plate 9.
  • the light source 8 is provided on the side surface 20c.
  • the surface 20a on the user side of the light guide plate 9 is processed smoothly so that light is well guided, and a plurality of dots 4 are formed thereon. Is formed.
  • the dot 4 will be described in detail later.
  • the surface 20b opposite to the surface 20a is also processed flat so as to guide light well.
  • the side surface 20c on which the light source 8 is provided may be flat, but is not particularly limited.
  • the light source 8 is a point light source such as a light emitting diode (LED)
  • the light from the light source 8 is made incident more uniformly by making the side surface 20c a light scattering surface such as a satin surface or a prism shape. be able to.
  • the other side surfaces 20d to 20f are preferably light reflecting surfaces. According to this, the light that has been guided through the light guide plate 9 and reached the side surfaces 20d to 20f can be reflected again and guided into the light guide plate 9, so that the light use efficiency can be improved.
  • a metal thin film such as aluminum may be formed, a material with high light reflectance such as white ink may be applied, or a light reflecting sheet or the like may be attached separately.
  • a material with high light reflectance such as white ink
  • a light reflecting sheet or the like may be attached separately.
  • the light source 8 in addition to the LED, a fluorescent tube, an electroluminescence (EL) light source, a light source combined with a linear light guide, or the like can be applied.
  • the light source 8 may not necessarily be white, may be a specific color other than white, or a combination of light sources of different colors such as red (R), green (G), and blue (B). It may be.
  • the light guide plate 9 a material having high translucency and low haze, such as transparent resin such as acrylic or glass, is preferably used.
  • transparent resin such as acrylic or glass
  • the flat light-guide plate 9 was shown in FIG. 2, it is not necessarily limited to this.
  • the light guide plate 9 may have a wedge shape.
  • the dot 4 has a light reflection layer 2 and a dark color layer 3.
  • the light reflecting layer 2 is a layer that reflects light toward the display panel 5.
  • the dark color layer 3 is a layer that absorbs light, completely covers the light reflection layer 2, and is in contact with the light guide plate 9 without a gap. Therefore, the dot 4 is covered so that the light reflecting layer 2 cannot be seen from any angle.
  • FIG. 1 is a cross-sectional view showing light reflection in the front light 1.
  • the light emitted from the light source 8 is guided through the light guide plate 9.
  • Most of the light emitted from the light source 8 is reflected by the light reflecting layer 2 of the dots 4 and is emitted to the display panel 5 side like the light J.
  • a part of the emitted light from the light source 8 is guided through the light guide plate 9 and emitted to the user side like the light K, but is absorbed by the dark color layer 3 of the dots 4. Further, even if ambient light L such as external light is incident on the dots 4, it is absorbed by the dark color layer 3.
  • the light reflecting layer 2 of the dots 4 is completely covered by the dark color layer 3, the light leaked from the light guide plate 9 to the user side and the ambient light incident on the dots 4 are reflected in the dark color layer. 3 can be absorbed. That is, since the light reflection layer 2 is not exposed from the side surface of the dot 4, the light leaked from the light guide plate 9 to the user side and the ambient light incident on the dot 4 are reflected on the light reflection layer 2. It can prevent being emitted to the user side. As a result, display with high contrast can be realized regardless of the angle of the reflective display device 10.
  • the dots 4 are preferably formed by a printing method such as an ink jet printing method because they can be formed at a low cost. Therefore, the procedure for forming the dots 4 by the ink jet printing method will be described below. In this case, a white ink (light scatterer) that reflects light well is used for the light reflecting layer 2, and a black ink that absorbs light well is used for the dark color layer 3.
  • a white ink light scatterer
  • a black ink that absorbs light well is used for the dark color layer 3.
  • white ink is applied to the surface 20a on the user side of the light guide plate 9, and cured by irradiating with ultraviolet rays.
  • a black ink is applied so as to cover the light reflection layer 2 thus formed, and is cured by irradiating with ultraviolet rays. Thereby, the dark color layer 3 covering the light reflection layer 2 is formed, and the dots 4 are completed.
  • a drying process etc. may be needed separately.
  • the dot 4 may be formed by using another printing method or by a method other than the printing method.
  • FIG. (A) in FIG. 3 is a diagram showing an arrangement example when a plurality of dots 4 are arranged so that the area density of the dots 4 per minimum unit area is constant, and (b) is a diagram showing a minimum unit. It is a figure which shows one example of arrangement
  • the dark color layer 3 of the dots 4 is a light shielding portion, if the density differs for each minimum unit area, the transmittance of the light guide plate 9 varies, and as a result, the reflection luminance of the reflective display device 10 varies. It will occur. Therefore, as shown in FIG. 3A, when the ratio of the area occupied by the dots 4 in the regions 21a and 21b having the minimum unit area is equal, that is, when the area density of the dots 4 in the regions 21a and 21b is equal, The transmittance of the light guide plate 9 does not vary and is constant. Therefore, there is no variation in the reflection luminance of the reflective display device 10, and a good display quality can be obtained.
  • the transmittance of the light guide plate 9 varies. Specifically, in the region 22 a where the area density of the dots 4 is high, the transmittance of the light guide plate 9 is low, so that the reflective display device 10 displays a dark display. On the other hand, since the transmittance of the light guide plate 9 is high in the region 22b where the area density of the dots 4 is low, the reflective display device 10 provides a bright display. As described above, in order to obtain the reflective display device 10 having uniform reflection luminance, it is preferable that the area density of the dots 4 per minimum unit area on the light guide plate 9 is constant.
  • the minimum unit area is the minimum unit area that can be recognized by the human eye. Specifically, although there are individual differences such as age and visual acuity, approximately 0.5 mm ⁇ 0.5 mm to 2 mm ⁇ The unit area is in the range of 2 mm. The minimum unit area that can be recognized by the human eye, even if the area density of the dots 4 per unit area (for example, 0.1 mm ⁇ 0.1 mm) that cannot be recognized by the human eye is not constant. If the area density of the surrounding dots 4 is constant, the reflection luminance of the reflective display device 10 looks substantially constant.
  • FIG. 4A is a diagram illustrating an example of an arrangement pattern of dots 4 on the light guide plate 9.
  • FIG. (B) in FIG. 4 is an enlarged view of the arrangement pattern of (a) in FIG. (C) in FIG. 4 is an enlarged view showing a cross section of the dot 4 on the light guide plate 9.
  • any one of the four sides of the light guide plate 9 is formed.
  • the arrangement of the dots 4 in the row direction (line L1) is inclined by an angle ⁇ , and the angle ⁇ is preferably between 5 degrees and 85 degrees.
  • the arrangement position of the dots 4 is varied by changing the arrangement pitch P 1 of the dots 4 or changing the size of the dots 4 while keeping the ratio of the area occupied by the dots 4 per minimum unit area constant.
  • the occurrence of moire can be reduced by changing the number of dots 4 for each minimum unit area.
  • Dot 4 arrangement pattern 2 Although the arrangement pattern of the dots 4 for reducing the occurrence of moire has been described above, an arrangement pattern that can be suitably applied besides for reducing the occurrence of moire will be described below.
  • each dot 4 can irradiate the display panel 5 uniformly by arranging the plurality of dots 4 in the closest arrangement.
  • the size of the dot 4, that is, the size S 1 of the dark color layer 3 (the width of the dark color layer 3) is preferably smaller than the pixel size. This is equivalent to the size S 1 is the pixel size of the dark layer 3, or larger than the pixel size, dot 4 will be (dark layer 3) is a hidden specific pixel, vacated only hole at the dot 4 This is because the display becomes like this.
  • the height H of the dots 4 is preferable in that the light reflection layer 2 can be made thinner as the height H is smaller.
  • the light absorption rate of the dark color layer 3, and the like What is necessary is just to set to suitable height and there is no limitation in particular.
  • the ratio of the area occupied by the dots 4 per minimum unit area is made constant, but the reflection luminance of the reflection type display device 10 is actually affected. What is shown is a dark color layer 3 that shields reflected light from the display panel 5. Therefore, if the ratio of the area occupied by the dark color layer 3 per minimum unit area is constant, the size of the light reflecting layer 2 (width of the light reflecting layer 2) may not be constant. Therefore, by changing the size of the light reflecting layer 2, the in-plane distribution of the irradiation luminance of the front light 1 can be adjusted.
  • FIG. 5A is a diagram showing an example of the arrangement pattern of the dots 4 on the light guide plate 9
  • FIG. 5B is a diagram showing an A-A ′ cross section shown in FIG.
  • the size S 1 of the dark color layer 3 is constant, but with respect to the size S 2 of the light reflection layer 2, the dot S closer to the light source 8 is closer to the size S of the light reflection layer 2. 2 is made smaller and the size S 2 of the light reflecting layer 2 is made larger as the dot 4 is farther from the light source 8. Thereby, the spread of the irradiation light in each dot 4 can be adjusted, so that the in-plane distribution of the illuminance luminance of the front light 1 can be made uniform.
  • FIG. 6 shows the light irradiation amount and the distribution of the front light 1 according to the present embodiment.
  • the display panel 5 can be uniformly and uniformly irradiated by applying the above-described preferred embodiment.
  • the reflection luminance of the reflective display device 10 is uniform and the occurrence of moire can be reduced, the reflective display device 10 having better display quality can be provided.
  • the front light 1 according to the present invention is formed on the light source 8 that emits light to the outside, the light guide plate 9 that guides the light of the light source 8, and the surface opposite to the light emission surface of the light guide plate 9.
  • the dots 4 are formed in contact with the light guide plate 9, each of the dots 4 is formed in contact with the light guide plate 9, and the light reflection layer 2 that emits light to the outside and the light reflection layer 2 completely covers the light guide plate 9.
  • the dark color layer 3 that absorbs light and absorbs light, a high-contrast display can be realized when the reflective display device 10 is viewed from any angle.
  • the dots 4 can be formed by using, for example, a photolithography process other than the method of forming by the printing method. Therefore, the front light 1 in which the dots 4 are formed using the photolithography process will be described with reference to FIGS.
  • FIGS. (A) in FIG. 7 is a sectional view showing a reflective display device 10 according to another embodiment of the present invention.
  • (B) in FIG. 7 is an enlarged view showing a cross section of the dots 4 on the light guide plate 9 according to another embodiment of the present invention.
  • (A) to (f) in FIG. 8 are diagrams showing a process of forming dots 4 using a photolithography process.
  • white resist ink is used for the light reflecting layer 2 and black resist ink is used for the dark color layer 3.
  • black resist ink is used for the dark color layer 3.
  • white resist ink “white solder resist” manufactured by Taiyo Ink Co., Ltd. can be applied.
  • black resist ink “color filter black matrix forming pigment dispersed photoresist” manufactured by Tokyo Ohka Co., Ltd. can be applied.
  • the white resist ink 2 ' is applied to the entire surface of the acrylic plate to be the light guide plate 9 ((a) in FIG. 8). Thereafter, ultraviolet rays are exposed through the photomask 6 to partially expose the white resist ink 2 '((b) in FIG. 8). When developed with the developer, the exposed white resist ink 2 'remains, and the light reflecting layer 2 is formed ((c) in FIG. 8).
  • a black resist ink 3 ' is applied over the entire surface ((d) in FIG. 8). Thereafter, ultraviolet rays are exposed through the photomask 7 to partially expose the black resist ink 3 '((e) in FIG. 8). When developed with a developer, the exposed black resist ink 3 'remains, and a dark color layer 3 is formed ((f) in FIG. 8). In this way, the dot 4 is completed.
  • the plurality of dots 4 formed in this way is the same as the embodiment described above, as shown in (a) of FIG.
  • the photolithographic process is more expensive than the printing method, it has the advantage that the dots 4 can be precisely formed because it is more accurate than the printing method. Therefore, smaller dots 4 can be formed with a fine size (width) and a fine pitch.
  • the dots 4 having a size (width) of 20 ⁇ m or less that cannot be recognized by human eyes by the printing method, it can be easily formed by the photolithography process.
  • the smaller the size of the dots 4 is the more difficult it is to be recognized by the human eye, which is preferable in that the display quality can be improved.
  • the pixel size is sufficiently smaller than the pixel size of the reflective display device 10, and therefore moire occurs. There is an advantage that it becomes difficult to do.
  • the dots 4 formed by the printing method have a rounded shape, the thickness of the dots 4 is not constant, and the thickness near the edge of the light reflecting layer 2 is thin, so that the light reflectance tends to be low. There is.
  • a relatively flat layer can be formed as shown in FIG. 7B, so that a constant high reflectance can be obtained in all the regions within the dots 4.
  • FIG. 9 shows an enlarged view showing a cross section of the dot 4 on the light guide plate 9 according to another embodiment of the present invention.
  • a depression is formed in advance on the light guide plate 9, and the light reflection layer 2 is formed by filling the depression with white ink, and the dark ink layer 3 is formed by overlaying the black ink thereon.
  • the dots 4 may be formed.
  • the degree of protrusion of the dots 4 from the light guide plate 9 can be reduced. It can be prevented from being caught and peeled off.
  • FIG. 10 is an enlarged view showing a cross section of the dot 4 on the light guide plate 9 according to another embodiment of the present invention.
  • a silver ink such as a silver paste or a metal material 2a such as a metal thin film such as an aluminum film or a silver film may be used.
  • the light reflection layer 2 made of white ink has a high light scattering property
  • the light reflection layer 2 made of the metal material 2a has a high specular reflection property, so that high light reflection can be expected.
  • the light from the display panel 5 cannot be emitted from the light guide plate 9 when the light reflecting layer 2 made of the metal material 2a has a complete mirror surface.
  • the metal material 2 a when used as the light reflecting layer 2, it is preferable to add light scattering properties to the light reflecting layer 2.
  • a light scattering surface 23 (irregular surface) such as a prism surface or a satin surface is formed on the light guide plate 9, and the light reflection layer 2 is formed thereon with a metal material 2a such as silver ink or a metal thin film.
  • the mirror surface of the light reflecting layer 2 becomes a white surface. Therefore, the light from the light guide plate 9 can be extracted efficiently.
  • the light reflecting layer 2 is formed of the metal material 2a, high light reflection can be obtained with a thin film thickness as compared with the case where the light reflecting layer 2 is formed with white ink. Therefore, there is an advantage that the height of the dots 4 can be reduced.
  • FIG. 11 is an enlarged view showing a cross section of the dot 4 on the light guide plate 9 according to another embodiment of the present invention.
  • the light reflecting layer 2 may be a composite layer made of a plurality of materials.
  • a layer made of white ink 2b is formed on the light guide plate 9, and a layer made of metal material 2a such as silver ink or a metal thin film is formed thereon to form the light reflecting layer 2.
  • metal material 2a such as silver ink or a metal thin film
  • the third modification high light reflection can be obtained while reducing the film thickness of the light reflecting layer 2, so that there is an advantage that the height of the dots 4 can be reduced. Furthermore, since the light from the light guide plate 9 can be efficiently extracted without forming the light scattering surface 23 on the light guide plate 9 as in the third modification example, an unprocessed flat light guide plate 9 can be used. The formation process of the front light 1 can be simplified.
  • FIG. 5 A sectional view of a reflective display device 10 according to another embodiment of the present invention is shown in FIG.
  • various functional layers 24 may be provided on the surface of the light guide plate 9 (the surface 20 a on the user side and the surface 20 b on the opposite side) or the display surface of the display panel 5.
  • the functional layer 24 include an antireflection layer that prevents light reflection, a hard coat layer that protects the surface from scratches, an antistatic layer that prevents adhesion of dust, and the like.
  • These functional layers 24 may be directly formed on the surface of the light guide plate 9 or may be bonded separately in the form of a film.
  • the functional layer 24 is provided on the user-side surface 20a of the light guide plate 9, since the dots 4 are formed on the surface 20a and the film-like functional layer 24 cannot be bonded, it is directly on the surface 20a. It is preferable to apply or evaporate.
  • the antireflection layer When an antireflection layer is used as the functional layer 24, ambient light such as outside light is not reflected on the surface of the light guide plate 9 or the display surface of the display panel 5, so that there is an effect of increasing display contrast particularly in a bright place.
  • the antireflection layer includes a multilayer film having a different refractive index and a moth-eye structure. Any one of the functional layers 24 may be used.
  • the hard coat layer and the antistatic layer there is Sumise Fine ASHC-204 manufactured by Sumitomo Osaka Cement.
  • the functional layer 24 when a hard coat layer is used as the functional layer 24, it is possible to prevent the light guide plate 9 from being damaged. If the light guide plate 9 is scratched, the light cannot be guided through the scratched portion and leaks, so the display surface of the reflective display device 10 shines white and the display quality is lowered. End up. Therefore, such a problem can be prevented by using a hard coat layer.
