[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013009127A2 - 무선 통신 시스템에서 보고 방법 및 이를 지원하는 장치 - Google Patents

무선 통신 시스템에서 보고 방법 및 이를 지원하는 장치 Download PDF

Info

Publication number
WO2013009127A2
WO2013009127A2 PCT/KR2012/005580 KR2012005580W WO2013009127A2 WO 2013009127 A2 WO2013009127 A2 WO 2013009127A2 KR 2012005580 W KR2012005580 W KR 2012005580W WO 2013009127 A2 WO2013009127 A2 WO 2013009127A2
Authority
WO
WIPO (PCT)
Prior art keywords
cell
system information
report
measurement
terminal
Prior art date
Application number
PCT/KR2012/005580
Other languages
English (en)
French (fr)
Other versions
WO2013009127A3 (ko
Inventor
정성훈
이영대
천성덕
박성준
이승준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP12810805.7A priority Critical patent/EP2733981B1/en
Priority to KR1020147000949A priority patent/KR20140040808A/ko
Priority to US14/232,576 priority patent/US9277459B2/en
Publication of WO2013009127A2 publication Critical patent/WO2013009127A2/ko
Publication of WO2013009127A3 publication Critical patent/WO2013009127A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0007Control or signalling for completing the hand-off for multicast or broadcast services, e.g. MBMS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for reporting by a terminal and a device supporting the same in a wireless communication system.
  • 3GPP LTE long term evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • MIMO multiple input multiple output
  • LTE-A 3GPP LTE-Advanced
  • CSGs Closed Subscriber Groups
  • HNB home eNodeB
  • CSG cell a cell that provides authorized security to CSG subscribers
  • 3GPP TS 22.220 V1.0.1 2008-12 “Service requirements for Home NodeBs and Home eNodeBs (Release 9)”.
  • the characteristics of the CSG cell providing the limited service also appear in the handover to the CSG cell.
  • whether the UE is a CSG member of the cell may be a problem.
  • the handover to the CSG cell may be implemented as a first step in which the UE reports a cell measurement result and a second step in which the UE acquires system information from the target cell and reports it to the serving cell.
  • Performing two reporting steps before receiving the handover command message from the serving cell has a problem that the delay time becomes too long until the handover is performed, and thus a quality deterioration may occur. There is a need for an efficient reporting method by the terminal.
  • the technical problem to be solved by the present invention is to provide a reporting method performed by a terminal in a wireless communication system and an apparatus supporting the same.
  • a reporting method in a wireless communication system.
  • the method comprises receiving a measurement setting from a serving cell, wherein the measurement setting includes a system information reporting indicator instructing to report the system information of the measurement result report target cell; Determine whether a reporting condition is satisfied based on the measurement setting; And when the reporting condition is satisfied, transmitting a measurement report message including a measurement result of the report target cell in which the reporting condition is satisfied, to the serving cell.
  • the measurement report message further includes system information of the report target cell.
  • the method may further include receiving system information report target identification information and determining whether to transmit the system information of the report target cell to the serving cell based on the system information report target identification information.
  • the system information of the report target cell may be included in the measurement report message when it is determined to transmit the system information to the serving cell.
  • the system information report target identification information may indicate a specific cell identifier, and if the specific cell identifier is a cell identifier of the report target cell, it may be determined to transmit the system information to the serving cell.
  • the system information report target identification information may indicate a cell of a specific type, and if the cell type of the report target cell is the cell of the specific type, it may be determined to transmit the system information to the serving cell.
  • the specific type of cell may be at least one of a pico cell, a femto cell, a closed subscriber group (CSG) cell, and a multimedia broadcast / multicast service (MBMS) cell.
  • a pico cell a femto cell
  • CSG closed subscriber group
  • MBMS multimedia broadcast / multicast service
  • the system information may include the CSG cell related information.
  • the system information may include MBMS related information provided by the report target cell.
  • the system information may include the low interference radio resource related information.
  • the method may further comprise receiving the requested system information indication information indicating the type of system information to report.
  • the system information may include information of a type indicated by the requested system information indication information.
  • a terminal operating in a wireless communication system includes a radio frequency (RF) unit for transmitting and receiving a radio signal and a processor functionally connected to the RF unit.
  • the processor receives the measurement setting from the serving cell, wherein the measurement setting includes a system information reporting indicator indicating to report the system information of the measurement target report cell, and determines whether the reporting condition is satisfied based on the measurement setting. And when the reporting condition is satisfied, the measurement report message including the measurement result of the reporting target cell in which the reporting condition is satisfied is transmitted to the serving cell.
  • the measurement report message further includes system information of the report target cell.
  • system information includes the low interference radio resource related information when the report target cell is a cell that operates a low interference radio resource.
  • the terminal may transmit system information together with the measurement result to the serving cell.
  • System information of the target cell is quickly delivered to the serving cell so that the terminal can receive the handover command message more quickly.
  • the terminal may perform handover quickly, thereby improving user communication quality.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • FIG. 4 is a flowchart illustrating an operation of a terminal in an RRC idle state.
  • FIG. 5 is a flowchart illustrating a process of establishing an RRC connection.
  • FIG. 6 is a flowchart illustrating a RRC connection resetting process.
  • FIG. 7 is an exemplary diagram illustrating radio link failure.
  • connection reestablishment process is a flowchart illustrating the success of the connection reestablishment process.
  • FIG. 9 is a flowchart illustrating a failure of a connection reestablishment process.
  • FIG. 10 is a flowchart illustrating a conventional measurement method.
  • 11 shows an example of measurement settings set in a terminal.
  • FIG. 14 is a diagram illustrating an example of a wireless communication system showing HeNB operation.
  • 17 is a diagram illustrating an example of a reporting method for handover to a CSG cell.
  • FIG. 18 is a flowchart illustrating an example of a reporting method according to an embodiment of the present invention.
  • FIG. 19 is a flowchart illustrating still another example of a reporting method according to an embodiment of the present invention.
  • 20 is a block diagram illustrating a wireless device in which an embodiment of the present invention may be implemented.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like.
  • the base station 20 refers to a fixed station communicating with the terminal 10, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • Layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • L2 second layer
  • L3 third layer
  • the RRC Radio Resource Control
  • the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network. To this end, the RRC layer exchanges an RRC message between the terminal and the base station.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • the data plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • MAC medium access control
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • QoS Quality of Service
  • the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
  • TM transparent mode
  • UM unacknowledged mode
  • Acknowledged Mode acknowledged mode
  • AM Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the user plane includes the transfer of control plane data and encryption / integrity protection.
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • the UE If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
  • the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • the physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of OFDM symbols in the time domain.
  • the RB is a resource allocation unit and includes a plurality of OFDM symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for the physical downlink control channel (PDCCH), that is, the L1 / L2 control channel.
  • Transmission Time Interval is a unit time of subframe transmission.
  • the RRC state refers to whether or not the RRC layer of the UE is in a logical connection with the RRC layer of the E-UTRAN. If connected, the RRC connection state is called. Since the UE in the RRC connected state has an RRC connection, the E-UTRAN can grasp the existence of the corresponding UE in a cell unit, and thus can effectively control the UE. On the other hand, the UE of the RRC idle state cannot be recognized by the E-UTRAN, and is managed by the CN (core network) in units of a tracking area, which is a larger area unit than a cell. That is, the UE in the RRC idle state is identified only in a large area unit, and must move to the RRC connected state in order to receive a normal mobile communication service such as voice or data.
  • CN core network
  • the terminal When the user first powers on the terminal, the terminal first searches for an appropriate cell and then stays in an RRC idle state in the cell.
  • the UE in the RRC idle state needs to establish an RRC connection, it establishes an RRC connection with the E-UTRAN through an RRC connection procedure and transitions to the RRC connected state.
  • RRC connection procedure There are several cases in which the UE in RRC idle state needs to establish an RRC connection. For example, an uplink data transmission is necessary due to a user's call attempt, or a paging message is sent from E-UTRAN. If received, a response message may be sent.
  • the non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • EMM-REGISTERED EPS Mobility Management-REGISTERED
  • EMM-DEREGISTERED EMM-DEREGISTERED
  • the initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the attach procedure is successfully performed, the UE and the MME are in the EMM-REGISTERED state.
  • an EPS Connection Management (ECM) -IDLE state In order to manage a signaling connection between the UE and the EPC, two states are defined, an EPS Connection Management (ECM) -IDLE state and an ECM-CONNECTED state, and these two states are applied to the UE and the MME.
  • ECM EPS Connection Management
  • ECM-IDLE state When the UE in the ECM-IDLE state establishes an RRC connection with the E-UTRAN, the UE is in the ECM-CONNECTED state.
  • the MME in the ECM-IDLE state becomes the ECM-CONNECTED state when it establishes an S1 connection with the E-UTRAN.
  • the E-UTRAN does not have context information of the terminal.
  • the UE in the ECM-IDLE state performs a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • the terminal when the terminal is in the ECM-CONNECTED state, the mobility of the terminal is managed by the command of the network.
  • the terminal In the ECM-IDLE state, if the position of the terminal is different from the position known by the network, the terminal informs the network of the corresponding position of the terminal through a tracking area update procedure.
  • the system information includes essential information that the terminal needs to know in order to access the base station. Therefore, the terminal must receive all system information before accessing the base station, and must always have the latest system information. In addition, since the system information is information that all terminals in a cell should know, the base station periodically transmits the system information.
  • the system information includes a master information block (MIB) and a scheduling block (SB). , SIB System Information Block).
  • MIB master information block
  • SB scheduling block
  • the MIB enables the UE to know the physical configuration of the cell, for example, bandwidth.
  • SB informs transmission information of SIBs, for example, a transmission period.
  • SIB is a collection of related system information. For example, some SIBs contain only information of neighboring cells, and some SIBs contain only information of an uplink radio channel used by the terminal.
  • services provided by a network to a terminal can be classified into three types as follows.
  • the terminal also recognizes the cell type differently according to which service can be provided. The following describes the service type first, followed by the cell type.
  • Limited service This service provides Emergency Call and Tsunami Warning System (ETWS) and can be provided in an acceptable cell.
  • ETWS Emergency Call and Tsunami Warning System
  • Normal service This service means a public use for general use, and can be provided in a suitable or normal cell.
  • This service means service for network operator. This cell can be used only by network operator and not by general users.
  • the cell types may be classified as follows.
  • Acceptable cell A cell in which the terminal can receive limited service. This cell is a cell that is not barred from the viewpoint of the terminal and satisfies the cell selection criteria of the terminal.
  • Suitable cell The cell that the terminal can receive a regular service. This cell satisfies the conditions of an acceptable cell and at the same time satisfies additional conditions. As an additional condition, this cell must belong to a Public Land Mobile Network (PLMN) to which the terminal can access, and must be a cell which is not prohibited from performing a tracking area update procedure of the terminal. If the cell is a CSG cell, the terminal should be a cell that can be connected to the cell as a CSG member.
  • PLMN Public Land Mobile Network
  • Barred cell A cell that broadcasts information that a cell is a prohibited cell through system information.
  • Reserved cell A cell that broadcasts information that a cell is a reserved cell through system information.
  • 4 is a flowchart illustrating an operation of a terminal in an RRC idle state. 4 illustrates a procedure in which a UE, which is initially powered on, registers with a network through a cell selection process and then reselects a cell if necessary.
  • the terminal selects a radio access technology (RAT) for communicating with a public land mobile network (PLMN), which is a network to be serviced (S410).
  • RAT radio access technology
  • PLMN public land mobile network
  • S410 a network to be serviced
  • Information about the PLMN and the RAT may be selected by a user of the terminal or may be stored in a universal subscriber identity module (USIM).
  • USIM universal subscriber identity module
  • the terminal selects a cell having the largest value among the measured base station and a cell whose signal strength or quality is greater than a specific value (Cell Selection) (S420). This is referred to as initial cell selection by the UE that is powered on to perform cell selection. The cell selection procedure will be described later.
  • the terminal receives system information periodically transmitted by the base station.
  • the above specific value refers to a value defined in the system in order to ensure the quality of the physical signal in data transmission / reception. Therefore, the value may vary depending on the RAT applied.
  • the terminal performs a network registration procedure (S430).
  • the terminal registers its information (eg IMSI) in order to receive a service (eg paging) from the network.
  • IMSI information
  • a service eg paging
  • the terminal selects a cell, the terminal does not register to the access network, and if the network information received from the system information (e.g., tracking area identity; TAI) is different from the network information known to the network, the terminal registers to the network. do.
  • the system information e.g., tracking area identity; TAI
  • the terminal performs cell reselection based on the service environment provided by the cell or the environment of the terminal (S440).
  • the terminal selects one of the other cells that provides better signal characteristics than the cell of the base station to which the terminal is connected if the strength or quality of the signal measured from the base station being service is lower than the value measured from the base station of the adjacent cell. do.
  • This process is called Cell Re-Selection, which is distinguished from Initial Cell Selection of Step 2.
  • a time constraint is placed. The cell reselection procedure will be described later.
  • FIG. 5 is a flowchart illustrating a process of establishing an RRC connection.
  • the terminal sends an RRC connection request message to the network requesting an RRC connection (S510).
  • the network sends an RRC connection setup message in response to the RRC connection request (S520). After receiving the RRC connection configuration message, the terminal enters the RRC connection mode.
  • the terminal sends an RRC Connection Setup Complete message used to confirm successful completion of RRC connection establishment to the network (S530).
  • RRC connection reconfiguration is used to modify an RRC connection. It is used to establish / modify / release RBs, perform handovers, and set up / modify / release measurements.
  • the network sends an RRC connection reconfiguration message for modifying the RRC connection to the terminal (S610).
  • the UE sends an RRC connection reconfiguration complete message used to confirm successful completion of the RRC connection reconfiguration to the network (S620).
  • the UE continuously measures to maintain the quality of the radio link with the serving cell receiving the service.
  • the terminal determines whether communication is impossible in the current situation due to deterioration of the quality of the radio link with the serving cell. If the quality of the serving cell is so low that communication is almost impossible, the terminal determines the current situation as a radio connection failure.
  • the UE abandons communication with the current serving cell, selects a new cell through a cell selection (or cell reselection) procedure, and reestablishes an RRC connection to the new cell (RRC connection re). -establishment).
  • radio link failure 7 is an exemplary diagram illustrating radio link failure. The operation associated with radio link failure can be described in two phases.
  • the terminal In the first phase, the terminal is in normal operation and checks whether there is a problem in the current communication link. If a problem is detected, the terminal declares a radio link problem and waits for the radio link to recover during the first waiting time T1. If the radio link recovers before the first waiting time elapses, the terminal performs normal operation again. If the radio link does not recover until the first wait time expires, the terminal declares a radio link failure and enters a second phase.
  • the terminal In a second phase, again waiting for the radio link to recover for a second waiting time T2. If the radio link does not recover until the second waiting time expires, the terminal enters the RRC idle state. Alternatively, the terminal may perform an RRC reestablishment procedure.
  • the RRC connection reestablishment procedure is a procedure for reestablishing an RRC connection again in an RRC_CONNECTED state. Since the terminal remains in the RRC_CONNECTED state, that is, does not enter the RRC_IDLE state, the terminal does not initialize all of its radio settings (for example, radio bearer settings). Instead, the UE temporarily suspends use of all radio bearers except SRB0 when starting the RRC connection reconfiguration procedure. If the RRC connection reestablishment is successful, the terminal resumes the use of radio bearers that have temporarily suspended use.
  • connection reestablishment process is a flowchart illustrating the success of the connection reestablishment process.
  • the terminal selects a cell by performing cell selection.
  • the terminal receives system information to receive basic parameters for cell access in the selected cell.
  • the terminal sends an RRC connection reestablishment request message to the base station (S810).
  • the base station accepts the RRC connection reestablishment request of the terminal and sends an RRC connection reestablishment message to the terminal (S820).
  • the terminal sends an RRC connection reestablishment complete message to the base station, so that the RRC connection reestablishment procedure may succeed (S830).
  • the terminal sends an RRC connection reestablishment request message to the base station (S810). If the selected cell is not a ready cell, the base station sends an RRC connection reestablishment reject message in response to the RRC connection reestablishment request to the UE (S815).
  • the terminal selects / reselects a cell of appropriate quality and performs procedures for receiving service.
  • the UE in the RRC idle state should always select a cell of appropriate quality and prepare to receive service through this cell. For example, a terminal that has just been powered on must select a cell of appropriate quality to register with the network. When the terminal in the RRC connected state enters the RRC idle state, the terminal should select a cell to stay in the RRC idle state. As such, the process of selecting a cell satisfying a certain condition in order for the terminal to stay in a service standby state such as an RRC idle state is called cell selection.
  • the cell selection is performed in a state in which the UE does not currently determine a cell to stay in the RRC idle state, it is most important to select the cell as soon as possible. Therefore, if the cell provides a radio signal quality of a predetermined criterion or more, even if this cell is not the cell providing the best radio signal quality to the terminal, it may be selected during the cell selection process of the terminal.
  • PLMN public land mobile network
  • PLMN is a network deployed or operated by a mobile network operator. Each mobile network operator operates one or more PLMNs. Each PLMN may be identified by a mobile country code (MCC) and a mobile network code (MCN). The PLMN information of the cell is included in the system information and broadcasted.
  • MCC mobile country code
  • MN mobile network code
  • the terminal attempts to register the selected PLMN. If the registration is successful, the selected PLMN becomes a registered PLMN (RPLMN).
  • the network may signal the PLMN list to the UE, which may consider PLMNs included in the PLMN list as PLMNs such as RPLMNs.
  • the UE registered in the network should be reachable by the network at all times. If the UE is in the ECM-CONNECTED state (same as RRC connected state), the network recognizes that the UE is receiving service. However, when the terminal is in the ECM-IDLE state (same as the RRC idle state), the situation of the terminal is not valid in the eNB but is stored in the MME. In this case, the location of the UE in the ECM-IDLE state is known only to the MME as granularity of the list of tracking areas (TAs). A single TA is identified by a tracking area identity (TAI) consisting of the PLMN identifier to which the TA belongs and a tracking area code (TAC) that uniquely represents the TA within the PLMN.
  • TAI tracking area identity
  • TAC tracking area code
  • the UE selects a cell having a signal quality and characteristics capable of receiving an appropriate service from among cells provided by the selected PLMN.
  • an initial cell selection process in which the terminal does not have prior information on the radio channel. Accordingly, the terminal searches all radio channels to find an appropriate cell. In each channel, the terminal finds the strongest cell. Thereafter, the terminal selects a corresponding cell if it finds a suitable cell that satisfies a cell selection criterion.
  • the terminal may select the cell by using the stored information or by using the information broadcast in the cell.
  • cell selection can be faster than the initial cell selection process.
  • the UE selects a corresponding cell if it finds a cell that satisfies the cell selection criteria. If a suitable cell that satisfies the cell selection criteria is not found through this process, the UE performs an initial cell selection process.
  • the terminal After the terminal selects a cell through a cell selection process, the strength or quality of a signal between the terminal and the base station may change due to a change in mobility or a wireless environment of the terminal. Therefore, if the quality of the selected cell is degraded, the terminal may select another cell that provides better quality. When reselecting a cell in this way, a cell that generally provides better signal quality than the currently selected cell is selected. This process is called cell reselection.
  • the cell reselection process has a basic purpose in selecting a cell that generally provides the best quality to a terminal in view of the quality of a radio signal.
  • the network may determine the priority for each frequency and notify the terminal. Upon receiving this priority, the UE considers this priority prior to the radio signal quality criteria in the cell reselection process.
  • a method of selecting or reselecting a cell according to a signal characteristic of a wireless environment In selecting a cell for reselection when reselecting a cell, the following cell reselection is performed according to a cell's RAT and frequency characteristics. There may be a method of selection.
  • Intra-frequency cell reselection Reselection of a cell having a center-frequency equal to the RAT, such as a cell where the UE is camping
  • Inter-frequency cell reselection Reselects a cell having a center frequency different from that of the same RAT as the cell camping
  • Inter-RAT cell reselection UE reselects a cell using a RAT different from the camping RAT
  • the UE measures the quality of a serving cell and a neighboring cell for cell reselection.
  • cell reselection is performed based on cell reselection criteria.
  • the cell reselection criteria have the following characteristics with respect to serving cell and neighbor cell measurements.
  • Intra-frequency cell reselection is basically based on ranking.
  • Ranking is an operation of defining index values for cell reselection evaluation and using the index values to order the cells in the order of the index values.
  • the cell with the best indicator is often called the best ranked cell.
  • the cell index value is a value obtained by applying a frequency offset or a cell offset as necessary based on the value measured by the terminal for the corresponding cell.
  • Inter-frequency cell reselection is based on the frequency priority provided by the network.
  • the terminal attempts to camp on the frequency with the highest frequency priority.
  • the network may provide the priorities to be commonly applied to the terminals in the cell or provide the frequency priority through broadcast signing, or may provide the priority for each frequency for each terminal through dedicated signaling.
  • the network may provide the UE with parameters (for example, frequency-specific offset) used for cell reselection for each frequency.
  • the network may provide the UE with a neighboring cell list (NCL) used for cell reselection.
  • NCL neighboring cell list
  • This NCL contains cell-specific parameters (eg cell-specific offsets) used for cell reselection.
  • the network may provide the UE with a cell reselection prohibition list (black list) used for cell reselection to the UE.
  • the UE does not perform cell reselection for a cell included in the prohibition list.
  • the ranking criterion used to prioritize the cells is defined as in Equation 1.
  • Rs is a ranking indicator of the serving cell
  • Rn is a ranking indicator of the neighboring cell
  • s is a quality value measured by the UE for the serving cell
  • n is a quality value measured by the UE for the neighboring cell
  • Qhyst is The hysteresis value, Qoffset, for the ranking is the offset between two cells.
  • the ranking index Rs of the serving cell and the ranking index Rn of the neighboring cell change in a state similar to each other, the ranking ranking may be reversed as a result of the change, such that the terminal may alternately select two cells.
  • Qhyst is a parameter for giving hysteresis in cell reselection to prevent the UE from reselecting two cells alternately.
  • the UE measures the Rs of the serving cell and the Rn of the neighboring cell according to the above equation, regards the cell having the highest ranking indicator value as the best ranked cell, and reselects the cell.
  • the quality of the cell serves as the most important criterion in cell reselection. If the reselected cell is not a normal cell, the terminal excludes the frequency or the corresponding cell from the cell reselection target.
  • RRM radio resource management
  • the terminal may perform measurement for a specific purpose set by the network and report the measurement result to the network in order to provide information that may help the operator operate the network in addition to the purpose of mobility support. For example, the terminal receives broadcast information of a specific cell determined by the network.
  • the terminal may include a cell identity (also referred to as a global cell identifier) of the specific cell, location identification information (eg, tracking area code) to which the specific cell belongs, and / or other cell information (eg, For example, whether a member of a closed subscriber group (CSG) cell is a member) may be reported to the serving cell.
  • a cell identity also referred to as a global cell identifier
  • location identification information eg, tracking area code
  • other cell information eg, For example, whether a member of a closed subscriber group (CSG) cell is a member
  • the mobile station may report location information and measurement results of poor quality cells to the network.
  • the network can optimize the network based on the report of the measurement results of the terminals helping the network operation.
  • the terminal In a mobile communication system with a frequency reuse factor of 1, mobility is mostly between different cells in the same frequency band. Therefore, in order to ensure the mobility of the terminal well, the terminal should be able to measure the quality and cell information of neighboring cells having the same center frequency as the center frequency of the serving cell. As such, the measurement of the cell having the same center frequency as that of the serving cell is called an intra-frequency measurement. The terminal performs the same frequency measurement and reports the measurement result to the network at an appropriate time, so that the purpose of the corresponding measurement result is achieved.
  • the mobile operator may operate the network using a plurality of frequency bands.
  • the terminal may measure quality and cell information of neighboring cells having a center frequency different from that of the serving cell. Should be As such, a measurement for a cell having a center frequency different from that of the serving cell is referred to as another inter-frequency measurement.
  • the terminal should be able to report the measurement results to the network at an appropriate time by performing another frequency measurement.
  • the measurement of the cell of the heterogeneous network may be performed by the base station configuration.
  • This measurement for heterogeneous networks is referred to as inter-RAT (Radio Access Technology) measurement.
  • the RAT may include a UMTS Terrestrial Radio Access Network (UTRAN) and a GSM EDGE Radio Access Network (GERAN) conforming to the 3GPP standard, and may also include a CDMA 2000 system conforming to the 3GPP2 standard.
  • UTRAN UMTS Terrestrial Radio Access Network
  • GERAN GSM EDGE Radio Access Network
  • FIG. 10 is a flowchart illustrating a conventional measurement method.
  • the terminal receives measurement configuration information from the base station (S1010).
  • a message including measurement setting information is called a measurement setting message.
