[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013008408A1 - Charging control system, battery pack and charging method - Google Patents

Charging control system, battery pack and charging method Download PDF

Info

Publication number
WO2013008408A1
WO2013008408A1 PCT/JP2012/004289 JP2012004289W WO2013008408A1 WO 2013008408 A1 WO2013008408 A1 WO 2013008408A1 JP 2012004289 W JP2012004289 W JP 2012004289W WO 2013008408 A1 WO2013008408 A1 WO 2013008408A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
unit
charging
cell
battery
Prior art date
Application number
PCT/JP2012/004289
Other languages
French (fr)
Japanese (ja)
Inventor
忠大 吉田
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to JP2013523794A priority Critical patent/JP6124346B2/en
Publication of WO2013008408A1 publication Critical patent/WO2013008408A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a charge control system, a battery pack, and a charging method.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2009-232559 describes the following battery pack charge balance circuit.
  • the battery pack charging balance circuit includes a first balance control circuit, a second balance control circuit, and a protection circuit.
  • the first balance control circuit and the second balance control circuit are connected in series between both charge / discharge terminals of the charge / discharge circuit.
  • the first balance control circuit has control units connected in parallel corresponding to the plurality of battery units.
  • the second balance control circuit has a first branch and a second branch connected in parallel.
  • Patent Document 2 Japanese Patent Laid-Open No. 09-322417 describes the following discharge method.
  • the voltage of each battery unit is compared with the discharge end voltage, and when the voltage of any battery unit becomes lower than the discharge end voltage, the discharge of all the battery units is stopped. At this time, the temperature of each of the plurality of battery units is detected.
  • the discharge end voltage is calculated giving priority to the lowest temperature among the detected temperatures.
  • the discharge is stopped. As a result, overdischarge can be prevented and the remaining capacity can be prevented from being lost quickly.
  • the inventor has found that the following problems occur in a battery pack having a plurality of battery units connected in series.
  • the amount of deterioration differs for each battery unit.
  • the full charge capacity of each battery unit is not always equal.
  • the battery unit with the smallest full charge capacity increases the charging voltage faster than the other battery units.
  • the process ends at this timing.
  • the charging ends with the amount of charge of all the battery units being insufficient. Therefore, in order to obtain a sufficient charge amount as a whole battery pack, there is a possibility that the battery unit having the smallest full charge capacity has to be overcharged.
  • a measuring unit for measuring voltages of a plurality of battery units connected in series Based on the voltage measured by the measurement unit, a control unit that controls charging to each of the battery units, With The controller is When performing the charging to the battery unit, based on the voltage measured by the measurement unit, identify the voltage maximum unit that the voltage is maximum, When the first condition that the voltage of the voltage maximum unit is equal to or higher than the first reference voltage is not satisfied, the charging is continued for all the battery units, When the first condition is satisfied, a charge control system is provided that performs a first control to drop the voltage of the maximum voltage unit.
  • a charging start step for measuring voltages of a plurality of battery units connected in series and starting charging the plurality of battery units;
  • a unit identification step for identifying a voltage maximum unit in which the voltage is maximum based on the measured voltage;
  • a first determination step of determining a first condition that the voltage of the voltage maximum unit is equal to or higher than a first reference voltage; When the first condition is not satisfied, the charging is continued for all the battery units, and when the first condition is satisfied, the first control step of decreasing the voltage of the maximum voltage unit;
  • a charging method is provided.
  • a charging start step for measuring voltages of a plurality of battery units connected in series and starting charging the plurality of battery units;
  • a unit identification step for identifying a voltage maximum unit in which the voltage is maximum based on the measured voltage;
  • a first determination step of determining a first condition that the voltage of the voltage maximum unit is equal to or higher than a first reference voltage; When the first condition is not satisfied, the charging is continued for all the battery units, and when the first condition is satisfied, the voltage maximum unit is bypassed as a bypass target unit, and other than the bypass target unit.
  • a bypass control step for continuing the charging for the battery unit;
  • a charging method is provided.
  • the voltage of the maximum voltage unit when the first condition that the voltage of the maximum voltage unit is equal to or higher than the first reference voltage is satisfied, the voltage of the maximum voltage unit is decreased. Thereby, the maximum voltage unit is not overcharged. Therefore, it is possible to prevent the plurality of battery units connected in series from being overcharged and to approach full charge.
  • a plurality of battery units connected in series can be brought close to full charge without being overcharged.
  • battery pack 10 refers to an assembled battery having a plurality of battery units.
  • the “battery unit” refers to one having at least one battery cell 100.
  • the battery cell 100 included in the “battery unit” may include a plurality of single cells having a positive electrode and a negative electrode. Further, the plurality of “battery units” may have different numbers of battery cells 100.
  • the “battery unit” included in the “battery pack 10” is a battery cell 100 having two unit cells connected in parallel will be described.
  • FIG. 1 is a circuit diagram showing a configuration of the battery pack 10 according to the first embodiment.
  • FIG. 2 is an equivalent circuit diagram in the vicinity of the battery cell 100 of the battery pack 10 according to the first embodiment.
  • the battery pack 10 includes a plurality of battery cells 100, a measurement unit 300, and a control unit 400.
  • the plurality of battery cells 100 are connected in series.
  • the measurement unit 300 measures the voltage of the battery cell 100.
  • the control unit 400 controls charging of each battery cell 100 based on the voltage measured by the measurement unit 300.
  • the control unit 400 specifies the voltage maximum cell having the maximum voltage based on the voltage measured by the measurement unit 300.
  • the control unit 400 when not satisfy the first condition to the voltage of the voltage maximum cell reached the first reference voltages V 1 or more, to continue the charging to all of the battery cells 100. On the other hand, when the first condition is satisfied, the control unit 400 performs the first control to drop the voltage of the maximum voltage cell. Details will be described below.
  • the battery pack 10 includes a plurality of battery cells 100.
  • the battery pack 10 includes, for example, N battery cells 100.
  • the plurality of battery cells 100 are connected in series.
  • the battery cell 100 has two single cells.
  • the battery cell 100 is a Li ion secondary battery.
  • the battery pack 10 is deteriorated by repeated charging and discharging. In the process of this deterioration, each battery cell 100 does not necessarily deteriorate uniformly. The most deteriorated battery cell 100 has a reduced full charge capacity compared to the other battery cells 100. Therefore, when the battery pack 10 is charged, the most deteriorated battery cell 100 has a faster voltage increase during charging than the other battery cells 100.
  • the “full charge capacity” here is a capacity (unit Ah) when the battery cell 100 is fully charged.
  • the battery pack 10 in the first embodiment has a control circuit 20 in addition to the battery cell 100.
  • the control circuit 20 includes a measurement unit 300, a control unit 400, and a switch 500.
  • the control circuit 20 is connected to the battery cells 100 connected in series.
  • the control circuit 20 has an internal positive terminal 620, an internal negative terminal 640, an external positive terminal 720, and an external negative terminal 740.
  • the internal positive terminal 620 is connected to the positive electrode of one battery cell 100 connected in series.
  • the internal negative terminal 640 is connected to the negative electrode of the other battery cell 100 connected in series.
  • the internal positive terminal 620 is connected to an external positive terminal 720 for connecting to an external device using the battery pack 10 via a wiring (not shown) in the control circuit 20.
  • the internal negative terminal 640 is connected to the external negative terminal 740.
  • the internal negative terminal 640 and the external negative terminal 740 are grounded to the ground (GND).
  • a switch 500 for stopping charging or discharging is provided between the internal positive terminal 620 and the external positive terminal 720.
  • the switch 500 is provided between the internal positive terminal 620 and the external positive terminal 720 on the battery cell 100 side.
  • the switch 500 is a P-channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor), for example.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • two P-channel MOSFETs are provided. Thereby, one MOSFET is used to control charging. On the other hand, the other MOSFET is used to control the discharge.
  • Each MOSFET in the switch 500 is connected to the measurement unit 300.
  • the switch 500 is an N-channel MOSFET, the switch 500 is disposed between the internal negative terminal 640 and the external negative terminal 740.
  • the switch 500 may be, for example, an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT), a relay, or a breaker.
  • IGBT Insulated Gate Bipolar Transistor
  • Measurement unit 300 measures the voltage and current of each of the plurality of battery cells 100.
  • the measurement unit 300 is connected to the battery cell 100 via the control unit 400.
  • control part 400 is provided in the battery cell 100 side rather than the measurement part 300, for example.
  • the control unit 400 is connected to each battery cell 100 in order to adjust the charge amount of each battery cell 100.
  • the control unit 400 is connected to the measurement unit 300.
  • the control unit 400 controls charging of each battery cell 100 based on the voltage measured by the measurement unit 300.
  • the control unit 400 includes a calculation unit (not shown) that performs calculation processing based on the voltage or current measured by the measurement unit 300.
  • the control unit 400 includes a communication unit (not shown) for transmitting a signal from the control unit 400 to an external device (not shown) or receiving a signal from the external device.
  • An external communication terminal 760 for transmitting / receiving signals to / from an external device is connected to the control unit 400.
  • the measurement unit 300, the control unit 400, and the switch 500 function as a protection circuit in order to improve safety and charge / discharge cycle life. Measuring unit 300, the control unit 400 and the switch 500, the battery cell 100, when a voltage exceeding the overcharge protection voltage V OP to be described later are charged, forcibly terminate charging.
  • the control unit 400 includes a storage unit (not shown) that stores a first reference voltage V 1 and the like described later.
  • the battery pack 100 is packaged including the plurality of battery cells 100 and the control circuit 20.
  • FIG. 2 shows an equivalent circuit of a part of the control unit 400 that controls charging of the battery cell 100.
  • the dotted line in the figure indicates the inside of the control unit 400. Note that wirings for transmitting control signals and the like are omitted.
  • the control unit 400 is connected to each battery cell 100 through wiring (not shown).
  • an internal resistance 202 and a first cell switch 204 are arranged in parallel with each battery cell 100.
  • the control unit 400 sets the first cell switch 204 arranged in parallel with the maximum voltage cell. Turn on. As a result, the control unit 400 drops the voltage of the maximum voltage cell. Details of the operation of the control unit 400 related to charging will be described later.
  • FIGS. 3 and 4 are flowcharts for explaining the charging method according to the first embodiment.
  • FIG. 4 is a modification of FIG.
  • FIG. 5 is a diagram for explaining the charging method according to the first embodiment.
  • the charging method according to the first embodiment includes the following steps. First, while the measurement part 300 measures the voltage of the some battery cell 100 connected in series, the control part 400 starts charge to the some battery cell 100 (S110). Next, the control unit 400 specifies the voltage maximum cell having the maximum voltage based on the voltage measured by the measurement unit 300 (S120). Then, the control unit 400 determines a first condition to the voltage of the voltage maximum cell becomes the first reference voltages V 1 or (S130).
  • the control unit 400 continues charging all the battery cells 100.
  • the control unit 400 drops the voltage of the maximum voltage cell (first control step, S160). Details will be described below.
  • the external positive electrode terminal 720 and the external negative electrode terminal 740 are connected to the positive electrode and the negative electrode of an external charging device (not shown) that is a power supply destination. Thereby, charge of the some battery cell 100 is started. This charging is performed with a constant voltage and a constant current.
  • the charging voltage is set to NV 1 so that the voltage of the battery cell 100 becomes the first reference voltage V 1 .
  • the charging current is IRS .
  • the “charging voltage” here refers to a voltage during charging applied between an external positive terminal 720 and an external negative terminal 740 from an external charging device (not shown).
  • the “charging current” refers to a current during charging applied between an external positive terminal 720 and an external negative terminal 740 from an external charging device (not shown).
  • the switch 500 has no internal resistance.
  • the measurement unit 300 measures the voltages of the plurality of battery cells 100 connected in series (S110). The measuring unit 300 also measures the current of the battery cell 100.
  • control unit 400 specifies the maximum voltage cell having the maximum voltage based on the voltage measured by the measurement unit 300 (S120). At this time, the control unit 400 also specifies the minimum voltage cell having the minimum voltage. Note that the maximum voltage cell and the minimum voltage cell may be switched during measurement.
  • FIG. 5A shows the relationship between the time and the voltage of the battery cell 100 in the first embodiment.
  • the voltage of the maximum voltage cell is indicated by Va and is indicated by a thick solid line.
  • the voltage of the minimum voltage cell is indicated by a thin solid line as Vb .
  • the battery cells 100 including the maximum voltage cell and the minimum voltage cell are connected in series. For this reason, all the electric currents which flow through each battery cell 100 are equal. Therefore, among the plurality of battery cells 100, because the voltage maximum cell smaller full charge capacity C Ra, increase in the voltage V a is higher than the voltage V b of the voltage minimum cell. In the first embodiment, since two unit cells are connected in parallel in the battery cell 100, a large current flows through the unit cell having the smaller deterioration.
  • FIG. 5B shows the relationship between the time and the remaining capacity of the battery cell 100 and the relationship between the time and the current of the battery cell 100 in the first embodiment.
  • the remaining capacity of the voltage maximum cell as C a.
  • the remaining capacity of the voltage minimum cell as C b, are shown by a thin solid line.
  • the charge until the time t 1 is a constant-current charging. Therefore, the charging current of all the battery cells 100 is constant I RS. Therefore, the remaining capacity of each battery cell 100 increases linearly.
  • the control unit 400 determines a first condition to the voltage of the voltage maximum cell becomes the first reference voltages V 1 or (S130).
  • This “first reference voltage V 1 ” is stored in the storage unit of the control unit 400.
  • the “first reference voltage V 1 ” is a reference value of a voltage set lower than the overcharge protection voltage V OP .
  • the “first reference voltage V 1 ” is, for example, a rated charging voltage. Thereby, since the maximum voltage cell is not overcharged, deterioration of the maximum voltage cell can be suppressed.
  • the “rated charge voltage” is a chargeable voltage set lower than the overcharge protection voltage in consideration of safety when charging the battery pack 10.
  • the “first reference voltages V 1" because the reference voltage for determining whether to perform a first control for lowering the voltage V a of the voltage maximum cell necessarily desired rated charge voltage Need not be the same value. That is, the “first reference voltage V 1 ” may be equal to or higher than the rated charge voltage and lower than the overcharge protection voltage V OP .
  • the “overcharge protection voltage V OP ” is an upper limit value of a voltage for preventing defects such as smoke generation, ignition or explosion in a lithium ion secondary battery, for example.
  • the battery cell 100 which is a lithium ion secondary battery is overcharged, dendritic (dendritic) lithium is generated, and the positive electrode and the negative electrode are short-circuited. In this case, there is a risk that heat is generated due to a short circuit and the battery pack 10 is ruptured. For this reason, “overcharge protection voltage V OP ” is set as the maximum value of the charging voltage. When the maximum voltage cell becomes “overcharge protection voltage V OP ”, the charging of the battery pack 10 is forcibly terminated.
  • control unit 400 transmits a signal for stopping charging to the switch 500 via the measurement unit 300. Thereby, the maximum voltage cell is controlled so as not to be overcharged.
  • the “overcharge protection voltage V OP ” is stored in the storage unit of the control unit 400.
  • control unit 400 the voltage V a of the voltage maximum cell a first lower than the reference voltage V 1, when not satisfy the first condition (S130No), to continue the charging with respect to all the battery cells 100.
  • the voltage V a of the voltage maximum cell becomes the first reference voltages V 1 or more, when the first condition is satisfied (S130Yes), the control unit 400, the voltage difference between the voltage maximum cell voltage minimum cell exceeds a predetermined value
  • the second condition is determined to be less than (S140).
  • the “predetermined voltage” here is determined based on the allowable range of the voltage difference between the maximum voltage cell and the minimum voltage cell, the measurement accuracy of the measurement unit 300, the allowable charge time, or the like. Specifically, the “predetermined voltage” is a limit value of the measurement accuracy of the measurement unit 300, for example.
  • the remaining capacity C a of the maximum voltage cell does not reach the full charge capacity C Ra .
  • the remaining capacity C b of the voltage minimum cell also not reached the full-charge capacity C Rb. That is, all the battery cells 100 are not yet fully charged.
  • control unit 400 when the first condition is satisfied and the second condition is not satisfied (No in S140), the control unit 400 temporarily stops charging (S150) and drops the voltage of the maximum voltage cell as follows. (First control step, S160). Here, control in which the control unit 400 drops the voltage of the maximum voltage cell is referred to as “first control”.
  • the control unit 400 transmits a signal for stopping charging to the switch 500 via the measurement unit 300. Thereby, charging to all the battery cells 100 is temporarily stopped (S150).
  • the measurement unit 300 is connected to each battery cell 100 via the control unit 400.
  • the control unit 400 when the control unit 400 is operated while charging is continued, the measurement unit 300 cannot accurately measure the voltage of the battery cell 100 during that time. For this reason, when the voltage of each battery cell 100 approaches overcharge, the timing which detects that the battery cell 100 will be in an overcharge state becomes late, and it is dangerous. Therefore, the control unit 400 can safely control the charging of the battery cell 100 by temporarily stopping the charging of the battery cell 100 before the first control step (S160).
  • control unit 400 performs the first control to drop the voltage of the maximum voltage cell (S160).
  • the first control step (S160) is from time t 1 to time t 2.
  • the voltage maximum cell consumes power by the internal resistance 202 of the control unit 400 described above.
  • the voltage V a of the voltage maximum cell drops.
  • the control unit 400 keeps the first cell switch 204 arranged in parallel with the other battery cells 100 other than the maximum voltage cell open. That is, during this time, other battery cells 100 such as the minimum voltage cell are not loaded and are not charged as described above.
  • the voltage drop of the other battery cell 100 is only a voltage drop due to its own internal resistance (of the battery cell 100) or a minute voltage drop such as self-discharge. Therefore, the voltage drop of the above-described maximum voltage cell is larger than the voltage drop of the other battery cells 100. As a result, the voltage V a of the maximum voltage cell and the voltage V b of the minimum voltage cell can be gradually brought closer to each other. Note that as in FIG. 5 (b), at time t 2 from time t 1, for example, the residual capacity C b of the voltage minimum cell remains constant. Moreover, since all the battery cells 100 are not charged, the current is zero.
  • the control unit 400 determines whether the voltage V a of the voltage maximum cell becomes a second reference voltage V 2 (S170).
  • the control unit 400 determines whether the time during which the first control is performed is equal to or longer than the first reference time (S172). Or the control part 400 may determine these two conditions simultaneously. By determining any of the above conditions, the control unit 400 can stop the first control as described later.
  • the case of FIG. 3 is assumed. Incidentally, a large internal resistance 202 of the control unit 400, when a voltage drop V a voltage maximum cell is slow, it is preferable to apply the conditions of FIG.
  • the control unit 400 When the voltage V a of the voltage maximum cell becomes a second reference voltage V 2 (S170Yes), the control unit 400, via the measurement unit 300, it transmits a signal for resuming the charging to the switch 500. At the same time, the control unit 400 stops the first control and restarts the charging of the battery cell 100 (S180).
  • the voltage V a of the voltage maximum cell when a second reference voltage V 2 is at time t 2.
  • the state has resumed charging is when from time t 2 of time t 3.
  • the voltage V b of the voltage V a and the voltage minimum cell voltage maximum cell together rise again.
  • the residual capacity C b of the voltage minimum cell rises again.
  • the current of the minimum voltage cell is the charging current IRS .
  • the control unit 400 terminates the first control step (S160), and resumes charging be able to.
  • the condition for terminating the first control step (S160) is not limited to the above, and the same condition as the second condition that the voltage difference between the maximum voltage cell and the minimum voltage cell is less than a predetermined voltage is applied. You can also The condition for ending the first control step (S160) can be appropriately adjusted in consideration of the load on the control unit 400 and the like.
  • the voltage maximum cell may be replaced with other battery cells 100.
  • the control unit 400 a voltage of a new voltage maximum cell as V a, will determine the first condition and the like.
  • the charging and the first control step (S160) are repeated until the voltage difference between the maximum voltage cell and the minimum voltage cell becomes less than a predetermined voltage. Therefore, the second condition that “the voltage difference between the maximum voltage cell and the minimum voltage cell is less than the predetermined voltage” here is an end condition when charging is repeated.
  • FIG. 5 (a) the description will be given state at time t 8 in FIG. 5 (b).
  • FIG. 5 (a) the state at the time t 8 in FIG. 5 (b), the control unit 400 is a state (S180) that stops the first control. As described above, the control unit 400 stops the first control and restarts the charging of the battery cell 100.
  • the control unit 400 transmits a signal for stopping the charging to the switch 500 via the measurement unit 300 and terminates the charging ( S190).
  • control unit 400 does not transmit a signal to the switch 500, but the control unit 400 transmits a signal for stopping charging to an external charging device via the external communication terminal 760. Also good.
  • control unit 400 may not terminate charging immediately after satisfying the second condition, but may terminate the charging after a predetermined time of charging (constant voltage charging) has elapsed.
  • the control unit 400 may transmit a signal for switching the charge from the constant voltage to a constant current to an external charging device. That is, when the voltage V b of the voltage minimum cell becomes the first reference voltages V 1 or more, may be forcibly switched to a constant-current charging. Thereby, all the battery cells 100 can be fully charged without reliably overcharging.
  • charging of the battery pack 10 according to the first embodiment is controlled.
  • FIG. 6 is a diagram of a comparative example for explaining the effect of the first embodiment.
  • FIG. 6 shows a case of a comparative example in which the control unit 400 is charged without performing the first control for lowering the voltage of the maximum voltage cell, unlike the first embodiment.
  • FIG. 6A shows the relationship between the time and the voltage of the battery cell 100 in the comparative example.
  • FIG. 6B shows the relationship between the time and the remaining capacity of the battery cell 100 and the relationship between the time and the current of the battery cell 100 in the comparative example. Note that time t in FIG. 6 is independent of time t in FIG. Hereinafter, each figure including the time t is assumed to be independent when the figure numbers are different.
  • the voltage V a of the voltage maximum cell monotonically increases from start of charging. Further, the voltage V a of the voltage maximum cell rises above a fast voltage V b of the voltage minimum cell.
  • Voltage V a voltage maximum cell rises to more overcharge protection voltage V OP.
  • the control unit 400 via the measurement unit 300, transmits a signal for stopping the switch 500.
  • the control unit 400 forcibly terminates charging.
  • the voltage V b of the minimum voltage cell does not reach the first reference voltage V 1 (rated charge voltage). Therefore, charging ends with the voltage difference between the maximum voltage cell and the minimum voltage cell being large.
  • the remaining capacity C a of the maximum voltage cell does not reach the full charge capacity C Ra .
  • Residual capacity C b of the voltage minimum cell also not reached the full-charge capacity C Rb. That is, all the battery cells 100 end charging even though they are not yet fully charged.
  • the battery pack 10 when the battery pack 10 is charged again after being discharged, the battery pack 10 as a whole may not be able to obtain a sufficient charge amount unless the maximum voltage cell is overcharged.
  • the voltage maximum cell is the battery cell 100 that has been most deteriorated.
  • the voltage maximum cell since the voltage maximum cell becomes a state close to overcharging, the voltage maximum cell further deteriorates. That is, the full charge capacity C Ra of the maximum voltage cell is further reduced.
  • the battery pack 10 as a whole may gradually reduce the full charge capacity that can be charged.
  • the control unit 400 when the first condition is satisfied that the voltage V a of the voltage maximum cell reached the first reference voltages V 1 or more, the control unit 400, a voltage V a voltage maximum cell The first control for lowering is performed. Thereby, it is possible to prevent the maximum voltage cell from being overcharged. Further, it is possible to make the voltage V a of the voltage maximum cell, the voltage of the other battery cells 100.
  • the voltage V a of the voltage maximum cell when the voltage V a of the voltage maximum cell reached the first reference voltages V 1 or more, lowering the voltage V a of the voltage maximum cell.
  • the voltage V 1 of the voltage maximum cell is high as the overcharge protection voltage V OP, that is, the voltage up to an overcharged cell, it is not possible to terminate charging. Therefore, deterioration of the maximum voltage cell can be suppressed.
  • the circuit shown in FIG. 2 has a simple structure including only the internal resistor 202 and the first cell switch 204.
  • the control part 400 can be accommodated in the small area
  • the circuit of the control unit 400 is highly reliable and can be formed at low cost.
  • the battery pack 10 having the plurality of battery cells 100 connected in series can be prevented from being overcharged, and can be close to full charge.
  • the control unit 400 may continue to perform the first control.
  • the charging is terminated using the second condition when the charging is repeatedly performed.
  • the charging that the user arbitrarily terminates the charging using only the first condition. It may be a control system or a charging method.
  • FIG. 7 is a circuit diagram showing a configuration of the battery pack 10 according to the second embodiment.
  • FIG. 8 is an equivalent circuit diagram in the vicinity of the battery cell 100 of the battery pack 10 according to the second embodiment.
  • the second embodiment is the same as the first embodiment except for the following points.
  • the battery pack 10 of the second embodiment further includes a balance circuit 200 that adjusts the charge amount of each battery cell 100.
  • the control unit 400 controls the operation of the balance circuit 200. Further, the control unit 400 performs the first control by operating the balance circuit 200 when the first condition is satisfied. Details will be described below.
  • the battery pack 10 in the second embodiment includes a balance circuit 200 in addition to the configuration of the first embodiment.
  • the balance circuit 200 adjusts the charge amount of each battery cell 100.
  • the measuring unit 300 is connected to the battery cell 100 via the balance circuit 200.
  • the balance circuit 200 is provided closer to the battery cell 100 than the measurement unit 300.
  • the balance circuit 200 is connected to each battery cell 100 in order to adjust the charge amount of each battery cell 100.
  • the control unit 400 is connected to the external positive electrode terminal 720 and the external negative electrode terminal 740 side of the measurement unit 300.
  • the control unit 400 controls the operation of the balance circuit 200 based on the voltage measured by the measurement unit 300.
  • the control unit 400 includes a calculation unit (not shown) that performs calculation processing based on the voltage or current measured by the measurement unit 300.
  • the battery pack 10 of the second embodiment is different from the control unit 400 in the balance circuit 200 that controls the charging of each battery cell 100 among the functions of the control unit 400 of the first embodiment. It is provided as a system.
  • FIG. 8 shows an equivalent circuit of the balance circuit 200.
  • a dotted line in the figure indicates the inside of the balance circuit 200.
  • the balance circuit 200 is connected to each battery cell 100 via wiring (not shown).
  • an internal resistor 202 and a first cell switch 204 are arranged in parallel with each battery cell 100.
  • the control unit 400 operates the balance circuit 200 in parallel with the maximum battery cell.
  • positioned is turned ON. Thereby, the control part 400 can perform 1st control by the balance circuit 200.
  • FIG. 9 is a flowchart for explaining the charging method according to the first embodiment.
  • the charging method of the second embodiment is the same as that of the first embodiment except that the first control is performed by operating the balance circuit 200. Details will be described below.
  • the charging method of the second embodiment is the same as that of the first embodiment up to S150.
  • control unit 400 temporarily stops charging (S150) and operates the balance circuit 200 (first) as follows. Control step, S160).
  • the first control step (S160) it is determined in the first control step (S160), for example, whether the voltage V a of the voltage maximum cell becomes a second reference voltage V 2 (S170).
  • the first control step (S160) it may be determined whether or not the operation time of the balance circuit 200 has become equal to or longer than the first reference time after the operation of the balance circuit 200.
  • these two conditions may be determined at the same time.
  • a large internal resistance 202 of the balance circuit 200 when a voltage drop V a voltage maximum cell is slow, it is preferable to apply the conditions of FIG.
  • the control unit 400 When the voltage V a of the voltage maximum cell becomes a second reference voltage V 2 (S170Yes), the control unit 400, via the measurement unit 300, it transmits a signal for resuming the charging to the switch 500. At the same time, the control unit 400 stops the balance circuit 200 (stops the first control) and restarts the charging of the battery cell 100 (S180).
  • the condition for terminating the first control step (S160) is not limited to the above, and the same condition as the second condition that the voltage difference between the maximum voltage cell and the minimum voltage cell is less than a predetermined voltage is applied. You can also The condition for ending the first control step (S160) can be appropriately adjusted in consideration of the load on the balance circuit 200 and the like.
  • control unit 400 stops the balance circuit 200 (after S180), S120 to S170 are repeatedly performed. The subsequent steps are the same as in the first embodiment.
  • charging of the battery pack 10 according to the second embodiment is controlled.
  • the balance circuit 200 is provided as a system different from the control unit 400.
  • the control part 400 can perform 1st control by operating the balance circuit 200, when satisfy
  • the balance circuit 200 can be formed with high reliability and low cost.
  • FIG. 10 is a flowchart illustrating a charging method according to the third embodiment.
  • the third embodiment is the same as the first embodiment or the second embodiment except that there are a plurality of conditions for terminating charging. Details will be described below.
  • the third embodiment includes the balance circuit 200 as in the second embodiment.
  • charging of the battery pack 10 having a plurality of battery cells 100 is started.
  • the measurement unit 300 measures the voltage and current of the plurality of battery cells 100 connected in series (S110).
  • control unit 400 identifies the maximum voltage cell and the minimum voltage cell based on the voltage measured by the measurement unit 300 (S120).
  • the control unit 400 determines a fifth condition that the current of each battery cell 100 is equal to or less than the reference current (S210).
  • the “reference current” is a reference value of current for detecting a change in charging current.
  • the “reference current” is, for example, a charging end current I 0 .
  • the “end current I 0 ” here is a current that has converged to a certain value when the battery cell 100 approaches full charge. Therefore, it is possible to control so as to protect the overcharge of the battery cell 100 by determining not only the voltage but also the current.
  • the control unit 400 continues the charging when the fifth condition is not satisfied (S210 No). On the other hand, when the fifth condition is satisfied (S210 Yes), the control unit 400 ends the charging.
  • the determination based on the fifth condition may be performed at any timing during charging.
  • control unit 400 determines a first condition to the voltage of the voltage maximum cell becomes the first reference voltages V 1 or (S130).
  • Controller 400 a voltage of the voltage maximum cell lower than the first reference voltage V 1, when not satisfy the first condition (S130No), to continue the charging.
  • the control unit 400 the voltage V a of the voltage maximum cell becomes the first reference voltages V 1 or more, when the first condition is satisfied (S130Yes), further determines as follows.
  • the control unit 400 determines a second condition that satisfies the first condition and that the voltage difference between the maximum voltage cell and the minimum voltage cell is less than a predetermined value (S140).
  • the control unit 400 ends the charging.
  • the control unit 400 further performs the following determination.
  • the control unit 400 determines a third condition that satisfies the first condition and that the integrated value of the number of operations of the balance circuit 200 during charging is equal to or greater than a predetermined value (S220). As a result, the balance circuit 200 can be prevented from continuing to operate indefinitely due to severe termination conditions.
  • the third condition is that the integrated value of the number of times of performing the first control is equal to or greater than a predetermined value.
  • the control unit 400 ends the charging when the first condition is satisfied and the third condition is satisfied (S220 Yes). On the other hand, when the first condition is satisfied and the third condition is not satisfied (No in S220), the control unit 400 further performs the following determination.
  • the control unit 400 determines a fourth condition that the charging time obtained by integrating the charging time has passed a second reference time longer than the first reference time (S230). Based on the determination result of the fourth condition, the control unit 400 controls the balance circuit 200, thereby preventing the charging time from becoming excessively long.
  • the control unit 400 ends the charging.
  • the control unit 400 transmits a signal for temporarily stopping charging to the switch 500 via the measurement unit 300, Charging is suspended (S150).
  • control unit 400 operates the balance circuit 200 (first control step, S160).
  • a first control step the control unit 400 determines whether the voltage V a of the voltage maximum cell becomes a second reference voltage V 2 (S170).
  • the control unit 400 may determine whether the operation time of the balance circuit 200 has become equal to or longer than the first reference time after operating the balance circuit 200.
  • finishes charge should just be in the state which satisfy
  • the controller 400 is set with a plurality of charging termination conditions.
  • the minimum voltage cell is charged as much as possible and the battery pack 10 is desired to be used quickly.
  • the control system or the charging method according to the flowchart as shown in FIG. 6 has been described.
  • the timing for determining from the second condition to the fourth condition is any timing after S140. You may go.
  • the step of determining the fifth condition may be performed at any timing during charging.
  • the control may be performed only by the control unit 400 as in the first embodiment. In this case, in the third embodiment, the same control can be performed by replacing the portion of “activate the balance circuit 200” with “perform first control”.
  • FIG. 11 is an equivalent circuit diagram in the vicinity of the battery cell 100 of the battery pack 10 according to the fourth embodiment.
  • the fourth embodiment is the same as the first embodiment except for the following points.
  • the control unit 400 bypasses the maximum voltage cell as a bypass target unit, and continues charging the battery cell 100 of the bypass target unit. Details will be described below.
  • FIG. 11 shows an equivalent circuit of a part of the control unit 400 that controls charging of the battery cell 100.
  • the dotted line in the figure indicates the inside of the control unit 400. Note that wirings for transmitting control signals and the like are omitted.
  • the control unit 400 is connected to each battery cell 100 via wiring (not shown).
  • Each battery cell 100 is connected to each other via a second cell switch 206.
  • a third cell switch 208 is arranged in parallel with each battery cell 100 and the second cell switch 206.
  • the second cell switch 206 and the third cell switch 208 may be individually turned on, but are controlled so as not to be turned on at the same time. Thereby, the control unit 400 prevents the battery cell 100 from being short-circuited between the positive and negative electrodes.
  • the control unit 400 turns on the second cell switch 206 and turns off the third cell switch 208 when discharging the normal battery pack 10 or the like.
  • the control unit 400 turns off the second cell switch 206 connected to the battery cell 100, and the third cell switch arranged in parallel with the battery cell 100.
  • the second cell switch 206 connected to the battery cell 100 refers to the second cell switch 206 connected to the negative electrode side of the battery cell 100.
  • the control unit 400 bypasses the maximum voltage cell as a “bypass target unit”. .
  • the second cell switch 206 connected to the maximum voltage cell is turned OFF, and the third cell switch 208 arranged in parallel with the maximum battery cell is turned ON. Thereby, the control part 400 can bypass a voltage largest cell. Details of the operation of the control unit 400 related to charging will be described later.
  • FIG. 12 is a flowchart for explaining a charging method according to the fourth embodiment.
  • step numbers are reassigned.
  • FIG. 13 is a diagram for explaining a charging method according to the fourth embodiment.
  • the charging method according to the fourth embodiment includes the following steps. First, the measurement unit 300 measures the voltage of the plurality of battery cells 100 connected in series, and the control unit 400 starts charging the plurality of battery cells 100 (S410). Next, the control unit 400 identifies the voltage maximum cell having the maximum voltage based on the voltage measured by the measurement unit 300 (S430).
  • the control unit 400 determines a first condition to the voltage of the voltage maximum cell becomes the first reference voltages V 1 or (S440). Next, when the first condition is not satisfied (No in S440), the control unit 400 continues charging all the battery cells 100. On the other hand, when the first condition is satisfied (S440 Yes), the control unit 400 bypasses the voltage maximum cell as a bypass target unit and continues charging the battery cells 100 other than the bypass target unit (bypass control step, S460). Details will be described below.
  • control part 400 demonstrated the method of specifying one battery cell 100 with the largest voltage as a "voltage largest cell", and controlling a voltage.
  • control unit 400 when the current “maximum voltage cell” satisfies the first condition, the control unit 400 collectively performs a bypass control as a “bypass target unit”.
  • bypass target unit refers to a set of one or more battery cells 100 that are bypassed by bypass control.
  • the battery cell 100 whose voltage reaches the first reference voltage V 1 the earliest is the “first cell”
  • the battery cell 100 that reaches the next is the “second cell”
  • the battery cell 100 that reaches the latest among the 100 is defined as a “third cell”.
  • the charging current is IRS as the initial charging state.
  • charging is started, and the measurement unit 300 measures the voltage and current of the battery cell 100 (S410).
  • control unit 400 identifies the “minimum voltage cell” based on the voltage measured by the measurement unit 300 (S420).
  • a battery cell 100 that is a “minimum voltage cell” is specified from battery cells 100 other than “bypass target cells” described later.
  • control unit 400 identifies the “maximum voltage cell” based on the voltage measured by the measurement unit 300 (S430). At this stage, it is assumed that the “first cell” has the highest voltage and the “voltage maximum cell”.
  • FIG. 13A shows the relationship between the time and the voltage of the battery cell 100 in the fourth embodiment.
  • Figure 13 (a) the indicated by a thick line a voltage of the first cell as V a
  • the voltage of the second cell indicated by the thick dotted line as V C are shown by a thin line a voltage of the third cell as V b.
  • FIG. 13B shows the relationship between the time and the remaining capacity of the battery cell 100 and the relationship between the time and the current of the battery cell 100 in the fourth embodiment.
  • the remaining capacity of the first cell is shown as a thick line as C a
  • the remaining capacity of the second cell is shown as a thick dotted line as C c
  • the remaining capacity of the third cell is shown as a thin line as C b. Yes.
  • the control unit 400 continues the charge for all the battery cells 100. Note that as in FIG. 13 (b), until the time t 1, the remaining capacity of all of the battery cells 100, rises linearly.
  • the voltage V a of the first cell is a voltage maximum cell, a first reference voltages V 1, and the first condition is satisfied (S440Yes).
  • the control unit 400 When the voltage maximum cell satisfies the first condition (S440 Yes), the control unit 400 includes the first cell that is the current maximum battery cell in the “bypass target unit” (S460). At time t 1, the bypass target unit is only one of the first cell.
  • control unit 400 bypasses the above-described maximum voltage cell as a bypass target unit, and performs bypass control to continue charging the battery cells 100 other than the bypass target unit (bypass control step, S460).
  • control unit 400 turns off the second cell switch 206 connected to the first cell which is the maximum voltage cell, and the third cell arranged in parallel with the first cell. Switch 208 is turned on. Thereby, the control part 400 bypasses the 1st cell which is a voltage largest cell.
  • the external charging device continues constant current charging. Even bypassing target unit bypassed allowed time t 1 after the charging current does not change in I RS. Therefore, the battery cells 100 other than the maximum voltage cell are continuously charged with the same voltage as before the bypass target unit was bypassed.
  • control part 400 transmits the signal which shows the number of the battery cells 100 bypassed as a bypass object unit to an external charging device by bypass control.
  • control unit 400 transmits a signal that the battery cell 100 is one of the first cells.
  • control unit 400 may transmit a signal for lowering the charging voltage applied by charging by the voltage of the bypass target unit to the external charging device.
  • the said signal can be made into the alternative signal of the signal which shows the number of the battery cells 100 bypassed as a bypass object unit.
  • the control unit 400 transmits a signal for lowering by V 1.
  • the voltage V a of the first cell is the open circuit voltage v excluding the loss component due to the internal resistance. Drop to 1a to maintain a constant voltage.
  • the “open voltage” refers to a voltage when the positive electrode and the negative electrode of the battery cell 100 are opened.
  • the battery cell 100 has an internal resistance. For this reason, the voltage applied to the battery cell 100 during charging is superimposed with the voltage of the loss component due to the internal resistance. Therefore, when the battery cell 100 is bypassed (opened) as described above, the voltage of the battery cell 100 drops to the open voltage excluding the loss component due to the internal resistance.
  • the remaining capacity of the battery cell 100 other than the bypass target unit by the constant current charging increases linearly.
  • the control unit 400 determines whether the voltage V b of the third cell is the voltage minimum cell becomes the first reference voltages V 1 or (S470). Between the time t 1 to time t 2 is still, the voltage V b of the third cell is the voltage minimum cell not the first reference voltages V 1 or (S470No), the control unit 400 continues to charge Let
  • the “voltage minimum cell” having the minimum voltage is specified from among the battery cells 100 other than the bypass target unit (S420).
  • the battery cell 100 included in the bypass target unit may be the battery cell 100 having the lowest voltage.
  • the control unit 400 excludes the bypass target unit from the search target.
  • the third cell is the “minimum voltage cell”.
  • the control unit 400 again identifies the current “maximum voltage cell” (S430).
  • the current “maximum voltage cell” in which the voltage is maximum between time t 1 and time t 2 is the second cell. Therefore, the control unit 400 updates the second cell as a new “maximum voltage cell”. In this way, the control unit 400 updates a new voltage maximum cell whose voltage is currently maximum at any time.
  • the control unit 400 When the second cell that has become the new maximum voltage cell satisfies the first condition (S440 Yes), the control unit 400 includes the second cell that is the current maximum voltage cell in the bypass target unit (S450).
  • “include in the bypass target unit” means that the control unit 400 collectively controls the bypass target unit.
  • control unit 400 performs bypass control that bypasses the bypass target unit including the second cell and continues charging the battery cells 100 other than the bypass target unit (bypass control step, S460). That is, the control unit 400 bypasses not only the first cell but also the second cell.
  • the external charging device continues constant current charging. Even newly time t 2 after which bypass the second cell as a bypass target unit, the charging current does not change in I RS. Therefore, the battery cells 100 other than the bypass target unit are continuously charged at the same voltage as before the second cell was newly bypassed.
  • control part 400 transmits the signal which shows the number of the battery cells 100 bypassed as a bypass object unit to an external charging apparatus by bypass control. Specifically, when the time t 2, the number of battery cells 100 are bypassed by the bypass control is "two" in the first cell and the second cell. At this time, the control unit 400 transmits a signal indicating “two”, which is the number of the bypassed battery cells 100, to the external charging device. Thereby, it can be transmitted to the external charging device that the voltage is fluctuating due to the fluctuating number of bypassed battery cells 100 on the battery pack 10 side.
  • control unit 400 may transmit a signal for lowering the charging voltage by the voltage of the bypass target unit including the second cell to the external charging device.
  • control unit 400 transmits a signal for lowering the charge voltage by 2V 1.
  • the voltage Va of the first cell is constant at the open circuit voltage v 1a from time t 2 to time t 3 .
  • the voltage V c of the second cell drops to the open voltage v 1c excluding the loss component due to the internal resistance, and maintains a constant voltage.
  • the first cell whose voltage rise was the fastest is more deteriorated than the second cell.
  • the internal resistance of the first cell is larger than the internal resistance of the second cell.
  • the open voltage v 1c of the second cell is greater than the open voltage v 1a of the first cell.
  • the voltage of the battery cell 100 other than the bypass target unit by the constant current charging increases monotonously.
  • the remaining capacity C c of the second cell maintains a constant value.
  • the remaining capacity of the battery cell 100 other than the bypass target unit by the constant current charging increases linearly.
  • the control unit 400 judges again whether the voltage V b of the third cell is the voltage minimum cell becomes the first reference voltages V 1 or (S470). From time t 2 to time t 3, since the voltage V b of the third cell, which is the minimum voltage cell, is not equal to or higher than the first reference voltage V 1 (S470 No), the control unit 400 continues to charge.
  • the process returns to S420, and the control unit 400 identifies the “minimum voltage cell” having the minimum voltage from the battery cells 100 other than the bypass target unit (S420). Again, the third cell is the “minimum voltage cell”.
  • the control unit 400 again identifies the current “maximum voltage cell” (S430).
  • the controller 400 updates the battery cell 100 whose voltage is currently maximum between time t 2 and time t 3 as a new “voltage maximum cell”.
  • the battery cell 100 not shown in FIG. 13 corresponds to the “maximum voltage cell”. In this way, the control unit 400 updates a new voltage maximum cell whose voltage is currently maximum at any time.
  • S440 is performed, and the battery cells 100 other than the bypass target unit are charged until the battery cell 100 that has newly become the maximum voltage cell satisfies the first condition.
  • the control unit 400 repeats S430 to S460 until S470 is satisfied. Every time the new voltage maximum cell satisfies the first condition, the current voltage maximum cell is integrated as a bypass target unit to perform bypass control. Go.
  • control unit 400 transmits a signal indicating the number of battery cells 100 bypassed as a bypass target unit to the external charging device by bypass control.
  • control unit 400 transmits a signal indicating k to the external charging device. Thereby, it can be transmitted to the external charging device that the voltage is fluctuating due to the fluctuating number of bypassed battery cells 100 on the battery pack 10 side.
  • control unit 400 may transmit a signal for decreasing the voltage of the bypass target unit to the external charging device.
  • the control unit 400 transmits a signal for reducing the charging voltage by kV 1 .
  • the voltage V b of the third cell is a voltage minimum cell has a first reference voltages V 1 or (S470Yes)
  • the control unit 400 stops the bypass control. Thereby, charging is restarted for all the battery cells 100.
  • control unit 400 transmits a signal for switching charging from a constant current to a constant voltage to an external charging device. This makes it possible to constant voltage charging at the first reference voltages V 1 to all of the battery cells 100. Moreover, all the battery cells 100 are not overcharged.
  • the voltages of all the battery cells 100 is constant at the first reference voltage V 1. Further, as shown in FIG. 13B, the charging current gradually decreases, and decreases to the termination current I 0 at time t 4 . Further, at time t 4, the remaining capacity of all of the battery cells 100 is charged to the full charge capacity.
  • the control unit 400 ends the charging (S490).
  • the condition for the control unit 400 to end the charging can be the fifth condition in the third embodiment. That is, when the currents of all the battery cells 100 become equal to or lower than the reference current (for example, the termination current I 0 ), the control unit 400 can end the charging. Further, the condition for the control unit 400 to end the charging can be the fourth condition in the third embodiment. That is, when the charging time obtained by integrating the charging time during the charging has passed the second reference time, the control unit 400 can end the charging.
  • the control unit 400 bypasses the maximum voltage cell as a bypass target unit and continues charging the battery cells other than the bypass target unit. I do. Thereby, the maximum voltage cell is not overcharged.
  • the bypass target unit is bypassed, all the battery cells 100 can be brought close to full charge quickly by continuing charging the battery cells 100 other than the bypass target unit.
  • FIG. 14 is a flowchart for explaining a charging method according to the fifth embodiment.
  • FIG. 15 is a diagram for explaining a charging method according to the fifth embodiment.
  • the fifth embodiment is the same as the fourth embodiment except that the steps after S470 Yes are different. Details will be described below.
  • the configuration of the battery pack 10 of the fifth embodiment is the same as that of the fourth embodiment. Names such as “first cell” are the same as those in the fourth embodiment.
  • control unit 400 repeats S430 to S460 until S470 is satisfied, and every time the current new maximum voltage cell satisfies the first condition, the current maximum voltage cell is bypassed. As a whole, bypass control is performed.
  • FIG. 15A shows the relationship between the time and the voltage of the battery cell 100 in the fifth embodiment.
  • the first cell is indicated by a bold line.
  • the second cell and the third cell are the same as in FIG.
  • FIG. 15B shows the relationship between the time and the remaining capacity of the battery cell 100 and the relationship between the time and the current of the battery cell 100 in the fifth embodiment.
  • the voltage V b of the third cell is a voltage minimum cell has a first reference voltages V 1 or (S470Yes).
  • the control unit 400 When the voltage V b of the third cell is a voltage minimum cell that is the first reference voltages V 1 or (S470Yes), the control unit 400, all of the battery cells 100, a predetermined time, bypassing (S475).
  • the third voltage V b is the voltage minimum cell drops to the open-circuit voltage v 1b. Since the internal resistance of the third cell, which is the minimum voltage cell, is the lowest as compared to other battery cells 100, the open voltage v1b of the third cell, which is the minimum voltage cell, is the open voltage of the other battery cell 100. Bigger than.
  • control for bypassing all the battery cells 100 here is performed by the control unit 400, for example.
  • the control unit 400 performs bypass control using the third cell as a bypass target unit.
  • the control unit 400 may turn off the switch 500.
  • the “predetermined time” from time t 3 to time t 4 here means time for switching from constant current charging to constant voltage charging. Specifically, it may be longer than the time required for the external charging device to switch the charging.
  • the control unit 400 resumes the charging (S480). At this time, when all the battery cells 100 are bypassed as bypass control, the control unit 400 stops the bypass control. On the other hand, when the switch 500 is turned off, the control unit 400 turns on the switch 500 again.
  • control unit 400 after stopping the bypass control, and transmits a signal for switching the charge from constant current to constant voltage to the external charging device. This makes it possible to constant voltage charging at the first reference voltages V 1 to all of the battery cells 100.
  • the control unit 400 when the voltage V b of the third cell is the voltage minimum cell has a first reference voltages V 1 or more, the control unit 400, all of the battery cells 100, a predetermined time, Bypass. Thereby, when switching charging from a constant current to a constant voltage, the charging can be stably switched.
  • the balance circuit 200 may be provided as in the second embodiment. In this case, when the first condition is not satisfied, the control unit 400 continues to charge all the battery cells 100, and performs the bypass control by operating the balance circuit 200 when the first condition is satisfied.
  • FIG. 16 is a diagram for explaining a charging method according to the sixth embodiment.
  • the sixth embodiment is the same as the first embodiment or the second embodiment except that the battery cell 100 is recycled. Details will be described below.
  • the battery cell 100 according to the sixth embodiment is recycled by collecting the used battery cell 100 and reassembling it.
  • “recycling” means that the manufacturer collects the used battery pack 10 and then disassembles the battery pack 10 to reuse the used battery cell 100.
  • the “used battery pack 10” refers to a battery pack 10 that has been charged or discharged at least once. Therefore, the battery pack 10 is an assembled battery of recycled battery cells 100.
  • the battery cell 100 has a different use time for each battery pack 10 that has been used, and thus the degree of deterioration is also different. For this reason, the situation where the speed at which the voltage rises differs depending on the battery cell 100 can be considered.
  • FIG. 16A shows the relationship between the time and the voltage of the battery cell 100 in the sixth embodiment.
  • the voltage of the battery cell 100 that is least deteriorated is indicated by a thin solid line as Vb .
  • FIG. 16B shows the relationship between the time and the remaining capacity of the battery cell 100 and the relationship between the time and the current of the battery cell 100 in the sixth embodiment. As shown in FIG. 16 (b), the are indicated by thick solid lines the most degraded remaining capacity of the battery cell 100 as a C a. Further, the remaining capacity of the battery cell 100 that is not degraded most as C b, are shown by a thin solid line.
  • the remaining capacity of the most deteriorated battery cell 100 is smaller than that of the least deteriorated battery cell 100 in the charging start state.
  • the charging current I RS of each battery cell 100 being charged is constant. Therefore, the remaining capacity C a of the most deteriorated battery cell 100 and the remaining capacity C b of the least deteriorated battery cell 100 increase linearly with the same slope.
  • the voltage Vb of the battery cell 100 that is least deteriorated is higher than the voltage Va of the battery cell 100 that is most deteriorated when starting charging.
  • the most degraded voltage V a of the battery cell 100 higher than the faster voltage V b of the battery cells 100 is least degraded.
  • the control unit 400 at time t a later, identifies the cell 100 that is degraded most as "maximum voltage cell”.
  • the control unit 400 identifies the battery cell 100 that is least deteriorated as a “minimum voltage cell”.
  • the control unit 400 performs the first control.
  • the control unit 400 operates the balance circuit 200.
  • the 1st reference voltage V1 is more than a rated charge voltage and less than an overcharge protection voltage, for example.
  • the battery cell 100 is recycled. For this reason, since each battery cell 100 which comprises the battery pack 10 differs in use time, the degree of deterioration is also different. The most deteriorated battery cell 100 has a fast voltage increase. By applying the control system and the charging method of the first embodiment to such a battery pack 10, it is possible to prevent the maximum voltage unit from being overcharged. Therefore, even if the battery cell 100 is recycled, each battery cell 100 can be safely brought close to full charge.
  • FIG. 17 is a diagram for explaining a charging method according to the seventh embodiment.
  • the seventh embodiment is the same as the first embodiment or the second embodiment except for the following points.
  • the balance circuit 200 has a function of moving power from one battery cell 100 to another battery cell 100.
  • the control unit 400 satisfies the first condition and activates the balance circuit 200, the control unit 400 causes the balance circuit 200 to move power from the maximum voltage cell to another battery cell 100. Details will be described below.
  • FIG. 17A shows the relationship between the time and the voltage of the battery cell 100 in the seventh embodiment. As shown in FIG. 17 (a), the are indicated by thick solid lines a voltage of the voltage maximum cell as V a. The voltage of the minimum voltage cell is indicated by a thin solid line as Vb .
  • FIG. 17B shows the relationship between the time and the remaining capacity of the battery cell 100 and the relationship between the time and the current of the battery cell 100 in the seventh embodiment.
  • the control unit 400 the start of charging to time t 1, for charging in the same manner as in the first embodiment.
  • the voltage V a of the voltage maximum cell rises faster than the voltage V b of the voltage minimum cell.
  • the voltage V a of the voltage maximum cell reaches the first reference voltage V 1.
  • the control unit 400 actuates the balance circuit 200.
  • the balance circuit 200 according to the fourth embodiment has a function of transferring power from one battery cell 100 to another battery cell 100.
  • the control unit 400 causes the balance circuit 200 to move power from the maximum voltage cell to another battery cell 100. Thus, lowering the voltage V a of the voltage maximum cell.
  • the “other battery cell 100” is not particularly limited.
  • the balance circuit 200 may move power from the maximum voltage cell to the minimum voltage cell.
  • the balance circuit 200 may move power from the maximum voltage cell to another battery cell 100 different from the minimum voltage cell.
  • the control unit 400 is to operate the balance circuit 200.
  • the balance circuit 200 since the power is being moved to another cell 100, the voltage V a of the voltage maximum cell drops.
  • the voltage V b of the minimum voltage cell is charged and increased by the power supplied from the maximum voltage cell.
  • the slope of the increase in voltage of the minimum voltage cell or the like depends on the voltage difference between the maximum voltage cell and the battery cell 100 at time t 1 .
  • the gradient in which the voltage of the minimum voltage cell or the like increases is gentler than the gradient in which the voltage increases due to charging by another power source.
  • the residual capacity C b of the voltage minimum cell also increases are charged by power supplied from the voltage maximum cell.
  • a current flows from the maximum voltage cell with respect to the minimum voltage cell.
  • the current flowing through the voltage minimum cell decreases.
  • the voltage V b of the voltage minimum cell when operating the balance circuit 200, does not become a constant voltage. That is, the voltage V b of the voltage minimum cell repeats rise due to the charging, the voltage rise due power supply from the voltage maximum cell.
  • the current flowing from the voltage maximum cell to the voltage minimum cell is It gradually decreases according to the voltage difference between the largest cell and the smallest voltage cell.
  • the remaining capacity C b of the voltage minimum cell can be brought close to the full charge capacity C Rb.
  • the control unit 400 operates the balance circuit 200 to move power from the maximum voltage cell to another battery cell 100.
  • the electric power for lowering the voltage V a of the voltage maximum cell can be used to charge the other battery cells 100.
  • charge of the other battery cell 100 is not interrupted like 1st Embodiment. Thereby, it can approach full charge earlier than 1st Embodiment.
  • FIG. 18 is a flowchart showing a charging method according to the eighth embodiment.
  • FIG. 19 is a diagram for explaining a charging method according to the eighth embodiment.
  • the eighth embodiment is the same as part of the first embodiment, the second embodiment, or the fourth embodiment except for the following points.
  • Controller 400 fills the first condition, since by actuating the balance circuit 200, when the voltage V a of the voltage up unit becomes equal to the other battery cells 100, the other battery cells 100 as a voltage up unit Control all at once. Details will be described below.
  • the control part 400 demonstrated the method of specifying one battery cell 100 with the largest voltage as a "voltage largest cell", and controlling a voltage.
  • the “maximum voltage unit” refers to a set of one or more battery cells 100 including the maximum voltage cell.
  • the control unit 400 controls the plurality of battery cells 100 as a “maximum voltage unit”.
  • a set of battery cells 100 including “maximum voltage cell” is referred to as “maximum voltage unit”.
  • the battery cell 100 having the second highest voltage after the “maximum voltage cell” will be described as a “second voltage cell”.
  • charging is started and the voltage and current of the battery cell 100 are measured (S110).
  • control unit 400 identifies the “maximum voltage unit” and “minimum voltage cell” based on the voltage measured by the measurement unit 300 (S120).
  • the “voltage maximum unit” is one “voltage maximum cell”.
  • FIG. 19A shows the relationship between the time and the voltage of the battery cell 100 in the eighth embodiment.
  • the voltage of the “voltage second cell” is indicated by a bold dotted line as V c .
  • FIG. 19B shows the relationship between the time and the remaining capacity of the battery cell 100 and the relationship between the time and the current of the battery cell 100 in the eighth embodiment.
  • the remaining capacity of the “voltage second cell” is indicated by a thick dotted line as C c .
  • the voltage Va of the voltage maximum cell, the first reference voltages V 1, and the first condition is satisfied (S130Yes). Further, at time t 1, since a large voltage difference between the voltage maximum cell voltage minimum cell, the second condition is a termination condition of the charging does not satisfy (S140No).
  • control unit 400 temporarily stops the charging of all the battery cells 100 (S150).
  • control unit 400 operates the balance circuit 200 (S160).
  • the at time t 1 after the control unit 400 operates the balance circuit 200.
  • the voltage V a of the voltage maximum cell drops.
  • the voltage V b and the voltage voltage V c of the second cell voltage minimum cell is hardly lowered.
  • the at time t c from the time t 1, the residual capacity C b and the voltage remaining capacity C c of the second cell voltage minimum cell remains constant. Further, since the battery is not charged, the current is zero.
  • the control unit 400 determines whether or not the voltage of the maximum voltage unit is equal to the voltage of the voltage second cell while the balance circuit 200 is operating (S310).
  • the control unit 400 operates the balance circuit 200 until S170 with the voltage maximum unit as one voltage maximum cell.
  • the voltage V a of the voltage maximum unit (here, only the voltage maximum cell) is equal to the voltage V c of the voltage second cell.
  • the control unit 400 when the voltage V a of the voltage up unit equal to the voltage V c voltage second cell (S310Yes), the control unit 400 include a voltage second cell voltage maximum unit (S320).
  • “included in the maximum voltage unit” means that the control unit 400 collectively controls the plurality of battery cells 100 as the maximum voltage unit. Accordingly, the control unit 400 operates the balance circuit 200 using the voltage maximum cell and the voltage second cell as the voltage maximum unit.
  • the voltage V c of the voltage second cell included in the maximum voltage unit drops together with the voltage V a of the maximum voltage cell. Further, as shown in FIG. 19B, the remaining capacity C c of the voltage second cell drops due to power consumption by the internal resistance of the balance circuit 200.
  • the control unit 400 determines whether the voltage of the voltage up unit becomes the second reference voltage V 2 (S170).
  • the control unit 400 operates the balancing circuit 200 continues.
  • the control unit 400 can include the voltage second cell in the maximum battery unit.
  • the voltage of the voltage up unit including a voltage second cell becomes a second reference voltage V 2.
  • the voltage maximum unit repeats an increase due to charging and a decrease in the first control step (S160). Subsequent steps are the same as those in the first embodiment except that the maximum voltage unit is a plurality of battery cells 100.
  • the control unit 400 controls the voltage second cell as the voltage up unit.
  • the control unit 400 may exclude the second voltage cell from the maximum voltage unit in S120.
  • control part 400 can make the battery cell 100 with the next largest voltage next to the said voltage 2nd cell into a new voltage 2nd cell by including a voltage 2nd cell in a voltage maximum unit. That is, from S310 to S320, the control unit 400 can gradually increase the voltage maximum unit. Finally, the above charging method can be repeated until the voltage of the voltage maximum unit becomes equal to the voltage of the voltage minimum cell.
  • control unit 400 collectively controls a plurality of battery cells 100 having the same voltage as the maximum voltage unit. Thereby, the voltage of the some battery cell 100 can be arrange
  • FIG. 20 is a circuit diagram showing configurations of the battery pack 10 and the control circuit 20 according to the ninth embodiment.
  • the ninth embodiment is the same as the second embodiment except that the control circuit 20 is provided outside the battery pack 10. Details will be described below.
  • control circuit 20 is provided outside the battery pack 10.
  • the control circuit 20 is provided in, for example, a charging device (not shown) independent from the battery pack 10.
  • the control circuit 20 may be provided in a device used when the battery pack 10 is discharged and used.
  • a plurality of battery cells 100 are connected in series to the battery pack 10.
  • the battery pack 10 is provided with a positive electrode terminal 820 and a negative electrode terminal 840 for charging and discharging the battery pack 10.
  • battery cell terminals 830 are provided between the battery cells 100.
  • the control circuit 20 includes a balance circuit 200, a measurement unit 300, and a control unit 400.
  • a balance circuit 200 is provided on the battery pack 10 side of the control circuit 20.
  • the positive terminal 920 and the negative terminal 940 of the control circuit 20 are provided on the battery pack 10 side of the control circuit 20.
  • the positive terminal 920 and the negative terminal 940 of the control circuit 20 are connected to the positive terminal 820 and the negative terminal 840 of the battery pack 10 through wiring (not shown), respectively. As a result, charging power is supplied from the control circuit 20 side to the battery pack 10.
  • a measurement terminal 930 of the balance circuit 200 is provided on the battery pack 10 side of the control circuit 20.
  • the measurement terminal 930 of the balance circuit 200 is connected to the battery cell terminal 830 of the battery pack 10 via wiring (not shown). Thereby, even if the control circuit 20 is provided outside the battery pack 10, each battery cell 100 can be controlled when the balance circuit 200 is operated.
  • control circuit 20 is provided outside the battery pack 10.
  • the balance circuit 200 is connected to each battery cell 100 via wiring. Thereby, the effect similar to 1st Embodiment can be acquired.
  • FIG. 21 is a circuit diagram showing configurations of the battery pack 10 and the control circuit 20 according to the tenth embodiment.
  • the tenth embodiment is the same as the fifth embodiment except that the control circuit 20 other than the balance circuit 200 is provided outside the battery pack 10. Details will be described below.
  • the balance circuit 200 is provided in the battery pack 10.
  • the control circuit 20 including the measurement unit 300 and the control unit 400 excluding the balance circuit 200 is provided outside the battery pack 10.
  • the balance circuit 200 is connected to each battery cell 100.
  • the battery pack 10 is provided with a positive electrode terminal 820 and a negative electrode terminal 840 for charging and discharging the battery pack 10.
  • a balance circuit terminal 860 for transmitting and receiving signals to and from the balance circuit 200 is provided.
  • a measuring unit 300 is provided on the battery pack 10 side of the control circuit 20. Further, the positive terminal 920 and the negative terminal 940 of the control circuit 20 are provided at positions corresponding to the positive terminal 820 and the negative terminal 840 of the battery pack 10 on the battery pack 10 side of the control circuit 20.
  • the measurement unit terminal 960 is provided at a position corresponding to the balance circuit terminal 860 on the battery pack 10 side of the measurement unit 300.
  • the balance circuit terminal 860 and the measurement unit terminal 960 are connected to each other by wiring (not shown). Thereby, the signal which operates the balance circuit 200, and the signal of the voltage and electric current from the battery cell 100 can be transmitted / received via wiring.
  • control circuit 20 is provided outside the battery pack 10
  • various other configurations are possible.
  • control unit 400 may be provided outside the battery pack 10.
  • control unit 400 transmits a signal to the switch 500 via the measurement unit 300 .
  • control unit 400 directly transmits a signal to the switch 500. May be transmitted.
  • a charging device including the above-described control circuit 20 is also disclosed.
  • the control unit 400 based on the first reference voltage V 1, or lowering the voltage of the voltage maximum cell has been described a case in which or to bypass the voltage maximum cell.
  • the first reference voltages V 1 may go by any time changes in the control.
  • a first reference voltages V 1 and the rated charging voltage rated charge the first reference voltages V 1 from all of the battery cells 100 is approaching full charge It may be a voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