  • an antistatic layer When an antistatic layer is used as the functional layer 24, dust can be prevented from adhering to the surface of the light guide plate 9. If dust adheres to the surface of the light guide plate 9, the portion where the dust adheres is scattered white, so that the display quality of the reflective display device 10 is lowered. Further, when the reflective display device 10 is assembled, if dust of a size that can be recognized by human eyes enters between the light guide plate 9 and the display panel 5, the dust is removed unless the light guide plate 9 is removed. Can not be assembled, resulting in poor assembly. Therefore, by using an antistatic layer, it is possible to prevent dust from adhering or mixing, so that these problems can be prevented.
  • FIG. 13 A sectional view of a reflective display device 10 according to another embodiment of the present invention is shown in FIG.
  • the functional layer 24 is provided on the user-side surface 20 a of the light guide plate 9, a plurality of dots 4 are formed after the functional layer 24 is formed on the user-side surface 20 a of the light guide plate 9. It may be formed.
  • the functional layer 24 is formed on the light guide plate 9 before forming the dots 4 in this way. It becomes easy to form the functional layer 24. In this case, since the functional layer 24 formed in a film shape can be bonded, the process of forming the front light 1 can be simplified.
  • FIG. 14 is a sectional view of a reflective display device 10 according to another embodiment of the present invention.
  • the functional layer 24 may be formed on the surface 20 a on the user side of the light guide plate 9 after the planarization layer 25 is formed.
  • the surface 20a on the user side of the light guide plate 9 is flattened with the flattening layer 25 in this way, By bonding the functional layer 24, the functional layer 24 is easily formed.
  • the functional layer 24 made into a film shape can be used, the formation process of the front light 1 can be simplified.
  • the plurality of dots 4 are flattened by the flattening layer 25, there is no possibility that the dots 4 will be peeled off, and in particular, when a hard coat layer is used as the functional layer 24, the performance is further enhanced. Can do.
  • FIG. 15 is an enlarged view showing a cross section of the dot 4 on the light guide plate 9 according to another embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of a reflective display device 10 according to another embodiment of the present invention.
  • a low refractive index layer 26 may be bonded between the light guide plate 9 and the display panel 5.
  • the low refractive index layer 26 is a material having a refractive index lower than that of the light guide plate 9 and preferably has a refractive index of 1.45 or less.
  • a UV curable resin OPSTAR manufactured by JSR is applicable.
  • an antireflection layer is used as the functional layer 24 between the light guide plate 9 and the display panel 5. Similar effects can be obtained. Specifically, the interface between the low-refractive index layer 26 and the light guide plate 9 and the interface between the low-refractive index layer 26 and the display panel 5 are not subjected to refractive index matching. Some of the reflected light of the ambient light reflected by the display surface of the panel 5 remains. However, the reflected light of ambient light on the surface of the light guide plate 9 or the display surface of the display panel 5 can be reduced as compared with the case where the interfaces of the light guide plate 9 and the display panel 5 are in contact with air.
  • FIG. 17 A sectional view of a reflective display device 10 according to another embodiment of the present invention is shown in FIG.
  • an LED 8 a that can emit light in a plurality of colors may be used as the light source 8.
  • the monochrome display panel 5a can be used as the display panel 5. Since the monochrome display panel 5a does not require a color filter, there is no reduction in reflectance due to the color filter. Therefore, the reflective display device 10 having a high reflectance can be obtained.
  • FIG. 18 is a sectional view showing a reflective display device 10 according to another embodiment of the present invention.
  • FIG. 18 is an enlarged view showing a cross section of the dot 4 on the light guide plate 9 according to another embodiment of the present invention.
  • a blue LED 8b is used as the light source 8, and as shown in FIG. 18 (b), a yellow fluorescent layer 27 is formed on the light guide plate 9, and the light reflecting layer 2 is formed thereon.
  • the dots 4 may be formed by covering the yellow fluorescent layer 27 and the light reflecting layer 2 with the dark color layer 3.
  • the yellow fluorescent layer 27 of the dots 4 utilizes the characteristic of fluorescent when blue light from the blue LED 8b is transmitted. Therefore, in the front light 1, by emitting blue light from the blue LED 8b, the blue light that is emitted from the blue LED 8b and the yellow light that is emitted by being fluorescent through the yellow fluorescent layer 27 are emitted. The light is mixed to generate white light, and the display panel 5 is irradiated. Thus, white light generated using the blue LED 8b and the yellow fluorescent layer 27 may be used for display.
  • FIG. 19 Yet another embodiment of the present invention is shown in FIG. (A) in FIG. 19 is a cross-sectional view showing a reflective display device 10 according to another embodiment of the present invention.
  • (B) in FIG. 19 is an enlarged view showing a cross section of the dot 4 on the light guide plate 9 according to another embodiment of the present invention.
  • a near-ultraviolet LED 8c is used as the light source 8 as shown in FIG. 19 (a), and a red fluorescent layer, a green fluorescent layer and a blue fluorescent layer are combined on the light guide plate 9 as shown in FIG. 19 (b).
  • the dark color layer 3 may cover the RGB fluorescent layer 28 and the light reflecting layer 2 to form the dots 4.
  • the RGB fluorescent layer 28 of the dot 4 utilizes a characteristic that the near-ultraviolet light from the near-ultraviolet LED 8c is transmitted through the fluorescence.
  • the near-ultraviolet light emitted from the near-ultraviolet LED 8c is transmitted through the RGB fluorescent layer 28 and fluoresced, thereby emitting red light and green light. Further, white light is generated by mixing the blue light and the blue light, and the display panel 5 is irradiated. Thus, white light generated using the near-ultraviolet LED 8c and the RGB fluorescent layer 28 may be used for display.
  • FIG. 12 A cross-sectional view of a reflective display device 10 according to another embodiment of the present invention is shown in FIG.
  • the reflective display device 10 may also serve as a touch panel.
  • the transparent electrode 29 is mounted on the surface 20b opposite to the user-side surface 20a of the light guide plate 9, and the capacitance when a finger or the like touches is sensed. Accordingly, the reflective display device 10 can function as a touch panel, and it is not necessary to provide a separate touch panel. Therefore, the reflective display device 10 can be thinned.
  • FIG. 21A is a diagram showing the display panel 5 having the detachable front light 1
  • FIG. 21B is a diagram showing the display panel 5 having the cover-type front light 1. is there.
  • the front light 1 does not need to be fixed to the display surface side of the display panel 5, and may be detachably provided.
  • the front light 1 may be removable, and the front light 1 may be attached to the display panel 5 with claws or magnets when necessary.
  • the front light 1 is fixed to the end of the display panel 5 so as to be rotatable, and the front light 1 is rotated when the front light 1 is necessary. 5 display surfaces may be covered.
  • the reflective display device 10 is a non-luminous display device that reflects and displays ambient light such as external light, such as a reflective liquid crystal display device, an electrophoretic display device, or an electrowetting display device. .
  • the reflective display device 10 can be applied to an electronic device such as a mobile phone, a smartphone, or a laptop personal computer.
  • the method of attaching the front light 1 is not particularly limited. However, as described above, by making the front light 1 detachable, the front light 1 can be attached only when necessary. You can use them according to your needs.
  • a front light includes a light source that emits light to the outside, a light guide plate that guides light from the light source, and the light guide plate.
  • a plurality of dots formed on a surface opposite to the light emitting surface, and each of the dots is formed in contact with the light guide plate and emits light to the outside, and the light reflecting layer It is characterized by comprising a dark color layer that completely covers the light guide and contacts the light guide plate without any gap and absorbs light.
  • the front light according to one aspect of the present invention has a plurality of dots each including a light reflection layer and a dark color layer.
  • the dark color layer completely covers the light reflection layer and is in contact with the light guide plate without any gap. Therefore, the dot is covered so that the light reflection layer cannot be seen from any angle.
  • the light emitted from the light source is guided through the light guide plate, is reflected by the light reflection layer of the dots, and is emitted to the light output surface side.
  • a part of the light emitted from the light source is guided to the user side through the light guide plate, but is absorbed by the dark color layer of the dots. Further, even when ambient light such as external light is incident on the front light, it is absorbed by the dark color layer of the dots.
  • the dark color layer absorbs the light leaking from the light guide plate to the user side and the ambient light incident on the front light. Can do. That is, since the light reflection layer is not exposed from the side surface of the dot, the light leaking from the light guide plate to the user side and the ambient light incident on the front light are reflected on the light reflection layer and are reflected on the user side. Emission can be prevented. As a result, when the front light according to one embodiment of the present invention is used, display with high contrast can be realized from any angle.
  • the plurality of dots are arranged so that a ratio of an area occupied by the plurality of dots per unit area on the light guide plate is constant. It is characterized by being.
  • the dark color layer of the dots is a light-shielding portion, if the density differs for each unit area, the transmittance of the light guide plate varies, and as a result, the reflective type on which the front light is mounted. Variations in the reflected luminance of the display device occur. Therefore, when the area density of dots per unit area is made equal, the transmittance of the light guide plate does not vary and is constant. Therefore, there is no variation in the reflection luminance of the reflection type display device on which the front light is mounted, and a good display quality can be obtained.
  • the plurality of dots are such that the dots closer to the light source have a smaller size of the light reflecting layer, and the dots that are farther from the light source have the light reflecting layer. It is characterized by its large size.
  • the in-plane distribution of the illuminance luminance of the front light can be made uniform.
  • the plurality of dots are arranged in a matrix, arranged in the row direction at an equal arrangement pitch, and arranged in the column direction at an equal arrangement pitch. It is characterized by that.
  • the reflection luminance of the reflective display device on which the front light is mounted is uniform.
  • any one of the plurality of dots and the two dots closest to the dot form an equilateral triangle. Yes.
  • each dot can irradiate the light-projection surface side uniformly by arrange
  • the arrangement of the plurality of dots in the row direction may be any one of the four sides of the light guide plate when the light guide plate is viewed from the light emitting surface side. On the other hand, it is characterized by being inclined by 5 to 85 degrees.
  • the arrangement pitch of the plurality of dots in the row direction is (n + 0.2) times to (n + 0.8) times (n is an integer) times the pixel pitch. It is characterized by being.
  • the arrangement pitch of the dots in the row direction is (n + 0.2) times to (n + 0.8) times the pixel pitch so that the value obtained by dividing the pixel pitch by the arrangement pitch of the dots in the row direction does not become a value close to an integer. It is preferable that it is double (n is an integer). Thereby, the generation of moire can be reduced.
  • the size of the dark color layer of each of the dots is smaller than the pixel size.
  • the dot when the size of the dark color layer is equal to or larger than the pixel size, the dot (dark color layer) hides a specific pixel, and a hole is formed only at the dot. It can be prevented from being displayed.
  • the size of the dark color layer of each of the dots is 20 ⁇ m or less.
  • the light source is provided on any one of four side surfaces excluding the light emitting surface of the light guide plate and a surface opposite to the light emitting surface.
  • the side surface on which the light source is not provided is a light reflecting surface.
  • the light reflecting layer of each dot is a light scatterer.
  • the reflected light can be scattered when the light reflecting layer reflects the light.
  • an uneven surface is formed on the light guide plate at a location corresponding to the light reflection layer of each dot, and the light reflection layer of each dot.
  • the mirror surface of the light reflecting layer becomes a white surface due to the uneven surface, so that light from the light guide plate can be efficiently extracted.
  • the light reflecting layer is formed of a metal material, high light reflection can be obtained with a thin film thickness. Therefore, the dot height can be reduced.
  • the light reflecting layer of each dot is formed by laminating a light scatterer and a metal material in order from the light guide plate side.
  • the light that is not scattered by the layer made of the light scatterer and transmitted as it is can be reflected toward the light guide plate by the layer made of the metal material. Therefore, the light absorbed by the dark color layer can be reduced and the light utilization efficiency can be increased.
  • the light reflection layer is formed of a metal material, high light reflection can be obtained while reducing the film thickness of the light reflection layer, so that the dot height can be reduced.
  • a depression is formed on the light guide plate at a location corresponding to the light reflection layer of each dot, and the light reflection layer of each dot is It is characterized by being formed in the recess.
  • the front light according to an aspect of the present invention is characterized in that a functional layer is formed on a surface of the light guide plate on which the plurality of dots are formed.
  • the front light according to one aspect of the present invention is characterized in that the light source is a light source capable of emitting light in a plurality of colors.
  • a field sequential display method is employed in which color display is performed using the afterimage effect by sequentially emitting each color and setting the transparency according to each color component in the displayed image. Can do.
  • the light source is a light source that emits blue light, and a yellow fluorescent layer is formed between the light reflecting layer and the light guide plate of each dot. It is characterized by being.
  • white light generated using a light source emitting blue light and a yellow fluorescent layer can be used for display.
  • the light source is a light source that emits near-ultraviolet light, and a red fluorescent layer, a green color is provided between the light reflecting layer and the light guide plate of each dot.
  • a fluorescent layer and a blue fluorescent layer are formed.
  • white light generated using a light source that emits near-ultraviolet light and a red fluorescent layer, a green fluorescent layer, and a blue fluorescent layer can be used for display.
  • a functional layer is formed on the surface of the light guide plate on which the plurality of dots are formed so as to cover the plurality of dots.
  • a functional layer is formed on a surface of the light guide plate opposite to the light emitting surface, and the functional layer is opposite to the light guide plate.
  • a plurality of dots are formed on the surface.
  • the functional layer is formed on the light guide plate before forming dots in this way. Therefore, it becomes easy to form a functional layer.
  • a planarization layer is formed to flatten a surface on which the plurality of dots are formed in the light guide plate, and the light guide plate of the planarization layer Is characterized in that a functional layer is formed on the opposite surface.
  • the surface on the user side of the light guide plate is flattened with the flattening layer in this way.
  • the functional layer can be easily formed.
  • the front light according to an aspect of the present invention is characterized in that a functional layer is formed on the light emitting surface of the light guide plate.
  • various functional layers can be provided on the light exit surface of the light guide plate.
  • the functional layer has any one of antireflection properties, hard coat properties, and antistatic properties.
  • an antireflection layer for preventing light reflection a hard coat layer for protecting the surface from scratches, an antistatic layer for preventing adhesion of dust, or the like can be provided.
  • the front light according to one embodiment of the present invention is characterized in that an electrode is formed on the light guide plate and functions as a touch panel.
  • the reflective display device on which the front light is mounted can function as a touch panel, and it is not necessary to provide a separate touch panel. Therefore, the reflective display device can be thinned.
  • a reflective display device includes any one of the above-described frontlights and a display panel disposed on the light emitting surface side of the light guide plate. It is characterized by having.
  • a low refractive index resin having a refractive index of 1.45 or less is filled between the front light and the display panel. .
  • the reflected light of ambient light on the surface of the light guide plate or the display surface of the display panel can be reduced as compared with the case where the interfaces of the light guide plate and the display panel are in contact with air.
  • the light source of the front light is a light source capable of emitting light in a plurality of different colors, and by sequentially lighting a plurality of different colors of the light source, It is characterized by displaying images.
  • a field sequential display method is employed in which color display is performed using the afterimage effect by sequentially emitting each color and setting the transparency according to each color component in the displayed image. Can do.
  • an electronic device includes any one of the reflective display devices described above.
  • the front light is detachable.
  • a method for manufacturing a front light includes a step of preparing a light source that emits light to the outside, and a light emission while guiding the light of the light source.
  • the reflective display device can be applied to an electronic device such as a mobile phone, a smartphone, or a laptop personal computer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