  • the terminal performs the measurement based on the measurement setting information (S1020). If the measurement result satisfies the reporting condition in the measurement setting information, the terminal reports the measurement result to the base station (S1030).
  • a message containing a measurement result is called a measurement report message.
  • the measurement setting information may include the following information.
  • the measurement target includes at least one of an intra-frequency measurement target for intra-cell measurement, an inter-frequency measurement target for inter-cell measurement, and an inter-RAT measurement target for inter-RAT measurement.
  • the intra-frequency measurement object indicates a neighboring cell having the same frequency band as the serving cell
  • the inter-frequency measurement object indicates a neighboring cell having a different frequency band from the serving cell
  • the inter-RAT measurement object is
  • the RAT of the serving cell may indicate a neighboring cell of another RAT.
  • Reporting configuration information Information on a reporting condition and a report type relating to when a terminal reports a measurement result.
  • the reporting condition may include information about an event or a period at which the reporting of the measurement result is triggered.
  • the report type is information about what type of measurement result to configure.
  • Measurement identity information This is information about a measurement identifier that associates a measurement object with a report configuration, and allows the terminal to determine what type and when to report to which measurement object.
  • the measurement identifier information may be included in the measurement report message to indicate which measurement object the measurement result is and in which reporting condition the measurement report occurs.
  • Quantitative configuration information information on a parameter for setting filtering of a measurement unit, a reporting unit, and / or a measurement result value.
  • Measurement gap information Information about a measurement gap, which is a section in which a UE can only use measurement without considering data transmission with a serving cell because downlink transmission or uplink transmission is not scheduled. .
  • the terminal has a measurement target list, a measurement report configuration list, and a measurement identifier list to perform a measurement procedure.
  • the base station may set only one measurement target for one frequency band to the terminal.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • RRC Radio Resource Control
  • Protocol specification Release 8
  • the terminal If the measurement result of the terminal satisfies the set event, the terminal transmits a measurement report message to the base station.
  • 11 shows an example of measurement settings set in a terminal.
  • measurement identifier 1 1101 connects an intra-frequency measurement object and report configuration 1.
  • the terminal performs intra frequency measurement, and report setting 1 is used to determine a criterion and report type of the measurement result report.
  • the measurement identifier 21102 is connected to the intra-frequency measurement object like the measurement identifier 1 1101, but is connected to the setting 2 by viewing the intra-frequency measurement object.
  • the terminal performs intra-cell measurements, and report setting 2 is used to determine the criteria and report type of the measurement result report.
  • the terminal transmits the measurement result even if the measurement result for the intra-frequency measurement object satisfies any one of the report setting 1 and the report setting 2.
  • Measurement identifier 3 1103 connects inter-frequency measurement object 1 and report configuration 3.
  • the terminal reports the measurement result when the measurement result for the inter-frequency measurement object 1 satisfies the reporting condition included in the report configuration 1.
  • Measurement identifier 4 1104 connects inter-frequency measurement object 2 and report configuration 2.
  • the terminal reports the measurement result when the measurement result for the inter-frequency measurement object 2 satisfies the reporting condition included in the report configuration 2.
  • the measurement target, report setting, and / or measurement identifier may be added, changed, and / or deleted. This may be indicated by the base station sending a new measurement configuration message to the terminal, or by sending a measurement configuration change message.
  • FIG. 12 shows an example of deleting a measurement identifier.
  • measurement identifier 2 1202 is deleted, measurement for the measurement object associated with measurement identifier 2 1202 is stopped and no measurement report is transmitted.
  • the measurement object or report setting associated with the deleted measurement identifier may not be changed.
  • the terminal When the inter-frequency measurement object 1 is deleted, the terminal also deletes the associated measurement identifier 3 1303. Inter-frequency measurement object 1 measurement is stopped and no measurement report is transmitted. However, the report setting associated with the deleted inter-frequency measurement object 1 may not be changed or deleted.
  • the terminal If the reporting configuration is removed, the terminal also removes the associated measurement identifier. The terminal stops measuring the associated measurement object by the associated measurement identifier. However, the measurement object associated with the deleted report setting may not be changed or deleted.
  • the measurement report may include a measurement identifier, a measured quality of the serving cell, and a measurement result of a neighboring cell.
  • the measurement identifier identifies the measurement object for which the measurement report is triggered.
  • the measurement result of the neighbor cell may include the cell identifier of the neighbor cell and the measured quality.
  • the measured quality may include at least one of Reference Signal Received Power (RSRP) and Reference Signal Received Quality (RSRQ).
  • a mobile communication service may be provided through a base station owned by an individual or a specific operator or a group.
  • a base station is called an HNB (Home NB) or HeNB (Home eNB).
  • HNB Home NB
  • HeNB HeNB
  • HeNB basically aims to provide a specialized service only to a specific user group (Closed Subscriber Group, CSG).
  • CSG Consumer Subscriber Group
  • the service may be provided to other users in addition to the CSG.
  • FIG. 14 is a diagram illustrating an example of a wireless communication system showing HeNB operation.
  • a home eNB gateway may be operated to service a HeNB as described above.
  • HeNBs are connected to the EPC or directly to the EPC via the HeNB GW.
  • HeNB GW looks like a normal eNB to MME.
  • HeNB GW looks like MME to HeNB. Therefore, the HeNB and the HeNB GW are connected by the S1 interface, and the HeNB GW and the EPC are also connected by the S1 interface.
  • the HeNB and the EPC are directly connected, they are connected to the S1 interface.
  • the function of HeNB is mostly the same as that of general eNB.
  • HeNB has a lower radio transmission power than an eNB owned by a mobile network operator. Therefore, the coverage provided by the HeNB is generally smaller than the coverage provided by the eNB. Due to this characteristic, a cell provided by HeNB is often classified as a femto cell in comparison with a macro cell provided by an eNB from a service area perspective. On the other hand, in terms of the service provided, when the HeNB provides a service only to the CSG group, the cell provided by the HeNB is referred to as a CSG cell.
  • Each CSG has its own unique identification number, which is called a CSG identity (CSG identity).
  • the terminal may have a list of CSGs belonging to the member, and the CSG list may be changed by a request of the terminal or a command of the network.
  • one HeNB may support one CSG.
  • the HeNB delivers the CSG ID of the CSG supported by the UE through system information so that only the member terminals of the corresponding CSG are connected.
  • the UE finds a CSG cell, it can check which CSG the CSG cell supports by reading the CSG ID included in the system information.
  • the terminal reading the CSG ID is regarded as a cell to which the cell can be accessed only when the UE is a member of the CSG cell.
  • HeNB does not always need to allow access to the CSG terminal. Depending on the configuration of the HeNB, it is also possible to allow the connection of the terminal other than the CSG member. Which UE is allowed to access is changed according to the configuration setting of the HeNB, where the configuration setting means setting of the operation mode of the HeNB.
  • the operation mode of the HeNB is classified into three types according to which UE provides a service.
  • Closed access mode A mode that provides services only to specific CSG members. HeNB provides a CSG cell.
  • Open access mode A mode that provides a service without the restriction of a specific CSG member like a normal eNB. HeNB provides a general cell that is not a CSG cell.
  • Hybrid access mode A mode in which a CSG service can be provided to a specific CSG member and can be provided to a non-CSG member like a normal cell.
  • CSG member UEs are recognized as CSG cells, and non-CSG member UEs are recognized as normal cells. Such cells are called hybrid cells.
  • the HeNB informs the UE whether the cell it serves is a general cell, which is a CSG cell, so as to know whether the UE can access the cell.
  • HeNB operating in the closed access mode broadcasts that it is a CSG cell through system information.
  • HeNB operating in the open access mode broadcasts through the system information that it is not a CSG cell.
  • the HeNB includes a 1-bit CSG indicator in the system information indicating whether or not the cell it serves is a CSG cell.
  • the CSG cell broadcasts by setting the CSG indicator to TRUE. If the serving cell is not a CSG cell, the CSG indicator may be set to FALSE or a method of omitting CSG indicator transmission may be used.
  • the general eNB may also transmit a CSG indicator to let the UE know that the cell type provided by the UE is the general cell.
  • the general eNB may let the UE know that the cell type provided by the UE is a general cell by not transmitting the CSG indicator.
  • Table 2 shows CSG related parameters transmitted by a corresponding cell for each cell type.
  • Table 3 shows the types of terminals that allow connection by cell type.
  • CSG cell Common cell CSG indicator Referred to as "CSG cell” Pointed to "Non-CSG Cell” or not sent CSG Identifier Send Support CSG Identifier Do not send
  • ICIC is a task of operating radio resources to maintain control of inter-cell interference.
  • the ICIC mechanism can be divided into frequency domain ICIC and time domain ICIC.
  • ICIC includes a multi-cell RRM (Radio Resource Management) function that needs to consider information from multiple cells.
  • An interfering cell is a cell that provides interference.
  • An interfering cell is also called an attacker cell.
  • Interfered cells are cells affected by interference from interfering cells.
  • the interfering cell is also called the victim cell.
  • Frequency domain ICIC coordinates the use of frequency domain resources (eg, resource blocks) between multiple cells.
  • the time domain ICIC coordinates time domain resources (eg, subframes) between multiple cells.
  • time domain ICIC Operations, Administration and Maintenance (OAM) settings, called the Almost Blank Subframe (ABS) pattern, can be used.
  • ABS in interfering cells is used to protect resources in subframes in the interfering cells that receive strong intercell interference.
  • ABS is a subframe with reduced transmit power (or zero transmit power) on the physical channel or with reduced activity.
  • ABS pattern refers to information indicating which subframe is ABS in one or more radio frames.
  • Radio Resource Management RRM
  • Radio Link Measurement RLM
  • Channel State Information CSI
  • ABS pattern 1' is used to limit the RRM / RLM measurement resource of the serving cell.
  • the information about the ABS pattern 1 may be notified by the base station to the terminal when the setting / modification / release of the RB or the MAC / card may be changed.
  • ABS pattern 2' is used to limit RRM measurement support of neighboring cells operating at the same frequency as the serving cell. Accordingly, in the ABS pattern 2, a list of neighbor cells to be measured may be provided to the terminal along with the pattern information. The ABS pattern 2 may be included in the measurement setting for the measurement object.
  • ABS pattern 3' is used for resource limitation for CSI measurement of the serving cell.
  • ABS pattern 3 may be included in the message for configuring the CSI report.
  • the CSG cell refers to a cell that only a specific subscriber can access.
  • the non-member terminal is a terminal that is not a member of the CSG cell and is not connected to the CSG cell.
  • the CSG cell to which the UE cannot connect is called a non-member CSG cell.
  • the macro cell refers to the serving cell of the non-member terminal. Coverage of the CSG cell and the macro cell is said to overlap some or all.
  • the main interference condition occurs when the non-member terminal is located in close proximity of the CSG cell. From the standpoint of the non-member terminal, the interfering cell becomes a CSG cell and the macro cell becomes an interfering cell. Time domain ICIC is used to allow non-member terminals to continue to be serviced in the macro cell.
  • the network may set the measurement resource limit.
  • the network may set RRM measurement resource limits for neighboring cells. If the UE no longer severely interferes with the CSG cell, the network may release the RRM / RLM / CSI measurement resource restriction.
  • the UE may use the measurement resource limit set for the RRM, RLM and CSI measurement. That is, resources for RLM can be used in ABS, and measurement for RLM and CSI measurement can be performed in ABS.
  • the network may configure the CSG cell not to use the low interference radio resource according to the set measurement resource limit. That is, the CSG cell may not transmit or receive data in the ABS.
  • a pico cell is a serving cell of a pico terminal.
  • a pico cell is a cell where some or all of the coverage overlaps with the macro cell.
  • Pico cells generally have a smaller coverage than macro cells, but are not necessarily limited thereto.
  • the main interference condition occurs when the pico terminal is located at the edge of the pico serving cell. From the point of view of the peak terminal, the interference cell becomes a macro cell and the pico cell becomes an interference cell.
  • the time domain ICIC is used to allow the pico terminal to continue to be serviced in the pico cell.
  • the picocell may set the measurement resource limit to the corresponding terminal.
  • the pico terminal may use the measurement resource limit set for the RRM, RLM and CSI measurement. That is, resources for RLM can be used in ABS, and measurement for RLM and CSI measurement can be performed in ABS. When the pico cell is subjected to strong interference from the macro cell, the RRM / RLM / CSI measurement can be performed in the ABS for more accurate measurement.
  • the UE measures RRM such as RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), CQI (Channel Quality Indicator), and path-loss measurement for a serving cell or neighbor cell. Do this.
  • the terminal may perform a measurement for the purpose of RLM (Radio Link Monitoring) for monitoring the connection with the serving cell.
  • RLM Radio Link Monitoring
  • the interfering cell and the interfering cell are determined according to the target of the UE to measure.
  • an intra-frequency neighbor cell having a strong signal strength near the terminal may act as an interference in measuring the serving cell.
  • the terminal may experience high interference by the neighboring cell in serving cell measurement.
  • the serving cell and other intra-frequency neighbor cell signals may act as interference for intra-frequency neighbor cell measurement.
  • the UE may experience high interference by the serving cell and other neighbor cells of the serving frequency in measuring the neighbor cell.
  • the serving cell should perform the limited measurement based on the measurement resource limitation. Can be.
  • the serving cell may provide a service to the terminal despite the interference of the neighboring cell through scheduling mainly utilizing low interference radio resources.
  • MBMS Multimedia Broadcast / Multicast Service
  • Transport channel for MBMS MCH channel may be mapped to the MCCH or MTCH which is a logical channel.
  • the MCCH channel transmits MBMS related RRC messages, and the MTCH channel transmits traffic of a specific MBMS service.
  • a plurality of MCHs may be used according to the capacity of MTCH and MCCH.
  • the MCH is responsible for transmitting two logical channels, MTCH and MCCH, which are in turn mapped to a physical multicast channel (PMCH), which is a physical channel.
  • PMCH physical multicast channel
  • the terminal may receive a plurality of MCCHs.
  • the PDCCH channel transmits an indicator indicating an MB_ Radio Network Temporary Identity (M_RNTI) and a specific MCCH channel.
  • M_RNTI MB_ Radio Network Temporary Identity
  • the terminal supporting the MBMS may receive the M-RNTI and the MCCH indicator through the PDCCH, determine that the MBMS-related RRC message has been changed in a specific MCCH channel, and receive the specific MCCH channel.
  • the RRC message of the MCCH channel may be changed at every change cycle, and is repeatedly broadcasted at every repetition cycle.
  • the existing wireless network may calculate the number of terminals receiving a specific service through a counting procedure.
  • the counting process is configured to transmit an upward counting response message when the wireless network transmits a downward counting request message.
  • the UE needs to report the system information of the handover target cell to the serving cell in preparation for handover.
  • the first reporting step of reporting the target cell measurement value according to the measurement setting transmitted from the serving cell and the second reporting step 2 of acquiring and reporting the system information of the target cell are required to be performed. This is shown in the reporting method for the handover procedure to the CSG cell.
  • 17 is a diagram illustrating an example of a reporting method for handover to a CSG cell.
  • the terminal receives measurement settings for cell quality reporting from the serving cell (S1710).
  • the UE performs the measurement based on the measurement configuration and reports the measurement report including the cell quality measurement value of the target cell to the serving cell when the reporting condition is satisfied (S1720).
  • the measurement report may include a physical Cel ID (PCI) of the target cell.
  • the serving cell requests the terminal to report system information of the target cell (S1730).
  • the system information that the serving cell requests from the terminal may be all or part of system information broadcast by the target cell.
  • the terminal enters the target cell to obtain system information (S1740).
  • the terminal reports the acquired system information of the target cell to the serving cell (S1750).
  • the system information of the target cell reported by the terminal to the serving cell may include a CGI (Cell Global ID), a CSG ID of the target cell, and an indicator indicating whether the terminal is a CSG member of the corresponding CSG cell.
  • the serving cell transmits a handover indication message to the terminal (S1760).
  • S1710 which is a step of receiving a measurement setting by the UE for measuring the quality of the target cell
  • S1720 which is a step of measuring the quality of the target cell based on the received measurement setting and reporting it to the serving cell
  • S1750 is a second measurement It's a step. That is, system information reception and reporting are separately performed after the UE measures the quality of the handover target cell and reports it. As a result, the delay time until the terminal receives the handover command is long, thereby causing a problem that the communication quality is degraded.
  • the terminal proposes a report method for transmitting the system report including the system information of the specific cell in addition to the measurement result of the specific cell.
  • the serving cell may include a system information report indicator in the measurement configuration indicating that the terminal includes the system information when reporting the measurement result in transmitting the measurement configuration to the terminal. If the terminal has previously acquired the system information from the specific cell and stores it, the terminal may transmit the system information to the serving cell together with the measurement result when the specific condition is satisfied.
  • FIG. 18 is a flowchart illustrating an example of a reporting method according to an embodiment of the present invention.
  • the terminal receives a measurement configuration from a serving cell (S1810).
  • the measurement setting may include a system information reporting indicator.
  • the terminal may determine to report the system information of the corresponding cell when reporting the measurement result through the system information report indicator.
  • the system information reporting indicator may be included in the measurement object setting and / or the measurement report setting of the measurement setting.
  • the terminal determines whether the reporting condition is satisfied (S1820). If the reporting condition is not satisfied, the terminal may continue to measure the measurement object and determine whether the reporting condition is satisfied.
  • the terminal may report the measurement result of the cell and system information of the corresponding cell to the serving cell (S1830).
  • the terminal determines that the reporting condition is included in the measurement report message for the measurement report when the measurement report condition associated with the measurement target including the system information reporting indicator is satisfied.
  • the measurement result and system information of the satisfied cell may be included and transmitted to the serving cell. If the plurality of cells satisfy the reporting condition, if the system information of the corresponding cell is already acquired, the system information of the plurality of cells may be transmitted together.
  • the terminal may include and transmit the system information of one particular cell. In selecting one specific cell, the terminal may select, for example, a cell having the highest quality as a signal quality criterion, and transmit the system information of the corresponding cell.
  • the terminal is satisfied if the measurement report conditions associated with the measurement report configuration including the system information reporting indicator, the terminal is satisfied in the measurement report message in the measurement report message for the measurement report.
  • the measurement result of the cell and the system information may be included and transmitted to the serving cell.
  • the serving cell may provide the terminal with information for identifying the specific cell in which the terminal will report the system information together.
  • the serving cell may transmit the system information report indicator and the system information report target information in the measurement configuration.
  • the terminal may selectively report the system information to the serving cell based on the system information report target information.
  • FIG. 19 is a flowchart illustrating still another example of a reporting method according to an embodiment of the present invention.
  • the terminal receives a measurement configuration from a serving cell (S1910).
  • the measurement setting may include a system information report indicator and system information report target information.
  • the terminal receiving the system information report indicator may determine whether to report the system information of a specific cell through the system information report target information.
  • the system information report indicator and the system information report target information may be included in the measurement target setting and / or the measurement report setting.
  • the terminal determines whether the reporting condition is satisfied (S1920). If the reporting condition is not satisfied, the terminal may continue to measure the measurement object and determine whether the reporting condition is satisfied.
  • the terminal determines whether to report the system information on the cell in which the reporting condition is satisfied (S1930).
  • the terminal If the system information report target information is included in the measurement target setting, the terminal is satisfied with the reporting condition associated with the measurement target including the system information report target information, and the cell satisfying the report condition is determined according to the system report target information. If the target of the report, the terminal may transmit the measurement result and system information of the cell in the measurement report message to the serving cell (S1941). If the cell that satisfies the reporting condition is not the target of the system information report according to the system report target information, the terminal may transmit the measurement result to the serving cell without including the system information of the corresponding cell in the measurement report message (S1942).
  • the terminal is satisfied with the reporting condition of the measurement target associated with the measurement report configuration including the system information reporting target information, and the cell satisfying the reporting condition is the system reporting target. If the target of the system information report according to the information, the terminal may include the measurement result and system information of the cell in the measurement report message and transmit to the serving cell (S1941). If the cell that satisfies the reporting condition is not the system information report target according to the system report target information, the terminal may transmit the measurement result to the serving cell without including the system information of the corresponding cell in the report message (S1942).
  • the reporting condition may be an event based reporting condition.
  • the reporting condition may be a periodic reporting condition.
  • the reporting condition may be an event based periodic reporting condition.
  • the system information report target information may specify a specific cell as follows.
  • the specific type of cell may be a specific type classified according to the size of the cell. In this case, the specific type may be a pico cell and / or a femto cell.
  • the specific type of cell may be a cell specified by whether to provide a specific service. In this case, the cell may be a cell capable of MBMS service or a cell incapable of MBMS service. In this case the cell may be a CSG cell;
  • the area may be an area that can be divided through a tracking area code (TAC).
  • TAC tracking area code
  • PLMN PLMN
  • PLMN PLMN
  • the UE determines that the measurement result regarding the system information of the cell should be included in the measurement result report message regarding the quality of the neighbor cell, and the UE additionally needs to include system information that directly receives the system information from the cell.
  • the terminal may be allowed to use an autonomous gap in which the terminal autonomously determines the corresponding time interval as a time interval for ignoring the connection with the serving cell for neighbor cell measurement and the like.
  • the system information included in the measurement report message by the terminal may include the following information.
  • the reported system information may include CSG related information such as a CSG ID and a CSG indicator of the specific cell.
  • the reported system information may include MBMS service information, MBMS configuration information, MBMS scheduling information, MBMS service provided frequency information, and / or MBSFN subframe information of the specific cell.
  • MBMS related information may be included.
  • the reported system information includes low interference radio resource related information such as ABS pattern information, low interference subframe pattern information, or limited measurement pattern of the specific cell. can do.
  • the reported system information may include access restriction related information such as an access class barring parameter.
  • the reported system information may be frequency band information of one or more uplinks associated with the downlink of the specific cell.
  • the serving cell may instruct the terminal to report on specific information in the system information of the report target cell.
  • the serving cell may transmit the system information indication information requested to the terminal to the terminal.
  • the requested system information indication information may be included in the measurement setup and transmitted.
  • the requested system information indication information may be included in measurement object setting and / or measurement report setting.
  • the requested system information may be configured to instruct to report CSG related information, MBMS related information, low interference radio resource related information, access restriction related information, and frequency band information of one or more uplinks associated with a downlink of a specific cell. .
  • the requested system information can be implemented as a parameter indicating each of the above-mentioned information is included in the measurement setup.
  • the terminal transmits specific information determined / processed based on the acquired system information in reporting the measurement result and system information to the serving cell in the measurement report message. It can be transmitted by including more.
  • the specific information may include information indicating whether the terminal is a CSG member of the UE for the measurement result report target cell.
  • the specific information may include information indicating whether the terminal can access the measurement result report target cell.
  • the specific information may include information indicating whether the terminal can receive the desired specific service in the measurement result report target cell.
  • the specific information may include information indicating whether the UE can receive MBMS information in the cell.
  • the specific information may be information indicating whether the UE can set a specific radio resource in the measurement result report target cell.
  • the specific information may be information indicating whether the terminal can camp on the cell.
  • the specific information may be information indicating whether the cell is a suitable cell for the terminal.
  • the specific information may be information indicating whether the cell is a cell that can be used as a serving cell through carrier aggregation or system information required to configure the cell as a serving cell through carrier aggregation.
  • FIG. 20 is a block diagram illustrating a wireless device in which an embodiment of the present invention may be implemented.
  • This apparatus may implement a terminal and / or a base station that performs the reporting method according to the embodiments of FIGS. 18 and 19.
  • the wireless device 2000 includes a processor 2010, a memory 2020, and a radio frequency unit 2030.
  • the processor 2010 implements the proposed functions, processes and / or methods.
  • the processor 2010 may be implemented to receive measurement settings and determine whether a reporting condition is satisfied.
  • the processor 2010 may determine whether to report the system information of the report target cell together with the measurement result when the reporting condition is satisfied.
  • the processor 2010 may be implemented to report specific system information among the acquired system information.
  • the processor 2010 may be configured to implement the embodiments of the present invention described above with reference to FIGS. 18 and 19.
  • the RF unit 2030 is connected to the processor 2010 to transmit and receive a radio signal.
  • the processor 2010 may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit, and / or a data processing device.
  • the memory 2020 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the RF unit 2030 may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memory 2020 and executed by the processor 2010.
  • the memory 2020 may be inside or outside the processor 2010 and may be connected to the processor 2010 by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