In order to bring a plurality of battery units (battery cells) connected in series close to full charge without overcharging the battery units, a battery pack (10) is provided with a plurality of battery cells (100), a measurement unit (300) and a control unit (400). The plurality of battery cells (100) is connected in series. The measurement unit (300) measures the voltage of the battery cells (100). The control unit (400) controls charging of each battery cell (100) on the basis of the voltage measured by the measurement unit (300). In addition, the control unit (400) identifies the cell with the maximum voltage, which is the maximum voltage, on the basis of the voltage measured by the measurement unit (300) when the battery cells (100) are being charged. Furthermore, the control unit (400) continues to allow all of the battery cells (100) to be charged when a first condition, in which the voltage of the cell with the maximum voltage is greater than or equal to a first reference voltage (V1), has not been met. However, when the first condition is met, the control unit (400) carries out a first control which allows the voltage of the cell with the maximum voltage to drop.

Description

充電制御システム、電池パックおよび充電方法Charging control system, battery pack and charging method
 本発明は、充電制御システム、電池パックおよび充電方法に関する。 The present invention relates to a charge control system, a battery pack, and a charging method.
 電池の過充電、過放電を防止するため、様々な充放電方法や制御回路が提案されている。 Various charging / discharging methods and control circuits have been proposed to prevent overcharging and overdischarging of the battery.
 特許文献1(特開2009-232559号公報)には、以下のような電池パック充電バランス回路が記載されている。この電池パック充電バランス回路は、第1のバランス制御回路、第2のバランス制御回路および保護回路を備えている。第1のバランス制御回路および第2のバランス制御回路は、充放電回路の両充放電端子の間に直列接続されている。第1のバランス制御回路は、複数の電池ユニットに対応して、並列接続された制御ユニットを有している。第2のバランス制御回路は、並列接続された第1の分岐および第2の分岐を有している。これにより、予め設定されたアンバランス保護起動電圧に達した電池ユニットに対して、分流を行い、保護回路が早期に過充電保護機能を起動するのを防止することができる。したがって、各々の電池ユニットへの充電をバランスさせることができるとされている。 Patent Document 1 (Japanese Patent Application Laid-Open No. 2009-232559) describes the following battery pack charge balance circuit. The battery pack charging balance circuit includes a first balance control circuit, a second balance control circuit, and a protection circuit. The first balance control circuit and the second balance control circuit are connected in series between both charge / discharge terminals of the charge / discharge circuit. The first balance control circuit has control units connected in parallel corresponding to the plurality of battery units. The second balance control circuit has a first branch and a second branch connected in parallel. As a result, the battery unit that has reached the preset imbalance protection activation voltage is shunted, and the protection circuit can be prevented from starting the overcharge protection function early. Therefore, it is supposed that the charge to each battery unit can be balanced.
 また、特許文献2(特開平09-322417号公報)には、以下のような放電方法が記載されている。各々の電池ユニットの電圧を放電終止電圧と比較し、いずれかの電池ユニットの電圧が放電終止電圧よりも低くなった場合、全ての電池ユニットの放電を停止させる。このとき、複数の電池ユニットのそれぞれの温度を検出する。検出した温度のうち、最も低い温度を優先して放電終止電圧を演算する。最低温度の電池ユニット、またはいずれかの電池ユニットの電圧が放電終止電圧まで低下すると放電を停止する。これにより、過放電を防止するとともに、早く残容量が無くなることを防止することができるとされている。 Further, Patent Document 2 (Japanese Patent Laid-Open No. 09-322417) describes the following discharge method. The voltage of each battery unit is compared with the discharge end voltage, and when the voltage of any battery unit becomes lower than the discharge end voltage, the discharge of all the battery units is stopped. At this time, the temperature of each of the plurality of battery units is detected. The discharge end voltage is calculated giving priority to the lowest temperature among the detected temperatures. When the voltage of the lowest temperature battery unit or any one of the battery units drops to the discharge end voltage, the discharge is stopped. As a result, overdischarge can be prevented and the remaining capacity can be prevented from being lost quickly.
特開2009-232559号公報JP 2009-232559 A 特開平09-322417号公報JP 09-322417 A
 発明者は、直列に接続した複数の電池ユニットを有する電池パックにおいて、以下のような課題が発生することを見出した。直列に接続した複数の電池ユニットにおいて、劣化量は電池ユニット毎に異なる。各々の電池ユニットの満充電容量は、必ずしも均等であるとは限らない。なかでも、最も満充電容量の小さい電池ユニットは、他の電池ユニットよりも充電電圧の上昇が速くなる。このため、電池パックを充電する際、最も満充電容量の小さい電池ユニットが過充電保護電圧に至ったとき、このタイミングで終了する。この場合、全ての電池ユニットの充電量が不十分なまま、充電が終了してしまう。したがって、電池パック全体として十分な充電量を得るためには、最も満充電容量の小さい電池ユニットを過充電しなければならない可能性があった。 The inventor has found that the following problems occur in a battery pack having a plurality of battery units connected in series. In a plurality of battery units connected in series, the amount of deterioration differs for each battery unit. The full charge capacity of each battery unit is not always equal. Among them, the battery unit with the smallest full charge capacity increases the charging voltage faster than the other battery units. For this reason, when charging the battery pack, when the battery unit with the smallest full charge capacity reaches the overcharge protection voltage, the process ends at this timing. In this case, the charging ends with the amount of charge of all the battery units being insufficient. Therefore, in order to obtain a sufficient charge amount as a whole battery pack, there is a possibility that the battery unit having the smallest full charge capacity has to be overcharged.
 本発明によれば、
 直列に接続された複数の電池ユニットの電圧を測定する測定部と、
 前記測定部が測定した前記電圧に基づいて、各々の前記電池ユニットへの充電を制御する制御部と、
を備え、
 前記制御部は、
 前記電池ユニットに前記充電を行っている場合に、前記測定部が測定した前記電圧に基づいて、前記電圧が最大である電圧最大ユニットを特定し、
 前記電圧最大ユニットの前記電圧が第1基準電圧以上になったとする第1条件を満たさないとき、全ての前記電池ユニットに対して前記充電を継続させ、
 前記第1条件を満たすとき、前記電圧最大ユニットの前記電圧を降下させる第1制御を行う充電制御システムが提供される。
According to the present invention,
A measuring unit for measuring voltages of a plurality of battery units connected in series;
Based on the voltage measured by the measurement unit, a control unit that controls charging to each of the battery units,
With
The controller is
When performing the charging to the battery unit, based on the voltage measured by the measurement unit, identify the voltage maximum unit that the voltage is maximum,
When the first condition that the voltage of the voltage maximum unit is equal to or higher than the first reference voltage is not satisfied, the charging is continued for all the battery units,
When the first condition is satisfied, a charge control system is provided that performs a first control to drop the voltage of the maximum voltage unit.
 本発明によれば、
 直列に接続された複数の電池ユニットの電圧を測定する測定部と、
 前記測定部が測定した前記電圧に基づいて、各々の前記電池ユニットへの充電を制御する制御部と、
を備え、
 前記制御部は、
 前記電池ユニットに前記充電を行っている場合に、前記測定部が測定した前記電圧に基づいて、前記電圧が最大である電圧最大ユニットを特定し、
 前記電圧最大ユニットの前記電圧が第1基準電圧以上になったとする第1条件を満たさないとき、全ての前記電池ユニットに対して前記充電を継続させ、
 前記第1条件を満たすとき、前記電圧最大ユニットをバイパス対象ユニットとしてバイパスして、当該バイパス対象ユニット以外の前記電池ユニットに対して前記充電を継続させるバイパス制御を行う充電制御システムが提供される。
According to the present invention,
A measuring unit for measuring voltages of a plurality of battery units connected in series;
Based on the voltage measured by the measurement unit, a control unit that controls charging to each of the battery units,
With
The controller is
When performing the charging to the battery unit, based on the voltage measured by the measurement unit, identify the voltage maximum unit that the voltage is maximum,
When the first condition that the voltage of the voltage maximum unit is equal to or higher than the first reference voltage is not satisfied, the charging is continued for all the battery units,
When the first condition is satisfied, there is provided a charge control system for performing bypass control for bypassing the maximum voltage unit as a bypass target unit and continuing the charging for the battery units other than the bypass target unit.
 本発明によれば、
 直列に接続された複数の電池ユニットと、
 前記電池ユニットの電圧を測定する測定部と、
 前記測定部が測定した前記電圧に基づいて、各々の前記電池ユニットへの充電を制御する制御部と、
を備え、
 前記制御部は、
 前記電池ユニットに前記充電を行っている場合に、前記測定部が測定した前記電圧に基づいて、前記電圧が最大である電圧最大ユニットを特定し、
 前記電圧最大ユニットの前記電圧が第1基準電圧以上になったとする第1条件を満たさないとき、全ての前記電池ユニットに対して前記充電を継続させ、
 前記第1条件を満たすとき、前記電圧最大ユニットの前記電圧を降下させる第1制御を行う電池パックが提供される。
According to the present invention,
A plurality of battery units connected in series;
A measurement unit for measuring the voltage of the battery unit;
Based on the voltage measured by the measurement unit, a control unit that controls charging to each of the battery units,
With
The controller is
When performing the charging to the battery unit, based on the voltage measured by the measurement unit, identify the voltage maximum unit that the voltage is maximum,
When the first condition that the voltage of the voltage maximum unit is equal to or higher than the first reference voltage is not satisfied, the charging is continued for all the battery units,
When the first condition is satisfied, a battery pack is provided that performs a first control to drop the voltage of the maximum voltage unit.
 本発明によれば、
 直列に接続された複数の電池ユニットと、
 前記電池ユニットの電圧を測定する測定部と、
 前記測定部が測定した前記電圧に基づいて、各々の前記電池ユニットへの充電を制御する制御部と、
を備え、
 前記制御部は、
 前記電池ユニットに前記充電を行っている場合に、前記測定部が測定した前記電圧に基づいて、前記電圧が最大である電圧最大ユニットを特定し、
 前記電圧最大ユニットの前記電圧が第1基準電圧以上になったとする第1条件を満たさないとき、全ての前記電池ユニットに対して前記充電を継続させ、
 前記第1条件を満たすとき、前記電圧最大ユニットをバイパス対象ユニットとしてバイパスして、当該バイパス対象ユニット以外の前記電池ユニットに対して前記充電を継続させるバイパス制御を行う電池パックが提供される。
According to the present invention,
A plurality of battery units connected in series;
A measurement unit for measuring the voltage of the battery unit;
Based on the voltage measured by the measurement unit, a control unit that controls charging to each of the battery units,
With
The controller is
When performing the charging to the battery unit, based on the voltage measured by the measurement unit, identify the voltage maximum unit that the voltage is maximum,
When the first condition that the voltage of the voltage maximum unit is equal to or higher than the first reference voltage is not satisfied, the charging is continued for all the battery units,
When the first condition is satisfied, a battery pack is provided that performs bypass control for bypassing the maximum voltage unit as a bypass target unit and continuing the charging for the battery units other than the bypass target unit.
 本発明によれば、
 直列に接続された複数の電池ユニットの電圧を測定するとともに、前記複数の電池ユニットに充電を開始する充電開始ステップと、
 測定した前記電圧に基づいて、前記電圧が最大である電圧最大ユニットを特定するユニット特定ステップと、
 前記電圧最大ユニットの前記電圧が第1基準電圧以上となったとする第1条件を判定する第1判定ステップと、
 前記第1条件を満たさないとき、全ての前記電池ユニットに対して前記充電を継続させ、前記第1条件を満たすとき、前記電圧最大ユニットの前記電圧を降下させる第1制御ステップと、
を備える充電方法が提供される。
According to the present invention,
A charging start step for measuring voltages of a plurality of battery units connected in series and starting charging the plurality of battery units;
A unit identification step for identifying a voltage maximum unit in which the voltage is maximum based on the measured voltage;
A first determination step of determining a first condition that the voltage of the voltage maximum unit is equal to or higher than a first reference voltage;
When the first condition is not satisfied, the charging is continued for all the battery units, and when the first condition is satisfied, the first control step of decreasing the voltage of the maximum voltage unit;
A charging method is provided.
 本発明によれば、
 直列に接続された複数の電池ユニットの電圧を測定するとともに、前記複数の電池ユニットに充電を開始する充電開始ステップと、
 測定した前記電圧に基づいて、前記電圧が最大である電圧最大ユニットを特定するユニット特定ステップと、
 前記電圧最大ユニットの前記電圧が第1基準電圧以上となったとする第1条件を判定する第1判定ステップと、
 前記第1条件を満たさないとき、全ての前記電池ユニットに対して前記充電を継続させ、前記第1条件を満たすとき、前記電圧最大ユニットをバイパス対象ユニットとしてバイパスして、当該バイパス対象ユニット以外の前記電池ユニットに対して前記充電を継続させるバイパス制御ステップと、
を備える充電方法が提供される。
According to the present invention,
A charging start step for measuring voltages of a plurality of battery units connected in series and starting charging the plurality of battery units;
A unit identification step for identifying a voltage maximum unit in which the voltage is maximum based on the measured voltage;
A first determination step of determining a first condition that the voltage of the voltage maximum unit is equal to or higher than a first reference voltage;
When the first condition is not satisfied, the charging is continued for all the battery units, and when the first condition is satisfied, the voltage maximum unit is bypassed as a bypass target unit, and other than the bypass target unit. A bypass control step for continuing the charging for the battery unit;
A charging method is provided.
 本発明によれば、電圧最大ユニットの電圧が第1基準電圧以上になったとする第1条件を満たすとき、電圧最大ユニットの電圧を降下させる。これにより、電圧最大ユニットを過充電にすることがない。したがって、直列に接続された複数の電池ユニットを、過充電にすることを防止し、満充電に近づけることができる。 According to the present invention, when the first condition that the voltage of the maximum voltage unit is equal to or higher than the first reference voltage is satisfied, the voltage of the maximum voltage unit is decreased. Thereby, the maximum voltage unit is not overcharged. Therefore, it is possible to prevent the plurality of battery units connected in series from being overcharged and to approach full charge.
 本発明によれば、直列に接続された複数の電池ユニットを、過充電にすることなく、満充電に近づけることができる。 According to the present invention, a plurality of battery units connected in series can be brought close to full charge without being overcharged.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
第1の実施形態に係る電池パックの構成を示す回路図である。It is a circuit diagram which shows the structure of the battery pack which concerns on 1st Embodiment. 第1の実施形態に係る電池パックの電池セル近傍の等価回路図である。It is an equivalent circuit schematic of the battery cell vicinity of the battery pack which concerns on 1st Embodiment. 第1の実施形態に係る充電方法を示すフローチャートである。It is a flowchart which shows the charge method which concerns on 1st Embodiment. 第1の実施形態に係る充電方法を示すフローチャートである。It is a flowchart which shows the charge method which concerns on 1st Embodiment. 第1の実施形態に係る充電方法を説明するための図である。It is a figure for demonstrating the charging method which concerns on 1st Embodiment. 第1の実施形態の効果を説明するための比較例の図である。It is a figure of the comparative example for demonstrating the effect of 1st Embodiment. 第2の実施形態に係る電池パックの構成を示す回路図である。It is a circuit diagram which shows the structure of the battery pack which concerns on 2nd Embodiment. 第2の実施形態に係る電池パックの電池セル近傍の等価回路図である。It is an equivalent circuit schematic of the battery cell vicinity of the battery pack which concerns on 2nd Embodiment. 第2の実施形態に係る充電方法を示すフローチャートである。It is a flowchart which shows the charge method which concerns on 2nd Embodiment. 第3の実施形態に係る充電方法を示すフローチャートである。It is a flowchart which shows the charging method which concerns on 3rd Embodiment. 第4の実施形態に係る電池パックの電池セル近傍の等価回路図である。It is an equivalent circuit schematic of the battery cell vicinity of the battery pack which concerns on 4th Embodiment. 第4の実施形態に係る充電方法を示すフローチャートである。It is a flowchart which shows the charging method which concerns on 4th Embodiment. 第4の実施形態に係る充電方法を説明するための図である。It is a figure for demonstrating the charging method which concerns on 4th Embodiment. 第5の実施形態に係る充電方法を示すフローチャートである。It is a flowchart which shows the charging method which concerns on 5th Embodiment. 第5の実施形態に係る充電方法を説明するための図である。It is a figure for demonstrating the charging method which concerns on 5th Embodiment. 第6の実施形態に係る充電方法を説明するための図である。It is a figure for demonstrating the charging method which concerns on 6th Embodiment. 第7の実施形態に係る充電方法を説明するための図である。It is a figure for demonstrating the charging method which concerns on 7th Embodiment. 第8の実施形態に係る充電方法を示すフローチャートである。It is a flowchart which shows the charging method which concerns on 8th Embodiment. 第8の実施形態に係る充電方法を説明するための図である。It is a figure for demonstrating the charging method which concerns on 8th Embodiment. 第9の実施形態に係る電池パックおよび制御回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the battery pack and control circuit which concern on 9th Embodiment. 第10の実施形態に係る電池パックおよび制御回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the battery pack and control circuit which concern on 10th Embodiment.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 ここでいう「電池パック10」とは、複数の電池ユニットを有している組電池のことをいう。また、「電池ユニット」とは、少なくとも一つ以上の電池セル100を有しているものをいう。さらに、「電池ユニット」に含まれる電池セル100は、正極および負極等を有する複数の単電池を有していてもよい。また、複数の「電池ユニット」は、それぞれ異なる数量の電池セル100を有していてもよい。以下では、「電池パック10」に含まれる「電池ユニット」は、並列に接続された二つの単電池を有する電池セル100である場合を説明する。 As used herein, “battery pack 10” refers to an assembled battery having a plurality of battery units. Further, the “battery unit” refers to one having at least one battery cell 100. Furthermore, the battery cell 100 included in the “battery unit” may include a plurality of single cells having a positive electrode and a negative electrode. Further, the plurality of “battery units” may have different numbers of battery cells 100. Hereinafter, a case where the “battery unit” included in the “battery pack 10” is a battery cell 100 having two unit cells connected in parallel will be described.
 (第1の実施形態)
 図1および図2を用い、第1の実施形態に係る電池パック10について説明する。図1は、第1の実施形態に係る電池パック10の構成を示す回路図である。図2は、第1の実施形態に係る電池パック10の電池セル100近傍の等価回路図である。この電池パック10は、複数の電池セル100、測定部300および制御部400を備えている。複数の電池セル100は、直列に接続されている。測定部300は、電池セル100の電圧を測定する。制御部400は、測定部300が測定した電圧に基づいて、各々の電池セル100への充電を制御する。また、制御部400は、電池セル100に充電を行っている場合に、測定部300が測定した電圧に基づいて、電圧が最大である電圧最大セルを特定する。また、制御部400は、電圧最大セルの電圧が第1基準電圧V以上になったとする第1条件を満たさないとき、全ての電池セル100に対して充電を継続させる。一方、第1条件を満たすとき、制御部400は、電圧最大セルの電圧を降下させる第1制御を行う。以下、詳細を説明する。
(First embodiment)
The battery pack 10 according to the first embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a circuit diagram showing a configuration of the battery pack 10 according to the first embodiment. FIG. 2 is an equivalent circuit diagram in the vicinity of the battery cell 100 of the battery pack 10 according to the first embodiment. The battery pack 10 includes a plurality of battery cells 100, a measurement unit 300, and a control unit 400. The plurality of battery cells 100 are connected in series. The measurement unit 300 measures the voltage of the battery cell 100. The control unit 400 controls charging of each battery cell 100 based on the voltage measured by the measurement unit 300. In addition, when charging the battery cell 100, the control unit 400 specifies the voltage maximum cell having the maximum voltage based on the voltage measured by the measurement unit 300. The control unit 400, when not satisfy the first condition to the voltage of the voltage maximum cell reached the first reference voltages V 1 or more, to continue the charging to all of the battery cells 100. On the other hand, when the first condition is satisfied, the control unit 400 performs the first control to drop the voltage of the maximum voltage cell. Details will be described below.
 図1のように、電池パック10は、複数の電池セル100を備えている。ここでは、電池パック10は、たとえば、N個の電池セル100を備えている。また、複数の電池セル100は、直列に接続されている。また、上述のように電池セル100は、二つの単電池を有している。具体的には、電池セル100は、Liイオン二次電池である。 As shown in FIG. 1, the battery pack 10 includes a plurality of battery cells 100. Here, the battery pack 10 includes, for example, N battery cells 100. The plurality of battery cells 100 are connected in series. Further, as described above, the battery cell 100 has two single cells. Specifically, the battery cell 100 is a Li ion secondary battery.
 電池パック10は、充放電を繰り返すことにより、劣化していく。この劣化の過程において、各々の電池セル100が均等に劣化するとは限らない。そして、最も劣化した電池セル100は、他の電池セル100に比較して、満充電容量が減少している。したがって、この電池パック10を充電するとき、最も劣化した電池セル100は、他の電池セル100よりも充電時の電圧の上昇が速い。ここでいう「満充電容量」とは、電池セル100を満充電にしたときの容量(単位Ah)のことである。 The battery pack 10 is deteriorated by repeated charging and discharging. In the process of this deterioration, each battery cell 100 does not necessarily deteriorate uniformly. The most deteriorated battery cell 100 has a reduced full charge capacity compared to the other battery cells 100. Therefore, when the battery pack 10 is charged, the most deteriorated battery cell 100 has a faster voltage increase during charging than the other battery cells 100. The “full charge capacity” here is a capacity (unit Ah) when the battery cell 100 is fully charged.
 第1の実施形態における電池パック10は、電池セル100のほかに、制御回路20を有している。制御回路20は、測定部300、制御部400およびスイッチ500を備えている。 The battery pack 10 in the first embodiment has a control circuit 20 in addition to the battery cell 100. The control circuit 20 includes a measurement unit 300, a control unit 400, and a switch 500.
 また、制御回路20は、直列に接続された電池セル100に接続されている。制御回路20は、内部正極端子620、内部負極端子640、外部正極端子720および外部負極端子740を有している。内部正極端子620は、直列に接続された一方の電池セル100の正極に接続している。また、内部負極端子640は、直列に接続された他方の電池セル100の負極に接続している。 The control circuit 20 is connected to the battery cells 100 connected in series. The control circuit 20 has an internal positive terminal 620, an internal negative terminal 640, an external positive terminal 720, and an external negative terminal 740. The internal positive terminal 620 is connected to the positive electrode of one battery cell 100 connected in series. The internal negative terminal 640 is connected to the negative electrode of the other battery cell 100 connected in series.
 内部正極端子620は、制御回路20内の配線(不図示)を介して、当該電池パック10を使用する外部機器に接続するための外部正極端子720に接続している。また、内部負極端子640も同様に、外部負極端子740に接続している。なお、内部負極端子640および外部負極端子740は、グランド(GND)に接地されている。 The internal positive terminal 620 is connected to an external positive terminal 720 for connecting to an external device using the battery pack 10 via a wiring (not shown) in the control circuit 20. Similarly, the internal negative terminal 640 is connected to the external negative terminal 740. The internal negative terminal 640 and the external negative terminal 740 are grounded to the ground (GND).
 内部正極端子620と外部正極端子720との間には、充電または放電を停止するためのスイッチ500が設けられている。スイッチ500は、たとえば、電池セル100側の内部正極端子620と外部正極端子720との間に設けられている。この場合、スイッチ500は、たとえば、PチャネルのMOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。スイッチ500内には、二つのPチャネルのMOSFETが設けられている。これにより、片方のMOSFETが充電を制御するために用いられる。一方、他方のMOSFETが放電を制御するために用いられる。また、スイッチ500における各々のMOSFETは、測定部300に接続している。 A switch 500 for stopping charging or discharging is provided between the internal positive terminal 620 and the external positive terminal 720. For example, the switch 500 is provided between the internal positive terminal 620 and the external positive terminal 720 on the battery cell 100 side. In this case, the switch 500 is a P-channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor), for example. In the switch 500, two P-channel MOSFETs are provided. Thereby, one MOSFET is used to control charging. On the other hand, the other MOSFET is used to control the discharge. Each MOSFET in the switch 500 is connected to the measurement unit 300.
 なお、スイッチ500がNチャネルのMOSFETである場合は、スイッチ500は、内部負極端子640と外部負極端子740との間に配置される。その他、スイッチ500は、たとえば、絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor、IGBT)、リレーまたはブレーカーであってもよい。 If the switch 500 is an N-channel MOSFET, the switch 500 is disposed between the internal negative terminal 640 and the external negative terminal 740. In addition, the switch 500 may be, for example, an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT), a relay, or a breaker.
 測定部300は、複数の電池セル100のそれぞれの電圧および電流を測定する。測定部300は、制御部400を介して、電池セル100に接続されている。 Measurement unit 300 measures the voltage and current of each of the plurality of battery cells 100. The measurement unit 300 is connected to the battery cell 100 via the control unit 400.
 また、制御部400は、たとえば、測定部300よりも電池セル100側に設けられている。この制御部400は、各々の電池セル100の充電量を調整するため、各々の電池セル100に接続されている。 Moreover, the control part 400 is provided in the battery cell 100 side rather than the measurement part 300, for example. The control unit 400 is connected to each battery cell 100 in order to adjust the charge amount of each battery cell 100.
 制御部400は、測定部300に接続している。制御部400は、測定部300が測定した電圧に基づいて、各々の電池セル100への充電を制御する。制御部400は、測定部300が測定した電圧または電流に基づいて、演算処理を行う演算部(不図示)を有している。また、制御部400は、制御部400からの信号を外部機器(不図示)に送信し、または外部機器からの信号を受信するための通信部(不図示)を有している。制御部400には、外部機器に信号を送受信するための外部通信端子760が接続している。 The control unit 400 is connected to the measurement unit 300. The control unit 400 controls charging of each battery cell 100 based on the voltage measured by the measurement unit 300. The control unit 400 includes a calculation unit (not shown) that performs calculation processing based on the voltage or current measured by the measurement unit 300. The control unit 400 includes a communication unit (not shown) for transmitting a signal from the control unit 400 to an external device (not shown) or receiving a signal from the external device. An external communication terminal 760 for transmitting / receiving signals to / from an external device is connected to the control unit 400.
 また、測定部300、制御部400およびスイッチ500は、安全性、充放電のサイクル寿命を向上させるため、保護回路として機能する。測定部300、制御部400およびスイッチ500は、電池セル100に対して、後述する過充電保護電圧VOPを超える電圧が充電された場合、充電を強制終了させる。その他、制御部400は、後述する第1基準電圧V等を記憶する記憶部(不図示)を有している。 In addition, the measurement unit 300, the control unit 400, and the switch 500 function as a protection circuit in order to improve safety and charge / discharge cycle life. Measuring unit 300, the control unit 400 and the switch 500, the battery cell 100, when a voltage exceeding the overcharge protection voltage V OP to be described later are charged, forcibly terminate charging. In addition, the control unit 400 includes a storage unit (not shown) that stores a first reference voltage V 1 and the like described later.
 このように、第1の実施形態では、複数の電池セル100および制御回路20を含み、電池パック10としてパッケージされている。 Thus, in the first embodiment, the battery pack 100 is packaged including the plurality of battery cells 100 and the control circuit 20.
 ここで、図2を用い、電池セル100近傍の等価回路について説明する。図2は、制御部400のうち、電池セル100の充電を制御する部分の等価回路を示している。図中の点線は、制御部400の内部を示している。なお、制御信号などを伝達する配線などは、省略している。 Here, an equivalent circuit near the battery cell 100 will be described with reference to FIG. FIG. 2 shows an equivalent circuit of a part of the control unit 400 that controls charging of the battery cell 100. The dotted line in the figure indicates the inside of the control unit 400. Note that wirings for transmitting control signals and the like are omitted.
 図2のように、制御部400は、配線(符号不図示)を介して、各々の電池セル100に接続している。制御部400には、内部抵抗202および第1セルスイッチ204が、各々の電池セル100と並列に配置されている。制御部400は、電圧最大セルの電圧(V)が第1基準電圧(V)以上になったとする第1条件を満たすとき、電圧最大セルと並列に配置された第1セルスイッチ204をONする。これにより、制御部400は、電圧最大セルの電圧を降下させる。なお、充電に係る当該制御部400の動作については、詳細を後述する。 As shown in FIG. 2, the control unit 400 is connected to each battery cell 100 through wiring (not shown). In the control unit 400, an internal resistance 202 and a first cell switch 204 are arranged in parallel with each battery cell 100. When the first condition that the voltage (V a ) of the maximum voltage cell is equal to or higher than the first reference voltage (V 1 ) is satisfied, the control unit 400 sets the first cell switch 204 arranged in parallel with the maximum voltage cell. Turn on. As a result, the control unit 400 drops the voltage of the maximum voltage cell. Details of the operation of the control unit 400 related to charging will be described later.
 次に、図3~図5を用いて、上記した電池パック10の充電方法について説明する。図3および図4は、第1の実施形態に係る充電方法について説明するためのフローチャートである。なお、図4は、図3の変形例である。図5は、第1の実施形態に係る充電方法を説明するための図である。第1の実施形態に係る充電方法は、以下のステップを備えている。まず、測定部300が直列に接続された複数の電池セル100の電圧を測定するとともに、制御部400が複数の電池セル100に充電を開始する(S110)。次いで、制御部400は、測定部300が測定した電圧に基づいて、電圧が最大である電圧最大セルを特定する(S120)。次いで、制御部400は、電圧最大セルの電圧が第1基準電圧V以上となったとする第1条件を判定する(S130)。次いで、第1条件を満たさないとき(S130No)、制御部400は、全ての電池セル100に対して充電を継続させる。一方、第1条件を満たすとき(S130Yes)、制御部400は、電圧最大セルの電圧を降下させる(第1制御ステップ、S160)。以下、詳細を説明する。 Next, a method for charging the battery pack 10 will be described with reference to FIGS. 3 and 4 are flowcharts for explaining the charging method according to the first embodiment. FIG. 4 is a modification of FIG. FIG. 5 is a diagram for explaining the charging method according to the first embodiment. The charging method according to the first embodiment includes the following steps. First, while the measurement part 300 measures the voltage of the some battery cell 100 connected in series, the control part 400 starts charge to the some battery cell 100 (S110). Next, the control unit 400 specifies the voltage maximum cell having the maximum voltage based on the voltage measured by the measurement unit 300 (S120). Then, the control unit 400 determines a first condition to the voltage of the voltage maximum cell becomes the first reference voltages V 1 or (S130). Next, when the first condition is not satisfied (No in S130), the control unit 400 continues charging all the battery cells 100. On the other hand, when the first condition is satisfied (S130 Yes), the control unit 400 drops the voltage of the maximum voltage cell (first control step, S160). Details will be described below.