 フロントライト(1)は、光源(8)と、導光板(9)と、導光板(9)に向けて光を反射する光反射層(2)、および、光反射層(2)を完全に覆って導光板(9)と隙間なく接触し、光を吸収する暗色層(3)からなり、導光板(9)の光出射面とは反対側の面に形成されている複数のドット(4)とを備えている。

Description

フロントライトおよびその製造方法ならびに該フロントライトを備えた反射型表示装置および該反射型表示装置を備えた電子機器
 本発明は、フロントライトおよびその製造方法ならびに該フロントライトを備えた反射型表示装置および該反射型表示装置を備えた電子機器に関する。
 反射型液晶表示装置、電子泳動表示装置、または、エレクトロウェッティング表示装置等、外光等の周囲光を反射して表示を行う非発光型の表示装置では、周囲光のない暗い環境下では表示を視認することができない。そこで、このような非発光型の表示装置の中には、表示パネルを照明するためのフロントライトを表示パネル前面に配置しているものもある。
 フロントライトに要求される性能として、以下の2つが挙げられる。1つは、表示装置を透かして見るために、フロントライト自身が透明であることである。そしてもう1つは、フロントライトによって照明される光は主に表示パネル側に出射され、使用者側に漏れる光が少ないことである。前者は、透明な導光板を使用することによって実現可能である。
 一方、後者を実現するためには、表示パネル側に出射される光の出射強度に対する、使用者側に漏れ出る光の出射強度の比が100よりも大きいことが望まれる。この理由について、図22を参照して説明する。図22は、従来の反射型表示装置30における光の出射強度を説明するための図である。
 図22に示すように、フロントライト11から出射される光のうち、表示パネル15側への出射光Aの出射強度が100cd/mであり、使用者側への出射光Bの出射強度が5cd/mである反射型表示装置30を想定する。表示パネル15は、白表示を行っている領域16の反射率は10%であり、黒表示を行っている領域17の反射率は1%であり、つまりコントラストが10であるとする。この場合、フロントライト11から表示パネル15側への出射光Aのうち、白表示を行っている領域16に入射した光Cは、領域16において反射率10%で反射され、出射強度10cd/mの光が出射される。一方、黒表示を行っている領域17に入射した光Dは、領域17において反射率1%で反射され、出射強度1cd/mの光が出射される。ここで、フロントライト11からは使用者側に出射強度5cd/mの光Bが漏れ出ているので、反射型表示装置30における白輝度は15(=10+5)cd/mとなり、黒輝度は6(=1+5)cd/mとなる。結果、コントラストは2.5まで低下してしまい、表示が悪化してしまう。
 ここで、フロントライト11からの出射光AおよびBの出射強度比(A/B)を変えた場合の反射型表示装置30のコントラストを表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実用上、反射型表示装置30ではコントラストが5以上必要であるので、表1によれば、出射光AおよびBの出射強度比は約100よりも大きい必要である。
 そこで、フロントライトから使用者側へ漏れ出る光を抑えるための工夫が特許文献1には開示されている。特許文献1に開示されている反射型表示装置の断面図を図23に示す。図23に示すように、特許文献1には、プリズム型のフロントライト11が開示されており、光源18からの出射光を導光板19で導光させ、導光板19に形成されたプリズムによって、光の進行方向を変え(図中の矢印E)、表示パネル15を照明する方法が開示されている。しかし、光源18からの出射光の中には、導光板19に形成されたプリズムへの当たり方によって、使用者側に漏れる光(図中の矢印F)が必ず存在する。そのため、特許文献1に開示されているフロントライト11では、表示パネル15側に出射される光の出射強度と、使用者側に漏れ出る光の出射強度との比を100よりも大きくすることが難しく、コントラストの高い表示を行うことが難しい。
 これに対して、特許文献2には、フロントライトから使用者側へ漏れ出る光を抑えるための別の工夫が開示されている。特許文献2に開示されている反射型表示装置の断面図を図24に示す。図24に示すように、特許文献2には、反射層12および暗色層13からなるドット14が形成された導光板19を有するフロントライト11が開示されており、導光板19内を導光する光を反射層12に当たらせることによって(図中の矢印G)、表示パネル15を照明する方法が開示されている。
国際公開公報第00/32981号明細書(2000年6月8日国際公開) 日本国公開特許公報「特開2002-108227号公報(2002年4月10日公開)」
 しかしながら、特許文献2に開示されているフロントライト11では、コントラストの高い表示を行うことが難しい。それは、特許文献2に開示されているフロントライト11において、光源18から出射された光のうち、ドット14の反射層12の側面に当たった光は、使用者側に漏れ出てしまうためである(図中の矢印H)。また、外光等の周囲光がドット14の反射層12の側面に当たった場合も、使用者側に反射されてしまう(図中の矢印I)。
 したがって、特許文献2に開示されているフロントライト11では、反射層12の側面に当たって使用者側に出射する光が存在し、その結果、反射型表示装置30のコントラストを低下させている。その影響は、導光板19の法線方向に対して斜めの角度から反射型表示装置30を見た場合に特に顕著である。
 そこで、本発明は上記の課題に鑑みてなされたものであり、その目的は、反射型表示装置をどの角度から見てもコントラストの高い表示を実現するフロントライトおよびその製造方法ならびに該フロントライトを備えた反射型表示装置および該反射型表示装置を備えた電子機器を提供することにある。
 本発明の一態様に係るフロントライトは、上記の課題を解決するために、光を外部に出射する光源と、上記光源の光を導光する導光板と、上記導光板の光出射面とは反対側の面に形成された複数のドットとを備え、各上記ドットは、上記導光板に接して形成され、光を外部に出射する光反射層、および、上記光反射層を完全に覆って上記導光板と隙間なく接触し、光を吸収する暗色層からなることを特徴としている。
 上記の構成によれば、本発明の一態様に係るフロントライトは、光反射層と暗色層とからなる複数のドットを有している。この際、暗色層は、光反射層を完全に覆い、導光板と隙間なく接触している。したがって、ドットをどの角度から見ても光反射層が見えないように覆っている。
 このようなドットを導光板上に形成した場合、光源からの出射光は導光板内を導光していき、ドットの光反射層に当たって反射され、光出射面側に出射される。光源からの出射光の一部は、導光板内を導光して使用者側に出射されるが、ドットの暗色層によって吸収される。また、外光等の周囲光がフロントライトに入射しても、ドットの暗色層によって吸収される。
 このように、ドットの光反射層が暗色層によって完全に覆われているため、導光板内から使用者側に漏れ出た光、および、フロントライトに入射する周囲光を暗色層で吸収することができる。すなわち、ドットの側面から光反射層が露出していないため、導光板内から使用者側に漏れ出た光、および、フロントライトに入射する周囲光が光反射層に反射して使用者側に出射されるのを防ぐことができる。結果、本発明の一態様に係るフロントライトを用いれば、どの角度から見てもコントラストの高い表示を実現することができる。
 さらに、本発明の一態様に係る反射型表示装置は、上記の課題を解決するために、上述したフロントライトと、上記導光板の上記光出射面側に配置された表示パネルとを備えていることを特徴としている。
 上記の構成によれば、どの角度から見てもコントラストの高い表示を実現する反射型表示装置を提供することができる。
 さらに、本発明の一態様に係る電子機器には、上記の課題を解決するために、上述した反射型表示装置を備えていることを特徴としている。
 上記の構成によれば、どの角度から見てもコントラストの高い表示を実現する表示画面を有する電子機器を提供することができる。
 さらに、本発明の一態様に係るフロントライトの製造方法は、上記の課題を解決するために、光を外部に出射する光源を用意する工程と、上記光源の光を導光させながら、光出射面から外部に出射する導光板を用意する工程と、上記導光板に向けて光を反射する光反射層、および、上記光反射層を完全に覆って上記導光板と隙間なく接触し、光を吸収する暗色層からなり、上記導光板の上記光出射面とは反対側の面に形成されている複数のドットを形成する工程とを含んでいることを特徴としている。
 上記の方法によれば、どの角度から見てもコントラストの高い表示を実現するフロントライトを提供することができる。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。
 本発明の一態様に係るフロントライトによれば、ドットの光反射層が暗色層によって完全に覆われているため、導光板内から使用者側に漏れ出た光、および、フロントライトに入射する周囲光を暗色層で吸収することができる。すなわち、ドットの側面から光反射層が露出していないため、導光板内から使用者側に漏れ出た光、および、フロントライトに入射する周囲光が光反射層に反射して使用者側に出射されるのを防ぐことができる。結果、本発明の一態様に係るフロントライトを用いれば、どの角度から見てもコントラストの高い表示を実現することができる。
 また、本発明の一態様に係るフロントライトの製造方法によれば、どの角度から見てもコントラストの高い表示を実現するフロントライトを提供することができる。
本発明の一実施形態に係るフロントライトにおける光の反射を表す断面図である。 図中の(a)は、本発明の一実施形態に係る反射型表示装置を示す斜視図であり、図中の(b)は、本発明の一実施形態に係る反射型表示装置を示す断面図であり、(c)は、本発明の一実施形態に係る導光板上のドットの断面を示す拡大図である。 図中の(a)は、最小単位面積あたりのドットの面積密度が一定となるように複数のドットを配置した場合の一配置例を示す図であり、図中の(b)は、最小単位面積あたりのドットの面積密度が一定とならないように複数のドットを配置した場合の一配置例を示す図である。 図中の(a)は、導光板上のドットの配置パターンの一例を示す図であり、図中の(b)は、図中の(a)の配置パターンの拡大図であり、図中の(c)は、導光板上のドットの断面を示す拡大図である。 図中の(a)は、導光板上のドットの配置パターンの一例を示す図であり、図中の(b)は、図中の(a)で示したA-A’断面を示す図である。 本発明の一実施形態に係るフロントライトの光照射量ならびにその分布を示す図である。 図中の(a)は、本発明の他の実施形態に係る反射型表示装置を示す断面図であり、図中の(b)は、本発明の他の実施形態に係る導光板上のドットの断面を示す拡大図である。 図中の(a)~(f)は、フォトリソ工程を用いたドットの形成過程を示す図である。 本発明の他の実施形態に係る導光板上のドットの断面を示す拡大図である。 本発明の他の実施形態に係る導光板上のドットの断面を示す拡大図である。 本発明の他の実施形態に係る導光板上のドットの断面を示す拡大図である。 本発明の他の実施形態に係る反射型表示装置を示す断面図である。 本発明の他の実施形態に係る反射型表示装置を示す断面図である。 本発明の他の実施形態に係る反射型表示装置を示す断面図である。 本発明の他の実施形態に係る導光板上のドットの断面を示す拡大図である。 本発明の他の実施形態に係る反射型表示装置を示す断面図である。 本発明の他の実施形態に係る反射型表示装置を示す断面図である。 図中の(a)は、本発明の他の実施形態に係る反射型表示装置を示す断面図であり、図中の(b)は、本発明の他の実施形態に係る導光板上のドットの断面を示す拡大図である。 図中の(a)は、本発明の他の実施形態に係る反射型表示装置を示す断面図であり、図中の(b)は、本発明の他の実施形態に係る導光板上のドットの断面を示す拡大図である。 本発明の他の実施形態に係る反射型表示装置を示す断面図である。 図中の(a)は、取り外し式のフロントライトを有する表示パネルを示す図であり、図中の(b)は、カバー式のフロントライトを有する表示パネルを示す図である。 従来の反射型表示装置における光の出射強度を説明するための図である。 従来の反射型表示装置を示す断面図である。 従来の反射型表示装置を示す断面図である。
 図面に基づいて、本発明の実施形態について詳細に説明する。なお、以下の説明において、同一の機能および作用を示す部材については、同一の符号を付し、説明を省略する。
 〔実施形態〕
 (反射型表示装置10の構成)
 本発明の一実施形態に係るフロントライトを備えた反射型表示装置の構成について、図2を参照して説明する。図2中の(a)は、本発明の一実施形態に係る反射型表示装置10を示す斜視図である。図2中の(b)は、本発明の一実施形態に係る反射型表示装置10を示す断面図である。図2中の(c)は、本発明の一実施形態に係る導光板9上のドット4の断面を示す拡大図である。
 図2中の(a)に示すように、反射型表示装置10は、表示パネル5と、表示パネル5において使用者に画像を表示する側(以下、使用者側と称す)に配置されているフロントライト1とを有している。フロントライト1は、導光板9と、導光板9の側面20c~20fの少なくともいずれかに設けられた光源8とを有している。本図では、側面20cに光源8が設けられている。この際、図2中の(b)に示すように、導光板9の使用者側の面20aは、光がよく導光するように平滑に加工されており、その上には複数のドット4が形成されている。ドット4については、後ほど詳しく説明する。
 面20aと反対側の面20bも、光をよく導光するように平坦に加工されている。また、光源8が設けられている側面20cは平坦であってもよいが、特に限定はない。例えば、光源8が発光ダイオード(LED)等の点光源の場合は、側面20cを梨地面等の光散乱面にしたり、プリズム形状にしたりすることによって、光源8からの光をより均一に入射させることができる。一方、他の側面20d~20fは、光反射面であることが好ましい。これによれば、導光板9内を導光して側面20d~20fまで達した光を再び反射して導光板9内に導くことができるので、光の利用効率を高めることができる。光反射面とするためには、アルミニウム等の金属薄膜を形成したり、白色インク等の光反射率の高い材料を塗布したり、あるいは、光反射シート等を別途貼り付けたりすればよい。もちろん側面20d~20fが光反射面でなくても、本発明の効果が失われるものではない。