일 양태에 있어서 무선 통신 시스템에서 보고 방법이 제공된다. 상기 방법은 측정 설정을 서빙 셀로부터 수신하되, 상기 측정 설정은 측정 결과 보고 대상 셀의 시스템 정보를 보고할 것을 지시하는 시스템 정보 보고 지시자를 포함하고; 상기 측정 설정을 기반으로 보고 조건 만족 여부를 결정하고; 및 상기 보고 조건이 만족되면, 상기 보고 조건이 만족된 보고 대상 셀의 측정 결과를 포함하는 측정 보고 메시지를 상기 서빙 셀로 전송하는 것;을 포함한다. 상기 측정 보고 메시지는 상기 보고 대상 셀의 시스템 정보를 더 포함한다.

Description

무선 통신 시스템에서 보고 방법 및 이를 지원하는 장치
본 발명은 무선 통신 시스템에 관한 것으로서 보다 상세하게는, 무선 통신 시스템에서 단말에 의한 보고 방법과 이를 지원하는 장치에 관한 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리이즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. 최대 4개의 안테나를 갖는 MIMO(multiple input multiple output)를 채용한다. 최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)에 대한 논의가 진행 중이다.
CSG(Closed Subscriber Group)은 특정 가입자에게만 제한된 접속을 허용함으로써, 보다 품질이 좋은 서비스를 제공하기 위해 도입된 것이다. CSG 서비스를 제공할 수 있는 기지국을 HNB(Home eNodeB)라 할 수 있고, CSG 가입자들에게 공인된 세버시를 제공하는 셀(cell)을 CSG 셀이라 할 수 있다. 3GPP에서 CSG의 기본 요구 사항은 3GPP TS 22.220 V1.0.1 (2008-12) “Service requirements for Home NodeBs and Home eNodeBs (Release 9)”에서 개시되고 있다.
제한적으로 서비스를 제공하는 CSG 셀의 특성은 CSG 셀로의 핸드 오버에서도 나타난다. CSG 셀로 핸드 오버를 수행함에 있어 단말이 해당 셀의 CSG 멤버인지 여부가 문제가 될 수 있다. 이로인해, CSG 셀로의 핸드오버는 단말이 셀 측정 결과를 보고하는 제1 단계와, 단말이 타겟 셀로부터 시스템 정보를 획득하여 서빙 셀로 보고하는 제2 단계로 구현될 수 있다.
서빙 셀로부터 핸드오버 명령 메시지를 수신하기 전까지 2회에 걸친 보고 단계를 수행하는 것은 핸드오버가 수행될 때 까지 지연시간이 너무 길어지고, 이에 따른 품질 저하가 발생할 수 있다는 문제가 생긴다. 단말에 의한 효율적인 보고 방법이 요구된다.
본 발명이 해결하고자 하는 기술적인 과제는 무선 통신 시스템에서 단말에 의하여 수행되는 보고 방법과 이를 지원하는 장치를 제공하는 것이다.
일 양태에 있어서 무선 통신 시스템에서 보고 방법이 제공된다. 상기 방법은 측정 설정을 서빙 셀로부터 수신하되, 상기 측정 설정은 측정 결과 보고 대상 셀의 시스템 정보를 보고할 것을 지시하는 시스템 정보 보고 지시자를 포함하고; 상기 측정 설정을 기반으로 보고 조건 만족 여부를 결정하고; 및 상기 보고 조건이 만족되면, 상기 보고 조건이 만족된 보고 대상 셀의 측정 결과를 포함하는 측정 보고 메시지를 상기 서빙 셀로 전송하는 것;을 포함한다. 상기 측정 보고 메시지는 상기 보고 대상 셀의 시스템 정보를 더 포함한다.
상기 방법은 시스템 정보 보고 대상 식별 정보를 수신하고 및 상기 시스템 정보 보고 대상 식별 정보를 기반으로 상기 보고 대상 셀의 상기 시스템 정보를 상기 서빙 셀로 전송할지 여부를 결정하는 것을 더 포함할 수 있다.
상기 보고 대상 셀의 상기 시스템 정보는 상기 서빙셀로 상기 시스템 정보를 전송하는 것으로 결정되면 상기 측정 보고 메시지에 포함될 수 있다.
상기 시스템 정보 보고 대상 식별 정보는 특정 셀 식별자를 지시할 수 있고, 상기 특정 셀 식별자가 상기 보고 대상 셀의 셀 식별자이면 상기 시스템 정보를 상기 서빙 셀로 전송할 것으로 결정할 수 있다.
상기 시스템 정보 보고 대상 식별 정보는 특정 타입의 셀을 지시할 수 있고, 상기 보고 대상 셀의 셀 타입이 상기 특정 타입의 셀이면 상기 시스템 정보를 상기 서빙 셀로 전송할 것으로 결정할 수 있다.
상기 특정 타입의 셀은 피코 셀(pico cell), 펨토 셀(femto cell), CSG(Closed Subscriber Group) 셀 및 MBMS(Multimedia Broadcast/Multicast Service) 셀 중 적어도 하나일 수 있다.
상기 보고 대상 셀이 CSG 셀이면 상기 시스템 정보는 상기 CSG 셀 관련 정보를 포함할 수 있다.
상기 보고 대상 셀이 MBMS 셀이면 상기 시스템 정보는 상기 보고 대상 셀이 제공하는 MBMS 관련 정보를 포함할 수 있다.
상기 보고 대상 셀이 저간섭 무선 자원을 운용하고 있는 셀이면, 상기 시스템 정보는 상기 저간섭 무선 자원 관련 정보를 포함할 수 있다.
상기 방법은 보고할 시스템 정보의 타입을 지시하는 요청된 시스템 정보 지시 정보를 수신하는 것을 더 포함할 수 있다. 상기 시스템 정보는 상기 요청된 시스템 정보 지시 정보에 의하여 지시되는 타입의 정보를 포함할 수 있다.
다른 양태에 있어서 무선 통신 시스템에서 동작하는 단말이 제공된다. 상기 단말은 무선 신호를 송신 및 수신하는 RF(Radio Frequency) 유닛 및 상기 RF 유닛과 기능적으로 연결된 프로세서를 포함한다. 상기 프로세서는 측정 설정을 서빙 셀로부터 수신하되, 상기 측정 설정은 측정 결과 보고 대상 셀의 시스템 정보를 보고할 것을 지시하는 시스템 정보 보고 지시자를 포함하고, 상기 측정 설정을 기반으로 보고 조건 만족 여부를 결정하고, 및 상기 보고 조건이 만족되면, 상기 보고 조건이 만족된 보고 대상 셀의 측정 결과를 포함하는 측정 보고 메시지를 상기 서빙 셀로 전송하도록 설정된다. 상기 측정 보고 메시지는 상기 보고 대상 셀의 시스템 정보를 더 포함한다.
제 11항에 있어서, 상기 보고 대상 셀이 저간섭 무선 자원을 운용하고 있는 셀이면, 상기 시스템 정보는 상기 저간섭 무선 자원 관련 정보를 포함하는 것을 특징으로 하는 단말.
본 발명에 따르면, 단말은 특정 조건이 만족되는 경우 시스템 정보를 측정 결과와 함께 서빙셀로 전송할 수 있다. 대상 셀의 시스템 정보가 빨리 서빙 셀로 전달되어 단말은 핸드오버 명령 메시지를 보다 빠르게 수신할 수 있다. 이를 통해 단말은 핸드오버를 빠르게 수행할 수 있어 사용자의 통신 품질이 향상될 수 있다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다.
도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 RRC 아이들 상태의 단말의 동작을 나타내는 흐름도이다.
도 5는 RRC 연결을 확립하는 과정을 나타낸 흐름도이다.
도 6은 RRC 연결 재설정 과정을 나타낸 흐름도이다.
도 7은 무선 링크 실패(radio link failure)를 나타낸 예시도이다.
도 8은 연결 재확립 과정의 성공을 나타낸 흐름도이다.
도 9는 연결 재확립 과정의 실패를 나타낸 흐름도이다.
도 10은 기존의 측정 수행 방법을 나타낸 흐름도이다.
도 11은 단말에게 설정된 측정 설정의 일 예를 나타낸다.
도 12는 측정 식별자를 삭제하는 예를 나타낸다.
도 13은 측정 대상을 삭제하는 예를 나타낸다.
도 14는 HeNB 운용을 나타내는 무선 통신 시스템의 일례를 나타내는 도면이다.
도 15는 CSG 시나리오를 예시한다.
도 16은 피코 시나리오를 예시한다.
도 17은 CSG 셀로의 핸드오버를 위한 보고 방법의 일례를 나타내는 도면이다.
도 18은 본 발명의 실시예에 따른 보고 방법의 일례를 나타내는 흐름도이다.
도 19는 본 발명의 실시예에 따른 보고 방법의 또 다른 일례를 나타내는 흐름도이다.
도 20은 본 발명의 실시예가 구현될 수 있는 무선 장치를 나타내는 블록도이다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 네트워크 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 데이터 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 확립되면, 단말은 RRC 연결(RRC connected) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC idle) 상태에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심벌(Symbol)들로 구성된다. 자원블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 상술한다.
RRC 상태란 단말의 RRC 계층이 E-UTRAN의 RRC 계층과 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태, 연결되어 있지 않은 경우는 RRC 아이들 상태라고 부른다. RRC 연결 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC 아이들 상태의 단말은 E-UTRAN이 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트랙킹 구역(Tracking Area) 단위로 CN(core network)이 관리한다. 즉, RRC 아이들 상태의 단말은 큰 지역 단위로 존재 여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 RRC 연결 상태로 이동해야 한다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 아이들 상태에 머무른다. RRC 아이들 상태의 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 E-UTRAN과 RRC 연결을 확립하고, RRC 연결 상태로 천이한다. RRC 아이들 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, 아니면 E-UTRAN으로부터 호출(paging) 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
NAS 계층에서 단말의 이동성을 관리하기 위하여 EMM-REGISTERED(EPS Mobility Management-REGISTERED) 및 EMM-DEREGISTERED 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말과 MME에게 적용된다. 초기 단말은 EMM-DEREGISTERED 상태이며, 이 단말이 네트워크에 접속하기 위해서 초기 연결(Initial Attach) 절차를 통해서 해당 네트워크에 등록하는 과정을 수행한다. 상기 연결(Attach) 절차가 성공적으로 수행되면 단말 및 MME는 EMM-REGISTERED 상태가 된다.
단말과 EPC간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM(EPS Connection Management)-IDLE 상태 및 ECM-CONNECTED 상태 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말 및 MME에게 적용된다. ECM-IDLE 상태의 단말이 E-UTRAN과 RRC 연결을 맺으면 해당 단말은 ECM-CONNECTED 상태가 된다. ECM-IDLE 상태에 있는 MME는 E-UTRAN과 S1 연결(S1 connection)을 맺으면 ECM-CONNECTED 상태가 된다. 단말이 ECM-IDLE 상태에 있을 때에는 E-UTRAN은 단말의 배경(context) 정보를 가지고 있지 않다. 따라서 ECM-IDLE 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(reselection)과 같은 단말 기반의 이동성 관련 절차를 수행한다. 반면 단말이 ECM-CONNECTED 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM-IDLE 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라질 경우 단말은 트랙킹 구역 갱신(Tracking Area Update) 절차를 통해 네트워크에 단말의 해당 위치를 알린다.
다음은, 시스템 정보(System Information)에 관한 설명이다.
시스템 정보는 단말이 기지국에 접속하기 위해서 알아야 하는 필수 정보를 포함한다. 따라서 단말은 기지국에 접속하기 전에 시스템 정보를 모두 수신하고 있어야 하고, 또한 항상 최신의 시스템 정보를 가지고 있어야 한다. 그리고 상기 시스템 정보는 한 셀 내의 모든 단말이 알고 있어야 하는 정보이므로, 기지국은 주기적으로 상기 시스템 정보를 전송한다.
3GPP TS 36.331 V8.7.0 (2009-09) "Radio Resource Control (RRC); Protocol specification (Release 8)"의 5.2.2절에 의하면, 상기 시스템 정보는 MIB(Master Information Block), SB(Scheduling Block), SIB System Information Block)로 나뉜다. MIB는 단말이 해당 셀의 물리적 구성, 예를 들어 대역폭(Bandwidth) 같은 것을 알 수 있도록 한다. SB은 SIB들의 전송정보, 예를 들어, 전송 주기 등을 알려준다. SIB은 서로 관련 있는 시스템 정보의 집합체이다. 예를 들어, 어떤 SIB는 주변의 셀의 정보만을 포함하고, 어떤 SIB는 단말이 사용하는 상향링크 무선 채널의 정보만을 포함한다.
일반적으로, 네트워크가 단말에게 제공하는 서비스는 아래와 같이 세가지 타입으로 구분할 수 있다. 또한, 어떤 서비스를 제공받을 수 있는지에 따라 단말은 셀의 타입 역시 다르게 인식한다. 아래에서 먼저 서비스 타입을 서술하고, 이어 셀의 타입을 서술한다.
1) 제한적 서비스(Limited service): 이 서비스는 응급 호출(Emergency call) 및 재해 경보 시스템(Earthquake and Tsunami Warning System; ETWS)를 제공하며, 수용가능 셀(acceptable cell)에서 제공할 수 있다.
2) 정규 서비스(Normal service) : 이 서비스는 일반적 용도의 범용 서비스(public use)를 의미하여, 정규 셀(suitable or normal cell)에서 제공할 수 있다.
3) 사업자 서비스(Operator service) : 이 서비스는 통신망 사업자를 위한 서비스를 의미하며, 이 셀은 통신망 사업자만 사용할 수 있고 일반 사용자는 사용할 수 없다.
셀이 제공하는 서비스 타입과 관련하여, 셀의 타입은 아래와 같이 구분될 수 있다.
1) 수용가능 셀(Acceptable cell) : 단말이 제한된(Limited) 서비스를 제공받을 수 있는 셀. 이 셀은 해당 단말 입장에서, 금지(barred)되어 있지 않고, 단말의 셀 선택 기준을 만족시키는 셀이다.
2) 정규 셀(Suitable cell) : 단말이 정규 서비스를 제공받을 수 있는 셀. 이 셀은 수용가능 셀의 조건을 만족시키며, 동시에 추가 조건들을 만족시킨다. 추가적인 조건으로는, 이 셀이 해당 단말이 접속할 수 있는 PLMN(Public Land Mobile Network) 소속이어야 하고, 단말의 트랙킹 구역(Tracking Area) 갱신 절차의 수행이 금지되지 않은 셀이어야 한다. 해당 셀이 CSG 셀이라고 하면, 단말이 이 셀에 CSG 멤버로서 접속이 가능한 셀이어야 한다.
3) 금지된 (Barred cell) : 셀이 시스템 정보를 통해 금지된 셀이라는 정보를 브로드캐스트하는 셀이다.
4) 예약된 셀(Reserved cell) : 셀이 시스템 정보를 통해 예약된 셀이라는 정보를 브로드캐스트하는 셀이다.
도 4는 RRC 아이들 상태의 단말의 동작을 나타내는 흐름도이다. 도 4는 초기 전원이 켜진 단말이 셀 선택 과정을 거쳐 네트워크 망에 등록하고 이어 필요할 경우 셀 재선택을 하는 절차를 나타낸다.
도 4를 참조하면, 단말은 자신이 서비스 받고자 하는 망인 PLMN(public land mobile network)과 통신하기 위한 라디오 접속 기술(radio access technology; RAT)를 선택한다(S410). PLMN 및 RAT에 대한 정보는 단말의 사용자가 선택할 수도 있으며, USIM(universal subscriber identity module)에 저장되어 있는 것을 사용할 수도 있다.
단말은 측정한 기지국과 신호세기나 품질이 특정한 값보다 큰 셀 중에서, 가장 큰 값을 가지는 셀을 선택한다(Cell Selection)(S420). 이는 전원이 켜진 단말이 셀 선택을 수행하는 것으로서 초기 셀 선택(initial cell selection)이라 할 수 있다. 셀 선택 절차에 대해서 이후에 상술하기로 한다. 셀 선택 이후 단말은, 기지국이 주기적으로 보내는 시스템 정보를 수신한다. 상기 말하는 특정한 값은 데이터 송/수신에서의 물리적 신호에 대한 품질을 보장받기 위하여 시스템에서 정의된 값을 말한다. 따라서, 적용되는 RAT에 따라 그 값은 다를 수 있다.
단말은 망 등록 필요가 있는 경우 망 등록 절차를 수행한다(S430). 단말은 망으로부터 서비스(예:Paging)를 받기 위하여 자신의 정보(예:IMSI)를 등록한다. 단말은 셀을 선택 할 때 마다 접속하는 망에 등록을 하는 것은 아니며, 시스템 정보로부터 받은 망의 정보(예:Tracking Area Identity; TAI)와 자신이 알고 있는 망의 정보가 다른 경우에 망에 등록을 한다.
단말은 셀에서 제공되는 서비스 환경 또는 단말의 환경 등을 기반으로 셀 재선택을 수행한다(S440). 단말은 서비스 받고 있는 기지국으로부터 측정한 신호의 세기나 품질의 값이 인접한 셀의 기지국으로부터 측정한 값보다 낮다면, 단말이 접속한 기지국의 셀 보다 더 좋은 신호 특성을 제공하는 다른 셀 중 하나를 선택한다. 이 과정을 2번 과정의 초기 셀 선택(Initial Cell Selection)과 구분하여 셀 재선택(Cell Re-Selection)이라 한다. 이때, 신호특성의 변화에 따라 빈번히 셀이 재선택되는 것을 방지하기 위하여 시간적인 제약조건을 둔다. 셀 재선택 절차에 대해서 이후에 상술하기로 한다.
도 5는 RRC 연결을 확립하는 과정을 나타낸 흐름도이다.
단말은 RRC 연결을 요청하는 RRC 연결 요청(RRC Connection Request) 메시지를 네트워크로 보낸다(S510). 네트워크는 RRC 연결 요청에 대한 응답으로 RRC 연결 설정(RRC Connection Setup) 메시지를 보낸다(S520). RRC 연결 설정 메시지를 수신한 후, 단말은 RRC 연결 모드로 진입한다.