 まず、外部正極端子720および外部負極端子740を電力供給先である外部充電機器(不図示)の正極および負極に接続する。これにより、複数の電池セル100の充電を開始する。この充電は、定電圧定電流により行われる。ここでは、たとえば、電池セル100の電圧が第1基準電圧Vとなるように、充電電圧をNVとする。また、充電電流をIRSとする。ここでいう「充電電圧」とは、外部充電機器(不図示)から外部正極端子720および外部負極端子740の間に印加される充電時の電圧のことをいう。また、「充電電流」とは、外部充電機器(不図示)から外部正極端子720および外部負極端子740の間に印加される充電時の電流のことをいう。なお、ここでは、スイッチ500には、内部抵抗が無いものとして考える。これと同時に、測定部300は、直列に接続された複数の電池セル100の電圧を測定する(S110)。また、測定部300は、電池セル100の電流も測定する。 First, the external positive electrode terminal 720 and the external negative electrode terminal 740 are connected to the positive electrode and the negative electrode of an external charging device (not shown) that is a power supply destination. Thereby, charge of the some battery cell 100 is started. This charging is performed with a constant voltage and a constant current. Here, for example, the charging voltage is set to NV 1 so that the voltage of the battery cell 100 becomes the first reference voltage V 1 . The charging current is IRS . The “charging voltage” here refers to a voltage during charging applied between an external positive terminal 720 and an external negative terminal 740 from an external charging device (not shown). The “charging current” refers to a current during charging applied between an external positive terminal 720 and an external negative terminal 740 from an external charging device (not shown). Here, it is assumed that the switch 500 has no internal resistance. At the same time, the measurement unit 300 measures the voltages of the plurality of battery cells 100 connected in series (S110). The measuring unit 300 also measures the current of the battery cell 100.
 次いで、制御部400は、測定部300が測定した電圧に基づいて、電圧が最大である電圧最大セルを特定する(S120)。このとき、制御部400は、電圧が最小である電圧最小セルも特定する。なお、電圧最大セルと電圧最小セルは、測定中に切り替わることもある。 Next, the control unit 400 specifies the maximum voltage cell having the maximum voltage based on the voltage measured by the measurement unit 300 (S120). At this time, the control unit 400 also specifies the minimum voltage cell having the minimum voltage. Note that the maximum voltage cell and the minimum voltage cell may be switched during measurement.
 ここで、図5(a)は、第1の実施形態における時間と電池セル100の電圧との関係を示している。図5(a)のように、電圧最大セルの電圧をVとして太い実線で示している。また、電圧最小セルの電圧をVとして、細い実線で示している。 Here, FIG. 5A shows the relationship between the time and the voltage of the battery cell 100 in the first embodiment. As shown in FIG. 5A, the voltage of the maximum voltage cell is indicated by Va and is indicated by a thick solid line. The voltage of the minimum voltage cell is indicated by a thin solid line as Vb .
 このとき、電圧最大セルおよび電圧最小セルを含めた電池セル100は、直列に接続されている。このため、各々の電池セル100に流れる電流は、全て等しい。したがって、複数の電池セル100のうち、電圧最大セルは満充電容量CRaが小さいため、電圧Vの上昇が電圧最小セルの電圧Vよりも速い。なお、第1の実施形態では、電池セル100内に二つの単電池が並列に接続されているため、劣化が小さい方の単電池に大きい電流が流れる。 At this time, the battery cells 100 including the maximum voltage cell and the minimum voltage cell are connected in series. For this reason, all the electric currents which flow through each battery cell 100 are equal. Therefore, among the plurality of battery cells 100, because the voltage maximum cell smaller full charge capacity C Ra, increase in the voltage V a is higher than the voltage V b of the voltage minimum cell. In the first embodiment, since two unit cells are connected in parallel in the battery cell 100, a large current flows through the unit cell having the smaller deterioration.
 また、図5(b)は、第1の実施形態における時間と電池セル100の残容量との関係、および時間と電池セル100の電流との関係を示している。図5(b)のように、電圧最大セルの残容量をCとして太い実線で示している。また、電圧最小セルの残容量をCとして、細い実線で示している。図5(b)のように、時刻tまでの充電は、定電流充電である。このため、全ての電池セル100の充電電流は、IRSで一定である。したがって、各々の電池セル100の残容量は、線形に上昇していく。 FIG. 5B shows the relationship between the time and the remaining capacity of the battery cell 100 and the relationship between the time and the current of the battery cell 100 in the first embodiment. As shown in FIG. 5 (b), indicated by thick solid lines the remaining capacity of the voltage maximum cell as C a. Further, the remaining capacity of the voltage minimum cell as C b, are shown by a thin solid line. As shown in FIG. 5 (b), the charge until the time t 1 is a constant-current charging. Therefore, the charging current of all the battery cells 100 is constant I RS. Therefore, the remaining capacity of each battery cell 100 increases linearly.
 次いで、制御部400は、電圧最大セルの電圧が第1基準電圧V以上となったとする第1条件を判定する(S130)。この「第1基準電圧V」は、制御部400の記憶部に記憶されている。ここで、「第1基準電圧V」とは、過充電保護電圧VOPよりも低く設定される電圧の基準値である。具体的には、「第1基準電圧V」は、たとえば、定格充電電圧である。これにより、電圧最大セルを、過充電することが無いため、電圧最大セルの劣化を抑制することができる。なお、「定格充電電圧」とは、電池パック10を充電する際に、安全性を考慮して、過充電保護電圧よりも低く設定した充電可能な電圧のことである。 Then, the control unit 400 determines a first condition to the voltage of the voltage maximum cell becomes the first reference voltages V 1 or (S130). This “first reference voltage V 1 ” is stored in the storage unit of the control unit 400. Here, the “first reference voltage V 1 ” is a reference value of a voltage set lower than the overcharge protection voltage V OP . Specifically, the “first reference voltage V 1 ” is, for example, a rated charging voltage. Thereby, since the maximum voltage cell is not overcharged, deterioration of the maximum voltage cell can be suppressed. Note that the “rated charge voltage” is a chargeable voltage set lower than the overcharge protection voltage in consideration of safety when charging the battery pack 10.
 なお、「第1基準電圧V」は、後述するように、電圧最大セルの電圧Vを降下させる第1制御を行うかを判断するための基準電圧であるため、必ずしも所望の定格充電電圧と同一値である必要は無い。すなわち、「第1基準電圧V」は、定格充電電圧以上、過充電保護電圧VOP未満であってもよい。 Incidentally, the "first reference voltages V 1", as will be described later, because the reference voltage for determining whether to perform a first control for lowering the voltage V a of the voltage maximum cell necessarily desired rated charge voltage Need not be the same value. That is, the “first reference voltage V 1 ” may be equal to or higher than the rated charge voltage and lower than the overcharge protection voltage V OP .
 ここで、「過充電保護電圧VOP」とは、たとえば、リチウムイオン二次電池などにおいて、発煙、発火または破裂などの不良が生じないようにするための電圧の上限値のことである。リチウムイオン二次電池である電池セル100が過充電状態になると、デンドライト状(樹枝状晶)のリチウムが発生し、正極と負極を短絡させてしまう。この場合、短絡に起因して発熱が生じ、電池パック10が破裂する危険性がある。このため、充電電圧の最大値として「過充電保護電圧VOP」を設定している。電圧最大セルが「過充電保護電圧VOP」となった場合、電池パック10への充電を強制終了させる。具体的には、制御部400は、測定部300を介して、スイッチ500に対して、充電を停止させるための信号を送信する。これにより、電圧最大セルが過充電にならないように制御している。本実施形態では、「過充電保護電圧VOP」は、制御部400の記憶部に記憶されている。 Here, the “overcharge protection voltage V OP ” is an upper limit value of a voltage for preventing defects such as smoke generation, ignition or explosion in a lithium ion secondary battery, for example. When the battery cell 100 which is a lithium ion secondary battery is overcharged, dendritic (dendritic) lithium is generated, and the positive electrode and the negative electrode are short-circuited. In this case, there is a risk that heat is generated due to a short circuit and the battery pack 10 is ruptured. For this reason, “overcharge protection voltage V OP ” is set as the maximum value of the charging voltage. When the maximum voltage cell becomes “overcharge protection voltage V OP ”, the charging of the battery pack 10 is forcibly terminated. Specifically, the control unit 400 transmits a signal for stopping charging to the switch 500 via the measurement unit 300. Thereby, the maximum voltage cell is controlled so as not to be overcharged. In the present embodiment, the “overcharge protection voltage V OP ” is stored in the storage unit of the control unit 400.
 次いで、制御部400は、電圧最大セルの電圧Vが第1基準電圧V未満であって、第1条件を満たさないとき(S130No)、全ての電池セル100に対して充電を継続させる。 Then, the control unit 400, the voltage V a of the voltage maximum cell a first lower than the reference voltage V 1, when not satisfy the first condition (S130No), to continue the charging with respect to all the battery cells 100.
 一方、電圧最大セルの電圧Vが第1基準電圧V以上となって、第1条件を満たすとき(S130Yes)、制御部400は、電圧最大セルと電圧最小セルとの電圧差が所定値未満であるとする第2条件を判定する(S140)。ここでいう「所定電圧」は、電圧最大セルと電圧最小セルとの電圧差の許容範囲、測定部300の測定精度、または充電許容時間などに基づいて決定される。具体的には、「所定電圧」は、たとえば、測定部300の測定精度の限界値である。 On the other hand, the voltage V a of the voltage maximum cell becomes the first reference voltages V 1 or more, when the first condition is satisfied (S130Yes), the control unit 400, the voltage difference between the voltage maximum cell voltage minimum cell exceeds a predetermined value The second condition is determined to be less than (S140). The “predetermined voltage” here is determined based on the allowable range of the voltage difference between the maximum voltage cell and the minimum voltage cell, the measurement accuracy of the measurement unit 300, the allowable charge time, or the like. Specifically, the “predetermined voltage” is a limit value of the measurement accuracy of the measurement unit 300, for example.
 ここで、図5(a)および図5(b)において、第1条件を満たすとき(S130Yes)は、時刻tのときである。図5(a)のように、電圧最大セルの電圧Vは、第1基準電圧Vとなっている。したがって、電圧最大セルの電圧Vは、第1条件を満たしている状態である。また、電圧最大セルと電圧最小セルとの電圧差が大きいため、第2条件は満たしていない状態である。 Here, in FIGS. 5 (a) and 5 (b), when the first condition is satisfied (S130Yes) is at time t 1. As shown in FIG. 5 (a), the voltage V a of the voltage maximum cell has a first reference voltage V 1. Therefore, the voltage V a of the voltage maximum cell, a state that meets the first condition. Further, since the voltage difference between the maximum voltage cell and the minimum voltage cell is large, the second condition is not satisfied.
 このとき、図5(b)のように、電圧最大セルの残容量Cは、満充電容量CRaに至っていない。また、電圧最小セルの残容量Cも、満充電容量CRbに至っていない。すなわち、全ての電池セル100は、未だ十分に充電されていない状態である。 At this time, as shown in FIG. 5B, the remaining capacity C a of the maximum voltage cell does not reach the full charge capacity C Ra . Further, the remaining capacity C b of the voltage minimum cell also not reached the full-charge capacity C Rb. That is, all the battery cells 100 are not yet fully charged.
 このように、第1条件を満たし、かつ第2条件を満たさないとき(S140No)、以下のようにして、制御部400は、充電を一時停止し(S150)、電圧最大セルの電圧を降下させる(第1制御ステップ、S160)。ここで、制御部400が電圧最大セルの電圧を降下させる制御を「第1制御」とする。 As described above, when the first condition is satisfied and the second condition is not satisfied (No in S140), the control unit 400 temporarily stops charging (S150) and drops the voltage of the maximum voltage cell as follows. (First control step, S160). Here, control in which the control unit 400 drops the voltage of the maximum voltage cell is referred to as “first control”.
 まず、制御部400は、測定部300を介して、スイッチ500に対して充電を停止させる信号を送信する。これにより、全ての電池セル100への充電を一時停止させる(S150)。ここで、測定部300は、制御部400を介して、各々の電池セル100に接続されている。このような電池パック10において、充電を継続したまま、制御部400を動作させた場合、その間、測定部300が電池セル100の電圧を正確に測定することができない。このため、各々の電池セル100の電圧が過充電に近づいた場合、電池セル100が過充電状態となったことを検出するタイミングが遅くなり、危険である。したがって、第1制御ステップ(S160)の前において、電池セル100への充電を一時停止させることにより、制御部400は、安全に電池セル100の充電を制御することができる。 First, the control unit 400 transmits a signal for stopping charging to the switch 500 via the measurement unit 300. Thereby, charging to all the battery cells 100 is temporarily stopped (S150). Here, the measurement unit 300 is connected to each battery cell 100 via the control unit 400. In such a battery pack 10, when the control unit 400 is operated while charging is continued, the measurement unit 300 cannot accurately measure the voltage of the battery cell 100 during that time. For this reason, when the voltage of each battery cell 100 approaches overcharge, the timing which detects that the battery cell 100 will be in an overcharge state becomes late, and it is dangerous. Therefore, the control unit 400 can safely control the charging of the battery cell 100 by temporarily stopping the charging of the battery cell 100 before the first control step (S160).
 次いで、制御部400は、電圧最大セルの電圧を降下させる第1制御を行う(S160)。 Next, the control unit 400 performs the first control to drop the voltage of the maximum voltage cell (S160).
 ここで、図5(a)および図5(b)において、第1制御ステップ(S160)は、時刻tから時刻tまでである。図5(a)のように、時刻tから時刻tにおいて、電圧最大セルは、上述した制御部400の内部抵抗202によって電力を消費する。これにより、電圧最大セルの電圧Vは降下する。一方、制御部400が第1制御を行っている間、制御部400は、電圧最大セル以外の他の電池セル100と並列に配置された第1セルスイッチ204を開放したままにする。すなわち、この間、電圧最小セルなどの他の電池セル100は、負荷がかけられず、かつ上記のように充電も行われない。このため、他の電池セル100の電圧降下は、自己の(電池セル100の)内部抵抗による電圧降下または自己放電等の微小な電圧降下のみである。したがって、上記した電圧最大セルの電圧降下は、他の電池セル100の電圧降下よりも大きい。これにより、電圧最大セルの電圧Vと、電圧最小セルの電圧Vを、徐々に近づけることができる。なお、図5(b)のように、時刻tから時刻tにおいて、たとえば、電圧最小セルの残容量Cは一定のままである。また、全ての電池セル100は充電されていないため、電流は0となっている。 Here, in FIGS. 5 (a) and 5 (b), the first control step (S160) is from time t 1 to time t 2. As shown in FIG. 5A, from time t 1 to time t 2 , the voltage maximum cell consumes power by the internal resistance 202 of the control unit 400 described above. Thus, the voltage V a of the voltage maximum cell drops. On the other hand, while the control unit 400 performs the first control, the control unit 400 keeps the first cell switch 204 arranged in parallel with the other battery cells 100 other than the maximum voltage cell open. That is, during this time, other battery cells 100 such as the minimum voltage cell are not loaded and are not charged as described above. For this reason, the voltage drop of the other battery cell 100 is only a voltage drop due to its own internal resistance (of the battery cell 100) or a minute voltage drop such as self-discharge. Therefore, the voltage drop of the above-described maximum voltage cell is larger than the voltage drop of the other battery cells 100. As a result, the voltage V a of the maximum voltage cell and the voltage V b of the minimum voltage cell can be gradually brought closer to each other. Note that as in FIG. 5 (b), at time t 2 from time t 1, for example, the residual capacity C b of the voltage minimum cell remains constant. Moreover, since all the battery cells 100 are not charged, the current is zero.
 図3のように、第1制御ステップ(S160)において、制御部400は、たとえば、電圧最大セルの電圧Vが第2基準電圧Vとなったかを判定する(S170)。または、図4のように、第1制御ステップ(S160)において、制御部400は、第1制御を行っている時間が第1基準時間以上となったかについて、判定する(S172)。または、制御部400は、これら二つの条件を同時に判定してもよい。上記いずれかの条件を判定することにより、制御部400は、後述のように第1制御を停止することができる。なお、第1の実施形態では、図3の場合とする。なお、制御部400の内部抵抗202が大きく、電圧最大セルの電圧Vの降下が遅い場合は、図4の条件を適用することが好ましい。 As shown in FIG. 3, in the first control step (S160), the control unit 400, for example, determines whether the voltage V a of the voltage maximum cell becomes a second reference voltage V 2 (S170). Alternatively, as shown in FIG. 4, in the first control step (S160), the control unit 400 determines whether the time during which the first control is performed is equal to or longer than the first reference time (S172). Or the control part 400 may determine these two conditions simultaneously. By determining any of the above conditions, the control unit 400 can stop the first control as described later. In the first embodiment, the case of FIG. 3 is assumed. Incidentally, a large internal resistance 202 of the control unit 400, when a voltage drop V a voltage maximum cell is slow, it is preferable to apply the conditions of FIG.
 電圧最大セルの電圧Vが第2基準電圧Vとなったとき(S170Yes)、制御部400は、測定部300を介して、スイッチ500に充電を再開させるための信号を送信する。同時に、制御部400は、第1制御を停止させ、電池セル100の充電を再開させる(S180)。 When the voltage V a of the voltage maximum cell becomes a second reference voltage V 2 (S170Yes), the control unit 400, via the measurement unit 300, it transmits a signal for resuming the charging to the switch 500. At the same time, the control unit 400 stops the first control and restarts the charging of the battery cell 100 (S180).
 ここで、図5(a)および図5(b)において、電圧最大セルの電圧Vが第2基準電圧Vとなったときは、時刻tのときである。また、充電を再開した状態は、時刻tから時刻tのときである。図5(a)のように、電圧最大セルの電圧Vおよび電圧最小セルの電圧Vは、ともに再度上昇する。また、図5(b)のように、電圧最小セルの残容量Cは、再度上昇する。加えて、電圧最小セルの電流は、充電電流IRSとなる。 Here, in FIGS. 5 (a) and 5 (b), the voltage V a of the voltage maximum cell when a second reference voltage V 2, is at time t 2. In addition, the state has resumed charging is when from time t 2 of time t 3. As in FIG. 5 (a), the voltage V b of the voltage V a and the voltage minimum cell voltage maximum cell, together rise again. Further, as shown in FIG. 5 (b), the residual capacity C b of the voltage minimum cell rises again. In addition, the current of the minimum voltage cell is the charging current IRS .
 このように、電圧最大セルの電圧Vが第2基準電圧Vとなったか等の条件を設定することにより、制御部400は、第1制御ステップ(S160)を終了させ、充電を再開させることができる。 Thus, when a voltage V a of the voltage maximum cell setting the conditions such as whether a second reference voltage V 2, the control unit 400 terminates the first control step (S160), and resumes charging be able to.
 なお、この第1制御ステップ(S160)を終了させる条件は、上記に限られるものではなく、電圧最大セルと電圧最小セルの電圧差が所定電圧未満となるという第2条件と同一の条件を適用することもできる。この第1制御ステップ(S160)を終了させる条件は、制御部400への負荷などを考慮して、適宜調整することができる。 The condition for terminating the first control step (S160) is not limited to the above, and the same condition as the second condition that the voltage difference between the maximum voltage cell and the minimum voltage cell is less than a predetermined voltage is applied. You can also The condition for ending the first control step (S160) can be appropriately adjusted in consideration of the load on the control unit 400 and the like.
 制御部400が第1制御を停止した後(S180の後)は、S120~S170が繰り返し行われる。図5(a)のように、時刻tから時刻tにおいて、電圧最大セルの電圧Vは、充電による上昇、第1制御ステップ(S160)における降下を繰り返す。一方、電圧最小セルの電圧Vは、充電による上昇、第1制御ステップ(S160)における電圧保持を繰り返す。これにより、電圧最大セルの電圧Vおよび電圧最小セルの電圧Vを、徐々に近づけることができる。また、図5(b)のように、電圧最小セルの残容量Cを、徐々に満充電容量CRbに近づけることができる。 After the control unit 400 stops the first control (after S180), S120 to S170 are repeatedly performed. As shown in FIG. 5 (a), in a time t 8 from the time t 2, the voltage V a of the voltage maximum cell repeats rise due to the charging, the drop in the first control step (S160). On the other hand, the voltage V b of the voltage minimum cell repeats rising voltage retention in the first control step (S160) by the charging. Thus, the voltage V b of the voltage V a and the voltage minimum cell voltage maximum cell can be gradually brought close. Further, as in FIG. 5 (b), it is possible to bring the residual capacity C b of the voltage minimum cell gradually fully charged capacity C Rb.
 なお、S120~S170までのステップを繰り返す間に、電圧最大セルの電圧Vが降下することにより、電圧最大セルが他の電池セル100と入れ替わっていてもよい。その場合は、制御部400は、新しい電圧最大セルの電圧をVとして、第1条件等を判定していく。 Incidentally, while repeating the steps from S120 ~ S170, when a voltage V a of the voltage maximum cell drops, the voltage maximum cell may be replaced with other battery cells 100. In that case, the control unit 400, a voltage of a new voltage maximum cell as V a, will determine the first condition and the like.
 このように第2条件を設定することにより、電圧最大セルと電圧最小セルとの電圧差が所定電圧未満となるまで、充電および第1制御ステップ(S160)が繰り返される。したがって、ここでいう「電圧最大セルと電圧最小セルとの電圧差が所定電圧未満となる」とする第2条件は、充電が繰り返される際の終了条件である。 By setting the second condition in this way, the charging and the first control step (S160) are repeated until the voltage difference between the maximum voltage cell and the minimum voltage cell becomes less than a predetermined voltage. Therefore, the second condition that “the voltage difference between the maximum voltage cell and the minimum voltage cell is less than the predetermined voltage” here is an end condition when charging is repeated.
 次いで、図5(a)、図5(b)における時刻tの状態について説明する。図5(a)、図5(b)における時刻tの状態は、制御部400は第1制御を停止した状態(S180)である。上述のように、制御部400は、第1制御を停止し、電池セル100の充電を再開させる。 Then, FIG. 5 (a), the description will be given state at time t 8 in FIG. 5 (b). FIG. 5 (a), the state at the time t 8 in FIG. 5 (b), the control unit 400 is a state (S180) that stops the first control. As described above, the control unit 400 stops the first control and restarts the charging of the battery cell 100.
 図5(b)のように、時刻tの状態から、電池パック10内の電池セル100の全てが満充電に近づいている。このため、それぞれの電池セル100に対して、充電がされにくくなり、電流が降下し始める。すなわち、時刻tから、充電が定電圧充電となる。図5(a)のように、時刻tから、電圧最大セルの電圧Vおよび電圧最小セルの電圧Vは、徐々に緩やかに上昇していく。 As shown in FIG. 5 (b), the a state of the time t 9, all of the battery cells 100 in the battery pack 10 is close to full charge. For this reason, it becomes difficult to be charged with respect to each battery cell 100, and an electric current begins to fall. That is, from the time t 9, the charge is constant-voltage charging. As in FIG. 5 (a), from the time t 9, the voltage V b of the voltage V a and the voltage minimum cell voltage maximum cell gradually rises slowly.
 図5(a)において、時刻t10のとき、たとえば、電圧最大セルの電圧Vは、第1基準電圧Vに等しくなっている。また、電圧最大セルと電圧最小セルとの電圧差は、ほぼ0になっている。したがって、第1条件を満たし、かつ第2条件を満たすため(S140Yes)、制御部400は、測定部300を介して、スイッチ500に充電を停止させるための信号を送信し、充電を終了させる(S190)。 In FIG. 5 (a), at time t 10, for example, the voltage V a of the voltage maximum cell is equal to the first reference voltage V 1. The voltage difference between the maximum voltage cell and the minimum voltage cell is almost zero. Therefore, in order to satisfy the first condition and satisfy the second condition (S140 Yes), the control unit 400 transmits a signal for stopping the charging to the switch 500 via the measurement unit 300 and terminates the charging ( S190).
 このとき、制御部400はスイッチ500に信号を送信するのではなく、制御部400は、外部通信端子760を介して、外部の充電機器に対して、充電を停止させるための信号を送信してもよい。 At this time, the control unit 400 does not transmit a signal to the switch 500, but the control unit 400 transmits a signal for stopping charging to an external charging device via the external communication terminal 760. Also good.
 また、制御部400は、第2条件を満たしてすぐに、充電を終了させるのではなく、所定時間の充電(定電圧充電)が経過してから終了させてもよい。 Further, the control unit 400 may not terminate charging immediately after satisfying the second condition, but may terminate the charging after a predetermined time of charging (constant voltage charging) has elapsed.
 なお、電圧最小セルの電圧Vが第1基準電圧V以上となったとき、制御部400は、充電を定電圧から定電流に切り替える信号を外部充電機器に送信してもよい。すなわち、電圧最小セルの電圧Vが第1基準電圧V以上となったとき、強制的に定電流充電に切り替えても良い。これにより、全ての電池セル100を確実に過充電とすることなく、満充電とすることができる。 Incidentally, when the voltage V b of the voltage minimum cell becomes the first reference voltages V 1 or more, the control unit 400 may transmit a signal for switching the charge from the constant voltage to a constant current to an external charging device. That is, when the voltage V b of the voltage minimum cell becomes the first reference voltages V 1 or more, may be forcibly switched to a constant-current charging. Thereby, all the battery cells 100 can be fully charged without reliably overcharging.
 以上のようにして、第1の実施形態に係る電池パック10の充電を制御する。 As described above, charging of the battery pack 10 according to the first embodiment is controlled.
 次に、図6を比較例として用い、第1の実施形態の効果について説明する。図6は、第1の実施形態の効果について説明するための比較例の図である。 Next, the effect of the first embodiment will be described using FIG. 6 as a comparative example. FIG. 6 is a diagram of a comparative example for explaining the effect of the first embodiment.
 図6は、第1の実施形態とは異なり、制御部400は電圧最大セルの電圧を降下させる第1制御を行わずに充電を行った比較例の場合を示している。図6(a)は、比較例における時間と電池セル100の電圧との関係を示している。また、図6(b)は、比較例における時間と電池セル100の残容量との関係、時間と電池セル100の電流との関係を示している。なお、図6の時刻tは、図5の時刻tと独立であるとする。以降、時刻tを含む各々の図は、図番が異なる場合、それぞれ独立しているものとする。 FIG. 6 shows a case of a comparative example in which the control unit 400 is charged without performing the first control for lowering the voltage of the maximum voltage cell, unlike the first embodiment. FIG. 6A shows the relationship between the time and the voltage of the battery cell 100 in the comparative example. FIG. 6B shows the relationship between the time and the remaining capacity of the battery cell 100 and the relationship between the time and the current of the battery cell 100 in the comparative example. Note that time t in FIG. 6 is independent of time t in FIG. Hereinafter, each figure including the time t is assumed to be independent when the figure numbers are different.
 図6(a)のように、比較例では、電圧最大セルの電圧Vは、充電開始から単調に増加する。また、電圧最大セルの電圧Vは、電圧最小セルの電圧Vよりも上昇が速い。 As shown in FIG. 6 (a), in the comparative example, the voltage V a of the voltage maximum cell monotonically increases from start of charging. Further, the voltage V a of the voltage maximum cell rises above a fast voltage V b of the voltage minimum cell.
 比較例では、制御部400が第1制御を行うための第1条件が無い。したがって、電圧最大セルの電圧Vは、N個の電池セル100の電圧の合計がNVと等しくなるまで、第1基準電圧V以上となっても上昇し続ける。 In the comparative example, there is no first condition for the control unit 400 to perform the first control. Therefore, the voltage V a of the voltage maximum cell, until the total voltage of the N cells 100 is equal to NV 1, even when the first reference voltages V 1 or continues to rise.
 電圧最大セルの電圧Vは、さらに過充電保護電圧VOPまで上昇する。このように、電圧最大セルの電圧Vが過充電保護電圧VOPまで上昇した場合、制御部400は、測定部300を介して、スイッチ500に停止させるための信号を送信する。これにより、制御部400は、充電を強制終了させる。このとき、電圧最小セルの電圧Vは、第1基準電圧V(定格充電電圧)まで至っていない。したがって、電圧最大セルと電圧最小セルとの電圧差は大きいまま、充電が終了してしまう。 Voltage V a voltage maximum cell rises to more overcharge protection voltage V OP. Thus, if the voltage V a of the voltage maximum cell rises to the overcharge protection voltage V OP, the control unit 400, via the measurement unit 300, transmits a signal for stopping the switch 500. As a result, the control unit 400 forcibly terminates charging. At this time, the voltage V b of the minimum voltage cell does not reach the first reference voltage V 1 (rated charge voltage). Therefore, charging ends with the voltage difference between the maximum voltage cell and the minimum voltage cell being large.
 また、図6(b)のように、電圧最大セルの残容量Cは、満充電容量CRaに至っていない。電圧最小セルの残容量Cも、満充電容量CRbに至っていない。すなわち、全ての電池セル100は、まだ充分に充電されていない状態にもかかわらず、充電が終了してしまう。 Further, as shown in FIG. 6B, the remaining capacity C a of the maximum voltage cell does not reach the full charge capacity C Ra . Residual capacity C b of the voltage minimum cell also not reached the full-charge capacity C Rb. That is, all the battery cells 100 end charging even though they are not yet fully charged.
 この状態から、電圧最小セルを充電するために再度充電をする場合、電圧最大セルの電圧Vが過充電保護電圧VOPを超えてしまう。この場合、電圧最大セルが危険な状態となってしまう可能性がある。このため、これ以上の充電を行うことができない。 From this state, when the charge again to charge the voltage minimum cell voltage V a voltage maximum cell exceeds the overcharge protection voltage V OP. In this case, the maximum voltage cell may be in a dangerous state. For this reason, no more charging can be performed.
 また、この電池パック10を放電後に再度充電する際には、必ず、電圧最大セルを過充電しなければ、電池パック10全体として充分な充電量を得ることができない可能性がある。 Further, when the battery pack 10 is charged again after being discharged, the battery pack 10 as a whole may not be able to obtain a sufficient charge amount unless the maximum voltage cell is overcharged.
 また、上記のように、電圧最大セルとは、最も劣化した電池セル100のことである。比較例では、電圧最大セルの電圧Vを過充電保護電圧VOPまで充電している。このため、電圧最大セルが過充電に近い状態になるため、電圧最大セルは、さらに劣化が進んでしまう。すなわち、電圧最大セルの満充電容量CRaをさらに減少させてしまうことになる。このような状態で充放電を繰り返した場合、上記よりもさらに速く、充電が終了してしまうようになっていく。結果として、電池パック10全体として、充電可能な満充電容量を徐々に減少させてしまう可能性がある。 Further, as described above, the voltage maximum cell is the battery cell 100 that has been most deteriorated. In the comparative example, charging the voltage V a of the voltage maximum cell until the overcharge protection voltage V OP. For this reason, since the voltage maximum cell becomes a state close to overcharging, the voltage maximum cell further deteriorates. That is, the full charge capacity C Ra of the maximum voltage cell is further reduced. When charging / discharging is repeated in such a state, charging ends faster than the above. As a result, the battery pack 10 as a whole may gradually reduce the full charge capacity that can be charged.
 一方、第1の実施形態によれば、電圧最大セルの電圧Vが第1基準電圧V以上になったとする第1条件を満たすとき、制御部400は、電圧最大セルの電圧Vを降下させる第1制御を行う。これにより、電圧最大セルを過充電にすることを防止することができる。また、電圧最大セルの電圧Vを、他の電池セル100の電圧に近づけることができる。 On the other hand, according to the first embodiment, when the first condition is satisfied that the voltage V a of the voltage maximum cell reached the first reference voltages V 1 or more, the control unit 400, a voltage V a voltage maximum cell The first control for lowering is performed. Thereby, it is possible to prevent the maximum voltage cell from being overcharged. Further, it is possible to make the voltage V a of the voltage maximum cell, the voltage of the other battery cells 100.
 この状態から、電圧最小セルを充電するために再度充電をする場合、電圧最大セルの電圧Vが降下しているため、電池パック10全体をさらに充電することが可能である。また、上記のように、電圧最大セルの電圧Vと電圧最小セルの電圧Vを近づけることができることにより、それぞれの電池セル100を満充電に近づけることができる。 From this state, when the charge again to charge the voltage minimum cell, the voltage V a of the voltage maximum cell are lowered, it is possible to further charge the entire battery pack 10. Further, as described above, the voltage V a of the maximum voltage cell and the voltage V b of the minimum voltage cell can be brought close to each other, whereby each battery cell 100 can be brought close to full charge.
 また、第1の実施形態によれば、電圧最大セルの電圧Vが第1基準電圧V以上になったとき、電圧最大セルの電圧Vを降下させる。これにより、電圧最大セルの電圧Vが過充電保護電圧VOPのように高い状態、すなわち電圧最大セルが過充電の状態で、充電を終了させることがない。したがって、電圧最大セルの劣化を抑制することができる。 Further, according to the first embodiment, when the voltage V a of the voltage maximum cell reached the first reference voltages V 1 or more, lowering the voltage V a of the voltage maximum cell. Thus, the voltage V 1 of the voltage maximum cell is high as the overcharge protection voltage V OP, that is, the voltage up to an overcharged cell, it is not possible to terminate charging. Therefore, deterioration of the maximum voltage cell can be suppressed.
 また、第1の実施形態によれば、図2で示されている回路は、内部抵抗202と第1セルスイッチ204のみの簡易な構造である。これにより、制御部400を電池パック10内の小さい領域に収容することができる。また、制御部400の当該回路は、信頼性が高く、低コストで形成することができる。 Further, according to the first embodiment, the circuit shown in FIG. 2 has a simple structure including only the internal resistor 202 and the first cell switch 204. Thereby, the control part 400 can be accommodated in the small area | region in the battery pack 10. FIG. In addition, the circuit of the control unit 400 is highly reliable and can be formed at low cost.