 光源8としては、LEDの他、蛍光管、エレクトロルミネッセンス(EL)光源、あるいは、線状導光体を組み合わせた光源等を適用することができる。なお、光源8は、必ずしも白色でなくてもよく、白色以外の特定の色であってもよいし、赤色(R)・緑色(G)・青色(B)等の異なった色の光源を組み合わせたものであってもよい。
 また、導光板9としては、例えばアクリル等の透明樹脂またはガラス等、透光性が高く、ヘイズの少ない材料が好適に用いられる。なお、図2には平板の導光板9を示したが、必ずしもこれに限定されるわけではない。例えば、導光板9は楔形であってもよい。
 (ドット4の構成)
 続いてドット4の構成について詳しく説明する。上述したように、ドット4は、導光板9の使用者側の面20a上に複数形成されている。図2中の(c)に示すように、ドット4は、光反射層2と暗色層3とを有している。光反射層2は、表示パネル5に向けて光を反射する層である。一方、暗色層3は、光を吸収する層であり、光反射層2を完全に覆い、導光板9と隙間なく接触している。したがって、ドット4をどの角度から見ても光反射層2が見えないように覆っている。
 このようなドット4を導光板9上に形成した場合の、フロントライト1における光の反射について、図1を参照して説明する。図1は、フロントライト1における光の反射を表す断面図である。図1に示すように、光源8からの出射光は導光板9内を導光していく。光源8からの出射光のほとんどは光Jのように、ドット4の光反射層2に当たって反射され、表示パネル5側に出射される。光源8からの出射光の一部は光Kのように、導光板9内を導光して使用者側に出射されるが、ドット4の暗色層3によって吸収される。また、外光等の周囲光Lがドット4に入射しても、暗色層3によって吸収される。
 このように、ドット4の光反射層2が暗色層3によって完全に覆われているため、導光板9内から使用者側に漏れ出た光、および、ドット4に入射する周囲光を暗色層3で吸収することができる。すなわち、ドット4の側面から光反射層2が露出していないため、導光板9内から使用者側に漏れ出た光、および、ドット4に入射する周囲光が光反射層2に反射して使用者側に出射されるのを防ぐことができる。結果、反射型表示装置10をどの角度から見てもコントラストの高い表示を実現することができる。
 (ドット4の形成方法)
 ドット4はインクジェット印刷法等の印刷法によって形成すると、低コストで形成できるため好ましい。そこで、ドット4をインクジェット印刷法によって形成する場合の手順を以下に説明する。この場合、光反射層2には光をよく反射する白色インク(光散乱体)を用い、暗色層3には光をよく吸収する黒色インクを用いる。
 まず、導光板9の使用者側の面20aに、白色インクを塗布し、紫外線を照射して硬化させる。このようにして形成した光反射層2を覆うように黒色インクを塗布し、紫外線を照射して硬化させる。これによって、光反射層2を覆う暗色層3が形成され、ドット4が完成する。なお、白色インクおよび黒色インクとして、紫外線硬化性を有しないものを用いる場合は、別途乾燥工程等が必要となる場合がある。
 以上ではドット4をインクジェット印刷法によって形成する方法を示したが、他の印刷法を用いて形成してもよいし、印刷法以外の方法によって形成してもよい。
 (ドット4の配置)
 導光板9上には複数のドット4が配置されているが、複数のドット4は等サイズかつ等ピッチ間隔で配置する等、人間の目で確認できる最小単位面積あたりに、ドット4の占める面積の割合が一定となるように配置されていることが好ましい。換言すれば、最小単位面積あたりのドット4の面積密度が一定となるように複数のドット4を配置することが好ましい。この理由を、図3を参照して説明する。図3中の(a)は、最小単位面積あたりのドット4の面積密度が一定となるように複数のドット4を配置した場合の一配置例を示す図であり、(b)は、最小単位面積あたりのドット4の面積密度が一定とならないように複数のドット4を配置した場合の一配置例を示す図である。
 ドット4の暗色層3は遮光部であるので、その密度が最小単位面積ごとに異なると、導光板9の透過率にバラツキが生じてしまい、結果、反射型表示装置10の反射輝度にバラツキが生じてしまう。そこで、図3中の(a)に示すように、最小単位面積を持つ領域21aおよび21bにおいてドット4が占める面積の割合が等しい場合、すなわち領域21aおよび21bにおけるドット4の面積密度が等しい場合、導光板9の透過率にバラツキはなく、一定である。したがって、反射型表示装置10の反射輝度にもバラツキはなく、良好な表示品位が得られる。
 一方、図3中の(b)に示すように、最小単位面積を持つ領域22aおよび22bにおいてドット4が占める面積の割合が異なる場合、すなわち領域22aおよび22bにおけるドット4の面積密度が異なる場合、導光板9の透過率にバラツキが生じてしまう。具体的には、ドット4の面積密度が高い領域22aでは導光板9の透過率が低いため、反射型表示装置10では暗い表示となってしまう。これに対してドット4の面積密度が低い領域22bでは導光板9の透過率が高いため、反射型表示装置10では明るい表示となる。このように、均一な反射輝度を有する反射型表示装置10とするために、導光板9上の最小単位面積あたりのドット4の面積密度が一定であることが好ましい。
 ここで、最小単位面積とは、人間の目で認識できる最小の単位面積であるが、具体的には、年齢や視力などの個人差はあるものの、およそ0.5mm×0.5mm~2mm×2mmの範囲内の単位面積である。人間の目で認識できない単位面積(例えば、0.1mm×0.1mm)あたりのドット4の面積密度が一定でなくても、それ以上の単位面積である、人間の目で認識できる最小単位面積あたりのドット4の面積密度が一定であれば、反射型表示装置10の反射輝度は略一定に見える。
 (ドット4の配置パターン1)
 以下に、ドット4の具体的な配置パターンの例を示す。図4中の(a)は、導光板9上のドット4の配置パターンの一例を示す図である。図4中の(b)は、図4中の(a)の配置パターンの拡大図である。図4中の(c)は、導光板9上のドット4の断面を示す拡大図である。
 最小単位面積あたりのドット4の面積密度を一定にするには、図3中の(a)に示したように、複数のドット4を等サイズかつ等ピッチ間隔で配置することが最も簡単であるが、表示パネル5の画素の行列と同じ行列状に複数のドット4を配置すると、画素の配列と干渉してモアレが発生する場合がある。この場合、ドット4の配列を画素の配列に対して傾斜させることでモアレの発生を低減する方法がある。
 具体的には、図4中の(a)に示すように、複数のドット4が行列状に配列されたフロントライト1を上面から見た場合に、導光板9の四辺のいずれかの辺に対して、ドット4の行方向の配列(ラインL1)を角度θだけ傾けることが好ましく、角度θは5度~85度の間であることが好ましい。これによって、ドット4の配列と画素の配列とが干渉しないので、モアレの発生を低減することができる。
 また、ドット4の配列ピッチを調節することでモアレの発生を低減する方法もある。具体的には、図4中の(b)に示すように、ドット4のラインL1上の配列ピッチをPとすると、画素のピッチPをドット4の配列ピッチPで除した値が整数にならないような配列ピッチPであることが好ましい。より詳細には、画素ピッチPを配列ピッチPで除した値が整数に近い値にならないように、P/P=(n+0.2)~(n+0.8)(nは整数)を満たす配列ピッチPであることが好ましい。例えば、画素ピッチPが100μmであり、ドット4の配列ピッチPが200μmであると、配列ピッチPは画素ピッチPの2倍(整数倍)であるので、モアレが発生してしまう。一方、画素ピッチPが80μmであり、ドット4の配列ピッチPが200μmであると、配列ピッチPは画素ピッチPの2.5倍(非整数倍)であるので、モアレは発生しづらい。したがって、P/P=(n+0.2)~(n+0.8)(nは整数)を満たすような配列ピッチPとすることによって、モアレの発生を低減することができる。
 なお、最小単位面積あたりのドット4が占める面積の割合を一定に保ちつつ、ドット4の配列ピッチPを変えたり、ドット4のサイズを変えたりすることによってドット4の配列位置をばらつかせ、最小単位面積ごとにドット4の数を変えてモアレの発生を低減することができる。
 (ドット4の配列パターン2)
 以上ではモアレの発生を低減するためのドット4の配列パターンについて説明したが、以下にはモアレの発生を低減するため以外にも好適に適用され得る配列パターンについて説明する。
 図4中の(a)に示したように、複数のドット4をマトリクス状に配列することが好ましいが、図4中の(b)に示すように、複数のドット4は最密配置(デルタ配置)にすることが好ましい。換言すれば、導光板9上の任意の1つのドット4に最も近接する他のドット4までの距離が均等になるように配置することが好ましい。したがって、互いに最も近接する3つのドット4は正三角形をなしており、ラインL1上のドット4の配列ピッチPと、隣り合うラインL1およびL2において最も近接するドット4間のピッチPとは等しい。隣り合うラインL1およびL2において最も近接するドット4を結んだ線分と、ラインL1およびL2とがなす角度はそれぞれ60°である。図4中の(c)に示すように、光源8からの出射光は、1つのドット4によって所定の広がりを持って表示パネル5側に出射される。そのため、複数のドット4を最密配置することによって、各ドット4が表示パネル5を満遍なく照射することができる。
 また、ドット4のサイズ、すなわち暗色層3のサイズS(暗色層3の幅)は、画素サイズよりも小さいことが好ましい。これは、暗色層3のサイズSが画素サイズと同等、または、画素サイズよりも大きい場合、ドット4(暗色層3)が特定の画素を隠してしまい、ドット4のところだけ孔が空いたような表示になってしまうためである。
 なお、ドット4の高さHに関しては、高さHが小さいほど光反射層2を薄膜にできる点で好ましいが、光反射層2の反射率や暗色層3の光吸収率等に応じて、適当な高さに設定すればよく、特に限定はない。
 なお、反射型表示装置10の反射輝度を均一にするために、最小単位面積あたりのドット4が占める面積の割合を一定にしているが、実際に反射型表示装置10の反射輝度に影響を与えているのは、表示パネル5からの反射光を遮光する暗色層3である。そのため、最小単位面積あたりの暗色層3が占める面積の割合が一定であれば、光反射層2のサイズ(光反射層2の幅)は一定でなくてもよい。そこで、光反射層2のサイズを変えることによって、フロントライト1の照射輝度の面内分布を調整することもできる。これについて、図5を参照して説明する。図5中の(a)は、導光板9上のドット4の配置パターンの一例を示す図であり、(b)は、(a)で示したA-A’断面を示す図である。
 図5中の(b)に示すように、暗色層3のサイズSは一定であるが、光反射層2のサイズSに関しては、光源8に近いドット4ほど光反射層2のサイズSを小さくし、光源8に離れているドット4ほど光反射層2のサイズSを大きくしている。これによって、各ドット4における照射光の広がりを調整することができるので、フロントライト1の照度輝度の面内分布を均一にすることができる。
 本実施形態に係るフロントライト1の光照射量ならびにその分布を図6に示す。図6に示すように、上述した好適な実施形態を適用することによって、表示パネル5を満遍なく均一に照射できることが分かる。また、反射型表示装置10の反射輝度も均一であり、モアレの発生も低減することができるので、より良好な表示品位を有する反射型表示装置10を提供することができる。
 なお、以上ではドット4の配置、各種寸法について好適な実施形態を示したが、本発明に係るフロントライト1にはこれらの好適な実施形態は必須ではない。したがって、本発明に係るフロントライト1は、光を外部に出射する光源8と、光源8の光を導光する導光板9と、導光板9の光出射面とは反対側の面に形成された複数のドット4とを備え、各ドット4は、導光板9に接して形成され、光を外部に向けて出射する光反射層2、および、光反射層2を完全に覆って導光板9と隙間なく接触し、光を吸収する暗色層3からなるだけで、反射型表示装置10をどの角度から見てもコントラストの高い表示を実現することができる。
 〔変形例〕
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。そこで、上述した実施形態の変形例として、いくつかの変形例を以下に示す。
 (変形例1)
 ドット4は、印刷法によって形成する方法以外にも、例えばフォトリソ工程を用いて形成することができる。そこで、フォトリソ工程を用いてドット4を形成したフロントライト1について、図7および8を参照して説明する。図7中の(a)は、本発明の他の実施形態に係る反射型表示装置10を示す断面図である。図7中の(b)は、本発明の他の実施形態に係る導光板9上のドット4の断面を示す拡大図である。図8中の(a)~(f)は、フォトリソ工程を用いたドット4の形成過程を示す図である。
 ドット4をフォトリソ工程によって形成する場合の手順を以下に説明する。この場合、光反射層2には白色レジストインクを用い、暗色層3には黒色レジストインクを用いる。白色レジストインクとしては、太陽インキ社製の「白色ソルダーレジスト」等が適用できる。また、黒色レジストインクとしては、東京応化社製の「カラーフィルターブラックマトリクス形成用顔料分散型フォトレジスト」等が適用できる。
 まず、導光板9となるアクリル板に、白色レジストインク2’を全面に塗布する(図8中の(a))。その後、フォトマスク6を介して紫外線を露光し、白色レジストインク2’を部分的に感光させる(図8中の(b))。そして現像液で現像すると、感光した白色レジストインク2’が残り、光反射層2が形成される(図8中の(c))。
 続いて、その上から黒色レジストインク3’を全面に塗布する(図8中の(d))。その後、フォトマスク7を介して紫外線を露光し、黒色レジストインク3’を部分的に感光させる(図8中の(e))。そして現像液で現像すると、感光した黒色レジストインク3’が残り、暗色層3が形成される(図8中の(f))。このようにして、ドット4が完成する。
 このようにして形成した複数のドット4は、図7中の(a)に示すように、上述した実施形態と変わりはない。ただし、フォトリソ工程は印刷法よりもコストが高いが、印刷法よりも精度が高いので、ドット4を精緻に形成することができるという利点がある。したがって、より小さいドット4を細かいサイズ(幅)および細かいピッチで形成可能である。