단말은 RRC 연결 확립의 성공적인 완료를 확인하기 위해 사용되는 RRC 연결 설정 완료(RRC Connection Setup Complete) 메시지를 네트워크로 보낸다(S530).
도 6은 RRC 연결 재설정 과정을 나타낸 흐름도이다. RRC 연결 재설정(reconfiguration)은 RRC 연결을 수정하는데 사용된다. 이는 RB 확립/수정(modify)/해제(release), 핸드오버 수행, 측정 셋업/수정/해제하기 위해 사용된다.
네트워크는 단말로 RRC 연결을 수정하기 위한 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지를 보낸다(S610). 단말은 RRC 연결 재설정에 대한 응답으로, RRC 연결 재설정의 성공적인 완료를 확인하기 위해 사용되는 RRC 연결 재설정 완료(RRC Connection Reconfiguration Complete) 메시지를 네트워크로 보낸다(S620).
이제 무선 링크 실패에 대하여 설명한다.
단말은 서비스를 수신하는 서빙셀과의 무선 링크의 품질 유지를 위해 지속적으로 측정을 수행한다. 단말은 서빙셀과의 무선 링크의 품질 악화(deterioration)로 인하여 현재 상황에서 통신이 불가능한지 여부를 결정한다. 만약, 서빙셀의 품질이 너무 낮아서 통신이 거의 불가능한 경우, 단말은 현재 상황을 무선 연결 실패로 결정한다.
만약 무선 링크 실패가 결정되면, 단말은 현재의 서빙셀과의 통신 유지를 포기하고, 셀 선택(또는 셀 재선택) 절차를 통해 새로운 셀을 선택하고, 새로운 셀로의 RRC 연결 재확립(RRC connection re-establishment)을 시도한다.
도 7은 무선 링크 실패(radio link failure)를 나타낸 예시도이다. 무선 링크 실패와 관련된 동작은 2가지 국면(phase)으로 기술될 수 있다.
첫 번째 국면(first phase)에서, 단말은 정상 동작(normal operation) 중이고, 현재 통신 링크에 문제가 있는지 여부를 검사한다. 만약 문제가 검출되는 경우 단말은 무선 링크 문제(radio link problem)를 선언하고, 제1 대기 시간(T1) 동안, 무선 링크가 회복(recover)되기를 대기한다. 제1 대기시간이 경과하기 전에 무선 링크가 회복되면, 단말은 다시 정상 동작을 수행한다. 제1 대기시간이 만료될(expire) 때까지, 무선 링크가 회복되지 않으면, 단말은 무선 링크 실패를 선언하고, 두 번째 국면으로 진입한다.
두 번째 국면에서, 다시 제2 대기 시간(T2) 동안 무선 링크가 회복되기를 대기한다. 제2 대기시간이 만료될 때까지, 무선 링크가 회복되지 않으면, 단말은 RRC 아이들 상태로 진입한다. 또는, 단말은 RRC 재확립 절차를 수행할 수 있다.
RRC 연결 재확립 절차는 RRC_CONNECTED 상태에서 다시 RRC 연결을 재설정하는 절차이다. 단말이 RRC_CONNECTED 상태에 머무른 채로 남기 때문에, 즉 RRC_IDLE 상태로 진입하지 않기 때문에, 단말은 자신의 무선 설정(예를 들어 무선 베어러 설정)들을 모두 초기화하지는 않는다. 대신, 단말은 RRC 연결 재설정 절차를 시작할 때 SRB0를 제외한 모든 무선 베어러들의 사용을 일시적으로 중단(suspend)한다. 만약 RRC 연결 재설정이 성공하게 되면, 단말은 일시적으로 사용을 중단한 무선 베어러들의 사용을 재개(resume)한다.
도 8은 연결 재확립 과정의 성공을 나타낸 흐름도이다.
단말은 셀 선택(Cell selection)을 수행하여 셀을 선택한다. 단말은 선택된셀에서 셀 접속을 위한 기본 파라미터들을 수신하기 위해 시스템 정보를 수신한다. 그리고, 단말은 RRC 연결 재확립 요청 메시지를 기지국으로 보낸다(S810).
기지국은 선택된 셀이 단말의 컨텍스트(context)를 가지고 있는 셀, 즉 준비된 셀(prepared cell)인 경우에는 단말의 RRC 연결 재확립 요청을 수락하고, RRC 연결 재확립 메시지를 단말에게 보낸다(S820). 단말은 RRC 연결 재확립 완료(connection re-establishment complete) 메시지를 기지국으로 보내, RRC 연결 재확립 절차가 성공할 수 있다(S830).
도 9는 연결 재확립 과정의 실패를 나타낸 흐름도이다. 단말은 RRC 연결 재확립 요청 메시지를 기지국으로 보낸다(S810). 만약 선택된 셀이 준비된 셀이 아니면, 기지국은 단말에게 RRC 연결 재확립 요청에 대한 응답으로 RRC 연결 재확립 거절(reject) 메시지를 보낸다(S815).
다음은 단말이 셀을 선택하는 절차에 대해서 자세히 설명한다.
전원이 켜지거나 셀에 머물러 있을 때, 단말은 적절한 품질의 셀을 선택/재선택하여 서비스를 받기 위한 절차들을 수행한다.
RRC 아이들 상태의 단말은 항상 적절한 품질의 셀을 선택하여 이 셀을 통해 서비스를 제공받기 위한 준비를 하고 있어야 한다. 예를 들어, 전원이 막 켜진 단말은 네트워크에 등록을 하기 위해 적절한 품질의 셀을 선택해야 한다. RRC 연결 상태에 있던 상기 단말이 RRC 아이들 상태에 진입하면, 상기 단말은 RRC 아이들 상태에서 머무를 셀을 선택해야 한다. 이와 같이, 상기 단말이 RRC 아이들 상태와 같은 서비스 대기 상태로 머물고 있기 위해서 어떤 조건을 만족하는 셀을 고르는 과정을 셀 선택(Cell Selection)이라고 한다. 중요한 점은, 상기 셀 선택은 상기 단말이 상기 RRC 아이들 상태로 머물러 있을 셀을 현재 결정하지 못한 상태에서 수행하는 것이므로, 가능한 신속하게 셀을 선택하는 것이 무엇보다 중요하다. 따라서 일정 기준 이상의 무선 신호 품질을 제공하는 셀이라면, 비록 이 셀이 단말에게 가장 좋은 무선 신호 품질을 제공하는 셀이 아니라고 하더라도, 단말의 셀 선택 과정에서 선택될 수 있다.
이제 3GPP TS 36.304 V8.5.0 (2009-03) "User Equipment (UE) procedures in idle mode (Release 8)"을 참조하여, 3GPP LTE에서 단말이 셀을 선택하는 방법 및 절차에 대하여 상술한다.
단말은 초기에 전원이 켜지면 사용 가능한 PLMN(public land mobile network)을 검색하고 서비스를 받을 수 있는 적절한 PLMN을 선택한다. PLMN은 모바일 네트워크 운영자(mobile network operator)에 의해 배치되거나(deploy) 운영되는 네트워크이다. 각 모바일 네트워크 운영자는 하나 또는 그 이상의 PLMN을 운영한다. 각각의 PLMN은 MCC(mobile country code) 및 MNC(mobile network code)에 의하여 식별될 수 있다. 셀의 PLMN 정보는 시스템 정보에 포함되어 브로드캐스트된다. 단말은 선택한 PLMN을 등록하려고 시도한다. 등록이 성공한 경우, 선택된 PLMN은 RPLMN(registered PLMN)이 된다. 네트워크는 단말에게 PLMN 리스트를 시그널링할 수 있는데, 이는 PLMN 리스트에 포함된 PLMN들을 RPLMN과 같은 PLMN이라 고려할 수 있다. 네트워크에 등록된 UE는 상시 네트워크에 의하여 접근될 수(reachable) 있어야 한다. 만약 UE가 ECM-CONNECTED 상태(동일하게는 RRC 연결 상태)에 있는 경우, 네트워크는 단말이 서비스를 받고 있음을 인지한다. 그러나, 단말이 ECM-IDLE 상태(동일하게는 RRC 아이들 상태)에 있는 경우, 단말의 상황이 eNB에서는 유효하지 않지만 MME에는 저장되어 있다. 이 경우, ECM-IDLE 상태의 단말의 위치는 TA(tracking Area)들의 리스트의 입도(granularity)로 오직 MME에게만 알려진다. 단일 TA는 TA가 소속된 PLMN 식별자로 구성된 TAI(tracking area identity)및 PLMN 내의 TA를 유일하게 표현하는 TAC(tracking area code)에 의해 식별된다.
이어, 선택한 PLMN이 제공하는 셀들 중에서 상기 단말이 적절한 서비스를 제공받을 수 있는 신호 품질과 특성을 가진 셀을 선택한다.
셀 선택 과정은 크게 두 가지로 나뉜다.
먼저 초기 셀 선택 과정으로, 이 과정에서는 상기 단말이 무선 채널에 대한 사전 정보가 없다. 따라서 상기 단말은 적절한 셀을 찾기 위해 모든 무선 채널을 검색한다. 각 채널에서 상기 단말은 가장 강한 셀을 찾는다. 이후, 상기 단말이 셀 선택 기준을 만족하는 적절한(suitable) 셀을 찾기만 하면 해당 셀을 선택한다.
다음으로 단말은 저장된 정보를 활용하거나, 셀에서 방송하고 있는 정보를 활용하여 셀을 선택할 수 있다. 따라서, 초기 셀 선택 과정에 비해 셀 선택이 신속할 수 있다. 단말이 셀 선택 기준을 만족하는 셀을 찾기만 하면 해당 셀을 선택한다. 만약 이 과정을 통해 셀 선택 기준을 만족하는 적절한 셀을 찾지 못하면, 단말은 초기 셀 선택 과정을 수행한다.
상기 단말이 일단 셀 선택 과정을 통해 어떤 셀을 선택한 이후, 단말의 이동성 또는 무선 환경의 변화 등으로 단말과 기지국간의 신호의 세기나 품질이 바뀔 수 있다. 따라서 만약 선택한 셀의 품질이 저하되는 경우, 단말은 더 좋은 품질을 제공하는 다른 셀을 선택할 수 있다. 이렇게 셀을 다시 선택하는 경우, 일반적으로 현재 선택된 셀보다 더 좋은 신호 품질을 제공하는 셀을 선택한다. 이런 과정을 셀 재선택(Cell Reselection)이라고 한다. 상기 셀 재선택 과정은, 무선 신호의 품질 관점에서, 일반적으로 단말에게 가장 좋은 품질을 제공하는 셀을 선택하는데 기본적인 목적이 있다.
무선 신호의 품질 관점 이외에, 네트워크는 주파수 별로 우선 순위를 결정하여 단말에게 알릴 수 있다. 이러한 우선 순위를 수신한 단말은, 셀 재선택 과정에서 이 우선 순위를 무선 신호 품질 기준보다 우선적으로 고려하게 된다.
위와 같이 무선 환경의 신호 특성에 따라 셀을 선택 또는 재선택하는 방법이 있으며, 셀 재선택시 재선택을 위한 셀을 선택하는데 있어서, 셀의 RAT와 주파수(frequency) 특성에 따라 다음과 같은 셀 재선택 방법이 있을 수 있다.
- Intra-frequency 셀 재선택 : 단말이 캠핑(camp) 중인 셀과 같은 RAT과 같은 중심 주파수(center-frequency)를 가지는 셀을 재선택
- Inter-frequency 셀 재선택 : 단말이 캠핑 중인 셀과 같은 RAT과 다른 중심 주파수를 가지는 셀을 재선택
- Inter-RAT 셀 재선택 : 단말이 캠핑 중인 RAT와 다른 RAT을 사용하는 셀을 재선택
셀 재선택 과정의 원칙은 다음과 같다
첫째, 단말은 셀 재선택을 위하여 서빙 셀(serving cell) 및 주변 셀(neighboring cell)의 품질을 측정한다.
둘째, 셀 재선택은 셀 재선택 기준에 기반하여 수행된다. 셀 재선택 기준은 서빙 셀 및 주변 셀 측정에 관련하여 아래와 같은 특성을 가지고 있다.
Intra-frequency 셀 재선택은 기본적으로 랭킹(ranking)에 기반한다. 랭킹이라는 것은, 셀 재선택 평가를 위한 지표값을 정의하고, 이 지표값을 이용하여 셀들을 지표값의 크기 순으로 순서를 매기는 작업이다. 가장 좋은 지표를 가지는 셀을 흔히 best ranked cell이라고 부른다. 셀 지표값은 단말이 해당 셀에 대해 측정한 값을 기본으로, 필요에 따라 주파수 오프셋 또는 셀 오프셋을 적용한 값이다.
Inter-frequency 셀 재선택은 네트워크에 의해 제공된 주파수 우선순위에 기반한다. 단말은 가장 높은 주파수 우선순위를 가진 주파수에 머무를(camp on) 수 있도록 시도한다. 네트워크는 브로드캐스트 시그널링(broadcast signling)를 통해서 셀 내 단말들이 공통적으로 적용할 또는 주파수 우선순위를 제공하거나, 단말별 시그널링(dedicated signaling)을 통해 단말 별로 각각 주파수 별 우선순위를 제공할 수 있다.
Inter-frequency 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 파라미터(예를 들어 주파수별 오프셋(frequency-specific offset))를 주파수별로 제공할 수 있다.
Intra-frequency 셀 재선택 또는 inter-frequency 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 주변 셀 리스트(Neighbouring Cell List, NCL)를 단말에게 제공할 수 있다. 이 NCL은 셀 재선택에 사용되는 셀 별 파라미터(예를 들어 셀 별 오프셋(cell-specific offset))를 포함한다
Intra-frequency 또는 inter-frequency 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 셀 재선택 금지 리스트(black list)를 단말에게 제공할 수 있다. 금지 리스트에 포함된 셀에 대해 단말은 셀 재선택을 수행하지 않는다.
이어서, 셀 재선택 평가 과정에서 수행하는 랭킹에 관해 설명한다.
셀의 우선순위를 주는데 사용되는 랭킹 지표(ranking criterion)은 수학식 1와 같이 정의된다.
Figure PCTKR2012005580-appb-M000001
여기서, Rs는 서빙 셀의 랭킹 지표, Rn은 주변 셀의 랭킹 지표, Qmeas,s는 단말이 서빙 셀에 대해 측정한 품질값, Qmeas,n는 단말이 주변 셀에 대해 측정한 품질값, Qhyst는 랭킹을 위한 히스테리시스(hysteresis) 값, Qoffset은 두 셀간의 오프셋이다.
Intra-frequency에서, 단말이 서빙 셀과 주변 셀 간의 오프셋(Qoffsets,n)을 수신한 경우 Qffoset=Qoffsets,n 이고, 단말이 Qoffsets,n 을 수신하지 않은 경우에는 Qoffset = 0 이다.
Inter-frequency에서, 단말이 해당 셀에 대한 오프셋(Qoffsets,n)을 수신한 경우 Qoffset = Qoffsets,n + Qfrequency 이고, 단말이 Qoffsets,n 을 수신하지 않은 경우 Qoffset = Qfrequency 이다.
서빙 셀의 랭킹 지표(Rs)과 주변 셀의 랭킹 지표(Rn)이 서로 비슷한 상태에서 변동하면, 변동 결과 랭킹 순위가 자꾸 뒤바뀌어 단말이 두 셀을 번갈아가면서 재선택을 할 수 있다. Qhyst는 셀 재선택에서 히스테리시스를 주어, 단말이 두 셀을 번갈아가면서 재선택하는 것을 막기 위한 파라미터이다.
단말은 위 식에 따라 서빙 셀의 Rs 및 주변 셀의 Rn을 측정하고, 랭킹 지표 값이 가장 큰 값을 가진 셀을 best ranked 셀로 간주하고, 이 셀을 재선택한다.
상기 기준에 의하면, 셀의 품질이 셀 재선택에서 가장 주요한 기준으로 작용하는 것을 확인할 수 있다. 만약 재선택한 셀이 정규 셀(suitable cell)이 아니면 단말은 해당 주파수 또는 해당 셀을 셀 재선택 대상에서 제외한다.
이하에서 측정 및 측정 보고에 대하여 설명한다.
이동 통신 시스템에서 단말의 이동성(mobility) 지원은 필수적이다. 따라서, 단말은 현재 서비스를 제공하는 서빙 셀(serving cell)에 대한 품질 및 이웃셀에 대한 품질을 지속적으로 측정한다. 단말은 측정 결과를 적절한 시간에 네트워크에게 보고하고, 네트워크는 핸드오버 등을 통해 단말에게 최적의 이동성을 제공한다. 흔히 이러한 목적의 측정을 무선 자원 관리 측정 (RRM(radio resource management) measurement)라고 일컫는다.
단말은 이동성 지원의 목적 이외에 사업자가 네트워크를 운영하는데 도움이 될 수 있는 정보를 제공하기 위해, 네트워크가 설정하는 특정한 목적의 측정을 수행하고, 그 측정 결과를 네트워크에게 보고할 수 있다. 예를 들어, 단말이 네트워크가 정한 특정 셀의 브로드캐스트 정보를 수신한다. 단말은 상기 특정 셀의 셀 식별자(Cell Identity)(이를 광역(Global) 셀 식별자라고도 함), 상기 특정 셀이 속한 위치 식별 정보(예를 들어, Tracking Area Code) 및/또는 기타 셀 정보(예를 들어, CSG(Closed Subscriber Group) 셀의 멤버 여부)를 서빙 셀에게 보고할 수 있다.
이동 중의 단말은 특정 지역의 품질이 매우 나쁘다는 것을 측정을 통해 확인한 경우, 품질이 나쁜 셀들에 대한 위치 정보 및 측정 결과를 네트워크에 보고할 수 있다. 네트워크는 네크워크의 운영을 돕는 단말들의 측정 결과의 보고를 바탕으로 네트워크의 최적화를 꾀할 수 있다.
주파수 재사용(Frequency reuse factor)이 1인 이동 통신 시스템에서는, 이동성이 대부분 동일한 주파수 밴드에 있는 서로 다른 셀 간에 이루어진다. 따라서, 단말의 이동성을 잘 보장하기 위해서는, 단말은 서빙 셀의 중심 주파수와 동일한 중심 주파수를 갖는 주변 셀들의 품질 및 셀 정보를 잘 측정할 수 있어야 한다. 이와 같이 서빙 셀의 중심 주파수와 동일한 중심 주파수를 갖는 셀에 대한 측정을 동일 주파수 측정(intra-frequency measurement)라고 부른다. 단말은 동일 주파수 측정을 수행하여 측정 결과를 네트워크에게 적절한 시간에 보고하여, 해당되는 측정 결과의 목적이 달성되도록 한다.
이동 통신 사업자는 복수의 주파수 밴드를 사용하여 네트워크를 운용할 수도 있다. 복수의 주파수 밴드를 통해 통신 시스템의 서비스가 제공되는 경우, 단말에게 최적의 이동성을 보장하기 위해서는, 단말은 서빙 셀의 중심 주파수와 다른 중심 주파수를 갖는 주변 셀들의 품질 및 셀 정보를 잘 측정할 수 있어야 한다. 이와 같이, 서빙 셀의 중심 주파수와 다른 중심 주파수를 갖는 셀에 대한 측정을 다른 주파수 측정(inter-frequency measurement)라고 부른다. 단말은 다른 주파수 측정을 수행하여 측정 결과를 네트워크에게 적절한 시간에 보고할 수 있어야 한다.
단말이 이종(heterogeneous) 네트워크에 대한 측정을 지원할 경우, 기지국 설정에 의해 이종 네크워크의 셀에 대한 측정을 할 수도 있다. 이러한, 이종 네트워크에 대한 측정을 inter-RAT(Radio Access Technology) 측정이라고 한다. 예를 들어, RAT는 3GPP 표준 규격을 따르는 UTRAN(UMTS Terrestrial Radio Access Network) 및 GERAN(GSM EDGE Radio Access Network)을 포함할 수 있으며, 3GPP2 표준 규격을 따르는 CDMA 2000 시스템 역시 포함할 수 있다.
도 10은 기존의 측정 수행 방법을 나타낸 흐름도이다.