 以上のように、第1の実施形態によれば、直列に接続された複数の電池セル100を有する電池パック10を、過充電にすることを防止し、満充電に近づけることができる。 As described above, according to the first embodiment, the battery pack 10 having the plurality of battery cells 100 connected in series can be prevented from being overcharged, and can be close to full charge.
 以上、第1の実施形態では、第1条件を判定した後に、再度充電を再開させる場合を説明したが、電圧最大セルと電圧最小セルの電圧差が所定電圧未満となるとする第2条件を満たすまで、制御部400は、第1制御を行い続けても良い。 As described above, in the first embodiment, the case where the charging is restarted after determining the first condition has been described. However, the second condition is satisfied that the voltage difference between the voltage maximum cell and the voltage minimum cell is less than a predetermined voltage. Until then, the control unit 400 may continue to perform the first control.
 また、第1の実施形態では、繰り返し充電がなされる際に、第2条件を用いて、充電を終了させる場合を説明したが、第1条件のみを用い、ユーザーが任意に充電を終了させる充電制御システム、または充電方法であってもよい。 In the first embodiment, the case where the charging is terminated using the second condition when the charging is repeatedly performed has been described. However, the charging that the user arbitrarily terminates the charging using only the first condition. It may be a control system or a charging method.
 (第2の実施形態)
 図7および図8を用い、第2の実施形態に係る電池パック10について説明する。図7は、第2の実施形態に係る電池パック10の構成を示す回路図である。図8は、第2の実施形態に係る電池パック10の電池セル100近傍の等価回路図である。第2の実施形態は、以下の点を除いて、第1の実施形態と同様である。第2の実施形態の電池パック10は、各々の電池セル100の充電量を調整するバランス回路200をさらに備えている。また、制御部400は、バランス回路200の動作を制御する。さらに、制御部400は、第1条件を満たすとき、バランス回路200を作動させることにより、第1制御を行う。以下、詳細を説明する。
(Second Embodiment)
The battery pack 10 according to the second embodiment will be described with reference to FIGS. 7 and 8. FIG. 7 is a circuit diagram showing a configuration of the battery pack 10 according to the second embodiment. FIG. 8 is an equivalent circuit diagram in the vicinity of the battery cell 100 of the battery pack 10 according to the second embodiment. The second embodiment is the same as the first embodiment except for the following points. The battery pack 10 of the second embodiment further includes a balance circuit 200 that adjusts the charge amount of each battery cell 100. In addition, the control unit 400 controls the operation of the balance circuit 200. Further, the control unit 400 performs the first control by operating the balance circuit 200 when the first condition is satisfied. Details will be described below.
 図7のように、第2の実施形態における電池パック10は、第1の実施形態の構成のほかに、バランス回路200を備えている。バランス回路200は、各々の電池セル100の充電量を調整する。 As shown in FIG. 7, the battery pack 10 in the second embodiment includes a balance circuit 200 in addition to the configuration of the first embodiment. The balance circuit 200 adjusts the charge amount of each battery cell 100.
 測定部300は、バランス回路200を介して、電池セル100に接続されている。 The measuring unit 300 is connected to the battery cell 100 via the balance circuit 200.
 また、バランス回路200は、測定部300よりも電池セル100側に設けられている。このバランス回路200は、各々の電池セル100の充電量を調整するため、各々の電池セル100に接続されている。 Further, the balance circuit 200 is provided closer to the battery cell 100 than the measurement unit 300. The balance circuit 200 is connected to each battery cell 100 in order to adjust the charge amount of each battery cell 100.
 測定部300の外部正極端子720および外部負極端子740側には、制御部400が接続している。制御部400は、測定部300が測定した電圧に基づいて、バランス回路200の動作を制御する。制御部400は、測定部300が測定した電圧または電流に基づいて、演算処理を行う演算部(不図示)を有している。 The control unit 400 is connected to the external positive electrode terminal 720 and the external negative electrode terminal 740 side of the measurement unit 300. The control unit 400 controls the operation of the balance circuit 200 based on the voltage measured by the measurement unit 300. The control unit 400 includes a calculation unit (not shown) that performs calculation processing based on the voltage or current measured by the measurement unit 300.
 このように、第2の実施形態の電池パック10は、第1の実施形態の制御部400の機能のうち、各々の電池セル100の充電を制御するバランス回路200を、制御部400とは別系統として備えている。 Thus, the battery pack 10 of the second embodiment is different from the control unit 400 in the balance circuit 200 that controls the charging of each battery cell 100 among the functions of the control unit 400 of the first embodiment. It is provided as a system.
 ここで、図8を用い、電池セル100近傍の等価回路について説明する。図8は、バランス回路200の等価回路を示している。図中の点線は、バランス回路200の内部を示している。 Here, an equivalent circuit in the vicinity of the battery cell 100 will be described with reference to FIG. FIG. 8 shows an equivalent circuit of the balance circuit 200. A dotted line in the figure indicates the inside of the balance circuit 200.
 図8のように、バランス回路200は、配線(符号不図示)を介して、各々の電池セル100に接続している。バランス回路200には、内部抵抗202および第1セルスイッチ204が、各々の電池セル100と並列に配置されている。制御部400は、電圧最大セルの電圧(V)が第1基準電圧(V)以上になったとする第1条件を満たすとき、当該バランス回路200を作動させることにより、最大電池セルと並列に配置された第1セルスイッチ204をONする。これにより、制御部400は、バランス回路200によって、第1制御を行うことができる。 As shown in FIG. 8, the balance circuit 200 is connected to each battery cell 100 via wiring (not shown). In the balance circuit 200, an internal resistor 202 and a first cell switch 204 are arranged in parallel with each battery cell 100. When the first condition that the voltage (V a ) of the maximum voltage cell becomes equal to or higher than the first reference voltage (V 1 ) is satisfied, the control unit 400 operates the balance circuit 200 in parallel with the maximum battery cell. 1st cell switch 204 arrange | positioned is turned ON. Thereby, the control part 400 can perform 1st control by the balance circuit 200. FIG.
 次に、図9を用いて、第2の実施形態の電池パック10の充電方法について説明する。図9は、第1の実施形態に係る充電方法について説明するためのフローチャートである。第2の実施形態の充電方法は、バランス回路200を作動させることにより、第1制御を行う点を除いて、第1の実施形態と同様である。以下、詳細を説明する。 Next, a method for charging the battery pack 10 according to the second embodiment will be described with reference to FIG. FIG. 9 is a flowchart for explaining the charging method according to the first embodiment. The charging method of the second embodiment is the same as that of the first embodiment except that the first control is performed by operating the balance circuit 200. Details will be described below.
 図9のように、第2の実施形態の充電方法は、S150までは第1の実施形態と同様である。 As shown in FIG. 9, the charging method of the second embodiment is the same as that of the first embodiment up to S150.
 ここで、第1条件を満たし、かつ第2条件を満たさないとき(S140No)、以下のようにして、制御部400は、充電を一時停止し(S150)、バランス回路200を作動させる(第1制御ステップ、S160)。 Here, when the first condition is satisfied and the second condition is not satisfied (No in S140), the control unit 400 temporarily stops charging (S150) and operates the balance circuit 200 (first) as follows. Control step, S160).
 図9のように、第1制御ステップ(S160)において、たとえば、電圧最大セルの電圧Vが第2基準電圧Vとなったかを判定する(S170)。または、図4のように、第1制御ステップ(S160)において、バランス回路200を作動させてから、バランス回路200の作動時間が第1基準時間以上となったかについて、判定してもよい。または、これら二つの条件を同時に判定してもよい。なお、バランス回路200の内部抵抗202が大きく、電圧最大セルの電圧Vの降下が遅い場合は、図9の条件を適用することが好ましい。 As shown in FIG. 9, it is determined in the first control step (S160), for example, whether the voltage V a of the voltage maximum cell becomes a second reference voltage V 2 (S170). Alternatively, as shown in FIG. 4, in the first control step (S160), it may be determined whether or not the operation time of the balance circuit 200 has become equal to or longer than the first reference time after the operation of the balance circuit 200. Alternatively, these two conditions may be determined at the same time. Incidentally, a large internal resistance 202 of the balance circuit 200, when a voltage drop V a voltage maximum cell is slow, it is preferable to apply the conditions of FIG.
 電圧最大セルの電圧Vが第2基準電圧Vとなったとき(S170Yes)、制御部400は、測定部300を介して、スイッチ500に充電を再開させるための信号を送信する。同時に、制御部400は、バランス回路200を停止させ(第1制御を停止し)、電池セル100の充電を再開させる(S180)。 When the voltage V a of the voltage maximum cell becomes a second reference voltage V 2 (S170Yes), the control unit 400, via the measurement unit 300, it transmits a signal for resuming the charging to the switch 500. At the same time, the control unit 400 stops the balance circuit 200 (stops the first control) and restarts the charging of the battery cell 100 (S180).
 なお、この第1制御ステップ(S160)を終了させる条件は、上記に限られるものではなく、電圧最大セルと電圧最小セルの電圧差が所定電圧未満となるという第2条件と同一の条件を適用することもできる。この第1制御ステップ(S160)を終了させる条件は、バランス回路200への負荷などを考慮して、適宜調整することができる。 The condition for terminating the first control step (S160) is not limited to the above, and the same condition as the second condition that the voltage difference between the maximum voltage cell and the minimum voltage cell is less than a predetermined voltage is applied. You can also The condition for ending the first control step (S160) can be appropriately adjusted in consideration of the load on the balance circuit 200 and the like.
 制御部400がバランス回路200を停止した後(S180の後)は、S120~S170が繰り返し行われる。以降は、第1の実施形態と同様である。 After the control unit 400 stops the balance circuit 200 (after S180), S120 to S170 are repeatedly performed. The subsequent steps are the same as in the first embodiment.
 以上のようにして、第2の実施形態に係る電池パック10の充電を制御する。 As described above, charging of the battery pack 10 according to the second embodiment is controlled.
 第2の実施形態によれば、制御部400とは別の系統として、バランス回路200を備えている。これにより、制御部400は、第1条件を満たすとき、バランス回路200を作動させることにより、第1制御を行うことができる。また、第1の実施形態でも述べたように、当該バランス回路200は、信頼性が高く、また低コストで形成することができる。 According to the second embodiment, the balance circuit 200 is provided as a system different from the control unit 400. Thereby, the control part 400 can perform 1st control by operating the balance circuit 200, when satisfy | filling 1st conditions. In addition, as described in the first embodiment, the balance circuit 200 can be formed with high reliability and low cost.
 (第3の実施形態)
 図10は、第3の実施形態に係る充電方法を示すフローチャートである。第3の実施形態は、充電を終了させる条件が複数ある点を除いて、第1の実施形態または第2の実施形態と同様である。以下、詳細を説明する。
(Third embodiment)
FIG. 10 is a flowchart illustrating a charging method according to the third embodiment. The third embodiment is the same as the first embodiment or the second embodiment except that there are a plurality of conditions for terminating charging. Details will be described below.
 ここで、第3の実施形態は、第2の実施形態のようにバランス回路200を備えている場合とする。 Here, it is assumed that the third embodiment includes the balance circuit 200 as in the second embodiment.
 まず、図10のように、複数の電池セル100を有する電池パック10の充電を開始する。これと同時に、測定部300により、直列に接続された複数の電池セル100の電圧および電流を測定する(S110)。 First, as shown in FIG. 10, charging of the battery pack 10 having a plurality of battery cells 100 is started. At the same time, the measurement unit 300 measures the voltage and current of the plurality of battery cells 100 connected in series (S110).
 次いで、制御部400は、測定部300が測定した電圧に基づいて、電圧最大セルおよび電圧最小セルを特定する(S120)。 Next, the control unit 400 identifies the maximum voltage cell and the minimum voltage cell based on the voltage measured by the measurement unit 300 (S120).
 次いで、制御部400は、各々の電池セル100の電流が基準電流以下であるとする第5条件を判定する(S210)。ここで、定電流による充電を行う際、充電が満充電に近づくと電流は降下し始める。また、ここでいう「基準電流」とは、充電電流の変化を検出するための電流の基準値である。このように「基準電流」を設けることにより、各々の電池セル100の電流によって、満充電に近づいていることを判定することができる。具体的には、「基準電流」は、たとえば、充電の終止電流Iである。ここでいう「終止電流I」とは、電池セル100が満充電に近づいたときの、一定の値に収束した電流のことである。したがって、電圧だけでなく電流も判定することにより、電池セル100の過充電を保護するように制御することができる。 Next, the control unit 400 determines a fifth condition that the current of each battery cell 100 is equal to or less than the reference current (S210). Here, when charging is performed with a constant current, the current starts to drop when the charging approaches a full charge. The “reference current” here is a reference value of current for detecting a change in charging current. By providing the “reference current” in this way, it can be determined that the battery cell 100 is approaching full charge based on the current of each battery cell 100. Specifically, the “reference current” is, for example, a charging end current I 0 . The “end current I 0 ” here is a current that has converged to a certain value when the battery cell 100 approaches full charge. Therefore, it is possible to control so as to protect the overcharge of the battery cell 100 by determining not only the voltage but also the current.
 制御部400は、第5条件を満たさないとき(S210No)、充電を継続させる。一方、制御部400は、第5条件を満たすとき(S210Yes)、充電を終了させる。 The control unit 400 continues the charging when the fifth condition is not satisfied (S210 No). On the other hand, when the fifth condition is satisfied (S210 Yes), the control unit 400 ends the charging.
 なお、第5条件による判定は、バランス回路200が作動していないときであれば、充電におけるいずれのタイミングで行ってもよい。 In addition, as long as the balance circuit 200 is not operating, the determination based on the fifth condition may be performed at any timing during charging.
 次いで、制御部400は、電圧最大セルの電圧が第1基準電圧V以上となったとする第1条件を判定する(S130)。 Then, the control unit 400 determines a first condition to the voltage of the voltage maximum cell becomes the first reference voltages V 1 or (S130).
 制御部400は、電圧最大セルの電圧が第1基準電圧V未満であって、第1条件を満たさないとき(S130No)、充電を継続させる。一方、制御部400は、電圧最大セルの電圧Vが第1基準電圧V以上となって、第1条件を満たすとき(S130Yes)、さらに以下のような判定を行う。 Controller 400, a voltage of the voltage maximum cell lower than the first reference voltage V 1, when not satisfy the first condition (S130No), to continue the charging. On the other hand, the control unit 400, the voltage V a of the voltage maximum cell becomes the first reference voltages V 1 or more, when the first condition is satisfied (S130Yes), further determines as follows.
 制御部400は、第1条件を満たし、かつ電圧最大セルと電圧最小セルとの電圧差が所定値未満であるとする第2条件を判定する(S140)。 The control unit 400 determines a second condition that satisfies the first condition and that the voltage difference between the maximum voltage cell and the minimum voltage cell is less than a predetermined value (S140).
 制御部400は、第1条件を満たし、かつ第2条件を満たすとき(S140Yes)、充電を終了させる。一方、制御部400は、第1条件を満たし、かつ第2条件を満たさないとき(S140No)、さらに以下のような判定を行う。 When the first condition is satisfied and the second condition is satisfied (S140 Yes), the control unit 400 ends the charging. On the other hand, when the first condition is satisfied and the second condition is not satisfied (No in S140), the control unit 400 further performs the following determination.
 次いで、制御部400は、第1条件を満たし、かつ当該充電中におけるバランス回路200の作動回数の積算値が所定値以上であるとする第3条件を判定する(S220)。これにより、終了条件が厳しいことを原因として、バランス回路200が限りなく作動し続けることを防止することができる。なお、バランス回路200が無く、制御部400のみである場合には、当該第3条件は、第1制御を行った回数の積算値が所定値以上であるとする。 Next, the control unit 400 determines a third condition that satisfies the first condition and that the integrated value of the number of operations of the balance circuit 200 during charging is equal to or greater than a predetermined value (S220). As a result, the balance circuit 200 can be prevented from continuing to operate indefinitely due to severe termination conditions. When there is no balance circuit 200 and only the control unit 400, the third condition is that the integrated value of the number of times of performing the first control is equal to or greater than a predetermined value.
 制御部400は、第1条件を満たし、かつ第3条件を満たすとき(S220Yes)、充電を終了させる。一方、制御部400は、第1条件を満たし、かつ第3条件を満たさないとき(S220No)、さらに以下のような判定を行う。 The control unit 400 ends the charging when the first condition is satisfied and the third condition is satisfied (S220 Yes). On the other hand, when the first condition is satisfied and the third condition is not satisfied (No in S220), the control unit 400 further performs the following determination.
 制御部400は、充電を行った時間を積算した充電時間が、第1基準時間より長い第2基準時間を経過したとする第4条件を判定する(S230)。第4条件の判定結果に基づき、制御部400がバランス回路200を制御することにより、充電時間が過剰に長くなることを防止することができる。 The control unit 400 determines a fourth condition that the charging time obtained by integrating the charging time has passed a second reference time longer than the first reference time (S230). Based on the determination result of the fourth condition, the control unit 400 controls the balance circuit 200, thereby preventing the charging time from becoming excessively long.
 制御部400は、第4条件を満たすとき(S230Yes)、充電を終了させる。一方、第1条件を満たし、かつ第3条件を満たさないとき(S230No)、制御部400は、測定部300を介して、スイッチ500に対して、充電を一時停止させるための信号を送信し、充電を一時停止させる(S150)。 When the fourth condition is satisfied (S230 Yes), the control unit 400 ends the charging. On the other hand, when the first condition is satisfied and the third condition is not satisfied (No in S230), the control unit 400 transmits a signal for temporarily stopping charging to the switch 500 via the measurement unit 300, Charging is suspended (S150).
 次いで、制御部400は、バランス回路200を作動させる(第1制御ステップ、S160)。 Next, the control unit 400 operates the balance circuit 200 (first control step, S160).
 第1制御ステップ(S160)において、制御部400は、たとえば、電圧最大セルの電圧Vが第2基準電圧Vとなったかについて判定する(S170)。または、第1制御ステップ(S160)において、制御部400は、バランス回路200を作動させてから、バランス回路200の作動時間が第1基準時間以上となったかを判定してもよい。 In a first control step (S160), the control unit 400, for example, determines whether the voltage V a of the voltage maximum cell becomes a second reference voltage V 2 (S170). Alternatively, in the first control step (S160), the control unit 400 may determine whether the operation time of the balance circuit 200 has become equal to or longer than the first reference time after operating the balance circuit 200.
 電圧最大セルの電圧Vが第2基準電圧Vとなったとき、またはバランス回路200の作動時間が第1基準時間以上となったとき(S160Yes)、制御部400は、バランス回路200を停止させ、電池セル100の充電を再開させる(S180)。 When the voltage V a of the voltage maximum cell becomes a second reference voltage V 2 or when the operating time of the balance circuit 200 becomes the first reference time or more (S160Yes), the control unit 400, the stop balancing circuit 200 And charging of the battery cell 100 is resumed (S180).
 以上のステップを繰り返し行うことにより、第1の実施形態と同様にして、全ての電池セル100を満充電に近づけることができる。なお、充電を終了させるタイミングは、第2条件、第3条件、第4条件、または第5条件のいずれかを満たす状態であればよい。 By repeatedly performing the above steps, it is possible to bring all the battery cells 100 close to full charge as in the first embodiment. In addition, the timing which complete | finishes charge should just be in the state which satisfy | fills any one of 2nd condition, 3rd condition, 4th condition, or 5th condition.
 次に、第3の実施形態の効果について説明する。 Next, the effect of the third embodiment will be described.
 第3の実施形態によれば、制御部400には、充電の終了条件が複数設定されている。ここで、ユーザーによっては、電圧最小セルに少しでも多く充電して、電池パック10を早く使用したいと考える場合が想定される。このような場合、全ての電池セル100の充電量を揃えるような厳密な終了条件を設定するよりは、むしろ、ユーザーのニーズにあった終了条件で、充電を早期に終了させることが好ましい。したがって、第3の実施形態における、第3条件から第5条件のように、所望の終了条件を各種設定しておくことにより、過剰に充電時間が長くなることを防ぐことができる。 According to the third embodiment, the controller 400 is set with a plurality of charging termination conditions. Here, depending on the user, it is assumed that the minimum voltage cell is charged as much as possible and the battery pack 10 is desired to be used quickly. In such a case, it is preferable to terminate the charging at an early stage under an end condition that meets the user's needs, rather than setting a strict end condition that matches the charge amounts of all the battery cells 100. Therefore, by setting various desired termination conditions as in the third to fifth conditions in the third embodiment, it is possible to prevent an excessively long charging time.
 以上、第3の実施形態においては、図6のようなフローチャートに従う制御システムまたは充電方法を説明したが、第2条件から第4条件までを判定するステップは、S140以降であれば、どのタイミングで行ってもよい。また、第5条件を判定するステップは、充電におけるいずれのタイミングで行ってもよい。 As described above, in the third embodiment, the control system or the charging method according to the flowchart as shown in FIG. 6 has been described. However, the timing for determining from the second condition to the fourth condition is any timing after S140. You may go. The step of determining the fifth condition may be performed at any timing during charging.
 また、第3の実施形態においては、バランス回路200が設けられている場合を説明したが、第1の実施形態と同様に制御部400のみによって制御しても良い。この場合、第3の実施形態において、「バランス回路200を作動させる」の部分を「第1制御を行う」に置き換えることにより、同一の制御を行うことができる。 In the third embodiment, the case where the balance circuit 200 is provided has been described. However, the control may be performed only by the control unit 400 as in the first embodiment. In this case, in the third embodiment, the same control can be performed by replacing the portion of “activate the balance circuit 200” with “perform first control”.
 (第4の実施形態)
 図11を用い、第4の実施形態に係る電池パック10について説明する。図11は、第4の実施形態に係る電池パック10の電池セル100近傍の等価回路図である。第4の実施形態は、以下の点を除いて、第1の実施形態と同様である。制御部400は、第1条件を満たすとき、電圧最大セルをバイパス対象ユニットとしてバイパスして、当該バイパス対象ユニットの電池セル100に対して充電を継続させる。以下、詳細を説明する。
(Fourth embodiment)
A battery pack 10 according to the fourth embodiment will be described with reference to FIG. FIG. 11 is an equivalent circuit diagram in the vicinity of the battery cell 100 of the battery pack 10 according to the fourth embodiment. The fourth embodiment is the same as the first embodiment except for the following points. When the first condition is satisfied, the control unit 400 bypasses the maximum voltage cell as a bypass target unit, and continues charging the battery cell 100 of the bypass target unit. Details will be described below.
 図11は、制御部400のうち、電池セル100の充電を制御する部分の等価回路を示している。図中の点線は、制御部400の内部を示している。なお、制御信号などを伝達する配線などは、省略している。 FIG. 11 shows an equivalent circuit of a part of the control unit 400 that controls charging of the battery cell 100. The dotted line in the figure indicates the inside of the control unit 400. Note that wirings for transmitting control signals and the like are omitted.
 図11のように、制御部400は、配線(符号不図示)を介して、各々の電池セル100に接続している。各々の電池セル100は、第2セルスイッチ206を介して、互いに接続している。制御部400には、第3セルスイッチ208が、各々の電池セル100および第2セルスイッチ206と並列に配置されている。これらの第2セルスイッチ206および第3セルスイッチ208は、各々が個別にONすることはあるが、同時にONをすることが無いように制御されている。これにより、制御部400は、電池セル100が正負極間で短絡することを防止している。 As shown in FIG. 11, the control unit 400 is connected to each battery cell 100 via wiring (not shown). Each battery cell 100 is connected to each other via a second cell switch 206. In the control unit 400, a third cell switch 208 is arranged in parallel with each battery cell 100 and the second cell switch 206. The second cell switch 206 and the third cell switch 208 may be individually turned on, but are controlled so as not to be turned on at the same time. Thereby, the control unit 400 prevents the battery cell 100 from being short-circuited between the positive and negative electrodes.
 制御部400は、通常の電池パック10を放電させるときなどは、第2セルスイッチ206をONして、第3セルスイッチ208をOFFする。一方、制御部400は、電池セル100をバイパスさせるときは、当該電池セル100に接続している第2セルスイッチ206をOFFして、当該電池セル100と並列に配置されている第3セルスイッチ208をONする。ここでは、「電池セル100に接続している第2セルスイッチ206」とは、当該電池セル100の負極側に接続した第2セルスイッチ206のことである。 The control unit 400 turns on the second cell switch 206 and turns off the third cell switch 208 when discharging the normal battery pack 10 or the like. On the other hand, when the control unit 400 bypasses the battery cell 100, the control unit 400 turns off the second cell switch 206 connected to the battery cell 100, and the third cell switch arranged in parallel with the battery cell 100. Turn 208 on. Here, “the second cell switch 206 connected to the battery cell 100” refers to the second cell switch 206 connected to the negative electrode side of the battery cell 100.
 ここで、制御部400は、電圧最大セルの電圧(V)が第1基準電圧(V)以上になったとする第1条件を満たすとき、電圧最大セルを「バイパス対象ユニット」としてバイパスする。このとき、上述のように、電圧最大セルに接続している第2セルスイッチ206をOFFして、当該最大電池セルと並列に配置されている第3セルスイッチ208をONする。これにより、制御部400は、電圧最大セルをバイパスさせることができる。なお、充電に係る当該制御部400の動作については、詳細を後述する。 Here, when the first condition that the voltage (V a ) of the maximum voltage cell is equal to or higher than the first reference voltage (V 1 ) is satisfied, the control unit 400 bypasses the maximum voltage cell as a “bypass target unit”. . At this time, as described above, the second cell switch 206 connected to the maximum voltage cell is turned OFF, and the third cell switch 208 arranged in parallel with the maximum battery cell is turned ON. Thereby, the control part 400 can bypass a voltage largest cell. Details of the operation of the control unit 400 related to charging will be described later.
 次に、図12および図13を用い、第4の実施形態の電池パック10の充電方法について説明する。図12は、第4の実施形態に係る充電方法を説明するためのフローチャートである。なお、図12では、ステップ番号を再付与している。図13は、第4の実施形態に係る充電方法を説明するための図である。第4の実施形態に係る充電方法は、以下のステップを備えている。まず、測定部300が直列に接続された複数の電池セル100の電圧を測定するとともに、制御部400が複数の電池セル100に充電を開始する(S410)。次いで、制御部400は、測定部300が測定した電圧に基づいて、電圧が最大である電圧最大セルを特定する(S430)。次いで、制御部400は、電圧最大セルの電圧が第1基準電圧V以上となったとする第1条件を判定する(S440)。次いで、第1条件を満たさないとき(S440No)、制御部400は、全ての電池セル100に対して充電を継続させる。一方、第1条件を満たすとき(S440Yes)、制御部400は、電圧最大セルをバイパス対象ユニットとしてバイパスして、当該バイパス対象ユニット以外の電池セル100に対して充電を継続させる(バイパス制御ステップ、S460)。以下、詳細を説明する。 Next, a method for charging the battery pack 10 according to the fourth embodiment will be described with reference to FIGS. 12 and 13. FIG. 12 is a flowchart for explaining a charging method according to the fourth embodiment. In FIG. 12, step numbers are reassigned. FIG. 13 is a diagram for explaining a charging method according to the fourth embodiment. The charging method according to the fourth embodiment includes the following steps. First, the measurement unit 300 measures the voltage of the plurality of battery cells 100 connected in series, and the control unit 400 starts charging the plurality of battery cells 100 (S410). Next, the control unit 400 identifies the voltage maximum cell having the maximum voltage based on the voltage measured by the measurement unit 300 (S430). Then, the control unit 400 determines a first condition to the voltage of the voltage maximum cell becomes the first reference voltages V 1 or (S440). Next, when the first condition is not satisfied (No in S440), the control unit 400 continues charging all the battery cells 100. On the other hand, when the first condition is satisfied (S440 Yes), the control unit 400 bypasses the voltage maximum cell as a bypass target unit and continues charging the battery cells 100 other than the bypass target unit (bypass control step, S460). Details will be described below.
 以上の実施形態において、制御部400は、「電圧最大セル」として、電圧が最大である一つの電池セル100を特定して電圧を制御する方法を説明した。一方、第4の実施形態では、制御部400は、現在の「電圧最大セル」が第1条件を満たすとき、「バイパス対象ユニット」としてまとめてバイパス制御を行う。ここでいう「バイパス対象ユニット」とは、バイパス制御によってバイパスされている一つ以上の電池セル100の集合のことをいう。 In the above embodiment, the control part 400 demonstrated the method of specifying one battery cell 100 with the largest voltage as a "voltage largest cell", and controlling a voltage. On the other hand, in the fourth embodiment, when the current “maximum voltage cell” satisfies the first condition, the control unit 400 collectively performs a bypass control as a “bypass target unit”. As used herein, the “bypass target unit” refers to a set of one or more battery cells 100 that are bypassed by bypass control.
 なお、第4の実施形態では、最も早く電圧が第1基準電圧Vに到達する電池セル100を「第1セル」、次に到達する電池セル100を「第2セル」、全ての電池セル100の中で最も遅く到達する電池セル100を「第3セル」とする。 In the fourth embodiment, the battery cell 100 whose voltage reaches the first reference voltage V 1 the earliest is the “first cell”, the battery cell 100 that reaches the next is the “second cell”, and all the battery cells. The battery cell 100 that reaches the latest among the 100 is defined as a “third cell”.
 ここでは、初期の充電状態として、充電電流をIRSとする。 Here, the charging current is IRS as the initial charging state.
 まず、図12のように、第1の実施形態と同様に、充電を開始し、測定部300は電池セル100の電圧および電流を測定する(S410)。 First, as shown in FIG. 12, as in the first embodiment, charging is started, and the measurement unit 300 measures the voltage and current of the battery cell 100 (S410).
 次いで、制御部400は、測定部300が測定した電圧に基づいて、「電圧最小セル」を特定する(S420)。なお、後述する「バイパス対象セル」以外の電池セル100の中から「電圧最小セル」となる電池セル100を特定する。 Next, the control unit 400 identifies the “minimum voltage cell” based on the voltage measured by the measurement unit 300 (S420). A battery cell 100 that is a “minimum voltage cell” is specified from battery cells 100 other than “bypass target cells” described later.
 次いで、制御部400は、測定部300が測定した電圧に基づいて、「電圧最大セル」を特定する(S430)。この段階では、「第1セル」が最も電圧が大きいとし、「電圧最大セル」であるとする。 Next, the control unit 400 identifies the “maximum voltage cell” based on the voltage measured by the measurement unit 300 (S430). At this stage, it is assumed that the “first cell” has the highest voltage and the “voltage maximum cell”.
 ここで、図13(a)は、第4の実施形態における時間と電池セル100の電圧との関係を示している。図13(a)では、第1セルの電圧をVとして太線で示し、第2セルの電圧をVCとして太点線で示し、第3セルの電圧をVbとして細線で示している。 Here, FIG. 13A shows the relationship between the time and the voltage of the battery cell 100 in the fourth embodiment. Figure 13 (a), the indicated by a thick line a voltage of the first cell as V a, the voltage of the second cell indicated by the thick dotted line as V C, are shown by a thin line a voltage of the third cell as V b.
 また、図13(b)は、第4の実施形態における時間と電池セル100の残容量との関係、および時間と電池セル100の電流との関係を示している。図13(b)では、第1セルの残容量をCとして太線で示し、第2セルの残容量をCcとして太点線で示し、第3セルの残容量をCbとして細線で示している。 FIG. 13B shows the relationship between the time and the remaining capacity of the battery cell 100 and the relationship between the time and the current of the battery cell 100 in the fourth embodiment. In FIG. 13B, the remaining capacity of the first cell is shown as a thick line as C a , the remaining capacity of the second cell is shown as a thick dotted line as C c , and the remaining capacity of the third cell is shown as a thin line as C b. Yes.