 例えば、印刷法では人間の目では認識不可能な20μm以下のサイズ(幅)を持つドット4を形成することは難しいが、フォトリソ工程では容易に形成することができる。これには、ドット4のサイズが細かいほど人間の目では認識されづらくなるため、表示品位を高めることができる点で好ましい他、反射型表示装置10の画素サイズよりも十分小さいので、モアレが発生しづらくなるという利点がある。
 さらに、印刷法によって形成したドット4は、丸みを帯びた形状となるので、ドット4の厚みが一定ではなく、光反射層2のエッジ付近の厚さが薄いため、光反射率が低くなる傾向がある。これに対してフォトリソ工程では、図7中の(b)に示すように、比較的平坦な層を形成することができるので、ドット4内のすべての領域において一定の高い反射率が得られる。
 (変形例2)
 本発明の他の実施形態に係る導光板9上のドット4の断面を示す拡大図を図9に示す。図9に示すように、導光板9上に予め窪みを形成しておき、その窪みに白色インクを充填して光反射層2を形成し、その上に黒色インクを重ねて暗色層3を形成してドット4を形成してもよい。この場合、導光板9上に窪みを形成せずに光反射層2および暗色層3を形成する場合と比較して、ドット4の導光板9上からの突出具合を小さくできるので、ドット4が引っ掛かって、剥離してしまうのを防ぐことができる。
 (変形例3)
 本発明の他の実施形態に係る導光板9上のドット4の断面を示す拡大図を図10に示す。図10に示すように、光反射層2の材料として白色インクの他に、銀ペースト等の銀色インク、または、アルミニウム膜または銀膜等の金属薄膜等の金属材料2aを用いてもよい。この場合、白色インクからなる光反射層2は光散乱性が高いのに対して、金属材料2aからなる光反射層2は鏡面反射性が高いので、高い光反射が望める。ただし、金属材料2aからなる光反射層2が完全鏡面であると、表示パネル5からの光を導光板9から出射することができない。
 そこで、光反射層2として金属材料2aを用いる場合は、光反射層2に光散乱性を付加することが好ましい。例えば、導光板9上にプリズム面または梨地面等の光散乱面23(凹凸面)を形成しておき、その上に銀色インクまたは金属薄膜等の金属材料2aで光反射層2を形成することによって、光反射層2の鏡面は白色面となる。そのため、導光板9からの光を効率よく取り出すことができる。特に、光反射層2を金属材料2aで形成すると、白色インクで光反射層2を形成する場合と比較して、薄い膜厚で高い光反射が得られる。よって、ドット4の高さを小さくすることができるという利点がある。
 (変形例4)
 本発明の他の実施形態に係る導光板9上のドット4の断面を示す拡大図を図11に示す。図11に示すように、光反射層2は、複数の材料からなる複合層であってもよい。例えば、導光板9上に白色インク2bからなる層を形成し、その上に銀色インクまたは金属薄膜等の金属材料2aからなる層を形成して光反射層2を形成する。これによって、白色インク2bからなる層で散乱されずそのまま透過した光を、金属材料2aからなる層で導光板9の方へと反射することができる。そのため、暗色層3で吸収される光を少なくし、光利用効率を高めることができる。特に、変形例3と同様に光反射層2の膜厚を薄くしつつ高い光反射が得られるので、ドット4の高さを小さくすることができるという利点がある。さらに、変形例3のように導光板9上に光散乱面23を形成することなく導光板9からの光を効率よく取り出すことができ、未加工の平坦な導光板9を用いることができるので、フロントライト1の形成工程を簡素化できる。
 (変形例5)
 本発明の他の実施形態に係る反射型表示装置10の断面図を図12に示す。図12に示すように、導光板9の表面(使用者側の面20aおよびその反対側の面20b)、あるいは、表示パネル5の表示面等に各種の機能層24を設けてもよい。機能層24としては、例えば光反射を防止する反射防止層、表面を傷から護るハードコート層、または、埃の付着を防止する帯電防止層等が挙げられる。
 これらの機能層24は、導光板9の表面に直接形成してもよいし、別途フィルム状に成形したものを貼り合せてもよい。導光板9の使用者側の面20aに機能層24を設ける場合は、面20a上にドット4が形成されており、フィルム状の機能層24を貼り合わせることができないため、面20a上に直接塗布したり、蒸着したりすることが好ましい。
 機能層24として反射防止層を用いる場合、外光等の周囲光が導光板9の表面または表示パネル5の表示面で反射しないので、特に明所において表示のコントラストが高まる効果がある。なお、反射防止層には屈折率の異なる多層膜からなるもの、および、モスアイ構造等からなるものがあるが、機能層24としてはいずれを用いてもよい。また、ハードコート層ならびに帯電防止層の具体例としては、住友大阪セメント社製のスミセファインASHC-204がある。
 また、機能層24としてハードコート層を用いた場合、導光板9に傷が付くことを防ぐことができる。導光板9に傷が付くと、傷が付いた箇所を光が導光することができず、漏れ出てしまうので、反射型表示装置10の表示面が白く光ってしまい、表示品位が下がってしまう。そこで、ハードコート層を用いることによって、このような問題を防ぐことができる。
 機能層24として帯電防止層を用いた場合、導光板9の表面に埃が付着するのを防ぐことができる。導光板9の表面に埃が付着すると、埃が付着した箇所は白く散乱してしまうので、反射型表示装置10の表示品位が下がってしまう。また、反射型表示装置10を組み立てる際に、導光板9と表示パネル5との間に、人間の目で認識できるサイズの埃が入り込んでしまうと、導光板9を取り外さない限り埃を取り除くことができないので、組立不良となってしまう。そこで、帯電防止層を用いることによって、埃の付着または混入を防ぐことができるので、これらの問題を防ぐことができる。
 (変形例6)
 本発明の他の実施形態に係る反射型表示装置10の断面図を図13に示す。図13に示すように、導光板9の使用者側の面20aに機能層24を設ける場合は、導光板9の使用者側の面20aに機能層24を形成した後に、複数のドット4を形成してもよい。ドット4が形成された導光板9上に機能層24を形成するのが困難な場合には、このようにドット4を形成する前に機能層24を導光板9上に形成してしまうことによって、機能層24を形成しやすくなる。また、この場合は機能層24をフィルム状に形成したものを貼り合わせることもできるので、フロントライト1の形成工程を簡素化できる。
 (変形例7)
 本発明の他の実施形態に係る反射型表示装置10の断面図を図14に示す。図14に示すように、導光板9の使用者側の面20aに平坦化層25を形成した上に機能層24を形成してもよい。ドット4が形成された導光板9上に機能層24を直接形成するのが困難な場合には、このように導光板9の使用者側の面20aを平坦化層25で平坦化した後、機能層24を貼り合わせることによって、機能層24を形成しやすくなる。また、フィルム状にした機能層24を用いることができるので、フロントライト1の形成工程を簡素化できる。さらに、複数のドット4が平坦化層25によって平坦化されているため、ドット4が剥離してしまう虞がなく、特に機能層24としてハードコート層を用いた場合、その性能をより一層高めることができる。
 ここで、平坦化層25としては少なくとも透光性を有しているものを用いる必要があるが、導光板9の屈折率よりも低い屈折率を有している材料を用いることが好ましい。その理由を、図15を参照して説明する。図15は、本発明の他の実施形態に係る導光板9上のドット4の断面を示す拡大図である。
 図15に示すように、平坦化層25として、導光板9の屈折率よりも高い屈折率を有している材料を用いると、導光板9を導光する光Nは平坦化層25に入り込んで暗色層3で吸収されてしまう。しかし、平坦化層25として、導光板9の屈折率よりも低い屈折率を有している材料を用いると、導光板9を導光する光Mは平坦化層25に入り込みにくくなるので、暗色層3で吸収されることを妨げることができる。以上の理由から、平坦化層25として、導光板9の屈折率よりも低い屈折率を有している材料を用いることが好ましい。
 (変形例8)
 本発明の他の実施形態に係る反射型表示装置10の断面図を図16に示す。図16に示すように、導光板9と表示パネル5との間に低屈折率層26を貼り合せてもよい。低屈折率層26とは、具体的には導光板9の屈折率よりも低い屈折率を有する材料であり、屈折率が1.45以下であることが好ましい。例えば、JSR社製のUV硬化樹脂オプスター等が適用可能である。
 このように導光板9と表示パネル5との間に低屈折率層26を貼り合わせると、変形例5において導光板9と表示パネル5との間の機能層24として反射防止層を用いる場合と同様の効果を得ることができる。具体的には、低屈折率層26と導光板9との界面、および、低屈折率層26と表示パネル5との界面は、屈折率マッチングをしていないので、導光板9の表面または表示パネル5の表示面で反射した周囲光の反射光は多少残ってしまう。しかしながら、導光板9および表示パネル5それぞれの界面が空気と接している場合と比較して、導光板9の表面または表示パネル5の表示面における周囲光の反射光を低減することができる。
 (変形例9)
 本発明の他の実施形態に係る反射型表示装置10の断面図を図17に示す。図17に示すように、光源8として複数色に発光可能なLED8aを用いてもよい。この場合、それぞれの色を順次発光させ、表示する画像におけるそれぞれの色成分に応じた透過度にすることによって、残像効果を利用してカラー表示を行うフィールドシーケンシャル表示方式を採る。例えば、赤色(R)・緑色(G)・青色(B)に発光するLED8aを用いて、各色を6msec(=1/3フレーム期間)ごとに順次発光させて、フルカラー表示を行うことができる。
 複数色に発光可能なLED8aを用いる場合、表示パネル5としてはモノクロ表示パネル5aが使用できる。モノクロ表示パネル5aは、カラーフィルタが不要であるので、カラーフィルタに起因した反射率の低下がない。よって、高い反射率を有する反射型表示装置10を得ることができる。
 (変形例10)
 本発明のさらに他の実施形態を図18に示す。図18中の(a)は、本発明の他の実施形態に係る反射型表示装置10を示す断面図である。図18中の(b)は、本発明の他の実施形態に係る導光板9上のドット4の断面を示す拡大図である。
 図18中の(a)に示すように光源8として青色LED8bを用い、図18中の(b)に示すように導光板9上に黄色蛍光層27を形成し、その上に光反射層2を形成した後、暗色層3で黄色蛍光層27および光反射層2を覆ってドット4を形成してもよい。この場合、ドット4の黄色蛍光層27は、青色LED8bからの青色光が透過することによって蛍光する特性を利用する。そのため、フロントライト1では、青色LED8bから青色光を出射させることによって、青色LED8bから出射されたままの青色光と、黄色蛍光層27を透過して蛍光されることで出射された黄色光とを混色して白色光を生成し、表示パネル5を照射している。このように、青色LED8bと黄色蛍光層27とを利用して生成した白色光を表示に用いてもよい。
 (変形例11)
 本発明のさらに他の実施形態を図19に示す。図19中の(a)は、本発明の他の実施形態に係る反射型表示装置10を示す断面図である。図19中の(b)は、本発明の他の実施形態に係る導光板9上のドット4の断面を示す拡大図である。
 図19中の(a)に示すように光源8として近紫外LED8cを用い、図19中の(b)に示すように導光板9上に赤色蛍光層、緑色蛍光層および青色蛍光層を合わせたRGB蛍光層28を形成し、その上に光反射層2を形成した後、暗色層3でRGB蛍光層28および光反射層2を覆ってドット4を形成してもよい。この場合、ドット4のRGB蛍光層28は、近紫外LED8cからの近紫外光が透過することによって蛍光する特性を利用する。そのため、フロントライト1では、近紫外LED8cから光を出射させることによって、近紫外LED8cから出射された近紫外光がRGB蛍光層28を透過して蛍光されることで出射された赤色光、緑色光および青色光を混色して白色光を生成し、表示パネル5を照射している。このように、近紫外LED8cとRGB蛍光層28とを利用して生成した白色光を表示に用いていもよい。
 (変形例12)
 本発明の他の実施形態に係る反射型表示装置10の断面図を図20に示す。図20に示すように、反射型表示装置10はタッチパネルを兼ねていてもよい。具体的には、導光板9の使用者側の面20aとは反対側の面20bに、透明電極29を搭載し、指等が触れた場合の静電容量を感知する。これによって反射型表示装置10はタッチパネルとして機能することができ、別途タッチパネルを設ける必要がないので、反射型表示装置10を薄型化することができる。
 (変形例13)
 本発明のさらに他の実施形態に係る反射型表示装置10を図21に示す。図21中の(a)は、取り外し式のフロントライト1を有する表示パネル5を示す図であり、図21中の(b)は、カバー式のフロントライト1を有する表示パネル5を示す図である。
 図21に示すように、フロントライト1は表示パネル5の表示面側に固定されている必要はなく、着脱可能に設けられていてもよい。例えば、図21中の(a)に示すように、フロントライト1を取り外し可能な構造とし、フロントライト1が必要なときに表示パネル5にツメまたは磁石等によって装着するようにしてもよい。あるいは、図21中の(b)に示すように、フロントライト1を表示パネル5の端部に回転可能に固定しておき、フロントライト1が必要なときにフロントライト1を回転して表示パネル5の表示面をカバーするようにしてもよい。
 なお、反射型表示装置10は、反射型液晶表示装置、電子泳動表示装置、または、エレクトロウェッティング表示装置等、外光等の周囲光を反射して表示を行う非発光型の表示装置である。反射型表示装置10は、例えば携帯電話、スマートフォン、または、ラップトップ型パーソナルコンピュータ等の電子機器に適用することができる。これらの電子機器では、フロントライト1の取り付け方法に特に限定はないが、上述したように、フロントライト1を着脱可能にすることによって、フロントライト1が必要なときだけ取り付ける等、使用する環境に応じて使い分けることができる。
 本発明は上述した実施形態ならびに変形例に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、異なる実施形態あるいは変形例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。
 〔実施形態の総括〕