단말은 기지국으로부터 측정 설정(measurement configuration) 정보를 수신한다(S1010). 측정 설정 정보를 포함하는 메시지를 측정 설정 메시지라 한다. 단말은 측정 설정 정보를 기반으로 측정을 수행한다(S1020). 단말은 측정 결과가 측정 설정 정보 내의 보고 조건을 만족하면, 측정 결과를 기지국에게 보고한다(S1030). 측정 결과를 포함하는 메시지를 측정 보고 메시지라 한다.
측정 설정 정보는 다음과 같은 정보를 포함할 수 있다.
(1) 측정 대상(Measurement object) 정보: 단말이 측정을 수행할 대상에 관한 정보이다. 측정 대상은 셀내 측정의 대상인 intra-frequency 측정 대상, 셀간 측정의 대상인 inter-frequency 측정 대상, 및 inter-RAT 측정의 대상인 inter-RAT 측정 대상 중 적어도 어느 하나를 포함한다. 예를 들어, intra-frequency 측정 대상은 서빙 셀과 동일한 주파수 밴드를 갖는 주변 셀을 지시하고, inter-frequency 측정 대상은 서빙 셀과 다른 주파수 밴드를 갖는 주변 셀을 지시하고, inter-RAT 측정 대상은 서빙 셀의 RAT와 다른 RAT의 주변 셀을 지시할 수 있다.
(2) 보고 설정(Reporting configuration) 정보: 단말이 측정 결과를 언제 보고하는지에 관한 보고 조건 및 보고 타입(type)에 관한 정보이다. 보고 조건은 측정 결과의 보고가 유발(trigger)되는 이벤트나 주기에 관한 정보를 포함할 수 있다. 보고 타입은 측정 결과를 어떤 타입으로 구성할 것인지에 관한 정보이다.
(3) 측정 식별자(Measurement identity) 정보: 측정 대상과 보고 설정을 연관시켜, 단말이 어떤 측정 대상에 대해 언제 어떤 타입으로 보고할 것인지를 결정하도록 하는 측정 식별자에 관한 정보이다. 측정 식별자 정보는 측정 보고 메시지에 포함되어, 측정 결과가 어떤 측정 대상에 대한 것이며, 측정 보고가 어떤 보고 조건으로 발생하였는지를 나타낼 수 있다.
(4) 양적 설정(Quantity configuration) 정보: 측정 단위, 보고 단위 및/또는 측정 결과값의 필터링을 설정하기 위한 파라미터에 관한 정보이다.
(5) 측정 갭(Measurement gap) 정보: 하향링크 전송 또는 상향링크 전송이 스케쥴링되지 않아, 단말이 서빙 셀과의 데이터 전송에 대한 고려 없이 오직 측정을 하는데 사용될 수 있는 구간인 측정 갭에 관한 정보이다.
단말은 측정 절차를 수행하기 위해, 측정 대상 리스트, 측정 보고 설정 리스트 및 측정 식별자 리스트를 가지고 있다.
3GPP LTE에서 기지국은 단말에게 하나의 주파수 밴드에 대해 하나의 측정 대상만을 설정할 수 있다. 3GPP TS 36.331 V8.5.0 (2009-03) "Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Resource Control (RRC); Protocol specification (Release 8)"의 5.5.4절에 의하면, 다음 표와 같은 측정 보고가 유발되는 이벤트들이 정의되어 있다.
이벤트 보고 조건
Event A1 Serving becomes better than threshold
Event A2 Serving becomes worse than threshold
Event A3 Neighbour becomes offset better than serving
Event A4 Neighbour becomes better than threshold
Event A5 Serving becomes worse than threshold1 and neighbour becomes better than threshold2
Event B1 Inter RAT neighbour becomes better than threshold
Event B2 Serving becomes worse than threshold1 and inter RAT neighbour becomes better than threshold2
단말의 측정 결과가 설정된 이벤트를 만족하면, 단말은 측정 보고 메시지를 기지국으로 전송한다.
도 11은 단말에게 설정된 측정 설정의 일 예를 나타낸다.
먼저, 측정 식별자 1(1101)은 intra-frequency 측정 대상과 보고 설정 1을 연결하고 있다. 단말은 셀내 측정(intra frequency measurement)을 수행하며, 보고 설정 1이 측정 결과 보고의 기준 및 보고 타입를 결정하는데 사용된다.
측정 식별자 2(1102)는 측정 식별자 1(1101)과 마찬가지로 intra-frequency 측정 대상과 연결되어 있지만, intra-frequency 측정 대상을 보고 설정 2에 연결하고 있다. 단말은 셀내 측정을 수행하며, 보고 설정 2이 측정 결과 보고의 기준 및 보고 타입를 결정하는데 사용된다.
측정 식별자 1(1101)과 측정 식별자 2(1102)에 의해, 단말은 intra-frequency 측정 대상에 대한 측정 결과가 보고 설정 1 및 보고 설정 2 중 어느 하나를 만족하더라도 측정 결과를 전송한다.
측정 식별자 3(1103)은 inter-frequency 측정 대상 1과 보고 설정 3을 연결하고 있다. 단말은 inter-frequency 측정 대상 1에 대한 측정 결과가 보고 설정 1에 포함된 보고 조건을 만족하면 측정 결과를 보고한다.
측정 식별자 4(1104)은 inter-frequency 측정 대상 2과 보고 설정 2을 연결하고 있다. 단말은 inter-frequency 측정 대상 2에 대한 측정 결과가 보고 설정 2에 포함된 보고 조건을 만족하면 측정 결과를 보고한다.
한편, 측정 대상, 보고 설정 및/또는 측정 식별자는 추가, 변경 및/또는 삭제가 가능하다. 이는 기지국이 단말에게 새로운 측정 설정 메시지를 보내거나, 측정 설정 변경 메시지를 보냄으로써 지시할 수 있다.
도 12는 측정 식별자를 삭제하는 예를 나타낸다. 측정 식별자 2(1202)가 삭제되면, 측정 식별자 2(1202)와 연관된 측정 대상에 대한 측정이 중단되고, 측정 보고도 전송되지 않는다. 삭제된 측정 식별자와 연관된 측정 대상이나 보고 설정은 변경되지 않을 수 있다.
도 13은 측정 대상을 삭제하는 예를 나타낸다. inter-frequency 측정 대상 1이 삭제되면, 단말은 연관된 측정 식별자 3(1303)도 또한 삭제한다. inter-frequency 측정 대상 1에 대한 측정이 중단되고, 측정 보고도 전송되지 않는다. 그러나, 삭제된 inter-frequency 측정 대상 1에 연관된 보고 설정은 변경 또는 삭제되지 않을 수 있다.
보고 설정이 제거되면, 단말은 연관된 측정 식별자 역시 제거한다. 단말은 연관된 측정 식별자에 의해 연관된 측정 대상에 대한 측정을 중단한다. 그러나, 삭제된 보고 설정에 연관된 측정 대상은 변경 또는 삭제되지 않을 수 있다.
측정 보고는 측정 식별자, 서빙셀의 측정된 품질 및 주변 셀(neighboring cell)의 측정 결과를 포함할 수 있다. 측정 식별자는 측정 보고가 트리거된 측정 대상을 식별한다. 주변 셀의 측정 결과는 주변 셀의 셀 식별자 및 측정된 품질을 포함할 수 있다. 측정된 품질은 RSRP(Reference Signal Received Power) 및 RSRQ(Reference Signal Received Quality) 중 적어도 하나를 포함할 수 있다.
이어서 H(e)NB에 대하여 설명한다.
이동통신망 사업자 외에 개인이나 또는 특정 사업자 또는 집단 소유의 기지국을 통해 이동 통신 서비스를 제공할 수도 있다. 이러한 기지국을 HNB (Home NB) 또는 HeNB (Home eNB)라고 부른다. 앞으로 HNB와 HeNB 둘을 총칭하여 HeNB라고 일컫는다. HeNB는 기본적으로 특정 사용자 그룹(Closed Subscriber Group, CSG) 에게만 특화된 서비스를 제공하는 것을 목적으로 한다. 단 HeNB의 동작 모드 설정에 따라 CSG 외에 다른 사용자들에게도 서비스를 제공할 수도 있다.
도 14는 HeNB 운용을 나타내는 무선 통신 시스템의 일례를 나타내는 도면이다.
도 14를 참조하면, 위와 같이 HeNB를 서비스하기 위해서 Home eNB 게이트웨이(HeNB GW)를 운용할 수도 있다. HeNB들은 HeNB GW를 통해 EPC에 연결되거나 직접 EPC에 연결된다. HeNB GW는 MME에게는 일반적인 eNB처럼 보인다. HeNB GW는 HeNB에게는 MME처럼 보인다. 따라서, HeNB와 HeNB GW 사이에는 S1 인터페이스로 연결되며, HeNB GW와 EPC 역시 S1 인터페이스로 연결된다. 또한, HeNB와 EPC가 직접 연결될 경우에도 S1 인터페이스로 연결된다. HeNB의 기능은 일반적인 eNB의 기능과 대부분 같다.
일반적으로 HeNB는 이동통신망 사업자가 소유한 eNB와 비교하여 무선 전송 출력이 낮다. 따라서 HeNB가 제공하는 서비스 영역(coverage)는 eNB가 제공하는 서비스 영역에 비하여 작은 것이 일반적이다. 이 같은 특성 때문에 서비스 영역 관점에서 종종 HeNB가 제공하는 셀은 eNB가 제공하는 macro 셀과 대비하여 femto 셀로 분류된다. 한편 제공하는 서비스 관점에서, HeNB가 CSG 그룹에게만 서비스를 제공할 때에, 이 HeNB가 제공하는 셀은 CSG 셀이라고 일컫는다.
각 CSG는 각기 고유의 식별 번호를 가지고 있으며, 이 식별 번호를 CSG ID(CSG identity)라고 부른다. 단말은 자신이 멤버로 속한 CSG의 목록을 가질 수 있고, 이 CSG 목록은 단말의 요청 또는 네트워크의 명령에 의해 변경될 수 있다. 일반적으로 하나의 HeNB는 한 개의 CSG를 지원할 수 있다.
HeNB는 자신이 지원하는 CSG의 CSG ID를 시스템 정보를 통해 전달하여, 해당 CSG의 멤버 단말만이 접속하도록 한다. 단말은 CSG 셀을 발견하였을 때, 이 CSG 셀이 어떤 CSG를 지원하는지를 시스템 정보에 포함된 CSG ID를 읽어서 확인할 수 있다. CSG ID를 읽은 단말은 자신이 해당 CSG 셀의 멤버일 경우에만 해당 셀을 접속할 수 있는 셀로 간주한다.
HeNB라고 해서 항상 CSG 단말에게만 접속을 허용할 필요는 없다. HeNB의 구성 설정에 따라 CSG 멤버가 아닌 단말의 접속도 허용할 수가 있다. 어떤 단말에게 접속을 허용할지는 HeNB의 구성 설정에 따라 바뀌는데, 여기서 구성 설정은 HeNB의 동작 모드의 설정을 의미한다. HeNB의 동작 모드는 어떤 단말에게 서비스를 제공하는지에 따라 아래의 3가지로 구분된다.
Closed access mode: 특정 CSG 멤버에게만 서비스를 제공하는 모드. HeNB는 CSG 셀을 제공한다.
Open access mode: 일반 eNB처럼 특정 CSG 멤버라는 제약이 없이 서비스를 제공하는 모드. HeNB은 CSG 셀이 아닌 일반적 셀을 제공한다.
Hybrid access mode: 특정 CSG 멤버에게는 CSG 서비스를 제공할 수 있고, 비 CSG 멤버에게도 일반 셀처럼 서비스를 제공하는 모드. CSG 멤버 UE에게는 CSG 셀로 인식이 되고, 비 CSG 멤버 UE에게는 일반 셀처럼 인식이 된다. 이러한 셀을 hybrid cell이라고 부른다.
HeNB는 자신이 서비스하는 셀이 CSG 셀인 일반적인 셀인지를 단말에게 알려서, 단말이 해당 셀에 접속할 수 있는지 없는지를 알게 한다. Closed access mode로 운영되는 HeNB는 자신이 CSG 셀이라는 것을 시스템 정보를 통해 방송한다. Open access mode로 운영되는 HeNB는 자신이 CSG 셀이 아니라는 것을 시스템 정보를 통해 방송한다. 이와 같이 HeNB는 자신이 서비스하는 셀이 CSG 셀인지 아닌지를 알려주는 1비트의 CSG 지시자(CSG indicator)를 시스템 정보 속에 포함시킨다. 예를 들어 CSG셀은 CSG 지시자를 TRUE로 설정해서 방송한다. 만약 서비스하는 셀이 CSG 셀이 아닌 경우에 CSG 지시자를 FALSE로 설정하거나 또는 CSG 지시자 전송을 생략하는 방법을 사용할 수도 있다. 단말은 eNB가 제공하는 일반적 셀을 CSG 셀과 구분할 수 있어야 하기 때문에, 일반적 eNB 역시 CSG 지시자를 전송하여 단말이 자신이 제공하는 셀 타입이 일반적 셀임을 알게 할 수 있다. 일반적 eNB는 CSG 지시자를 전송하지 않음으로 단말이 자신이 제공하는 셀 타입이 일반적 셀임을 알게 할 수도 있다. 표 2는 셀 타입별로 해당 셀에서 전송하는 CSG 관련 파라미터를 나타낸다. 이어 표 3은 셀 타입별 접속을 허용하는 단말의 종류를 나타낸다.
CSG 셀 일반적 셀
CSG 지시자 ‘CSG 셀’이라고 가리킴 ‘Non-CSG 셀’이라고 가리킴 또는 전송하지 않음
CSG 식별자 지원하는 CSG 식별자 전송 전송하지 않음
CSG 셀 일반적 셀
CSG를 지원하지 않는 단말 접속 불가 접속 가능
비CSG 멤버 단말 접속 불가 접속 가능
멤버 CSG 단말 접속 가능 접속 가능
이제 ICIC(Inter-cell Interference Coordination)에 대해 기술한다.
ICIC는 셀간 간섭(Inter-cell Interference)의 제어가 유지될 수 있도록 무선 자원을 운영하는 작업이다. ICIC 메커니즘은 주파수 영역 ICIC와 시간 영역 ICIC로 나눌 수 있다. ICIC는 다중 셀로부터 정보를 고려하는 것이 필요한 다중 셀 RRM(Radio Resource Management) 기능을 포함한다.
간섭셀(interfering cell)은 간섭을 제공하는 셀이다. 간섭셀은 공격자셀(aggressor cell)이라고도 한다.
간섭받는 셀(interfered cell)은 간섭셀로부터 간섭의 영향을 받는 셀이다. 간섭받는 셀은 희생자 셀(victim cell)이라고도 한다.
주파수 영역 ICIC는 다중 셀간에 주파수 영역 자원(예, RB(resource block)의 사용을 조정한다(coordinate).
시간 영역 ICIC는 다중 셀간에 시간 영역 자원(예, 서브프레임)을 조정한다. 시간 영역 ICIC를 위해, ABS(Almost Blank Subframe) 패턴이라 불리는 OAM(Operations, Administration and Maintenance) 설정이 사용될 수 있다. 간섭셀에서의 ABS는 강한 셀간 간섭을 수신하는 간섭받는 셀에서의 서브프레임에서 자원을 보호하는 데 사용된다. ABS는 물리채널 상의 감소된 전송파워(또는 제로 전송 파워)를 갖거나 감소된 활동성을 갖는 서브프레임이다.
ABS에 기반한 패턴이 단말에게 알려지고, 단말 측정을 제한한다. 이를 측정 자원 제한(measurement resource restriction)이라고 한다. ABS 패턴은 하나 또는 그 이상의 무선 프레임(radio frame) 내에서 어느 서브프레임이 ABS 인지를 가리키는 정보를 말한다.
측정되는 셀(예, 서빙 셀 또는 주변 셀(neighbour cell)) 및 측정 타입(예, RRM(Radio Resource Management), RLM(Radio Link Measurement), CSI(Channel State Information))에 따라 3가지 측정 자원 제한 패턴이 있다.
'ABS 패턴 1'은 서빙 셀의 RRM/RLM 측정 자원 제한에 사용된다. ABS 패턴 1에 관한 정보는 RB의 설정/수정/해제, 또는 MAC/카드깡 PHY 설정이 수정될 때, 기지국이 단말에게 알려줄 수 있다.
'ABS 패턴 2'는 서빙 셀과 동일한 주파수에 동작하는 주변 셀의 RRM 측정 지원 제한에 사용된다. 따라서, ABS 패턴 2는 패턴 정보와 더불어 측정될 주변 셀의 리스트가 단말에게 제공될 수 있다. ABS 패턴 2은 측정 대상(measurement object)에 대한 측정 설정에 포함될 수 있다.
'ABS 패턴 3'는 서빙 셀의 CSI 측정에 대한 자원 제한에 사용된다. ABS 패턴 3는 CSI 보고를 설정하는 메시지에 포함될 수 있다.
ICIC를 위해 CSG 시나리오와 피코(pico) 시나리오라는 2가지 시나리오가 고려되고 있다.
도 15는 CSG 시나리오를 예시한다.
CSG 셀은 특정 가입자만 접속 가능한 셀을 말한다. 비-멤버 단말은 CSG 셀의 멤버가 아닌 단말로, CSG 셀로 접속이 되지 않는 단말이다. 단말이 접속을 할 수 없는 CSG 셀을 비 멤버 CSG 셀이라고 한다. 매크로 셀은 비-멤버 단말의 서빙 셀으로 말한다. CSG 셀과 매크로 셀의 커버리지는 일부 또는 전부가 중복된다고 한다.
주된 간섭 조건은 비-멤버 단말이 CSG 셀의 가까운 근처(close proximity)에 위치할 때 발생한다. 비-멤버 단말의 입장에서 간섭셀은 CSG 셀이 되고, 매크로 셀이 간섭받는 셀이 된다. 시간 영역 ICIC는 비-멤버 단말이 매크로 셀에서 계속 서비스를 제공받을 수 있도록 하기 위해 사용된다.
RRC 연결 상태에서, 네트워크는 비-멤버 단말이 CSG 셀로부터 강한 간섭에 속해있는 것을 발견하면, 측정 자원 제한을 설정할 수 있다. 또한, 매크로 셀로부터의 이동성을 용이하게 하기 위해, 네트워크는 주변 셀에 대한 RRM 측정 자원 제한을 설정할 수 있다. 단말이 CSG 셀로부터 더이상 간섭을 심하게 받지 않으면 네트워크는 RRM/RLM/CSI 측정 자원 제한을 해제할 수 있다.
단말은 RRM, RLM 및 CSI 측정을 위해 설정된 측정 자원 제한을 사용할 수 있다. 즉, RLM을 위한 자원을 ABS에서 사용하고, RLM을 위한 측정과 CSI 측정을 ABS에서 수행할 수 있다.
네트워크는 CSG 셀이 설정된 측정 자원 제한에 따른 저간섭 무선 자원을 사용하지 않도록 설정할 수 있다. 즉, CSG 셀은 ABS에서 데이터를 전송하지 않거나 수신하지 않을 수 있다.
도 16은 피코 시나리오를 예시한다.
피코 셀은 피코 단말의 서빙 셀이다. 피코 셀은 매크로 셀과 커버리지가 일부 또는 전부가 중복되는 셀이다. 피코 셀은 일반적으로 매크로 셀보다 커버리지가 작을 수 있으나, 반드시 이에 한정되는 것은 아니다.
주된 간섭 조건은 피코 단말이 피코 서빙 셀의 경계(edge)에 위치할 때 발생한다. 피크 단말의 입장에서 간섭셀은 매크로 셀이 되고, 피코 셀이 간섭받는 셀이 된다. 시간 영역 ICIC는 피코 단말이 피코 셀에서 계속 서비스를 제공받을 수 있도록 하기 위해 사용된다.
피코셀은 피코 단말이 매크로 셀로부터 강한 간섭에 속해있는 것을 발견하면, 해당되는 단말에게 측정 자원 제한을 설정할 수 있다.
피코 단말은 RRM, RLM 및 CSI 측정을 위해 설정된 측정 자원 제한을 사용할 수 있다. 즉, RLM을 위한 자원을 ABS에서 사용하고, RLM을 위한 측정과 CSI 측정을 ABS에서 수행할 수 있다. 피코 셀이 매크로 셀로부터 강한 간섭을 받고 있을 때, RRM/RLM/CSI 측정을 ABS에서 수행하면 보다 정확한 측정이 가능하다.
또한, 매크로 셀을 서빙 셀로 하는 단말이 주변 셀 측정을 ABS에서 수행하면, 매크로 셀에서 피코 셀로의 이동성을 용이하게 할 수 있다.