 図13(a)のように、時刻tまでにおいて、第1セルの電圧Vの上昇が最も早い。すなわち、電圧最大セルは、第1セルである。第2セルの電圧Vの上昇も、第3セルの電圧Vよりも早い。第1セルの電圧Vが第1基準電圧V未満であり、第1条件を満たさないとき(S440No)、制御部400は、全ての電池セル100に対して充電を継続させる。なお、図13(b)のように、時刻tまでは、全ての電池セル100の残容量は、線形に上昇していく。 As shown in FIG. 13 (a), the at up to time t 1, the increase in the voltage V a of the first cell is the earliest. That is, the maximum voltage cell is the first cell. Increase in the voltage V c of the second cell is also faster than the voltage V b of the third cell. Voltage V a of the first cell is first less than the reference voltage V 1, when not satisfy the first condition (S440No), the control unit 400 continues the charge for all the battery cells 100. Note that as in FIG. 13 (b), until the time t 1, the remaining capacity of all of the battery cells 100, rises linearly.
 時刻tのとき、電圧最大セルである第1セルの電圧Vは、第1基準電圧Vとなり、第1条件を満たす(S440Yes)。 At time t 1, the voltage V a of the first cell is a voltage maximum cell, a first reference voltages V 1, and the first condition is satisfied (S440Yes).
 電圧最大セルが第1条件を満たすとき(S440Yes)、制御部400は、現在の最大電池セルである第1セルを「バイパス対象ユニット」に含める(S460)。時刻tでは、バイパス対象ユニットは、当該第1セルの一つだけである。 When the voltage maximum cell satisfies the first condition (S440 Yes), the control unit 400 includes the first cell that is the current maximum battery cell in the “bypass target unit” (S460). At time t 1, the bypass target unit is only one of the first cell.
 次いで、制御部400は、上記した電圧最大セルをバイパス対象ユニットとしてバイパスして、当該バイパス対象ユニット以外の電池セル100に対して充電を継続させるバイパス制御を行う(バイパス制御ステップ、S460)。 Next, the control unit 400 bypasses the above-described maximum voltage cell as a bypass target unit, and performs bypass control to continue charging the battery cells 100 other than the bypass target unit (bypass control step, S460).
 このとき、制御部400は、上述のように、電圧最大セルである第1セルに接続している第2セルスイッチ206をOFFして、当該第1セルと並列に配置されている第3セルスイッチ208をONする。これにより、制御部400は、電圧最大セルである第1セルをバイパスさせる。 At this time, as described above, the control unit 400 turns off the second cell switch 206 connected to the first cell which is the maximum voltage cell, and the third cell arranged in parallel with the first cell. Switch 208 is turned on. Thereby, the control part 400 bypasses the 1st cell which is a voltage largest cell.
 このとき、外部充電機器は、定電流充電を継続している。バイパス対象ユニットをバイパスさせた時刻t以降であっても、充電電流はIRSで変わらない。したがって、電圧最大セル以外の他の電池セル100は、バイパス対象ユニットをバイパスさせた以前と同じ電圧で充電が継続される。 At this time, the external charging device continues constant current charging. Even bypassing target unit bypassed allowed time t 1 after the charging current does not change in I RS. Therefore, the battery cells 100 other than the maximum voltage cell are continuously charged with the same voltage as before the bypass target unit was bypassed.
 また、制御部400は、バイパス制御により、バイパス対象ユニットとしてバイパスしている電池セル100の数を示す信号を、外部充電機器に送信する。このとき、制御部400は、当該電池セル100は、第1セルの一つであるとして信号を送信する。これにより、電池パック10側の異常を起因として電圧が変動しているのではなく、電池パック10側のバイパス制御によって電圧が変動していることを外部充電機器に伝達することができる。 Moreover, the control part 400 transmits the signal which shows the number of the battery cells 100 bypassed as a bypass object unit to an external charging device by bypass control. At this time, the control unit 400 transmits a signal that the battery cell 100 is one of the first cells. Thereby, the voltage is not fluctuating due to the abnormality on the battery pack 10 side, but the fact that the voltage is fluctuating by the bypass control on the battery pack 10 side can be transmitted to the external charging device.
 さらに、制御部400は、充電で印加される充電電圧をバイパス対象ユニットの電圧の分だけ降下させるための信号を外部充電機器に送信してもよい。これにより、当該信号は、バイパス対象ユニットとしてバイパスしている電池セル100の数を示す信号の代替的な信号とすることができる。時刻tのとき、バイパス対象ユニットは第1セルのみのため、制御部400は、Vだけ降下させるための信号を送信する。 Further, the control unit 400 may transmit a signal for lowering the charging voltage applied by charging by the voltage of the bypass target unit to the external charging device. Thereby, the said signal can be made into the alternative signal of the signal which shows the number of the battery cells 100 bypassed as a bypass object unit. At time t 1, since the bypass unit under only the first cell, the control unit 400 transmits a signal for lowering by V 1.
 図13(a)のように、時刻tから時刻tまでの間、第1セルはバイパスされているため、第1セルの電圧Vは、内部抵抗による損失成分を除いた開放電圧v1aに降下して、一定電圧を維持する。ここで「開放電圧」とは、電池セル100の正極および負極が開放されたときの電圧のことをいう。電池セル100は、内部抵抗を有している。このため、充電の際に電池セル100に印加されている電圧は、当該内部抵抗による損失成分の電圧が重畳されている。したがって、上記のように電池セル100がバイパスされる(開放される)ことによって、電池セル100の電圧は、内部抵抗による損失成分を除いた開放電圧まで降下する。 As shown in FIG. 13A, since the first cell is bypassed from time t 1 to time t 2 , the voltage V a of the first cell is the open circuit voltage v excluding the loss component due to the internal resistance. Drop to 1a to maintain a constant voltage. Here, the “open voltage” refers to a voltage when the positive electrode and the negative electrode of the battery cell 100 are opened. The battery cell 100 has an internal resistance. For this reason, the voltage applied to the battery cell 100 during charging is superimposed with the voltage of the loss component due to the internal resistance. Therefore, when the battery cell 100 is bypassed (opened) as described above, the voltage of the battery cell 100 drops to the open voltage excluding the loss component due to the internal resistance.
 一方、時刻tから時刻tまでの間、バイパス対象ユニット以外の電池セル100の電圧は、定電流充電により、単調増加する。 On the other hand, during the period from time t 1 to time t 2, the voltage of the battery cell 100 other than the bypass target unit by the constant current charging, increases monotonously.
 図13(b)のように、時刻t以降、第1セルはバイパスされているため、バイパス対象ユニットである第1セルの残容量Cは、一定の値を維持する。一方、時刻tから時刻tまでの間、バイパス対象ユニット以外の電池セル100の残容量は、定電流充電により、線形に増加していく。 As shown in FIG. 13 (b), the time t 1 after, since the first cell is bypassed, the remaining capacity C a first cell is a bypass target unit maintains a constant value. On the other hand, during the period from time t 1 to time t 2, the remaining capacity of the battery cell 100 other than the bypass target unit by the constant current charging, increases linearly.
 次いで、制御部400は、電圧最小セルである第3セルの電圧Vが第1基準電圧V以上となったかを判定する(S470)。時刻tから時刻tまでの間は、まだ、電圧最小セルである第3セルの電圧Vが第1基準電圧V以上となっていないため(S470No)、制御部400は充電を継続させる。 Then, the control unit 400 determines whether the voltage V b of the third cell is the voltage minimum cell becomes the first reference voltages V 1 or (S470). Between the time t 1 to time t 2 is still, the voltage V b of the third cell is the voltage minimum cell not the first reference voltages V 1 or (S470No), the control unit 400 continues to charge Let
 ここで、S420に戻り、バイパス対象ユニット以外の電池セル100の中から電圧が最小である「電圧最小セル」を特定する(S420)。開放電圧の大きさによっては、バイパス対象ユニットに含まれた電池セル100が最も電圧が低い電池セル100となる可能性がある。このため、当該特定において、制御部400はバイパス対象ユニットを検索対象から外す。なお、ここでは、第3セルが「電圧最小セル」である。 Here, returning to S420, the “voltage minimum cell” having the minimum voltage is specified from among the battery cells 100 other than the bypass target unit (S420). Depending on the magnitude of the open circuit voltage, the battery cell 100 included in the bypass target unit may be the battery cell 100 having the lowest voltage. For this reason, in the identification, the control unit 400 excludes the bypass target unit from the search target. Here, the third cell is the “minimum voltage cell”.
 また、制御部400は、再度、現在の「電圧最大セル」を特定する(S430)。時刻tから時刻tまでの間において、電圧が最大となっている現在の「電圧最大セル」は、第2セルである。したがって、制御部400は、第2セルを、新たな「電圧最大セル」として更新する。このようにして、制御部400は、現在、電圧が最大となっている新たな電圧最大セルを随時更新していく。 The control unit 400 again identifies the current “maximum voltage cell” (S430). The current “maximum voltage cell” in which the voltage is maximum between time t 1 and time t 2 is the second cell. Therefore, the control unit 400 updates the second cell as a new “maximum voltage cell”. In this way, the control unit 400 updates a new voltage maximum cell whose voltage is currently maximum at any time.
 次いで、時刻tのとき、新たな電圧最大セルとなった第2セルは、第1基準電圧Vとなり、第1条件を満たす(S440Yes)。 Then, when the time t 2, the second cell was a new voltage maximum cell, a first reference voltages V 1, and the first condition is satisfied (S440Yes).
 新たな電圧最大セルとなった第2セルが第1条件を満たすとき(S440Yes)、制御部400は、バイパス対象ユニットに、現在の電圧最大セルである第2セルを含める(S450)。ここでいう「バイパス対象ユニットに含める」とは、制御部400がバイパス対象ユニットとしてまとめて制御することを意味する。 When the second cell that has become the new maximum voltage cell satisfies the first condition (S440 Yes), the control unit 400 includes the second cell that is the current maximum voltage cell in the bypass target unit (S450). Here, “include in the bypass target unit” means that the control unit 400 collectively controls the bypass target unit.
 次いで、制御部400は、第2セルを含めたバイパス対象ユニットをバイパスして、当該バイパス対象ユニット以外の電池セル100に対して充電を継続させるバイパス制御を行う(バイパス制御ステップ、S460)。すなわち、制御部400は、第1セルだけでなく、第2セルもバイパスする。 Next, the control unit 400 performs bypass control that bypasses the bypass target unit including the second cell and continues charging the battery cells 100 other than the bypass target unit (bypass control step, S460). That is, the control unit 400 bypasses not only the first cell but also the second cell.
 このとき、外部充電機器は、定電流充電を継続している。第2セルをバイパス対象ユニットとして新たにバイパスさせた時刻t以降であっても、充電電流はIRSで変わらない。したがって、バイパス対象ユニット以外の他の電池セル100は、第2セルを新たにバイパスさせた以前と同じ電圧で充電が継続される。 At this time, the external charging device continues constant current charging. Even newly time t 2 after which bypass the second cell as a bypass target unit, the charging current does not change in I RS. Therefore, the battery cells 100 other than the bypass target unit are continuously charged at the same voltage as before the second cell was newly bypassed.
 また、制御部400は、バイパス制御により、バイパス対象ユニットとしてバイパスしている電池セル100の数を示す信号を、外部充電機器に送信する。具体的には、時刻tのとき、バイパス制御によってバイパスしている電池セル100の数は、第1セルおよび第2セルの「2つ」である。このとき、制御部400は、当該バイパスしている電池セル100の数である「2つ」を示す信号を、外部充電機器に送信する。これにより、電池パック10側のバイパスされている電池セル100の数が変動したことによって電圧が変動していることを、外部充電機器に伝達することができる。 Moreover, the control part 400 transmits the signal which shows the number of the battery cells 100 bypassed as a bypass object unit to an external charging apparatus by bypass control. Specifically, when the time t 2, the number of battery cells 100 are bypassed by the bypass control is "two" in the first cell and the second cell. At this time, the control unit 400 transmits a signal indicating “two”, which is the number of the bypassed battery cells 100, to the external charging device. Thereby, it can be transmitted to the external charging device that the voltage is fluctuating due to the fluctuating number of bypassed battery cells 100 on the battery pack 10 side.
 さらに、制御部400は、充電電圧を第2セルが含まれたバイパス対象ユニットの電圧の分だけ降下させるための信号を外部充電機器に送信してもよい。時刻tのとき、バイパス対象ユニットは2つとなったため、制御部400は、充電電圧を2Vだけ降下させるための信号を送信する。 Furthermore, the control unit 400 may transmit a signal for lowering the charging voltage by the voltage of the bypass target unit including the second cell to the external charging device. When time t 2, the bypass object unit is became two and, control unit 400 transmits a signal for lowering the charge voltage by 2V 1.
 図13(a)のように、時刻tから時刻tまでの間、第1セルの電圧Vaは、開放電圧v1aで一定である。また、バイパス対象ユニットとなった第2セルはバイパスされているため、第2セルの電圧Vは、内部抵抗による損失成分を除いた開放電圧v1cに降下して、一定電圧を維持する。ここで、電圧上昇が最も早かった第1セルは、第2セルよりも劣化している。このため、第1セルの内部抵抗は、第2セルの内部抵抗よりも大きい。したがって、第2セルの開放電圧v1cは、第1セルの開放電圧v1aよりも大きい。一方、時刻tから時刻tまでの間、バイパス対象ユニット以外の電池セル100の電圧は、定電流充電により、単調増加する。 As shown in FIG. 13A, the voltage Va of the first cell is constant at the open circuit voltage v 1a from time t 2 to time t 3 . In addition, since the second cell that is the bypass target unit is bypassed, the voltage V c of the second cell drops to the open voltage v 1c excluding the loss component due to the internal resistance, and maintains a constant voltage. Here, the first cell whose voltage rise was the fastest is more deteriorated than the second cell. For this reason, the internal resistance of the first cell is larger than the internal resistance of the second cell. Accordingly, the open voltage v 1c of the second cell is greater than the open voltage v 1a of the first cell. On the other hand, during the period from time t 2 to time t 3, the voltage of the battery cell 100 other than the bypass target unit by the constant current charging, increases monotonously.
 図13(b)のように、時刻t以降、第2セルはバイパスされているため、第2セルの残容量Cは、一定の値を維持する。一方、時刻tから時刻tまでの間も、バイパス対象ユニット以外の電池セル100の残容量は、定電流充電により、線形に増加していく。 As shown in FIG. 13 (b), the time t 2 later, since the second cell is bypassed, the remaining capacity C c of the second cell maintains a constant value. On the other hand, during the period from time t 2 to time t 3, the remaining capacity of the battery cell 100 other than the bypass target unit by the constant current charging, increases linearly.
 次いで、制御部400は、再度、電圧最小セルである第3セルの電圧Vが第1基準電圧V以上となったかを判定する(S470)。時刻tから時刻tまでの間は、まだ、電圧最小セルである第3セルの電圧Vが第1基準電圧V以上となっていないため(S470No)、制御部400は充電を継続させる。 Then, the control unit 400 judges again whether the voltage V b of the third cell is the voltage minimum cell becomes the first reference voltages V 1 or (S470). From time t 2 to time t 3, since the voltage V b of the third cell, which is the minimum voltage cell, is not equal to or higher than the first reference voltage V 1 (S470 No), the control unit 400 continues to charge. Let
 ここで、S420に戻り、制御部400はバイパス対象ユニット以外の電池セル100の中から電圧が最小である「電圧最小セル」を特定する(S420)。ここでも、第3セルが「電圧最小セル」である。 Here, the process returns to S420, and the control unit 400 identifies the “minimum voltage cell” having the minimum voltage from the battery cells 100 other than the bypass target unit (S420). Again, the third cell is the “minimum voltage cell”.
 また、制御部400は、再度、現在の「電圧最大セル」を特定する(S430)。制御部400は、時刻tから時刻tまでの間において、現在、電圧が最大となっている電池セル100を、新たな「電圧最大セル」として更新する。この段階では、図13に図示されていない電池セル100が「電圧最大セル」に該当する。このようにして、制御部400は、現在、電圧が最大となっている新たな電圧最大セルを随時更新していく。 The control unit 400 again identifies the current “maximum voltage cell” (S430). The controller 400 updates the battery cell 100 whose voltage is currently maximum between time t 2 and time t 3 as a new “voltage maximum cell”. At this stage, the battery cell 100 not shown in FIG. 13 corresponds to the “maximum voltage cell”. In this way, the control unit 400 updates a new voltage maximum cell whose voltage is currently maximum at any time.
 ここで、S440を行い、新たに電圧最大セルとなった電池セル100が第1条件を満たすまで、バイパス対象ユニット以外の電池セル100に対して充電が行われる。次いで、制御部400は、S470を満たすまでS430からS460を繰り返し、現在の新たな電圧最大セルが第1条件を満たす毎に、現在の電圧最大セルをバイパス対象ユニットとしてまとめてバイパス制御を行っていく。 Here, S440 is performed, and the battery cells 100 other than the bypass target unit are charged until the battery cell 100 that has newly become the maximum voltage cell satisfies the first condition. Next, the control unit 400 repeats S430 to S460 until S470 is satisfied. Every time the new voltage maximum cell satisfies the first condition, the current voltage maximum cell is integrated as a bypass target unit to perform bypass control. Go.
 このとき、上述したように、制御部400は、バイパス制御により、バイパス対象ユニットとしてバイパスしている電池セル100の数を示す信号を、外部充電機器に送信する。バイパス対象ユニットがk個となっているとき、制御部400は、k個を示す信号を外部充電機器に送信する。これにより、電池パック10側のバイパスされている電池セル100の数が変動したことによって電圧が変動していることを、外部充電機器に伝達することができる。 At this time, as described above, the control unit 400 transmits a signal indicating the number of battery cells 100 bypassed as a bypass target unit to the external charging device by bypass control. When the number of bypass target units is k, control unit 400 transmits a signal indicating k to the external charging device. Thereby, it can be transmitted to the external charging device that the voltage is fluctuating due to the fluctuating number of bypassed battery cells 100 on the battery pack 10 side.
 S470を満たすまでS430からS460を繰り返している間、制御部400は、バイパス対象ユニットの電圧の分だけ降下させるための信号を外部充電機器に送信してもよい。制御部400は、バイパス対象ユニットがk個となっているとき、充電電圧をkVだけ降下させるための信号を送信する。 While repeating S430 to S460 until S470 is satisfied, the control unit 400 may transmit a signal for decreasing the voltage of the bypass target unit to the external charging device. When the number of bypass target units is k, the control unit 400 transmits a signal for reducing the charging voltage by kV 1 .
 最終的には、電圧最小セル以外の全ての電池セル100がバイパス対象ユニットに含まれる。 Finally, all the battery cells 100 other than the minimum voltage cell are included in the bypass target unit.
 時刻tのとき、電圧最小セルである第3セルの電圧Vは第1基準電圧V以上となっている(S470Yes) At time t 3, the voltage V b of the third cell is a voltage minimum cell has a first reference voltages V 1 or (S470Yes)
 電圧最小セルである第3セルの電圧Vは第1基準電圧V以上となっているとき(S470Yes)、制御部400は、バイパス制御を停止する。これにより、全ての電池セル100に充電が再開される。 When the voltage V b of the third cell is a voltage minimum cell that is the first reference voltages V 1 or (S470Yes), the control unit 400 stops the bypass control. Thereby, charging is restarted for all the battery cells 100.
 このとき、制御部400は、バイパス制御を停止した後、充電を定電流から定電圧に切り替える信号を外部充電機器に送信する。これにより、全ての電池セル100に第1基準電圧Vで定電圧充電することができる。また、全ての電池セル100を過充電させることがない。 At this time, after stopping bypass control, control unit 400 transmits a signal for switching charging from a constant current to a constant voltage to an external charging device. This makes it possible to constant voltage charging at the first reference voltages V 1 to all of the battery cells 100. Moreover, all the battery cells 100 are not overcharged.
 図13(a)のように、全ての電池セル100の電圧は、第1基準電圧Vで一定である。また、図13(b)のように、充電電流は、緩やかに減少し、時刻tのとき、終止電流Iまで減少する。また、時刻tのとき、全ての電池セル100の残容量は、満充電容量まで充電される。ここで、制御部400は、充電を終了させる(S490)。 As shown in FIG. 13 (a), the voltages of all the battery cells 100 is constant at the first reference voltage V 1. Further, as shown in FIG. 13B, the charging current gradually decreases, and decreases to the termination current I 0 at time t 4 . Further, at time t 4, the remaining capacity of all of the battery cells 100 is charged to the full charge capacity. Here, the control unit 400 ends the charging (S490).
 なお、ここで、制御部400が充電を終了させる条件は、第3の実施形態における第5条件とすることができる。すなわち、全ての電池セル100の電流が基準電流(たとえば終止電流I)以下となったとき、制御部400は、充電を終了させることができる。また、制御部400が充電を終了させる条件は、第3の実施形態における第4条件とすることができる。すなわち、当該充電中における充電を行った時間を積算した充電時間が、第2基準時間を経過したとき、制御部400は、充電を終了させることができる。 Here, the condition for the control unit 400 to end the charging can be the fifth condition in the third embodiment. That is, when the currents of all the battery cells 100 become equal to or lower than the reference current (for example, the termination current I 0 ), the control unit 400 can end the charging. Further, the condition for the control unit 400 to end the charging can be the fourth condition in the third embodiment. That is, when the charging time obtained by integrating the charging time during the charging has passed the second reference time, the control unit 400 can end the charging.
 第4の実施形態によれば、制御部400は、第1条件を満たすとき、電圧最大セルをバイパス対象ユニットとしてバイパスして、当該バイパス対象ユニット以外の電池セルに対して充電を継続させるバイパス制御を行う。これにより、電圧最大セルを過充電することがない。また、バイパス対象ユニットをバイパスしている間、バイパス対象ユニット以外の電池セル100に対して充電を継続させることにより、全ての電池セル100を早く満充電に近づけることができる。 According to the fourth embodiment, when the first condition is satisfied, the control unit 400 bypasses the maximum voltage cell as a bypass target unit and continues charging the battery cells other than the bypass target unit. I do. Thereby, the maximum voltage cell is not overcharged. In addition, while the bypass target unit is bypassed, all the battery cells 100 can be brought close to full charge quickly by continuing charging the battery cells 100 other than the bypass target unit.
 (第5の実施形態)
 図14および図15を用い、第5の実施形態に係る電池パック10について説明する。図14は、第5の実施形態に係る充電方法を説明するためのフローチャートである。図15は、第5の実施形態に係る充電方法を説明するための図である。第5の実施形態は、S470Yes以降のステップが異なる点を除いて、第4の実施形態と同様である。以下、詳細を説明する。
(Fifth embodiment)
A battery pack 10 according to the fifth embodiment will be described with reference to FIGS. 14 and 15. FIG. 14 is a flowchart for explaining a charging method according to the fifth embodiment. FIG. 15 is a diagram for explaining a charging method according to the fifth embodiment. The fifth embodiment is the same as the fourth embodiment except that the steps after S470 Yes are different. Details will be described below.
 第5の実施形態の電池パック10の構成は、第4の実施形態と同様である。「第1セル」等の名称も第4の実施形態と同じ名称を使用する。 The configuration of the battery pack 10 of the fifth embodiment is the same as that of the fourth embodiment. Names such as “first cell” are the same as those in the fourth embodiment.
 図14に従って、電池パック10に充電がされているものとする。第4の実施形態と同様にして、制御部400は、S470を満たすまでS430からS460を繰り返し、現在の新たな電圧最大セルが第1条件を満たす毎に、現在の電圧最大セルをバイパス対象ユニットとしてまとめてバイパス制御を行っていく。 Suppose that the battery pack 10 is charged according to FIG. Similarly to the fourth embodiment, the control unit 400 repeats S430 to S460 until S470 is satisfied, and every time the current new maximum voltage cell satisfies the first condition, the current maximum voltage cell is bypassed. As a whole, bypass control is performed.
 ここで、図15(a)は、第5の実施形態における時間と電池セル100の電圧との関係を示している。図15では、図13と同様に、第1セルを太線で示している。第2セル、第3セルについても、図13と同様である。 Here, FIG. 15A shows the relationship between the time and the voltage of the battery cell 100 in the fifth embodiment. In FIG. 15, as in FIG. 13, the first cell is indicated by a bold line. The second cell and the third cell are the same as in FIG.
 また、図15(b)は、第5の実施形態における時間と電池セル100の残容量との関係、および時間と電池セル100の電流との関係を示している。 FIG. 15B shows the relationship between the time and the remaining capacity of the battery cell 100 and the relationship between the time and the current of the battery cell 100 in the fifth embodiment.
 今、時刻tであるとする。時刻tのとき、電圧最小セルである第3セルの電圧Vは第1基準電圧V以上となっている(S470Yes)。 Now, it is to be a time t 3. At time t 3, the voltage V b of the third cell is a voltage minimum cell has a first reference voltages V 1 or (S470Yes).
 電圧最小セルである第3セルの電圧Vは第1基準電圧V以上となっているとき(S470Yes)、制御部400は、全ての電池セル100を、所定時間、バイパスさせる(S475)。これにより、電圧最小セルである第3の電圧Vは、開放電圧v1bまで降下する。なお、電圧最小セルである第3セルの内部抵抗は他の電池セル100と比較して最も小さいため、電圧最小セルである第3セルの開放電圧v1bは、他の電池セル100の開放電圧よりも大きい。 When the voltage V b of the third cell is a voltage minimum cell that is the first reference voltages V 1 or (S470Yes), the control unit 400, all of the battery cells 100, a predetermined time, bypassing (S475). Thus, the third voltage V b is the voltage minimum cell drops to the open-circuit voltage v 1b. Since the internal resistance of the third cell, which is the minimum voltage cell, is the lowest as compared to other battery cells 100, the open voltage v1b of the third cell, which is the minimum voltage cell, is the open voltage of the other battery cell 100. Bigger than.
 ここでの全ての電池セル100をバイパスさせる制御は、たとえば、制御部400によって行われる。言い換えれば、制御部400は、第3セルをバイパス対象ユニットとしてバイパス制御を行う。または、制御部400は、スイッチ500をOFFさせてもよい。 The control for bypassing all the battery cells 100 here is performed by the control unit 400, for example. In other words, the control unit 400 performs bypass control using the third cell as a bypass target unit. Alternatively, the control unit 400 may turn off the switch 500.
 また、ここでいう時刻tから時刻tまでの「所定時間」とは、定電流充電から定電圧充電に切り替えるための時間のことをいう。具体的には、外部充電機器が当該充電の切替に必要とする時間以上であればよい。 Further, the “predetermined time” from time t 3 to time t 4 here means time for switching from constant current charging to constant voltage charging. Specifically, it may be longer than the time required for the external charging device to switch the charging.
 所定時間経過した時刻tのとき、制御部400は、充電を再開させる(S480)。このとき、バイパス制御として全ての電池セル100をバイパスさせていた場合は、制御部400は、バイパス制御を停止する。一方、スイッチ500をOFFしていた場合は、制御部400は、再度スイッチ500をONする。 When a predetermined time has elapsed time t 4, the control unit 400 resumes the charging (S480). At this time, when all the battery cells 100 are bypassed as bypass control, the control unit 400 stops the bypass control. On the other hand, when the switch 500 is turned off, the control unit 400 turns on the switch 500 again.
 また、所定時間経過した時刻tのとき、制御部400は、バイパス制御を停止した後、充電を定電流から定電圧に切り替える信号を外部充電機器に送信する。これにより、全ての電池セル100に第1基準電圧Vで定電圧充電することができる。 Further, at time t 4 when a predetermined time has elapsed, the control unit 400, after stopping the bypass control, and transmits a signal for switching the charge from constant current to constant voltage to the external charging device. This makes it possible to constant voltage charging at the first reference voltages V 1 to all of the battery cells 100.
 以降のステップは、第4の実施形態と同様である。 The subsequent steps are the same as those in the fourth embodiment.
 第5の実施形態によれば、電圧最小セルである第3セルの電圧Vが第1基準電圧V以上となっているとき、制御部400は、全ての電池セル100を、所定時間、バイパスさせる。これにより、充電を定電流から定電圧に切り替えるときに、安定して当該充電の切替を行うことができる。 According to the fifth embodiment, when the voltage V b of the third cell is the voltage minimum cell has a first reference voltages V 1 or more, the control unit 400, all of the battery cells 100, a predetermined time, Bypass. Thereby, when switching charging from a constant current to a constant voltage, the charging can be stably switched.
 以上、第5の実施形態においては、制御部400のみによって制御する場合を説明したが、第2の実施形態のようにバランス回路200が設けられていてもよい。この場合、制御部400は、第1条件を満たさないとき、全ての電池セル100に対して充電を継続させ、第1条件を満たすとき、バランス回路200を作動させることにより、バイパス制御を行う。 As described above, in the fifth embodiment, the case where the control is performed only by the control unit 400 has been described. However, the balance circuit 200 may be provided as in the second embodiment. In this case, when the first condition is not satisfied, the control unit 400 continues to charge all the battery cells 100, and performs the bypass control by operating the balance circuit 200 when the first condition is satisfied.
 (第6の実施形態)
 図16は、第6の実施形態に係る充電方法を説明するための図である。第6の実施形態は、電池セル100がリサイクルされたものである点を除いて、第1の実施形態または第2の実施形態と同様である。以下、詳細を説明する。
(Sixth embodiment)
FIG. 16 is a diagram for explaining a charging method according to the sixth embodiment. The sixth embodiment is the same as the first embodiment or the second embodiment except that the battery cell 100 is recycled. Details will be described below.
 第6の実施形態に係る電池セル100は、使用済みの当該電池セル100を回収し再組立てを行うことによってリサイクルされている。ここでいう「リサイクル」とは、メーカーが使用済みの電池パック10を回収した後に、電池パック10を分解して、使用済み電池セル100を再使用することをいう。また、「使用済みの電池パック10」とは、少なくとも一回以上、充電または放電を行った電池パック10のことをいう。したがって、電池パック10は、リサイクルした電池セル100の組電池である。このように、電池セル100がリサイクルされている場合、使用されていた電池パック10毎に、電池セル100は使用時間が異なるため、劣化の程度も異なっている。このため、電池セル100によって、電圧が上昇する速さが異なっている状況が考えられる。 The battery cell 100 according to the sixth embodiment is recycled by collecting the used battery cell 100 and reassembling it. Here, “recycling” means that the manufacturer collects the used battery pack 10 and then disassembles the battery pack 10 to reuse the used battery cell 100. The “used battery pack 10” refers to a battery pack 10 that has been charged or discharged at least once. Therefore, the battery pack 10 is an assembled battery of recycled battery cells 100. As described above, when the battery cell 100 is recycled, the battery cell 100 has a different use time for each battery pack 10 that has been used, and thus the degree of deterioration is also different. For this reason, the situation where the speed at which the voltage rises differs depending on the battery cell 100 can be considered.
 ここで、図16(a)は、第6の実施形態における時間と電池セル100の電圧との関係を示している。図16(a)のように、最も劣化した電池セル100の電圧をVとして太い実線で示している。また、最も劣化していない電池セル100の電圧をVとして、細い実線で示している。 Here, FIG. 16A shows the relationship between the time and the voltage of the battery cell 100 in the sixth embodiment. As shown in FIG. 16 (a), the show the most degraded voltage of the battery cell 100 by the thick solid line as V a. Further, the voltage of the battery cell 100 that is least deteriorated is indicated by a thin solid line as Vb .
 また、図16(b)は、第6の実施形態における時間と電池セル100の残容量との関係、および時間と電池セル100の電流との関係を示している。図16(b)のように、最も劣化した電池セル100の残容量をCとして太い実線で示している。また、最も劣化していない電池セル100の残容量をCとして、細い実線で示している。 FIG. 16B shows the relationship between the time and the remaining capacity of the battery cell 100 and the relationship between the time and the current of the battery cell 100 in the sixth embodiment. As shown in FIG. 16 (b), the are indicated by thick solid lines the most degraded remaining capacity of the battery cell 100 as a C a. Further, the remaining capacity of the battery cell 100 that is not degraded most as C b, are shown by a thin solid line.
 ここで、図16(b)のように、充電開始の状態で、最も劣化した電池セル100の方が、最も劣化していない電池セル100よりも残容量が小さい場合を考える。充電中のそれぞれの電池セル100の充電電流IRSは、一定である。したがって、最も劣化した電池セル100の残容量Cおよび最も劣化していない電池セル100の残容量Cは、同じ傾きで線形に上昇していく。 Here, as shown in FIG. 16B, a case is considered where the remaining capacity of the most deteriorated battery cell 100 is smaller than that of the least deteriorated battery cell 100 in the charging start state. The charging current I RS of each battery cell 100 being charged is constant. Therefore, the remaining capacity C a of the most deteriorated battery cell 100 and the remaining capacity C b of the least deteriorated battery cell 100 increase linearly with the same slope.
 図16(a)で示されているように、充電を開始するときの電圧は、最も劣化した電池セル100の電圧Vaよりも、最も劣化していない電池セル100の電圧Vbの方が大きい。しかし、最も劣化した電池セル100の方は満充電容量が小さいため、最も劣化した電池セル100の電圧Vは、最も劣化していない電池セル100の電圧Vよりも上昇が速い。このため、時刻tのとき、最も劣化した電池セル100の電圧Vは、最も劣化していない電池セルの電圧Vよりも大きくなる。したがって、制御部400は、時刻t以降では、最も劣化した電池セル100を「電圧最大セル」と特定する。一方、制御部400は、最も劣化していない電池セル100を「電圧最小セル」と特定する。 As shown in FIG. 16A, the voltage Vb of the battery cell 100 that is least deteriorated is higher than the voltage Va of the battery cell 100 that is most deteriorated when starting charging. However, most because the full charge capacity towards the degraded battery cell 100 is small, the most degraded voltage V a of the battery cell 100, higher than the faster voltage V b of the battery cells 100 is least degraded. Thus, at time t a, the most degraded voltage V a of the battery cell 100 is greater than the voltage V b of battery cells is least degraded. Accordingly, the control unit 400, at the time t a later, identifies the cell 100 that is degraded most as "maximum voltage cell". On the other hand, the control unit 400 identifies the battery cell 100 that is least deteriorated as a “minimum voltage cell”.