 以上のように、本発明の一態様に係るフロントライトは、上記の課題を解決するために、光を外部に出射する光源と、上記光源の光を導光する導光板と、上記導光板の光出射面とは反対側の面に形成された複数のドットとを備え、各上記ドットは、上記導光板に接して形成され、光を外部に出射する光反射層、および、上記光反射層を完全に覆って上記導光板と隙間なく接触し、光を吸収する暗色層からなることを特徴としている。
 上記の構成によれば、本発明の一態様に係るフロントライトは、光反射層と暗色層とからなる複数のドットを有している。この際、暗色層は、光反射層を完全に覆い、導光板と隙間なく接触している。したがって、ドットをどの角度から見ても光反射層が見えないように覆っている。
 このようなドットを導光板上に形成した場合、光源からの出射光は導光板内を導光していき、ドットの光反射層に当たって反射され、光出射面側に出射される。光源からの出射光の一部は、導光板内を導光して使用者側に出射されるが、ドットの暗色層によって吸収される。また、外光等の周囲光がフロントライトに入射しても、ドットの暗色層によって吸収される。
 このように、ドットの光反射層が暗色層によって完全に覆われているため、導光板内から使用者側に漏れ出た光、および、フロントライトに入射する周囲光を暗色層で吸収することができる。すなわち、ドットの側面から光反射層が露出していないため、導光板内から使用者側に漏れ出た光、および、フロントライトに入射する周囲光が光反射層に反射して使用者側に出射されるのを防ぐことができる。結果、本発明の一態様に係るフロントライトを用いれば、どの角度から見てもコントラストの高い表示を実現することができる。
 さらに、本発明の一態様に係るフロントライトにおいては、上記複数のドットは、上記導光板上において一定の単位面積あたりに、上記複数のドットの占める面積の割合が一定となるように配置されていることを特徴としている。
 上記の構成によれば、ドットの暗色層は遮光部であるので、その密度が単位面積ごとに異なると、導光板の透過率にバラツキが生じてしまい、結果、フロントライトが搭載される反射型表示装置の反射輝度にバラツキが生じてしまう。そこで、単位面積あたりのドットの面積密度を等しくすると、導光板の透過率にバラツキはなく、一定である。したがって、フロントライトが搭載される反射型表示措置の反射輝度にもバラツキはなく、良好な表示品位が得られる。
 さらに、本発明の一態様に係るフロントライトにおいては、上記複数のドットは、上記光源に近い上記ドットほど上記光反射層のサイズが小さく、上記光源に離れている上記ドットほど上記光反射層のサイズが大きいことを特徴としている。
 上記の構成によれば、各ドットにおける照射光の広がりを調整することができるので、フロントライトの照度輝度の面内分布を均一にすることができる。
 さらに、本発明の一態様に係るフロントライトにおいては、上記複数のドットは、行列状に配列しており、等しい配列ピッチで行方向に配列しており、かつ、等しい配列ピッチで列方向に配列していることを特徴としている。
 上記の構成によれば、単位面積あたりのドットの面積密度が一定となるので、フロントライトが搭載される反射型表示装置の反射輝度は均一となる。
 さらに、本発明の一態様に係るフロントライトにおいては、上記複数のドットのうち、任意の1つの上記ドットと、それに最も近接する2つの上記ドットとは、正三角形をなしていることを特徴としている。
 光源からの出射光は、1つのドットによって所定の広がりを持って光出射面側に出射される。そのため、上記の構成によれば、複数のドットを最密配置することによって、各ドットが光出射面側を満遍なく照射することができる。
 さらに、本発明の一態様に係るフロントライトにおいては、上記複数のドットの上記行方向の配列は、上記導光板を上記光出射面側から見た場合に、上記導光板の四辺のいずれかに対して、5度~85度傾いていることを特徴としている。
 フロントライトが搭載される反射型表示装置の画素の行列と同じ行列状に複数のドットを配置すると、画素の配列と干渉してモアレが発生する場合がある。そのため、上記の構成によれば、ドットの行方向の配列を傾けることによって、ドットの配列と画素の配列とが干渉しないので、モアレの発生を低減することができる。
 さらに、本発明の一態様に係るフロントライトにおいては、上記複数のドットの上記行方向の上記配列ピッチは、画素ピッチの(n+0.2)倍~(n+0.8)倍(nは整数)であることを特徴としている。
 画素のピッチをドットの行方向の配列ピッチで除した値が整数になると、モアレが発生してしまう。そのため、画素ピッチをドットの行方向の配列ピッチで除した値が整数に近い値にならないように、ドットの行方向の配列ピッチは、画素ピッチの(n+0.2)倍~(n+0.8)倍(nは整数)であることが好ましい。これによって、モアレの発生を低減することができる。
 さらに、本発明の一態様に係るフロントライトにおいては、各上記ドットの上記暗色層のサイズは、画素サイズよりも小さいことを特徴としている。
 上記の構成によれば、暗色層のサイズが画素サイズと同等、または、画素サイズよりも大きい場合、ドット(暗色層)が特定の画素を隠してしまい、ドットのところだけ孔が空いたような表示になるのを防ぐことができる。
 さらに、本発明の一態様に係るフロントライトにおいては、各上記ドットの上記暗色層のサイズは、20μm以下であることを特徴としている。
 上記の構成によれば、ドットのサイズが細かいほど人間の目では認識されづらくなるため、表示品位を高めることができる他、モアレが発生しづらくなる。
 さらに、本発明の一態様に係るフロントライトにおいては、上記光源は、上記導光板の上記光出射面ならびに上記光出射面とは反対側の面を除いた4つの側面のいずれかに設けられており、上記導光板の4つの側面のうち、上記光源が設けられていない側面は、光反射面であることを特徴としている。
 上記の構成によれば、導光板内を導光して側面まで達した光を再び反射して導光板内に導くことができるので、光の利用効率を高めることができる。
 さらに、本発明の一態様に係るフロントライトにおいては、各上記ドットの上記光反射層は、光散乱体であることが好ましい。
 上記の構成によれば、光反射層が光を反射する際に、反射光を散乱することができる。
 さらに、本発明の一態様に係るフロントライトにおいては、上記導光板上には、各上記ドットの上記光反射層に対応する箇所に凹凸面が形成されており、各上記ドットの上記光反射層は、上記凹凸面上に形成された金属材料であることが好ましい。
 上記の構成によれば、凹凸面によって光反射層の鏡面は白色面となるため、導光板からの光を効率よく取り出すことができる。特に、光反射層を金属材料で形成すると、薄い膜厚で高い光反射が得られる。よって、ドットの高さを小さくすることができる。
 さらに、本発明の一態様に係るフロントライトにおいては、各上記ドットの上記光反射層は、上記導光板側から順に光散乱体および金属材料を積層してなることを特徴としている。
 上記の構成によれば、光散乱体からなる層で散乱されずそのまま透過した光を、金属材料からなる層で導光板の方へと反射することができる。そのため、暗色層で吸収される光を少なくし、光利用効率を高めることができる。特に、光反射層を金属材料で形成すると、光反射層の膜厚を薄くしつつ高い光反射が得られるので、ドットの高さを小さくすることができる。
 さらに、本発明の一態様に係るフロントライトにおいては、上記導光板上には、各上記ドットの上記光反射層に対応する箇所に窪みが形成されており、各上記ドットの上記光反射層は、上記窪みに形成されていることを特徴としている。
 上記の構成によれば、ドットの導光板上からの突出具合を小さくできるので、ドットが引っ掛かって、剥離してしまうのを防ぐことができる。
 さらに、本発明の一態様に係るフロントライトにおいては、上記導光板において上記複数のドットが形成されている面に、機能層が形成されていることを特徴としている。
 上記の構成によれば、各種の機能層をフロントライトに設けることができる。
 さらに、本発明の一態様に係るフロントライトにおいては、上記光源は、複数色に発光可能な光源であることを特徴としている。
 上記の構成によれば、それぞれの色を順次発光させ、表示する画像におけるそれぞれの色成分に応じた透過度にすることによって、残像効果を利用してカラー表示を行うフィールドシーケンシャル表示方式を採ることができる。
 さらに、本発明の一態様に係るフロントライトにおいては、上記光源は、青色に発光する光源であり、各上記ドットの上記光反射層と上記導光板との間に、黄色蛍光層が形成されていることを特徴としている。
 上記の構成によれば、青色に発光する光源と黄色蛍光層とを利用して生成した白色光を表示に用いることができる。
 さらに、本発明の一態様に係るフロントライトにおいては、上記光源は、近紫外光を発光する光源であり、各上記ドットの上記光反射層と上記導光板との間に、赤色蛍光層、緑色蛍光層および青色蛍光層が形成されていることを特徴としている。
 上記の構成によれば、近紫外光を発光する光源と、赤色蛍光層、緑色蛍光層および青色蛍光層とを利用して生成した白色光を表示に用いることができる。
 さらに、本発明の一態様に係るフロントライトにおいては、上記導光板において上記複数のドットが形成されている面に、上記複数のドットを覆うようにして機能層が形成されていることを特徴としている。
 上記の構成によれば、各種の機能層をフロントライトに設けることができる。
 さらに、本発明の一態様に係るフロントライトにおいては、上記導光板の上記光出射面とは反対側の面に、機能層が形成されており、上記機能層の上記導光板とは反対側の面に、上記複数のドットが形成されていることを特徴としている。
 上記の構成によれば、ドットが形成された導光板上に機能層を形成するのが困難な場合には、このようにドットを形成する前に機能層を導光板上に形成してしまうことによって、機能層を形成しやすくなる。
 さらに、本発明の一態様に係るフロントライトにおいては、上記導光板において上記複数のドットが形成されている面を平坦にする平坦化層が形成されており、上記平坦化層の上記導光板とは反対側の面に、機能層が形成されていることを特徴としている。
 上記の構成によれば、ドットが形成された導光板上に機能層を直接形成するのが困難な場合には、このように導光板の使用者側の面を平坦化層で平坦化した後、機能層を貼り合わせることによって、機能層を形成しやすくなる。
 さらに、本発明の一態様に係るフロントライトにおいては、上記導光板の上記光出射面に、機能層が形成されていることを特徴としている。
 上記の構成によれば、各種の機能層を導光板の光出射面にも設けることができる。
 さらに、本発明の一態様に係るフロントライトにおいては、上記機能層は、反射防止性、ハードコート性、および、帯電防止性のいずれかを有していることを特徴としている。
 上記の構成によれば、機能層として、光反射を防止する反射防止層、表面を傷から護るハードコート層、または、埃の付着を防止する帯電防止層等を設けることができる。
 さらに、本発明の一態様に係るフロントライトにおいては、上記導光板に電極が形成され、タッチパネルとして機能することを特徴としている。
 上記の構成によれば、フロントライトが搭載される反射型表示装置はタッチパネルとして機能することができ、別途タッチパネルを設ける必要がないので、反射型表示装置を薄型化することができる。
 さらに、本発明の一態様に係る反射型表示装置は、上記の課題を解決するために、上述したいずれかのフロントライトと、上記導光板の上記光出射面側に配置された表示パネルとを備えていることを特徴としている。
 上記の構成によれば、どの角度から見てもコントラストの高い表示を実現する反射型表示装置を提供することができる。
 さらに、本発明の一態様に係る反射型表示装置においては、上記フロントライトと上記表示パネルとの間に、屈折率が1.45以下の低屈折率樹脂が充填されていることを特徴としている。
 上記の構成によれば、導光板および表示パネルそれぞれの界面が空気と接している場合と比較して、導光板の表面または表示パネルの表示面における周囲光の反射光を低減することができる。
 さらに、本発明の一態様に係る反射型表示装置においては、上記フロントライトの上記光源は、複数の異なる色に発光可能な光源であり、上記光源の複数の異なる色を順次点灯させることによって、画像を表示することを特徴としている。
 上記の構成によれば、それぞれの色を順次発光させ、表示する画像におけるそれぞれの色成分に応じた透過度にすることによって、残像効果を利用してカラー表示を行うフィールドシーケンシャル表示方式を採ることができる。
 さらに、本発明の一態様に係る電子機器には、上記の課題を解決するために、上述したいずれかの反射型表示装置を備えていることを特徴としている。
 上記の構成によれば、どの角度から見てもコントラストの高い表示を実現する表示画面を有する電子機器を提供することができる。
 さらに、本発明の一態様に係る電子機器においては、上記フロントライトが着脱可能であることを特徴としている。
 上記の構成によれば、フロントライトが必要なときだけ取り付ける等、使用する環境に応じて使い分けることができる。
 さらに、本発明の一態様に係るフロントライトの製造方法は、上記の課題を解決するために、光を外部に出射する光源を用意する工程と、上記光源の光を導光させながら、光出射面から外部に出射する導光板を用意する工程と、上記導光板に向けて光を反射する光反射層、および、上記光反射層を完全に覆って上記導光板と隙間なく接触し、光を吸収する暗色層からなり、上記導光板の上記光出射面とは反対側の面に形成されている複数のドットを形成する工程とを含んでいることを特徴としている。
 上記の方法によれば、どの角度から見てもコントラストの高い表示を実現するフロントライトを提供することができる。
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内で、いろいろと変更して実施することができるものである。
 本発明の一態様に係る反射型表示装置は、例えば携帯電話、スマートフォン、または、ラップトップ型パーソナルコンピュータ等の電子機器に適用することができる。
1 フロントライト
2 光反射層
3 暗色層
4 ドット
5 表示パネル
6,7 フォトマスク
8 光源
9 導光板
10 反射型表示装置
11 フロントライト
12 光反射層
13 暗色層
14 ドット
15 表示パネル
18 光源
19 導光板
23 光散乱面
24 機能層
25 平坦化層
26 低屈折率層
27 黄色蛍光層
28 RGB蛍光層
29 透明電極
30 反射型表示装置