단말은 서빙 셀이나 이웃 셀에 대하여 RSRP(Reference Signal Received Power), RSRQ(Reference Signal Received Quality)와 같은 RRM 측정 및 CQI(Channel Quality Indicator)와 같은 품질의 측정, 그리고 경로 손실(path-loss) 측정을 수행한다. 또한 단말은 서빙셀과의 연결을 모니터링하기 위한 RLM(Radio Link Monitoring)이 목적인 측정을 수행할 수 있다.
단말이 측정을 하려고 하는 대상에 따라 간섭 셀과 간섭 받는 셀이 결정된다.
단말이 서빙셀을 측정하려는 경우, 단말 근처에 신호 강도가 강한 intra-frequency 이웃셀이 서빙셀 측정에 간섭으로 작용할 수 있다. 이 경우, 단말은 서빙셀 측정에 있어 이웃셀에 의한 고도 간섭을 겪을 수 있다.
단말이 intra-frequency 이웃셀을 측정하려는 경우, 서빙셀 및 다른 intra-frequency 이웃셀 신호가 intra-frequency 이웃셀 측정에 대한 간섭으로 작용할 수 있다. 이 경우, 단말은 상기 이웃셀 측정에 있어 서빙셀 및 서빙 주파수의 다른 이웃셀에 의한 고도 간섭을 겪을 수 있다.
만약 서빙 셀이 단말에게 간섭을 야기하는 이웃 셀이 간섭 억제를 위해 적용하고 있는 측정 자원 제한에 대한 정보를 알 수 있으면, 간섭을 받고 있는 단말에게 측정 자원 제한을 기반으로 한 제한된 측정을 수행하도록 할 수 있다. 서빙 셀은 저간섭 무선 자원을 주로 활용한 스케쥴링을 통해 이웃 셀의 간섭에도 불구하고 단말에게 서비스를 제공해줄 수 있다.
MBMS(Multimedia Broadcast/Multicast Service)는 멀티미디어 데이터를 셀 내의 단말에게 제공하는 서비스이다. MBMS를 위한 전송 채널 MCH 채널은 논리채널인 MCCH 또는 MTCH에 매핑될 수 있다. MCCH 채널은 MBMS 관련 RRC 메시지를 전송하고, MTCH 채널은 특정 MBMS 서비스의 트래픽을 전송한다.
하나의 셀 내에서는 MTCH 및 MCCH의 용량에 따라 복수 개의 MCH가 사용될 수 있다. 상기 MCH는 MTCH와 MCCH라는 두 가지 논리채널의 전송을 담당하며, 이는 다시 물리 채널인 PMCH(Physical Multicast Channel)로 매핑된다.
동일한 MBMS 정보/트래픽을 전송하는 하나의 MBSFN(MBMS Single Frequency Network) 지역마다 하나의 MCCH 채널이 있으며, 복수의 MBSFN 지역들이 하나의 셀에서 제공될 경우, 단말은 복수의 MCCH를 수신할 수도 있다. 특정 MCCH채널에서 MBMS 관련 RRC 메시지가 변경될 경우, PDCCH 채널은 M_RNTI(MBMS Radio Network Temporary Identity)와 특정 MCCH 채널을 지시하는 지시자를 전송한다.
MBMS를 지원하는 단말은 상기 PDCCH를 통해 M-RNTI와 MCCH 지시자를 수신하여, 특정 MCCH 채널에서 MBMS 관련 RRC 메시지가 변경되었음을 파악하고, 상기 특정 MCCH 채널을 수신할 수 있다. MCCH 채널의 RRC 메시지는 변경주기마다 변경될 수 있으며, 반복주기마다 반복적으로 방송된다.
기존의 무선 네트워크는 집계과정(counting procedure)를 통해 특정 서비스를 수신하는 단말의 수를 계산할 수 있다. 상기 집계과정은 무선망이 하향 집계요청메시지(counting request)를 전송하면, 단말이 상향 집계응답메시지(counting response)를 전송하는 것으로 구성된다.
한편, 특정 핸드오버의 경우, 핸드오버 준비 과정에서 단말이 핸드오버 대상 셀(target cell)의 시스템 정보를 읽어서 서빙셀로 보고하여줄 필요가 있다. 다시 말해, 서빙 셀로부터 전송된 측정 설정에 따른 타겟 셀 측정 값을 보고하는 첫 번째 보고 단계와, 타겟 셀의 시스템 정보를 획득하여 보고하는 두 번째 보고 2 단계가 수행될 것이 요구된다. 이는 CSG 셀로의 핸드오버 절차를 위한 보고 방법에 나타난다.
도 17은 CSG 셀로의 핸드오버를 위한 보고 방법의 일례를 나타내는 도면이다.
도 17을 참조하면, 단말은 셀 품질 보고를 위한 측정 설정을 서빙 셀로부터 수신한다(S1710).
단말은 측정 설정을 기반으로 측정을 수행하고 보고 조건 만족시 타겟 셀의 셀 품질 측정치를 포함하는 측정 보고를 서빙 셀로 보고한다(S1720). 측정 보고에는 타겟 셀의 PCI(Physical Cel ID)가 포함될 수 있다.
서빙 셀은 타겟 셀의 시스템 정보를 보고할 것을 단말에게 요청한다(S1730). 서빙 셀이 단말에게 획득할 것을 요구하는 시스템 정보는 타겟 셀이 브로드캐스트 하는 시스템 정보의 전부 또는 일부일 수 있다.
단말은 타겟 셀에 진입하여 시스템 정보를 획득 한다(S1740). 단말은 획득된 타겟 셀의 시스템 정보를 서빙 셀로 보고한다(S1750). 단말이 서빙 셀로 보고하는 타겟 셀의 시스템 정보는 타겟 셀의 CGI(Cell Global ID), CSG ID 및 단말이 해당 CSG 셀의 CSG 멤버인지 여부를 지시하는 지시자를 포함할 수 있다.
서빙 셀은 타겟 셀이 단말의 핸드오버 대상으로서 적격을 가진다고 판단된 경우, 단말에게 핸드오버 지시 메시지를 전송한다(S1760)
도 17에서 타겟 셀의 품질 측정을 위하여 측정 설정을 단말이 수신하는 단계인 S1710, 수신한 측정 설정을 기반으로 타겟 셀의 품질을 측정하고 이를 서빙셀로 보고하는 단계인 S1720은 제1 측정 단계라고 할 수 있다. 또한, 서빙 셀로부터 타겟 셀의 시스템 정보를 획득할 것을 요청받는 단계인 S1730, 요청에 따라 타겟 셀의 시스템 정보를 획득하는 단계인 S1740 및 획득한 시스템 정보를 서빙 셀로 보고하는 단계 S1750는 제2 측정 단계라고 할 수 있다. 즉, 시스템 정보 수신 및 보고는 단말이 핸드오버 대상셀의 품질을 측정하고 이를 보고하는 단계 이후에 별도로 수행된다. 그 결과, 단말이 핸드오버 명령을 수신하기까지 지연시간이 길어지고, 이에 따른 통신 품질이 저하되는 문제가 발생될 수 있다.
위와 같이 발생할 수 있는 문제점을 해결하기 위하여 단말은 특정 셀의 측정 결과외 특정 셀의 시스템 정보를 측정 보고 메시지에 포함시켜 전송하는 보고 방법을 제안한다. 이를 위하여 서빙 셀은 측정 설정을 단말에게 전송함에 있어서, 단말이 측정 결과 보고시 시스템 정보를 포함시킬 것을 지시하는 시스템 정보 보고 지시자(system information report indicator)를 측정 설정에 포함시킬 수 있다. 단말이 이전에 특정 셀로부터 시스템 정보를 획득하여 이를 저장하고 있는 경우 단말은 특정 조건이 만족될 경우 측정 결과와 함께 시스템 정보를 서빙 셀로 전송할 수 있다.
도 18은 본 발명의 실시예에 따른 보고 방법의 일례를 나타내는 흐름도이다.
도 18을 참조하면, 단말은 서빙 셀로부터 측정 설정을 수신한다(S1810). 측정 설정은 시스템 정보 보고 지시자를 포함할 수 있다. 단말은 시스템 정보 보고 지시자를 통해 측정 결과 보고시에 해당 셀의 시스템 정보를 함께 보고하기로 결정할 수 있다. 시스템 정보 보고 지시자는 측정 설정의 측정 대상 설정 및/또는 측정 보고 설정에 포함될 수 있다.
단말은 보고 조건 만족 여부를 결정한다(S1820). 보고 조건이 만족되지 않으면 단말은 측정 대상에 대하여 측정을 계속하여 보고 조건 만족 여부를 결정할 수 있다.
단말은 보고 조건이 만족되면 셀의 측정 결과와 해당 셀의 시스템 정보를 서빙 셀에게 보고할 수 있다(S1830).
시스템 정보 보고 지시자가 측정 설정의 측정 대상 설정에 포함되어 있는 경우, 단말은 시스템 정보 보고 지시자를 포함하는 측정 대상에 연관된 측정 보고 조건이 만족되면, 단말은 측정 보고를 위한 측정 보고 메시지 내에 보고 조건이 만족된 셀의 측정 결과와 시스템 정보를 포함시켜 서빙 셀에게 전송할 수 있다. 만약 복수 개의 셀이 보고 조건을 만족하는 경우, 해당하는 셀의 시스템 정보를 이미 획득하고 있다면 복수개의 셀의 시스템 정보를 함께 전송할 수 있다. 반면, 단말은 특정 하나의 셀의 시스템 정보를 포함시켜 전송할 수 있다. 단말은 특정 하나의 셀을 선택함에 있어, 신호 품질 기준으로, 일례로 가장 품질이 높은 셀을 선택하고, 해당 셀의 시스템 정보를 포함시켜 전송할 수 있다.
시스템 정보 보고 지시자가 측정 보고 설정에 포함되어 있는 경우, 단말은 시스템 정보 보고 지시자를 포함하는 측정 보고 설정과 관련된 측정 보고 조건이 만족되면, 단말은 측정 보고를 위한 측정 보고 메시지 내에 보고 조건이 만족된 셀의 측정 결과와 시스템 정보를 포함시켜 서빙 셀에게 전송할 수 있다.
서빙 셀은 단말이 시스템 정보를 함께 보고할 특정 셀을 식별할 수 있는 정보를 단말에게 제공하여 줄 수 있다. 서빙 셀은 측정 설정에 시스템 정보 보고 지시자 및 시스템 정보 보고 대상 정보를 포함시켜 전송할 수 있다. 단말은 시스템 정보 보고 대상 정보를 기반으로 특정 셀에 대해서 선택적으로 시스템 정보를 서빙 셀로 보고할 수 있다. 이하 도 19를 참조하여 보다 상세하게 설명하도록 한다.
도 19는 본 발명의 실시예에 따른 보고 방법의 또 다른 일례를 나타내는 흐름도이다.
도 19를 참조하면, 단말은 서빙 셀로부터 측정 설정을 수신한다(S1910). 측정 설정은 시스템 정보 보고 지시자 및 시스템 정보 보고 대상 정보를 포함할 수 있다. 시스템 정보 보고 지시자를 수신한 단말은 시스템 정보 보고 대상 정보를 통해 특정 셀의 시스템 정보를 보고할지 여부를 결정할 수 있다. 시스템 정보 보고 지시자 및 시스템 정보 보고 대상 정보는 측정 대상 설정 및/또는 측정 보고 설정에 포함될 수 있다.
단말은 보고 조건 만족 여부를 결정한다(S1920). 보고 조건이 만족되지 않으면 단말은 측정 대상에 대하여 측정을 계속하여 보고 조건 만족 여부를 결정할 수 있다.
단말은 보고 조건이 만족되면 보고 조건이 만족된 셀에 대한 시스템 정보를 보고할지 여부를 결정한다(S1930).
시스템 정보 보고 대상 정보가 측정 대상 설정에 포함되어 있는 경우, 단말은 시스템 정보 보고 대상 정보를 포함하는 측정 대상에 연관된 보고 조건이 만족되었고, 보고 조건을 만족한 셀이 시스템 보고 대상 정보에 따라 시스템 정보 보고의 대상이면, 단말은 해당 셀의 측정 결과와 시스템 정보를 측정 보고 메시지에 포함시켜 서빙 셀에게 전송할 수 있다(S1941). 보고 조건을 만족한 셀이 시스템 보고 대상 정보에 따라 시스템 정보 보고의 대상이 아니면, 단말은 해당 셀의 시스템 정보 없이 측정 결과를 측정 보고 메시지에 포함시켜 서빙 셀에게 전송할 수 있다(S1942).
시스템 정보 보고 대상 정보가 측정 보고 설정에 포함되어 있는 경우, 단말은 시스템 정보 보고 대상 정보를 포함하는 측정 보고 설정에 연관된 측정 대상의 보고 조건이 만족 되었고, 보고 조건을 만족한 셀이 시트템 보고 대상 정보에 따라 시스템 정보 보고의 대상이면, 단말은 해당 셀의 측정 결과와 시스템 정보를 측정 보고 메시지에 포함시켜 서빙 셀에게 전송할 수 있다(S1941). 보고 조건을 만족한 셀이 시스템 보고 대상 정보에 따라 시스템 정보 보고 대상이 아니면, 단말은 해당 셀의 시스템 정보 없이 측정 결과를 보고 메시지에 포함시켜 서빙 셀에게 전송할 수 있다(S1942).
도 18 및 도 19의 보고 방법의 예시에 있어서, 보고 조건은 이벤트 기반의 보고 조건(event based reporting condition)일 수 있다. 보고 조건은 주기적 보고 기반 조건(periodic reporting condition)일 수 있다. 보고 조건은 이벤트 기반의 주기적 보고 조건(event based periodic reporting condition)일 수 있다.
전술한 도 19의 보고 방법의 일례에서, 시스템 정보 보고 대상 정보는 이하와 같이 특정 셀을 특정할 수 있다.
네트워크가 지정한 특정한 한 개 또는 복수 개의 셀 식별자를 가지는 셀;
네트워크가 지정한 셀 식별자의 범위(range)에 포함된 셀;
네트워크가 지정한 특정 타입의 셀. 특정 타입의 셀은, 셀의 크기에 따라 분류되는 특정 타입일 수 있다. 이 경우, 특정 타입은 피코 셀(pico cell) 및/또는 펨토 셀(femto cell)일 수 있다. 특정 타입의 셀은, 특정 서비스의 제공 여부에 의하여 특정되는 셀일 수 있다. 이 경우 셀은 MBMS 서비스가 가능한 셀이거나 또는 MBMS 서비스가 불가능한 셀일 수 있다. 이 경우 셀은 CSG 셀일 수 있다;
네트워크에 의해 지정한 영역에 포함되어 있는 셀. 상기 영역은 TAC(Tracking Area Code)를 통해 구분될 수 있는 영역일 수 있다. 상기 영역은 PLMN을 통해 구분될 수 있는 영역일 수 있다. 상기 영역은 지리적 위치(geo-location) 정보를 통해 구분될 수 있는 영역일 수 있다.
단말이 이웃셀의 품질에 관한 측정 결과 보고 메시지 내에 해당 셀의 시스템 정보에 관한 측정 결과를 포함시켜야 함을 결정하였고, 단말이 추가적으로 해당 셀로부터 직접 시스템 정보를 수신한 시스템 정보를 포함하는 것이 필요한 경우, 단말은 이웃 셀 측정 등을 위해 서빙셀과의 연결을 무시하는 시간 구간으로, 단말이 해당 시간 구간을 자율적으로 결정하는 것인 자율 갭(autonomous gap)을 사용하는 것이 허용될 수 있다.
전술한 보고 방법의 예시에서, 단말이 측정 보고 메시지에 포함시키는 시스템 정보는 아래와 같은 정보를 포함할 수 있다.
시스템 정보와 관련된 특정 셀이 CSG를 지원하는 셀인 경우, 보고되는 시스템 정보는 상기 특정 셀의 CSG ID, CSG 지시자와 같은 CSG 관련 정보를 포함할 수 있다.
시스템 정보와 관련된 특정 셀이 MBMS를 지원하는 셀인 경우, 보고되는 시스템 정보는 상기 특정 셀의 MBMS 서비스 정보, MBMS 설정 정보, MBMS 스케쥴링 정보, MBMS 서비스 제공되는 주파수 정보 및/또는 MBSFN 서브프레임 정보와 같은 MBMS 관련 정보를 포함할 수 있다.
시스템 정보와 관련된 특정 셀이 측정 자원 제한이 설정되어 있는 셀인 경우, 보고되는 시스템 정보는 상기 특정 셀의 ABS 패턴 정보, 저간섭 서브 프레임 패턴 정보 또는 제한된 측정 패턴과 같은 저간섭 무선 자원 관련 정보를 포함할 수 있다.
보고되는 시스템 정보는 접속 클래스 제외 파라미터(access class barring parameter)와 같은 접속 제한 관련 정보를 포함할 수 있다.
보고되는 시스템 정보는 상기 특정 셀의 하향 링크와 연관된 한 개 이상의 상향 링크의 주파수 밴드 정보일 수 있다.
전술한 도 18 및 도 19를 참조하여 상술한 보고 방법에 있어서 서빙 셀은 보고 대상 셀의 시스템 정보 중에 특정 정보에 대하여 보고할 것을 단말에게 지시할 수 있다. 이를 위하여 서빙 셀은 단말로 요청된 시스템 정보 지시 정보를 단말에게 전송할 수 있다. 요청된 시스템 정보 지시 정보는 측정 설정에 포함되어 전송될 수 있다. 요청된 시스템 정보 지시 정보는 측정 대상 설정 및/또는 측정 보고 설정에 포함될 수 있다. 요청된 시스템 정보는 CSG 관련 정보, MBMS 관련 정보 저간섭 무선 자원 관련 정보, 접속 제한 관련 정보, 특정 셀의 하향 링크와 연관된 한 개 이상의 상향 링크의 주파수 밴드 정보를 보고할 것을 지시하도록 설정될 수 있다. 요청된 시스템 정보는 전술한 각 정보를 지시하는 파라미터가 측정 설정에 포함되는 것으로서 구현될 수 있다.
도 18 및 도 19의 본 발명의 실시예에 따른 보고 방법에 있어서, 단말은 측정 결과 및 시스템 정보를 서빙 셀에 보고함에 있어서 획득한 시스템 정보를 기반으로 판단/가공한 특정 정보를 측정 보고 메시지에 더 포함시켜 전송할 수 있다.
상기 특정 정보는 측정 결과 보고 대상 셀에 관한 단말의 CSG 멤버 여부를 지시하는 정보를 포함할 수 있다.
상기 특정 정보는 측정 결과 보고 대상 셀에 단말이 접속할 수 있는지 여부를 지시하는 정보를 포함할 수 있다.
상기 특정 정보는 측정 결과 보고 대상 셀에서 단말이 원하는 특정 서비스를 제공 받을 수 있는지 여부를 지시하는 정보를 포함할 수 있다. 일례로, 상기 특정 정보는 상기 셀에서 단말이 MBMS 정보를 서비스 받을 수 있는지 여부를 지시하는 정보를 포함할 수 있다.
상기 특정 정보는 측정 결과 보고 대상 셀에서 단말이 특정 무선 자원 설정이 가능한지를 지시하는 정보일 수 있다. 예를들어, 상기 특정 정보는 단말이 상기 셀에서 캠프온(camp on)할 수 있는지를 지시하는 정보일 수 있다. 상기 특정 정보는 상기 셀이 상기 단말에게 적합한 셀(suitable cell)인지 여부를 지시하는 정보일 수 있다. 상기 특정 정보는 단말이 상기 셀이 반송파 집적(carrier aggregation)을 통한 서빙 셀로 사용 가능한 셀인지를 지시하는 정보 또는 상기 셀을 반송파 집적을 통한 서빙 셀로 설정하는데 있어 필요한 시스템 정보일 수 있다.
도 20은 본 발명의 실시예가 구현될 수 있는 무선 장치를 나타내는 블록도이다. 이 장치는 도 18 및 19의 실시예에 따른 보고 방법을 수행하는 단말 및/또는 기지국을 구현할 수 있다.
무선 장치(2000)는 프로세서(2010), 메모리(2020) 및 RF부(radio frequency unit, 2030)을 포함한다. 프로세서(2010)는 제안된 기능, 과정 및/또는 방법을 구현한다. 프로세서(2010) 측정 설정을 수신하여 보고 조건의 만족 여부를 결정하도록 구현될 수 있다. 프로세서(2010)는 보고 조건 만족시 보고 대상 셀의 시스템 정보를 측정 결과와 함께 보고할지 여부를 결정할 수 있다. 프로세서(2010)는 획득한 시스템 정보 중 특정 시스템 정보를 보고하도록 구현될 수 있다. 프로세서(2010)는 도 18 및 도 19을 참조하여 상술한 본 발명의 실시예를 구현하도록 설정될 수 있다.
RF부(2030)은 프로세서(2010)와 연결되어 무선 신호를 송신 및 수신한다.
프로세서(2010)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리(2020)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(2030)는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(2020)에 저장되고, 프로세서(2010)에 의해 실행될 수 있다. 메모리(2020)는 프로세서(2010) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(2010)와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (20)