 次いで、時刻tのとき、電圧最大セルの電圧Vは、第1基準電圧Vに達する。このとき、第1条件を満たすため、制御部400は、第1制御を行う。または、制御部400は、バランス回路200を作動させる。ここで、第1基準電圧V1は、たとえば、定格充電電圧以上過充電保護電圧未満である。このように、満充電に近い電池セル100において第1条件を判定することにより、必ず最も劣化した電池セル100を電圧最大セルとして特定することができる。以降の充電方法は、第1の実施形態と同様である。 Then, at time t 1, the voltage V a of the voltage maximum cell reaches the first reference voltage V 1. At this time, since the first condition is satisfied, the control unit 400 performs the first control. Alternatively, the control unit 400 operates the balance circuit 200. Here, the 1st reference voltage V1 is more than a rated charge voltage and less than an overcharge protection voltage, for example. Thus, by determining the first condition in the battery cell 100 that is nearly fully charged, the battery cell 100 that is most degraded can be identified as the maximum voltage cell. The subsequent charging method is the same as that of the first embodiment.
 第6の実施形態によれば、電池セル100はリサイクルされている。このため、電池パック10を構成する各々の電池セル100は使用時間が異なるため、劣化の程度も異なっている。最も劣化した電池セル100は、電圧の上昇が速い。このような電池パック10に第1の実施形態の制御システムおよび充電方法を適用することにより、電圧最大ユニットを過充電にすることを防止することができる。したがって、電池セル100がリサイクルされたものであっても、それぞれの電池セル100を安全に満充電に近づけることができる。 According to the sixth embodiment, the battery cell 100 is recycled. For this reason, since each battery cell 100 which comprises the battery pack 10 differs in use time, the degree of deterioration is also different. The most deteriorated battery cell 100 has a fast voltage increase. By applying the control system and the charging method of the first embodiment to such a battery pack 10, it is possible to prevent the maximum voltage unit from being overcharged. Therefore, even if the battery cell 100 is recycled, each battery cell 100 can be safely brought close to full charge.
 (第7の実施形態)
 図17は、第7の実施形態に係る充電方法を説明するための図である。第7の実施形態は、以下の点を除いて、第1の実施形態または第2の実施形態と同様である。バランス回路200は、一つの電池セル100から、他の電池セル100へ電力を移動させる機能を有している。また、制御部400は、第1条件を満たし、バランス回路200を作動させるとき、バランス回路200により、電圧最大セルから他の電池セル100へ電力を移動させる。以下、詳細を説明する。
(Seventh embodiment)
FIG. 17 is a diagram for explaining a charging method according to the seventh embodiment. The seventh embodiment is the same as the first embodiment or the second embodiment except for the following points. The balance circuit 200 has a function of moving power from one battery cell 100 to another battery cell 100. In addition, when the control unit 400 satisfies the first condition and activates the balance circuit 200, the control unit 400 causes the balance circuit 200 to move power from the maximum voltage cell to another battery cell 100. Details will be described below.
 図17(a)は、第7の実施形態における時間と電池セル100の電圧との関係を示している。図17(a)のように、電圧最大セルの電圧をVとして太い実線で示している。また、電圧最小セルの電圧をVとして、細い実線で示している。 FIG. 17A shows the relationship between the time and the voltage of the battery cell 100 in the seventh embodiment. As shown in FIG. 17 (a), the are indicated by thick solid lines a voltage of the voltage maximum cell as V a. The voltage of the minimum voltage cell is indicated by a thin solid line as Vb .
 また、図17(b)は、第7の実施形態における時間と電池セル100の残容量との関係、および時間と電池セル100の電流との関係を示している。 FIG. 17B shows the relationship between the time and the remaining capacity of the battery cell 100 and the relationship between the time and the current of the battery cell 100 in the seventh embodiment.
 図17(a)のように、制御部400は、充電開始から時刻tまでは、第1の実施形態と同様に充電を行う。第1の実施形態と同様に、電圧最大セルの電圧Vが電圧最小セルの電圧Vよりも早く上昇する。時刻tのとき、電圧最大セルの電圧Vが、第1基準電圧Vに達する。 As in FIG. 17 (a), the control unit 400, the start of charging to time t 1, for charging in the same manner as in the first embodiment. Like the first embodiment, the voltage V a of the voltage maximum cell rises faster than the voltage V b of the voltage minimum cell. At time t 1, the voltage V a of the voltage maximum cell, reaches the first reference voltage V 1.
 時刻tのとき、電圧最大セルの電圧Vが第1基準電圧V以上となって、第1条件を満たすため、制御部400はバランス回路200を作動させる。第4の実施形態におけるバランス回路200は、一つの電池セル100から、他の電池セル100へ電力を移動させる機能を有している。制御部400は、バランス回路200により、電圧最大セルから他の電池セル100へ電力を移動させる。これにより、電圧最大セルの電圧Vを降下させる。 At time t 1, the voltage V a of the voltage maximum cell becomes the first reference voltages V 1 or more, since the first condition is satisfied, the control unit 400 actuates the balance circuit 200. The balance circuit 200 according to the fourth embodiment has a function of transferring power from one battery cell 100 to another battery cell 100. The control unit 400 causes the balance circuit 200 to move power from the maximum voltage cell to another battery cell 100. Thus, lowering the voltage V a of the voltage maximum cell.
 なお、バランス回路200により、電圧最大セルから他の電池セル100へ電力を移動させる場合、「他の電池セル100」は特に限定されるものではない。バランス回路200は、電圧最大セルから、電圧最小セルに対して電力を移動させてもよい。一方、バランス回路200は、電圧最大セルから、電圧最小セルとは異なる他の電池セル100に対して電力を移動させてもよい。ここでは、バランス回路200が、電圧最大セルから、電圧最小セルに対して、電力を移動させた場合を説明する。 In addition, when power is transferred from the maximum voltage cell to another battery cell 100 by the balance circuit 200, the “other battery cell 100” is not particularly limited. The balance circuit 200 may move power from the maximum voltage cell to the minimum voltage cell. On the other hand, the balance circuit 200 may move power from the maximum voltage cell to another battery cell 100 different from the minimum voltage cell. Here, a case where the balance circuit 200 moves power from the maximum voltage cell to the minimum voltage cell will be described.
 図17(a)の時刻tから時刻tにかけて、制御部400はバランス回路200を作動させている。バランス回路200によって、電力が他の電池セル100へ移動させられているため、電圧最大セルの電圧Vは降下する。一方、電圧最小セルの電圧Vは、電圧最大セルから供給された電力によって充電されて上昇する。なお、電圧最小セルなどの電圧が上昇する傾きは、時刻tにおける電圧最大セルと当該電池セル100との電圧差に依存する。また、電圧最小セルなどの電圧が上昇する傾きは、他電源による充電によって、電圧が上昇する傾きより緩い。 From the time t 1 shown in FIG. 17 (a) over the time t 2, the control unit 400 is to operate the balance circuit 200. The balance circuit 200, since the power is being moved to another cell 100, the voltage V a of the voltage maximum cell drops. On the other hand, the voltage V b of the minimum voltage cell is charged and increased by the power supplied from the maximum voltage cell. Note that the slope of the increase in voltage of the minimum voltage cell or the like depends on the voltage difference between the maximum voltage cell and the battery cell 100 at time t 1 . In addition, the gradient in which the voltage of the minimum voltage cell or the like increases is gentler than the gradient in which the voltage increases due to charging by another power source.
 図17(b)の時刻tから時刻tにかけて、電圧最小セルの残容量Cも、電圧最大セルから供給された電力によって充電されて上昇する。また、電圧最小セルに対して、電圧最大セルから電流が流れる。時刻tから時刻tにかけて、電圧最大セルの電圧Vの降下に伴って、電圧最小セルに流れる電流は減少していく。 Over a time t 2 from time t 1 in FIG. 17 (b), the residual capacity C b of the voltage minimum cell also increases are charged by power supplied from the voltage maximum cell. In addition, a current flows from the maximum voltage cell with respect to the minimum voltage cell. And from time t 1 to time t 2, the with the drop of the voltage V a of the voltage maximum cell, the current flowing through the voltage minimum cell decreases.
 次いで、図17(a)および図17(b)において、時刻tのとき、電圧最大セルの電圧Vが第2基準電圧Vとなったため、制御部400は、バランス回路200を停止させ、充電を再開させる。 Then, in FIGS. 17 (a) and 17 FIG. 17 (b), the time of time t 2, the since the voltage V a of the voltage maximum cell becomes a second reference voltage V 2, the control unit 400 stops the balance circuit 200 , Resume charging.
 以降は、第2の実施形態と同様にして、図9のS120~S170が繰り返し行われる。図17(a)のように、時刻tから時刻tにおいて、電圧最大セルの電圧Vは、充電による上昇、バランス回路200による降下を繰り返す。 Thereafter, similarly to the second embodiment, S120 to S170 of FIG. 9 are repeatedly performed. As shown in FIG. 17 (a), the at time t 8 from the time t 2, the voltage V a of the voltage maximum cell rises due to charging, repeated drop by balance circuit 200.
 一方、電圧最小セルの電圧Vは、第2の実施形態のように、バランス回路200を作動させるとき、電圧一定となることがない。すなわち、電圧最小セルの電圧Vは、充電による上昇、電圧最大セルからの電力供給よる電圧上昇を繰り返す。 On the other hand, the voltage V b of the voltage minimum cell, as in the second embodiment, when operating the balance circuit 200, does not become a constant voltage. That is, the voltage V b of the voltage minimum cell repeats rise due to the charging, the voltage rise due power supply from the voltage maximum cell.
 このとき、図17(b)のように、時刻t、時刻t、時刻tおよび時刻tにおける第1制御ステップ(S160)において、電圧最大セルから電圧最小セルに流れる電流は、電圧最大セルと電圧最小セルとの電圧差に応じて、徐々に小さくなっていく。 At this time, as shown in FIG. 17B, in the first control step (S160) at time t 1 , time t 3 , time t 5 and time t 7 , the current flowing from the voltage maximum cell to the voltage minimum cell is It gradually decreases according to the voltage difference between the largest cell and the smallest voltage cell.
 以上のように、第1の実施形態よりも早く、電圧最大セルの電圧Vおよび電圧最小セルの電圧Vを近づけることができる。また、第1の実施形態よりも早く、電圧最小セルの残容量Cを、満充電容量CRbに近づけることができる。 As described above, faster than the first embodiment, it is possible to make the voltage V b of the voltage V a and the voltage minimum cell voltage maximum cell. Also, faster than the first embodiment, the remaining capacity C b of the voltage minimum cell, can be brought close to the full charge capacity C Rb.
 第7の実施形態によれば、第2の実施形態と同様の効果を得ることができる。さらに、第7の実施形態によれば、制御部400がバランス回路200を作動させることにより、電圧最大セルから他の電池セル100へ電力を移動させる。これにより、電圧最大セルの電圧Vを降下させるための電力を、他の電池セル100の充電に用いることができる。また、制御部400がバランス回路200を作動させることにより、第1の実施形態のように他の電池セル100の充電が中断されない。これにより、第1の実施形態よりも早く、満充電に近づけることができる。 According to the seventh embodiment, the same effect as that of the second embodiment can be obtained. Further, according to the seventh embodiment, the control unit 400 operates the balance circuit 200 to move power from the maximum voltage cell to another battery cell 100. Thus, the electric power for lowering the voltage V a of the voltage maximum cell can be used to charge the other battery cells 100. Moreover, when the control part 400 operates the balance circuit 200, charge of the other battery cell 100 is not interrupted like 1st Embodiment. Thereby, it can approach full charge earlier than 1st Embodiment.
 (第8の実施形態)
 図18および図19を用い、第8の実施形態について説明する。図18は、第8の実施形態に係る充電方法を示すフローチャートである。図19は、第8の実施形態に係る充電方法を説明するための図である。第8の実施形態は、以下の点を除いて、第1の実施形態、第2の実施形態または第4の実施形態の一部と同様である。制御部400は、第1条件を満たし、バランス回路200を作動させてから、電圧最大ユニットの電圧Vが他の電池セル100と等しくなったとき、当該他の電池セル100を電圧最大ユニットとしてまとめて制御する。以下、詳細を説明する。
(Eighth embodiment)
The eighth embodiment will be described with reference to FIGS. 18 and 19. FIG. 18 is a flowchart showing a charging method according to the eighth embodiment. FIG. 19 is a diagram for explaining a charging method according to the eighth embodiment. The eighth embodiment is the same as part of the first embodiment, the second embodiment, or the fourth embodiment except for the following points. Controller 400 fills the first condition, since by actuating the balance circuit 200, when the voltage V a of the voltage up unit becomes equal to the other battery cells 100, the other battery cells 100 as a voltage up unit Control all at once. Details will be described below.
 以上の実施形態において、制御部400は、「電圧最大セル」として、電圧が最大である一つの電池セル100を特定して電圧を制御する方法を説明した。一方、第8の実施形態では、「電圧最大ユニット」とは、電圧最大セルを含む一つ以上の電池セル100の集合のことをいう。制御部400は、「電圧最大セル」がたとえば次に電圧の大きい電池セル100と同じ電圧となったとき、「電圧最大ユニット」としてまとめて、複数の電池セル100を制御する。以下では、「電圧最大セル」を含む電池セル100の集合を「電圧最大ユニット」とする。また、「電圧最大セル」の次に電圧の大きい電池セル100を「電圧第2セル」として説明する。 In the above embodiment, the control part 400 demonstrated the method of specifying one battery cell 100 with the largest voltage as a "voltage largest cell", and controlling a voltage. On the other hand, in the eighth embodiment, the “maximum voltage unit” refers to a set of one or more battery cells 100 including the maximum voltage cell. For example, when the “maximum voltage cell” becomes the same voltage as the battery cell 100 having the next highest voltage, the control unit 400 controls the plurality of battery cells 100 as a “maximum voltage unit”. Hereinafter, a set of battery cells 100 including “maximum voltage cell” is referred to as “maximum voltage unit”. Further, the battery cell 100 having the second highest voltage after the “maximum voltage cell” will be described as a “second voltage cell”.
 図18のように、第2の実施形態と同様に、充電を開始し、電池セル100の電圧および電流を測定する(S110)。 As shown in FIG. 18, as in the second embodiment, charging is started and the voltage and current of the battery cell 100 are measured (S110).
 次いで、制御部400は、測定部300が測定した電圧に基づいて、「電圧最大ユニット」「電圧最小セル」を特定する(S120)。この初期段階では、「電圧最大ユニット」は、一つの「電圧最大セル」である。 Next, the control unit 400 identifies the “maximum voltage unit” and “minimum voltage cell” based on the voltage measured by the measurement unit 300 (S120). In this initial stage, the “voltage maximum unit” is one “voltage maximum cell”.
 ここで、図19(a)は、第8の実施形態における時間と電池セル100の電圧との関係を示している。図19(a)では、「電圧第2セル」の電圧をVとして、太点線で示している。 Here, FIG. 19A shows the relationship between the time and the voltage of the battery cell 100 in the eighth embodiment. In FIG. 19A, the voltage of the “voltage second cell” is indicated by a bold dotted line as V c .
 また、図19(b)は、第8の実施形態における時間と電池セル100の残容量との関係、および時間と電池セル100の電流との関係を示している。図19(b)では、「電圧第2セル」の残容量をCとして、太点線で示している。 FIG. 19B shows the relationship between the time and the remaining capacity of the battery cell 100 and the relationship between the time and the current of the battery cell 100 in the eighth embodiment. In FIG. 19B, the remaining capacity of the “voltage second cell” is indicated by a thick dotted line as C c .
 図19(a)のように、電圧最大セルの電圧Vの上昇が最も早い。電圧第2セルの電圧Vの上昇も、電圧最小セルの電圧Vよりも早い。なお、図19(b)のように、時刻tまでは、全ての電池セル100の残容量は、線形に上昇していく。 As shown in FIG. 19 (a), the earliest increase in the voltage V a of the voltage maximum cell. Increase in the voltage V c of the voltage the second cell is also faster than the voltage V b of the voltage minimum cell. Note that as in FIG. 19 (b), until the time t 1, the remaining capacity of all of the battery cells 100, rises linearly.
 時刻tのとき、電圧最大セルの電圧Vaは、第1基準電圧Vとなり、第1条件を満たす(S130Yes)。また、時刻tのとき、電圧最大セルと電圧最小セルとの電圧差が大きいため、充電の終了条件である第2条件は満たしていない(S140No)。 At time t 1, the voltage Va of the voltage maximum cell, the first reference voltages V 1, and the first condition is satisfied (S130Yes). Further, at time t 1, since a large voltage difference between the voltage maximum cell voltage minimum cell, the second condition is a termination condition of the charging does not satisfy (S140No).
 このとき、制御部400は、全ての電池セル100の充電を一時停止させる(S150)。次いで、制御部400は、バランス回路200を作動させる(S160)。 At this time, the control unit 400 temporarily stops the charging of all the battery cells 100 (S150). Next, the control unit 400 operates the balance circuit 200 (S160).
 図19(a)のように、時刻t以降において、制御部400は、バランス回路200を作動させる。時刻tから時刻tにおいて、バランス回路200の内部抵抗によって、電圧最大セルの電圧Vは降下する。一方、充電が一時停止されているため、電圧最小セルの電圧Vおよび電圧第2セルの電圧Vはほとんど降下しない。 As shown in FIG. 19 (a), the at time t 1 after the control unit 400 operates the balance circuit 200. At time t c from the time t 1, the internal resistance of the balance circuit 200, the voltage V a of the voltage maximum cell drops. Meanwhile, since the charging is suspended, the voltage V b and the voltage voltage V c of the second cell voltage minimum cell is hardly lowered.
 図19(b)のように、時刻tから時刻tにおいて、電圧最小セルの残容量Cおよび電圧第2セルの残容量Cは、一定のままである。また、充電されていないため、電流も0となっている。 As shown in FIG. 19 (b), the at time t c from the time t 1, the residual capacity C b and the voltage remaining capacity C c of the second cell voltage minimum cell remains constant. Further, since the battery is not charged, the current is zero.
 次いで、バランス回路200が作動している状態で、電圧最大ユニットの電圧が、電圧第2セルの電圧と等しいかを判定する(S310)。なお、電圧最大ユニットの電圧が、電圧第2セルの電圧と等しくない場合は(S310No)、制御部400は、電圧最大ユニットが1つの電圧最大セルとしてS170までバランス回路200を作動させる。 Next, it is determined whether or not the voltage of the maximum voltage unit is equal to the voltage of the voltage second cell while the balance circuit 200 is operating (S310). When the voltage of the voltage maximum unit is not equal to the voltage of the voltage second cell (S310 No), the control unit 400 operates the balance circuit 200 until S170 with the voltage maximum unit as one voltage maximum cell.
 図19(a)のように、時刻tのとき、電圧最大ユニット(ここでは、電圧最大セルのみ)の電圧Vは、電圧第2セルの電圧Vと等しい。 As shown in FIG. 19A, at time t c , the voltage V a of the voltage maximum unit (here, only the voltage maximum cell) is equal to the voltage V c of the voltage second cell.
 このように、電圧最大ユニットの電圧Vが電圧第2セルの電圧Vと等しいとき(S310Yes)、制御部400は、電圧第2セルを電圧最大ユニットに含める(S320)。ここでいう「電圧最大ユニットに含める」とは、制御部400が複数の電池セル100を電圧最大ユニットとしてまとめて制御することを意味する。これにより、制御部400は、電圧最大セルと電圧第2セルとを電圧最大ユニットとして、バランス回路200を作動させる。 Thus, when the voltage V a of the voltage up unit equal to the voltage V c voltage second cell (S310Yes), the control unit 400 include a voltage second cell voltage maximum unit (S320). Here, “included in the maximum voltage unit” means that the control unit 400 collectively controls the plurality of battery cells 100 as the maximum voltage unit. Accordingly, the control unit 400 operates the balance circuit 200 using the voltage maximum cell and the voltage second cell as the voltage maximum unit.
 図19(a)のように、時刻t以降において、電圧最大ユニットに含まれた電圧第2セルの電圧Vは、電圧最大セルの電圧Vとともに、降下する。また、図19(b)のように、電圧第2セルの残容量Cは、バランス回路200の内部抵抗によって電力を消費して、降下する。 As shown in FIG. 19A, after time t c , the voltage V c of the voltage second cell included in the maximum voltage unit drops together with the voltage V a of the maximum voltage cell. Further, as shown in FIG. 19B, the remaining capacity C c of the voltage second cell drops due to power consumption by the internal resistance of the balance circuit 200.
 次いで、電圧最大ユニットの電圧が第2基準電圧Vとなったかを判定する(S170)。電圧最大ユニットの電圧が第2基準電圧Vとなっていない場合(S170No)、制御部400は、継続してバランス回路200を作動させる。このとき、さらに電圧最大ユニットの電圧が次の電圧第2セルと等しくなった場合(さらにS310Yesの場合)、制御部400は、当該電圧第2セルを最大電池ユニットに含めることができる。 Then, it is determined whether the voltage of the voltage up unit becomes the second reference voltage V 2 (S170). When the voltage of the voltage up unit not the second reference voltage V 2 (S170No), the control unit 400 operates the balancing circuit 200 continues. At this time, when the voltage of the maximum voltage unit becomes equal to the next voltage second cell (in the case of S310 Yes), the control unit 400 can include the voltage second cell in the maximum battery unit.
 次いで、時刻tのとき、電圧第2セルを含む電圧最大ユニットの電圧は、第2基準電圧Vとなる。 Then, when the time t 2, the voltage of the voltage up unit including a voltage second cell becomes a second reference voltage V 2.
 このように、電圧最大ユニットの電圧が第2基準電圧Vとなったとき(S170Yes)、制御部400は、バランス回路200を停止させ、電池セル100の充電を再開させる(S180)。 Thus, when the voltage of the voltage up unit becomes the second reference voltage V 2 (S170Yes), the control unit 400, a balance circuit 200 is stopped, to resume charging of the battery cell 100 (S180).
 以降、電圧最大ユニットは、充電による上昇、第1制御ステップ(S160)における降下を繰り返す。以降のステップは、電圧最大ユニットが複数の電池セル100である点を除いて、第1の実施形態と同様である。 Thereafter, the voltage maximum unit repeats an increase due to charging and a decrease in the first control step (S160). Subsequent steps are the same as those in the first embodiment except that the maximum voltage unit is a plurality of battery cells 100.
 以上のように、時刻t以降、制御部400は、電圧第2セルを電圧最大ユニットとして制御する。S180以降、電圧第2セルが電圧最大ユニットよりも著しく電圧が異なってくる場合、制御部400は、S120において、当該電圧第2セルを電圧最大ユニットから除外すればよい。 As described above, after the time t c, the control unit 400 controls the voltage second cell as the voltage up unit. After S180, when the voltage of the second voltage cell is significantly different from that of the maximum voltage unit, the control unit 400 may exclude the second voltage cell from the maximum voltage unit in S120.
 また、制御部400は、電圧第2セルを電圧最大ユニットに含めることに伴い、当該電圧第2セルの次に電圧の大きい電池セル100を新たな電圧第2セルとしていくことができる。すなわち、S310からS320にかけて、制御部400は、電圧最大ユニットを徐々に増やしていくことができる。最終的には、電圧最大ユニットの電圧が電圧最小セルの電圧と等しくなるまで、上記充電方法を繰り返すことができる。 Moreover, the control part 400 can make the battery cell 100 with the next largest voltage next to the said voltage 2nd cell into a new voltage 2nd cell by including a voltage 2nd cell in a voltage maximum unit. That is, from S310 to S320, the control unit 400 can gradually increase the voltage maximum unit. Finally, the above charging method can be repeated until the voltage of the voltage maximum unit becomes equal to the voltage of the voltage minimum cell.
 第8の実施形態によれば、制御部400は、電圧最大ユニットとして電圧が等しくなった複数の電池セル100をまとめて制御する。これにより、複数の電池セル100の電圧を早く揃えていくことができる。 According to the eighth embodiment, the control unit 400 collectively controls a plurality of battery cells 100 having the same voltage as the maximum voltage unit. Thereby, the voltage of the some battery cell 100 can be arrange | equalized quickly.
 (第9の実施形態)
 図20は、第9の実施形態に係る電池パック10および制御回路20の構成を示す回路図である。第9の実施形態は、制御回路20が電池パック10の外側に設けられている点を除いて、第2の実施形態と同様である。以下、詳細を説明する。
(Ninth embodiment)
FIG. 20 is a circuit diagram showing configurations of the battery pack 10 and the control circuit 20 according to the ninth embodiment. The ninth embodiment is the same as the second embodiment except that the control circuit 20 is provided outside the battery pack 10. Details will be described below.
 図20のように、制御回路20は、電池パック10の外側に設けられている。制御回路20は、たとえば、電池パック10から独立した充電機器(不図示)等に設けられている。または、制御回路20は、電池パック10を放電して使用する際に用いる使用機器内に設けられていてもよい。 As shown in FIG. 20, the control circuit 20 is provided outside the battery pack 10. The control circuit 20 is provided in, for example, a charging device (not shown) independent from the battery pack 10. Alternatively, the control circuit 20 may be provided in a device used when the battery pack 10 is discharged and used.
 電池パック10には、第1の実施形態と同様に、複数の電池セル100が直列に接続されている。電池パック10には、電池パック10の充放電を行うための正極端子820および負極端子840が設けられている。その他、それぞれの電池セル100の間において、電池セル端子830が設けられている。 As in the first embodiment, a plurality of battery cells 100 are connected in series to the battery pack 10. The battery pack 10 is provided with a positive electrode terminal 820 and a negative electrode terminal 840 for charging and discharging the battery pack 10. In addition, battery cell terminals 830 are provided between the battery cells 100.
 制御回路20は、バランス回路200、測定部300および制御部400を備えている。制御回路20の電池パック10側には、バランス回路200が設けられている。また、制御回路20の電池パック10側には、制御回路20の正極端子920および負極端子940が設けられている。制御回路20の正極端子920および負極端子940は、配線(符号不図示)を介して、それぞれ、電池パック10の正極端子820および負極端子840に接続している。これにより、制御回路20側から電池パック10に、充電の電力が供給される。 The control circuit 20 includes a balance circuit 200, a measurement unit 300, and a control unit 400. A balance circuit 200 is provided on the battery pack 10 side of the control circuit 20. Further, the positive terminal 920 and the negative terminal 940 of the control circuit 20 are provided on the battery pack 10 side of the control circuit 20. The positive terminal 920 and the negative terminal 940 of the control circuit 20 are connected to the positive terminal 820 and the negative terminal 840 of the battery pack 10 through wiring (not shown), respectively. As a result, charging power is supplied from the control circuit 20 side to the battery pack 10.
 また、制御回路20の電池パック10側には、バランス回路200の測定端子930が設けられている。バランス回路200の測定端子930は、配線(符号不図示)を介して、電池パック10の電池セル端子830に接続している。これにより、制御回路20が電池パック10の外側に設けられていても、バランス回路200を作動させるときに、それぞれの電池セル100を制御することができる。 Further, a measurement terminal 930 of the balance circuit 200 is provided on the battery pack 10 side of the control circuit 20. The measurement terminal 930 of the balance circuit 200 is connected to the battery cell terminal 830 of the battery pack 10 via wiring (not shown). Thereby, even if the control circuit 20 is provided outside the battery pack 10, each battery cell 100 can be controlled when the balance circuit 200 is operated.
 第9の実施形態によれば、制御回路20が電池パック10の外側に設けられている。バランス回路200は、配線を介して、それぞれの電池セル100に接続されている。これにより、第1の実施形態と同様の効果を得ることができる。 According to the ninth embodiment, the control circuit 20 is provided outside the battery pack 10. The balance circuit 200 is connected to each battery cell 100 via wiring. Thereby, the effect similar to 1st Embodiment can be acquired.
 (第10の実施形態)
 図21は、第10の実施形態に係る電池パック10および制御回路20の構成を示す回路図である。第10の実施形態は、制御回路20のうち、バランス回路200以外が電池パック10の外側に設けられている点を除いて、第5の実施形態と同様である。以下、詳細を説明する。
(Tenth embodiment)
FIG. 21 is a circuit diagram showing configurations of the battery pack 10 and the control circuit 20 according to the tenth embodiment. The tenth embodiment is the same as the fifth embodiment except that the control circuit 20 other than the balance circuit 200 is provided outside the battery pack 10. Details will be described below.
 図21のように、バランス回路200は、電池パック10内に設けられている。一方、バランス回路200を除く、測定部300および制御部400を含む制御回路20は、電池パック10の外側に設けられている。 As shown in FIG. 21, the balance circuit 200 is provided in the battery pack 10. On the other hand, the control circuit 20 including the measurement unit 300 and the control unit 400 excluding the balance circuit 200 is provided outside the battery pack 10.
 電池パック10内において、バランス回路200は各々の電池セル100に接続されている。電池パック10には、電池パック10の充放電を行うための正極端子820および負極端子840が設けられている。その他、バランス回路200に対する信号、バランス回路200からの信号を送受信するためのバランス回路端子860が設けられている。 In the battery pack 10, the balance circuit 200 is connected to each battery cell 100. The battery pack 10 is provided with a positive electrode terminal 820 and a negative electrode terminal 840 for charging and discharging the battery pack 10. In addition, a balance circuit terminal 860 for transmitting and receiving signals to and from the balance circuit 200 is provided.
 制御回路20の電池パック10側には、測定部300が設けられている。また、制御回路20の電池パック10側のうち、電池パック10の正極端子820および負極端子840と対応する位置に、制御回路20の正極端子920および負極端子940が設けられている。 A measuring unit 300 is provided on the battery pack 10 side of the control circuit 20. Further, the positive terminal 920 and the negative terminal 940 of the control circuit 20 are provided at positions corresponding to the positive terminal 820 and the negative terminal 840 of the battery pack 10 on the battery pack 10 side of the control circuit 20.
 測定部300の電池パック10側のうち、バランス回路端子860に対応する位置に、測定部端子960が設けられている。バランス回路端子860および測定部端子960は、それぞれ相互に配線(符号不図示)により接続されている。これにより、配線を介して、バランス回路200を作動させる信号や、電池セル100からの電圧および電流の信号を送受信することができる。 The measurement unit terminal 960 is provided at a position corresponding to the balance circuit terminal 860 on the battery pack 10 side of the measurement unit 300. The balance circuit terminal 860 and the measurement unit terminal 960 are connected to each other by wiring (not shown). Thereby, the signal which operates the balance circuit 200, and the signal of the voltage and electric current from the battery cell 100 can be transmitted / received via wiring.
 第10の実施形態によれば、第9の実施形態と同様の効果を得ることができる。 According to the tenth embodiment, the same effects as those of the ninth embodiment can be obtained.
 以上の第9の実施形態および第10の実施形態において、制御回路20が電池パック10の外側に設けられている場合を説明したが、その他、様々な構成とすることが可能である。たとえば、制御部400だけが、電池パック10の外側に設けられていてもよい。 In the above ninth embodiment and tenth embodiment, the case where the control circuit 20 is provided outside the battery pack 10 has been described, but various other configurations are possible. For example, only the control unit 400 may be provided outside the battery pack 10.
 以上、第1から第10の実施形態において、制御部400は、測定部300を介して、スイッチ500に対して信号を送信する場合を説明したが、制御部400は、直接、スイッチ500に信号を送信する形態であってもよい。 As described above, in the first to tenth embodiments, the case where the control unit 400 transmits a signal to the switch 500 via the measurement unit 300 has been described. However, the control unit 400 directly transmits a signal to the switch 500. May be transmitted.
 以上の実施形態において、上記した制御回路20を備える充電機器も開示されている。 In the above embodiment, a charging device including the above-described control circuit 20 is also disclosed.
 以上の実施形態において、制御部400は、第1基準電圧Vを基準として、電圧最大セルの電圧を降下させたり、電圧最大セルをバイパスさせたりする場合を説明した。この第1基準電圧Vは、制御中に随時変化させていってもよい。この場合、たとえば、充電の初期段階では、制御部400は、第1基準電圧Vを定格充電電圧以下とし、全ての電池セル100が満充電に近づいてから第1基準電圧Vを定格充電電圧としてもよい。 In the above embodiments, the control unit 400, based on the first reference voltage V 1, or lowering the voltage of the voltage maximum cell has been described a case in which or to bypass the voltage maximum cell. The first reference voltages V 1 may go by any time changes in the control. In this case, for example, in the initial stage of the charging, the control unit 400, a first reference voltages V 1 and the rated charging voltage, rated charge the first reference voltages V 1 from all of the battery cells 100 is approaching full charge It may be a voltage.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As described above, the embodiments of the present invention have been described with reference to the drawings. However, these are exemplifications of the present invention, and various configurations other than the above can be adopted.
 この出願は、2011年7月8日に出願された日本出願特願2011-152372号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2011-152372 filed on July 8, 2011, the entire disclosure of which is incorporated herein.

Claims (31)

  1.  直列に接続された複数の電池ユニットの電圧を測定する測定部と、
     前記測定部が測定した前記電圧に基づいて、各々の前記電池ユニットへの充電を制御する制御部と、
    を備え、
     前記制御部は、
     前記電池ユニットに前記充電を行っている場合に、前記測定部が測定した前記電圧に基づいて、前記電圧が最大である電圧最大ユニットを特定し、
     前記電圧最大ユニットの前記電圧が第1基準電圧以上になったとする第1条件を満たさないとき、全ての前記電池ユニットに対して前記充電を継続させ、
     前記第1条件を満たすとき、前記電圧最大ユニットの前記電圧を降下させる第1制御を行う充電制御システム。
    A measuring unit for measuring voltages of a plurality of battery units connected in series;
    Based on the voltage measured by the measurement unit, a control unit that controls charging to each of the battery units,
    With
    The controller is
    When performing the charging to the battery unit, based on the voltage measured by the measurement unit, identify the voltage maximum unit that the voltage is maximum,
    When the first condition that the voltage of the voltage maximum unit is equal to or higher than the first reference voltage is not satisfied, the charging is continued for all the battery units,
    A charge control system that performs a first control to drop the voltage of the maximum voltage unit when the first condition is satisfied.
  2.  請求項1に記載の充電制御システムにおいて、
     当該充電制御システムは各々の前記電池ユニットの充電量を調整するバランス回路をさらに備え、
     前記制御部は、
     前記バランス回路の動作を制御し、
     前記第1条件を満たすとき、前記バランス回路を作動させることにより、前記第1制御を行う充電制御システム。
    The charge control system according to claim 1,
    The charge control system further includes a balance circuit that adjusts the charge amount of each of the battery units,
    The controller is
    Controlling the operation of the balance circuit;
    A charge control system that performs the first control by operating the balance circuit when the first condition is satisfied.
  3.  請求項2に記載の充電制御システムにおいて、
     前記バランス回路は、一つの前記電池ユニットから、他の前記電池ユニットへ電力を移動させる機能を有し、
     前記制御部は、
     前記第1条件を満たし、前記バランス回路を作動させて前記第1制御を行うとき、前記バランス回路により、前記電圧最大ユニットから他の前記電池ユニットへ前記電力を移動させる充電制御システム。
    In the charge control system according to claim 2,
    The balance circuit has a function of transferring power from one battery unit to another battery unit,
    The controller is
    When the first control is performed by satisfying the first condition and operating the balance circuit, the charge control system moves the power from the maximum voltage unit to another battery unit by the balance circuit.
  4.  請求項1~3のいずれか一項に記載の充電制御システムにおいて、
     前記制御部は、
     前記第1条件を満たすとき、前記充電を一時停止させ、前記第1制御を行う充電制御システム。
    The charge control system according to any one of claims 1 to 3,
    The controller is
    When the first condition is satisfied, a charging control system that temporarily stops the charging and performs the first control.
  5.  請求項1~4のいずれか一項に記載の充電制御システムにおいて、
     前記制御部は、
     前記第1条件を満たして、前記第1制御を行ってから、前記電圧最大ユニットが前記第1基準電圧より低い第2基準電圧となったとき、前記第1制御を停止し、前記充電を再開させる充電制御システム。
    In the charge control system according to any one of claims 1 to 4,
    The controller is
    After satisfying the first condition and performing the first control, when the voltage maximum unit becomes a second reference voltage lower than the first reference voltage, the first control is stopped and the charging is resumed. Let the charge control system.
  6.  請求項1~5のいずれか一項に記載の充電制御システムにおいて、
     前記制御部は、
     前記第1条件を満たして、前記第1制御を行っている作動時間が第1基準時間以上となったとき、前記第1制御を停止し、前記充電を再開させる充電制御システム。
    In the charge control system according to any one of claims 1 to 5,
    The controller is
    A charging control system that satisfies the first condition and stops the first control and restarts the charging when an operation time during which the first control is performed becomes a first reference time or more.
  7.  請求項1~6のいずれか一項に記載の充電制御システムにおいて、
     前記制御部は、
     前記測定部が測定した前記電圧に基づいて、前記電圧が最小である電圧最小ユニットをさらに特定し、
     前記第1条件を満たし、かつ、前記電圧最大ユニットと前記電圧最小ユニットとの電圧差が所定値未満であるとする第2条件を満たさないとき、前記第1制御を行う充電制御システム。
    The charging control system according to any one of claims 1 to 6,
    The controller is
    Based on the voltage measured by the measurement unit, further specifies a voltage minimum unit in which the voltage is minimum,
    A charge control system that performs the first control when the first condition is satisfied and a second condition that a voltage difference between the maximum voltage unit and the minimum voltage unit is less than a predetermined value is not satisfied.
  8.  請求項7に記載の充電制御システムにおいて、
     前記第1条件を満たし、かつ、前記第2条件を満たすとき、前記充電を終了させる充電制御システム。
    The charge control system according to claim 7,
    A charging control system that terminates the charging when the first condition is satisfied and the second condition is satisfied.
  9.  請求項1~8のいずれか一項に記載の充電制御システムにおいて、
     前記制御部は、
     前記第1条件を満たし、かつ、当該充電中における前記第1制御を行った回数の積算値が所定値以上であるとする第3条件を満たさないとき、前記第1制御を行う充電制御システム。
    The charge control system according to any one of claims 1 to 8,
    The controller is
    A charge control system that performs the first control when the first condition is satisfied and a third condition that an integrated value of the number of times of performing the first control during the charging is not less than a predetermined value is not satisfied.
  10.  請求項9に記載の充電制御システムにおいて、
     前記第1条件を満たし、かつ、前記第3条件を満たすとき、前記充電を終了させる充電制御システム。
    The charge control system according to claim 9,
    A charging control system that terminates the charging when the first condition is satisfied and the third condition is satisfied.
  11.  請求項1~10のいずれか一項に記載の充電制御システムにおいて、
     前記制御部は、
     当該充電中における前記充電を行った時間を積算した充電時間が、前記第1基準時間より長い第2基準時間を経過したとする第4条件を満たすとき、前記充電を終了させる充電制御システム。
    The charging control system according to any one of claims 1 to 10,
    The controller is
    A charge control system that terminates the charge when a charge time obtained by integrating the charge times during the charge satisfies a fourth condition that a second reference time that is longer than the first reference time has elapsed.
  12.  請求項1~11のいずれか一項に記載の充電制御システムにおいて、
     前記測定部は、前記電池ユニットの電流をさらに測定し、
     前記制御部は、
     各々の前記電池ユニットの前記電流が基準電流以下であるとする第5条件を満たさないとき、前記充電を継続させる充電制御システム。
    The charge control system according to any one of claims 1 to 11,
    The measurement unit further measures the current of the battery unit,
    The controller is
    The charge control system which continues the said charge when the 5th condition that the said current of each said battery unit is below a reference current is not satisfy | filled.
  13.  請求項12に記載の充電制御システムにおいて、
     前記第5条件を満たすとき、前記充電を終了させる充電制御システム。
    The charge control system according to claim 12,
    A charging control system that terminates the charging when the fifth condition is satisfied.
  14.  請求項1~13のいずれか一項に記載の充電制御システムにおいて、
     前記制御部は、
     前記第1条件を満たし、前記第1制御を行ってから、前記電圧最大ユニットの前記電圧が他の前記電池ユニットと等しくなったとき、当該他の電池ユニットを前記電圧最大ユニットとしてまとめて制御する充電制御システム。
    The charging control system according to any one of claims 1 to 13,
    The controller is
    When the voltage of the maximum voltage unit becomes equal to the other battery units after satisfying the first condition and performing the first control, the other battery units are collectively controlled as the maximum voltage unit. Charge control system.
  15.  請求項1~14のいずれか一項に記載の充電制御システムにおいて、
     前記制御部は、
     前記電圧最小ユニットの前記電圧が前記第1基準電圧以上となったとき、前記充電を定電圧から定電流に切り替える信号を外部充電機器に送信する充電制御システム。
    The charging control system according to any one of claims 1 to 14,
    The controller is
    A charging control system that transmits a signal for switching the charging from a constant voltage to a constant current to an external charging device when the voltage of the minimum voltage unit becomes equal to or higher than the first reference voltage.
  16.  直列に接続された複数の電池ユニットの電圧を測定する測定部と、
     前記測定部が測定した前記電圧に基づいて、各々の前記電池ユニットへの充電を制御する制御部と、
    を備え、
     前記制御部は、
     前記電池ユニットに前記充電を行っている場合に、前記測定部が測定した前記電圧に基づいて、前記電圧が最大である電圧最大ユニットを特定し、
     前記電圧最大ユニットの前記電圧が第1基準電圧以上になったとする第1条件を満たさないとき、全ての前記電池ユニットに対して前記充電を継続させ、
     前記第1条件を満たすとき、前記電圧最大ユニットをバイパス対象ユニットとしてバイパスして、当該バイパス対象ユニット以外の前記電池ユニットに対して前記充電を継続させるバイパス制御を行う充電制御システム。
    A measuring unit for measuring voltages of a plurality of battery units connected in series;
    Based on the voltage measured by the measurement unit, a control unit that controls charging to each of the battery units,
    With
    The controller is
    When performing the charging to the battery unit, based on the voltage measured by the measurement unit, identify the voltage maximum unit that the voltage is maximum,
    When the first condition that the voltage of the voltage maximum unit is equal to or higher than the first reference voltage is not satisfied, the charging is continued for all the battery units,
    When the first condition is satisfied, the charging control system performs bypass control for bypassing the maximum voltage unit as a bypass target unit and continuing the charging for the battery units other than the bypass target unit.
  17.  請求項16に記載の充電制御システムにおいて、
     当該充電制御システムは各々の前記電池ユニットの充電量を調整するバランス回路をさらに備え、
     前記制御部は、
     前記バランス回路の動作を制御し、
     前記電圧最大ユニットの前記電圧が第1基準電圧以上になったとする第1条件を満たさないとき、全ての前記電池ユニットに対して前記充電を継続させ、
     前記第1条件を満たすとき、前記バランス回路を作動させることにより、前記バイパス制御を行う充電制御システム。
    The charge control system according to claim 16, wherein
    The charge control system further includes a balance circuit that adjusts the charge amount of each of the battery units,
    The controller is
    Controlling the operation of the balance circuit;
    When the first condition that the voltage of the voltage maximum unit is equal to or higher than the first reference voltage is not satisfied, the charging is continued for all the battery units,
    A charge control system that performs the bypass control by operating the balance circuit when the first condition is satisfied.
  18.  請求項16または17に記載の充電制御システムにおいて、
     前記制御部は、
     前記第1条件を満たし、前記バイパス制御を行ってから、現在、前記電圧が最大となっている新たな前記電圧最大ユニットを更新し、
     当該新たな電圧最大ユニットが前記第1条件を満たさないとき、前記バイパス対象ユニット以外の前記電池ユニットに対して前記充電を継続させ、
     前記新たな電圧最大ユニットが前記第1条件を満たすとき、前記新たな電圧最大ユニットを前記バイパス対象ユニットに含める充電制御システム。
    The charge control system according to claim 16 or 17,
    The controller is
    After satisfying the first condition and performing the bypass control, update the new voltage maximum unit at which the voltage is currently maximum,
    When the new maximum voltage unit does not satisfy the first condition, the battery unit other than the bypass target unit is continuously charged,
    A charging control system that includes the new voltage maximum unit in the bypass target unit when the new voltage maximum unit satisfies the first condition.
  19.  請求項18に記載の充電制御システムにおいて、
     前記バイパス制御により、前記バイパス対象ユニットとしてバイパスしている前記電池ユニットの数を示す信号を、外部充電機器に送信する充電制御システム。
    The charge control system according to claim 18,
    The charge control system which transmits the signal which shows the number of the said battery units bypassed as said bypass object unit by the said bypass control to an external charging apparatus.
  20.  請求項16~19のいずれか一項に記載の充電制御システムにおいて、
     前記制御部は、
     前記測定部が測定した前記電圧に基づいて、前記バイパス対象ユニット以外の電池セルの中から前記電圧が最小である電圧最小ユニットをさらに特定し、
     前記第1条件を満たし、前記バイパス制御を行ってから、電圧最小電池セルの前記電圧が第1基準電圧以上になったとき、前記バイパス制御を停止する充電制御システム。
    The charging control system according to any one of claims 16 to 19,
    The controller is
    Based on the voltage measured by the measurement unit, further specify the voltage minimum unit that is the minimum voltage among the battery cells other than the bypass target unit,
    A charge control system that stops the bypass control when the voltage of the minimum voltage battery cell becomes equal to or higher than a first reference voltage after satisfying the first condition and performing the bypass control.
  21.  請求項20に記載の充電制御システムにおいて、
     前記制御部は、
     前記バイパス制御を停止した後、前記充電を定電流から定電圧に切り替える信号を外部充電機器に送信する充電制御システム。
    The charge control system according to claim 20,
    The controller is
    A charge control system that transmits a signal for switching the charge from a constant current to a constant voltage to an external charging device after stopping the bypass control.
  22.  請求項16~19のいずれか一項に記載の充電制御システムにおいて、
     前記制御部は、
     前記測定部が測定した前記電圧に基づいて、前記バイパス対象ユニット以外の電池セルの中から前記電圧が最小である電圧最小ユニットをさらに特定し、
     前記第1条件を満たし、前記バイパス制御を行ってから、電圧最小電池セルの前記電圧が第1基準電圧以上になったとき、全ての前記電池ユニットを所定時間バイパスさせる充電制御システム。
    The charging control system according to any one of claims 16 to 19,
    The controller is
    Based on the voltage measured by the measurement unit, further specify the voltage minimum unit that is the minimum voltage among the battery cells other than the bypass target unit,
    A charge control system that bypasses all the battery units for a predetermined time when the voltage of the minimum voltage battery cell becomes equal to or higher than a first reference voltage after satisfying the first condition and performing the bypass control.
  23.  請求項22に記載の充電制御システムにおいて、
     前記制御部は、
     全ての前記電池ユニットを所定時間バイパスさせた後、前記充電を定電流から定電圧に切り替える信号を外部充電機器に送信する充電制御システム。
    The charge control system according to claim 22,
    The controller is
    A charge control system for transmitting a signal for switching the charging from a constant current to a constant voltage to an external charging device after bypassing all the battery units for a predetermined time.
  24.  請求項20~23のいずれか一項に記載の充電制御システムにおいて、
     前記制御部は、
     前記第1条件を満たし、前記バイパス制御を行ってから、前記電圧最小ユニットの前記電圧が前記第1条件を満たすとき、前記充電を再開させる充電制御システム。
    The charging control system according to any one of claims 20 to 23,
    The controller is
    A charge control system that resumes charging when the voltage of the minimum voltage unit satisfies the first condition after satisfying the first condition and performing the bypass control.
  25.  請求項16~24のいずれか一項に記載の充電制御システムにおいて、
     前記制御部は、
     前記第1条件を満たし、前記バイパス制御を行ってから、前記充電で印加される充電電圧を前記電圧最大ユニットの前記電圧の分だけ降下させるための信号を外部充電機器に送信する充電制御システム。
    The charging control system according to any one of claims 16 to 24,
    The controller is
    The charge control system which transmits the signal for dropping the charge voltage applied by the charge by the voltage of the voltage maximum unit to the external charging device after satisfying the first condition and performing the bypass control.
  26.  請求項1~25のいずれか一項に記載の充電制御システムにおいて、
     前記第1基準電圧は、定格充電電圧以上、過充電保護電圧未満である充電制御システム。
    The charging control system according to any one of claims 1 to 25,
    The charge control system, wherein the first reference voltage is equal to or higher than a rated charge voltage and lower than an overcharge protection voltage.
  27.  請求項1~26のいずれか一項に記載の充電制御システムにおいて、
     前記電池ユニットは、リサイクルされている充電制御システム。
    In the charge control system according to any one of claims 1 to 26,
    The battery unit is a charge control system that is recycled.
  28.  直列に接続された複数の電池ユニットと、
     前記電池ユニットの電圧を測定する測定部と、
     前記測定部が測定した前記電圧に基づいて、各々の前記電池ユニットへの充電を制御する制御部と、
    を備え、
     前記制御部は、
     前記電池ユニットに前記充電を行っている場合に、前記測定部が測定した前記電圧に基づいて、前記電圧が最大である電圧最大ユニットを特定し、
     前記電圧最大ユニットの前記電圧が第1基準電圧以上になったとする第1条件を満たさないとき、全ての前記電池ユニットに対して前記充電を継続させ、
     前記第1条件を満たすとき、前記電圧最大ユニットの前記電圧を降下させる第1制御を行う電池パック。
    A plurality of battery units connected in series;
    A measurement unit for measuring the voltage of the battery unit;
    Based on the voltage measured by the measurement unit, a control unit that controls charging to each of the battery units,
    With
    The controller is
    When performing the charging to the battery unit, based on the voltage measured by the measurement unit, identify the voltage maximum unit that the voltage is maximum,
    When the first condition that the voltage of the voltage maximum unit is equal to or higher than the first reference voltage is not satisfied, the charging is continued for all the battery units,
    A battery pack that performs first control to drop the voltage of the maximum voltage unit when the first condition is satisfied.
  29.  直列に接続された複数の電池ユニットと、
     前記電池ユニットの電圧を測定する測定部と、
     前記測定部が測定した前記電圧に基づいて、各々の前記電池ユニットへの充電を制御する制御部と、
    を備え、
     前記制御部は、
     前記電池ユニットに前記充電を行っている場合に、前記測定部が測定した前記電圧に基づいて、前記電圧が最大である電圧最大ユニットを特定し、
     前記電圧最大ユニットの前記電圧が第1基準電圧以上になったとする第1条件を満たさないとき、全ての前記電池ユニットに対して前記充電を継続させ、
     前記第1条件を満たすとき、前記電圧最大ユニットをバイパス対象ユニットとしてバイパスして、当該バイパス対象ユニット以外の前記電池ユニットに対して前記充電を継続させるバイパス制御を行う電池パック。
    A plurality of battery units connected in series;
    A measurement unit for measuring the voltage of the battery unit;
    Based on the voltage measured by the measurement unit, a control unit that controls charging to each of the battery units,
    With
    The controller is
    When performing the charging to the battery unit, based on the voltage measured by the measurement unit, identify the voltage maximum unit that the voltage is maximum,
    When the first condition that the voltage of the voltage maximum unit is equal to or higher than the first reference voltage is not satisfied, the charging is continued for all the battery units,
    When the first condition is satisfied, the battery pack performs bypass control for bypassing the maximum voltage unit as a bypass target unit and continuing the charging for the battery units other than the bypass target unit.
  30.  直列に接続された複数の電池ユニットの電圧を測定するとともに、前記複数の電池ユニットに充電を開始する充電開始ステップと、
     測定した前記電圧に基づいて、前記電圧が最大である電圧最大ユニットを特定するユニット特定ステップと、
     前記電圧最大ユニットの前記電圧が第1基準電圧以上となったとする第1条件を判定する第1判定ステップと、
     前記第1条件を満たさないとき、全ての前記電池ユニットに対して前記充電を継続させ、前記第1条件を満たすとき、前記電圧最大ユニットの前記電圧を降下させる第1制御ステップと、
    を備える充電方法。
    A charging start step for measuring voltages of a plurality of battery units connected in series and starting charging the plurality of battery units;
    A unit identification step for identifying a voltage maximum unit in which the voltage is maximum based on the measured voltage;
    A first determination step of determining a first condition that the voltage of the voltage maximum unit is equal to or higher than a first reference voltage;
    When the first condition is not satisfied, the charging is continued for all the battery units, and when the first condition is satisfied, the first control step of decreasing the voltage of the maximum voltage unit;
    A charging method comprising:
  31.  直列に接続された複数の電池ユニットの電圧を測定するとともに、前記複数の電池ユニットに充電を開始する充電開始ステップと、
     測定した前記電圧に基づいて、前記電圧が最大である電圧最大ユニットを特定するユニット特定ステップと、
     前記電圧最大ユニットの前記電圧が第1基準電圧以上となったとする第1条件を判定する第1判定ステップと、
     前記第1条件を満たさないとき、全ての前記電池ユニットに対して前記充電を継続させ、前記第1条件を満たすとき、前記電圧最大ユニットをバイパス対象ユニットとしてバイパスして、当該バイパス対象ユニット以外の前記電池ユニットに対して前記充電を継続させるバイパス制御ステップと、
    を備える充電方法。
    A charging start step for measuring voltages of a plurality of battery units connected in series and starting charging the plurality of battery units;
    A unit identification step for identifying a voltage maximum unit in which the voltage is maximum based on the measured voltage;
    A first determination step of determining a first condition that the voltage of the voltage maximum unit is equal to or higher than a first reference voltage;
    When the first condition is not satisfied, the charging is continued for all the battery units, and when the first condition is satisfied, the voltage maximum unit is bypassed as a bypass target unit, and other than the bypass target unit. A bypass control step for continuing the charging for the battery unit;
    A charging method comprising:
PCT/JP2012/004289 2011-07-08 2012-07-03 Charging control system, battery pack and charging method WO2013008408A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013523794A JP6124346B2 (en) 2011-07-08 2012-07-03 Charging control system, battery pack and charging method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-152372 2011-07-08
JP2011152372 2011-07-08