Claims (21)

  1.  光を外部に出射する光源と、
     上記光源の光を導光する導光板と、
     上記導光板の光出射面とは反対側の面に形成された複数のドットとを備え、
     各上記ドットは、上記導光板に接して形成され、光を外部に出射する光反射層、および、上記光反射層を完全に覆って上記導光板と隙間なく接触し、光を吸収する暗色層からなることを特徴とするフロントライト。
  2.  上記複数のドットは、上記導光板上において一定の単位面積あたりに、上記複数のドットの占める面積の割合が一定となるように配置されていることを特徴とする請求項1に記載のフロントライト。
  3.  上記複数のドットは、上記光源に近い上記ドットほど上記光反射層のサイズが小さく、上記光源に離れている上記ドットほど上記光反射層のサイズが大きいことを特徴とする請求項2に記載のフロントライト。
  4.  上記複数のドットは、行列状に配列しており、等しい配列ピッチで行方向に配列しており、かつ、等しい配列ピッチで列方向に配列していることを特徴とする請求項2または3に記載のフロントライト。
  5.  上記複数のドットのうち、任意の1つの上記ドットと、それに最も近接する2つの上記ドットとは、正三角形をなしていることを特徴とする請求項4に記載のフロントライト。
  6.  上記複数のドットの上記行方向の配列は、上記導光板を上記光出射面側から見た場合に、上記導光板の四辺のいずれかに対して、5度~85度傾いていることを特徴とする請求項4または5に記載のフロントライト。
  7.  上記複数のドットの上記行方向の上記配列ピッチは、画素ピッチの(n+0.2)倍~(n+0.8)倍(nは整数)であることを特徴とする請求項4~6のいずれか1項に記載のフロントライト。
  8.  各上記ドットの上記暗色層のサイズは、画素サイズよりも小さいことを特徴とする請求項1~7のいずれか1項に記載のフロントライト。
  9.  各上記ドットの上記暗色層のサイズは、20μm以下であることを特徴とする請求項1~8のいずれか1項に記載のフロントライト。
  10.  上記光源は、上記導光板の上記光出射面ならびに上記光出射面とは反対側の面を除いた4つの側面のいずれかに設けられており、
     上記導光板の4つの側面のうち、上記光源が設けられていない側面は、光反射面であることを特徴とする請求項1~9のいずれか1項に記載のフロントライト。
  11.  各上記ドットの上記光反射層は、光散乱体であることを特徴とする請求項1~10のいずれか1項に記載のフロントライト。
  12.  上記導光板上には、各上記ドットの上記光反射層に対応する箇所に凹凸面が形成されており、
     各上記ドットの上記光反射層は、上記凹凸面上に形成された金属材料であることを特徴とする請求項1~10のいずれか1項に記載のフロントライト。
  13.  各上記ドットの上記光反射層は、上記導光板側から順に光散乱体および金属材料を積層してなることを特徴とする請求項1~10のいずれか1項に記載のフロントライト。
  14.  上記導光板上には、各上記ドットの上記光反射層に対応する箇所に窪みが形成されており、
     各上記ドットの上記光反射層は、上記窪みに形成されていることを特徴とする請求項1~10のいずれか1項に記載のフロントライト。
  15.  上記導光板において上記複数のドットが形成されている面に、機能層が形成されていることを特徴とする請求項1~14のいずれか1項に記載のフロントライト。
  16.  請求項1~15のいずれか1項に記載のフロントライトと、上記導光板の上記光出射面側に配置された表示パネルとを備えていることを特徴とする反射型表示装置。
  17.  上記フロントライトと上記表示パネルとの間に、屈折率が1.45以下の低屈折率樹脂が充填されていることを特徴とする請求項16に記載の反射型表示装置。
  18.  上記フロントライトの上記光源は、複数の異なる色に発光可能な光源であり、
     上記光源の複数の異なる色を順次点灯させることによって、画像を表示することを特徴とする請求項16または17に記載の反射型表示装置。
  19.  請求項16~18のいずれか1項に記載の反射型表示装置を備えていることを特徴とする電子機器。
  20.  上記フロントライトが着脱可能であることを特徴とする請求項19に記載の電子機器。
  21.  光を外部に出射する光源を用意する工程と、
     上記光源の光を導光させながら、光出射面から外部に出射する導光板を用意する工程と、
     上記導光板に向けて光を反射する光反射層、および、上記光反射層を完全に覆って上記導光板と隙間なく接触し、光を吸収する暗色層からなり、上記導光板の上記光出射面とは反対側の面に形成されている複数のドットを形成する工程とを含んでいることを特徴とするフロントライトの製造方法。
PCT/JP2012/066440 2011-07-21 2012-06-27 フロントライトおよびその製造方法ならびに該フロントライトを備えた反射型表示装置および該反射型表示装置を備えた電子機器 WO2013011813A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/233,225 US9134475B2 (en) 2011-07-21 2012-06-27 Front light and method for producing same, reflective display device provided with front light, and electronic equipment provided with reflective display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011160254 2011-07-21
JP2011-160254 2011-07-21