  1. 무선 통신 시스템에서 보고 방법에 있어서,
    측정 설정을 서빙 셀로부터 수신하되, 상기 측정 설정은 측정 결과 보고 대상 셀의 시스템 정보를 보고할 것을 지시하는 시스템 정보 보고 지시자를 포함하고;
    상기 측정 설정을 기반으로 보고 조건 만족 여부를 결정하고; 및
    상기 보고 조건이 만족되면, 상기 보고 조건이 만족된 보고 대상 셀의 측정 결과를 포함하는 측정 보고 메시지를 상기 서빙 셀로 전송하는 것;을 포함하되,
    상기 측정 보고 메시지는 상기 보고 대상 셀의 시스템 정보를 더 포함하는 것을 특징으로 하는 보고 방법.
  2. 제 1항에 있어서,
    시스템 정보 보고 대상 식별 정보를 수신하고; 및
    상기 시스템 정보 보고 대상 식별 정보를 기반으로 상기 보고 대상 셀의 상기 시스템 정보를 상기 서빙 셀로 전송할지 여부를 결정하는 것;을 더 포함함을 특징으로 하는 보고 방법.
  3. 제 2항에 있어서, 상기 보고 대상 셀의 상기 시스템 정보는 상기 서빙셀로 상기 시스템 정보를 전송하는 것으로 결정되면 상기 측정 보고 메시지에 포함되는 것을 특징으로 하는 보고 방법.
  4. 제 3항에 있어서,
    상기 시스템 정보 보고 대상 식별 정보는 특정 셀 식별자를 지시하고,
    상기 특정 셀 식별자가 상기 보고 대상 셀의 셀 식별자이면 상기 시스템 정보를 상기 서빙 셀로 전송할 것으로 결정하는 것을 특징으로 하는 보고 방법.
  5. 제 3항에 있어서,
    상기 시스템 정보 보고 대상 식별 정보는 특정 타입의 셀을 지시하고,
    상기 보고 대상 셀의 셀 타입이 상기 특정 타입의 셀이면 상기 시스템 정보를 상기 서빙 셀로 전송할 것으로 결정하는 것을 특징으로 하는 보고 방법.
  6. 제 5항에 있어서, 상기 특정 타입의 셀은 피코 셀(pico cell), 펨토 셀(femto cell), CSG(Closed Subscriber Group) 셀 및 MBMS(Multimedia Broadcast/Multicast Service) 셀 중 적어도 하나인 것을 특징으로 하는 보고 방법.
  7. 제 1항에 있어서, 상기 보고 대상 셀이 CSG 셀이면 상기 시스템 정보는 상기 CSG 셀 관련 정보를 포함하는 것을 특징으로 하는 보고 방법.
  8. 제 1항에 있어서, 상기 보고 대상 셀이 MBMS 셀이면 상기 시스템 정보는 상기 보고 대상 셀이 제공하는 MBMS 관련 정보를 포함하는 것을 특징으로 하는 보고 방법.
  9. 제 1항에 있어서, 상기 보고 대상 셀이 저간섭 무선 자원을 운용하고 있는 셀이면, 상기 시스템 정보는 상기 저간섭 무선 자원 관련 정보를 포함하는 것을 특징으로 하는 보고 방법.
  10. 제 1항에 있어서, 보고할 시스템 정보의 타입을 지시하는 요청된 시스템 정보 지시 정보를 수신하는 것을 더 포함하고,
    상기 시스템 정보는 상기 요청된 시스템 정보 지시 정보에 의하여 지시되는 타입의 정보를 포함하는 것을 특징으로 하는 보고 방법.
  11. 무선 통신 시스템에서 동작하는 단말에 있어서, 상기 단말은,
    무선 신호를 송신 및 수신하는 RF(Radio Frequency) 유닛; 및
    상기 RF 유닛과 기능적으로 연결된 프로세서;를 포함하되, 상기 프로세서는
    측정 설정을 서빙 셀로부터 수신하되, 상기 측정 설정은 측정 결과 보고 대상 셀의 시스템 정보를 보고할 것을 지시하는 시스템 정보 보고 지시자를 포함하고,
    상기 측정 설정을 기반으로 보고 조건 만족 여부를 결정하고, 및
    상기 보고 조건이 만족되면, 상기 보고 조건이 만족된 보고 대상 셀의 측정 결과를 포함하는 측정 보고 메시지를 상기 서빙 셀로 전송하도록 설정되되,
    상기 측정 보고 메시지는 상기 보고 대상 셀의 시스템 정보를 더 포함하는 것을 특징으로 하는 단말.
  12. 제 11항에 있어서, 상기 프로세서는
    시스템 정보 보고 대상 식별 정보를 수신하고, 및
    상기 시스템 정보 보고 대상 식별 정보를 기반으로 상기 보고 대상 셀의 상기 시스템 정보를 상기 서빙 셀로 전송할지 여부를 결정하도록 설정되는 것을 특징으로 하는 단말.
  13. 제 12항에 있어서, 상기 보고 대상 셀의 상기 시스템 정보는 상기 서빙셀로 상기 시스템 정보를 전송하는 것으로 결정되면 상기 측정 보고 메시지에 포함되는 것을 특징으로 하는 단말.
  14. 제 13항에 있어서,
    상기 시스템 정보 보고 대상 식별 정보는 특정 셀 식별자를 지시하고,
    상기 특정 셀 식별자가 상기 보고 대상 셀의 셀 식별자이면 상기 시스템 정보를 상기 서빙 셀로 전송할 것으로 결정하는 것을 특징으로 하는 단말.
  15. 제 13항에 있어서,
    상기 시스템 정보 보고 대상 식별 정보는 특정 타입의 셀을 지시하고,
    상기 보고 대상 셀의 셀 타입이 상기 특정 타입의 셀이면 상기 시스템 정보를 상기 서빙 셀로 전송할 것으로 결정하는 것을 특징으로 하는 단말.
  16. 제 15항에 있어서, 상기 특정 타입의 셀은 피코 셀(pico cell), 펨토 셀(femto cell), CSG(Closed Subscriber Group) 셀 및 MBMS(Multimedia Broadcast/Multicast Service) 셀 중 적어도 하나인 것을 특징으로 하는 단말.
  17. 제 11항에 있어서, 상기 보고 대상 셀이 CSG 셀이면 상기 시스템 정보는 상기 CSG 셀 관련 정보를 포함하는 것을 특징으로 하는 단말.
  18. 제 11항에 있어서, 상기 보고 대상 셀이 MBMS 셀이면 상기 시스템 정보는 상기 보고 대상 셀이 제공하는 MBMS 관련 정보를 포함하는 것을 특징으로 하는 단말.
  19. 제 11항에 있어서, 상기 보고 대상 셀이 저간섭 무선 자원을 운용하고 있는 셀이면, 상기 시스템 정보는 상기 저간섭 무선 자원 관련 정보를 포함하는 것을 특징으로 하는 단말.
  20. 제 11항에 있어서, 상기 프로세서는 보고할 시스템 정보의 타입을 지시하는 요청된 시스템 정보 지시 정보를 수신하도록 설정되되,
    상기 시스템 정보는 상기 요청된 시스템 정보 지시 정보에 의하여 지시되는 타입의 정보를 포함하는 것을 특징으로 하는 단말.
PCT/KR2012/005580 2011-07-14 2012-07-13 무선 통신 시스템에서 보고 방법 및 이를 지원하는 장치 WO2013009127A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12810805.7A EP2733981B1 (en) 2011-07-14 2012-07-13 Method for reporting in wireless communication system and apparatus for supporting the same
KR1020147000949A KR20140040808A (ko) 2011-07-14 2012-07-13 무선 통신 시스템에서 보고 방법 및 이를 지원하는 장치
US14/232,576 US9277459B2 (en) 2011-07-14 2012-07-13 Method for reporting in wireless communication system and apparatus for supporting same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161507606P 2011-07-14 2011-07-14
US61/507,606 2011-07-14

Publications (2)

Publication Number Publication Date
WO2013009127A2 true WO2013009127A2 (ko) 2013-01-17
WO2013009127A3 WO2013009127A3 (ko) 2013-04-04

Family

ID=47506738

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/KR2012/005582 WO2013009129A2 (ko) 2011-07-14 2012-07-13 무선 통신 시스템에서 시스템 정보 보고 방법 및 이를 지원하는 장치
PCT/KR2012/005581 WO2013009128A2 (ko) 2011-07-14 2012-07-13 무선 통신 시스템에서 시스템 정보 보고 방법 및 이를 지원하는 장치
PCT/KR2012/005580 WO2013009127A2 (ko) 2011-07-14 2012-07-13 무선 통신 시스템에서 보고 방법 및 이를 지원하는 장치
PCT/KR2012/005583 WO2013009130A2 (ko) 2011-07-14 2012-07-13 무선 통신 시스템에서 시스템 정보 보고 방법 및 이를 지원하는 장치

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/KR2012/005582 WO2013009129A2 (ko) 2011-07-14 2012-07-13 무선 통신 시스템에서 시스템 정보 보고 방법 및 이를 지원하는 장치
PCT/KR2012/005581 WO2013009128A2 (ko) 2011-07-14 2012-07-13 무선 통신 시스템에서 시스템 정보 보고 방법 및 이를 지원하는 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005583 WO2013009130A2 (ko) 2011-07-14 2012-07-13 무선 통신 시스템에서 시스템 정보 보고 방법 및 이를 지원하는 장치

Country Status (4)

Country Link
US (4) US20140162658A1 (ko)
EP (4) EP2747481B1 (ko)
KR (4) KR101716008B1 (ko)
WO (4) WO2013009129A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142512A1 (en) * 2013-03-15 2014-09-18 Lg Electronics Inc. Method for performing measurement of objects and a device therefor
WO2014148812A1 (ko) * 2013-03-19 2014-09-25 엘지전자 주식회사 다중 셀 기반 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
WO2016053066A1 (ko) * 2014-10-03 2016-04-07 엘지전자(주) 무선 통신 시스템에서 셀 단위 보고를 위한 방법 및 이를 위한 장치
WO2016104818A1 (ko) * 2014-12-22 2016-06-30 엘지전자 주식회사 무선 통신 시스템에서 서빙 기지국으로 무빙 셀 측정 보고 신호를 전송하는 방법 및 이를 위한 장치

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2747481B1 (en) * 2011-07-14 2019-02-13 LG Electronics Inc. Method of reporting system information in a wireless communication system and device for supporting the same
TW201501477A (zh) * 2013-04-03 2015-01-01 Interdigital Patent Holdings 小胞元部署增強干擾協調機制
CN104602344B (zh) * 2013-10-30 2019-02-12 电信科学技术研究院 一种组通信信息通知方法及设备
WO2015115825A1 (en) * 2014-01-29 2015-08-06 Lg Electronics Inc. Method and apparatus for transmitting report message in wireless communication system
US10462839B2 (en) 2015-04-08 2019-10-29 Lg Electronics Inc. Method for transmitting sidelink terminal information of terminal in wireless communication system and terminal utilizing the method
EP3716658B1 (en) * 2015-04-10 2021-10-06 Kyocera Corporation Base station and user terminal in mobile communication system
CN107637124B (zh) * 2015-05-16 2021-08-27 Lg电子株式会社 终端在无线通信系统中计算再分配范围的方法和装置
CN106489274B (zh) * 2015-06-23 2020-03-31 海能达通信股份有限公司 一种处于rrc空闲态终端移动控制方法、终端及基站
CN108781479B (zh) * 2016-03-31 2022-05-13 华为技术有限公司 多播传输方法、基站和用户设备
US10425926B2 (en) 2016-05-10 2019-09-24 Lg Electronics Inc. Method and apparatus for requesting additional system information
KR102356205B1 (ko) * 2016-08-12 2022-02-08 후아웨이 테크놀러지 컴퍼니 리미티드 데이터 처리 방법 및 관련 장치
CN109565744B (zh) * 2016-08-17 2021-06-22 瑞典爱立信有限公司 系统信息的风险感知有效性评估
WO2018066922A1 (ko) * 2016-10-03 2018-04-12 엘지전자 주식회사 시스템 정보 블록의 유효성 검사를 수행하는 방법 및 이를 지원하는 장치
WO2019012430A1 (en) * 2017-07-14 2019-01-17 Telefonaktiebolaget Lm Ericsson (Publ) ACQUIRING SYSTEM INFORMATION DURING TRANSFER
WO2019028921A1 (zh) * 2017-08-11 2019-02-14 华为技术有限公司 一种测量方法、设备及系统
CN107948950A (zh) * 2017-11-15 2018-04-20 北京佰才邦技术有限公司 系统信息变更的通知方法、终端、接入设备、计算机存储介质以及系统
KR102427925B1 (ko) 2018-03-05 2022-08-02 삼성전자주식회사 안테나를 통해 출력된 신호에 기반하여 결정된 외부 객체와의 거리에 따라, 지정된 기능을 수행하는 전자장치 및 방법
KR20200112288A (ko) * 2019-03-21 2020-10-05 삼성전자주식회사 무선 통신 시스템에서 주파수 측정 방법 및 장치

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100640344B1 (ko) 2003-03-08 2006-10-30 삼성전자주식회사 광대역 무선 접속 통신 시스템의 기지국에서 핸드오버 시스템 및 방법
ES2287647T3 (es) * 2004-01-09 2007-12-16 M-Stack Limited Aparato y metodo para poner en practica la deteccion de cambios de informacion del sistema en sistemas de telecomunicaciones moviles universales (umts).
EP1569483A3 (de) * 2004-02-26 2006-07-05 Siemens Aktiengesellschaft Verfahren und Anordnung zur Positionsbestimmung eines Endgerätes in einem Zellularen Mobilfunknetz
KR100810333B1 (ko) 2004-06-15 2008-03-04 삼성전자주식회사 광대역 무선 접속 통신 시스템에서 소프트 핸드오버 지원을 위한 장치 및 방법
KR100795563B1 (ko) 2006-06-29 2008-01-21 한국전자통신연구원 이동 통신 시스템에서 이동 단말의 핸드오버 방법, 이를위한 기지국 및 이동 단말
EP1909523A1 (en) * 2006-10-02 2008-04-09 Matsushita Electric Industrial Co., Ltd. Improved acquisition of system information of another cell
US9326201B2 (en) * 2006-12-22 2016-04-26 Alcatel Lucent Detecting and reporting a picocell by a mobile station
KR20090125122A (ko) * 2007-03-22 2009-12-03 노키아 코포레이션 핸드오버를 용이하게 하는 방법, 장치 및 컴퓨터 판독가능 저장 매체
ES2710441T3 (es) * 2007-10-01 2019-04-25 Nokia Technologies Oy Notificación de medición de grupo de abonados cerrado
US20090092098A1 (en) * 2007-10-05 2009-04-09 Samsung Electronics Co., Ltd. System and method for updating neighbor base station information in a communication system
US8155596B2 (en) * 2007-12-27 2012-04-10 Infineon Technologies Ag Radio communication device and method for processing measurement control information in a communication device
WO2009123391A1 (en) * 2008-03-31 2009-10-08 Lg Electronics Inc. Reporting measurements from a mobile station to a network and associated handover control method
EP2345277B1 (en) * 2008-09-02 2017-07-19 Telefonaktiebolaget LM Ericsson (publ) Verifying neighbor cell
KR101479596B1 (ko) 2008-11-05 2015-01-26 삼성전자주식회사 무선 통신 네트워크의 측정 보고 방법 및 장치
KR20100052374A (ko) 2008-11-09 2010-05-19 엘지전자 주식회사 이웃 셀 정보 보고 방법
KR20100056335A (ko) 2008-11-18 2010-05-27 엘지전자 주식회사 이웃 셀 정보 보고 방법
EP2396992B1 (en) * 2009-02-13 2020-08-05 Samsung Electronics Co., Ltd. Handover method and apparatus in a wireless communication system including femto cells
KR20100100017A (ko) * 2009-03-05 2010-09-15 엘지에릭슨 주식회사 아이들 상태에서 측정 보고 메시지 수집 방법 및 그를 위한이동통신 시스템
KR20100124559A (ko) 2009-05-19 2010-11-29 주식회사 포스코아이씨티 광대역 무선 통신 시스템의 무선 자원 정보 요청 및 보고 방법과 이를 위한 장치
CN105050134A (zh) * 2009-06-19 2015-11-11 交互数字专利控股公司 在wtru中实施的用于检测hnb的方法
WO2011016397A1 (ja) * 2009-08-07 2011-02-10 シャープ株式会社 通信システム、移動局装置、接続先評価方法、接続先評価プログラム、及び基地局装置
WO2011041754A1 (en) 2009-10-02 2011-04-07 Research In Motion Limited Mobility in a wireless network
KR101617049B1 (ko) * 2009-11-03 2016-05-02 엘지전자 주식회사 무선 통신 시스템에서 측정 결과 보고 방법 및 장치
US8577371B2 (en) 2009-11-04 2013-11-05 Blackberry Limited Methods and apparatus to avoid transmission of redundant neighbor cell information to mobile stations
KR101315854B1 (ko) * 2009-12-16 2013-10-08 한국전자통신연구원 초소형 기지국에서의 핸드오버 방법
US8744450B2 (en) * 2011-04-04 2014-06-03 Kyocera Corporation Mobile communication method
EP2747481B1 (en) * 2011-07-14 2019-02-13 LG Electronics Inc. Method of reporting system information in a wireless communication system and device for supporting the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Resource Control (RRC); Protocol specification (Release 8", 3GPP TS 36.331, March 2009 (2009-03-01)
"Radio Resource Control (RRC); Protocol specification (Release 8", 3GPP TS 36.331, September 2009 (2009-09-01)
"Service requirements for Home NodeBs and Home eNodeBs (Release 9", 3GPP TS 22.220, December 2008 (2008-12-01)
"User Equipment (UE) procedures in idle mode (Release 8", 3GPP TS 36.304, March 2009 (2009-03-01)
See also references of EP2733981A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142512A1 (en) * 2013-03-15 2014-09-18 Lg Electronics Inc. Method for performing measurement of objects and a device therefor
CN105052188A (zh) * 2013-03-15 2015-11-11 Lg电子株式会社 执行对象的测量的方法及其装置
KR20150130473A (ko) * 2013-03-15 2015-11-23 엘지전자 주식회사 객체의 측정을 수행하는 방법 및 이를 위한 장치
US9674743B2 (en) 2013-03-15 2017-06-06 Lg Electronics Inc. Method for performing measurement of objects and a device therefor
CN105052188B (zh) * 2013-03-15 2019-04-30 Lg电子株式会社 执行对象的测量的方法及其装置
KR102100194B1 (ko) 2013-03-15 2020-04-13 엘지전자 주식회사 객체의 측정을 수행하는 방법 및 이를 위한 장치
WO2014148812A1 (ko) * 2013-03-19 2014-09-25 엘지전자 주식회사 다중 셀 기반 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
US9544112B2 (en) 2013-03-19 2017-01-10 Lg Electronics Inc. Method by which terminal transmits and receives signal in multi cell-based wireless communication system, and device for same
WO2016053066A1 (ko) * 2014-10-03 2016-04-07 엘지전자(주) 무선 통신 시스템에서 셀 단위 보고를 위한 방법 및 이를 위한 장치
US10313909B2 (en) 2014-10-03 2019-06-04 Lg Electronics Inc. Method and device for cell granularity reporting in wireless communication system
WO2016104818A1 (ko) * 2014-12-22 2016-06-30 엘지전자 주식회사 무선 통신 시스템에서 서빙 기지국으로 무빙 셀 측정 보고 신호를 전송하는 방법 및 이를 위한 장치

Also Published As

Publication number Publication date
US9258746B2 (en) 2016-02-09
US20140162657A1 (en) 2014-06-12
WO2013009128A2 (ko) 2013-01-17
EP2747481B1 (en) 2019-02-13
KR101564856B1 (ko) 2015-10-30
EP2733985A4 (en) 2015-06-17
WO2013009130A2 (ko) 2013-01-17
EP2747481A2 (en) 2014-06-25
EP2733985B1 (en) 2019-06-19
KR20140040809A (ko) 2014-04-03
KR20140040808A (ko) 2014-04-03
KR20140040810A (ko) 2014-04-03
EP2733981A2 (en) 2014-05-21
WO2013009130A3 (ko) 2013-03-07
WO2013009127A3 (ko) 2013-04-04
EP2733985A2 (en) 2014-05-21
US20140162658A1 (en) 2014-06-12
KR101577546B1 (ko) 2015-12-14
EP2733984A4 (en) 2015-06-24
EP2747481A4 (en) 2015-05-13
US20140148146A1 (en) 2014-05-29
US9307456B2 (en) 2016-04-05
WO2013009128A3 (ko) 2013-04-04
KR101716008B1 (ko) 2017-03-13
WO2013009129A2 (ko) 2013-01-17
US9277459B2 (en) 2016-03-01
WO2013009129A3 (ko) 2013-03-14
US20140148145A1 (en) 2014-05-29
EP2733984A2 (en) 2014-05-21
KR20140040811A (ko) 2014-04-03
EP2733984B1 (en) 2019-04-03
EP2733981A4 (en) 2015-06-17
EP2733981B1 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
KR101564856B1 (ko) 무선 통신 시스템에서 시스템 정보 보고 방법 및 이를 지원하는 장치
KR101547748B1 (ko) 무선 통신 시스템에서 이종망 정보 로깅 및 보고하는 방법과 이를 지원하는 장치
KR101591580B1 (ko) 무선 통신 시스템에서 이동 수행 방법 및 이를 지원하는 장치
WO2014042468A2 (ko) 무선 통신 시스템에서 시스템 정보의 획득을 위한 운영 방법 및 이를 지원하는 장치
WO2012060615A2 (ko) 무선 통신 시스템에서 선택적으로 측정을 수행하는 방법 및 이를 지원하는 장치
WO2013055071A2 (ko) 무선 통신 시스템에서 단말의 이동성 지원 방법 및 이를 지원하는 장치
WO2013165209A1 (ko) 무선 통신 시스템에서 시그널링 제어 방법 및 이를 지원하는 장치
KR101525720B1 (ko) 무선 통신 시스템에서 이동성 평가를 기반으로 한 통신 방법 및 이를 지원하는 장치
WO2014017810A1 (ko) 무선 통신 시스템에서 결합된 측정 보고 방법과 이를 지원하는 장치
US9408127B2 (en) Method for re-selecting cell in wireless communication system, and apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810805

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14232576

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147000949

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012810805

Country of ref document: EP