Publications (1)

Publication Number Publication Date
WO2013008408A1 true WO2013008408A1 (en) 2013-01-17

Family

ID=47505718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004289 WO2013008408A1 (en) 2011-07-08 2012-07-03 Charging control system, battery pack and charging method

Country Status (2)

Country Link
JP (1) JP6124346B2 (en)
WO (1) WO2013008408A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015192461A (en) * 2014-03-27 2015-11-02 株式会社Ihi battery system
JP2016081748A (en) * 2014-10-17 2016-05-16 日産自動車株式会社 Battery assembly, and diagnosis device for connection state of battery assembly
JP2017500837A (en) * 2014-02-13 2017-01-05 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Battery management system and method for a battery including a plurality of battery cells
JPWO2018186465A1 (en) * 2017-04-05 2020-02-20 株式会社Gsユアサ Power storage device and power storage element control method
CN112583067A (en) * 2019-09-30 2021-03-30 矢崎总业株式会社 Battery control unit and battery system
EP3780320A4 (en) * 2018-06-18 2021-05-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Quick charging method for battery, charging apparatus, device to be charged, and charging system
CN113629796A (en) * 2021-06-25 2021-11-09 北京精密机电控制设备研究所 Parallel control device of lithium ion battery pack
CN114002601A (en) * 2021-09-24 2022-02-01 河南利威新能源科技有限公司 Method and device for calculating capacity of retired lithium ion battery cell
JP2022551134A (en) * 2019-10-22 2022-12-07 華為技術有限公司 ELECTRONIC DEVICE, CHARGING METHOD AND CHARGING SYSTEM
EP4075568A4 (en) * 2019-12-13 2024-03-27 Kyocera Corporation Electricity storage device and electricity storage method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155241A (en) * 1997-11-21 1999-06-08 Hitachi Ltd Pair-battery charging-current control circuit and pair-battery charging method
JP2003153460A (en) * 2001-11-12 2003-05-23 Japan Storage Battery Co Ltd Charging/discharging controller of storage battery
JP2004007983A (en) * 2002-05-30 2004-01-08 Texas Instruments Inc Method and apparatus for controlling charge balance between cells during charging of battery array
JP2006353010A (en) * 2005-06-16 2006-12-28 Renesas Technology Corp Secondary battery pack and manufacturing method therefor
JP2009131060A (en) * 2007-11-26 2009-06-11 Honda Motor Co Ltd Control system charge/discharge circuit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3982142B2 (en) * 1999-03-09 2007-09-26 旭硝子株式会社 Electric double layer capacitor device and voltage control method thereof
JP5008950B2 (en) * 2006-11-08 2012-08-22 パナソニック株式会社 Charging system, battery pack, and charging method thereof
DE102007042578B4 (en) * 2007-09-07 2012-12-20 Continental Automotive Gmbh Method for equalizing several cells connected in series of a battery
US20100225277A1 (en) * 2009-03-06 2010-09-09 Asic Advantage Inc. Battery charge and discharge controller
JP5361529B2 (en) * 2009-05-19 2013-12-04 株式会社Nttファシリティーズ Lithium-ion battery charge control device and lithium-ion battery system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155241A (en) * 1997-11-21 1999-06-08 Hitachi Ltd Pair-battery charging-current control circuit and pair-battery charging method
JP2003153460A (en) * 2001-11-12 2003-05-23 Japan Storage Battery Co Ltd Charging/discharging controller of storage battery
JP2004007983A (en) * 2002-05-30 2004-01-08 Texas Instruments Inc Method and apparatus for controlling charge balance between cells during charging of battery array
JP2006353010A (en) * 2005-06-16 2006-12-28 Renesas Technology Corp Secondary battery pack and manufacturing method therefor
JP2009131060A (en) * 2007-11-26 2009-06-11 Honda Motor Co Ltd Control system charge/discharge circuit

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017500837A (en) * 2014-02-13 2017-01-05 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Battery management system and method for a battery including a plurality of battery cells
US10018682B2 (en) 2014-02-13 2018-07-10 Robert Bosch Gmbh Battery management system for a battery having a plurality of battery cells, and method therefor
JP2015192461A (en) * 2014-03-27 2015-11-02 株式会社Ihi battery system
JP2016081748A (en) * 2014-10-17 2016-05-16 日産自動車株式会社 Battery assembly, and diagnosis device for connection state of battery assembly
US11251629B2 (en) 2017-04-05 2022-02-15 Gs Yuasa International Ltd. Energy storage apparatus and control method of energy storage devices
JP6997955B2 (en) 2017-04-05 2022-01-18 株式会社Gsユアサ Control method of power storage device and power storage element
US11728660B2 (en) 2017-04-05 2023-08-15 Gs Yuasa International Ltd. Energy storage apparatus and control method of energy storage devices
JPWO2018186465A1 (en) * 2017-04-05 2020-02-20 株式会社Gsユアサ Power storage device and power storage element control method
EP3780320A4 (en) * 2018-06-18 2021-05-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Quick charging method for battery, charging apparatus, device to be charged, and charging system
AU2019291494B2 (en) * 2018-06-18 2021-09-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Quick charging method for battery, charging apparatus, device to be charged, and charging system
US11616374B2 (en) 2019-09-30 2023-03-28 Yazaki Corporation Battery control unit and battery system
CN112583067A (en) * 2019-09-30 2021-03-30 矢崎总业株式会社 Battery control unit and battery system
EP3799251A1 (en) * 2019-09-30 2021-03-31 Yazaki Corporation Battery control unit and battery system
JP2022551134A (en) * 2019-10-22 2022-12-07 華為技術有限公司 ELECTRONIC DEVICE, CHARGING METHOD AND CHARGING SYSTEM
JP7350164B2 (en) 2019-10-22 2023-09-25 華為技術有限公司 Electronic devices, charging methods, and charging systems
EP4075568A4 (en) * 2019-12-13 2024-03-27 Kyocera Corporation Electricity storage device and electricity storage method
CN113629796A (en) * 2021-06-25 2021-11-09 北京精密机电控制设备研究所 Parallel control device of lithium ion battery pack
CN114002601A (en) * 2021-09-24 2022-02-01 河南利威新能源科技有限公司 Method and device for calculating capacity of retired lithium ion battery cell

Also Published As

Publication number Publication date
JPWO2013008408A1 (en) 2015-02-23
JP6124346B2 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
JP6124346B2 (en) Charging control system, battery pack and charging method
CN107863789B (en) Power supply system
JP6195310B2 (en) Battery control system and battery pack
US9184615B2 (en) Battery pack and method of controlling the same
WO2013008409A1 (en) Method for manufacturing battery pack and battery pack
KR100393436B1 (en) Method for rapid charge of battery
JP2018042462A (en) Power storage device
JP2011004509A (en) Charge control circuit, battery pack, and charging system
US20110234170A1 (en) Circuits, systems and methods for balancing battery cells
JP6648709B2 (en) Battery module controller
CN102751749A (en) Charge stop point detecting method, charge stop point detecting device, and battery pack
US20130099726A1 (en) System and Method for Charging of Battery
US7612540B2 (en) Lithium-ion battery diagnostic and prognostic techniques
JP6011265B2 (en) Battery system
JP6824295B2 (en) Electrical equipment
JP6415218B2 (en) Storage system and storage system precharge method
US20100231177A1 (en) Battery pack and charger system
JP2017168244A (en) Battery pack exchange method of battery system and battery pack
JP7167581B2 (en) Secondary battery device
KR102259965B1 (en) Charging control apparatus and method for the same
JP2019024285A (en) Balance device and battery unit
JP2013128347A (en) Power storage device and charge/discharge method thereof
JP2022544466A (en) emergency power supply
JP7512524B2 (en) Over-discharge prevention device and method
JP6727908B2 (en) Power supply and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12812052

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523794

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12812052

Country of ref document: EP

Kind code of ref document: A1