Publications (1)

Publication Number Publication Date
WO2013011813A1 true WO2013011813A1 (ja) 2013-01-24

Family

ID=47557994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066440 WO2013011813A1 (ja) 2011-07-21 2012-06-27 フロントライトおよびその製造方法ならびに該フロントライトを備えた反射型表示装置および該反射型表示装置を備えた電子機器

Country Status (2)

Country Link
US (1) US9134475B2 (ja)
WO (1) WO2013011813A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150117055A1 (en) * 2013-10-24 2015-04-30 E Ink Holdings Inc. Display apparatus
WO2016056052A1 (ja) * 2014-10-06 2016-04-14 堺ディスプレイプロダクト株式会社 導光ユニット、光源装置及び表示装置
CN105765644A (zh) * 2013-11-28 2016-07-13 三菱电机株式会社 显示装置
JP2019066643A (ja) * 2017-09-29 2019-04-25 デクセリアルズ株式会社 光学体、光学体の製造方法、及び発光装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103032766A (zh) * 2012-12-12 2013-04-10 京东方科技集团股份有限公司 一种背光模组以及显示装置
JP2014150245A (ja) * 2013-01-08 2014-08-21 Rohm Co Ltd 発光素子および発光素子パッケージ
TWI499816B (zh) * 2014-03-31 2015-09-11 E Ink Holdings Inc 顯示裝置
US9618681B2 (en) * 2014-12-01 2017-04-11 Shenzhen China Star Optoelectronics Technology Co., Ltd. Quantum dot backlight module and display device
JP6457872B2 (ja) * 2015-04-10 2019-01-23 株式会社ジャパンディスプレイ 表示装置、照明装置、導光板及びその製造方法
US11358380B2 (en) * 2015-09-01 2022-06-14 Lumvatech, Llc Methods and apparatus for molding-in gaskets within the grooves of a planar work material
CN105182466A (zh) * 2015-09-11 2015-12-23 京东方光科技有限公司 一种导光板及其制备方法、背光源、显示装置
JP2017117531A (ja) * 2015-12-21 2017-06-29 株式会社ジャパンディスプレイ 照明装置及び表示装置
EP3405834B1 (en) * 2016-01-22 2020-10-07 LG Electronics Inc. -1- Display device
US10215904B2 (en) * 2016-05-31 2019-02-26 Radiant Opto-Electronics (Suzhou) Co., Ltd. Backlight module and display device
JP6877910B2 (ja) 2016-08-01 2021-05-26 株式会社ジャパンディスプレイ 表示装置
KR20180026611A (ko) * 2016-09-02 2018-03-13 삼성디스플레이 주식회사 표시 장치 및 그것의 제조 방법
CN107816645B (zh) * 2016-09-13 2024-02-06 赛尔富电子有限公司 一种超薄型led条形灯
TWI617835B (zh) * 2016-10-18 2018-03-11 晨豐光電股份有限公司 透光率調整元件
CN108107640A (zh) * 2016-11-23 2018-06-01 元太科技工业股份有限公司 反射式显示设备
US10473957B2 (en) 2016-11-23 2019-11-12 E Ink Holdings Inc. Reflective display apparatus
CN107797337A (zh) * 2017-09-27 2018-03-13 联想(北京)有限公司 一种背光模组以及电子设备
WO2019195307A1 (en) * 2018-04-03 2019-10-10 NanoPath, Inc. Optical photoresist photolithography method and transparent illumination device
WO2019195434A1 (en) * 2018-04-04 2019-10-10 NanoPath, Inc. Pixel configuration and surface treatment in a one-way see-through illumination device
KR102163250B1 (ko) * 2018-05-15 2020-10-12 (재)한국건설생활환경시험연구원 복수의 도트로 이루어진 패턴을 구비하는 유리 도광판
TWI751750B (zh) * 2020-10-22 2022-01-01 元太科技工業股份有限公司 顯示裝置、顯示裝置的製造方法與導光觸控模組的製造方法
CN114137763A (zh) * 2021-11-02 2022-03-04 深圳市高展光电有限公司 一种显示屏组件及显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184380A (ja) * 1997-09-09 1999-03-26 Hitachi Ltd 液晶表示装置およびその液晶パネル照明装置
JPH11109344A (ja) * 1997-09-29 1999-04-23 Casio Comput Co Ltd 液晶表示装置
JP2000075293A (ja) * 1998-09-02 2000-03-14 Matsushita Electric Ind Co Ltd 照明装置、照明付きタッチパネル及び反射型液晶表示装置
JP2002108227A (ja) * 2000-07-26 2002-04-10 Bridgestone Corp フロントライト及び液晶表示装置
JP2003257227A (ja) * 2001-04-24 2003-09-12 Sharp Corp 照明装置およびそれを備える表示装置ならびに導光板
WO2004008239A1 (ja) * 2002-07-17 2004-01-22 Bridgestone Corporation 画像表示装置
JP2005123046A (ja) * 2003-10-17 2005-05-12 Seiko Instruments Inc 照明装置及びこれを用いた表示装置
JP2010073574A (ja) * 2008-09-19 2010-04-02 Sony Corp 面光源装置及び表示装置
JP2010078692A (ja) * 2008-09-24 2010-04-08 Sekisui Chem Co Ltd 光学素子、それを備えた光源ユニット及び液晶表示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032981A1 (fr) 1998-11-27 2000-06-08 Sharp Kabushiki Kaisha Illuminateur, dispositif eclairant, feu avant et afficheur a cristaux liquides
US20100110724A1 (en) * 2008-10-24 2010-05-06 Scott Moncrieff Thin film light diffusion guide

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184380A (ja) * 1997-09-09 1999-03-26 Hitachi Ltd 液晶表示装置およびその液晶パネル照明装置
JPH11109344A (ja) * 1997-09-29 1999-04-23 Casio Comput Co Ltd 液晶表示装置
JP2000075293A (ja) * 1998-09-02 2000-03-14 Matsushita Electric Ind Co Ltd 照明装置、照明付きタッチパネル及び反射型液晶表示装置
JP2002108227A (ja) * 2000-07-26 2002-04-10 Bridgestone Corp フロントライト及び液晶表示装置
JP2003257227A (ja) * 2001-04-24 2003-09-12 Sharp Corp 照明装置およびそれを備える表示装置ならびに導光板
WO2004008239A1 (ja) * 2002-07-17 2004-01-22 Bridgestone Corporation 画像表示装置
JP2005123046A (ja) * 2003-10-17 2005-05-12 Seiko Instruments Inc 照明装置及びこれを用いた表示装置
JP2010073574A (ja) * 2008-09-19 2010-04-02 Sony Corp 面光源装置及び表示装置
JP2010078692A (ja) * 2008-09-24 2010-04-08 Sekisui Chem Co Ltd 光学素子、それを備えた光源ユニット及び液晶表示装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150117055A1 (en) * 2013-10-24 2015-04-30 E Ink Holdings Inc. Display apparatus
US9519100B2 (en) * 2013-10-24 2016-12-13 E Ink Holdings Inc. Apparatus having light guide for illuminating a display unit and for illuminating a patterned region
CN105765644A (zh) * 2013-11-28 2016-07-13 三菱电机株式会社 显示装置
CN105765644B (zh) * 2013-11-28 2018-09-28 三菱电机株式会社 显示装置
WO2016056052A1 (ja) * 2014-10-06 2016-04-14 堺ディスプレイプロダクト株式会社 導光ユニット、光源装置及び表示装置
JPWO2016056052A1 (ja) * 2014-10-06 2017-07-27 堺ディスプレイプロダクト株式会社 導光ユニット、光源装置及び表示装置
US10107953B2 (en) 2014-10-06 2018-10-23 Sakai Display Products Corporation Light guide unit, light source device and display apparatus
JP2019066643A (ja) * 2017-09-29 2019-04-25 デクセリアルズ株式会社 光学体、光学体の製造方法、及び発光装置
JP7202774B2 (ja) 2017-09-29 2023-01-12 デクセリアルズ株式会社 光学体、光学体の製造方法、及び発光装置

Also Published As

Publication number Publication date
US20140146563A1 (en) 2014-05-29
US9134475B2 (en) 2015-09-15

Similar Documents

Publication Publication Date Title
WO2013011813A1 (ja) フロントライトおよびその製造方法ならびに該フロントライトを備えた反射型表示装置および該反射型表示装置を備えた電子機器
US10048538B1 (en) Display device
WO2020001243A1 (en) Display panel, manufacturing method and display device
JP4996747B2 (ja) 面状照明装置および液晶ディスプレイ装置
JP5378569B2 (ja) 表示装置及び電子機器
WO2014061572A1 (ja) 照明装置、及び表示装置
WO2019134433A1 (zh) 导光板组件、背光模组、显示装置
JP6535339B2 (ja) コントラストを改善した表示装置
KR20080077363A (ko) 향상된 휘도 및 콘트라스트를 갖는 반사형 디스플레이
JP2015018048A (ja) 表示装置、光拡散部材
TW201202804A (en) Liquid crystal display device
TWI514062B (zh) 前光模組與具有前光模組的電子紙顯示裝置
CN107450218B (zh) 光致发光显示装置及其制造方法
JP2018205414A (ja) 光学構造体、表示装置
TW201531768A (zh) 光源模組及顯示裝置
JP2012194491A (ja) 額縁被覆部材
CN108352137A (zh) 显示设备、显示单元以及透明板单元
WO2018056248A1 (ja) 面光源装置および液晶表示装置
JP2009004198A (ja) 液晶パネルバックライト装置
US8820999B2 (en) Television and electronic apparatus having lightguide integrated as part of the housing and a method of making
JP2010277851A (ja) 照明装置及びこれを用いた表示装置
KR20080066255A (ko) 반사형 디스플레이장치
JP2009098312A (ja) 液晶表示装置
KR20220007761A (ko) 블루 라이트를 저감하는 광원모듈 및 이를 구비하는 디스플레이 장치
JPH09197106A (ja) マイクロレンズアレイシートおよびそれを用いた液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12815283

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14233225

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12815283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP