[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013002069A1 - Multi-layer film and film packaging container - Google Patents

Multi-layer film and film packaging container Download PDF

Info

Publication number
WO2013002069A1
WO2013002069A1 PCT/JP2012/065642 JP2012065642W WO2013002069A1 WO 2013002069 A1 WO2013002069 A1 WO 2013002069A1 JP 2012065642 W JP2012065642 W JP 2012065642W WO 2013002069 A1 WO2013002069 A1 WO 2013002069A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polyamide resin
mol
multilayer film
group
Prior art date
Application number
PCT/JP2012/065642
Other languages
French (fr)
Japanese (ja)
Inventor
尚史 小田
大滝 良二
健太郎 石井
翔太 荒川
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2013522772A priority Critical patent/JP5954323B2/en
Publication of WO2013002069A1 publication Critical patent/WO2013002069A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/36Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers

Definitions

  • the present invention relates to a multilayer film having oxygen barrier performance and oxygen absorption performance, and a film packaging container including the multilayer film.
  • nylon MXD6 Polyamide obtained from polycondensation reaction of xylylenediamine and aliphatic dicarboxylic acid, for example, polyamide obtained from metaxylylenediamine and adipic acid (hereinafter referred to as nylon MXD6) has high strength, high elastic modulus, oxygen, carbonic acid. Since it shows low permeability to gaseous substances such as gas, odor and flavor, it is widely used as a gas barrier material in the field of packaging materials. Nylon MXD6 has better thermal stability when melted than other gas barrier resins, so co-extrusion and co-extrusion with thermoplastic resins such as polyethylene terephthalate (hereinafter abbreviated as PET), nylon 6 and polypropylene. Injection molding or the like is possible. Therefore, nylon MXD6 is used as a gas barrier layer constituting a multilayer structure.
  • PET polyethylene terephthalate
  • nylon MXD6 is added and mixed with a small amount of transition metal compound to give nylon MXD6 an oxygen-absorbing function, and this is used as an oxygen barrier material constituting containers and packaging materials.
  • Nylon MXD6 absorbs the incoming oxygen and nylon MXD6 also absorbs oxygen remaining inside the container, so that a method for improving the storage stability of the contents over conventional containers using oxygen-barrier thermoplastic resin is practical. (See, for example, Patent Documents 1 and 2).
  • Patent Documents 3 and 4 describe an oxygen-absorbing multilayer body and an oxygen-absorbing film in which an oxygen absorbent such as iron powder is dispersed in a resin.
  • Patent Document 5 describes a product having an oxygen scavenging layer containing an ethylenically unsaturated compound such as polybutadiene and a transition metal catalyst such as cobalt, and an oxygen barrier layer such as polyamide.
  • JP 2003-341747 A Japanese Patent No. 2991437 Japanese Patent Laid-Open No. 2-72851 Japanese Patent Laid-Open No. 4-90848 Japanese Patent Laid-Open No. 5-115776
  • the oxygen-absorbing multilayer body and oxygen-absorbing film in which an oxygen absorbent such as iron powder is dispersed in the resin are opaque due to the resin being colored by the oxygen absorbent such as iron powder.
  • an oxygen absorbent such as iron powder
  • a resin composition containing a transition metal such as cobalt has an advantage that it can be applied to packaging containers that require transparency, but is not preferred because the resin composition is colored by a transition metal catalyst.
  • the resin is oxidized by absorbing oxygen by the transition metal catalyst.
  • the problem to be solved by the present invention is that oxygen barrier performance is expressed, oxygen absorption performance can be expressed without containing a transition metal, and the strength of the oxygen absorption barrier layer as oxygen absorption progresses
  • the object is to provide a multilayer film with very little reduction.
  • the present invention provides the following multilayer film and film packaging container.
  • a multilayer film comprising a layer (A) containing a polyamide resin (A) and a layer (B) containing the resin (B) as a main component
  • the polyamide resin (A) is An aromatic diamine unit represented by the following general formula (I-1), an alicyclic diamine unit represented by the following general formula (I-2), and a straight chain represented by the following general formula (I-3) 25 to 50 mol% of diamine units containing a total of 50 mol% or more of at least one diamine unit selected from the group consisting of aliphatic diamine units;
  • a dicarboxylic acid unit containing a total of 50 mol% or more of a linear aliphatic dicarboxylic acid unit represented by the following general formula (II-1) and / or an aromatic dicarboxylic acid unit represented by the following general formula (II-2) 25 to 50 mol%
  • m represents an integer of 2 to 18.
  • n represents an integer of 2 to 18.
  • Ar represents an arylene group.
  • R represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
  • the multilayer film of the present invention exhibits oxygen barrier performance, can exhibit oxygen absorption performance without containing a transition metal, and the strength of the oxygen absorption barrier layer is extremely lowered as oxygen absorption proceeds. small. In addition, since the strength of the oxygen absorption barrier layer is maintained even in long-term use, delamination hardly occurs when the multilayer film is a laminate film.
  • the film packaging container including the multilayer film is excellent in suppressing the oxidative deterioration of the contents, hardly generating substances that cause a strange odor or a change in flavor, and excellent in flavor retention.
  • the multilayer film of the present invention comprises a layer (A) containing a polyamide resin (A) (hereinafter also referred to as “oxygen absorption barrier layer”), and a layer (B) containing the resin (B) as a main component.
  • A polyamide resin
  • B layer containing the resin (B) as a main component.
  • the layer structure in the multilayer film of the present invention is not particularly limited, and the number and type of layers (A) and layers (B) are not particularly limited.
  • an A / B configuration including one layer (A) and one layer (B) may be used, and B / A / consisting of one layer (A) and two layers (B).
  • a three-layer structure of B may be used.
  • the multilayer film of the present invention may include an arbitrary layer such as an adhesive layer (AD) as necessary, for example, a seven-layer structure of B1 / AD / B2 / A / B2 / AD / B1. Also good.
  • AD adhesive layer
  • the oxygen absorption barrier layer can exhibit oxygen absorption performance and oxygen barrier performance by containing a specific polyamide resin (hereinafter also referred to as “polyamide resin (A)”) described later.
  • the polyamide resin (A) contained in the oxygen absorption barrier layer may be one kind or a combination of two or more kinds.
  • an oxygen absorption barrier layer contains a polyamide resin (A) as a main resin component.
  • a resin other than the polyamide resin (A) may be added to the oxygen absorption barrier layer, but the ratio of the polyamide resin (A) in the total resin of the oxygen absorption barrier layer is preferably more than 95% by mass.
  • the resin contained in the oxygen absorption barrier layer may be only the polyamide resin (A), and the ratio of the polyamide resin (A) in the total resin of the oxygen absorption barrier layer is preferably 100% by mass or less.
  • a resin other than the polyamide resin (A) may be added to the oxygen-absorbing barrier layer, and as the added resin, performance that is desired to be imparted to the oxygen-absorbing barrier layer as long as the object of the present invention is not impaired.
  • various conventionally known resins may be used.
  • polyolefins such as polyethylene and polypropylene, and various modified products thereof, polyolefin elastomers, polyamide elastomers, styrene-butadiene copolymer resins And other hydrogenated products thereof, various thermoplastic elastomers typified by polyester elastomers, various polyamides such as nylon 6, 66, 12, nylon 12, and the like.
  • polybutadiene And carbon-carbon unsaturated double bond-containing resins such as modified polybutadiene.
  • the additive resin may be one kind or a combination of two or more kinds.
  • the ratio of the additive resin in the total resin of the oxygen absorption barrier layer is preferably 5% by mass or less.
  • the oxygen-absorbing barrier layer may contain an additive to be described later (hereinafter also referred to as “additive (C)”) depending on the desired performance and the like.
  • the content of the polyamide resin (A) in the oxygen absorption barrier layer is preferably 90% by mass to 100% by mass, and 95% by mass to 100% by mass from the viewpoints of moldability, oxygen absorption performance, and oxygen barrier performance. It is more preferable that
  • the thickness of the oxygen absorption barrier layer is preferably 2 to 100 ⁇ m, more preferably from the viewpoint of securing various physical properties such as flexibility required for the multilayer film while improving oxygen absorption performance and oxygen barrier performance. The thickness is 5 to 90 ⁇ m, more preferably 10 to 80 ⁇ m.
  • polyamide resin (A) ⁇ Configuration of polyamide resin (A)>
  • the polyamide resin (A) includes an aromatic diamine unit represented by the following general formula (I-1), an alicyclic diamine unit represented by the following general formula (I-2), and the following general formula: 25 to 50 mol% of diamine units containing a total of 50 mol% or more of at least one diamine unit selected from the group consisting of linear aliphatic diamine units represented by (I-3), and the following general formula (II-1) 25 to 50 mol% of dicarboxylic acid units containing a total of 50 mol% or more of linear aliphatic dicarboxylic acid units represented by formula (II-2) and aromatic dicarboxylic acid units represented by the following general formula (II-2): Tertiary hydrogen-containing carboxylic acid unit (preferably a structural unit represented by the following general formula (III)) 0.1 to 50 mol%.
  • I-1 aromatic diamine unit represented by the following general formula (I-1)
  • m represents an integer of 2 to 18.
  • n represents an integer of 2 to 18.
  • Ar represents an arylene group.
  • R represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
  • the polyamide resin (A) may further contain structural units other than those described above as long as the effects of the present invention are not impaired.
  • the content of the tertiary hydrogen-containing carboxylic acid unit is 0.1 to 50 mol%. If the content of the tertiary hydrogen-containing carboxylic acid unit is less than 0.1 mol%, sufficient oxygen absorption performance is not exhibited. On the other hand, when the content of the tertiary hydrogen-containing carboxylic acid unit exceeds 50 mol%, the tertiary hydrogen content is too high, and the physical properties such as gas barrier properties and mechanical properties of the polyamide resin (A) are deteriorated.
  • the secondary hydrogen-containing carboxylic acid is an amino acid
  • the peptide bond is continuous, so that the heat resistance is not sufficient, and a cyclic product composed of a dimer of amino acids is formed, thereby inhibiting polymerization.
  • the content of the tertiary hydrogen-containing carboxylic acid unit is preferably 0.2 mol% or more, more preferably 1 mol% or more, and preferably from the viewpoint of the oxygen absorption performance and the properties of the polyamide resin (A). It is 40 mol% or less, More preferably, it is 30 mol% or less.
  • the diamine unit content is 25 to 50 mol%, and preferably 30 to 50 mol% from the viewpoint of oxygen absorption performance and polymer properties.
  • the content of dicarboxylic acid units is 25 to 50 mol%, preferably 30 to 50 mol%.
  • the proportion of the content of the diamine unit and the dicarboxylic acid unit is preferably substantially the same from the viewpoint of the polymerization reaction, and the content of the dicarboxylic acid unit is ⁇ 2 mol% of the content of the diamine unit. More preferred.
  • the degree of polymerization of the polyamide resin (A) becomes difficult to increase, so it takes a lot of time to increase the degree of polymerization, Deterioration is likely to occur.
  • the diamine unit in the polyamide resin (A) is an aromatic diamine unit represented by the general formula (I-1), an alicyclic diamine unit represented by the general formula (I-2), and the general formula.
  • a total of 50 mol% or more of diamine units selected from the group consisting of linear aliphatic diamine units represented by (I-3) is contained in the diamine units, and the content is preferably 70 mol% Above, more preferably 80 mol% or more, still more preferably 90 mol% or more, and preferably 100 mol% or less.
  • Examples of the compound that can constitute the aromatic diamine unit represented by the general formula (I-1) include orthoxylylenediamine, metaxylylenediamine, and paraxylylenediamine. These can be used alone or in combination of two or more.
  • Examples of the compound that can constitute the alicyclic diamine unit represented by the formula (I-2) include bis (amino) such as 1,3-bis (aminomethyl) cyclohexane and 1,4-bis (aminomethyl) cyclohexane. Methyl) cyclohexanes. These can be used alone or in combination of two or more. Bis (aminomethyl) cyclohexanes have structural isomers, but by increasing the cis-isomer ratio, the crystallinity is high and good moldability can be obtained. On the other hand, if the cis-isomer ratio is lowered, a transparent material with low crystallinity can be obtained.
  • the cis-isomer content ratio in the bis (aminomethyl) cyclohexane is preferably 70 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more.
  • the cis body content ratio in the bis (aminomethyl) cyclohexanes is preferably 50 mol% or less, more preferably 40 mol% or less, still more preferably 30 mol% or less.
  • m represents an integer of 2 to 18, preferably 3 to 16, more preferably 4 to 14, and still more preferably 6 to 12.
  • Examples of the compound that can constitute the linear aliphatic diamine unit represented by the general formula (I-3) include ethylenediamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, and heptamethylenediamine.
  • aliphatic diamines such as octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, and dodecamethylene diamine, but are not limited thereto.
  • hexamethylenediamine is preferable. These can be used alone or in combination of two or more.
  • a diamine unit in the polyamide resin (A) in addition to imparting excellent gas barrier properties to the polyamide resin (A), the transparency and color tone are improved, and the moldability of a general-purpose thermoplastic resin is facilitated.
  • it preferably contains an aromatic diamine unit represented by the general formula (I-1) and / or an alicyclic diamine unit represented by the general formula (I-2).
  • the aromatic diamine unit represented by the general formula (I-1) is included.
  • the diamine unit in the polyamide resin (A) is a metaxylylenediamine unit from the viewpoint of facilitating the moldability of a general-purpose thermoplastic resin in addition to exhibiting excellent gas barrier properties in the polyamide resin (A).
  • the content is preferably 50 mol% or more, and the content is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, and preferably 100 mol% or less.
  • Examples of the compound that can constitute a diamine unit other than the diamine unit represented by any one of the general formulas (I-1) to (I-3) include aromatic diamines such as paraphenylenediamine, and 1,3-diaminocyclohexane. Fats such as 1,4-diaminocyclohexane, alicyclic diamines, N-methylethylenediamine, 2-methyl-1,5-pentanediamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, etc. Examples include, but are not limited to, group diamines, polyether diamines having ether bonds represented by Huntsman's Jeffamine and elastamine (both are trade names), and the like. These can be used alone or in combination of two or more.
  • the dicarboxylic acid unit in the polyamide resin (A) is a linear aliphatic group represented by the general formula (II-1) from the viewpoints of reactivity during polymerization and crystallinity and moldability of the polyamide resin (A).
  • the dicarboxylic acid unit and / or the aromatic dicarboxylic acid unit represented by the general formula (II-2) is contained in the dicarboxylic acid unit in a total of 50 mol% or more, and the content is preferably 70 mol% or more, more Preferably it is 80 mol% or more, More preferably, it is 90 mol% or more, Preferably it is 100 mol% or less.
  • the linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) is necessary for a packaging material and a packaging container in addition to imparting an appropriate glass transition temperature and crystallinity to the polyamide resin (A). It is preferable at the point which can provide a softness
  • n represents an integer of 2 to 18, preferably 3 to 16, more preferably 4 to 12, and still more preferably 4 to 8.
  • Examples of the compound that can constitute the linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1, Examples include 10-decanedicarboxylic acid, 1,11-undecanedicarboxylic acid, 1,12-dodecanedicarboxylic acid, but are not limited thereto. These can be used alone or in combination of two or more.
  • the type of the linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) is appropriately determined according to the application.
  • the linear aliphatic dicarboxylic acid unit in the polyamide resin (A) gives excellent gas barrier properties to the polyamide resin (A), and from the viewpoint of maintaining heat resistance after heat sterilization of the packaging material and packaging container.
  • At least one selected from the group consisting of an adipic acid unit, a sebacic acid unit, and a 1,12-dodecanedicarboxylic acid unit is contained in a total of 50 mol% or more in the linear aliphatic dicarboxylic acid unit,
  • the content is more preferably 70 mol% or more, still more preferably 80 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less.
  • the linear aliphatic dicarboxylic acid unit in the polyamide resin (A) is a linear aliphatic unit from the viewpoint of gas barrier properties of the polyamide resin (A) and thermal properties such as an appropriate glass transition temperature and melting point. It is preferable to contain 50 mol% or more in the dicarboxylic acid unit.
  • the linear aliphatic dicarboxylic acid unit in the polyamide resin (A) is converted from the sebacic acid unit to the linear aliphatic dicarboxylic acid unit from the viewpoint of imparting appropriate gas barrier properties and molding processability to the polyamide resin (A).
  • the 1,12-dodecanedicarboxylic acid unit is a linear aliphatic group. It is preferable to contain 50 mol% or more in the dicarboxylic acid unit.
  • the aromatic dicarboxylic acid unit represented by the general formula (II-2) facilitates the molding processability of packaging materials and packaging containers in addition to imparting further gas barrier properties to the polyamide resin (A). It is preferable at the point which can do.
  • Ar represents an arylene group.
  • the arylene group is preferably an arylene group having 6 to 30 carbon atoms, more preferably 6 to 15 carbon atoms, and examples thereof include a phenylene group and a naphthylene group.
  • Examples of the compound that can constitute the aromatic dicarboxylic acid unit represented by the general formula (II-2) include terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid, but are not limited thereto. is not. These can be used alone or in combination of two or more.
  • the kind of the aromatic dicarboxylic acid unit represented by the general formula (II-2) is appropriately determined according to the use.
  • the aromatic dicarboxylic acid unit in the polyamide resin (A) is a total of at least one selected from the group consisting of an isophthalic acid unit, a terephthalic acid unit, and a 2,6-naphthalenedicarboxylic acid unit in the aromatic dicarboxylic acid unit.
  • the content is preferably 70 mol% or more, more preferably 80 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less. is there. Among these, it is preferable to contain isophthalic acid and / or terephthalic acid in the aromatic dicarboxylic acid unit.
  • the content ratio of the isophthalic acid unit to the terephthalic acid unit is not particularly limited and is appropriately determined according to the application.
  • the molar ratio is preferably 0/100 to 100/0, more preferably 0/100 to 60/40, More preferably, it is 0/100 to 40/60, and more preferably 0/100 to 30/70.
  • the content ratio of the linear aliphatic dicarboxylic acid unit to the aromatic dicarboxylic acid unit is particularly limited. Rather, it is determined appropriately according to the application. For example, when the purpose is to increase the glass transition temperature of the polyamide resin (A) to lower the crystallinity of the polyamide resin (A), the linear aliphatic dicarboxylic acid unit / aromatic dicarboxylic acid unit is both units.
  • the molar ratio is preferably 0/100 to 60/40, more preferably 0/100 to 40/60, still more preferably 0/100 to 30/70.
  • the linear aliphatic dicarboxylic acid unit / aromatic dicarboxylic acid unit is When the total is 100, the molar ratio is preferably 40/60 to 100/0, more preferably 60/40 to 100/0, still more preferably 70/30 to 100/0.
  • Examples of the compound that can constitute a dicarboxylic acid unit other than the dicarboxylic acid unit represented by the general formula (II-1) or (II-2) include oxalic acid, malonic acid, fumaric acid, maleic acid, 1,3- Examples thereof include, but are not limited to, dicarboxylic acids such as benzenediacetic acid and 1,4-benzenediacetic acid.
  • the tertiary hydrogen-containing carboxylic acid unit in the polyamide resin (A) has at least one amino group and one carboxyl group from the viewpoint of polymerization of the polyamide resin (A), or two or more carboxyl groups.
  • tertiary hydrogen-containing carboxylic acid unit in the polyamide resin (A) has at least one amino group and one carboxyl group from the viewpoint of polymerization of the polyamide resin (A), or two or more carboxyl groups.
  • Specific examples include structural units represented by any of the following general formulas (III), (IV), or (V).
  • R, R 1 and R 2 each represent a substituent, and A 1 to A 3 each represent a single bond or a divalent linking group. However, the case where both A 1 and A 2 in the general formula (IV) are single bonds is excluded. ]
  • the polyamide resin (A) includes a tertiary hydrogen-containing carboxylic acid unit.
  • a tertiary hydrogen-containing carboxylic acid unit By containing such a tertiary hydrogen-containing carboxylic acid unit as a copolymerization component, the polyamide resin (A) can exhibit excellent oxygen absorption performance without containing a transition metal.
  • the mechanism by which the polyamide resin (A) having a tertiary hydrogen-containing carboxylic acid unit exhibits good oxygen absorption performance has not yet been clarified, but is estimated as follows.
  • a compound that can constitute a tertiary hydrogen-containing carboxylic acid unit an electron-withdrawing group and an electron-donating group are bonded to the same carbon atom, so that unpaired electrons existing on the carbon atom are energetic. It is considered that a very stable radical is generated by a phenomenon called a captodative effect that is stabilized in a stable manner.
  • the carboxyl group is an electron withdrawing group
  • the carbon to which the adjacent tertiary hydrogen is bonded becomes electron deficient ( ⁇ + )
  • the tertiary hydrogen also becomes electron deficient ( ⁇ + ) Dissociates as a radical.
  • oxygen and water it is considered that oxygen reacts with this radical to show oxygen absorption performance. It has also been found that the higher the humidity and temperature, the higher the reactivity.
  • R, R 1 and R 2 each represent a substituent.
  • substituent represented by R, R 1 and R 2 in the present invention include a halogen atom (eg, chlorine atom, bromine atom, iodine atom), alkyl group (1 to 15, preferably 1 to 6).
  • Linear, branched or cyclic alkyl groups having the following carbon atoms for example, methyl group, ethyl group, n-propyl group, isopropyl group, t-butyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl Group), an alkenyl group (a linear, branched or cyclic alkenyl group having 2 to 10, preferably 2 to 6 carbon atoms, such as a vinyl group, an allyl group), an alkynyl group (2 to 10, preferably Alkynyl groups having 2 to 6 carbon atoms, such as ethynyl groups, propargyl groups), aryl groups (aryls having 6 to 16, preferably 6 to 10 carbon atoms) 1 to 12 groups obtained by removing one hydrogen atom from a group, for example, phenyl group, naphthyl group, heterocyclic group (5-membered or 6-
  • An alkylthio group an alkylthio group having 1 to 10, preferably 1 to 6 carbon atoms, such as a methylthio group, an ethylthio group
  • an arylthio group (6 to 12, preferably 6 to 8 carbon atoms).
  • heterocyclic thio groups for example, heterocyclic thio groups having 2 to 10, preferably 2 to 6 carbon atoms, such as - benzothiazolylthio group
  • an imido group (2 to 10, preferably an imido group having 4 to 8 carbon atoms, for example, N- succinimido group, N- phthalimido group.
  • those having a hydrogen atom may be further substituted with the above groups, for example, an alkyl group substituted with a hydroxyl group (for example, hydroxyethyl group), an alkyl group substituted with an alkoxy group (Eg, methoxyethyl group), an alkyl group substituted with an aryl group (eg, benzyl group), an aryl group substituted with an alkyl group (eg, p-tolyl group), an aryloxy group substituted with an alkyl group ( Examples thereof include, but are not limited to, 2-methylphenoxy group.
  • the carbon number mentioned above shall not include the carbon number of the further substituent.
  • a benzyl group is regarded as a C 1 alkyl group substituted with a phenyl group, and is not regarded as a C 7 alkyl group substituted with a phenyl group.
  • the following description of the number of carbon atoms shall be similarly understood unless otherwise specified.
  • a 1 to A 3 each represents a single bond or a divalent linking group.
  • the divalent linking group include linear, branched or cyclic alkylene groups (C 1-12, preferably C 1-4 alkylene groups such as methylene and ethylene groups), aralkylene groups (carbon numbers). Examples thereof include an aralkylene group having 7 to 30 carbon atoms, preferably 7 to 13 carbon atoms, such as a benzylidene group, and an arylene group (arylene group having 6 to 30 carbon atoms, preferably 6 to 15 carbon atoms such as a phenylene group).
  • substituents represented by R, R 1 and R 2 examples include the functional groups exemplified above as substituents represented by R, R 1 and R 2 .
  • substituents represented by R, R 1 and R 2 examples include, but are not limited to, an arylene group substituted with an alkyl group (for example, a xylylene group).
  • the polyamide resin (A) preferably contains at least one structural unit represented by any one of the general formulas (III), (IV), and (V).
  • a carboxylic acid unit having tertiary hydrogen on the ⁇ -carbon (carbon atom adjacent to the carboxyl group) is more preferable, and is represented by the general formula (III).
  • the structural unit is particularly preferred.
  • R in the general formula (III) is as described above.
  • a substituted or unsubstituted alkyl group and a substituted or unsubstituted aryl group are more preferable, and a substituted or unsubstituted C 1-6 carbon atom is more preferable.
  • An alkyl group and a substituted or unsubstituted aryl group having 6 to 10 carbon atoms are more preferred, and a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms and a substituted or unsubstituted phenyl group are particularly preferred.
  • R examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, 1-methylpropyl group, 2-methylpropyl group, hydroxymethyl group, 1- Examples thereof include, but are not limited to, a hydroxyethyl group, a mercaptomethyl group, a methylsulfanylethyl group, a phenyl group, a naphthyl group, a benzyl group, and a 4-hydroxybenzyl group. Among these, a methyl group, an ethyl group, an isopropyl group, a 2-methylpropyl group, and a benzyl group are more preferable.
  • the compounds that can constitute the structural unit represented by the general formula (III) include alanine, 2-aminobutyric acid, valine, norvaline, leucine, norleucine, tert-leucine, isoleucine, serine, threonine, cysteine, methionine, 2 -Alpha-amino acids such as phenylglycine, phenylalanine, tyrosine, histidine, tryptophan, proline and the like can be exemplified, but are not limited thereto.
  • examples of the compound that can constitute the structural unit represented by the general formula (IV) include ⁇ -amino acids such as 3-aminobutyric acid, which constitute the structural unit represented by the general formula (V).
  • examples of the compound that can be used include, but are not limited to, dicarboxylic acids such as methylmalonic acid, methylsuccinic acid, malic acid, and tartaric acid. These may be any of D-form, L-form and racemate, or allo-form. Moreover, these can be used individually or in combination of 2 or more types.
  • ⁇ -amino acids having tertiary hydrogen in the ⁇ carbon are particularly preferable from the viewpoint of availability of raw materials and improvement of oxygen absorption.
  • alanine is most preferable from the viewpoints of ease of supply, inexpensive price, ease of polymerization, and low yellowness (YI) of the polymer. Since alanine has a relatively low molecular weight and a high copolymerization rate per 1 g of the polyamide resin (A), the oxygen absorption performance per 1 g of the polyamide resin (A) is good.
  • the purity of the compound that can constitute the tertiary hydrogen-containing carboxylic acid unit is 95% or more from the viewpoint of the influence on the polymerization such as the delay of the polymerization rate and the influence on the quality such as the yellowness of the polymer. Preferably, it is 98.5% or more, more preferably 99% or more.
  • sulfate ions and ammonium ions contained as impurities are preferably 500 ppm or less, more preferably 200 ppm or less, and still more preferably 50 ppm or less.
  • polyamide resin (A) when the polyamide resin (A) needs flexibility or the like, in addition to the diamine unit, the dicarboxylic acid unit and the tertiary hydrogen-containing carboxylic acid unit, the polyamide resin (A) An ⁇ -aminocarboxylic acid unit represented by the formula (X) may be further contained.
  • p represents an integer of 2 to 18.
  • the content of the ⁇ -aminocarboxylic acid unit is preferably from 0.1 to 49.9 mol%, more preferably from 3 to 40 mol%, still more preferably from 5 to 35, based on all constituent units of the polyamide resin (A). Mol%. However, the total of the diamine unit, dicarboxylic acid unit, tertiary hydrogen-containing carboxylic acid unit, and ⁇ -aminocarboxylic acid unit does not exceed 100 mol%.
  • p represents an integer of 2 to 18, preferably 3 to 16, more preferably 4 to 14, and still more preferably 5 to 12.
  • Examples of the compound that can constitute the ⁇ -aminocarboxylic acid unit represented by the general formula (X) include ⁇ -aminocarboxylic acid having 5 to 19 carbon atoms and lactam having 5 to 19 carbon atoms.
  • Examples of the ⁇ -aminocarboxylic acid having 5 to 19 carbon atoms include 6-aminohexanoic acid and 12-aminododecanoic acid, and examples of the lactam having 5 to 19 carbon atoms include ⁇ -caprolactam and laurolactam. However, it is not limited to these. These can be used alone or in combination of two or more.
  • the ⁇ -aminocarboxylic acid unit preferably contains 6-aminohexanoic acid units and / or 12-aminododecanoic acid units in a total of 50 mol% or more in the ⁇ -aminocarboxylic acid unit, and the content is More preferably, it is 70 mol% or more, More preferably, it is 80 mol% or more, More preferably, it is 90 mol% or more, Preferably it is 100 mol% or less.
  • the relative viscosity is used for the degree of polymerization of the polyamide resin (A).
  • the preferred relative viscosity of the polyamide resin (A) is preferably 1.8 to 4.2, more preferably 1.9 to 4.0, and still more preferably 2 from the viewpoint of the strength and appearance of the molded product and molding processability. 0.0 to 3.8.
  • the oxygen absorption rate of the polyamide resin (A) and the oxidative deterioration of the polyamide resin (A) due to oxygen absorption can be controlled by changing the terminal amino group concentration of the polyamide resin (A).
  • the terminal amino group concentration of the polyamide resin (A) is preferably in the range of 5 to 150 ⁇ eq / g, more preferably 10 to 100 ⁇ eq / g, still more preferably 15 ⁇ 80 ⁇ eq / g.
  • the polyamide resin (A) includes a diamine component that can constitute the diamine unit, a dicarboxylic acid component that can constitute the dicarboxylic acid unit, and a tertiary hydrogen-containing carboxylic acid component that can constitute the tertiary hydrogen-containing carboxylic acid unit.
  • the ⁇ -aminocarboxylic acid component that can constitute the ⁇ -aminocarboxylic acid unit if necessary, can be produced by polycondensation, and the degree of polymerization can be controlled by adjusting the polycondensation conditions and the like. it can.
  • a small amount of monoamine or monocarboxylic acid may be added as a molecular weight modifier during polycondensation. Further, in order to suppress the polycondensation reaction and obtain a desired degree of polymerization, the ratio (molar ratio) between the diamine component and the carboxylic acid component constituting the polyamide resin (A) may be adjusted from 1.
  • Examples of the polycondensation method of the polyamide resin (A) include, but are not limited to, a reactive extrusion method, a pressurized salt method, an atmospheric pressure dropping method, and a pressure dropping method. Moreover, the one where reaction temperature is as low as possible can suppress the yellowing and gelatinization of a polyamide resin (A), and the polyamide resin (A) of the stable property is obtained.
  • a polyamide composed of a diamine component and a dicarboxylic acid component (a polyamide corresponding to the precursor of the polyamide resin (A)) or a polyamide composed of a diamine component, a dicarboxylic acid component and an ⁇ -aminocarboxylic acid component (polyamide resin (A And a tertiary hydrogen-containing carboxylic acid component are melt-kneaded with an extruder and reacted.
  • a screw suitable for reactive extrusion is used, and a twin screw extruder having a large L / D is used. It is preferable to use it.
  • a polyamide resin (A) containing a small amount of a tertiary hydrogen-containing carboxylic acid unit it is a simple method and suitable.
  • the pressurized salt method is a method of performing melt polycondensation under pressure using a nylon salt as a raw material. Specifically, after preparing an aqueous nylon salt solution comprising a diamine component, a dicarboxylic acid component, a tertiary hydrogen-containing carboxylic acid component, and an ⁇ -aminocarboxylic acid component as necessary, the aqueous solution is concentrated, Next, the temperature is raised under pressure, and polycondensation is performed while removing condensed water. While the inside of the can is gradually returned to normal pressure, the temperature is raised to about the melting point of polyamide resin (A) + 10 ° C.
  • the pressurized salt method is useful when a volatile component is used as a monomer, and is a preferable polycondensation method when the copolymerization rate of the tertiary hydrogen-containing carboxylic acid component is high.
  • it is suitable for producing a polyamide resin (A) containing 15 mol% or more of tertiary hydrogen-containing carboxylic acid units in all structural units of the polyamide resin (A).
  • Normal pressure dropping method In the atmospheric pressure dropping method, a diamine component is continuously dropped into a mixture obtained by heating and melting a dicarboxylic acid component, a tertiary hydrogen-containing carboxylic acid component, and, if necessary, an ⁇ -aminocarboxylic acid component under normal pressure. Then, polycondensation is performed while removing condensed water. The polycondensation reaction is performed while raising the temperature of the reaction system so that the reaction temperature does not fall below the melting point of the produced polyamide resin (A). Compared with the pressurized salt method, the atmospheric pressure dropping method does not use water to dissolve the salt, so the yield per batch is large, and the reaction rate is not required for vaporization / condensation of raw material components. The process time can be shortened.
  • a dicarboxylic acid component, a tertiary hydrogen-containing carboxylic acid component, and, if necessary, an ⁇ -aminocarboxylic acid component are charged into a polycondensation can, and the components are agitated and melt mixed.
  • the diamine component is continuously dropped into the mixture while the inside of the can is preferably pressurized to about 0.3 to 0.4 MPaG, and polycondensation is performed while removing condensed water.
  • the polycondensation reaction is performed while raising the temperature of the reaction system so that the reaction temperature does not fall below the melting point of the produced polyamide resin (A).
  • the dropping of the diamine component is terminated, and while gradually raising the inside of the can to normal pressure, the temperature is raised to about the melting point of the polyamide resin (A) + 10 ° C. and maintained, and then ⁇ 0.02 MPaG The pressure is gradually reduced until it is maintained at the same temperature, and the polycondensation is continued.
  • the inside of the can is pressurized to about 0.3 MPaG with nitrogen to recover the polyamide resin (A).
  • the pressure dropping method is useful when a volatile component is used as a monomer, and is a preferred polycondensation method when the copolymerization rate of the tertiary hydrogen-containing carboxylic acid component is high. .
  • it is suitable for producing a polyamide resin (A) containing 15 mol% or more of tertiary hydrogen-containing carboxylic acid units in all structural units of the polyamide resin (A).
  • a polyamide resin (A) excellent in properties can be obtained. Furthermore, since the pressure drop method does not use water for dissolving the salt compared to the pressure salt method, the yield per batch is large, and the reaction time can be shortened as in the atmospheric pressure drop method. It is possible to obtain a polyamide resin (A) having a low yellowness, which can be suppressed.
  • the polyamide resin (A) produced by the polycondensation method can be used as it is, but may be subjected to a step for further increasing the degree of polymerization.
  • Further examples of the step of increasing the degree of polymerization include reactive extrusion in an extruder and solid phase polymerization.
  • a heating device used in solid phase polymerization a continuous heating drying device, a tumble dryer, a conical dryer, a rotary drum heating device called a rotary dryer, etc., and a rotary blade inside a nauta mixer are provided.
  • a conical heating device can be preferably used, but a known method and device can be used without being limited thereto.
  • the rotating drum type heating device in the above-described device can seal the inside of the system and perform polycondensation in a state where oxygen that causes coloring is removed. It is preferably used because it is easy to proceed.
  • [Phosphorus atom-containing compound, alkali metal compound] In the polycondensation of the polyamide resin (A), it is preferable to add a phosphorus atom-containing compound from the viewpoint of promoting the amidation reaction.
  • the phosphorus atom-containing compound include phosphinic acid compounds such as dimethylphosphinic acid and phenylmethylphosphinic acid; hypophosphorous acid, sodium hypophosphite, potassium hypophosphite, lithium hypophosphite, magnesium hypophosphite, Diphosphite compounds such as calcium hypophosphite and ethyl hypophosphite; phosphonic acid, sodium phosphonate, potassium phosphonate, lithium phosphonate, magnesium phosphonate, calcium phosphonate, phenylphosphonic acid, ethylphosphonic acid, phenylphosphone Phosphonic acid compounds such as sodium phosphate, potassium phenylphosphonate, lithium phenylphosphonate,
  • hypophosphite metal salts such as sodium hypophosphite, potassium hypophosphite, lithium hypophosphite and the like are particularly preferable because they are highly effective in promoting amidation reaction and excellent in anti-coloring effect.
  • sodium hypophosphite is preferred.
  • the phosphorus atom containing compound which can be used by this invention is not limited to these compounds.
  • the addition amount of the phosphorus atom-containing compound is preferably 0.1 to 1000 ppm, more preferably 1 to 600 ppm, still more preferably 5 to 400 ppm in terms of the phosphorus atom concentration in the polyamide resin (A).
  • the polyamide resin (A) is difficult to be colored during the polymerization, and the transparency becomes high. If it is 1000 ppm or less, the polyamide resin (A) is hardly gelled, and it is possible to reduce the mixing of fish eyes considered to be caused by the phosphorus atom-containing compound into the molded product, so that the appearance of the molded product is improved.
  • an alkali metal compound in combination with the phosphorus atom-containing compound in the polycondensation system of the polyamide resin (A).
  • an alkali metal compound in order to prevent coloring of the polyamide resin (A) during the polycondensation, it is necessary to make a sufficient amount of the phosphorus atom-containing compound present.
  • the polyamide resin (A) may be gelled.
  • alkali metal compound alkali metal hydroxide, alkali metal acetate, alkali metal carbonate, alkali metal alkoxide, and the like are preferable.
  • Sodium methoxide, sodium ethoxide, sodium propoxide, sodium butoxide, potassium methoxide, lithium methoxide, sodium carbonate and the like but can be used without being limited to these compounds.
  • the range of 1.0 / 1.5 is preferable, more preferably 1.0 / 0.1 to 1.0 / 1.2, and still more preferably 1.0 / 0.2 to 1.0 / 1. 1.
  • the oxygen absorption barrier layer of the present invention may further contain an additive (C) as necessary in addition to the polyamide resin (A) described above.
  • an additive (C) may be used, or a combination of two or more types may be used.
  • the content of the additive (C) in the oxygen absorption barrier layer is preferably 10% by mass or less, more preferably 5% by mass or less, although it depends on the type of additive.
  • a diamide compound and / or a diester compound to the polyamide resin (A) as a suppression of whitening after the hot water treatment or after a long period of time.
  • Diamide compounds and diester compounds are effective in suppressing whitening due to precipitation of oligomers.
  • a diamide compound and a diester compound may be used alone or in combination.
  • the diamide compound used in the present invention is preferably a diamide compound obtained from an aliphatic dicarboxylic acid having 8 to 30 carbon atoms and a diamine having 2 to 10 carbon atoms.
  • a whitening prevention effect can be expected.
  • the aliphatic dicarboxylic acid has 30 or less carbon atoms and the diamine has 10 or less carbon atoms, uniform dispersion in the oxygen-absorbing barrier layer is good.
  • the aliphatic dicarboxylic acid may have a side chain or a double bond, but a linear saturated aliphatic dicarboxylic acid is preferred.
  • One kind of diamide compound may be used, or two or more kinds may be used in combination.
  • Examples of the aliphatic dicarboxylic acid include stearic acid (C18), eicosanoic acid (C20), behenic acid (C22), montanic acid (C28), and triacontanoic acid (C30).
  • Examples of the diamine include ethylenediamine, butylenediamine, hexanediamine, xylylenediamine, and bis (aminomethyl) cyclohexane. A diamide compound obtained by combining these is preferred.
  • a diamide compound obtained from an aliphatic dicarboxylic acid mainly composed of stearic acid and a diamine mainly composed of ethylenediamine is particularly preferred.
  • the diester compound used in the present invention is preferably a diester compound obtained from an aliphatic dicarboxylic acid having 8 to 30 carbon atoms and a diol having 2 to 10 carbon atoms.
  • an effect of preventing whitening can be expected.
  • the aliphatic dicarboxylic acid has 30 or less carbon atoms and the diol has 10 or less carbon atoms, uniform dispersion in the oxygen-absorbing barrier layer is good.
  • the aliphatic dicarboxylic acid may have a side chain or a double bond, but a linear saturated aliphatic dicarboxylic acid is preferred.
  • diester compound may be used, or two or more types may be used in combination.
  • the aliphatic dicarboxylic acid include stearic acid (C18), eicosanoic acid (C20), behenic acid (C22), montanic acid (C28), and triacontanoic acid (C30).
  • the diol include ethylene glycol, propanediol, butanediol, hexanediol, xylylene glycol, and cyclohexanedimethanol.
  • a diester compound obtained by combining these is preferred.
  • Particularly preferred are diester compounds obtained from an aliphatic dicarboxylic acid mainly composed of montanic acid and a diol mainly composed of ethylene glycol and / or 1,3-butanediol.
  • the amount of the diamide compound and / or diester compound added is preferably 0.005 to 0.5% by mass, more preferably 0.05 to 0.5% by mass, and still more preferably in the oxygen absorption barrier layer. 0.12 to 0.5% by mass.
  • a synergistic effect of preventing whitening can be expected by adding 0.005% by mass or more to the oxygen absorption barrier layer and using it together with the crystallization nucleating agent.
  • the oxygen absorption barrier layer may contain a layered silicate.
  • a layered silicate By adding the layered silicate, not only oxygen gas barrier properties but also barrier properties against gas such as carbon dioxide gas can be imparted to the multilayer film.
  • the layered silicate is a 2-octahedron or 3-octahedral layered silicate having a charge density of 0.25 to 0.6.
  • Examples of the 2-octahedron type include montmorillonite, beidellite, and the like.
  • Examples of the octahedron type include hectorite and saponite. Among these, montmorillonite is preferable.
  • the layered silicate is obtained by expanding an interlayer of the layered silicate by previously bringing an organic swelling agent such as a polymer compound or an organic compound into contact with the layered silicate.
  • an organic swelling agent such as a polymer compound or an organic compound
  • a quaternary ammonium salt can be preferably used.
  • a quaternary ammonium salt having at least one alkyl group or alkenyl group having 12 or more carbon atoms is used.
  • organic swelling agents include trimethyl dodecyl ammonium salts, trimethyl tetradecyl ammonium salts, trimethyl hexadecyl ammonium salts, trimethyl octadecyl ammonium salts, trimethyl alkyl ammonium salts such as trimethyl eicosyl ammonium salts; trimethyl octadecenyl ammonium salts Trimethylalkenylammonium salts such as trimethyloctadecadienylammonium salt; triethylalkylammonium salts such as triethyldodecylammonium salt, triethyltetradecylammonium salt, triethylhexadecylammonium salt, triethyloctadecylammonium salt; tributyldodecylammonium salt, tributyltetradecyl Ammonium salt, tribut
  • hydroxyl group and / or ether group-containing ammonium salts among them, methyl dialkyl (PAG) ammonium salt, ethyl dialkyl (PAG) ammonium salt, butyl dialkyl (PAG) ammonium salt, dimethyl bis (PAG) ammonium salt, diethyl bis (PAG) ) Ammonium salt, dibutyl bis (PAG) ammonium salt, methyl alkyl bis (PAG) ammonium salt, ethyl alkyl bis (PAG) ammonium salt, butyl alkyl bis (PAG) ammonium salt, methyl tri (PAG) ammonium salt, ethyl tri (PAG) ammonium Salt, butyltri (PAG) ammonium salt, tetra (PAG) ammonium salt (wherein alkyl is carbon number such as dodecyl, tetradecyl, hexadecyl, octadec
  • Salts can also be used as organic swelling agents.
  • organic swelling agents trimethyldodecyl ammonium salt, trimethyl tetradecyl ammonium salt, trimethyl hexadecyl ammonium salt, trimethyl octadecyl ammonium salt, dimethyl didodecyl ammonium salt, dimethyl ditetradecyl ammonium salt, dimethyl dihexadecyl ammonium salt, dimethyl dioctadecyl ammonium salt, dimethyl A ditallow ammonium salt is preferred.
  • organic swelling agents can be used alone or as a mixture of a plurality of types.
  • a layered silicate treated with an organic swelling agent is preferably added in an amount of 0.5 to 8% by mass in the oxygen absorption barrier layer, more preferably 1 to 6% by mass, still more preferably 2 to 5% by mass. If the amount of layered silicate added is 0.5% by mass or more, the effect of improving the gas barrier property is sufficiently obtained, and if it is 8% by mass or less, pinholes are generated due to deterioration of the flexibility of the oxygen absorption barrier layer. Such problems are unlikely to occur.
  • the layered silicate is preferably uniformly dispersed without locally agglomerating.
  • the uniform dispersion here means that the layered silicate is separated into a flat plate in the oxygen absorption barrier layer, and 50% or more of them have an interlayer distance of 5 nm or more.
  • the interlayer distance refers to the distance between the centers of gravity of the flat objects. The larger the distance, the better the dispersion state, the better the appearance such as transparency, and the better the gas barrier properties such as oxygen and carbon dioxide.
  • Oxidation reaction accelerator In order to further enhance the oxygen absorption performance of the oxygen absorption barrier layer, a conventionally known oxidation reaction accelerator may be added as long as the effects of the present invention are not impaired.
  • the oxidation reaction accelerator can enhance the oxygen absorption performance of the oxygen absorption barrier layer by promoting the oxygen absorption performance of the polyamide resin (A).
  • the oxidation reaction accelerator examples include Group VIII metals such as iron, cobalt and nickel, Group I metals such as copper and silver, Group IV metals such as tin, titanium and zirconium, Group V of vanadium, Examples thereof include low-valent inorganic or organic acid salts of Group VI metals such as chromium and Group VII metals such as manganese, or complex salts of the above transition metals.
  • a cobalt salt excellent in an oxygen reaction promoting effect or a combination of a cobalt salt and a manganese salt is preferable.
  • the addition amount of the oxygen reaction accelerator is preferably 10 to 800 ppm, more preferably 50 to 600 ppm, and still more preferably 100 to 400 ppm as the metal atom concentration in the oxygen absorption barrier layer.
  • oxygen absorbent In order to further enhance the oxygen absorption performance of the oxygen absorption barrier layer, a conventionally known oxygen absorbent may be added within a range not impairing the effects of the present invention.
  • the oxygen absorbent can enhance the oxygen absorption performance of the oxygen absorption barrier layer by imparting oxygen absorption performance to the oxygen absorption barrier layer separately from the oxygen absorption performance of the polyamide resin (A).
  • the oxygen absorbent include oxidizable organic compounds typified by compounds having a carbon-carbon double bond in the molecule, such as vitamin C, vitamin E, butadiene and isoprene.
  • the amount of oxygen absorber added is preferably 0.01 to 5% by mass, more preferably 0.1 to 4% by mass, and still more preferably 0.5 to 3% by mass in the oxygen absorption barrier layer. is there.
  • carboxylates selected from sodium acetate, calcium acetate, magnesium acetate, calcium stearate, magnesium stearate, sodium stearate and derivatives thereof.
  • the derivatives include 12-hydroxystearic acid metal salts such as calcium 12-hydroxystearate, magnesium 12-hydroxystearate, and sodium 12-hydroxystearate.
  • the addition amount of the carboxylates is preferably 400 to 10000 ppm, more preferably 800 to 5000 ppm, still more preferably 1000 to 3000 ppm as the concentration in the oxygen absorption barrier layer. If it is 400 ppm or more, the thermal deterioration of the polyamide resin (A) can be suppressed, and gelation can be prevented. Moreover, if it is 10000 ppm or less, a polyamide resin (A) will not raise
  • carboxylates that are basic substances in the melted polyamide resin (A) delays the modification of the polyamide resin (A) by heat and suppresses the formation of a gel that is considered to be the final modified product.
  • the carboxylates described above are excellent in handling properties, and among them, metal stearate is preferable because it is inexpensive and has an effect as a lubricant, and can stabilize the molding process.
  • the shape of the carboxylate is not particularly limited, but when the powder and the smaller particle size are dry-mixed, it is easy to uniformly disperse in the oxygen absorption barrier layer. Is preferably 0.2 mm or less.
  • sodium acetate having a high metal salt concentration per gram it is preferable to use as a more effective gelling prevention, fisheye reduction, and kogation prevention formulation.
  • sodium acetate When sodium acetate is used, it may be dry mixed with the polyamide resin (A) and molded, but from the viewpoint of handling properties and reduction of acetic acid odor, a masterbatch comprising the polyamide resin (A) and sodium acetate is prepared. It is preferable to dry-mix with the polyamide resin (A) for molding. Since it is easy to disperse
  • antioxidant In the present invention, it is preferable to add an antioxidant from the viewpoint of controlling oxygen absorption performance and suppressing deterioration of mechanical properties.
  • the antioxidant include copper-based antioxidants, hindered phenol-based antioxidants, hindered amine-based antioxidants, phosphorus-based antioxidants, and thio-based antioxidants. Antioxidants and phosphorus antioxidants are preferred.
  • hindered phenol antioxidant examples include triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate, 4,4′-butylidenebis (3-methyl- 6-t-butylphenol), 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,4-bis- (n-octylthio) -6- (4-Hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- ( , 5-di-t-butyl-4
  • phosphorus antioxidants include triphenyl phosphite, trioctadecyl phosphite, tridecyl phosphite, trinonylphenyl phosphite, diphenylisodecyl phosphite, bis (2,6-di-tert-butyl- 4-methylphenyl) pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, tris (2,4-di-tert-butylphenyl) phosphite, distearyl pentaerythritol And organic phosphorus compounds such as diphosphite, tetra (tridecyl-4,4′-isopropylidene diphenyl diphosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl)
  • the content of the antioxidant can be used without particular limitation as long as it does not impair the various performances of the composition, but it is preferable in the oxygen-absorbing barrier layer from the viewpoint of controlling the oxygen-absorbing performance and suppressing deterioration of mechanical properties. Is 0.001 to 3 mass%, more preferably 0.01 to 1 mass%.
  • the oxygen-absorbing barrier layer has a lubricant, matting agent, heat stabilizer, weathering stabilizer, ultraviolet absorber, plasticizer, flame retardant, antistatic agent, anti-coloring agent, crystal
  • An additive such as a nucleating agent may be added. These additives can be added as necessary within a range not impairing the effects of the present invention.
  • the layer (B) in the present invention is a layer mainly composed of the resin (B).
  • the “main component” means that the layer (B) contains the resin (B) in an amount of 70% by mass or more, preferably 80% by mass or more, more preferably 90 to 100% by mass.
  • the layer (B) may contain the additive (C) in addition to the resin (B) depending on the desired performance and the like.
  • the multilayer film of the present invention may have a plurality of layers (B), and the structures of the plurality of layers (B) may be the same or different from each other.
  • the thickness of the layer (B) can be appropriately determined according to the use, and from the viewpoint of ensuring various physical properties such as strength and flexibility such as pinhole resistance and drop resistance required for the multilayer film,
  • the thickness is preferably 5 to 200 ⁇ m, more preferably 10 to 150 ⁇ m, still more preferably 15 to 100 ⁇ m.
  • Resin (B) in the present invention, any resin can be used as the resin (B) and is not particularly limited.
  • a thermoplastic resin can be used, and specific examples thereof include polyolefin, polyester, polyamide, ethylene-vinyl alcohol copolymer, and plant-derived resin.
  • the resin (B) preferably contains at least one selected from the group consisting of these resins.
  • polyolefin Specific examples of the polyolefin include olefins such as polyethylene (low density polyethylene, medium density polyethylene, high density polyethylene, linear (linear) low density polyethylene), polypropylene, polybutene-1, poly-4-methylpentene-1, and the like.
  • Homopolymer ethylene-propylene random copolymer, ethylene-propylene block copolymer, ethylene-propylene-polybutene-1 copolymer, ethylene-cyclic olefin copolymer, etc., copolymer of ethylene and ⁇ -olefin Ethylene- ⁇ , ⁇ -unsaturated carboxylic acid copolymer such as ethylene- (meth) acrylic acid copolymer, ethylene- ⁇ , ⁇ -unsaturated carboxylic acid such as ethylene- (meth) acrylic acid ethyl copolymer Ester copolymer, ionic cross-linked product of ethylene- ⁇ , ⁇ -unsaturated carboxylic acid copolymer, ethylene - Other ethylene copolymers such as vinyl acetate copolymer; may be mentioned graft-modified polyolefin grafted modifying these polyolefins with an acid anhydride such as maleic anhydride.
  • the polyester is composed of one or more selected from polycarboxylic acids containing dicarboxylic acids and ester-forming derivatives thereof, and one or more selected from polyhydric alcohols containing glycol. Or a hydroxycarboxylic acid and an ester-forming derivative thereof, or a cyclic ester.
  • Dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecanedicarboxylic acid, 3- Exemplified as cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2,5-norbornanedicarboxylic acid, dimer acid, etc.
  • Saturated aliphatic dicarboxylic acids or ester-forming derivatives thereof unsaturated aliphatic dicarboxylic acids exemplified by fumaric acid, maleic acid, itaconic acid or the like, or ester-forming derivatives thereof, orthophthalic acid, isophthalic acid, terephthalic acid 1,3- Phthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4 ′ Aromatic dicarboxylic acids exemplified by biphenylsulfone dicarboxylic acid, 4,4′-biphenyl ether dicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p′-dicarboxylic acid, anthracene dicarboxylic
  • Examples of forming derivatives such as 5-sodium sulfoisophthalic acid, 2-sodium sulfoterephthalic acid, 5-lithium sulfoisophthalic acid, 2-lithium sulfoterephthalic acid, 5-potassium sulfoisophthalic acid, 2-potassium sulfoterephthalic acid, etc.
  • Aromatic dicarboxylic acids containing metal sulfonate groups The like lower alkyl esters thereof derivative.
  • dicarboxylic acids the use of terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid is particularly preferable in terms of the physical properties of the resulting polyester, and other dicarboxylic acids may be copolymerized as necessary. .
  • carboxylic acids other than these dicarboxylic acids ethanetricarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3 ′, 4′-biphenyltetracarboxylic acid, And ester-forming derivatives thereof.
  • glycols ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,4 -Butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 1,10-decamethylene glycol, 1,12-dodecanediol, polyethylene glycol, polyto Aliphatic glycols, such as methylene glycol and polytetramethylene glycol, hydroquinone,
  • glycols it is particularly preferable to use ethylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, and 1,4-cyclohexanedimethanol as main components.
  • polyhydric alcohols other than these glycols include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, and hexanetriol.
  • Hydroxycarboxylic acids include lactic acid, citric acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid, 4-hydroxycyclohexanecarboxylic acid, or these And ester-forming derivatives thereof.
  • cyclic ester examples include ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -methyl- ⁇ -propiolactone, ⁇ -valerolactone, glycolide, lactide and the like.
  • ester-forming derivatives of polyvalent carboxylic acids and hydroxycarboxylic acids include these alkyl esters, acid chlorides, acid anhydrides, and the like.
  • the polyester used in the present invention is preferably a polyester in which the main acid component is terephthalic acid or an ester-forming derivative thereof or naphthalenedicarboxylic acid or an ester-forming derivative thereof, and the main glycol component is alkylene glycol.
  • the polyester in which the main acid component is terephthalic acid or an ester-forming derivative thereof is preferably a polyester containing 70 mol% or more of terephthalic acid or an ester-forming derivative thereof in total with respect to the total acid component.
  • a polyester containing 80 mol% or more is preferable, and a polyester containing 90 mol% or more is more preferable.
  • the polyester in which the main acid component is naphthalenedicarboxylic acid or an ester-forming derivative thereof is also preferably a polyester containing 70 mol% or more of naphthalenedicarboxylic acid or an ester-forming derivative thereof, more preferably 80 Polyesters containing at least mol%, more preferably polyesters containing at least 90 mol%.
  • naphthalenedicarboxylic acid or ester-forming derivative thereof used in the present invention examples include 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid exemplified in the above dicarboxylic acids, 6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, or ester-forming derivatives thereof are preferred.
  • the polyester whose main glycol component is an alkylene glycol is preferably a polyester containing 70 mol% or more of the total amount of alkylene glycol with respect to all glycol components, more preferably a polyester containing 80 mol% or more, More preferably, it is a polyester containing 90 mol% or more.
  • the alkylene glycol here may contain a substituent or an alicyclic structure in the molecular chain.
  • the copolymer components other than the terephthalic acid / ethylene glycol are isophthalic acid, 2,6-naphthalenedicarboxylic acid, diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,2-propanediol, 1,3-propane. It is preferably at least one selected from the group consisting of diol and 2-methyl-1,3-propanediol from the viewpoint of achieving both transparency and moldability, and in particular, isophthalic acid, diethylene glycol, neopentyl glycol, More preferably, it is at least one selected from the group consisting of 1,4-cyclohexanedimethanol.
  • a preferred example of the polyester used in the present invention is a polyester whose main repeating unit is composed of ethylene terephthalate, more preferably a linear polyester containing 70 mol% or more of ethylene terephthalate units, and still more preferably an ethylene terephthalate unit.
  • a linear polyester containing 80 mol% or more is preferable, and a linear polyester containing 90 mol% or more of ethylene terephthalate units is particularly preferable.
  • polyester used in the present invention is a polyester in which the main repeating unit is composed of ethylene-2,6-naphthalate, and more preferably contains 70 mol% or more of ethylene-2,6-naphthalate units.
  • a linear polyester more preferably a linear polyester containing 80 mol% or more of ethylene-2,6-naphthalate units, and particularly preferably a linear polyester containing 90 mol% or more of ethylene-2,6-naphthalate units. Polyester.
  • polyesters containing 70 mol% or more of propylene terephthalate units linear polyesters containing 70 mol% or more of propylene naphthalate units, and 1,4-cyclohexanedimethylene terephthalate.
  • the composition of the entire polyester is transparent in combination of terephthalic acid / isophthalic acid // ethylene glycol, terephthalic acid // ethylene glycol / 1,4-cyclohexanedimethanol, and terephthalic acid // ethylene glycol / neopentyl glycol.
  • terephthalic acid / isophthalic acid // ethylene glycol
  • terephthalic acid // ethylene glycol / neopentyl glycol.
  • a small amount (5 mol% or less) of diethylene glycol produced by dimerization of ethylene glycol may be included in the esterification (transesterification) reaction or polycondensation reaction.
  • polyester used in the present invention include polyglycolic acid obtained by polycondensation of glycolic acid or methyl glycolate or ring-opening polycondensation of glycolide.
  • This polyglycolic acid may be copolymerized with other components such as lactide.
  • polyamide is not “polyamide resin (A)” in the present invention
  • polyamide resin (A) is a polyamide mainly composed of units derived from lactam or aminocarboxylic acid, or Aliphatic polyamides whose main constituent units are units derived from aliphatic diamines and aliphatic dicarboxylic acids, partially aromatic polyamides whose main constituent units are units derived from aliphatic diamines and aromatic dicarboxylic acids, aromatic Examples thereof include partially aromatic polyamides having a unit derived from a diamine and an aliphatic dicarboxylic acid as a main constituent unit, and monomer units other than the main constituent unit may be copolymerized as necessary.
  • lactam or aminocarboxylic acid examples include lactams such as ⁇ -caprolactam and laurolactam, aminocarboxylic acids such as aminocaproic acid and aminoundecanoic acid, and aromatic aminocarboxylic acids such as para-aminomethylbenzoic acid.
  • an aliphatic diamine having 2 to 12 carbon atoms or a functional derivative thereof can be used.
  • an alicyclic diamine may be used.
  • the aliphatic diamine may be a linear aliphatic diamine or a branched chain aliphatic diamine.
  • linear aliphatic diamines include ethylenediamine, 1-methylethylenediamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, Examples include aliphatic diamines such as nonamethylenediamine, decamethylenediamine, undecamethylenediamine, and dodecamethylenediamine.
  • alicyclic diamine include cyclohexanediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, and the like.
  • the aliphatic dicarboxylic acid is preferably a linear aliphatic dicarboxylic acid or an alicyclic dicarboxylic acid, and more preferably a linear aliphatic dicarboxylic acid having an alkylene group having 4 to 12 carbon atoms.
  • linear aliphatic dicarboxylic acids include adipic acid, sebacic acid, malonic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, undecanoic acid, undecadioic acid, dodecanedioic acid, dimer Examples thereof include acids and functional derivatives thereof.
  • alicyclic dicarboxylic acid examples include alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, and hexahydroisophthalic acid.
  • aromatic diamine examples include metaxylylenediamine, paraxylylenediamine, para-bis (2-aminoethyl) benzene and the like.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, diphenoxyethanedicarboxylic acid, and functional derivatives thereof. It is done.
  • polyamides include polyamide 4, polyamide 6, polyamide 10, polyamide 11, polyamide 12, polyamide 4, 6, polyamide 6, 6, polyamide 6, 10, polyamide 6T, polyamide 9T, polyamide 6IT, polymetaxylylene azide.
  • a copolymerization component of the polyamide a polyether having at least one terminal amino group or terminal carboxyl group and a number average molecular weight of 2000 to 20000, or an organic carboxylate of the polyether having the terminal amino group, or An amino salt of a polyether having a terminal carboxyl group can also be used.
  • Specific examples include bis (aminopropyl) poly (ethylene oxide) (polyethylene glycol having a number average molecular weight of 2000 to 20000).
  • the partially aromatic polyamide may contain a structural unit derived from a polybasic carboxylic acid having three or more bases such as trimellitic acid and pyromellitic acid within a substantially linear range.
  • the polyamide is basically a conventionally known melt polycondensation method in the presence of water or a melt polycondensation method in the absence of water, or a polyamide obtained by these melt polycondensation methods. It can be manufactured by a method or the like.
  • the melt polycondensation reaction may be performed in one step or may be performed in multiple steps. These may be comprised from a batch-type reaction apparatus, and may be comprised from the continuous-type reaction apparatus.
  • the melt polycondensation step and the solid phase polymerization step may be operated continuously or may be operated separately.
  • the ethylene vinyl alcohol copolymer used in the present invention is not particularly limited, but preferably has an ethylene content of 15 to 60 mol%, more preferably 20 to 55 mol%, more preferably 29 to 44 mol%, The degree of saponification of the vinyl acetate component is preferably 90 mol% or more, more preferably 95 mol% or more.
  • the ethylene vinyl alcohol copolymer has a smaller amount of an ⁇ -olefin such as propylene, isobutene, ⁇ -octene, ⁇ -dodecene, ⁇ -octadecene, and unsaturated carboxylic acid as long as the effects of the present invention are not adversely affected.
  • a comonomer such as a salt thereof, a partial alkyl ester, a complete alkyl ester, a nitrile, an amide, an anhydride, an unsaturated sulfonic acid or a salt thereof may be contained.
  • Plant-derived resin Specific examples of the plant-derived resin include a portion overlapping with the above resin, but are not particularly limited, and examples thereof include aliphatic polyester-based biodegradable resins other than various known petroleum materials.
  • examples of the aliphatic polyester-based biodegradable resin include poly ( ⁇ -hydroxy acids) such as polyglycolic acid (PGA) and polylactic acid (PLA); polybutylene succinate (PBS), polyethylene succinate (PES) and the like. And polyalkylene alkanoates.
  • the multilayer film of the present invention may contain an optional layer depending on the desired performance and the like.
  • an arbitrary layer include an adhesive layer, a metal foil, a metal vapor-deposited layer, an easily peelable layer, and an easily tearable layer.
  • the adhesive layer preferably contains a thermoplastic resin having adhesiveness.
  • a thermoplastic resin having adhesiveness for example, an acid modification in which a polyolefin resin such as polyethylene or polypropylene is modified with an unsaturated carboxylic acid such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, etc. Examples include polyolefin resins.
  • the adhesive layer it is preferable to use a modified resin of the same type as the resin (B) used as the layer (B) from the viewpoint of adhesiveness.
  • the thickness of the adhesive layer is preferably 2 to 100 ⁇ m, more preferably 5 to 90 ⁇ m, and still more preferably 10 to 80 ⁇ m, from the viewpoint of ensuring molding processability while exhibiting practical adhesive strength.
  • the multilayer film of the present invention may contain a metal foil, a metal vapor deposition layer, and an organic-inorganic film from the viewpoint of gas barrier properties and light shielding properties.
  • a metal foil an aluminum foil is preferable.
  • the thickness of the metal foil is preferably 3 to 50 ⁇ m, more preferably 3 to 30 ⁇ m, still more preferably 5 to 15 ⁇ m, from the viewpoints of gas barrier properties, light shielding properties, bending resistance, and the like.
  • a resin film or the like on which a metal such as aluminum or alumina or a metal oxide film is deposited can be used as the metal deposition layer.
  • the formation method of a vapor deposition film is not specifically limited, For example, physical vapor deposition methods, such as a vacuum evaporation method, sputtering method, and an ion plating method, Chemical vapor deposition methods, such as PECVD, etc. are mentioned.
  • the thickness of the deposited film is preferably 5 to 500 nm, more preferably 5 to 200 nm, from the viewpoints of gas barrier properties, light shielding properties, bending resistance, and the like.
  • a resin film coated with a silica-polyvinyl alcohol hybrid film or the like prepared by a sol-gel method or the like can be used.
  • the thickness of the coating film is preferably 100 nm to 50 ⁇ m, more preferably 1 to 15 ⁇ m, from the viewpoints of gas barrier properties, light shielding properties, bending resistance, and the like.
  • the multilayer film of the present invention may include an easy peel layer and an easy tear layer in order to facilitate the opening of the multilayer film packaging container.
  • an easy peel layer a film in which two or more kinds of commonly used polyolefins are blended to control the seal strength and peel strength is used.
  • an easy tear film in which nylon MXD6 is blended with nylon 6 is used.
  • Manufacturing method of multilayer film It does not specifically limit about the manufacturing method of the multilayer film of this invention, It can manufacture by arbitrary methods, For example, it can manufacture by methods, such as a co-extrusion method and a lamination method.
  • Coextrusion method In the coextrusion method, the material constituting the layer (A) and the material constituting the layer (B) are respectively charged into an extruder and coextruded to obtain a multilayer film.
  • a multilayer film can be obtained by any method such as coextrusion by an inflation method or coextrusion by a T-die method.
  • the multilayer film obtained by the coextrusion method can be further stretched by uniaxial stretching or biaxial stretching to obtain a multilayer film in which the layers (A) and (B) are co-stretched. Examples of the stretching method include continuous biaxial stretching by a tenter method, simultaneous biaxial stretching by a tenter method, and simultaneous biaxial stretching by an inflation method.
  • a batch-type biaxial stretching apparatus may be used.
  • the coextrusion stretch ratio can be appropriately determined according to the use of the multilayer film, but it is preferable to biaxially stretch 1.1 to 15 times in the MD direction and 1.1 to 15 times in the TD direction.
  • a film constituting the layer (A) and a film constituting the layer (B) are each produced by an extrusion method or the like, and then these films are laminated to obtain a multilayer film.
  • the multilayer film can be obtained by an arbitrary method such as a hot melt lamination method, a wet lamination method, a dry lamination method, a solventless dry lamination method, an extrusion lamination method, or a thermal lamination method.
  • pretreatment such as corona treatment and ozone treatment can be applied to the film, etc.
  • pretreatment such as corona treatment and ozone treatment
  • ozone treatment can be applied to the film, etc.
  • anchor coating agents such as organic titanium, or known anchor coating agents such as polyurethane, polyacrylic, polyester, epoxy, polyvinyl acetate, and cellulose adhesives, adhesives, etc. be able to.
  • a printing layer can be provided as necessary.
  • general printing equipment that has been used for printing on a conventional polymer film such as a gravure printing machine, a flexographic printing machine, and an offset printing machine can be similarly applied.
  • the ink for forming the printing layer is also applied to conventional polymer films formed from pigments such as azo and phthalocyanine, resins such as rosin, polyamide resin and polyurethane, solvents such as methanol, ethyl acetate and methyl ethyl ketone.
  • the inks that have been used for the printing layer can be applied as well.
  • the film packaging container of this invention contains the multilayer film mentioned above.
  • the film packaging container using the multilayer film of the present invention as a whole or a part of the packaging container absorbs oxygen in the container in addition to oxygen that slightly enters from the outside of the container, and changes the contents of the stored contents due to oxygen. Can be prevented.
  • the shape of the film packaging container of the present invention is not particularly limited, and can be selected within an appropriate range depending on the articles to be stored and stored.
  • the multilayer film of the present invention comprises a three-sided seal flat bag, a standing pouch, a gusset packaging bag, a pillow packaging bag, a multi-chamber comprising a main chamber and a sub-chamber and an easy peeling wall provided between the main chamber and the sub-chamber.
  • Pouches, thermoformed containers, shrink film packaging, and the like can be used.
  • flange parts such as a thermoforming container
  • a deoxidation function can be provided to a packaging container by using the multilayer film of this invention as members, such as a cover material of a container and a top seal.
  • the capacity of the film packaging container of the present invention is not particularly limited, and can be selected within an appropriate range depending on the articles to be stored and stored. It does not specifically limit about the manufacturing method of the film packaging container of this invention, It can manufacture by arbitrary methods.
  • the film packaging container of the present invention is excellent in oxygen absorption performance and oxygen barrier performance and excellent in flavor retention of contents, it is suitable for packaging various articles.
  • Preserved items include milk, dairy products, juice, coffee, tea, alcoholic beverages; liquid seasonings such as sauces, soy sauce, dressings, soups, stews, curries, infant foods, nursing foods, etc.
  • Cooked foods pasty foods such as jam and mayonnaise; fishery products such as tuna and fish shellfish; dairy products such as cheese and butter; processed meat products such as meat, salami, sausage and ham; vegetables such as carrots and potatoes Eggs, noodles, cooked rice, cooked rice, processed rice products such as rice bran; powdered seasonings, powdered coffee, powdered milk for infants, powdered diet foods, dried vegetables, rice crackers, and other dried foods Chemicals such as agricultural chemicals and insecticides; pharmaceuticals; cosmetics; pet foods; miscellaneous goods such as shampoos, rinses and detergents; and various articles.
  • the film packaging container and the objects to be preserved can be sterilized in a form suitable for the objects to be preserved.
  • Sterilization methods include hot water treatment at 100 ° C. or lower, pressurized hot water treatment at 100 ° C. or higher, heat sterilization such as ultra-high temperature heat treatment at 130 ° C. or higher, electromagnetic wave sterilization of ultraviolet rays, microwaves, gamma rays, etc., ethylene oxide And gas sterilization such as hydrogen peroxide and hypochlorous acid.
  • the unit derived from metaxylylenediamine is “MXDA”
  • a unit derived from 1,3-bis (aminomethyl) cyclohexane is referred to as “1,3BAC”
  • the unit derived from hexamethylenediamine is “HMDA”
  • the unit derived from adipic acid is “AA”
  • the unit derived from isophthalic acid is “IPA”
  • the unit derived from DL-alanine is “DL-Ala”
  • the unit derived from DL-leucine is “DL-Leu”
  • a unit derived from ⁇ -caprolactam is referred to as “ ⁇ -CL”.
  • Polymetaxylylene adipamide is referred to as “N-MXD6”.
  • the ⁇ -amino acid content, relative viscosity, terminal amino group concentration, glass transition temperature and melting point of the polyamide resin obtained in Production Example were measured by the following methods. Moreover, the film was produced from the polyamide resin obtained by the manufacture example, and the oxygen absorption amount was measured with the following method.
  • the oxygen concentration in the bag was measured with an oxygen concentration meter (trade name: LC-700F, manufactured by Toray Engineering Co., Ltd.). The amount of oxygen absorbed was calculated from the oxygen concentration.
  • Production Example 1 (Production of polyamide resin 1) Weighed precisely in a pressure-resistant reaction vessel with an internal volume of 50 L equipped with a stirrer, partial condenser, full condenser, pressure regulator, thermometer, dripping tank and pump, aspirator, nitrogen inlet pipe, bottom exhaust valve, and strand die.
  • Adipic acid (Asahi Kasei Chemicals Co., Ltd.) 13000 g (88.96 mol), DL-alanine (Musashino Chemical Laboratory Co., Ltd.) 880.56 g (9.88 mol), sodium hypophosphite 11.7 g (0.
  • the inside of the reaction vessel was gradually returned to normal pressure, and then the inside of the reaction vessel was reduced to 80 kPa using an aspirator to remove condensed water.
  • the stirring torque of the stirrer After observing the stirring torque of the stirrer during decompression, stop stirring when the specified torque is reached, pressurize the inside of the reaction tank with nitrogen, open the bottom drain valve, extract the polymer from the strand die and form a strand Cooled and pelletized with a pelletizer. Next, this pellet was charged into a stainless steel drum-type heating device and rotated at 5 rpm. The atmosphere in the reaction system was raised from room temperature to 140 ° C. under a small nitrogen flow.
  • Production Example 5 (Production of polyamide resin 5)
  • An MXDA / AA / DL-Leu copolymer (polyamide resin 5) was obtained in the same manner as in Production Example 1 except that the amount was (mol%).
  • Production Example 6 (Production of polyamide resin 6)
  • Production Example 8 (Production of polyamide resin 8)
  • Production Example 9 (Production of polyamide resin 9)
  • Table 1 shows the charged monomer compositions of polyamide resins 1 to 10 and the measurement results of the ⁇ -amino acid content, relative viscosity, terminal amino group concentration, glass transition temperature, melting point, and oxygen absorption amount of the obtained polyamide resin.
  • Examples 1 to 41 and Comparative Examples 1 to 18 a multilayer film was produced using the polyamide resins 1 to 10, and a film packaging container (standing pouch, thermoforming container or casing container) was formed from the multilayer film.
  • a film packaging container standing pouch, thermoforming container or casing container
  • the measurement of the oxygen permeability of the coextruded multilayer film obtained in Examples and Comparative Examples, the food preservation test of the packaging container, and the measurement of odor and taste at the time of opening the packaging container were performed by the following methods.
  • Oxygen permeability of co-extruded multilayer film The oxygen permeability of the co-extruded multilayer film was measured according to ASTM D3985 using an oxygen permeability measuring device (manufactured by MOCON, model: OX-TRAN 2/21). The measurement was performed in an atmosphere of ° C and a relative humidity of 60%.
  • Example 1 Using a multilayer film manufacturing apparatus equipped with three extruders, feed block, T die, cooling roll, winder, etc., nylon 6 (N6) (Ube Industries, Ltd.) from the first and third extruders ), Product name: UBE nylon 6, grade: 1022B) are extruded at 250 ° C. from a second extruder at 250 ° C., respectively, through a feed block, nylon 6 layer / polyamide resin 1 layer / A multilayer film (A1) of two types and three layers of nylon 6 layers was produced. The thickness of each layer was 80/80/80 ( ⁇ m).
  • the obtained biaxially stretched film was converted to a 12 ⁇ m biaxially stretched polyethylene terephthalate (OPET) film (manufactured by Toray Film Processing Co., Ltd., trade name: ZK93FM), and 60 ⁇ m unstretched polypropylene (CPP) to a urethane adhesive (Mitsui Chemicals).
  • OPET polyethylene terephthalate
  • CPP polypropylene
  • main component Takelac A505
  • curing agent Takenate A20, both trade names
  • a dry laminator was used for dry lamination in a configuration of (outer layer) OPET // OA1 // CPP (inner layer). After dry lamination, it was stored in a constant temperature bath at 60 ° C. for 3 days.
  • the obtained multilayer film produced a standing pouch having a length of 200 mm, a width of 120 mm, and a set depth of 40 mm using a heat sealing machine.
  • Examples 2-5 A multilayer film and a standing pouch were prepared in the same manner as in Example 1 except that polyamide resins 2 to 5 were used.
  • Comparative Example 1 A multilayer film and a standing pouch were prepared in the same manner as in Example 1 except that the polyamide resin 10 was used.
  • Example 6 Nylon MXD6 (manufactured by Mitsubishi Gas Chemical Co., Ltd.) from the first and third extruders using a multilayer film production apparatus equipped with three extruders, feed block, T-die, cooling roll, winder, etc. , Product name: MX nylon, grade: S6011) at 260 ° C., polyamide resin 1 is extruded from the second extruder at 250 ° C., respectively, and nylon MXD6 layer / polyamide resin 1 layer / nylon MXD6 layer is fed through the feed block.
  • a multilayer film (A2) having a two-layer / three-layer structure was produced. The thickness of each layer was 80/80/80 ( ⁇ m).
  • Examples 7 and 8 A multilayer film and a standing pouch were prepared in the same manner as in Example 6 except that the polyamide resin 2 or 3 was used.
  • Comparative Example 2 A multilayer film and a standing pouch were prepared in the same manner as in Example 6 except that the polyamide resin 10 was used.
  • Table 2 shows the oxygen permeability of the coextruded multilayer film, the food storage test of the packaging container, and the odor and taste results at the time of opening.
  • the coextruded multilayer films and standing pouches of Examples 1 to 5 and 6 to 8 improved the oxygen permeability without impairing the food storage stability and the odor and taste at the time of opening compared to Comparative Example 1 or 2 of the same form. We were able to.
  • Example 9 Using a multilayer film manufacturing apparatus equipped with four extruders, feed blocks, T-die, cooling roll, winder, etc., polyamide resin 1 is fed from the first extruder at 250 ° C., and the second extruder Nylon 6 (Ube Industries, Ltd., trade name: UBE nylon 6, grade: 1022B) at 240 ° C.
  • Nylon 6 Ube Industries, Ltd., trade name: UBE nylon 6, grade: 1022B
  • polypropylene (Nihon Polypro Corporation, trade name: Novatec) , Grade: FY6) at 230 ° C
  • adhesive resin (AD) (made by Mitsui Chemicals, trade name: Admer, grade: QB515) was extruded at 220 ° C from the fourth extruder, and the feed block was 4 types and 7 layers of (outer layer) polypropylene layer / adhesive resin layer / nylon 6 layer / polyamide resin 1 layer / nylon 6 layer / adhesive resin layer / polypropylene layer (inner layer)
  • the thickness of each layer was 60/5/10/15/10/5/60 ( ⁇ m).
  • thermoforming was performed when the film surface temperature reached 170 ° C. using a pressure-air vacuum forming machine (manufactured by Asano Laboratory Co., Ltd.) equipped with plug assist, and the opening 100 mm square ⁇ bottom 90 mm ⁇ depth
  • a thermoformed container having a thickness of 10 mm, a surface area of 119 cm 2 and a volume of 90 ml was prepared.
  • Examples 10 and 11 A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 9 except that the polyamide resin 2 or 3 was used.
  • Comparative Example 3 A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 9 except that the polyamide resin 10 was used.
  • Comparative Example 4 A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 9 except that polyamide resin 10 was used and cobalt stearate was added to polyamide resin 10 so that the cobalt content was 400 ppm. did.
  • Comparative Example 5 Polyamide resin 10 was used, cobalt stearate was added to polyamide resin 10 so that the cobalt content was 100 ppm, and maleic acid-modified polybutadiene (manufactured by Nippon Petrochemical Co., Ltd., trade name: M-) A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 9, except that 3 parts by mass of 2000-20) was added to the polyamide resin 10.
  • Example 12 Using a multilayer film manufacturing apparatus equipped with four extruders, feed blocks, T-die, cooling roll, winder, etc., polyamide resin 1 is fed from the first extruder at 250 ° C., and the second extruder Nylon MXD6 (Mitsubishi Gas Chemical Co., Ltd., trade name: MX Nylon, grade: K7007C) from 250 ° C. from the third extruder to polypropylene (Nihon Polypro Co., Ltd., trade name: Novatec, Grade: FY6) was extruded at 230 ° C.
  • Nylon MXD6 Mitsubishi Gas Chemical Co., Ltd., trade name: MX Nylon, grade: K7007C
  • polypropylene Nihon Polypro Co., Ltd., trade name: Novatec, Grade: FY6
  • Examples 13 to 16 A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 12 except that polyamide resins 2 to 5 were used.
  • Comparative Example 6 A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 12 except that the polyamide resin 10 was used.
  • Comparative Example 7 A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 12 except that polyamide resin 10 was used and cobalt stearate was added to polyamide resin 10 so that the cobalt content was 400 ppm. did.
  • Comparative Example 8 Polyamide resin 10 was used, cobalt stearate was added to polyamide resin 10 so that the cobalt content was 100 ppm, and maleic acid-modified polybutadiene (manufactured by Nippon Petrochemical Co., Ltd., trade name: M- A co-extruded multilayer film and a thermoformed container were prepared in the same manner as in Example 12 except that 3 parts by mass of 2000-20) was added to the polyamide resin 10.
  • maleic acid-modified polybutadiene manufactured by Nippon Petrochemical Co., Ltd., trade name: M- A co-extruded multilayer film and a thermoformed container were prepared in the same manner as in Example 12 except that 3 parts by mass of 2000-20
  • Table 3 shows the oxygen permeability of the co-extruded multilayer film, the food storage test of the packaging container, and the odor and taste results when opened.
  • the coextruded multilayer films and thermoformed containers of Examples 9 to 11 and 12 to 16 have oxygen permeability without impairing food storage stability and odor and taste at the time of opening compared to Comparative Example 3 or 6 of the same form. It was possible to improve.
  • Comparative Examples 4, 5, 7 and 8 using cobalt stearate or maleic acid-modified polybutadiene to improve oxygen permeability the oxygen permeability of the coextruded multilayer film was excellent, but over time, the cobalt catalyst The resin was oxidized and decomposed, and the food storage stability of the thermoformed container and the odor and taste at the time of opening deteriorated.
  • Example 17 Using a multilayer film manufacturing apparatus equipped with three extruders, feed block, T die, cooling roll, winder, etc., the second extruder is polyamide resin 1 at 250 ° C. from the first extruder Nylon MXD6 (Mitsubishi Gas Chemical Co., Ltd., trade name: MX nylon, grade: S6011) at 260 ° C.
  • Nylon MXD6 Mitsubishi Gas Chemical Co., Ltd., trade name: MX nylon, grade: S6011
  • nylon 6 Ube Industries, trade name: UBE nylon 6) , Grade: 1022B
  • nylon 6 Ube Industries, trade name: UBE nylon 6
  • Grade: 1022B a multilayer film
  • A3 of three types and five layers of nylon 6 layer / nylon MXD 6 layer / polyamide resin 1 layer / nylon MXD 6 layer / nylon 6 layer is fed through a feed block.
  • the thickness of each layer was 80/80/80/80/80 ( ⁇ m).
  • Examples 18-25 A multilayer film and a standing pouch were prepared in the same manner as in Example 17 except that polyamide resins 2 to 9 were used.
  • Comparative Example 9 A coextruded multilayer film and a standing pouch were prepared in the same manner as in Example 17 except that the polyamide resin 10 was used.
  • Table 4 shows the oxygen permeability of the coextruded multilayer film, the food preservation test of the packaging container, and the results of odor and taste at the time of opening.
  • Example 26 Using a simultaneous biaxially stretched multilayer film production system consisting of four extruders, feed blocks, and cylindrical dies, polyamide resin 1 was fed from the first extruder at 250 ° C. and polypropylene from the second extruder (Nippon Polypropylene). Co., Ltd., trade name: Novatec, grade: FY6) at 230 ° C. From the third extruder, 80 parts by mass of polypropylene (Nihon Polypro Co., Ltd., trade name: Novatec, grade: FY6) and others Polypropylene (trade name: Adsyl, grade: 5C37F) of 20 parts by mass of dry polypropylene and blended polypropylene at 230 ° C.
  • Polypropylene trade name: Adsyl, grade: 5C37F
  • adhesive resin Mitsubishi Chemicals, product
  • Admer Mitsubishi Chemicals, product
  • Grade: QB545 adhesive resin
  • (outer layer) polypropylene layer / adhesive resin layer It was produced multilayered parison of the four five-layer structure in the order of the polyamide resin 1 layer / adhesive resin layer / blend polypropylene layer (inner layer).
  • the diameter of the multilayer parison was 130 mm, and the composition ratio of each layer was 4/1/3/1/4. Subsequently, the parison is cooled at 60 ° C. and heated to 120 ° C.
  • the film was biaxially stretched 4 times in the transverse direction and heat-fixed at 200 ° C. to obtain a coextruded multilayer stretched film (B).
  • stretching became 20/5/15/5/20 (micrometer).
  • the film having a width of 100 mm was formed into a cylindrical shape at a film speed of 5 m / min, and then a hot air was blown after placing a notch on the outside of the overlapping portion of the film, Heat-sealed on the envelope.
  • the temperature of the hot air was about 400 ° C., and a casing container was prepared.
  • Examples 27-29 A coextruded multilayer film and a casing container were prepared in the same manner as in Example 26 except that the polyamide resin 2, 3 or 6 was used.
  • Comparative Example 10 A coextruded multilayer film and a casing container were prepared in the same manner as in Example 26 except that the polyamide resin 10 was used.
  • Comparative Example 11 A coextruded multilayer film and a casing container were prepared in the same manner as in Example 26 except that polyamide resin 10 was used and cobalt stearate was added to polyamide resin 10 so that the cobalt content was 400 ppm. .
  • Comparative Example 12 Polyamide resin 10 was used, cobalt stearate was added to polyamide resin 10 so that the cobalt content was 100 ppm, and maleic acid-modified polybutadiene (manufactured by Nippon Petrochemical Co., Ltd., trade name: M-) A coextruded multilayer film and a casing container were prepared in the same manner as in Example 26 except that 3 parts by mass of 2000-20) was added to the polyamide resin 10.
  • Table 5 shows the oxygen permeability of the coextruded multilayer film, the food preservation test of the packaging container, and the results of odor and taste at the time of opening.
  • the coextruded multilayer films and casing containers of Examples 26 to 29 were able to improve the oxygen permeability without impairing the food storage stability and the odor and taste at the time of opening as compared with Comparative Example 10 of the same form.
  • Comparative Examples 11 and 12 using cobalt stearate or maleic acid-modified polybutadiene to improve oxygen permeability, the oxygen permeability of the coextruded multilayer film is excellent, but the resin is oxidatively decomposed by the cobalt catalyst over time.
  • the food storage stability of the casing container and the odor and taste at the time of opening deteriorated.
  • Example 30 Using a multilayer film manufacturing apparatus equipped with four extruders, feed blocks, T-die, cooling roll, winder, etc., polyamide resin 1 is fed from the first extruder at 250 ° C., and the second extruder To ethylene-vinyl alcohol copolymer (EVOH) (manufactured by Kuraray Co., Ltd., trade name: EVAL, grade: F101B) at 230 ° C.
  • EVOH ethylene-vinyl alcohol copolymer
  • Adhesive resin Mitsubishi Chemicals, trade name: Admer, Grade: QB515
  • the thickness of each layer was 60/5/5/15/5/5/60 ( ⁇ m).
  • thermoforming was performed when the film surface temperature reached 170 ° C. using a pressure-air vacuum forming machine (manufactured by Asano Laboratory Co., Ltd.) equipped with plug assist, and the opening 100 mm square ⁇ bottom 90 mm ⁇ depth
  • a thermoformed container having a thickness of 10 mm, a surface area of 119 cm 2 and a volume of 90 ml was prepared.
  • Examples 31-38 A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 30 except that polyamide resins 2 to 9 were used.
  • Comparative Example 13 A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 30 except that the polyamide resin 10 was used.
  • Comparative Example 14 A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 30, except that polyamide resin 10 was used and cobalt stearate was added to polyamide resin 10 so that the cobalt content was 400 ppm. did.
  • Comparative Example 15 Polyamide resin 10 was used, cobalt stearate was added to polyamide resin 10 so that the cobalt content was 100 ppm, and maleic acid-modified polybutadiene (manufactured by Nippon Petrochemical Co., Ltd., trade name: M-) A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 30 except that 3 parts by mass of 2000-20) was added to the polyamide resin 10.
  • Table 6 shows the oxygen permeability of the co-extruded multilayer film, the food storage test of the packaging container, and the results of odor and taste at the time of opening.
  • the coextruded multilayer films and thermoformed containers of Examples 30 to 38 were able to improve oxygen permeability without impairing food storage stability and odor and taste at the time of opening compared to Comparative Example 13 of the same form. .
  • Comparative Examples 14 and 15 using cobalt stearate or maleic acid-modified polybutadiene to improve oxygen permeability, the oxygen permeability of the coextruded multilayer film is excellent, but the resin is oxidatively decomposed by the cobalt catalyst over time.
  • the food storage stability of the thermoformed container and the odor and taste at the time of opening deteriorated.
  • Example 39 Using a multilayer film manufacturing apparatus equipped with three extruders, feed block, T die, cooling roll, winder, etc., the second extruder is polyamide resin 1 at 250 ° C. from the first extruder To polyethylene terephthalate (PET) (trade name: POLYCLEAR, grade: 1101E manufactured by INVISTA) at 260 ° C. and adhesive resin (trade name: Modic-AP, manufactured by Mitsubishi Chemical Corporation) from the third extruder.
  • PET polyethylene terephthalate
  • adhesive resin trade name: Modic-AP, manufactured by Mitsubishi Chemical Corporation
  • Grade: F534A is extruded at 220 ° C., and through a feed block, (outer layer) PET layer / adhesive resin layer / polyamide resin 1 layer / adhesive resin layer / PET layer (inner layer), having three types and five layers.
  • a multilayer film (C4) was produced. The thickness of each layer was 60/5/10/5/60 ( ⁇ m). Next, thermoforming was performed when the film surface temperature reached 170 ° C.
  • thermoformed container having a thickness of 10 mm, a surface area of 119 cm 2 and a volume of 90 ml was prepared.
  • Examples 40 and 41 A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 39 except that the polyamide resin 2 or 3 was used.
  • Comparative Example 16 A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 39 except that the polyamide resin 10 was used.
  • Comparative Example 17 A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 39 except that polyamide resin 10 was used and cobalt stearate was added to polyamide resin 10 so that the cobalt content was 400 ppm. did.
  • Comparative Example 18 Polyamide resin 10 was used, cobalt stearate was added to polyamide resin 10 so that the cobalt content was 100 ppm, and maleic acid-modified polybutadiene (manufactured by Nippon Petrochemical Co., Ltd., trade name: M- A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 39 except that 3 parts by mass of 2000-20) was added to the polyamide resin 10.
  • maleic acid-modified polybutadiene manufactured by Nippon Petrochemical Co., Ltd., trade name: M- A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 39 except that 3 parts by mass of 2000-20
  • Table 7 shows the oxygen permeability of the coextruded multilayer film, the food preservation test of the packaging container, and the results of odor and taste at the time of opening.
  • the co-extruded multilayer films and thermoformed containers of Examples 39 to 41 have not only excellent oxygen permeability of the co-extruded multilayer film but also excellent food preservability in the thermoformed containers as compared with Comparative Example 16 of the same form. It was. In particular, in Comparative Example 17 using cobalt stearate, delamination occurred between the polyamide resin layer and the PET layer when miso was hot-packed, and the food storage stability of the thermoformed container deteriorated. In Comparative Example 18 using maleic acid-modified polybutadiene, the odor and taste at the time of opening deteriorated due to decomposition of maleic acid-modified polybutadiene after oxygen absorption.
  • the multilayer film of the present invention can be suitably used as a packaging material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Polyamides (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Packages (AREA)

Abstract

A multi-layer film including a layer (A) that comprises a polyamide resin (A) and a layer (B) that has a resin (B) as the main component thereof, wherein the polyamide resin (A) comprises: 25-50mol% of diamine units, including not less than 50mol% of a specific diamine unit; 25-50mol% of dicarboxylic acid units, including not less than 50mol% of a specific dicarboxylic acid unit; and 0.1-50mol% of a specific constituent unit.

Description

多層フィルム及びフィルム包装容器Multilayer film and film packaging container
 本発明は、酸素バリア性能及び酸素吸収性能を有する多層フィルム、並びに該多層フィルムを含むフィルム包装容器に関する。 The present invention relates to a multilayer film having oxygen barrier performance and oxygen absorption performance, and a film packaging container including the multilayer film.
 キシリレンジアミンと脂肪族ジカルボン酸との重縮合反応から得られるポリアミド、例えばメタキシリレンジアミンとアジピン酸とから得られるポリアミド(以下ナイロンMXD6という)は、高強度、高弾性率、並びに酸素、炭酸ガス、臭気及びフレーバー等のガス状物質に対する低い透過性を示すことから、包装材料分野におけるガスバリア材料として広く利用されている。ナイロンMXD6は、その他のガスバリア性樹脂と比べて溶融時の熱安定性が良好であることから、ポリエチレンテレフタレート(以下PETと省略する)、ナイロン6及びポリプロピレン等の熱可塑性樹脂との共押出や共射出成形等が可能である。そのため、ナイロンMXD6は、多層構造物を構成するガスバリア層として利用されている。 Polyamide obtained from polycondensation reaction of xylylenediamine and aliphatic dicarboxylic acid, for example, polyamide obtained from metaxylylenediamine and adipic acid (hereinafter referred to as nylon MXD6) has high strength, high elastic modulus, oxygen, carbonic acid. Since it shows low permeability to gaseous substances such as gas, odor and flavor, it is widely used as a gas barrier material in the field of packaging materials. Nylon MXD6 has better thermal stability when melted than other gas barrier resins, so co-extrusion and co-extrusion with thermoplastic resins such as polyethylene terephthalate (hereinafter abbreviated as PET), nylon 6 and polypropylene. Injection molding or the like is possible. Therefore, nylon MXD6 is used as a gas barrier layer constituting a multilayer structure.
 近年、ナイロンMXD6に少量の遷移金属化合物を添加、混合して、ナイロンMXD6に酸素吸収機能を付与し、これを容器や包装材料を構成する酸素バリア材料として利用することで、容器外部から透過してくる酸素をナイロンMXD6が吸収すると共に容器内部に残存する酸素をもナイロンMXD6が吸収することにより、従来の酸素バリア性熱可塑性樹脂を利用した容器以上に内容物の保存性を高める方法が実用化されつつある(例えば特許文献1及び2を参照)。 In recent years, nylon MXD6 is added and mixed with a small amount of transition metal compound to give nylon MXD6 an oxygen-absorbing function, and this is used as an oxygen barrier material constituting containers and packaging materials. Nylon MXD6 absorbs the incoming oxygen and nylon MXD6 also absorbs oxygen remaining inside the container, so that a method for improving the storage stability of the contents over conventional containers using oxygen-barrier thermoplastic resin is practical. (See, for example, Patent Documents 1 and 2).
 一方、容器内の酸素を除去するため、酸素吸収剤の使用は古くから行われている。例えば、特許文献3及び4には、鉄粉等の酸素吸収剤を樹脂中に分散させた酸素吸収多層体および酸素吸収フィルムが記載されている。特許文献5には、ポリブタジエン等のエチレン性不飽和化合物及びコバルト等の遷移金属触媒を含む酸素掃除去層と、ポリアミド等の酸素遮断層とを有する製品が記載されている。 On the other hand, oxygen absorbers have been used for a long time to remove oxygen in the container. For example, Patent Documents 3 and 4 describe an oxygen-absorbing multilayer body and an oxygen-absorbing film in which an oxygen absorbent such as iron powder is dispersed in a resin. Patent Document 5 describes a product having an oxygen scavenging layer containing an ethylenically unsaturated compound such as polybutadiene and a transition metal catalyst such as cobalt, and an oxygen barrier layer such as polyamide.
特開2003-341747号公報JP 2003-341747 A 特許第2991437号公報Japanese Patent No. 2991437 特開平2-72851号公報Japanese Patent Laid-Open No. 2-72851 特開平4-90848号公報Japanese Patent Laid-Open No. 4-90848 特開平5-115776号公報Japanese Patent Laid-Open No. 5-115776
 鉄粉等の酸素吸収剤を樹脂中に分散させた酸素吸収多層体および酸素吸収フィルムは、鉄粉等の酸素吸収剤により樹脂が着色して不透明であるため、透明性が要求される包装の分野には使用できないという用途上の制約がある。
 一方、コバルト等の遷移金属を含有する樹脂組成物は、透明性が必要な包装容器にも適用可能である利点を有するが、遷移金属触媒によって樹脂組成物が着色されるため好ましくない。また、これらの樹脂組成物では、遷移金属触媒によって、酸素を吸収することで樹脂が酸化される。具体的には、ナイロンMXD6では、遷移金属原子によるポリアミド樹脂のアリーレン基に隣接するメチレン鎖から水素原子の引き抜きに起因するラジカルの発生、前記ラジカルに酸素分子が付加することによるパーオキシラジカルの発生、パーオキシラジカルによる水素原子の引き抜き等の各反応により起こるものと考えられている。このような機構による酸素吸収により樹脂が酸化されるため、分解物が発生して容器内容物に好ましくない臭気が発生したり、樹脂の酸化劣化により容器の色調や強度等が損なわれるという問題がある。
The oxygen-absorbing multilayer body and oxygen-absorbing film in which an oxygen absorbent such as iron powder is dispersed in the resin are opaque due to the resin being colored by the oxygen absorbent such as iron powder. There is an application restriction that it cannot be used in the field.
On the other hand, a resin composition containing a transition metal such as cobalt has an advantage that it can be applied to packaging containers that require transparency, but is not preferred because the resin composition is colored by a transition metal catalyst. In these resin compositions, the resin is oxidized by absorbing oxygen by the transition metal catalyst. Specifically, in nylon MXD6, generation of radicals due to extraction of hydrogen atoms from the methylene chain adjacent to the arylene group of the polyamide resin by transition metal atoms, and generation of peroxy radicals by addition of oxygen molecules to the radicals It is thought to occur by various reactions such as extraction of hydrogen atoms by peroxy radicals. Since the resin is oxidized by oxygen absorption by such a mechanism, a decomposition product is generated and an unpleasant odor is generated in the contents of the container, or the color tone or strength of the container is impaired due to oxidative degradation of the resin. is there.
 本発明が解決しようとする課題は、酸素バリア性能を発現するとともに、遷移金属を含有せずに酸素吸収性能を発現することができ、かつ、酸素吸収が進行するにつれての酸素吸収バリア層の強度低下が極めて小さい多層フィルムを提供することにある。 The problem to be solved by the present invention is that oxygen barrier performance is expressed, oxygen absorption performance can be expressed without containing a transition metal, and the strength of the oxygen absorption barrier layer as oxygen absorption progresses The object is to provide a multilayer film with very little reduction.
 本発明は、以下の多層フィルム及びフィルム包装容器を提供する。
<1>ポリアミド樹脂(A)を含有する層(A)と、樹脂(B)を主成分とする層(B)とを含む多層フィルムであって、
 該ポリアミド樹脂(A)が、
 下記一般式(I-1)で表される芳香族ジアミン単位、下記一般式(I-2)で表される脂環族ジアミン単位、及び下記一般式(I-3)で表される直鎖脂肪族ジアミン単位からなる群から選ばれる少なくとも1つのジアミン単位を合計で50モル%以上含むジアミン単位25~50モル%と、
 下記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位及び/又は下記一般式(II-2)で表される芳香族ジカルボン酸単位を合計で50モル%以上含むジカルボン酸単位25~50モル%と、
 下記一般式(III)で表される構成単位0.1~50モル%と
を含有する、多層フィルム。
Figure JPOXMLDOC01-appb-C000003
[前記一般式(I-3)中、mは2~18の整数を表す。前記一般式(II-1)中、nは2~18の整数を表す。前記一般式(II-2)中、Arはアリーレン基を表す。前記一般式(III)中、Rは置換もしくは無置換のアルキル基又は置換もしくは無置換のアリール基を表す。]
<2>上記多層フィルムを含むフィルム包装容器。
The present invention provides the following multilayer film and film packaging container.
<1> A multilayer film comprising a layer (A) containing a polyamide resin (A) and a layer (B) containing the resin (B) as a main component,
The polyamide resin (A) is
An aromatic diamine unit represented by the following general formula (I-1), an alicyclic diamine unit represented by the following general formula (I-2), and a straight chain represented by the following general formula (I-3) 25 to 50 mol% of diamine units containing a total of 50 mol% or more of at least one diamine unit selected from the group consisting of aliphatic diamine units;
A dicarboxylic acid unit containing a total of 50 mol% or more of a linear aliphatic dicarboxylic acid unit represented by the following general formula (II-1) and / or an aromatic dicarboxylic acid unit represented by the following general formula (II-2) 25 to 50 mol%,
A multilayer film containing 0.1 to 50 mol% of a structural unit represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000003
[In the general formula (I-3), m represents an integer of 2 to 18. In the general formula (II-1), n represents an integer of 2 to 18. In the general formula (II-2), Ar represents an arylene group. In the general formula (III), R represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. ]
<2> A film packaging container including the multilayer film.
 本発明の多層フィルムは、酸素バリア性能を発現するとともに、遷移金属を含有せずに酸素吸収性能を発現することができ、かつ、酸素吸収が進行するにつれての酸素吸収バリア層の強度低下が極めて小さい。また、長期の利用においても酸素吸収バリア層の強度が維持されるため、多層フィルムがラミネートフィルムの場合にはデラミネーションが生じにくい。
 当該多層フィルムを含むフィルム包装容器は、内容物の酸化劣化の抑制に優れるとともに、異臭や風味変化の原因となるような物質の発生がほとんど無く、風味保持性にも優れる。
The multilayer film of the present invention exhibits oxygen barrier performance, can exhibit oxygen absorption performance without containing a transition metal, and the strength of the oxygen absorption barrier layer is extremely lowered as oxygen absorption proceeds. small. In addition, since the strength of the oxygen absorption barrier layer is maintained even in long-term use, delamination hardly occurs when the multilayer film is a laminate film.
The film packaging container including the multilayer film is excellent in suppressing the oxidative deterioration of the contents, hardly generating substances that cause a strange odor or a change in flavor, and excellent in flavor retention.
<<多層フィルム>>
 本発明の多層フィルムは、ポリアミド樹脂(A)を含有する層(A)(以後、「酸素吸収バリア層」と称することもある)と、樹脂(B)を主成分とする層(B)とを少なくとも含む。
 本発明の多層フィルムにおける層構成は特に限定されず、層(A)及び層(B)の数や種類は特に限定されない。例えば、1層の層(A)及び1層の層(B)からなるA/B構成であってもよく、1層の層(A)及び2層の層(B)からなるB/A/Bの3層構成であってもよい。また、1層の層(A)並びに層(B1)及び層(B2)の2種4層の層(B)からなるB1/B2/A/B2/B1の5層構成であってもよい。さらに、本発明の多層フィルムは、必要に応じて接着層(AD)等の任意の層を含んでもよく、例えば、B1/AD/B2/A/B2/AD/B1の7層構成であってもよい。
<< Multilayer film >>
The multilayer film of the present invention comprises a layer (A) containing a polyamide resin (A) (hereinafter also referred to as “oxygen absorption barrier layer”), and a layer (B) containing the resin (B) as a main component. At least.
The layer structure in the multilayer film of the present invention is not particularly limited, and the number and type of layers (A) and layers (B) are not particularly limited. For example, an A / B configuration including one layer (A) and one layer (B) may be used, and B / A / consisting of one layer (A) and two layers (B). A three-layer structure of B may be used. Also, a five-layer configuration of B1 / B2 / A / B2 / B1 composed of one layer (A) and two types and four layers (B) of the layer (B1) and the layer (B2) may be used. Furthermore, the multilayer film of the present invention may include an arbitrary layer such as an adhesive layer (AD) as necessary, for example, a seven-layer structure of B1 / AD / B2 / A / B2 / AD / B1. Also good.
1.ポリアミド樹脂(A)を含有する層(A)(酸素吸収バリア層)
 本発明において、酸素吸収バリア層は、後述する特定のポリアミド樹脂(以後「ポリアミド樹脂(A)」と呼ぶこともある)を含有することで酸素吸収性能及び酸素バリア性能を発揮することができる。酸素吸収バリア層に含有されるポリアミド樹脂(A)は1種であってもよいし、2種以上の組合せであってもよい。
 本発明において、酸素吸収バリア層はポリアミド樹脂(A)を主な樹脂成分として含有するものである。酸素吸収バリア層には、ポリアミド樹脂(A)以外の樹脂を添加してもよいが、酸素吸収バリア層の全樹脂中に占めるポリアミド樹脂(A)の比率は95質量%を超えることが好ましい。酸素吸収バリア層に含まれる樹脂はポリアミド樹脂(A)のみであってもよく、酸素吸収バリア層の全樹脂中に占めるポリアミド樹脂(A)の比率は100質量%以下が好ましい。
 上述の通り酸素吸収バリア層には、ポリアミド樹脂(A)以外の樹脂を添加してもよく、当該添加樹脂としては、本発明の目的を阻害しない範囲で、酸素吸収バリア層に付与したい性能等に応じて、従来公知の種々の樹脂を用いてよい。例えば、耐衝撃性、耐ピンホール性、柔軟性、接着性を付与する観点からは、ポリエチレンやポリプロピレン等のポリオレフィンやそれらの各種変性物、ポリオレフィン系エラストマー、ポリアミド系エラストマー、スチレン-ブタジエン共重合樹脂やその水素添加処理物、ポリエステル系エラストマー等に代表される各種熱可塑性エラストマー、ナイロン6,66,12、ナイロン12等の各種ポリアミド等が挙げられ、酸素吸収性能をさらに付与する観点からは、ポリブタジエンや変性ポリブタジエン等の炭素-炭素不飽和二重結合含有樹脂、を挙げることができる。添加樹脂は1種であってもよいし、2種以上の組合せであってもよい。酸素吸収バリア層の全樹脂中に占める添加樹脂の比率は5質量%以下であることが好ましい。
 酸素吸収バリア層は、ポリアミド樹脂(A)に加えて、所望する性能等に応じて、後述する添加剤(以後“添加剤(C)”と呼ぶこともある)を含んでいてもよいが、酸素吸収バリア層中のポリアミド樹脂(A)の含有量は、成形加工性や酸素吸収性能、酸素バリア性能の観点から90質量%~100質量%であることが好ましく、95質量%~100質量%であることがより好ましい。
 酸素吸収バリア層の厚みは、酸素吸収性能及び酸素バリア性能を高めつつ、多層フィルムに要求される柔軟性等の諸物性を確保するという観点から、2~100μmとすることが好ましく、より好ましくは5~90μmであり、更に好ましくは10~80μmである。
1. Layer containing polyamide resin (A) (A) (oxygen absorption barrier layer)
In the present invention, the oxygen absorption barrier layer can exhibit oxygen absorption performance and oxygen barrier performance by containing a specific polyamide resin (hereinafter also referred to as “polyamide resin (A)”) described later. The polyamide resin (A) contained in the oxygen absorption barrier layer may be one kind or a combination of two or more kinds.
In this invention, an oxygen absorption barrier layer contains a polyamide resin (A) as a main resin component. A resin other than the polyamide resin (A) may be added to the oxygen absorption barrier layer, but the ratio of the polyamide resin (A) in the total resin of the oxygen absorption barrier layer is preferably more than 95% by mass. The resin contained in the oxygen absorption barrier layer may be only the polyamide resin (A), and the ratio of the polyamide resin (A) in the total resin of the oxygen absorption barrier layer is preferably 100% by mass or less.
As described above, a resin other than the polyamide resin (A) may be added to the oxygen-absorbing barrier layer, and as the added resin, performance that is desired to be imparted to the oxygen-absorbing barrier layer as long as the object of the present invention is not impaired. Depending on the above, various conventionally known resins may be used. For example, from the viewpoint of imparting impact resistance, pinhole resistance, flexibility and adhesion, polyolefins such as polyethylene and polypropylene, and various modified products thereof, polyolefin elastomers, polyamide elastomers, styrene-butadiene copolymer resins And other hydrogenated products thereof, various thermoplastic elastomers typified by polyester elastomers, various polyamides such as nylon 6, 66, 12, nylon 12, and the like. From the viewpoint of further imparting oxygen absorption performance, polybutadiene And carbon-carbon unsaturated double bond-containing resins such as modified polybutadiene. The additive resin may be one kind or a combination of two or more kinds. The ratio of the additive resin in the total resin of the oxygen absorption barrier layer is preferably 5% by mass or less.
In addition to the polyamide resin (A), the oxygen-absorbing barrier layer may contain an additive to be described later (hereinafter also referred to as “additive (C)”) depending on the desired performance and the like. The content of the polyamide resin (A) in the oxygen absorption barrier layer is preferably 90% by mass to 100% by mass, and 95% by mass to 100% by mass from the viewpoints of moldability, oxygen absorption performance, and oxygen barrier performance. It is more preferable that
The thickness of the oxygen absorption barrier layer is preferably 2 to 100 μm, more preferably from the viewpoint of securing various physical properties such as flexibility required for the multilayer film while improving oxygen absorption performance and oxygen barrier performance. The thickness is 5 to 90 μm, more preferably 10 to 80 μm.
1-1.ポリアミド樹脂(A)
<ポリアミド樹脂(A)の構成>
 本発明において、ポリアミド樹脂(A)は、下記一般式(I-1)で表される芳香族ジアミン単位、下記一般式(I-2)で表される脂環族ジアミン単位、及び下記一般式(I-3)で表される直鎖脂肪族ジアミン単位からなる群から選ばれる少なくとも1つのジアミン単位を合計で50モル%以上含むジアミン単位25~50モル%と、下記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位及び/又は下記一般式(II-2)で表される芳香族ジカルボン酸単位を合計で50モル%以上含むジカルボン酸単位25~50モル%と、3級水素含有カルボン酸単位(好ましくは下記一般式(III)で表される構成単位)0.1~50モル%とを含有する。
1-1. Polyamide resin (A)
<Configuration of polyamide resin (A)>
In the present invention, the polyamide resin (A) includes an aromatic diamine unit represented by the following general formula (I-1), an alicyclic diamine unit represented by the following general formula (I-2), and the following general formula: 25 to 50 mol% of diamine units containing a total of 50 mol% or more of at least one diamine unit selected from the group consisting of linear aliphatic diamine units represented by (I-3), and the following general formula (II-1) 25 to 50 mol% of dicarboxylic acid units containing a total of 50 mol% or more of linear aliphatic dicarboxylic acid units represented by formula (II-2) and aromatic dicarboxylic acid units represented by the following general formula (II-2): Tertiary hydrogen-containing carboxylic acid unit (preferably a structural unit represented by the following general formula (III)) 0.1 to 50 mol%.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[前記一般式(I-3)中、mは2~18の整数を表す。前記一般式(II-1)中、nは2~18の整数を表す。前記一般式(II-2)中、Arはアリーレン基を表す。前記一般式(III)中、Rは置換もしくは無置換のアルキル基又は置換もしくは無置換のアリール基を表す。]
 ただし、前記ジアミン単位、前記ジカルボン酸単位、前記3級水素含有カルボン酸単位の合計は100モル%を超えないものとする。ポリアミド樹脂(A)は、本発明の効果を損なわない範囲で、前記以外の構成単位を更に含んでいてもよい。
[In the general formula (I-3), m represents an integer of 2 to 18. In the general formula (II-1), n represents an integer of 2 to 18. In the general formula (II-2), Ar represents an arylene group. In the general formula (III), R represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. ]
However, the total of the diamine unit, the dicarboxylic acid unit, and the tertiary hydrogen-containing carboxylic acid unit shall not exceed 100 mol%. The polyamide resin (A) may further contain structural units other than those described above as long as the effects of the present invention are not impaired.
 ポリアミド樹脂(A)において、3級水素含有カルボン酸単位の含有量は0.1~50モル%である。3級水素含有カルボン酸単位の含有量が0.1モル%未満では十分な酸素吸収性能を発現しない。一方、3級水素含有カルボン酸単位の含有量が50モル%を超えると、3級水素含有量が多すぎるため、ポリアミド樹脂(A)のガスバリア性や機械物性等の物性が低下し、特に3級水素含有カルボン酸がアミノ酸である場合は、ペプチド結合が連続するため耐熱性が十分でなくなるだけでなく、アミノ酸の2量体からなる環状物ができ、重合を阻害する。3級水素含有カルボン酸単位の含有量は、酸素吸収性能やポリアミド樹脂(A)の性状の観点から、好ましくは0.2モル%以上、より好ましくは1モル%以上であり、また、好ましくは40モル%以下であり、より好ましくは30モル%以下である。 In the polyamide resin (A), the content of the tertiary hydrogen-containing carboxylic acid unit is 0.1 to 50 mol%. If the content of the tertiary hydrogen-containing carboxylic acid unit is less than 0.1 mol%, sufficient oxygen absorption performance is not exhibited. On the other hand, when the content of the tertiary hydrogen-containing carboxylic acid unit exceeds 50 mol%, the tertiary hydrogen content is too high, and the physical properties such as gas barrier properties and mechanical properties of the polyamide resin (A) are deteriorated. When the secondary hydrogen-containing carboxylic acid is an amino acid, the peptide bond is continuous, so that the heat resistance is not sufficient, and a cyclic product composed of a dimer of amino acids is formed, thereby inhibiting polymerization. The content of the tertiary hydrogen-containing carboxylic acid unit is preferably 0.2 mol% or more, more preferably 1 mol% or more, and preferably from the viewpoint of the oxygen absorption performance and the properties of the polyamide resin (A). It is 40 mol% or less, More preferably, it is 30 mol% or less.
 ポリアミド樹脂(A)において、ジアミン単位の含有量は25~50モル%であり、酸素吸収性能やポリマー性状の観点から、好ましくは30~50モル%である。同様に、ポリアミド樹脂(A)において、ジカルボン酸単位の含有量は25~50モル%であり、好ましくは30~50モル%である。
 ジアミン単位とジカルボン酸単位との含有量の割合は、重合反応の観点から、ほぼ同量であることが好ましく、ジカルボン酸単位の含有量がジアミン単位の含有量の±2モル%であることがより好ましい。ジカルボン酸単位の含有量がジアミン単位の含有量の±2モル%の範囲を超えると、ポリアミド樹脂(A)の重合度が上がりにくくなるため重合度を上げるのに多くの時間を要し、熱劣化が生じやすくなる。
In the polyamide resin (A), the diamine unit content is 25 to 50 mol%, and preferably 30 to 50 mol% from the viewpoint of oxygen absorption performance and polymer properties. Similarly, in the polyamide resin (A), the content of dicarboxylic acid units is 25 to 50 mol%, preferably 30 to 50 mol%.
The proportion of the content of the diamine unit and the dicarboxylic acid unit is preferably substantially the same from the viewpoint of the polymerization reaction, and the content of the dicarboxylic acid unit is ± 2 mol% of the content of the diamine unit. More preferred. If the content of the dicarboxylic acid unit exceeds the range of ± 2 mol% of the content of the diamine unit, the degree of polymerization of the polyamide resin (A) becomes difficult to increase, so it takes a lot of time to increase the degree of polymerization, Deterioration is likely to occur.
[ジアミン単位]
 ポリアミド樹脂(A)中のジアミン単位は、前記一般式(I-1)で表される芳香族ジアミン単位、前記一般式(I-2)で表される脂環族ジアミン単位、及び前記一般式(I-3)で表される直鎖脂肪族ジアミン単位からなる群から選ばれる少なくとも1つのジアミン単位を、ジアミン単位中に合計で50モル%以上含み、当該含有量は、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。
[Diamine unit]
The diamine unit in the polyamide resin (A) is an aromatic diamine unit represented by the general formula (I-1), an alicyclic diamine unit represented by the general formula (I-2), and the general formula. A total of 50 mol% or more of diamine units selected from the group consisting of linear aliphatic diamine units represented by (I-3) is contained in the diamine units, and the content is preferably 70 mol% Above, more preferably 80 mol% or more, still more preferably 90 mol% or more, and preferably 100 mol% or less.
 前記一般式(I-1)で表される芳香族ジアミン単位を構成しうる化合物としては、オルトキシリレンジアミン、メタキシリレンジアミン、及びパラキシリレンジアミンが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 Examples of the compound that can constitute the aromatic diamine unit represented by the general formula (I-1) include orthoxylylenediamine, metaxylylenediamine, and paraxylylenediamine. These can be used alone or in combination of two or more.
 前記式(I-2)で表される脂環族ジアミン単位を構成しうる化合物としては、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン等のビス(アミノメチル)シクロヘキサン類が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
 ビス(アミノメチル)シクロヘキサン類は、構造異性体を持つが、cis体比率を高くすることで、結晶性が高く、良好な成形性を得られる。一方、cis体比率を低くすれば、結晶性が低い、透明なものが得られる。したがって、結晶性を高くしたい場合は、ビス(アミノメチル)シクロヘキサン類におけるcis体含有比率を70モル%以上とすることが好ましく、より好ましくは80モル%以上、更に好ましくは90モル%以上とする。一方、結晶性を低くしたい場合は、ビス(アミノメチル)シクロヘキサン類におけるcis体含有比率を50モル%以下とすることが好ましく、より好ましくは40モル%以下、更に好ましくは30モル%以下とする。
Examples of the compound that can constitute the alicyclic diamine unit represented by the formula (I-2) include bis (amino) such as 1,3-bis (aminomethyl) cyclohexane and 1,4-bis (aminomethyl) cyclohexane. Methyl) cyclohexanes. These can be used alone or in combination of two or more.
Bis (aminomethyl) cyclohexanes have structural isomers, but by increasing the cis-isomer ratio, the crystallinity is high and good moldability can be obtained. On the other hand, if the cis-isomer ratio is lowered, a transparent material with low crystallinity can be obtained. Therefore, when it is desired to increase the crystallinity, the cis-isomer content ratio in the bis (aminomethyl) cyclohexane is preferably 70 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more. . On the other hand, when it is desired to lower the crystallinity, the cis body content ratio in the bis (aminomethyl) cyclohexanes is preferably 50 mol% or less, more preferably 40 mol% or less, still more preferably 30 mol% or less. .
 前記一般式(I-3)中、mは2~18の整数を表し、好ましくは3~16、より好ましくは4~14、更に好ましくは6~12である。
 前記一般式(I-3)で表される直鎖脂肪族ジアミン単位を構成しうる化合物としては、エチレンジアミン、1,3-プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン等の脂肪族ジアミンを例示できるが、これらに限定されるものではない。これらの中でも、ヘキサメチレンジアミンが好ましい。これらは単独で又は2種以上を組み合わせて用いることができる。
In the general formula (I-3), m represents an integer of 2 to 18, preferably 3 to 16, more preferably 4 to 14, and still more preferably 6 to 12.
Examples of the compound that can constitute the linear aliphatic diamine unit represented by the general formula (I-3) include ethylenediamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, and heptamethylenediamine. And aliphatic diamines such as octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, and dodecamethylene diamine, but are not limited thereto. Among these, hexamethylenediamine is preferable. These can be used alone or in combination of two or more.
 ポリアミド樹脂(A)中のジアミン単位としては、ポリアミド樹脂(A)に優れたガスバリア性を付与することに加え、透明性や色調の向上や、汎用的な熱可塑性樹脂の成形性を容易にする観点からは、前記一般式(I-1)で表される芳香族ジアミン単位及び/又は前記一般式(I-2)で表される脂環族ジアミン単位を含むことが好ましく、ポリアミド樹脂(A)に適度な結晶性を付与する観点からは、前記一般式(I-3)で表される直鎖脂肪族ジアミン単位を含むことが好ましい。特に、酸素吸収性能やポリアミド樹脂(A)の性状の観点からは、前記一般式(I-1)で表される芳香族ジアミン単位を含むことが好ましい。 As a diamine unit in the polyamide resin (A), in addition to imparting excellent gas barrier properties to the polyamide resin (A), the transparency and color tone are improved, and the moldability of a general-purpose thermoplastic resin is facilitated. From the viewpoint, it preferably contains an aromatic diamine unit represented by the general formula (I-1) and / or an alicyclic diamine unit represented by the general formula (I-2). From the standpoint of imparting appropriate crystallinity to (A), it is preferable to include a linear aliphatic diamine unit represented by the general formula (I-3). In particular, from the viewpoint of oxygen absorption performance and properties of the polyamide resin (A), it is preferable that the aromatic diamine unit represented by the general formula (I-1) is included.
 ポリアミド樹脂(A)中のジアミン単位は、ポリアミド樹脂(A)に優れたガスバリア性を発現させることに加え、汎用的な熱可塑性樹脂の成形性を容易にする観点から、メタキシリレンジアミン単位を50モル%以上含むことが好ましく、当該含有量は、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。 The diamine unit in the polyamide resin (A) is a metaxylylenediamine unit from the viewpoint of facilitating the moldability of a general-purpose thermoplastic resin in addition to exhibiting excellent gas barrier properties in the polyamide resin (A). The content is preferably 50 mol% or more, and the content is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, and preferably 100 mol% or less.
 前記一般式(I-1)~(I-3)のいずれかで表されるジアミン単位以外のジアミン単位を構成しうる化合物としては、パラフェニレンジアミン等の芳香族ジアミン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン等の脂環族ジアミン、N-メチルエチレンジアミン、2-メチル-1,5-ペンタンジアミン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン等の脂肪族ジアミン、ハンツマン社製のジェファーミンやエラスタミン(いずれも商品名)に代表されるエーテル結合を有するポリエーテル系ジアミン等を例示できるが、これらに限定されるものではない。これらは単独で又は2種以上を組み合わせて用いることができる。 Examples of the compound that can constitute a diamine unit other than the diamine unit represented by any one of the general formulas (I-1) to (I-3) include aromatic diamines such as paraphenylenediamine, and 1,3-diaminocyclohexane. Fats such as 1,4-diaminocyclohexane, alicyclic diamines, N-methylethylenediamine, 2-methyl-1,5-pentanediamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, etc. Examples include, but are not limited to, group diamines, polyether diamines having ether bonds represented by Huntsman's Jeffamine and elastamine (both are trade names), and the like. These can be used alone or in combination of two or more.
[ジカルボン酸単位]
 ポリアミド樹脂(A)中のジカルボン酸単位は、重合時の反応性、並びにポリアミド樹脂(A)の結晶性及び成形性の観点から、前記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位及び/又は前記一般式(II-2)で表される芳香族ジカルボン酸単位を、ジカルボン酸単位に合計で50モル%以上含み、当該含有量は、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。
[Dicarboxylic acid unit]
The dicarboxylic acid unit in the polyamide resin (A) is a linear aliphatic group represented by the general formula (II-1) from the viewpoints of reactivity during polymerization and crystallinity and moldability of the polyamide resin (A). The dicarboxylic acid unit and / or the aromatic dicarboxylic acid unit represented by the general formula (II-2) is contained in the dicarboxylic acid unit in a total of 50 mol% or more, and the content is preferably 70 mol% or more, more Preferably it is 80 mol% or more, More preferably, it is 90 mol% or more, Preferably it is 100 mol% or less.
 前記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位は、ポリアミド樹脂(A)に適度なガラス転移温度や結晶性を付与することに加え、包装材料や包装容器として必要な柔軟性を付与できる点で好ましい。
 前記一般式(II-1)中、nは2~18の整数を表し、好ましくは3~16、より好ましくは4~12、更に好ましくは4~8である。
 前記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位を構成しうる化合物としては、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,10-デカンジカルボン酸、1,11-ウンデカンジカルボン酸、1,12-ドデカンジカルボン酸等を例示できるが、これらに限定されるものではない。これらは単独で又は2種以上を組み合わせて用いることができる。
The linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) is necessary for a packaging material and a packaging container in addition to imparting an appropriate glass transition temperature and crystallinity to the polyamide resin (A). It is preferable at the point which can provide a softness | flexibility.
In the general formula (II-1), n represents an integer of 2 to 18, preferably 3 to 16, more preferably 4 to 12, and still more preferably 4 to 8.
Examples of the compound that can constitute the linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1, Examples include 10-decanedicarboxylic acid, 1,11-undecanedicarboxylic acid, 1,12-dodecanedicarboxylic acid, but are not limited thereto. These can be used alone or in combination of two or more.
 前記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位の種類は用途に応じて適宜決定される。ポリアミド樹脂(A)中の直鎖脂肪族ジカルボン酸単位は、ポリアミド樹脂(A)に優れたガスバリア性を付与することに加え、包装材料や包装容器の加熱殺菌後の耐熱性を保持する観点から、アジピン酸単位、セバシン酸単位、及び1,12-ドデカンジカルボン酸単位からなる群から選ばれる少なくとも1つを、直鎖脂肪族ジカルボン酸単位中に合計で50モル%以上含むことが好ましく、当該含有量は、より好ましくは70モル%以上、更に好ましくは80モル%以上、特に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。 The type of the linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) is appropriately determined according to the application. The linear aliphatic dicarboxylic acid unit in the polyamide resin (A) gives excellent gas barrier properties to the polyamide resin (A), and from the viewpoint of maintaining heat resistance after heat sterilization of the packaging material and packaging container. It is preferable that at least one selected from the group consisting of an adipic acid unit, a sebacic acid unit, and a 1,12-dodecanedicarboxylic acid unit is contained in a total of 50 mol% or more in the linear aliphatic dicarboxylic acid unit, The content is more preferably 70 mol% or more, still more preferably 80 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less.
 ポリアミド樹脂(A)中の直鎖脂肪族ジカルボン酸単位は、ポリアミド樹脂(A)のガスバリア性及び適切なガラス転移温度や融点等の熱的性質の観点からは、アジピン酸単位を直鎖脂肪族ジカルボン酸単位中に50モル%以上含むことが好ましい。また、ポリアミド樹脂(A)中の直鎖脂肪族ジカルボン酸単位は、ポリアミド樹脂(A)に適度なガスバリア性及び成形加工適性を付与する観点からは、セバシン酸単位を直鎖脂肪族ジカルボン酸単位中に50モル%以上含むことが好ましく、ポリアミド樹脂(A)が低吸水性、耐候性、耐熱性を要求される用途に用いられる場合は、1,12-ドデカンジカルボン酸単位を直鎖脂肪族ジカルボン酸単位中に50モル%以上含むことが好ましい。 The linear aliphatic dicarboxylic acid unit in the polyamide resin (A) is a linear aliphatic unit from the viewpoint of gas barrier properties of the polyamide resin (A) and thermal properties such as an appropriate glass transition temperature and melting point. It is preferable to contain 50 mol% or more in the dicarboxylic acid unit. In addition, the linear aliphatic dicarboxylic acid unit in the polyamide resin (A) is converted from the sebacic acid unit to the linear aliphatic dicarboxylic acid unit from the viewpoint of imparting appropriate gas barrier properties and molding processability to the polyamide resin (A). When the polyamide resin (A) is used for applications requiring low water absorption, weather resistance, and heat resistance, the 1,12-dodecanedicarboxylic acid unit is a linear aliphatic group. It is preferable to contain 50 mol% or more in the dicarboxylic acid unit.
 前記一般式(II-2)で表される芳香族ジカルボン酸単位は、ポリアミド樹脂(A)に更なるガスバリア性を付与することに加え、包装材料や包装容器の成形加工性を容易にすることができる点で好ましい。
 前記一般式(II-2)中、Arはアリーレン基を表す。前記アリーレン基は、好ましくは炭素数6~30、より好ましくは炭素数6~15のアリーレン基であり、例えば、フェニレン基、ナフチレン基等が挙げられる。
 前記一般式(II-2)で表される芳香族ジカルボン酸単位を構成しうる化合物としては、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸等を例示できるが、これらに限定されるものではない。これらは単独で又は2種以上を組み合わせて用いることができる。
The aromatic dicarboxylic acid unit represented by the general formula (II-2) facilitates the molding processability of packaging materials and packaging containers in addition to imparting further gas barrier properties to the polyamide resin (A). It is preferable at the point which can do.
In the general formula (II-2), Ar represents an arylene group. The arylene group is preferably an arylene group having 6 to 30 carbon atoms, more preferably 6 to 15 carbon atoms, and examples thereof include a phenylene group and a naphthylene group.
Examples of the compound that can constitute the aromatic dicarboxylic acid unit represented by the general formula (II-2) include terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid, but are not limited thereto. is not. These can be used alone or in combination of two or more.
 前記一般式(II-2)で表される芳香族ジカルボン酸単位の種類は用途に応じて適宜決定される。ポリアミド樹脂(A)中の芳香族ジカルボン酸単位は、イソフタル酸単位、テレフタル酸単位、及び2,6-ナフタレンジカルボン酸単位からなる群から選ばれる少なくとも1つを、芳香族ジカルボン酸単位中に合計で50モル%以上含むことが好ましく、当該含有量は、より好ましくは70モル%以上、更に好ましくは80モル%以上、特に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。また、これらの中でもイソフタル酸及び/又はテレフタル酸を芳香族ジカルボン酸単位中に含むことが好ましい。イソフタル酸単位とテレフタル酸単位との含有比(イソフタル酸単位/テレフタル酸単位)は、特に制限はなく、用途に応じて適宜決定される。例えば、適度なガラス転移温度や結晶性を下げる観点からは、両単位の合計を100としたとき、モル比で好ましくは0/100~100/0、より好ましくは0/100~60/40、更に好ましくは0/100~40/60、更に好ましくは0/100~30/70である。 The kind of the aromatic dicarboxylic acid unit represented by the general formula (II-2) is appropriately determined according to the use. The aromatic dicarboxylic acid unit in the polyamide resin (A) is a total of at least one selected from the group consisting of an isophthalic acid unit, a terephthalic acid unit, and a 2,6-naphthalenedicarboxylic acid unit in the aromatic dicarboxylic acid unit. The content is preferably 70 mol% or more, more preferably 80 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less. is there. Among these, it is preferable to contain isophthalic acid and / or terephthalic acid in the aromatic dicarboxylic acid unit. The content ratio of the isophthalic acid unit to the terephthalic acid unit (isophthalic acid unit / terephthalic acid unit) is not particularly limited and is appropriately determined according to the application. For example, from the viewpoint of reducing an appropriate glass transition temperature and crystallinity, when the total of both units is 100, the molar ratio is preferably 0/100 to 100/0, more preferably 0/100 to 60/40, More preferably, it is 0/100 to 40/60, and more preferably 0/100 to 30/70.
 ポリアミド樹脂(A)中のジカルボン酸単位において、前記直鎖脂肪族ジカルボン酸単位と前記芳香族ジカルボン酸単位との含有比(直鎖脂肪族ジカルボン酸単位/芳香族ジカルボン酸単位)は、特に制限はなく、用途に応じて適宜決定される。例えば、ポリアミド樹脂(A)のガラス転移温度を上げて、ポリアミド樹脂(A)の結晶性を低下させることを目的とした場合、直鎖脂肪族ジカルボン酸単位/芳香族ジカルボン酸単位は、両単位の合計を100としたとき、モル比で好ましくは0/100~60/40、より好ましくは0/100~40/60、更に好ましくは0/100~30/70である。また、ポリアミド樹脂(A)のガラス転移温度を下げてポリアミド樹脂(A)に柔軟性を付与することを目的とした場合、直鎖脂肪族ジカルボン酸単位/芳香族ジカルボン酸単位は、両単位の合計を100としたとき、モル比で好ましくは40/60~100/0、より好ましくは60/40~100/0、更に好ましくは70/30~100/0である。 In the dicarboxylic acid unit in the polyamide resin (A), the content ratio of the linear aliphatic dicarboxylic acid unit to the aromatic dicarboxylic acid unit (linear aliphatic dicarboxylic acid unit / aromatic dicarboxylic acid unit) is particularly limited. Rather, it is determined appropriately according to the application. For example, when the purpose is to increase the glass transition temperature of the polyamide resin (A) to lower the crystallinity of the polyamide resin (A), the linear aliphatic dicarboxylic acid unit / aromatic dicarboxylic acid unit is both units. When the total of these is 100, the molar ratio is preferably 0/100 to 60/40, more preferably 0/100 to 40/60, still more preferably 0/100 to 30/70. When the purpose is to lower the glass transition temperature of the polyamide resin (A) to give the polyamide resin (A) flexibility, the linear aliphatic dicarboxylic acid unit / aromatic dicarboxylic acid unit is When the total is 100, the molar ratio is preferably 40/60 to 100/0, more preferably 60/40 to 100/0, still more preferably 70/30 to 100/0.
 前記一般式(II-1)又は(II-2)で表されるジカルボン酸単位以外のジカルボン酸単位を構成しうる化合物としては、シュウ酸、マロン酸、フマル酸、マレイン酸、1,3-ベンゼン二酢酸、1,4-ベンゼン二酢酸等のジカルボン酸を例示できるが、これらに限定されるものではない。 Examples of the compound that can constitute a dicarboxylic acid unit other than the dicarboxylic acid unit represented by the general formula (II-1) or (II-2) include oxalic acid, malonic acid, fumaric acid, maleic acid, 1,3- Examples thereof include, but are not limited to, dicarboxylic acids such as benzenediacetic acid and 1,4-benzenediacetic acid.
[3級水素含有カルボン酸単位]
 本発明において、ポリアミド樹脂(A)における3級水素含有カルボン酸単位は、ポリアミド樹脂(A)の重合の観点から、アミノ基及びカルボキシル基を少なくとも1つずつ有するか、又はカルボキシル基を2つ以上有する。具体例としては、下記一般式(III)、(IV)又は(V)のいずれかで表される構成単位が挙げられる。
[Tertiary hydrogen-containing carboxylic acid unit]
In the present invention, the tertiary hydrogen-containing carboxylic acid unit in the polyamide resin (A) has at least one amino group and one carboxyl group from the viewpoint of polymerization of the polyamide resin (A), or two or more carboxyl groups. Have. Specific examples include structural units represented by any of the following general formulas (III), (IV), or (V).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[前記一般式(III)~(V)中、R、R1及びR2はそれぞれ置換基を表し、A1~A3はそれぞれ単結合又は2価の連結基を表す。ただし、前記一般式(IV)においてA1及びA2がともに単結合である場合を除く。] [In the general formulas (III) to (V), R, R 1 and R 2 each represent a substituent, and A 1 to A 3 each represent a single bond or a divalent linking group. However, the case where both A 1 and A 2 in the general formula (IV) are single bonds is excluded. ]
 本発明において、ポリアミド樹脂(A)は、3級水素含有カルボン酸単位を含む。このような3級水素含有カルボン酸単位を共重合成分として含有することで、ポリアミド樹脂(A)は、遷移金属を含有せずとも優れた酸素吸収性能を発揮することができる。 In the present invention, the polyamide resin (A) includes a tertiary hydrogen-containing carboxylic acid unit. By containing such a tertiary hydrogen-containing carboxylic acid unit as a copolymerization component, the polyamide resin (A) can exhibit excellent oxygen absorption performance without containing a transition metal.
 本発明において、3級水素含有カルボン酸単位を有するポリアミド樹脂(A)が良好な酸素吸収性能を示す機構についてはまだ明らかにされていないが以下のように推定される。3級水素含有カルボン酸単位を構成しうる化合物は、同一炭素原子上に電子求引性基と電子供与性基とが結合しているため、その炭素原子上に存在する不対電子がエネルギー的に安定化されるキャプトデーティブ(Captodative)効果と呼ばれる現象によって非常に安定なラジカルが生成すると考えられる。すなわち、カルボキシル基は電子求引性基であり、それに隣接する3級水素が結合している炭素が電子不足(δ+)になるため、当該3級水素も電子不足(δ+)となり、プロトンとして解離してラジカルを形成する。ここに酸素及び水が存在したときに、酸素がこのラジカルと反応することで、酸素吸収性能を示すと考えられる。また、高湿度かつ高温の環境であるほど、反応性は高いことが判明している。 In the present invention, the mechanism by which the polyamide resin (A) having a tertiary hydrogen-containing carboxylic acid unit exhibits good oxygen absorption performance has not yet been clarified, but is estimated as follows. In a compound that can constitute a tertiary hydrogen-containing carboxylic acid unit, an electron-withdrawing group and an electron-donating group are bonded to the same carbon atom, so that unpaired electrons existing on the carbon atom are energetic. It is considered that a very stable radical is generated by a phenomenon called a captodative effect that is stabilized in a stable manner. That is, the carboxyl group is an electron withdrawing group, and the carbon to which the adjacent tertiary hydrogen is bonded becomes electron deficient (δ + ), so the tertiary hydrogen also becomes electron deficient (δ + ) Dissociates as a radical. When oxygen and water are present here, it is considered that oxygen reacts with this radical to show oxygen absorption performance. It has also been found that the higher the humidity and temperature, the higher the reactivity.
 前記一般式(III)~(V)中、R、R1及びR2はそれぞれ置換基を表す。本発明におけるR、R1及びR2で表される置換基としては、例えば、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子)、アルキル基(1~15個、好ましくは1~6個の炭素原子を有する直鎖、分岐又は環状アルキル基、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、t-ブチル基、n-オクチル基、2-エチルヘキシル基、シクロプロピル基、シクロペンチル基)、アルケニル基(2~10個、好ましくは2~6個の炭素原子を有する直鎖、分岐又は環状アルケニル基、例えば、ビニル基、アリル基)、アルキニル基(2~10個、好ましくは2~6個の炭素原子を有するアルキニル基、例えば、エチニル基、プロパルギル基)、アリール基(6~16個、好ましくは6~10個の炭素原子を有するアリール基、例えば、フェニル基、ナフチル基)、複素環基(5員環又は6員環の芳香族又は非芳香族の複素環化合物から1個の水素原子を取り除くことによって得られる、1~12個、好ましくは2~6個の炭素原子を有する一価の基、例えば1-ピラゾリル基、1-イミダゾリル基、2-フリル基)、シアノ基、水酸基、ニトロ基、アルコキシ基(1~10個、好ましくは1~6個の炭素原子を有する直鎖、分岐又は環状アルコキシ基、例えば、メトキシ基、エトキシ基)、アリールオキシ基(6~12個、好ましくは6~8個の炭素原子を有するアリールオキシ基、例えば、フェノキシ基)、アシル基(ホルミル基、2~10個、好ましくは2~6個の炭素原子を有するアルキルカルボニル基、或いは7~12個、好ましくは7~9個の炭素原子を有するアリールカルボニル基、例えば、アセチル基、ピバロイル基、ベンゾイル基)、アミノ基(アミノ基、1~10個、好ましくは1~6個の炭素原子を有するアルキルアミノ基、6~12個、好ましくは6~8個の炭素原子を有するアニリノ基、或いは1~12個、好ましくは2~6個の炭素原子を有する複素環アミノ基、例えば、アミノ基、メチルアミノ基、アニリノ基)、メルカプト基、アルキルチオ基(1~10個、好ましくは1~6個の炭素原子を有するアルキルチオ基、例えば、メチルチオ基、エチルチオ基)、アリールチオ基(6~12個、好ましくは6~8個の炭素原子を有するアリールチオ基、例えば、フェニルチオ基)、複素環チオ基(2~10個、好ましくは2~6個の炭素原子を有する複素環チオ基、例えば2-ベンゾチアゾリルチオ基)、イミド基(2~10個、好ましくは4~8個の炭素原子を有するイミド基、例えば、N-スクシンイミド基、N-フタルイミド基)等が挙げられる。 In the general formulas (III) to (V), R, R 1 and R 2 each represent a substituent. Examples of the substituent represented by R, R 1 and R 2 in the present invention include a halogen atom (eg, chlorine atom, bromine atom, iodine atom), alkyl group (1 to 15, preferably 1 to 6). Linear, branched or cyclic alkyl groups having the following carbon atoms, for example, methyl group, ethyl group, n-propyl group, isopropyl group, t-butyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl Group), an alkenyl group (a linear, branched or cyclic alkenyl group having 2 to 10, preferably 2 to 6 carbon atoms, such as a vinyl group, an allyl group), an alkynyl group (2 to 10, preferably Alkynyl groups having 2 to 6 carbon atoms, such as ethynyl groups, propargyl groups), aryl groups (aryls having 6 to 16, preferably 6 to 10 carbon atoms) 1 to 12 groups obtained by removing one hydrogen atom from a group, for example, phenyl group, naphthyl group, heterocyclic group (5-membered or 6-membered aromatic or non-aromatic heterocyclic compound) , Preferably a monovalent group having 2 to 6 carbon atoms, such as 1-pyrazolyl group, 1-imidazolyl group, 2-furyl group, cyano group, hydroxyl group, nitro group, alkoxy group (1-10, Preferably a linear, branched or cyclic alkoxy group having 1 to 6 carbon atoms, such as a methoxy group, an ethoxy group, an aryloxy group (6-12, preferably 6-8 carbon atoms aryl) An oxy group, such as a phenoxy group, an acyl group (formyl group, 2-10, preferably an alkylcarbonyl group having 2-6 carbon atoms, or 7-12, preferably 7-9 carbon atoms. Arylcarbonyl group having, for example, acetyl group, pivaloyl group, benzoyl group), amino group (amino group, 1-10, preferably alkylamino group having 1-6 carbon atoms, 6-12, preferably Is an anilino group having 6 to 8 carbon atoms, or a heterocyclic amino group having 1 to 12, preferably 2 to 6 carbon atoms, such as an amino group, a methylamino group, an anilino group), a mercapto group An alkylthio group (an alkylthio group having 1 to 10, preferably 1 to 6 carbon atoms, such as a methylthio group, an ethylthio group), an arylthio group (6 to 12, preferably 6 to 8 carbon atoms). Arylthio groups having, for example, phenylthio groups), heterocyclic thio groups (for example, heterocyclic thio groups having 2 to 10, preferably 2 to 6 carbon atoms, such as - benzothiazolylthio group), an imido group (2 to 10, preferably an imido group having 4 to 8 carbon atoms, for example, N- succinimido group, N- phthalimido group).
 これらの官能基の中で水素原子を有するものは更に上記の基で置換されていてもよく、例えば、水酸基で置換されたアルキル基(例えば、ヒドロキシエチル基)、アルコキシ基で置換されたアルキル基(例えば、メトキシエチル基)、アリール基で置換されたアルキル基(例えば、ベンジル基)、アルキル基で置換されたアリール基(例えば、p-トリル基)、アルキル基で置換されたアリールオキシ基(例えば、2-メチルフェノキシ基)等を挙げられるが、これらに限定されるものではない。
 なお、官能基が更に置換されている場合、上述した炭素数には、更なる置換基の炭素数は含まれないものとする。例えば、ベンジル基は、フェニル基で置換された炭素数1のアルキル基と見なし、フェニル基で置換された炭素数7のアルキル基とは見なさない。以降の炭素数に記載についても、特に断りが無い限り、同様に解するものとする。
Among these functional groups, those having a hydrogen atom may be further substituted with the above groups, for example, an alkyl group substituted with a hydroxyl group (for example, hydroxyethyl group), an alkyl group substituted with an alkoxy group (Eg, methoxyethyl group), an alkyl group substituted with an aryl group (eg, benzyl group), an aryl group substituted with an alkyl group (eg, p-tolyl group), an aryloxy group substituted with an alkyl group ( Examples thereof include, but are not limited to, 2-methylphenoxy group.
In addition, when a functional group is further substituted, the carbon number mentioned above shall not include the carbon number of the further substituent. For example, a benzyl group is regarded as a C 1 alkyl group substituted with a phenyl group, and is not regarded as a C 7 alkyl group substituted with a phenyl group. The following description of the number of carbon atoms shall be similarly understood unless otherwise specified.
 前記一般式(IV)及び(V)中、A1~A3はそれぞれ単結合又は2価の連結基を表す。ただし、前記一般式(IV)においてA1及びA2がともに単結合である場合を除く。2価の連結基としては、例えば、直鎖、分岐もしくは環状のアルキレン基(炭素数1~12、好ましくは炭素数1~4のアルキレン基、例えばメチレン基、エチレン基)、アラルキレン基(炭素数7~30、好ましくは炭素数7~13のアラルキレン基、例えばベンジリデン基)、アリーレン基(炭素数6~30、好ましくは炭素数6~15のアリーレン基、例えば、フェニレン基)等が挙げられる。これらは更に置換基を有していてもよく、当該置換基としては、R、R1及びR2で表される置換基として上記に例示した官能基が挙げられる。例えば、アルキル基で置換されたアリーレン基(例えば、キシリレン基)等を挙げられるが、これらに限定されるものではない。 In the general formulas (IV) and (V), A 1 to A 3 each represents a single bond or a divalent linking group. However, the case where both A 1 and A 2 in the general formula (IV) are single bonds is excluded. Examples of the divalent linking group include linear, branched or cyclic alkylene groups (C 1-12, preferably C 1-4 alkylene groups such as methylene and ethylene groups), aralkylene groups (carbon numbers). Examples thereof include an aralkylene group having 7 to 30 carbon atoms, preferably 7 to 13 carbon atoms, such as a benzylidene group, and an arylene group (arylene group having 6 to 30 carbon atoms, preferably 6 to 15 carbon atoms such as a phenylene group). These may further have a substituent, and examples of the substituent include the functional groups exemplified above as substituents represented by R, R 1 and R 2 . Examples thereof include, but are not limited to, an arylene group substituted with an alkyl group (for example, a xylylene group).
 本発明において、ポリアミド樹脂(A)は、前記一般式(III)、(IV)又は(V)のいずれかで表される構成単位の少なくとも1種を含むことが好ましい。これらの中でも、原料の入手性や酸素吸収性向上の観点から、α炭素(カルボキシル基に隣接する炭素原子)に3級水素を有するカルボン酸単位がより好ましく、前記一般式(III)で表される構成単位が特に好ましい。 In the present invention, the polyamide resin (A) preferably contains at least one structural unit represented by any one of the general formulas (III), (IV), and (V). Among these, from the viewpoint of improving the availability of raw materials and oxygen absorption, a carboxylic acid unit having tertiary hydrogen on the α-carbon (carbon atom adjacent to the carboxyl group) is more preferable, and is represented by the general formula (III). The structural unit is particularly preferred.
 前記一般式(III)中におけるRについては上述した通りであるが、その中でも置換もしくは無置換のアルキル基及び置換もしくは無置換のアリール基がより好ましく、置換もしくは無置換の炭素数1~6のアルキル基及び置換もしくは無置換の炭素数6~10のアリール基が更に好ましく、置換もしくは無置換の炭素数1~4のアルキル基及び置換もしくは無置換のフェニル基が特に好ましい。
 好ましいRの具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、1-メチルプロピル基、2-メチルプロピル基、ヒドロキシメチル基、1-ヒドロキシエチル基、メルカプトメチル基、メチルスルファニルエチル基、フェニル基、ナフチル基、ベンジル基、4-ヒドロキシベンジル基等を例示できるが、これらに限定されるものではない。これらの中でも、メチル基、エチル基、イソプロピル基、2-メチルプロピル基、及びベンジル基がより好ましい。
R in the general formula (III) is as described above. Among them, a substituted or unsubstituted alkyl group and a substituted or unsubstituted aryl group are more preferable, and a substituted or unsubstituted C 1-6 carbon atom is more preferable. An alkyl group and a substituted or unsubstituted aryl group having 6 to 10 carbon atoms are more preferred, and a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms and a substituted or unsubstituted phenyl group are particularly preferred.
Specific examples of preferred R include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, 1-methylpropyl group, 2-methylpropyl group, hydroxymethyl group, 1- Examples thereof include, but are not limited to, a hydroxyethyl group, a mercaptomethyl group, a methylsulfanylethyl group, a phenyl group, a naphthyl group, a benzyl group, and a 4-hydroxybenzyl group. Among these, a methyl group, an ethyl group, an isopropyl group, a 2-methylpropyl group, and a benzyl group are more preferable.
 前記一般式(III)で表される構成単位を構成しうる化合物としては、アラニン、2-アミノ酪酸、バリン、ノルバリン、ロイシン、ノルロイシン、tert-ロイシン、イソロイシン、セリン、トレオニン、システイン、メチオニン、2-フェニルグリシン、フェニルアラニン、チロシン、ヒスチジン、トリプトファン、プロリン等のα-アミノ酸を例示できるが、これらに限定されるものではない。
 また、前記一般式(IV)で表される構成単位を構成しうる化合物としては、3-アミノ酪酸等のβ-アミノ酸を例示でき、前記一般式(V)で表される構成単位を構成しうる化合物としては、メチルマロン酸、メチルコハク酸、リンゴ酸、酒石酸等のジカルボン酸を例示できるが、これらに限定されるものではない。
 これらはD体、L体、ラセミ体のいずれであってもよく、アロ体であってもよい。また、これらは単独で又は2種以上を組み合わせて用いることができる。
The compounds that can constitute the structural unit represented by the general formula (III) include alanine, 2-aminobutyric acid, valine, norvaline, leucine, norleucine, tert-leucine, isoleucine, serine, threonine, cysteine, methionine, 2 -Alpha-amino acids such as phenylglycine, phenylalanine, tyrosine, histidine, tryptophan, proline and the like can be exemplified, but are not limited thereto.
In addition, examples of the compound that can constitute the structural unit represented by the general formula (IV) include β-amino acids such as 3-aminobutyric acid, which constitute the structural unit represented by the general formula (V). Examples of the compound that can be used include, but are not limited to, dicarboxylic acids such as methylmalonic acid, methylsuccinic acid, malic acid, and tartaric acid.
These may be any of D-form, L-form and racemate, or allo-form. Moreover, these can be used individually or in combination of 2 or more types.
 これらの中でも、原料の入手性や酸素吸収性向上等の観点から、α炭素に3級水素を有するα-アミノ酸が特に好ましい。また、α-アミノ酸の中でも、供給しやすさ、安価な価格、重合しやすさ、ポリマーの黄色度(YI)の低さといった点から、アラニンが最も好ましい。アラニンは、分子量が比較的低く、ポリアミド樹脂(A)1g当たりの共重合率が高いため、ポリアミド樹脂(A)1g当たりの酸素吸収性能は良好である。 Among these, α-amino acids having tertiary hydrogen in the α carbon are particularly preferable from the viewpoint of availability of raw materials and improvement of oxygen absorption. Among α-amino acids, alanine is most preferable from the viewpoints of ease of supply, inexpensive price, ease of polymerization, and low yellowness (YI) of the polymer. Since alanine has a relatively low molecular weight and a high copolymerization rate per 1 g of the polyamide resin (A), the oxygen absorption performance per 1 g of the polyamide resin (A) is good.
 また、前記3級水素含有カルボン酸単位を構成しうる化合物の純度は、重合速度の遅延等の重合に及ぼす影響やポリマーの黄色度等の品質面への影響の観点から、95%以上であることが好ましく、より好ましくは98.5%以上、更に好ましくは99%以上である。また、不純物として含まれる硫酸イオンやアンモニウムイオンは、500ppm以下が好ましく、より好ましくは200ppm以下、更に好ましくは50ppm以下である。 Further, the purity of the compound that can constitute the tertiary hydrogen-containing carboxylic acid unit is 95% or more from the viewpoint of the influence on the polymerization such as the delay of the polymerization rate and the influence on the quality such as the yellowness of the polymer. Preferably, it is 98.5% or more, more preferably 99% or more. Further, sulfate ions and ammonium ions contained as impurities are preferably 500 ppm or less, more preferably 200 ppm or less, and still more preferably 50 ppm or less.
[ω-アミノカルボン酸単位]
 本発明において、ポリアミド樹脂(A)は、ポリアミド樹脂(A)に柔軟性等が必要な場合には、前記ジアミン単位、前記ジカルボン酸単位及び前記3級水素含有カルボン酸単位に加えて、下記一般式(X)で表されるω-アミノカルボン酸単位を更に含有してもよい。
[Ω-aminocarboxylic acid unit]
In the present invention, when the polyamide resin (A) needs flexibility or the like, in addition to the diamine unit, the dicarboxylic acid unit and the tertiary hydrogen-containing carboxylic acid unit, the polyamide resin (A) An ω-aminocarboxylic acid unit represented by the formula (X) may be further contained.
Figure JPOXMLDOC01-appb-C000006
[前記一般式(X)中、pは2~18の整数を表す。]
 前記ω-アミノカルボン酸単位の含有量は、ポリアミド樹脂(A)の全構成単位中、好ましくは0.1~49.9モル%、より好ましくは3~40モル%、更に好ましくは5~35モル%である。ただし、前記のジアミン単位、ジカルボン酸単位、3級水素含有カルボン酸単位、及びω-アミノカルボン酸単位の合計は100モル%を超えないものとする。
 前記一般式(X)中、pは2~18の整数を表し、好ましくは3~16、より好ましくは4~14、更に好ましくは5~12である。
Figure JPOXMLDOC01-appb-C000006
[In the general formula (X), p represents an integer of 2 to 18. ]
The content of the ω-aminocarboxylic acid unit is preferably from 0.1 to 49.9 mol%, more preferably from 3 to 40 mol%, still more preferably from 5 to 35, based on all constituent units of the polyamide resin (A). Mol%. However, the total of the diamine unit, dicarboxylic acid unit, tertiary hydrogen-containing carboxylic acid unit, and ω-aminocarboxylic acid unit does not exceed 100 mol%.
In the general formula (X), p represents an integer of 2 to 18, preferably 3 to 16, more preferably 4 to 14, and still more preferably 5 to 12.
 前記一般式(X)で表されるω-アミノカルボン酸単位を構成しうる化合物としては、炭素数5~19のω-アミノカルボン酸や炭素数5~19のラクタムが挙げられる。炭素数5~19のω-アミノカルボン酸としては、6-アミノヘキサン酸及び12-アミノドデカン酸等が挙げられ、炭素数5~19のラクタムとしては、ε-カプロラクタム及びラウロラクタムを挙げることができるが、これらに限定されるものではない。これらは単独で又は2種以上を組み合わせて用いることができる。 Examples of the compound that can constitute the ω-aminocarboxylic acid unit represented by the general formula (X) include ω-aminocarboxylic acid having 5 to 19 carbon atoms and lactam having 5 to 19 carbon atoms. Examples of the ω-aminocarboxylic acid having 5 to 19 carbon atoms include 6-aminohexanoic acid and 12-aminododecanoic acid, and examples of the lactam having 5 to 19 carbon atoms include ε-caprolactam and laurolactam. However, it is not limited to these. These can be used alone or in combination of two or more.
 前記ω-アミノカルボン酸単位は、6-アミノヘキサン酸単位及び/又は12-アミノドデカン酸単位を、ω-アミノカルボン酸単位中に合計で50モル%以上含むことが好ましく、当該含有量は、より好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。 The ω-aminocarboxylic acid unit preferably contains 6-aminohexanoic acid units and / or 12-aminododecanoic acid units in a total of 50 mol% or more in the ω-aminocarboxylic acid unit, and the content is More preferably, it is 70 mol% or more, More preferably, it is 80 mol% or more, More preferably, it is 90 mol% or more, Preferably it is 100 mol% or less.
[ポリアミド樹脂(A)の重合度]
 ポリアミド樹脂(A)の重合度については、相対粘度が使われる。ポリアミド樹脂(A)の好ましい相対粘度は、成形品の強度や外観、成形加工性の観点から、好ましくは1.8~4.2、より好ましくは1.9~4.0、更に好ましくは2.0~3.8である。
 なお、ここでいう相対粘度は、ポリアミド樹脂(A)1gを96%硫酸100mLに溶解し、キャノンフェンスケ型粘度計にて25℃で測定した落下時間(t)と、同様に測定した96%硫酸そのものの落下時間(t0)の比であり、次式で示される。
   相対粘度=t/t0
[Polymerization degree of polyamide resin (A)]
The relative viscosity is used for the degree of polymerization of the polyamide resin (A). The preferred relative viscosity of the polyamide resin (A) is preferably 1.8 to 4.2, more preferably 1.9 to 4.0, and still more preferably 2 from the viewpoint of the strength and appearance of the molded product and molding processability. 0.0 to 3.8.
The relative viscosity here is 96% measured in the same manner as the dropping time (t) measured by dissolving a 1 g polyamide resin (A) in 100 mL of 96% sulfuric acid at 25 ° C. with a Canon Fenceke viscometer. It is the ratio of the drop time (t 0 ) of sulfuric acid itself, and is represented by the following formula.
Relative viscosity = t / t 0
[末端アミノ基濃度]
 ポリアミド樹脂(A)の酸素吸収速度、及び酸素吸収によるポリアミド樹脂(A)の酸化劣化は、ポリアミド樹脂(A)の末端アミノ基濃度を変えることで制御することが可能である。本発明では、酸素吸収速度と酸化劣化のバランスの観点から、ポリアミド樹脂(A)の末端アミノ基濃度は5~150μeq/gの範囲が好ましく、より好ましくは10~100μeq/g、更に好ましくは15~80μeq/gである。
[Terminal amino group concentration]
The oxygen absorption rate of the polyamide resin (A) and the oxidative deterioration of the polyamide resin (A) due to oxygen absorption can be controlled by changing the terminal amino group concentration of the polyamide resin (A). In the present invention, from the viewpoint of the balance between oxygen absorption rate and oxidative degradation, the terminal amino group concentration of the polyamide resin (A) is preferably in the range of 5 to 150 μeq / g, more preferably 10 to 100 μeq / g, still more preferably 15 ~ 80 μeq / g.
<ポリアミド樹脂(A)の製造方法>
 ポリアミド樹脂(A)は、前記ジアミン単位を構成しうるジアミン成分と、前記ジカルボン酸単位を構成しうるジカルボン酸成分と、前記3級水素含有カルボン酸単位を構成しうる3級水素含有カルボン酸成分と、必要により前記ω-アミノカルボン酸単位を構成しうるω-アミノカルボン酸成分とを重縮合させることで製造することができ、重縮合条件等を調整することで重合度を制御することができる。重縮合時に分子量調整剤として少量のモノアミンやモノカルボン酸を加えてもよい。また、重縮合反応を抑制して所望の重合度とするために、ポリアミド樹脂(A)を構成するジアミン成分とカルボン酸成分との比率(モル比)を1からずらして調整してもよい。
<Method for producing polyamide resin (A)>
The polyamide resin (A) includes a diamine component that can constitute the diamine unit, a dicarboxylic acid component that can constitute the dicarboxylic acid unit, and a tertiary hydrogen-containing carboxylic acid component that can constitute the tertiary hydrogen-containing carboxylic acid unit. And the ω-aminocarboxylic acid component that can constitute the ω-aminocarboxylic acid unit, if necessary, can be produced by polycondensation, and the degree of polymerization can be controlled by adjusting the polycondensation conditions and the like. it can. A small amount of monoamine or monocarboxylic acid may be added as a molecular weight modifier during polycondensation. Further, in order to suppress the polycondensation reaction and obtain a desired degree of polymerization, the ratio (molar ratio) between the diamine component and the carboxylic acid component constituting the polyamide resin (A) may be adjusted from 1.
 ポリアミド樹脂(A)の重縮合方法としては、反応押出法、加圧塩法、常圧滴下法、加圧滴下法等が挙げられるが、これらに限定されない。また、反応温度は出来る限り低い方が、ポリアミド樹脂(A)の黄色化やゲル化を抑制でき、安定した性状のポリアミド樹脂(A)が得られる。 Examples of the polycondensation method of the polyamide resin (A) include, but are not limited to, a reactive extrusion method, a pressurized salt method, an atmospheric pressure dropping method, and a pressure dropping method. Moreover, the one where reaction temperature is as low as possible can suppress the yellowing and gelatinization of a polyamide resin (A), and the polyamide resin (A) of the stable property is obtained.
[反応押出法]
 反応押出法では、ジアミン成分及びジカルボン酸成分からなるポリアミド(ポリアミド樹脂(A)の前駆体に相当するポリアミド)又はジアミン成分、ジカルボン酸成分及びω-アミノカルボン酸成分からなるポリアミド(ポリアミド樹脂(A)の前駆体に相当するポリアミド)と、3級水素含有カルボン酸成分とを押出機で溶融混練して反応させる方法である。3級水素含有カルボン酸成分をアミド交換反応により、ポリアミドの骨格中に組み込む方法であり、十分に反応させるためには、反応押出に適したスクリューを用い、L/Dの大きい2軸押出機を用いるのが好ましい。少量の3級水素含有カルボン酸単位を含むポリアミド樹脂(A)を製造する場合に、簡便な方法であり好適である。
[Reactive extrusion method]
In the reactive extrusion method, a polyamide composed of a diamine component and a dicarboxylic acid component (a polyamide corresponding to the precursor of the polyamide resin (A)) or a polyamide composed of a diamine component, a dicarboxylic acid component and an ω-aminocarboxylic acid component (polyamide resin (A And a tertiary hydrogen-containing carboxylic acid component are melt-kneaded with an extruder and reacted. This is a method of incorporating a tertiary hydrogen-containing carboxylic acid component into a polyamide skeleton by an amide exchange reaction. In order to sufficiently react, a screw suitable for reactive extrusion is used, and a twin screw extruder having a large L / D is used. It is preferable to use it. When producing a polyamide resin (A) containing a small amount of a tertiary hydrogen-containing carboxylic acid unit, it is a simple method and suitable.
[加圧塩法]
 加圧塩法では、ナイロン塩を原料として加圧下にて溶融重縮合を行う方法である。具体的には、ジアミン成分と、ジカルボン酸成分と、3級水素含有カルボン酸成分と、必要に応じてω-アミノカルボン酸成分とからなるナイロン塩水溶液を調製した後、該水溶液を濃縮し、次いで加圧下にて昇温し、縮合水を除去しながら重縮合させる。缶内を徐々に常圧に戻しながら、ポリアミド樹脂(A)の融点+10℃程度まで昇温し、保持した後、更に、-0.02MPaGまで徐々に減圧しつつ、そのままの温度で保持し、重縮合を継続する。一定の撹拌トルクに達したら、缶内を窒素で0.3MPaG程度に加圧してポリアミド樹脂(A)を回収する。
 加圧塩法は、揮発性成分をモノマーとして使用する場合に有用であり、3級水素含有カルボン酸成分の共重合率が高い場合には好ましい重縮合方法である。特に、3級水素含有カルボン酸単位をポリアミド樹脂(A)の全構成単位中に15モル%以上含むポリアミド樹脂(A)を製造する場合に、好適である。加圧塩法を用いることで、3級水素含有カルボン酸成分の蒸散を防ぎ、更には、3級水素含有カルボン酸成分同士の重縮合を抑制でき、重縮合反応をスムーズに進めることが可能であるため、性状に優れたポリアミド樹脂(A)が得られる。
[Pressure salt method]
The pressurized salt method is a method of performing melt polycondensation under pressure using a nylon salt as a raw material. Specifically, after preparing an aqueous nylon salt solution comprising a diamine component, a dicarboxylic acid component, a tertiary hydrogen-containing carboxylic acid component, and an ω-aminocarboxylic acid component as necessary, the aqueous solution is concentrated, Next, the temperature is raised under pressure, and polycondensation is performed while removing condensed water. While the inside of the can is gradually returned to normal pressure, the temperature is raised to about the melting point of polyamide resin (A) + 10 ° C. and held, and then further gradually reduced to −0.02 MPaG and kept at the same temperature. Continue polycondensation. When a constant stirring torque is reached, the inside of the can is pressurized to about 0.3 MPaG with nitrogen to recover the polyamide resin (A).
The pressurized salt method is useful when a volatile component is used as a monomer, and is a preferable polycondensation method when the copolymerization rate of the tertiary hydrogen-containing carboxylic acid component is high. In particular, it is suitable for producing a polyamide resin (A) containing 15 mol% or more of tertiary hydrogen-containing carboxylic acid units in all structural units of the polyamide resin (A). By using the pressurized salt method, transpiration of the tertiary hydrogen-containing carboxylic acid component can be prevented, and further, polycondensation between the tertiary hydrogen-containing carboxylic acid components can be suppressed, and the polycondensation reaction can proceed smoothly. Therefore, a polyamide resin (A) excellent in properties can be obtained.
[常圧滴下法]
 常圧滴下法では、常圧下にて、ジカルボン酸成分と、3級水素含有カルボン酸成分と、必要に応じてω-アミノカルボン酸成分とを加熱溶融した混合物に、ジアミン成分を連続的に滴下し、縮合水を除去しながら重縮合させる。なお、生成するポリアミド樹脂(A)の融点よりも反応温度が下回らないように、反応系を昇温しながら重縮合反応を行う。
 常圧滴下法は、前記加圧塩法と比較すると、塩を溶解するための水を使用しないため、バッチ当たりの収量が大きく、また、原料成分の気化・凝縮を必要としないため、反応速度の低下が少なく、工程時間を短縮できる。
[Normal pressure dropping method]
In the atmospheric pressure dropping method, a diamine component is continuously dropped into a mixture obtained by heating and melting a dicarboxylic acid component, a tertiary hydrogen-containing carboxylic acid component, and, if necessary, an ω-aminocarboxylic acid component under normal pressure. Then, polycondensation is performed while removing condensed water. The polycondensation reaction is performed while raising the temperature of the reaction system so that the reaction temperature does not fall below the melting point of the produced polyamide resin (A).
Compared with the pressurized salt method, the atmospheric pressure dropping method does not use water to dissolve the salt, so the yield per batch is large, and the reaction rate is not required for vaporization / condensation of raw material components. The process time can be shortened.
[加圧滴下法]
 加圧滴下法では、まず、重縮合缶にジカルボン酸成分と、3級水素含有カルボン酸成分と、必要に応じてω-アミノカルボン酸成分とを仕込み、各成分を撹拌して溶融混合し混合物を調製する。次いで、缶内を好ましくは0.3~0.4MPaG程度に加圧しながら混合物にジアミン成分を連続的に滴下し、縮合水を除去しながら重縮合させる。この際、生成するポリアミド樹脂(A)の融点よりも反応温度が下回らないように、反応系を昇温しながら重縮合反応を行う。設定モル比に達したらジアミン成分の滴下を終了し、缶内を徐々に常圧に戻しながら、ポリアミド樹脂(A)の融点+10℃程度まで昇温し、保持した後、更に、-0.02MPaGまで徐々に減圧しつつ、そのままの温度で保持し、重縮合を継続する。一定の撹拌トルクに達したら、缶内を窒素で0.3MPaG程度に加圧してポリアミド樹脂(A)を回収する。
 加圧滴下法は、加圧塩法と同様に、揮発性成分をモノマーとして使用する場合に有用であり、3級水素含有カルボン酸成分の共重合率が高い場合には好ましい重縮合方法である。特に、3級水素含有カルボン酸単位をポリアミド樹脂(A)の全構成単位中に15モル%以上含むポリアミド樹脂(A)を製造する場合に、好適である。加圧滴下法を用いることで3級水素含有カルボン酸成分の蒸散を防ぎ、更には、3級水素含有カルボン酸成分同士の重縮合を抑制でき、重縮合反応をスムーズに進めることが可能であるため、性状に優れたポリアミド樹脂(A)が得られる。更に、加圧滴下法は、加圧塩法に比べて、塩を溶解するための水を使用しないため、バッチ当たりの収量が大きく、常圧滴下法と同様に反応時間を短くできることから、ゲル化等を抑制し、黄色度が低いポリアミド樹脂(A)を得ることができる。
[Pressure drop method]
In the pressure drop method, first, a dicarboxylic acid component, a tertiary hydrogen-containing carboxylic acid component, and, if necessary, an ω-aminocarboxylic acid component are charged into a polycondensation can, and the components are agitated and melt mixed. To prepare. Next, the diamine component is continuously dropped into the mixture while the inside of the can is preferably pressurized to about 0.3 to 0.4 MPaG, and polycondensation is performed while removing condensed water. At this time, the polycondensation reaction is performed while raising the temperature of the reaction system so that the reaction temperature does not fall below the melting point of the produced polyamide resin (A). When the set molar ratio is reached, the dropping of the diamine component is terminated, and while gradually raising the inside of the can to normal pressure, the temperature is raised to about the melting point of the polyamide resin (A) + 10 ° C. and maintained, and then −0.02 MPaG The pressure is gradually reduced until it is maintained at the same temperature, and the polycondensation is continued. When a constant stirring torque is reached, the inside of the can is pressurized to about 0.3 MPaG with nitrogen to recover the polyamide resin (A).
Like the pressurized salt method, the pressure dropping method is useful when a volatile component is used as a monomer, and is a preferred polycondensation method when the copolymerization rate of the tertiary hydrogen-containing carboxylic acid component is high. . In particular, it is suitable for producing a polyamide resin (A) containing 15 mol% or more of tertiary hydrogen-containing carboxylic acid units in all structural units of the polyamide resin (A). By using the pressure dropping method, the transpiration of the tertiary hydrogen-containing carboxylic acid component can be prevented, and further, the polycondensation between the tertiary hydrogen-containing carboxylic acid components can be suppressed, and the polycondensation reaction can proceed smoothly. Therefore, a polyamide resin (A) excellent in properties can be obtained. Furthermore, since the pressure drop method does not use water for dissolving the salt compared to the pressure salt method, the yield per batch is large, and the reaction time can be shortened as in the atmospheric pressure drop method. It is possible to obtain a polyamide resin (A) having a low yellowness, which can be suppressed.
[重合度を高める工程]
 上記重縮合方法で製造されたポリアミド樹脂(A)は、そのまま使用することもできるが、更に重合度を高めるための工程を経てもよい。更に重合度を高める工程としては、押出機内での反応押出や固相重合等が挙げられる。固相重合で用いられる加熱装置としては、連続式の加熱乾燥装置やタンブルドライヤー、コニカルドライヤー、ロータリードライヤー等と称される回転ドラム式の加熱装置およびナウタミキサーと称される内部に回転翼を備えた円錐型の加熱装置が好適に使用できるが、これらに限定されることなく公知の方法、装置を使用することができる。特にポリアミド樹脂(A)の固相重合を行う場合は、上述の装置の中で回転ドラム式の加熱装置が、系内を密閉化でき、着色の原因となる酸素を除去した状態で重縮合を進めやすいことから好ましく用いられる。
[Process of increasing the degree of polymerization]
The polyamide resin (A) produced by the polycondensation method can be used as it is, but may be subjected to a step for further increasing the degree of polymerization. Further examples of the step of increasing the degree of polymerization include reactive extrusion in an extruder and solid phase polymerization. As a heating device used in solid phase polymerization, a continuous heating drying device, a tumble dryer, a conical dryer, a rotary drum heating device called a rotary dryer, etc., and a rotary blade inside a nauta mixer are provided. A conical heating device can be preferably used, but a known method and device can be used without being limited thereto. In particular, when solid-phase polymerization of the polyamide resin (A) is performed, the rotating drum type heating device in the above-described device can seal the inside of the system and perform polycondensation in a state where oxygen that causes coloring is removed. It is preferably used because it is easy to proceed.
[リン原子含有化合物、アルカリ金属化合物]
 ポリアミド樹脂(A)の重縮合においては、アミド化反応を促進する観点から、リン原子含有化合物を添加することが好ましい。
 リン原子含有化合物としては、ジメチルホスフィン酸、フェニルメチルホスフィン酸等のホスフィン酸化合物;次亜リン酸、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム、次亜リン酸マグネシウム、次亜リン酸カルシウム、次亜リン酸エチル等のジ亜リン酸化合物;ホスホン酸、ホスホン酸ナトリウム、ホスホン酸カリウム、ホスホン酸リチウム、ホスホン酸マグネシウム、ホスホン酸カルシウム、フェニルホスホン酸、エチルホスホン酸、フェニルホスホン酸ナトリウム、フェニルホスホン酸カリウム、フェニルホスホン酸リチウム、フェニルホスホン酸ジエチル、エチルホスホン酸ナトリウム、エチルホスホン酸カリウム等のホスホン酸化合物;亜ホスホン酸、亜ホスホン酸ナトリウム、亜ホスホン酸リチウム、亜ホスホン酸カリウム、亜ホスホン酸マグネシウム、亜ホスホン酸カルシウム、フェニル亜ホスホン酸、フェニル亜ホスホン酸ナトリウム、フェニル亜ホスホン酸カリウム、フェニル亜ホスホン酸リチウム、フェニル亜ホスホン酸エチル等の亜ホスホン酸化合物;亜リン酸、亜リン酸水素ナトリウム、亜リン酸ナトリウム、亜リン酸リチウム、亜リン酸カリウム、亜リン酸マグネシウム、亜リン酸カルシウム、亜リン酸トリエチル、亜リン酸トリフェニル、ピロ亜リン酸等の亜リン酸化合物等が挙げられる。
 これらの中でも特に次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム等の次亜リン酸金属塩が、アミド化反応を促進する効果が高くかつ着色防止効果にも優れるため好ましく用いられ、特に次亜リン酸ナトリウムが好ましい。なお、本発明で使用できるリン原子含有化合物はこれらの化合物に限定されない。
 リン原子含有化合物の添加量は、ポリアミド樹脂(A)中のリン原子濃度換算で0.1~1000ppmであることが好ましく、より好ましくは1~600ppmであり、更に好ましくは5~400ppmである。0.1ppm以上であれば、重合中にポリアミド樹脂(A)が着色しにくく透明性が高くなる。1000ppm以下であれば、ポリアミド樹脂(A)がゲル化しにくく、また、リン原子含有化合物に起因すると考えられるフィッシュアイの成形品中への混入も低減でき、成形品の外観が良好となる。
[Phosphorus atom-containing compound, alkali metal compound]
In the polycondensation of the polyamide resin (A), it is preferable to add a phosphorus atom-containing compound from the viewpoint of promoting the amidation reaction.
Examples of the phosphorus atom-containing compound include phosphinic acid compounds such as dimethylphosphinic acid and phenylmethylphosphinic acid; hypophosphorous acid, sodium hypophosphite, potassium hypophosphite, lithium hypophosphite, magnesium hypophosphite, Diphosphite compounds such as calcium hypophosphite and ethyl hypophosphite; phosphonic acid, sodium phosphonate, potassium phosphonate, lithium phosphonate, magnesium phosphonate, calcium phosphonate, phenylphosphonic acid, ethylphosphonic acid, phenylphosphone Phosphonic acid compounds such as sodium phosphate, potassium phenylphosphonate, lithium phenylphosphonate, diethyl phenylphosphonate, sodium ethylphosphonate, potassium ethylphosphonate; phosphonous acid, sodium phosphonite, lithium phosphonite, Phosphonous compounds such as potassium sulfonate, magnesium phosphonite, calcium phosphonite, phenylphosphonite, sodium phenylphosphonite, potassium phenylphosphonite, lithium phenylphosphonite, ethyl phenylphosphonite; Phosphorous acid, sodium hydrogen phosphite, sodium phosphite, lithium phosphite, potassium phosphite, magnesium phosphite, calcium phosphite, triethyl phosphite, triphenyl phosphite, pyrophosphorous acid, etc. A phosphoric acid compound etc. are mentioned.
Among these, hypophosphite metal salts such as sodium hypophosphite, potassium hypophosphite, lithium hypophosphite and the like are particularly preferable because they are highly effective in promoting amidation reaction and excellent in anti-coloring effect. In particular, sodium hypophosphite is preferred. In addition, the phosphorus atom containing compound which can be used by this invention is not limited to these compounds.
The addition amount of the phosphorus atom-containing compound is preferably 0.1 to 1000 ppm, more preferably 1 to 600 ppm, still more preferably 5 to 400 ppm in terms of the phosphorus atom concentration in the polyamide resin (A). If it is 0.1 ppm or more, the polyamide resin (A) is difficult to be colored during the polymerization, and the transparency becomes high. If it is 1000 ppm or less, the polyamide resin (A) is hardly gelled, and it is possible to reduce the mixing of fish eyes considered to be caused by the phosphorus atom-containing compound into the molded product, so that the appearance of the molded product is improved.
 また、ポリアミド樹脂(A)の重縮合系内には、リン原子含有化合物と併用してアルカリ金属化合物を添加することが好ましい。重縮合中のポリアミド樹脂(A)の着色を防止するためには十分な量のリン原子含有化合物を存在させる必要があるが、場合によってはポリアミド樹脂(A)のゲル化を招くおそれがあるため、アミド化反応速度を調整するためにもアルカリ金属化合物を共存させることが好ましい。
 アルカリ金属化合物としては、アルカリ金属水酸化物やアルカリ金属酢酸塩、アルカリ金属炭酸塩、アルカリ金属アルコキシド等が好ましい。本発明で用いることのできるアルカリ金属化合物の具体例としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸ルビジウム、酢酸セシウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムプロポキシド、ナトリウムブトキシド、カリウムメトキシド、リチウムメトキシド、炭酸ナトリウム等が挙げられるが、これらの化合物に限定されることなく用いることができる。なお、リン原子含有化合物とアルカリ金属化合物の比率(モル比)は、重合速度制御の観点や、黄色度を低減する観点から、リン原子含有化合物/アルカリ金属化合物=1.0/0.05~1.0/1.5の範囲が好ましく、より好ましくは、1.0/0.1~1.0/1.2、更に好ましくは、1.0/0.2~1.0/1.1である。
Moreover, it is preferable to add an alkali metal compound in combination with the phosphorus atom-containing compound in the polycondensation system of the polyamide resin (A). In order to prevent coloring of the polyamide resin (A) during the polycondensation, it is necessary to make a sufficient amount of the phosphorus atom-containing compound present. However, in some cases, the polyamide resin (A) may be gelled. In order to adjust the amidation reaction rate, it is preferable to coexist an alkali metal compound.
As the alkali metal compound, alkali metal hydroxide, alkali metal acetate, alkali metal carbonate, alkali metal alkoxide, and the like are preferable. Specific examples of the alkali metal compound that can be used in the present invention include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, lithium acetate, sodium acetate, potassium acetate, rubidium acetate, cesium acetate. Sodium methoxide, sodium ethoxide, sodium propoxide, sodium butoxide, potassium methoxide, lithium methoxide, sodium carbonate and the like, but can be used without being limited to these compounds. The ratio (molar ratio) between the phosphorus atom-containing compound and the alkali metal compound is such that the phosphorus atom-containing compound / alkali metal compound = 1.0 / 0.05 to 1.0 from the viewpoint of controlling the polymerization rate and reducing the yellowness. The range of 1.0 / 1.5 is preferable, more preferably 1.0 / 0.1 to 1.0 / 1.2, and still more preferably 1.0 / 0.2 to 1.0 / 1. 1.
1-2.添加剤(C)
 本発明の酸素吸収バリア層は、前述したポリアミド樹脂(A)以外に、必要に応じて更に添加剤(C)を含有してもよい。添加剤(C)は1種であってもよいし、2種以上の組合せであってもよい。酸素吸収バリア層中における添加剤(C)の含有量は、添加剤の種類にもよるが、10質量%以下が好ましく、5質量%以下がより好ましい。
1-2. Additive (C)
The oxygen absorption barrier layer of the present invention may further contain an additive (C) as necessary in addition to the polyamide resin (A) described above. One type of additive (C) may be used, or a combination of two or more types may be used. The content of the additive (C) in the oxygen absorption barrier layer is preferably 10% by mass or less, more preferably 5% by mass or less, although it depends on the type of additive.
[白化防止剤]
 本発明においては、熱水処理後や長時間の経時後の白化抑制として、ジアミド化合物及び/又はジエステル化合物をポリアミド樹脂(A)に添加することが好ましい。ジアミド化合物及びジエステル化合物は、オリゴマーの析出による白化の抑制に効果がある。ジアミド化合物とジエステル化合物を単独で用いてもよいし、併用してもよい。
[Anti-whitening agent]
In the present invention, it is preferable to add a diamide compound and / or a diester compound to the polyamide resin (A) as a suppression of whitening after the hot water treatment or after a long period of time. Diamide compounds and diester compounds are effective in suppressing whitening due to precipitation of oligomers. A diamide compound and a diester compound may be used alone or in combination.
 本発明に用いられるジアミド化合物としては、炭素数8~30の脂肪族ジカルボン酸と炭素数2~10のジアミンから得られるジアミド化合物が好ましい。脂肪族ジカルボン酸の炭素数が8以上、ジアミンの炭素数が2以上であると白化防止効果が期待できる。また、脂肪族ジカルボン酸の炭素数が30以下、ジアミンの炭素数が10以下で酸素吸収バリア層中への均一分散が良好となる。脂肪族ジカルボン酸は側鎖や二重結合があってもよいが、直鎖飽和脂肪族ジカルボン酸が好ましい。ジアミド化合物は1種類でもよいし、2種以上を併用してもよい。 The diamide compound used in the present invention is preferably a diamide compound obtained from an aliphatic dicarboxylic acid having 8 to 30 carbon atoms and a diamine having 2 to 10 carbon atoms. When the aliphatic dicarboxylic acid has 8 or more carbon atoms and the diamine has 2 or more carbon atoms, a whitening prevention effect can be expected. In addition, when the aliphatic dicarboxylic acid has 30 or less carbon atoms and the diamine has 10 or less carbon atoms, uniform dispersion in the oxygen-absorbing barrier layer is good. The aliphatic dicarboxylic acid may have a side chain or a double bond, but a linear saturated aliphatic dicarboxylic acid is preferred. One kind of diamide compound may be used, or two or more kinds may be used in combination.
 前記脂肪族ジカルボン酸としては、ステアリン酸(C18)、エイコサン酸(C20)、ベヘン酸(C22)、モンタン酸(C28)、トリアコンタン酸(C30)等が例示できる。前記ジアミンとしては、エチレンジアミン、ブチレンジアミン、ヘキサンジアミン、キシリレンジアミン、ビス(アミノメチル)シクロヘキサン等が例示できる。これらを組み合わせて得られるジアミド化合物が好ましい。
 炭素数8~30の脂肪族ジカルボン酸と主としてエチレンジアミンからなるジアミンから得られるジアミド化合物、または主としてモンタン酸からなる脂肪族ジカルボン酸と炭素数2~10のジアミンから得られるジアミド化合物が好ましく、特に好ましくは主としてステアリン酸からなる脂肪族ジカルボン酸と主としてエチレンジアミンからなるジアミンから得られるジアミド化合物である。
Examples of the aliphatic dicarboxylic acid include stearic acid (C18), eicosanoic acid (C20), behenic acid (C22), montanic acid (C28), and triacontanoic acid (C30). Examples of the diamine include ethylenediamine, butylenediamine, hexanediamine, xylylenediamine, and bis (aminomethyl) cyclohexane. A diamide compound obtained by combining these is preferred.
A diamide compound obtained from a diamine composed mainly of an aliphatic dicarboxylic acid having 8 to 30 carbon atoms and mainly ethylenediamine, or a diamide compound obtained from an aliphatic dicarboxylic acid mainly composed of montanic acid and a diamine having 2 to 10 carbon atoms is particularly preferred. Is a diamide compound obtained from an aliphatic dicarboxylic acid mainly composed of stearic acid and a diamine mainly composed of ethylenediamine.
 本発明に用いられるジエステル化合物としては、炭素数8~30の脂肪族ジカルボン酸と炭素数2~10のジオールから得られるジエステル化合物が好ましい。脂肪族ジカルボン酸の炭素数が8以上、ジオールの炭素数が2以上であると白化防止効果が期待できる。また、脂肪族ジカルボン酸の炭素数が30以下、ジオールの炭素数が10以下で酸素吸収バリア層中への均一分散が良好となる。脂肪族ジカルボン酸は側鎖や二重結合があってもよいが、直鎖飽和脂肪族ジカルボン酸が好ましい。ジエステル化合物は1種類でもよいし、2種以上を併用してもよい。
 前記脂肪族ジカルボン酸としては、ステアリン酸(C18)、エイコサン酸(C20)、ベヘン酸(C22)、モンタン酸(C28)、トリアコンタン酸(C30)等が例示できる。前記ジオールとしては、エチレングリコール、プロパンジオール、ブタンジオール、ヘキサンジオール、キシリレングリコール、シクロヘキサンジメタノール等が例示できる。これらを組み合わせて得られるジエステル化合物が好ましい。
 特に好ましくは主としてモンタン酸からなる脂肪族ジカルボン酸と主としてエチレングリコール及び/又は1,3-ブタンジオールからなるジオールから得られるジエステル化合物である。
The diester compound used in the present invention is preferably a diester compound obtained from an aliphatic dicarboxylic acid having 8 to 30 carbon atoms and a diol having 2 to 10 carbon atoms. When the aliphatic dicarboxylic acid has 8 or more carbon atoms and the diol has 2 or more carbon atoms, an effect of preventing whitening can be expected. Further, when the aliphatic dicarboxylic acid has 30 or less carbon atoms and the diol has 10 or less carbon atoms, uniform dispersion in the oxygen-absorbing barrier layer is good. The aliphatic dicarboxylic acid may have a side chain or a double bond, but a linear saturated aliphatic dicarboxylic acid is preferred. One type of diester compound may be used, or two or more types may be used in combination.
Examples of the aliphatic dicarboxylic acid include stearic acid (C18), eicosanoic acid (C20), behenic acid (C22), montanic acid (C28), and triacontanoic acid (C30). Examples of the diol include ethylene glycol, propanediol, butanediol, hexanediol, xylylene glycol, and cyclohexanedimethanol. A diester compound obtained by combining these is preferred.
Particularly preferred are diester compounds obtained from an aliphatic dicarboxylic acid mainly composed of montanic acid and a diol mainly composed of ethylene glycol and / or 1,3-butanediol.
 本発明において、ジアミド化合物及び/又はジエステル化合物の添加量は、酸素吸収バリア層中に好ましくは0.005~0.5質量%、より好ましくは0.05~0.5質量%、さらに好ましくは0.12~0.5質量%である。酸素吸収バリア層中に0.005質量%以上添加し、かつ結晶化核剤と併用することにより白化防止の相乗効果が期待できる。また、添加量が酸素吸収バリア層中に0.5質量%以下であると、本発明のポリアミド樹脂(A)を成形して得られる成形体の曇値を低く保つことが可能となる。 In the present invention, the amount of the diamide compound and / or diester compound added is preferably 0.005 to 0.5% by mass, more preferably 0.05 to 0.5% by mass, and still more preferably in the oxygen absorption barrier layer. 0.12 to 0.5% by mass. A synergistic effect of preventing whitening can be expected by adding 0.005% by mass or more to the oxygen absorption barrier layer and using it together with the crystallization nucleating agent. Moreover, it becomes possible to keep the fog value of the molded object obtained by shape | molding the polyamide resin (A) of this invention low as the addition amount is 0.5 mass% or less in an oxygen absorption barrier layer.
[層状珪酸塩]
 本発明において、酸素吸収バリア層は層状珪酸塩を含有してもよい。層状珪酸塩を添加することで、多層フィルムに酸素ガスバリア性だけでなく、炭酸ガス等のガスに対するバリア性を付与することができる。
[Layered silicate]
In the present invention, the oxygen absorption barrier layer may contain a layered silicate. By adding the layered silicate, not only oxygen gas barrier properties but also barrier properties against gas such as carbon dioxide gas can be imparted to the multilayer film.
 層状珪酸塩は、0.25~0.6の電荷密度を有する2-八面体型や3-八面体型の層状珪酸塩であり、2-八面体型としては、モンモリロナイト、バイデライト等、3-八面体型としてはヘクトライト、サボナイト等が挙げられる。これらの中でも、モンモリロナイトが好ましい。 The layered silicate is a 2-octahedron or 3-octahedral layered silicate having a charge density of 0.25 to 0.6. Examples of the 2-octahedron type include montmorillonite, beidellite, and the like. Examples of the octahedron type include hectorite and saponite. Among these, montmorillonite is preferable.
 層状珪酸塩は、高分子化合物や有機系化合物等の有機膨潤化剤を予め層状珪酸塩に接触させて、層状珪酸塩の層間を拡げたものとすることが好ましい。有機膨潤化剤として、第4級アンモニウム塩が好ましく使用できるが、好ましくは、炭素数12以上のアルキル基又はアルケニル基を少なくとも一つ以上有する第4級アンモニウム塩が用いられる。 It is preferable that the layered silicate is obtained by expanding an interlayer of the layered silicate by previously bringing an organic swelling agent such as a polymer compound or an organic compound into contact with the layered silicate. As the organic swelling agent, a quaternary ammonium salt can be preferably used. Preferably, a quaternary ammonium salt having at least one alkyl group or alkenyl group having 12 or more carbon atoms is used.
 有機膨潤化剤の具体例として、トリメチルドデシルアンモニウム塩、トリメチルテトラデシルアンモニウム塩、トリメチルヘキサデシルアンモニウム塩、トリメチルオクタデシルアンモニウム塩、トリメチルエイコシルアンモニウム塩等のトリメチルアルキルアンモニウム塩;トリメチルオクタデセニルアンモニウム塩、トリメチルオクタデカジエニルアンモニウム塩等のトリメチルアルケニルアンモニウム塩;トリエチルドデシルアンモニウム塩、トリエチルテトラデシルアンモニウム塩、トリエチルヘキサデシルアンモニウム塩、トリエチルオクタデシルアンモニウム等のトリエチルアルキルアンモニウム塩;トリブチルドデシルアンモニウム塩、トリブチルテトラデシルアンモニウム塩、トリブチルヘキサデシルアンモニウム塩、トリブチルオクタデシルアンモニウム塩等のトリブチルアルキルアンモニウム塩;ジメチルジドデシルアンモニウム塩、ジメチルジテトラデシルアンモニウム塩、ジメチルジヘキサデシルアンモニウム塩、ジメチルジオクタデシルアンモニウム塩、ジメチルジタロウアンモニウム塩等のジメチルジアルキルアンモニウム塩;ジメチルジオクタデセニルアンモニウム塩、ジメチルジオクタデカジエニルアンモニウム塩等のジメチルジアルケニルアンモニウム塩;ジエチルジドデシルアンモニウム塩、ジエチルジテトラデシルアンモニウム塩、ジエチルジヘキサデシルアンモニウム塩、ジエチルジオクタデシルアンモニウム等のジエチルジアルキルアンモニウム塩;ジブチルジドデシルアンモニウム塩、ジブチルジテトラデシルアンモニウム塩、ジブチルジヘキサデシルアンモニウム塩、ジブチルジオクタデシルアンモニウム塩等のジブチルジアルキルアンモニウム塩;メチルベンジルジヘキサデシルアンモニウム塩等のメチルベンジルジアルキルアンモニウム塩;ジベンジルジヘキサデシルアンモニウム塩等のジベンジルジアルキルアンモニウム塩;トリドデシルメチルアンモニウム塩、トリテトラデシルメチルアンモニウム塩、トリオクタデシルメチルアンモニウム塩等のトリアルキルメチルアンモニウム塩;トリドデシルエチルアンモニウム塩等のトリアルキルエチルアンモニウム塩;トリドデシルブチルアンモニウム塩等のトリアルキルブチルアンモニウム塩;4-アミノ-n-酪酸、6-アミノ-n-カプロン酸、8-アミノカプリル酸、10-アミノデカン酸、12-アミノドデカン酸、14-アミノテトラデカン酸、16-アミノヘキサデカン酸、18-アミノオクタデカン酸等のω-アミノ酸等が挙げられる。また、水酸基及び/又はエーテル基含有のアンモニウム塩、中でも、メチルジアルキル(PAG)アンモニウム塩、エチルジアルキル(PAG)アンモニウム塩、ブチルジアルキル(PAG)アンモニウム塩、ジメチルビス(PAG)アンモニウム塩、ジエチルビス(PAG)アンモニウム塩、ジブチルビス(PAG)アンモニウム塩、メチルアルキルビス(PAG)アンモニウム塩、エチルアルキルビス(PAG)アンモニウム塩、ブチルアルキルビス(PAG)アンモニウム塩、メチルトリ(PAG)アンモニウム塩、エチルトリ(PAG)アンモニウム塩、ブチルトリ(PAG)アンモニウム塩、テトラ(PAG)アンモニウム塩(ただし、アルキルはドデシル、テトラデシル、ヘキサデシル、オクタデシル、エイコシル等の炭素数12以上のアルキル基を表し、PAGはポリアルキレングリコール残基、好ましくは、炭素数20以下のポリエチレングリコール残基またはポリプロピレングリコール残基を表す)等の少なくとも一のアルキレングリコール残基を含有する4級アンモニウム塩も有機膨潤化剤として使用することができる。中でもトリメチルドデシルアンモニウム塩、トリメチルテトラデシルアンモニウム塩、トリメチルヘキサデシルアンモニウム塩、トリメチルオクタデシルアンモニウム塩、ジメチルジドデシルアンモニウム塩、ジメチルジテトラデシルアンモニウム塩、ジメチルジヘキサデシルアンモニウム塩、ジメチルジオクタデシルアンモニウム塩、ジメチルジタロウアンモニウム塩が好ましい。なお、これらの有機膨潤化剤は、単独でも複数種類の混合物としても使用できる。 Specific examples of organic swelling agents include trimethyl dodecyl ammonium salts, trimethyl tetradecyl ammonium salts, trimethyl hexadecyl ammonium salts, trimethyl octadecyl ammonium salts, trimethyl alkyl ammonium salts such as trimethyl eicosyl ammonium salts; trimethyl octadecenyl ammonium salts Trimethylalkenylammonium salts such as trimethyloctadecadienylammonium salt; triethylalkylammonium salts such as triethyldodecylammonium salt, triethyltetradecylammonium salt, triethylhexadecylammonium salt, triethyloctadecylammonium salt; tributyldodecylammonium salt, tributyltetradecyl Ammonium salt, tributyl hexadecyl ammonium salt, Tributylalkylammonium salts such as butyloctadecylammonium salt; dimethyldialkylammonium salts such as dimethyldidodecylammonium salt, dimethylditetradecylammonium salt, dimethyldihexadecylammonium salt, dimethyldioctadecylammonium salt, dimethylditallowammonium salt; dimethyl Dioctadecenyl ammonium salt, dimethyl dialkenyl ammonium salt such as dimethyl dioctadecadienyl ammonium salt; diethyl didodecyl ammonium salt, diethyl ditetradecyl ammonium salt, diethyl dihexadecyl ammonium salt, diethyl dioctadecyl ammonium salt, etc. Diethyl dialkyl ammonium salt; dibutyl didodecyl ammonium salt, dibutyl ditetradecyl ammonium salt, di Dibutyl dialkyl ammonium salts such as til dihexadecyl ammonium salt and dibutyl dioctadecyl ammonium salt; methyl benzyl dialkyl ammonium salts such as methyl benzyl dihexadecyl ammonium salt; dibenzyl dialkyl ammonium salts such as dibenzyl dihexadecyl ammonium salt; Trialkylmethylammonium salts such as dodecylmethylammonium salt, tritetradecylmethylammonium salt, trioctadecylmethylammonium salt; trialkylethylammonium salts such as tridodecylethylammonium salt; trialkylbutylammonium salts such as tridodecylbutylammonium salt 4-amino-n-butyric acid, 6-amino-n-caproic acid, 8-aminocaprylic acid, 10-aminodecanoic acid, 12-aminodo Examples thereof include omega-amino acids such as decanoic acid, 14-aminotetradecanoic acid, 16-aminohexadecanoic acid, 18-aminooctadecanoic acid and the like. In addition, hydroxyl group and / or ether group-containing ammonium salts, among them, methyl dialkyl (PAG) ammonium salt, ethyl dialkyl (PAG) ammonium salt, butyl dialkyl (PAG) ammonium salt, dimethyl bis (PAG) ammonium salt, diethyl bis (PAG) ) Ammonium salt, dibutyl bis (PAG) ammonium salt, methyl alkyl bis (PAG) ammonium salt, ethyl alkyl bis (PAG) ammonium salt, butyl alkyl bis (PAG) ammonium salt, methyl tri (PAG) ammonium salt, ethyl tri (PAG) ammonium Salt, butyltri (PAG) ammonium salt, tetra (PAG) ammonium salt (wherein alkyl is carbon number such as dodecyl, tetradecyl, hexadecyl, octadecyl, eicosyl, etc.) A quaternary ammonium containing at least one alkylene glycol residue such as a polyalkylene glycol residue, preferably a polyethylene glycol residue or a polypropylene glycol residue having 20 or less carbon atoms). Salts can also be used as organic swelling agents. Among them, trimethyldodecyl ammonium salt, trimethyl tetradecyl ammonium salt, trimethyl hexadecyl ammonium salt, trimethyl octadecyl ammonium salt, dimethyl didodecyl ammonium salt, dimethyl ditetradecyl ammonium salt, dimethyl dihexadecyl ammonium salt, dimethyl dioctadecyl ammonium salt, dimethyl A ditallow ammonium salt is preferred. These organic swelling agents can be used alone or as a mixture of a plurality of types.
 本発明では、有機膨潤化剤で処理した層状珪酸塩を酸素吸収バリア層中に0.5~8質量%添加したものが好ましく用いられ、より好ましくは1~6質量%、更に好ましくは2~5質量%である。層状珪酸塩の添加量が0.5質量%以上であればガスバリア性の改善効果が十分に得られ、8質量%以下であれば酸素吸収バリア層の柔軟性が悪化することによるピンホールの発生等の問題が生じにくい。 In the present invention, a layered silicate treated with an organic swelling agent is preferably added in an amount of 0.5 to 8% by mass in the oxygen absorption barrier layer, more preferably 1 to 6% by mass, still more preferably 2 to 5% by mass. If the amount of layered silicate added is 0.5% by mass or more, the effect of improving the gas barrier property is sufficiently obtained, and if it is 8% by mass or less, pinholes are generated due to deterioration of the flexibility of the oxygen absorption barrier layer. Such problems are unlikely to occur.
 酸素吸収バリア層において、層状珪酸塩は局所的に凝集することなく均一に分散していることが好ましい。ここでいう均一分散とは、酸素吸収バリア層中において層状珪酸塩が平板状に分離し、それらの50%以上が5nm以上の層間距離を有することをいう。ここで層間距離とは平板状物の重心間距離のことをいう。この距離が大きい程分散状態が良好となり、透明性等の外観が良好で、かつ酸素、炭酸ガス等のガスバリア性を向上させることができる。 In the oxygen absorption barrier layer, the layered silicate is preferably uniformly dispersed without locally agglomerating. The uniform dispersion here means that the layered silicate is separated into a flat plate in the oxygen absorption barrier layer, and 50% or more of them have an interlayer distance of 5 nm or more. Here, the interlayer distance refers to the distance between the centers of gravity of the flat objects. The larger the distance, the better the dispersion state, the better the appearance such as transparency, and the better the gas barrier properties such as oxygen and carbon dioxide.
[酸化反応促進剤]
 酸素吸収バリア層の酸素吸収性能を更に高めるために、本発明の効果を損なわない範囲で従来公知の酸化反応促進剤を添加してもよい。酸化反応促進剤はポリアミド樹脂(A)が有する酸素吸収性能を促進することで、酸素吸収バリア層の酸素吸収性能を高めることができる。酸化反応促進剤としては、鉄、コバルト、ニッケル等の周期律表第VIII族金属、銅や銀等の第I族金属、スズ、チタン、ジルコニウム等の第IV族金属、バナジウムの第V族、クロム等の第VI族、マンガン等の第VII族の金属の低価数の無機酸塩もしくは有機酸塩、又は上記遷移金属の錯塩を例示することができる。これらの中でも、酸素反応促進効果に優れるコバルト塩やコバルト塩とマンガン塩との組合せが好ましい。
 本発明において、酸素反応促進剤の添加量は、酸素吸収バリア層中に好ましくは金属原子濃度として10~800ppm、より好ましくは50~600ppm、さらに好ましくは100~400ppmである。
[Oxidation reaction accelerator]
In order to further enhance the oxygen absorption performance of the oxygen absorption barrier layer, a conventionally known oxidation reaction accelerator may be added as long as the effects of the present invention are not impaired. The oxidation reaction accelerator can enhance the oxygen absorption performance of the oxygen absorption barrier layer by promoting the oxygen absorption performance of the polyamide resin (A). Examples of the oxidation reaction accelerator include Group VIII metals such as iron, cobalt and nickel, Group I metals such as copper and silver, Group IV metals such as tin, titanium and zirconium, Group V of vanadium, Examples thereof include low-valent inorganic or organic acid salts of Group VI metals such as chromium and Group VII metals such as manganese, or complex salts of the above transition metals. Among these, a cobalt salt excellent in an oxygen reaction promoting effect or a combination of a cobalt salt and a manganese salt is preferable.
In the present invention, the addition amount of the oxygen reaction accelerator is preferably 10 to 800 ppm, more preferably 50 to 600 ppm, and still more preferably 100 to 400 ppm as the metal atom concentration in the oxygen absorption barrier layer.
[酸素吸収剤]
 酸素吸収バリア層の酸素吸収性能を更に高めるために、本発明の効果を損なわない範囲で従来公知の酸素吸収剤を添加してもよい。酸素吸収剤はポリアミド樹脂(A)が有する酸素吸収性能と別に酸素吸収バリア層に酸素吸収性能を付与することで、酸素吸収バリア層の酸素吸収性能を高めることができる。酸素吸収剤としては、ビタミンCやビタミンE、ブタジエンやイソプレンのように分子内に炭素-炭素二重結合をもつ化合物に代表される酸化性有機化合物を例示することできる。
 本発明において、酸素吸収剤の添加量は、酸素吸収バリア層中に好ましくは0.01~5質量%、より好ましくは0.1~4質量%、さらに好ましくは0.5~3質量%である。
[Oxygen absorber]
In order to further enhance the oxygen absorption performance of the oxygen absorption barrier layer, a conventionally known oxygen absorbent may be added within a range not impairing the effects of the present invention. The oxygen absorbent can enhance the oxygen absorption performance of the oxygen absorption barrier layer by imparting oxygen absorption performance to the oxygen absorption barrier layer separately from the oxygen absorption performance of the polyamide resin (A). Examples of the oxygen absorbent include oxidizable organic compounds typified by compounds having a carbon-carbon double bond in the molecule, such as vitamin C, vitamin E, butadiene and isoprene.
In the present invention, the amount of oxygen absorber added is preferably 0.01 to 5% by mass, more preferably 0.1 to 4% by mass, and still more preferably 0.5 to 3% by mass in the oxygen absorption barrier layer. is there.
[ゲル化防止・フィッシュアイ低減剤]
 本発明においては、酢酸ナトリウム、酢酸カルシウム、酢酸マグネシウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸ナトリウムおよびそれらの誘導体から選択される1種以上のカルボン酸塩類を添加することが好ましい。ここで該誘導体としては、12-ヒドロキシステアリン酸カルシウム、12-ヒドロキシステアリン酸マグネシウム、12-ヒドロキシステアリン酸ナトリウム等の12-ヒドロキシステアリン酸金属塩等が挙げられる。前記カルボン酸塩類を添加することで、成形加工中に起こるポリアミド樹脂(A)のゲル化防止や成形体中のフィッシュアイを低減することができ、成形加工の適性が向上する。
[Anti-gelling / Fish Eye Reducing Agent]
In the present invention, it is preferable to add one or more carboxylates selected from sodium acetate, calcium acetate, magnesium acetate, calcium stearate, magnesium stearate, sodium stearate and derivatives thereof. Examples of the derivatives include 12-hydroxystearic acid metal salts such as calcium 12-hydroxystearate, magnesium 12-hydroxystearate, and sodium 12-hydroxystearate. By adding the carboxylates, it is possible to prevent the gelation of the polyamide resin (A) that occurs during the molding process and to reduce fish eyes in the molded article, thereby improving the suitability of the molding process.
 前記カルボン酸塩類の添加量としては、酸素吸収バリア層中の濃度として、好ましくは400~10000ppm、より好ましくは800~5000ppm、更に好ましくは1000~3000ppmである。400ppm以上であれば、ポリアミド樹脂(A)の熱劣化を抑制でき、ゲル化を防止できる。また、10000ppm以下であれば、ポリアミド樹脂(A)が成形不良を起こさず、着色や白化することもない。溶融したポリアミド樹脂(A)中に塩基性物質であるカルボン酸塩類が存在すると、ポリアミド樹脂(A)の熱による変性が遅延し、最終的な変性物と考えられるゲルの生成を抑制すると推測される。
 なお、前述のカルボン酸塩類はハンドリング性に優れ、この中でもステアリン酸金属塩は安価である上、滑剤としての効果を有しており、成形加工をより安定化することができるため好ましい。更に、カルボン酸塩類の形状に特に制限はないが、粉体でかつその粒径が小さい方が乾式混合する場合、酸素吸収バリア層中に均一に分散させることが容易であるため、その粒径は0.2mm以下が好ましい。
 さらに、より効果的なゲル化防止、フィッシュアイ低減、更にはコゲ防止処方として、1g当たりの金属塩濃度が高い酢酸ナトリウムを用いることが好ましい。酢酸ナトリウムを用いる場合、ポリアミド樹脂(A)と乾式混合して成形加工してもよいが、ハンドリング性や酢酸臭の低減等の観点から、ポリアミド樹脂(A)と酢酸ナトリウムとからなるマスターバッチを、ポリアミド樹脂(A)と乾式混合して成形加工することが好ましい。マスターバッチに用いる酢酸ナトリウムは、ポリアミド樹脂(A)に均一に分散させることが容易であるため、その粒径は、0.2mm以下が好ましく、0.1mm以下がより好ましい。
The addition amount of the carboxylates is preferably 400 to 10000 ppm, more preferably 800 to 5000 ppm, still more preferably 1000 to 3000 ppm as the concentration in the oxygen absorption barrier layer. If it is 400 ppm or more, the thermal deterioration of the polyamide resin (A) can be suppressed, and gelation can be prevented. Moreover, if it is 10000 ppm or less, a polyamide resin (A) will not raise | generate a shaping | molding defect, and neither coloring nor whitening will occur. It is speculated that the presence of carboxylates that are basic substances in the melted polyamide resin (A) delays the modification of the polyamide resin (A) by heat and suppresses the formation of a gel that is considered to be the final modified product. The
The carboxylates described above are excellent in handling properties, and among them, metal stearate is preferable because it is inexpensive and has an effect as a lubricant, and can stabilize the molding process. Further, the shape of the carboxylate is not particularly limited, but when the powder and the smaller particle size are dry-mixed, it is easy to uniformly disperse in the oxygen absorption barrier layer. Is preferably 0.2 mm or less.
Furthermore, it is preferable to use sodium acetate having a high metal salt concentration per gram as a more effective gelling prevention, fisheye reduction, and kogation prevention formulation. When sodium acetate is used, it may be dry mixed with the polyamide resin (A) and molded, but from the viewpoint of handling properties and reduction of acetic acid odor, a masterbatch comprising the polyamide resin (A) and sodium acetate is prepared. It is preferable to dry-mix with the polyamide resin (A) for molding. Since it is easy to disperse | distribute sodium acetate used for a masterbatch uniformly to a polyamide resin (A), the particle size is 0.2 mm or less, and 0.1 mm or less is more preferable.
[酸化防止剤]
 本発明においては、酸素吸収性能を制御する観点や機械物性低下を抑える観点から酸化防止剤を添加することが好ましい。酸化防止剤としては、銅系酸化防止剤、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、リン系酸化防止剤、チオ系酸化防止剤等を例示することができ、中でもヒンダードフェノール系酸化防止剤、リン系酸化防止剤が好ましい。
[Antioxidant]
In the present invention, it is preferable to add an antioxidant from the viewpoint of controlling oxygen absorption performance and suppressing deterioration of mechanical properties. Examples of the antioxidant include copper-based antioxidants, hindered phenol-based antioxidants, hindered amine-based antioxidants, phosphorus-based antioxidants, and thio-based antioxidants. Antioxidants and phosphorus antioxidants are preferred.
 ヒンダードフェノール系酸化防止剤の具体例としては、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2-チオビス(4-メチル-6-1-ブチルフェノール)、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロキシシンナムアミド)、3,5-ジ-t-ブチル-4-ヒドロキシ-ベンジルホスホネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルスルホン酸エチルカルシウム、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、2,6-ジ-t-ブチル-p-クレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-t-ブチル-4-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス-(4-メチル-6-t-ブチルフェノール)、2,2’-メチレン-ビス-(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス-(3-メチル-6-t-ブチルフェノール)、オクチル化ジフェニルアミン、2,4-ビス[(オクチルチオ)メチル]-O-クレゾール、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール、3,9-ビス[1,1-ジメチル-2-[β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス[3,3’-ビス-(4’-ヒドロキシ-3’-t-ブチルフェニル)ブチリックアシッド]グリコールエステル、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-sec-トリアジン-2,4,6-(1H,3H,5H)トリオン、d-α-トコフェロール等が挙げられる。これらは単独であるいはこれらの混合物で用いることができる。ヒンダードフェノール化合物の市販品の具体例としては、BASF社製のIrganox1010やIrganox1098が挙げられる(いずれも商品名)。 Specific examples of the hindered phenol antioxidant include triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate, 4,4′-butylidenebis (3-methyl- 6-t-butylphenol), 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,4-bis- (n-octylthio) -6- (4-Hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- ( , 5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2-thiobis (4-methyl-6-butylphenol), N, N′-hexamethylenebis (3,5-di-t- Butyl-4-hydroxy-hydroxycinnamamide), 3,5-di-t-butyl-4-hydroxy-benzylphosphonate-diethyl ester, 1,3,5-trimethyl-2,4,6-tris (3,3 5-di-butyl-4-hydroxybenzyl) benzene, ethyl calcium bis (3,5-di-t-butyl-4-hydroxybenzylsulfonate, tris- (3,5-di-t-butyl-4-hydroxy) Benzyl) -isocyanurate, 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-4-ethylpheno , Stearyl-β- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-methylenebis- (4-methyl-6-t-butylphenol), 2,2'-methylene- Bis- (4-ethyl-6-tert-butylphenol), 4,4′-thiobis- (3-methyl-6-tert-butylphenol), octylated diphenylamine, 2,4-bis [(octylthio) methyl] -O -Cresol, isooctyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 4,4'-butylidenebis (3-methyl-6-tert-butylphenol, 3,9-bis [1, 1-dimethyl-2- [β- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetrao Saspiro [5,5] undecane, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3 , 5-di-tert-butyl-4-hydroxybenzyl) benzene, bis [3,3′-bis- (4′-hydroxy-3′-tert-butylphenyl) butyric acid] glycol ester, 1,3, 5-tris (3 ′, 5′-di-t-butyl-4′-hydroxybenzyl) -sec-triazine-2,4,6- (1H, 3H, 5H) trione, d-α-tocopherol, etc. It is done. These can be used alone or as a mixture thereof. Specific examples of commercially available hindered phenol compounds include Irganox 1010 and Irganox 1098 manufactured by BASF (both are trade names).
 リン系酸化防止剤の具体例としては、トリフェニルホスファイト、トリオクタデシルホスファイト、トリデシルホスファイト、トリノニルフェニルホスファイト、ジフェニルイソデシルホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、テトラ(トリデシル-4,4’-イソプロピリデンジフェニルジホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト等の有機リン化合物が挙げられる。これらは単独であるいはこれらの混合物で用いることができる。 Specific examples of phosphorus antioxidants include triphenyl phosphite, trioctadecyl phosphite, tridecyl phosphite, trinonylphenyl phosphite, diphenylisodecyl phosphite, bis (2,6-di-tert-butyl- 4-methylphenyl) pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, tris (2,4-di-tert-butylphenyl) phosphite, distearyl pentaerythritol And organic phosphorus compounds such as diphosphite, tetra (tridecyl-4,4′-isopropylidene diphenyl diphosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, etc. Want to be alone It can be used in a mixture thereof.
 酸化防止剤の含有量は、組成物の各種性能を損なわない範囲であれば特に制限無く使用できるが、酸素吸収性能を制御する観点や機械物性低下を抑える観点から、酸素吸収バリア層中に好ましくは0.001~3質量%、より好ましくは0.01~1質量%である。 The content of the antioxidant can be used without particular limitation as long as it does not impair the various performances of the composition, but it is preferable in the oxygen-absorbing barrier layer from the viewpoint of controlling the oxygen-absorbing performance and suppressing deterioration of mechanical properties. Is 0.001 to 3 mass%, more preferably 0.01 to 1 mass%.
[その他の添加剤]
 酸素吸収バリア層には、要求される用途や性能に応じて、滑剤、艶消剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、可塑剤、難燃剤、帯電防止剤、着色防止剤、結晶化核剤等の添加剤を添加させてもよい。これらの添加剤は、本発明の効果を損なわない範囲で、必要に応じて添加することができる。
[Other additives]
Depending on the required application and performance, the oxygen-absorbing barrier layer has a lubricant, matting agent, heat stabilizer, weathering stabilizer, ultraviolet absorber, plasticizer, flame retardant, antistatic agent, anti-coloring agent, crystal An additive such as a nucleating agent may be added. These additives can be added as necessary within a range not impairing the effects of the present invention.
2.樹脂(B)を主成分とする層(B)
 本発明における層(B)は、樹脂(B)を主成分とする層である。ここで、「主成分とする」とは、層(B)中に、樹脂(B)を70質量%以上、好ましくは80質量%以上、より好ましくは90~100質量%含まれることを意味する。層(B)は、樹脂(B)に加えて、所望する性能等に応じて、前記添加剤(C)を含んでいてもよい。
 本発明の多層フィルムは、層(B)を複数有していてもよく、複数の層(B)の構成は互いに同一であっても異なっていてもよい。
 層(B)の厚みは、用途に応じて適宜決定することができ、多層フィルムに要求される耐ピンホール性や落下耐性等の強度や柔軟性等の諸物性を確保するという観点からは、好ましくは5~200μm、より好ましくは10~150μm、更に好ましくは15~100μmである。
2. Layer mainly composed of resin (B) (B)
The layer (B) in the present invention is a layer mainly composed of the resin (B). Here, the “main component” means that the layer (B) contains the resin (B) in an amount of 70% by mass or more, preferably 80% by mass or more, more preferably 90 to 100% by mass. . The layer (B) may contain the additive (C) in addition to the resin (B) depending on the desired performance and the like.
The multilayer film of the present invention may have a plurality of layers (B), and the structures of the plurality of layers (B) may be the same or different from each other.
The thickness of the layer (B) can be appropriately determined according to the use, and from the viewpoint of ensuring various physical properties such as strength and flexibility such as pinhole resistance and drop resistance required for the multilayer film, The thickness is preferably 5 to 200 μm, more preferably 10 to 150 μm, still more preferably 15 to 100 μm.
2-1.樹脂(B)
 本発明において、樹脂(B)としては任意の樹脂を使用することができ、特に限定されない。樹脂(B)としては、例えば熱可塑性樹脂を用いることができ、具体的にはポリオレフィン、ポリエステル、ポリアミド、エチレン-ビニルアルコール共重合体及び植物由来樹脂を挙げることができる。本発明において樹脂(B)としては、これら樹脂からなる群から選ばれる少なくとも一種を含むことが好ましい。
2-1. Resin (B)
In the present invention, any resin can be used as the resin (B) and is not particularly limited. As the resin (B), for example, a thermoplastic resin can be used, and specific examples thereof include polyolefin, polyester, polyamide, ethylene-vinyl alcohol copolymer, and plant-derived resin. In the present invention, the resin (B) preferably contains at least one selected from the group consisting of these resins.
[ポリオレフィン]
 ポリオレフィンの具体例としては、ポリエチレン(低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン)、ポリプロピレン、ポリブテン-1、ポリ-4-メチルペンテン-1等のオレフィン単独重合体;エチレン-プロピレンランダム共重合体、エチレン-プロピレンブロック共重合体、エチレン-プロピレン-ポリブテン-1共重合体、エチレン-環状オレフィン共重合体等のエチレンとα-オレフィンとの共重合体;エチレン-(メタ)アクリル酸共重合体等のエチレン-α,β-不飽和カルボン酸共重合体、エチレン-(メタ)アクリル酸エチル共重合体等のエチレン-α,β-不飽和カルボン酸エステル共重合体、エチレン-α,β-不飽和カルボン酸共重合体のイオン架橋物、エチレン-酢酸ビニル共重合体等のその他のエチレン共重合体;これらのポリオレフィンを無水マレイン酸等の酸無水物等でグラフト変性したグラフト変性ポリオレフィン等を挙げることができる。
[Polyolefin]
Specific examples of the polyolefin include olefins such as polyethylene (low density polyethylene, medium density polyethylene, high density polyethylene, linear (linear) low density polyethylene), polypropylene, polybutene-1, poly-4-methylpentene-1, and the like. Homopolymer; ethylene-propylene random copolymer, ethylene-propylene block copolymer, ethylene-propylene-polybutene-1 copolymer, ethylene-cyclic olefin copolymer, etc., copolymer of ethylene and α-olefin Ethylene-α, β-unsaturated carboxylic acid copolymer such as ethylene- (meth) acrylic acid copolymer, ethylene-α, β-unsaturated carboxylic acid such as ethylene- (meth) acrylic acid ethyl copolymer Ester copolymer, ionic cross-linked product of ethylene-α, β-unsaturated carboxylic acid copolymer, ethylene - Other ethylene copolymers such as vinyl acetate copolymer; may be mentioned graft-modified polyolefin grafted modifying these polyolefins with an acid anhydride such as maleic anhydride.
[ポリエステル]
 本発明において、ポリエステルとは、ジカルボン酸を含む多価カルボン酸およびこれらのエステル形成性誘導体から選ばれる一種又は二種以上とグリコールを含む多価アルコールから選ばれる一種又は二種以上とからなるもの、又はヒドロキシカルボン酸およびこれらのエステル形成性誘導体からなるもの、又は環状エステルからなるものをいう。
[polyester]
In the present invention, the polyester is composed of one or more selected from polycarboxylic acids containing dicarboxylic acids and ester-forming derivatives thereof, and one or more selected from polyhydric alcohols containing glycol. Or a hydroxycarboxylic acid and an ester-forming derivative thereof, or a cyclic ester.
 ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、3-シクロブタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2,5-ノルボルナンジカルボン酸、ダイマー酸等に例示される飽和脂肪族ジカルボン酸又はこれらのエステル形成性誘導体、フマル酸、マレイン酸、イタコン酸等に例示される不飽和脂肪族ジカルボン酸又はこれらのエステル形成性誘導体、オルソフタル酸、イソフタル酸、テレフタル酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ビフェニルスルホンジカルボン酸、4,4’-ビフェニルエーテルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸、アントラセンジカルボン酸等に例示される芳香族ジカルボン酸又はこれらのエステル形成性誘導体、5-ナトリウムスルホイソフタル酸、2-ナトリウムスルホテレフタル酸、5-リチウムスルホイソフタル酸、2-リチウムスルホテレフタル酸、5-カリウムスルホイソフタル酸、2-カリウムスルホテレフタル酸等に例示される金属スルホネート基含有芳香族ジカルボン酸又はそれらの低級アルキルエステル誘導体等が挙げられる。 Dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecanedicarboxylic acid, 3- Exemplified as cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2,5-norbornanedicarboxylic acid, dimer acid, etc. Saturated aliphatic dicarboxylic acids or ester-forming derivatives thereof, unsaturated aliphatic dicarboxylic acids exemplified by fumaric acid, maleic acid, itaconic acid or the like, or ester-forming derivatives thereof, orthophthalic acid, isophthalic acid, terephthalic acid 1,3- Phthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4 ′ Aromatic dicarboxylic acids exemplified by biphenylsulfone dicarboxylic acid, 4,4′-biphenyl ether dicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p′-dicarboxylic acid, anthracene dicarboxylic acid, etc. Examples of forming derivatives such as 5-sodium sulfoisophthalic acid, 2-sodium sulfoterephthalic acid, 5-lithium sulfoisophthalic acid, 2-lithium sulfoterephthalic acid, 5-potassium sulfoisophthalic acid, 2-potassium sulfoterephthalic acid, etc. Aromatic dicarboxylic acids containing metal sulfonate groups The like lower alkyl esters thereof derivative.
 上記のジカルボン酸のなかでも、特に、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸の使用が、得られるポリエステルの物理特性等の点で好ましく、必要に応じて他のジカルボン酸を共重合してもよい。 Among the above dicarboxylic acids, the use of terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid is particularly preferable in terms of the physical properties of the resulting polyester, and other dicarboxylic acids may be copolymerized as necessary. .
 これらジカルボン酸以外の多価カルボン酸として、エタントリカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3,4,3’,4’-ビフェニルテトラカルボン酸、およびこれらのエステル形成性誘導体等が挙げられる。 As polyvalent carboxylic acids other than these dicarboxylic acids, ethanetricarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3 ′, 4′-biphenyltetracarboxylic acid, And ester-forming derivatives thereof.
 グリコールとしてはエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール、1,10-デカメチレングリコール、1,12-ドデカンジオール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール等に例示される脂肪族グリコール、ヒドロキノン、4,4’-ジヒドロキシビスフェノール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-ビス(β-ヒドロキシエトキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)エーテル、ビス(p-ヒドロキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)メタン、1,2-ビス(p-ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールC、2,5-ナフタレンジオール、これらのグリコールにエチレンオキシドが付加されたグリコール等に例示される芳香族グリコールが挙げられる。 As glycols, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,4 -Butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 1,10-decamethylene glycol, 1,12-dodecanediol, polyethylene glycol, polyto Aliphatic glycols, such as methylene glycol and polytetramethylene glycol, hydroquinone, 4,4'-dihydroxybisphenol, 1,4-bis (β-hydroxyethoxy) benzene, 1,4-bis (β-hydroxyethoxyphenyl) ) Sulfone, bis (p-hydroxyphenyl) ether, bis (p-hydroxyphenyl) sulfone, bis (p-hydroxyphenyl) methane, 1,2-bis (p-hydroxyphenyl) ethane, bisphenol A, bisphenol C, 2 , 5-naphthalenediol, and aromatic glycols exemplified by glycols obtained by adding ethylene oxide to these glycols.
 上記のグリコールのなかでも、特に、エチレングリコール、1,3-プロピレングリコール、1,4-ブチレングリコール、1,4-シクロヘキサンジメタノールを主成分として使用することが好適である。これらグリコール以外の多価アルコールとして、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロール、ヘキサントリオール等が挙げられる。ヒドロキシカルボン酸としては、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3-ヒドロキシ酪酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸、4-ヒドロキシシクロヘキサンカルボン酸、又はこれらのエステル形成性誘導体等が挙げられる。 Among the above glycols, it is particularly preferable to use ethylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, and 1,4-cyclohexanedimethanol as main components. Examples of polyhydric alcohols other than these glycols include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, and hexanetriol. Hydroxycarboxylic acids include lactic acid, citric acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid, 4-hydroxycyclohexanecarboxylic acid, or these And ester-forming derivatives thereof.
 環状エステルとしては、ε-カプロラクトン、β-プロピオラクトン、β-メチル-β-プロピオラクトン、δ-バレロラクトン、グリコリド、ラクチド等が挙げられる。 Examples of the cyclic ester include ε-caprolactone, β-propiolactone, β-methyl-β-propiolactone, δ-valerolactone, glycolide, lactide and the like.
 多価カルボン酸、ヒドロキシカルボン酸のエステル形成性誘導体としては、これらのアルキルエステル、酸クロライド、酸無水物等が例示される。 Examples of ester-forming derivatives of polyvalent carboxylic acids and hydroxycarboxylic acids include these alkyl esters, acid chlorides, acid anhydrides, and the like.
 本発明で用いられるポリエステルとしては、主たる酸成分がテレフタル酸またはそのエステル形成性誘導体もしくはナフタレンジカルボン酸またはそのエステル形成性誘導体であり、主たるグリコール成分がアルキレングリコールであるポリエステルが好ましい。 The polyester used in the present invention is preferably a polyester in which the main acid component is terephthalic acid or an ester-forming derivative thereof or naphthalenedicarboxylic acid or an ester-forming derivative thereof, and the main glycol component is alkylene glycol.
 主たる酸成分がテレフタル酸またはそのエステル形成性誘導体であるポリエステルとは、全酸成分に対してテレフタル酸またはそのエステル形成性誘導体を合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。主たる酸成分がナフタレンジカルボン酸またはそのエステル形成性誘導体であるポリエステルも同様に、ナフタレンジカルボン酸またはそのエステル形成性誘導体を合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。 The polyester in which the main acid component is terephthalic acid or an ester-forming derivative thereof is preferably a polyester containing 70 mol% or more of terephthalic acid or an ester-forming derivative thereof in total with respect to the total acid component. A polyester containing 80 mol% or more is preferable, and a polyester containing 90 mol% or more is more preferable. Similarly, the polyester in which the main acid component is naphthalenedicarboxylic acid or an ester-forming derivative thereof is also preferably a polyester containing 70 mol% or more of naphthalenedicarboxylic acid or an ester-forming derivative thereof, more preferably 80 Polyesters containing at least mol%, more preferably polyesters containing at least 90 mol%.
 本発明で用いられるナフタレンジカルボン酸またはそのエステル形成性誘導体としては、上述のジカルボン酸類に例示した1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、またはこれらのエステル形成性誘導体が好ましい。 Examples of the naphthalenedicarboxylic acid or ester-forming derivative thereof used in the present invention include 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid exemplified in the above dicarboxylic acids, 6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, or ester-forming derivatives thereof are preferred.
 主たるグリコール成分がアルキレングリコールであるポリエステルとは、全グリコール成分に対してアルキレングリコールを合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。ここで言うアルキレングリコールは、分子鎖中に置換基や脂環構造を含んでいてもよい。 The polyester whose main glycol component is an alkylene glycol is preferably a polyester containing 70 mol% or more of the total amount of alkylene glycol with respect to all glycol components, more preferably a polyester containing 80 mol% or more, More preferably, it is a polyester containing 90 mol% or more. The alkylene glycol here may contain a substituent or an alicyclic structure in the molecular chain.
 上記テレフタル酸/エチレングリコール以外の共重合成分は、イソフタル酸、2,6-ナフタレンジカルボン酸、ジエチレングリコール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、1,2-プロパンジオール、1,3-プロパンジオールおよび2-メチル-1,3-プロパンジオールからなる群より選ばれる少なくとも1種以上であることが、透明性と成形性とを両立する上で好ましく、特にイソフタル酸、ジエチレングリコール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノールからなる群より選ばれる少なくとも1種以上であることがより好ましい。 The copolymer components other than the terephthalic acid / ethylene glycol are isophthalic acid, 2,6-naphthalenedicarboxylic acid, diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,2-propanediol, 1,3-propane. It is preferably at least one selected from the group consisting of diol and 2-methyl-1,3-propanediol from the viewpoint of achieving both transparency and moldability, and in particular, isophthalic acid, diethylene glycol, neopentyl glycol, More preferably, it is at least one selected from the group consisting of 1,4-cyclohexanedimethanol.
 本発明に用いられるポリエステルの好ましい一例は、主たる繰り返し単位がエチレンテレフタレートから構成されるポリエステルであり、より好ましくはエチレンテレフタレート単位を70モル%以上含む線状ポリエステルであり、さらに好ましくはエチレンテレフタレート単位を80モル%以上含む線状ポリエステルであり、特に好ましいのはエチレンテレフタレート単位を90モル%以上含む線状ポリエステルである。 A preferred example of the polyester used in the present invention is a polyester whose main repeating unit is composed of ethylene terephthalate, more preferably a linear polyester containing 70 mol% or more of ethylene terephthalate units, and still more preferably an ethylene terephthalate unit. A linear polyester containing 80 mol% or more is preferable, and a linear polyester containing 90 mol% or more of ethylene terephthalate units is particularly preferable.
 また本発明に用いられるポリエステルの好ましい他の一例は、主たる繰り返し単位がエチレン-2,6-ナフタレートから構成されるポリエステルであり、より好ましくはエチレン-2,6-ナフタレート単位を70モル%以上含む線状ポリエステルであり、さらに好ましくはエチレン-2,6-ナフタレート単位を80モル%以上含む線状ポリエステルであり、特に好ましいのは、エチレン-2,6-ナフタレート単位を90モル%以上含む線状ポリエステルである。 Another preferred example of the polyester used in the present invention is a polyester in which the main repeating unit is composed of ethylene-2,6-naphthalate, and more preferably contains 70 mol% or more of ethylene-2,6-naphthalate units. A linear polyester, more preferably a linear polyester containing 80 mol% or more of ethylene-2,6-naphthalate units, and particularly preferably a linear polyester containing 90 mol% or more of ethylene-2,6-naphthalate units. Polyester.
 また本発明に用いられるポリエステルの好ましいその他の例としては、プロピレンテレフタレート単位を70モル%以上含む線状ポリエステル、プロピレンナフタレート単位を70モル%以上含む線状ポリエステル、1,4-シクロヘキサンジメチレンテレフタレート単位を70モル%以上含む線状ポリエステル、ブチレンナフタレート単位を70モル%以上含む線状ポリエステル、またはブチレンテレフタレート単位を70モル%以上含む線状ポリエステルである。 Other preferable examples of the polyester used in the present invention include linear polyesters containing 70 mol% or more of propylene terephthalate units, linear polyesters containing 70 mol% or more of propylene naphthalate units, and 1,4-cyclohexanedimethylene terephthalate. A linear polyester containing 70 mol% or more of units, a linear polyester containing 70 mol% or more of butylene naphthalate units, or a linear polyester containing 70 mol% or more of butylene terephthalate units.
 特にポリエステル全体の組成として、テレフタル酸/イソフタル酸//エチレングリコールの組合せ、テレフタル酸//エチレングリコール/1,4-シクロヘキサンジメタノールの組合せ、テレフタル酸//エチレングリコール/ネオペンチルグリコールの組合せは透明性と成形性とを両立する上で好ましい。なお、当然ではあるが、エステル化(エステル交換)反応、重縮合反応中に、エチレングリコールの二量化により生じるジエチレングリコールを少量(5モル%以下)含んでもよいことは言うまでもない。 In particular, the composition of the entire polyester is transparent in combination of terephthalic acid / isophthalic acid // ethylene glycol, terephthalic acid // ethylene glycol / 1,4-cyclohexanedimethanol, and terephthalic acid // ethylene glycol / neopentyl glycol. This is preferable in order to satisfy both the moldability and the moldability. Needless to say, a small amount (5 mol% or less) of diethylene glycol produced by dimerization of ethylene glycol may be included in the esterification (transesterification) reaction or polycondensation reaction.
 また本発明に用いられるポリエステルの好ましいその他の例としては、グリコール酸やグリコール酸メチルの重縮合もしくは、グリコリドの開環重縮合にて得られるポリグリコール酸が挙げられる。このポリグリコール酸には、ラクチド等の他成分を共重合しても構わない。 Other preferable examples of the polyester used in the present invention include polyglycolic acid obtained by polycondensation of glycolic acid or methyl glycolate or ring-opening polycondensation of glycolide. This polyglycolic acid may be copolymerized with other components such as lactide.
[ポリアミド]
 本発明で使用するポリアミド(ここで言う“ポリアミド”は、本発明の“ポリアミド樹脂(A)”ではない)は、ラクタムもしくはアミノカルボン酸から誘導される単位を主構成単位とするポリアミドや、脂肪族ジアミンと脂肪族ジカルボン酸とから誘導される単位を主構成単位とする脂肪族ポリアミド、脂肪族ジアミンと芳香族ジカルボン酸とから誘導される単位を主構成単位とする部分芳香族ポリアミド、芳香族ジアミンと脂肪族ジカルボン酸とから誘導される単位を主構成単位とする部分芳香族ポリアミド等が挙げられ、必要に応じて、主構成単位以外のモノマー単位を共重合してもよい。
[polyamide]
The polyamide used in the present invention (herein, “polyamide” is not “polyamide resin (A)” in the present invention) is a polyamide mainly composed of units derived from lactam or aminocarboxylic acid, or Aliphatic polyamides whose main constituent units are units derived from aliphatic diamines and aliphatic dicarboxylic acids, partially aromatic polyamides whose main constituent units are units derived from aliphatic diamines and aromatic dicarboxylic acids, aromatic Examples thereof include partially aromatic polyamides having a unit derived from a diamine and an aliphatic dicarboxylic acid as a main constituent unit, and monomer units other than the main constituent unit may be copolymerized as necessary.
 前記ラクタムもしくはアミノカルボン酸としては、ε-カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等のアミノカルボン酸類、パラ-アミノメチル安息香酸のような芳香族アミノカルボン酸等が使用できる。 Examples of the lactam or aminocarboxylic acid include lactams such as ε-caprolactam and laurolactam, aminocarboxylic acids such as aminocaproic acid and aminoundecanoic acid, and aromatic aminocarboxylic acids such as para-aminomethylbenzoic acid. .
 前記脂肪族ジアミンとしては、炭素数2~12の脂肪族ジアミンあるいはその機能的誘導体が使用できる。さらに、脂環族のジアミンであってもよい。脂肪族ジアミンは直鎖状の脂肪族ジアミンであっても分岐を有する鎖状の脂肪族ジアミンであってもよい。このような直鎖状の脂肪族ジアミンの具体例としては、エチレンジアミン、1-メチルエチレンジアミン、1,3-プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン等の脂肪族ジアミンが挙げられる。また、脂環族ジアミンの具体例としては、シクロヘキサンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン等が挙げられる。 As the aliphatic diamine, an aliphatic diamine having 2 to 12 carbon atoms or a functional derivative thereof can be used. Furthermore, an alicyclic diamine may be used. The aliphatic diamine may be a linear aliphatic diamine or a branched chain aliphatic diamine. Specific examples of such linear aliphatic diamines include ethylenediamine, 1-methylethylenediamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, Examples include aliphatic diamines such as nonamethylenediamine, decamethylenediamine, undecamethylenediamine, and dodecamethylenediamine. Specific examples of the alicyclic diamine include cyclohexanediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, and the like.
 また、前記脂肪族ジカルボン酸としては、直鎖状の脂肪族ジカルボン酸や脂環族ジカルボン酸が好ましく、さらに炭素数4~12のアルキレン基を有する直鎖状脂肪族ジカルボン酸が特に好ましい。このような直鎖状脂肪族ジカルボン酸の例としては、アジピン酸、セバシン酸、マロン酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、ウンデカン酸、ウンデカジオン酸、ドデカンジオン酸、ダイマー酸およびこれらの機能的誘導体等を挙げることができる。脂環族ジカルボン酸としては、1,4-シクロヘキサンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等の脂環式ジカルボン酸が挙げられる。 The aliphatic dicarboxylic acid is preferably a linear aliphatic dicarboxylic acid or an alicyclic dicarboxylic acid, and more preferably a linear aliphatic dicarboxylic acid having an alkylene group having 4 to 12 carbon atoms. Examples of such linear aliphatic dicarboxylic acids include adipic acid, sebacic acid, malonic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, undecanoic acid, undecadioic acid, dodecanedioic acid, dimer Examples thereof include acids and functional derivatives thereof. Examples of the alicyclic dicarboxylic acid include alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, and hexahydroisophthalic acid.
 また、前記芳香族ジアミンとしては、メタキシリレンジアミン、パラキシリレンジアミン、パラ-ビス(2-アミノエチル)ベンゼン等が挙げられる。 Examples of the aromatic diamine include metaxylylenediamine, paraxylylenediamine, para-bis (2-aminoethyl) benzene and the like.
 また、前記芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、ジフェニル-4,4’-ジカルボン酸、ジフェノキシエタンジカルボン酸およびその機能的誘導体等が挙げられる。 Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, diphenoxyethanedicarboxylic acid, and functional derivatives thereof. It is done.
 具体的なポリアミドとしては、ポリアミド4、ポリアミド6、ポリアミド10、ポリアミド11、ポリアミド12、ポリアミド4,6、ポリアミド6,6、ポリアミド6,10、ポリアミド6T、ポリアミド9T、ポリアミド6IT、ポリメタキシリレンアジパミド(ポリアミドMXD6)、イソフタル酸共重合ポリメタキシリレンアジパミド(ポリアミドMXD6I)、ポリメタキシリレンセバカミド(ポリアミドMXD10)、ポリメタキシリレンドデカナミド(ポリアミドMXD12)、ポリ1,3-ビス(アミノメチル)シクロヘキサンアジパミド(ポリアミドBAC6)、ポリパラキシリレンセバカミド(ポリアミドPXD10)等がある。より好ましいポリアミドとしては、ポリアミド6、ポリアミドMXD6、ポリアミドMXD6Iが挙げられる。 Specific polyamides include polyamide 4, polyamide 6, polyamide 10, polyamide 11, polyamide 12, polyamide 4, 6, polyamide 6, 6, polyamide 6, 10, polyamide 6T, polyamide 9T, polyamide 6IT, polymetaxylylene azide. Pamide (polyamide MXD6), isophthalic acid copolymer polymetaxylylene adipamide (polyamide MXD6I), polymetaxylylene sebamide (polyamide MXD10), polymetaxylylene decanamide (polyamide MXD12), poly 1,3-bis (Aminomethyl) cyclohexane adipamide (polyamide BAC6), polyparaxylylene sebacamide (polyamide PXD10) and the like. More preferable polyamides include polyamide 6, polyamide MXD6, and polyamide MXD6I.
 また、前記ポリアミドの共重合成分として、少なくとも一つの末端アミノ基、もしくは末端カルボキシル基を有する数平均分子量が2000~20000のポリエーテル、又は前記末端アミノ基を有するポリエーテルの有機カルボン酸塩、又は前記末端カルボキシル基を有するポリエーテルのアミノ塩を用いることもできる。具体的な例としては、ビス(アミノプロピル)ポリ(エチレンオキシド)(数平均分子量が2000~20000のポリエチレングリコール)が挙げられる。 Further, as a copolymerization component of the polyamide, a polyether having at least one terminal amino group or terminal carboxyl group and a number average molecular weight of 2000 to 20000, or an organic carboxylate of the polyether having the terminal amino group, or An amino salt of a polyether having a terminal carboxyl group can also be used. Specific examples include bis (aminopropyl) poly (ethylene oxide) (polyethylene glycol having a number average molecular weight of 2000 to 20000).
 また、前記部分芳香族ポリアミドは、トリメリット酸、ピロメリット酸等の3塩基以上の多価カルボン酸から誘導される構成単位を実質的に線状である範囲内で含有していてもよい。 The partially aromatic polyamide may contain a structural unit derived from a polybasic carboxylic acid having three or more bases such as trimellitic acid and pyromellitic acid within a substantially linear range.
 前記ポリアミドは、基本的には従来公知の、水共存下での溶融重縮合法あるいは水不存在下の溶融重縮合法や、これらの溶融重縮合法で得られたポリアミドを更に固相重合する方法等によって製造することが出来る。溶融重縮合反応は1段階で行ってもよいし、また多段階に分けて行ってもよい。これらは回分式反応装置から構成されていてもよいし、また連続式反応装置から構成されていてもよい。また溶融重縮合工程と固相重合工程は連続的に運転してもよいし、分割して運転してもよい。 The polyamide is basically a conventionally known melt polycondensation method in the presence of water or a melt polycondensation method in the absence of water, or a polyamide obtained by these melt polycondensation methods. It can be manufactured by a method or the like. The melt polycondensation reaction may be performed in one step or may be performed in multiple steps. These may be comprised from a batch-type reaction apparatus, and may be comprised from the continuous-type reaction apparatus. The melt polycondensation step and the solid phase polymerization step may be operated continuously or may be operated separately.
[エチレン-ビニルアルコール共重合体]
 本発明で使用されるエチレンビニルアルコール共重合体としては、特に限定されないが、好ましくはエチレン含量15~60モル%、更に好ましくは20~55モル%、より好ましくは29~44モル%であり、酢酸ビニル成分のケン化度が好ましくは90モル%以上、更に好ましくは95モル%以上のものである。
 またエチレンビニルアルコール共重合体には、本発明の効果に悪影響を与えない範囲で、更に少量のプロピレン、イソブテン、α-オクテン、α-ドデセン、α-オクタデセン等のα-オレフィン、不飽和カルボン酸又はその塩、部分アルキルエステル、完全アルキルエステル、ニトリル、アミド、無水物、不飽和スルホン酸又はその塩等のコモノマーを含んでいてもよい。
[Ethylene-vinyl alcohol copolymer]
The ethylene vinyl alcohol copolymer used in the present invention is not particularly limited, but preferably has an ethylene content of 15 to 60 mol%, more preferably 20 to 55 mol%, more preferably 29 to 44 mol%, The degree of saponification of the vinyl acetate component is preferably 90 mol% or more, more preferably 95 mol% or more.
Further, the ethylene vinyl alcohol copolymer has a smaller amount of an α-olefin such as propylene, isobutene, α-octene, α-dodecene, α-octadecene, and unsaturated carboxylic acid as long as the effects of the present invention are not adversely affected. Alternatively, a comonomer such as a salt thereof, a partial alkyl ester, a complete alkyl ester, a nitrile, an amide, an anhydride, an unsaturated sulfonic acid or a salt thereof may be contained.
[植物由来樹脂]
 植物由来樹脂の具体例としては、上記樹脂と重複する部分もあるが、特に限定されることなく公知の種々の石油以外を原料とする脂肪族ポリエステル系生分解性樹脂が挙げられる。脂肪族ポリエステル系生分解性樹脂としては、例えば、ポリグリコール酸(PGA)、ポリ乳酸(PLA)等のポリ(α-ヒドロキシ酸);ポリブチレンサクシネート(PBS)、ポリエチレンサクシネート(PES)等のポリアルキレンアルカノエート等が挙げられる。
[Plant-derived resin]
Specific examples of the plant-derived resin include a portion overlapping with the above resin, but are not particularly limited, and examples thereof include aliphatic polyester-based biodegradable resins other than various known petroleum materials. Examples of the aliphatic polyester-based biodegradable resin include poly (α-hydroxy acids) such as polyglycolic acid (PGA) and polylactic acid (PLA); polybutylene succinate (PBS), polyethylene succinate (PES) and the like. And polyalkylene alkanoates.
3.任意の層
 本発明の多層フィルムは、前記層(A)及び(B)に加えて、所望する性能等に応じて任意の層を含んでいてもよい。そのような任意の層としては、例えば、接着層、金属箔、金属蒸着層、易剥離層、易引裂層等が挙げられる。
3. Arbitrary Layer In addition to the layers (A) and (B), the multilayer film of the present invention may contain an optional layer depending on the desired performance and the like. Examples of such an arbitrary layer include an adhesive layer, a metal foil, a metal vapor-deposited layer, an easily peelable layer, and an easily tearable layer.
3-1.接着層
 本発明の多層フィルムにおいて、隣接する2つの層の間で実用的な層間接着強度が得られない場合には、当該2つの層の間に接着剤層を設けることが好ましい。
 接着層は、接着性を有する熱可塑性樹脂を含むことが好ましい。接着性を有する熱可塑性樹脂としては、例えば、ポリエチレン又はポリプロピレン等のポリオレフィン系樹脂をアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン樹脂が挙げられる。接着層としては、接着性の観点から、層(B)として用いられている樹脂(B)と同種の樹脂を変性したものを用いることが好ましい。
 接着層の厚みは、実用的な接着強度を発揮しつつ成形加工性を確保するという観点から、好ましくは2~100μm、より好ましくは5~90μm、更に好ましくは10~80μmである。
3-1. Adhesive layer In the multilayer film of the present invention, when practical interlayer adhesive strength cannot be obtained between two adjacent layers, it is preferable to provide an adhesive layer between the two layers.
The adhesive layer preferably contains a thermoplastic resin having adhesiveness. As the thermoplastic resin having adhesiveness, for example, an acid modification in which a polyolefin resin such as polyethylene or polypropylene is modified with an unsaturated carboxylic acid such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, etc. Examples include polyolefin resins. As the adhesive layer, it is preferable to use a modified resin of the same type as the resin (B) used as the layer (B) from the viewpoint of adhesiveness.
The thickness of the adhesive layer is preferably 2 to 100 μm, more preferably 5 to 90 μm, and still more preferably 10 to 80 μm, from the viewpoint of ensuring molding processability while exhibiting practical adhesive strength.
3-2.金属箔・金属蒸着層及び有機-無機膜
 本発明の多層フィルムは、ガスバリア性及び遮光性の観点から、金属箔、金属蒸着層及び有機-無機膜を含んでいてもよい。
 金属箔としては、アルミニウム箔が好ましい。金属箔の厚みは、ガスバリア性、遮光性及び耐屈曲性等の観点から、好ましくは3~50μm、より好ましくは3~30μm、更に好ましくは5~15μmである。
 金属蒸着層としては、アルミニウムやアルミナ等の金属又は金属酸化物膜が蒸着された樹脂フィルム等を用いることができる。蒸着膜の形成方法は特に限定されず、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法や、PECVD等の化学蒸着法等が挙げられる。蒸着膜の厚みは、ガスバリア性、遮光性及び耐屈曲性等の観点から、好ましくは5~500nm、より好ましくは5~200nmである。
 有機-無機膜層としては、ゾルゲル法などから作成されるシリカ-ポリビニルアルコールハイブリッド膜等がコーティングされた樹脂フィルム等を用いることができる。コーティング膜の厚みは、ガスバリア性、遮光性及び耐屈曲性等の観点から、好ましくは100nm~50μm、より好ましくは1~15μmである。
3-2. Metal Foil / Metal Vapor Deposition Layer and Organic-Inorganic Film The multilayer film of the present invention may contain a metal foil, a metal vapor deposition layer, and an organic-inorganic film from the viewpoint of gas barrier properties and light shielding properties.
As the metal foil, an aluminum foil is preferable. The thickness of the metal foil is preferably 3 to 50 μm, more preferably 3 to 30 μm, still more preferably 5 to 15 μm, from the viewpoints of gas barrier properties, light shielding properties, bending resistance, and the like.
As the metal deposition layer, a resin film or the like on which a metal such as aluminum or alumina or a metal oxide film is deposited can be used. The formation method of a vapor deposition film is not specifically limited, For example, physical vapor deposition methods, such as a vacuum evaporation method, sputtering method, and an ion plating method, Chemical vapor deposition methods, such as PECVD, etc. are mentioned. The thickness of the deposited film is preferably 5 to 500 nm, more preferably 5 to 200 nm, from the viewpoints of gas barrier properties, light shielding properties, bending resistance, and the like.
As the organic-inorganic film layer, a resin film coated with a silica-polyvinyl alcohol hybrid film or the like prepared by a sol-gel method or the like can be used. The thickness of the coating film is preferably 100 nm to 50 μm, more preferably 1 to 15 μm, from the viewpoints of gas barrier properties, light shielding properties, bending resistance, and the like.
3-3.易剥離層及び易引裂層
 本発明の多層フィルムは、多層フィルム包装容器の開封を容易にするために、易剥離層や易引裂層を含んでいてもよい。易剥離層としては、一般的に用いられている2種類以上の異なるポリオレフィンをブレンドして、シール強度と剥離強度を制御したフィルムが用いられる。易引裂層としては、ナイロン6にナイロンMXD6をブレンドした易引裂性フィルムが用いられる。
3-3. Easy peel layer and easy tear layer The multilayer film of the present invention may include an easy peel layer and an easy tear layer in order to facilitate the opening of the multilayer film packaging container. As the easily peelable layer, a film in which two or more kinds of commonly used polyolefins are blended to control the seal strength and peel strength is used. As the easy tear layer, an easy tear film in which nylon MXD6 is blended with nylon 6 is used.
4.多層フィルムの製造方法
 本発明の多層フィルムの製造方法については特に限定されず、任意の方法で製造することができ、例えば、共押出法やラミネート法等の方法により製造することができる。
4). Manufacturing method of multilayer film It does not specifically limit about the manufacturing method of the multilayer film of this invention, It can manufacture by arbitrary methods, For example, it can manufacture by methods, such as a co-extrusion method and a lamination method.
4-1.共押出法
 共押出法では、層(A)を構成する材料及び層(B)を構成する材料をそれぞれ押出機に投入し、共押出しすることで多層フィルムを得る。インフレーション法による共押出や、Tダイ法による共押出等、任意の方法で多層フィルムを得ることができる。
 共押出法により得られた多層フィルムを更に一軸延伸又は二軸延伸等により延伸して、層(A)及び(B)が共延伸成形された多層フィルムを得ることができる。延伸方法は、共押出したフィルムを連続して、テンター方式による逐次二軸延伸や同時二軸延伸、インフレーション方式による同時二軸延伸が挙げられる。また、バッチ式の二軸延伸装置を使用してもよい。共押出延伸倍率は多層フィルムの用途に応じて適宜決定することができるが、MD方向に1.1~15倍、TD方向に1.1~15倍に二軸延伸することが好ましい。
4-1. Coextrusion method In the coextrusion method, the material constituting the layer (A) and the material constituting the layer (B) are respectively charged into an extruder and coextruded to obtain a multilayer film. A multilayer film can be obtained by any method such as coextrusion by an inflation method or coextrusion by a T-die method.
The multilayer film obtained by the coextrusion method can be further stretched by uniaxial stretching or biaxial stretching to obtain a multilayer film in which the layers (A) and (B) are co-stretched. Examples of the stretching method include continuous biaxial stretching by a tenter method, simultaneous biaxial stretching by a tenter method, and simultaneous biaxial stretching by an inflation method. A batch-type biaxial stretching apparatus may be used. The coextrusion stretch ratio can be appropriately determined according to the use of the multilayer film, but it is preferable to biaxially stretch 1.1 to 15 times in the MD direction and 1.1 to 15 times in the TD direction.
4-2.ラミネート法
 ラミネート法では、層(A)を構成するフィルム及び層(B)を構成するフィルムをそれぞれ押出法等により製造した後、これらのフィルムを積層することで多層フィルムを得る。ホットメルトラミネーション法、ウェットラミネーション法、ドライラミネーション法、無溶剤型ドライラミネーション法、押出ラミネーション法、熱ラミネーション法等、任意の方法で多層フィルムを得ることができる。
 上記の積層を行う際、必要に応じて、例えば、コロナ処理、オゾン処理等の前処理をフィルム等に施すことができ、また、例えば、イソシアネート系(ウレタン系)、ポリエチレンイミン系、ポリブタジェン系、有機チタン系等のアンカーコーティング剤、あるいはポリウレタン系、ポリアクリル系、ポリエステル系、エポキシ系、ポリ酢酸ビニル系、セルロース系等のラミネート用接着剤等の公知のアンカーコート剤、接着剤等を使用することができる。
4-2. Laminating method In the laminating method, a film constituting the layer (A) and a film constituting the layer (B) are each produced by an extrusion method or the like, and then these films are laminated to obtain a multilayer film. The multilayer film can be obtained by an arbitrary method such as a hot melt lamination method, a wet lamination method, a dry lamination method, a solventless dry lamination method, an extrusion lamination method, or a thermal lamination method.
When performing the above lamination, if necessary, for example, pretreatment such as corona treatment and ozone treatment can be applied to the film, etc., for example, isocyanate (urethane), polyethyleneimine, polybutadiene, Use anchor coating agents such as organic titanium, or known anchor coating agents such as polyurethane, polyacrylic, polyester, epoxy, polyvinyl acetate, and cellulose adhesives, adhesives, etc. be able to.
 また、フィルム材料の表面に適切な表面処理がなされた後で、必要に応じて印刷層を設けることもできる。
 印刷層を設ける際には、グラビア印刷機、フレキソ印刷機、オフセット印刷機等の従来のポリマーフィルムへの印刷に用いられてきた一般的な印刷設備が同様に適用され得る。また、印刷層を形成するインキについても、アゾ系、フタロシアニン系等の顔料、ロジン、ポリアミド樹脂、ポリウレタン等の樹脂、メタノール、酢酸エチル、メチルエチルケトン等の溶剤等から形成される従来のポリマーフィルムへの印刷層に用いられてきたインキが同様に適用され得る。
Moreover, after an appropriate surface treatment is performed on the surface of the film material, a printing layer can be provided as necessary.
In providing the printing layer, general printing equipment that has been used for printing on a conventional polymer film such as a gravure printing machine, a flexographic printing machine, and an offset printing machine can be similarly applied. The ink for forming the printing layer is also applied to conventional polymer films formed from pigments such as azo and phthalocyanine, resins such as rosin, polyamide resin and polyurethane, solvents such as methanol, ethyl acetate and methyl ethyl ketone. The inks that have been used for the printing layer can be applied as well.
<<フィルム包装容器>>
 本発明のフィルム包装容器は、上述した多層フィルムを含む。本発明の多層フィルムを包装容器の全体又は一部に使用したフィルム包装容器は、容器外からわずかに侵入する酸素のほか、容器内の酸素を吸収して、保存する内容物品の酸素による変質を防止することができる。
 本発明のフィルム包装容器の形状は特に限定されず、収納、保存する物品に応じて適切な範囲で選ぶことができる。例えば、本発明の多層フィルムを、三方シール平袋、スタンディングパウチ、ガセット包装袋、ピロー包装袋、主室と副室とからなり主室と副室との間に易剥離壁を設けた多室パウチ、熱成形を施した容器、シュリンクフィルム包装等とすることができる。また、熱成形容器などのフランジ部を有する場合には、そのフランジ部に易剥離機能を付与する特殊加工を施してもよい。また、本発明の多層フィルムを、容器の蓋材、トップシール等の部材として用いることで、包装容器に脱酸素機能を付与することができる。
 本発明のフィルム包装容器の容量についても特に限定されず、収納、保存する物品に応じて適切な範囲で選ぶことができる。
 本発明のフィルム包装容器の製造方法については特に限定されず、任意の方法で製造することができる。
<< Film packaging container >>
The film packaging container of this invention contains the multilayer film mentioned above. The film packaging container using the multilayer film of the present invention as a whole or a part of the packaging container absorbs oxygen in the container in addition to oxygen that slightly enters from the outside of the container, and changes the contents of the stored contents due to oxygen. Can be prevented.
The shape of the film packaging container of the present invention is not particularly limited, and can be selected within an appropriate range depending on the articles to be stored and stored. For example, the multilayer film of the present invention comprises a three-sided seal flat bag, a standing pouch, a gusset packaging bag, a pillow packaging bag, a multi-chamber comprising a main chamber and a sub-chamber and an easy peeling wall provided between the main chamber and the sub-chamber. Pouches, thermoformed containers, shrink film packaging, and the like can be used. Moreover, when it has flange parts, such as a thermoforming container, you may give the special process which provides an easy peeling function to the flange part. Moreover, a deoxidation function can be provided to a packaging container by using the multilayer film of this invention as members, such as a cover material of a container and a top seal.
The capacity of the film packaging container of the present invention is not particularly limited, and can be selected within an appropriate range depending on the articles to be stored and stored.
It does not specifically limit about the manufacturing method of the film packaging container of this invention, It can manufacture by arbitrary methods.
 本発明のフィルム包装容器は、酸素吸収性能及び酸素バリア性能に優れ、かつ内容物の風味保持性に優れるため、種々の物品の包装に適している。
 被保存物としては、牛乳、乳製品、ジュース、コーヒー、茶類、アルコール飲料等の飲料;ソース、醤油、ドレッシング等の液体調味料、スープ、シチュー、カレー、乳幼児用調理食品、介護調理食品等の調理食品;ジャム、マヨネーズ等のペースト状食品;ツナ、魚貝等の水産製品;チーズ、バター等の乳加工品;肉、サラミ、ソーセージ、ハム等の畜肉加工品;にんじん、じゃがいも等の野菜類;卵;麺類;調理前の米類、調理された炊飯米、米粥等の加工米製品;粉末調味料、粉末コーヒー、乳幼児用粉末ミルク、粉末ダイエット食品、乾燥野菜、せんべい等の乾燥食品;農薬、殺虫剤等の化学品;医薬品;化粧品;ペットフード;シャンプー、リンス、洗剤等の雑貨品;種々の物品を挙げることができる。
Since the film packaging container of the present invention is excellent in oxygen absorption performance and oxygen barrier performance and excellent in flavor retention of contents, it is suitable for packaging various articles.
Preserved items include milk, dairy products, juice, coffee, tea, alcoholic beverages; liquid seasonings such as sauces, soy sauce, dressings, soups, stews, curries, infant foods, nursing foods, etc. Cooked foods; pasty foods such as jam and mayonnaise; fishery products such as tuna and fish shellfish; dairy products such as cheese and butter; processed meat products such as meat, salami, sausage and ham; vegetables such as carrots and potatoes Eggs, noodles, cooked rice, cooked rice, processed rice products such as rice bran; powdered seasonings, powdered coffee, powdered milk for infants, powdered diet foods, dried vegetables, rice crackers, and other dried foods Chemicals such as agricultural chemicals and insecticides; pharmaceuticals; cosmetics; pet foods; miscellaneous goods such as shampoos, rinses and detergents; and various articles.
 また、これらの被保存物の充填前後に、被保存物に適した形で、フィルム包装容器や被保存物の殺菌を施すことができる。殺菌方法としては、100℃以下での熱水処理、100℃以上の加圧熱水処理、130℃以上の超高温加熱処理等の加熱殺菌、紫外線、マイクロ波、ガンマ線等の電磁波殺菌、エチレンオキサイド等のガス処理、過酸化水素や次亜塩素酸等の薬剤殺菌等が挙げられる。 In addition, before and after filling these objects to be preserved, the film packaging container and the objects to be preserved can be sterilized in a form suitable for the objects to be preserved. Sterilization methods include hot water treatment at 100 ° C. or lower, pressurized hot water treatment at 100 ° C. or higher, heat sterilization such as ultra-high temperature heat treatment at 130 ° C. or higher, electromagnetic wave sterilization of ultraviolet rays, microwaves, gamma rays, etc., ethylene oxide And gas sterilization such as hydrogen peroxide and hypochlorous acid.
 以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、以下の実施例において、共重合体を構成する単位に関して、
  メタキシリレンジアミンに由来する単位を「MXDA」、
  1,3-ビス(アミノメチル)シクロヘキサンに由来する単位を「1,3BAC」、
  ヘキサメチレンジアミンに由来する単位を「HMDA」、
  アジピン酸に由来する単位を「AA」、
  イソフタル酸に由来する単位を「IPA」、
  DL-アラニンに由来する単位を「DL-Ala」、
  DL-ロイシンに由来する単位を「DL-Leu」、
  ε-カプロラクタムに由来する単位を「ε-CL」という。
 また、ポリメタキシリレンアジパミドを「N-MXD6」という。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
In the following examples, regarding the units constituting the copolymer,
The unit derived from metaxylylenediamine is “MXDA”,
A unit derived from 1,3-bis (aminomethyl) cyclohexane is referred to as “1,3BAC”,
The unit derived from hexamethylenediamine is “HMDA”,
The unit derived from adipic acid is “AA”,
The unit derived from isophthalic acid is “IPA”,
The unit derived from DL-alanine is “DL-Ala”,
The unit derived from DL-leucine is “DL-Leu”,
A unit derived from ε-caprolactam is referred to as “ε-CL”.
Polymetaxylylene adipamide is referred to as “N-MXD6”.
 製造例で得られたポリアミド樹脂のα-アミノ酸含有率、相対粘度、末端アミノ基濃度、ガラス転移温度及び融点は以下の方法で測定した。また、製造例で得られたポリアミド樹脂からフィルムを作製し、その酸素吸収量を以下の方法で測定した。 The α-amino acid content, relative viscosity, terminal amino group concentration, glass transition temperature and melting point of the polyamide resin obtained in Production Example were measured by the following methods. Moreover, the film was produced from the polyamide resin obtained by the manufacture example, and the oxygen absorption amount was measured with the following method.
(1)α-アミノ酸含有率
 1H-NMR(400MHz,日本電子(株)製、商品名:JNM-AL400、測定モード:NON(1H))を用いて、ポリアミド樹脂のα-アミノ酸含有率の定量を実施した。具体的には、溶媒としてギ酸-dを用いてポリアミド樹脂の5質量%の溶液を調製し、1H-NMR測定を実施した。
(1) α-Amino Acid Content Rate Using 1 H-NMR (400 MHz, manufactured by JEOL Ltd., trade name: JNM-AL400, measurement mode: NON ( 1 H)), α-amino acid content rate of polyamide resin Quantification was performed. Specifically, a 5 mass% solution of polyamide resin was prepared using formic acid-d as a solvent, and 1 H-NMR measurement was performed.
(2)相対粘度
 ペレット状サンプル1gを精秤し、96%硫酸100mlに20~30℃で撹拌溶解した。完全に溶解した後、速やかにキャノンフェンスケ型粘度計に溶液5mlを取り、25℃の恒温漕中で10分間放置後、落下時間(t)を測定した。また、96%硫酸そのものの落下時間(t0)も同様に測定した。t及びt0から次式により相対粘度を算出した。
   相対粘度=t/t0
(2) Relative viscosity 1 g of a pellet sample was precisely weighed and dissolved in 100 ml of 96% sulfuric acid at 20-30 ° C. with stirring. After completely dissolving, 5 ml of the solution was quickly taken into a Cannon-Fenceke viscometer and allowed to stand for 10 minutes in a constant temperature bath at 25 ° C., and then the drop time (t) was measured. Further, the dropping time (t 0 ) of 96% sulfuric acid itself was measured in the same manner. The relative viscosity was calculated from t and t 0 according to the following formula.
Relative viscosity = t / t 0
(3)末端アミノ基濃度〔NH2
 ポリアミド樹脂を精秤し、フェノール/エタノール=4/1容量溶液に20~30℃で撹拌溶解させ、完全に溶解した後、撹拌しつつ、メタノール5mlで容器内壁を洗い流し、0.01mol/L塩酸水溶液で中和滴定して末端アミノ基濃度〔NH2〕を求めた。
(3) Terminal amino group concentration [NH 2 ]
The polyamide resin is precisely weighed and dissolved in a phenol / ethanol = 4/1 volume solution by stirring at 20-30 ° C. After complete dissolution, the inner wall of the container is washed with 5 ml of methanol while stirring, and 0.01 mol / L hydrochloric acid is dissolved. The terminal amino group concentration [NH 2 ] was determined by neutralization titration with an aqueous solution.
(4)ガラス転移温度及び融点
 示差走査熱量計((株)島津製作所製、商品名:DSC-60)を用い、昇温速度10℃/分で窒素気流下にDSC測定(示差走査熱量測定)を行い、ガラス転移温度(Tg)及び融点(Tm)を求めた。
(4) Glass transition temperature and melting point DSC measurement using a differential scanning calorimeter (manufactured by Shimadzu Corporation, trade name: DSC-60) under a nitrogen stream at a rate of temperature increase of 10 ° C./minute (differential scanning calorimetry) The glass transition temperature (Tg) and the melting point (Tm) were determined.
(5)酸素吸収量
 Tダイを設置した30mmφ二軸押出機((株)プラスチック工学研究所製)を用い、(ポリアミド樹脂の融点+20℃)のシリンダー・Tダイ温度にて、ポリアミド樹脂から厚さ約100μmの無延伸単層フィルムを成形した。
 製造した無延伸単層フィルムから切り出した10cm×10cmの試験片2枚を、アルミ箔積層フィルムからなる25cm×18cmの3方シール袋に、水10mlを含ませた綿と共に仕込み、袋内空気量が400mlとなるようにして密封した。袋内の湿度は100%RH(相対湿度)とした。40℃下で7日保存後、14日保存後、28日保存後のそれぞれに袋内の酸素濃度を酸素濃度計(東レエンジニアリング(株)製、商品名:LC-700F)で測定し、この酸素濃度から酸素吸収量を計算した。
(5) Oxygen absorption amount Using a 30mmφ twin screw extruder (manufactured by Plastic Engineering Laboratory Co., Ltd.) equipped with a T die, the thickness of the polyamide resin was increased from the polyamide resin at a cylinder T die temperature of (polyamide resin melting point + 20 ° C) An unstretched single layer film having a thickness of about 100 μm was formed.
Two test pieces of 10 cm x 10 cm cut out from the produced unstretched single layer film were charged into a 25 cm x 18 cm three-side sealed bag made of an aluminum foil laminated film together with cotton containing 10 ml of water, and the amount of air in the bag Was sealed to 400 ml. The humidity in the bag was 100% RH (relative humidity). After storing at 40 ° C. for 7 days, 14 days, and 28 days, the oxygen concentration in the bag was measured with an oxygen concentration meter (trade name: LC-700F, manufactured by Toray Engineering Co., Ltd.). The amount of oxygen absorbed was calculated from the oxygen concentration.
製造例1(ポリアミド樹脂1の製造)
 撹拌機、分縮器、全縮器、圧力調整器、温度計、滴下槽及びポンプ、アスピレーター、窒素導入管、底排弁、ストランドダイを備えた内容積50Lの耐圧反応容器に、精秤したアジピン酸(旭化成ケミカルズ(株)製)13000g(88.96mol)、DL-アラニン((株)武蔵野化学研究所製)880.56g(9.88mol)、次亜リン酸ナトリウム11.7g(0.11mol)、酢酸ナトリウム6.06g(0.074mol)を入れ、十分に窒素置換した後、反応容器内を密閉し、容器内を0.4MPaに保ちながら撹拌下170℃まで昇温した。170℃に到達した後、反応容器内の溶融した原料へ滴下槽に貯めたメタキシリレンジアミン(三菱ガス化学(株)製)12082.2g(88.71mol)の滴下を開始し、容器内を0.4MPaに保ちながら生成する縮合水を系外へ除きながら反応槽内を連続的に240℃まで昇温した。メタキシリレンジアミンの滴下終了後、反応容器内を徐々に常圧に戻し、次いでアスピレーターを用いて反応槽内を80kPaに減圧して縮合水を除いた。減圧中に撹拌機の撹拌トルクを観察し、所定のトルクに達した時点で撹拌を止め、反応槽内を窒素で加圧し、底排弁を開け、ストランドダイからポリマーを抜き出してストランド化した後、冷却してペレタイザーによりペレット化した。次にこのペレットをステンレス製の回転ドラム式の加熱装置に仕込み、5rpmで回転させた。十分窒素置換し、さらに少量の窒素気流下にて反応系内を室温から140℃まで昇温した。反応系内温度が140℃に達した時点で1torr以下まで減圧を行い、更に系内温度を110分間で180℃まで昇温した。系内温度が180℃に達した時点から、同温度にて180分間、固相重合反応を継続した。反応終了後、減圧を終了し窒素気流下にて系内温度を下げ、60℃に達した時点でペレットを取り出すことにより、MXDA/AA/DL-Ala共重合体(ポリアミド樹脂1)を得た。なお、各モノマーの仕込み組成比は、メタキシリレンジアミン:アジピン酸:DL-アラニン=47.3:47.4:5.3(mol%)であった。
Production Example 1 (Production of polyamide resin 1)
Weighed precisely in a pressure-resistant reaction vessel with an internal volume of 50 L equipped with a stirrer, partial condenser, full condenser, pressure regulator, thermometer, dripping tank and pump, aspirator, nitrogen inlet pipe, bottom exhaust valve, and strand die. Adipic acid (Asahi Kasei Chemicals Co., Ltd.) 13000 g (88.96 mol), DL-alanine (Musashino Chemical Laboratory Co., Ltd.) 880.56 g (9.88 mol), sodium hypophosphite 11.7 g (0. 11 mol) and 6.06 g (0.074 mol) of sodium acetate were added, and after sufficiently purging with nitrogen, the inside of the reaction vessel was sealed, and the temperature was raised to 170 ° C. with stirring while keeping the inside of the vessel at 0.4 MPa. After reaching 170 ° C., dropping of 12082.2 g (88.71 mol) of metaxylylenediamine (manufactured by Mitsubishi Gas Chemical Co., Inc.) stored in the dropping tank into the molten raw material in the reaction vessel was started, While maintaining 0.4 MPa, the temperature inside the reaction vessel was continuously raised to 240 ° C. while removing the condensed water produced outside the system. After completion of the dropwise addition of metaxylylenediamine, the inside of the reaction vessel was gradually returned to normal pressure, and then the inside of the reaction vessel was reduced to 80 kPa using an aspirator to remove condensed water. After observing the stirring torque of the stirrer during decompression, stop stirring when the specified torque is reached, pressurize the inside of the reaction tank with nitrogen, open the bottom drain valve, extract the polymer from the strand die and form a strand Cooled and pelletized with a pelletizer. Next, this pellet was charged into a stainless steel drum-type heating device and rotated at 5 rpm. The atmosphere in the reaction system was raised from room temperature to 140 ° C. under a small nitrogen flow. When the reaction system temperature reached 140 ° C., the pressure was reduced to 1 torr or less, and the system temperature was further increased to 180 ° C. in 110 minutes. From the time when the system temperature reached 180 ° C., the solid state polymerization reaction was continued at the same temperature for 180 minutes. After completion of the reaction, the decompression was terminated, the system temperature was lowered under a nitrogen stream, and the pellet was taken out when the temperature reached 60 ° C. to obtain an MXDA / AA / DL-Ala copolymer (polyamide resin 1). . The composition ratio of each monomer was metaxylylenediamine: adipic acid: DL-alanine = 47.3: 47.4: 5.3 (mol%).
製造例2(ポリアミド樹脂2の製造)
 各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL-アラニン=44.4:44.5:11.1(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/DL-Ala共重合体(ポリアミド樹脂2)を得た。
Production Example 2 (Production of polyamide resin 2)
MXDA / AA in the same manner as in Production Example 1 except that the composition ratio of each monomer was metaxylylenediamine: adipic acid: DL-alanine = 44.4: 44.5: 11.1 (mol%). / DL-Ala copolymer (polyamide resin 2) was obtained.
製造例3(ポリアミド樹脂3の製造)
 各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL-アラニン=41.1:41.3:17.6(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/DL-Ala共重合体(ポリアミド樹脂3)を得た。
Production Example 3 (Production of polyamide resin 3)
MXDA / AA in the same manner as in Production Example 1 except that the charged composition ratio of each monomer was metaxylylenediamine: adipic acid: DL-alanine = 41.1: 41.3: 17.6 (mol%). / DL-Ala copolymer (polyamide resin 3) was obtained.
製造例4(ポリアミド樹脂4の製造)
 各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL-アラニン=33.3:33.4:33.3(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/DL-Ala共重合体(ポリアミド樹脂4)を得た。
Production Example 4 (Production of polyamide resin 4)
MXDA / AA in the same manner as in Production Example 1 except that the charged composition ratio of each monomer was metaxylylenediamine: adipic acid: DL-alanine = 33.3: 33.4: 33.3 (mol%). / DL-Ala copolymer (polyamide resin 4) was obtained.
製造例5(ポリアミド樹脂5の製造)
 α-アミノ酸をDL-ロイシン(Ningbo Haishuo Bio-technology製)に変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL-ロイシン=44.3:44.6:11.1(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/DL-Leu共重合体(ポリアミド樹脂5)を得た。
Production Example 5 (Production of polyamide resin 5)
The α-amino acid was changed to DL-leucine (manufactured by Ningbo Haishu Bio-technology), and the composition ratio of each monomer was changed to metaxylylenediamine: adipic acid: DL-leucine = 44.3: 44.6: 11.1. An MXDA / AA / DL-Leu copolymer (polyamide resin 5) was obtained in the same manner as in Production Example 1 except that the amount was (mol%).
製造例6(ポリアミド樹脂6の製造)
 ジカルボン酸成分をイソフタル酸(エイ・ジイ・インタナショナル・ケミカル(株)製)とアジピン酸の混合物に変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:イソフタル酸:DL-アラニン=44.3:39.0:5.6:11.1(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/IPA/DL-Ala共重合体(ポリアミド樹脂6)を得た。
Production Example 6 (Production of polyamide resin 6)
The dicarboxylic acid component was changed to a mixture of isophthalic acid (manufactured by EI International Chemical Co., Ltd.) and adipic acid, and the composition ratio of each monomer was changed to metaxylylenediamine: adipic acid: isophthalic acid: DL- MXDA / AA / IPA / DL-Ala copolymer (polyamide resin 6) in the same manner as in Production Example 1 except that alanine = 44.3: 39.0: 5.6: 11.1 (mol%) Got.
製造例7(ポリアミド樹脂7の製造)
 コモノマーとしてε-カプロラクタム(宇部興産(株)製)を使用し、α-アミノ酸をDL-ロイシンに変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL-ロイシン:ε-カプロラクタム=41.0:41.3:11.8:5.9(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/DL-Leu/ε-CL共重合体(ポリアミド樹脂7)を得た。
Production Example 7 (Production of polyamide resin 7)
Ε-Caprolactam (manufactured by Ube Industries, Ltd.) was used as a comonomer, α-amino acid was changed to DL-leucine, and the composition ratio of each monomer was changed to metaxylylenediamine: adipic acid: DL-leucine: ε- MXDA / AA / DL-Leu / ε-CL copolymer (polyamide resin) in the same manner as in Production Example 1 except that caprolactam = 41.0: 41.3: 11.8: 5.9 (mol%) 7) was obtained.
製造例8(ポリアミド樹脂8の製造)
 ジアミン成分を1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学(株)製)とメタキシリレンジアミンの混合物に変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:1,3-ビス(アミノメチル)シクロヘキサン:アジピン酸:DL-アラニン=33.2:11.1:44.6:11.1(mol%)としたこと以外は製造例1と同様にしてMXDA/1,3BAC/AA/DL-Ala共重合体(ポリアミド樹脂8)を得た。
Production Example 8 (Production of polyamide resin 8)
The diamine component was changed to a mixture of 1,3-bis (aminomethyl) cyclohexane (Mitsubishi Gas Chemical Co., Ltd.) and metaxylylenediamine, and the charged composition ratio of each monomer was changed to metaxylylenediamine: 1,3- MXDA / 1,3BAC in the same manner as in Production Example 1 except that bis (aminomethyl) cyclohexane: adipic acid: DL-alanine = 33.2: 11.1: 44.6: 11.1 (mol%) / AA / DL-Ala copolymer (polyamide resin 8) was obtained.
製造例9(ポリアミド樹脂9の製造)
 ジアミン成分をヘキサメチレンジアミン(昭和化学(株)製)とメタキシリレンジアミンの混合物に変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:ヘキサメチレンジアミン:アジピン酸:DL-アラニン=33.3:11.1:44.5:11.1(mol%)としたこと以外は製造例1と同様にしてMXDA/HMDA/AA/DL-Ala共重合体(ポリアミド樹脂9)を得た。
Production Example 9 (Production of polyamide resin 9)
The diamine component was changed to a mixture of hexamethylenediamine (manufactured by Showa Chemical Co., Ltd.) and metaxylylenediamine, and the composition ratio of each monomer was changed to metaxylylenediamine: hexamethylenediamine: adipic acid: DL-alanine = 33. .3: 11.1: 44.5: 11.1 (mol%) was obtained in the same manner as in Production Example 1 to obtain an MXDA / HMDA / AA / DL-Ala copolymer (polyamide resin 9). .
製造例10(ポリアミド樹脂10の製造)
 DL-アラニンを添加せず、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸=49.8:50.2(mol%)としたこと以外は製造例1と同様にしてN-MXD6(ポリアミド樹脂10)を得た。
Production Example 10 (Production of polyamide resin 10)
N-MXD6 was prepared in the same manner as in Production Example 1 except that DL-alanine was not added and the charged composition ratio of each monomer was metaxylylenediamine: adipic acid = 49.8: 50.2 (mol%). (Polyamide resin 10) was obtained.
 表1に、ポリアミド樹脂1~10の仕込みモノマー組成、並びに得られたポリアミド樹脂のα-アミノ酸含有率、相対粘度、末端アミノ基濃度、ガラス転移温度、融点及び酸素吸収量の測定結果を示す。 Table 1 shows the charged monomer compositions of polyamide resins 1 to 10 and the measurement results of the α-amino acid content, relative viscosity, terminal amino group concentration, glass transition temperature, melting point, and oxygen absorption amount of the obtained polyamide resin.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 次に、実施例1~41及び比較例1~18において、上記ポリアミド樹脂1~10を用いて多層フィルムを作製し、さらに該多層フィルムからフィルム包装容器(スタンディングパウチ、熱成形容器又はケーシング容器)を作製した。
 実施例及び比較例で得られた共押出多層フィルムの酸素透過率の測定、包装容器の食品保存試験、及び包装容器の開封時の臭気及び味覚の測定は、以下の方法で行った。
Next, in Examples 1 to 41 and Comparative Examples 1 to 18, a multilayer film was produced using the polyamide resins 1 to 10, and a film packaging container (standing pouch, thermoforming container or casing container) was formed from the multilayer film. Was made.
The measurement of the oxygen permeability of the coextruded multilayer film obtained in Examples and Comparative Examples, the food preservation test of the packaging container, and the measurement of odor and taste at the time of opening the packaging container were performed by the following methods.
(1)共押出多層フィルムの酸素透過率
 共押出多層フィルムの酸素透過率は、酸素透過率測定装置(MOCON社製、型式:OX-TRAN2/21)を使用し、ASTM D3985に準じて、23℃、相対湿度60%の雰囲気下にて測定した。
(1) Oxygen permeability of co-extruded multilayer film The oxygen permeability of the co-extruded multilayer film was measured according to ASTM D3985 using an oxygen permeability measuring device (manufactured by MOCON, model: OX-TRAN 2/21). The measurement was performed in an atmosphere of ° C and a relative humidity of 60%.
(2)包装容器の食品保存試験
 実施例1~38及び比較例1~15で得られた各種包装容器に、1cm角にカットしたニンジンを充填し、封をした。その後、オートクレーブ((株)トミー精工製、商品名:SR-240)を用いて121℃30分間、レトルト処理を実施した。レトルト処理した包装容器を23℃50%RHの恒温室にて、1ヶ月間保管した。1ヵ月後、目視によりニンジンの色目の変化を観察し、以下の基準で評価した。
 また、実施例39~41及び比較例16~18で得られた熱成形容器に、市販の味噌を80℃で充填し、封をした後、23℃50%RHの恒温室に3ヶ月間保管した。3ヵ月後、目視により味噌の色目の変化を観察し、以下の基準で評価した。
 ○:充填前のニンジン又は味噌と色の変化がない、もしくはわずかである。
 ×:色が褐変等している。
(2) Food preservation test of packaging container Various packaging containers obtained in Examples 1 to 38 and Comparative Examples 1 to 15 were filled with carrots cut to 1 cm square and sealed. Thereafter, a retort treatment was performed at 121 ° C. for 30 minutes using an autoclave (trade name: SR-240, manufactured by Tommy Seiko Co., Ltd.). The retorted packaging container was stored in a thermostatic chamber at 23 ° C. and 50% RH for 1 month. One month later, the carrot color change was visually observed and evaluated according to the following criteria.
The thermoformed containers obtained in Examples 39 to 41 and Comparative Examples 16 to 18 were filled with commercial miso at 80 ° C., sealed, and stored in a thermostatic chamber at 23 ° C. and 50% RH for 3 months. did. After 3 months, the change in the color of the miso was visually observed and evaluated according to the following criteria.
◯: No or little change in color from carrot or miso before filling.
X: The color is browning.
(3)開封時の臭気及び味覚
 得られた包装容器に、ミネラルウォーターを満注充填し、封をした後、40℃の恒温槽に、1ヶ月間保管した。保管後、5人のパネラーにより、開封直後の容器内の匂いを嗅ぎ、異臭の有無を評価した。
 また、開封後、5人のパネラーにより、ミネラルウォーターを口に含み、ミネラルウォーターの味の変化の有無を評価した。
 ○:異臭が全くなく、かつ、ミネラルウォーターの味の変化がない。
 ×:少しでも異臭がある、又はミネラルウォーターの味の変化が少しでもある。
(3) Odor and taste at the time of opening The obtained packaging container was filled with mineral water and sealed, and then stored in a constant temperature bath at 40 ° C. for 1 month. After storage, five panelists sniffed the scent in the container immediately after opening and evaluated the presence or absence of off-flavors.
In addition, after opening, five panelists included mineral water in their mouths and evaluated the presence or absence of changes in the taste of mineral water.
○: There is no off-flavor and there is no change in the taste of mineral water.
X: There is even a slight odor or there is even a slight change in the taste of mineral water.
[スタンディングパウチ(5層構成)]
実施例1
 3台の押出機、フィードブロック、Tダイ、冷却ロール、巻き取り機等を備えた多層フィルム製造装置を用い、1台目及び3台目の押出機からナイロン6(N6)(宇部興産(株)製、商品名:UBEナイロン6、グレード:1022B)を250℃で、2台目の押出機からポリアミド樹脂1を250℃でそれぞれ押し出し、フィードブロックを介してナイロン6層/ポリアミド樹脂1層/ナイロン6層の2種3層構造の多層フィルム(A1)を製造した。なお、各層の厚みは、80/80/80(μm)とした。
 次いで、バッチ式の2軸延伸機(東洋精機(株)製、センターストレッチ式二軸延伸機)を用いて、加熱温度120℃、延伸速度3000mm/min、熱固定温度190℃、熱固定時間30秒にて、縦4倍、横4倍に同時2軸延伸したフィルム(OA1)を得た。なお、延伸後の各層の厚みは、5/5/5(μm)となった。
 得られた2軸延伸フィルムを12μmの2軸延伸ポリエチレンテレフタレート(OPET)フィルム(東レフィルム加工(株)製、商品名:ZK93FM)、60μmの無延伸ポリプロピレン(CPP)をウレタン系接着剤(三井化学(株)製、主剤:タケラックA505、硬化剤:タケネートA20、いずれも商品名)を用い、ドライラミネーターにて、(外層)OPET//OA1//CPP(内層)の構成でドライラミネートした。ドライラミネート後は、60℃の恒温槽で3日間保存した。
 得られた多層フィルムは、ヒートシール機を用いて、縦200mm、横120mm、セット深さ40mmのスタンディングパウチを作成した。
[Standing pouch (5 layers)]
Example 1
Using a multilayer film manufacturing apparatus equipped with three extruders, feed block, T die, cooling roll, winder, etc., nylon 6 (N6) (Ube Industries, Ltd.) from the first and third extruders ), Product name: UBE nylon 6, grade: 1022B) are extruded at 250 ° C. from a second extruder at 250 ° C., respectively, through a feed block, nylon 6 layer / polyamide resin 1 layer / A multilayer film (A1) of two types and three layers of nylon 6 layers was produced. The thickness of each layer was 80/80/80 (μm).
Next, using a batch type biaxial stretching machine (manufactured by Toyo Seiki Co., Ltd., center stretch type biaxial stretching machine), heating temperature 120 ° C., stretching speed 3000 mm / min, heat setting temperature 190 ° C., heat setting time 30 A film (OA1) that was simultaneously biaxially stretched four times in length and four times in width was obtained in seconds. In addition, the thickness of each layer after extending | stretching became 5/5/5 (micrometer).
The obtained biaxially stretched film was converted to a 12 μm biaxially stretched polyethylene terephthalate (OPET) film (manufactured by Toray Film Processing Co., Ltd., trade name: ZK93FM), and 60 μm unstretched polypropylene (CPP) to a urethane adhesive (Mitsui Chemicals). Using a product of Co., Ltd., main component: Takelac A505, curing agent: Takenate A20, both trade names), a dry laminator was used for dry lamination in a configuration of (outer layer) OPET // OA1 // CPP (inner layer). After dry lamination, it was stored in a constant temperature bath at 60 ° C. for 3 days.
The obtained multilayer film produced a standing pouch having a length of 200 mm, a width of 120 mm, and a set depth of 40 mm using a heat sealing machine.
実施例2~5
 ポリアミド樹脂2~5を使用したこと以外は、実施例1と同様にして多層フィルム及びスタンディングパウチを作成した。
Examples 2-5
A multilayer film and a standing pouch were prepared in the same manner as in Example 1 except that polyamide resins 2 to 5 were used.
比較例1
 ポリアミド樹脂10を使用したこと以外は、実施例1と同様にして多層フィルム及びスタンディングパウチを作成した。
Comparative Example 1
A multilayer film and a standing pouch were prepared in the same manner as in Example 1 except that the polyamide resin 10 was used.
実施例6
 3台の押出機、フィードブロック、Tダイ、冷却ロール、巻き取り機等を備えた多層フィルム製造装置を用い、1台目及び3台目の押出機からナイロンMXD6(三菱ガス化学(株)製、商品名:MXナイロン、グレード:S6011)を260℃で、2台目の押出機からポリアミド樹脂1を250℃でそれぞれ押し出し、フィードブロックを介してナイロンMXD6層/ポリアミド樹脂1層/ナイロンMXD6層の2種3層構造の多層フィルム(A2)を製造した。なお、各層の厚みは、80/80/80(μm)とした。
 次いで、バッチ式の2軸延伸機(東洋精機(株)製、センターストレッチ式二軸延伸機)を用いて、加熱温度120℃、延伸速度3000mm/min、熱固定温度190℃、熱固定時間30秒にて、縦4倍、横4倍に同時2軸延伸したフィルム(OA2)を得た。なお、延伸後の各層の厚みは、5/5/5(μm)となった。
 2軸延伸フィルム(OA1)に代えて2軸延伸フィルム(OA2)を使用したこと以外は実施例1と同様にして、(外層)OPET//OA2//CPP(内層)の構成のラミネートフィルム及びスタンディングパウチを作成した。
Example 6
Nylon MXD6 (manufactured by Mitsubishi Gas Chemical Co., Ltd.) from the first and third extruders using a multilayer film production apparatus equipped with three extruders, feed block, T-die, cooling roll, winder, etc. , Product name: MX nylon, grade: S6011) at 260 ° C., polyamide resin 1 is extruded from the second extruder at 250 ° C., respectively, and nylon MXD6 layer / polyamide resin 1 layer / nylon MXD6 layer is fed through the feed block. A multilayer film (A2) having a two-layer / three-layer structure was produced. The thickness of each layer was 80/80/80 (μm).
Next, using a batch type biaxial stretching machine (manufactured by Toyo Seiki Co., Ltd., center stretch type biaxial stretching machine), heating temperature 120 ° C., stretching speed 3000 mm / min, heat setting temperature 190 ° C., heat setting time 30 In second, a film (OA2) biaxially stretched simultaneously 4 times in length and 4 times in width was obtained. In addition, the thickness of each layer after extending | stretching became 5/5/5 (micrometer).
In the same manner as in Example 1 except that the biaxially stretched film (OA2) was used instead of the biaxially stretched film (OA1), a laminate film having a configuration of (outer layer) OPET // OA2 // CPP (inner layer) and Created a standing pouch.
実施例7及び8
 ポリアミド樹脂2又は3を使用したこと以外は、実施例6と同様にして多層フィルム及びスタンディングパウチを作成した。
Examples 7 and 8
A multilayer film and a standing pouch were prepared in the same manner as in Example 6 except that the polyamide resin 2 or 3 was used.
比較例2
 ポリアミド樹脂10を使用したこと以外は、実施例6と同様にして多層フィルム及びスタンディングパウチを作成した。
Comparative Example 2
A multilayer film and a standing pouch were prepared in the same manner as in Example 6 except that the polyamide resin 10 was used.
 表2に、共押出多層フィルムの酸素透過率、包装容器の食品保存試験、並びに開封時の臭気及び味覚の結果を示す。 Table 2 shows the oxygen permeability of the coextruded multilayer film, the food storage test of the packaging container, and the odor and taste results at the time of opening.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例1~5及び6~8の共押出多層フィルム及びスタンディングパウチは、同形態の比較例1又は2と比べて、食品保存性並びに開封時の臭気及び味覚を損なうことなく酸素透過率を改善することができた。 The coextruded multilayer films and standing pouches of Examples 1 to 5 and 6 to 8 improved the oxygen permeability without impairing the food storage stability and the odor and taste at the time of opening compared to Comparative Example 1 or 2 of the same form. We were able to.
[熱成形容器(7層構成)]
実施例9
 4台の押出機、フィードブロック、Tダイ、冷却ロール、巻き取り機等を備えた多層フィルム製造装置を用い、1台目の押出機からポリアミド樹脂1を250℃で、2台目の押出機からナイロン6(宇部興産(株)製、商品名:UBEナイロン6、グレード:1022B)を240℃で、3台目の押出機からポリプロピレン(PP)(日本ポリプロ(株)製、商品名:ノバテック、グレード:FY6)を230℃で、4台目の押出機から接着性樹脂(AD)(三井化学(株)製、商品名:アドマー、グレード:QB515)を220℃でそれぞれ押し出し、フィードブロックを介して、(外層)ポリプロピレン層/接着性樹脂層/ナイロン6層/ポリアミド樹脂1層/ナイロン6層/接着性樹脂層/ポリプロピレン層(内層)の4種7層構造の多層フィルム(C1)を製造した。なお、各層の厚みは、60/5/10/15/10/5/60(μm)とした。
 次いで、プラグアシストを備えた圧空真空成形機((株)浅野研究所製)を使用して、フィルム表面温度が170℃に達した時点で熱成形を行い、開口部100mm角×底部90mm×深さ10mm、表面積119cm2、容積90mlの熱成形容器を作成した。
[Thermoforming container (7-layer construction)]
Example 9
Using a multilayer film manufacturing apparatus equipped with four extruders, feed blocks, T-die, cooling roll, winder, etc., polyamide resin 1 is fed from the first extruder at 250 ° C., and the second extruder Nylon 6 (Ube Industries, Ltd., trade name: UBE nylon 6, grade: 1022B) at 240 ° C. from the third extruder to polypropylene (PP) (Nihon Polypro Corporation, trade name: Novatec) , Grade: FY6) at 230 ° C, and adhesive resin (AD) (made by Mitsui Chemicals, trade name: Admer, grade: QB515) was extruded at 220 ° C from the fourth extruder, and the feed block was 4 types and 7 layers of (outer layer) polypropylene layer / adhesive resin layer / nylon 6 layer / polyamide resin 1 layer / nylon 6 layer / adhesive resin layer / polypropylene layer (inner layer) To produce a multi-layer film (C1). The thickness of each layer was 60/5/10/15/10/5/60 (μm).
Next, thermoforming was performed when the film surface temperature reached 170 ° C. using a pressure-air vacuum forming machine (manufactured by Asano Laboratory Co., Ltd.) equipped with plug assist, and the opening 100 mm square × bottom 90 mm × depth A thermoformed container having a thickness of 10 mm, a surface area of 119 cm 2 and a volume of 90 ml was prepared.
実施例10及び11
 ポリアミド樹脂2又は3を使用したこと以外は、実施例9と同様にして共押出多層フィルム及び熱成形容器を作成した。
Examples 10 and 11
A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 9 except that the polyamide resin 2 or 3 was used.
比較例3
 ポリアミド樹脂10を使用したこと以外は、実施例9と同様にして共押出多層フィルム及び熱成形容器を作成した。
Comparative Example 3
A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 9 except that the polyamide resin 10 was used.
比較例4
 ポリアミド樹脂10を使用し、ステアリン酸コバルトをポリアミド樹脂10に対して、コバルト含有量が400ppmとなるように添加したこと以外は、実施例9と同様にして共押出多層フィルム及び熱成形容器を作成した。
Comparative Example 4
A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 9 except that polyamide resin 10 was used and cobalt stearate was added to polyamide resin 10 so that the cobalt content was 400 ppm. did.
比較例5
 ポリアミド樹脂10を使用し、ステアリン酸コバルトをポリアミド樹脂10に対して、コバルト含有量が100ppmとなるように添加し、さらに、マレイン酸変性ポリブタジエン(日本石油化学(株)製、商品名:M-2000-20)をポリアミド樹脂10に対して3質量部添加したこと以外は、実施例9と同様にして共押出多層フィルム及び熱成形容器を作成した。
Comparative Example 5
Polyamide resin 10 was used, cobalt stearate was added to polyamide resin 10 so that the cobalt content was 100 ppm, and maleic acid-modified polybutadiene (manufactured by Nippon Petrochemical Co., Ltd., trade name: M-) A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 9, except that 3 parts by mass of 2000-20) was added to the polyamide resin 10.
実施例12
 4台の押出機、フィードブロック、Tダイ、冷却ロール、巻き取り機等を備えた多層フィルム製造装置を用い、1台目の押出機からポリアミド樹脂1を250℃で、2台目の押出機からナイロンMXD6(三菱ガス化学(株)製、商品名:MXナイロン、グレード:K7007C)を250℃で、3台目の押出機からポリプロピレン(日本ポリプロ(株)製、商品名:ノバテック、グレード:FY6)を230℃で、4台目の押出機から接着性樹脂(三井化学(株)製、商品名:アドマー、グレード:QB515)を220℃でそれぞれ押し出し、フィードブロックを介して、(外層)ポリプロピレン層/接着性樹脂層/ナイロンMXD6層/ポリアミド樹脂1層/ナイロンMXD6層/接着性樹脂層/ポリプロピレン層(内層)の4種7層構造の多層フィルム(C2)を製造した。なお、各層の厚みは、60/5/5/15/5/5/60(μm)とした。
 多層フィルム(C1)に代えて多層フィルム(C2)を使用したこと以外は実施例9と同様にして、熱成形容器を作成した。
Example 12
Using a multilayer film manufacturing apparatus equipped with four extruders, feed blocks, T-die, cooling roll, winder, etc., polyamide resin 1 is fed from the first extruder at 250 ° C., and the second extruder Nylon MXD6 (Mitsubishi Gas Chemical Co., Ltd., trade name: MX Nylon, grade: K7007C) from 250 ° C. from the third extruder to polypropylene (Nihon Polypro Co., Ltd., trade name: Novatec, Grade: FY6) was extruded at 230 ° C. from the fourth extruder, and an adhesive resin (Mitsui Chemicals Co., Ltd., trade name: Admer, Grade: QB515) was extruded at 220 ° C. through the feed block (outer layer). 4 types and 7 layers of polypropylene layer / adhesive resin layer / nylon MXD6 layer / polyamide resin 1 layer / nylon MXD6 layer / adhesive resin layer / polypropylene layer (inner layer) To produce a concrete of the multi-layer film (C2). The thickness of each layer was 60/5/5/15/5/5/60 (μm).
A thermoformed container was prepared in the same manner as in Example 9 except that the multilayer film (C2) was used instead of the multilayer film (C1).
実施例13~16
 ポリアミド樹脂2~5を使用したこと以外は、実施例12と同様にして共押出多層フィルム及び熱成形容器を作成した。
Examples 13 to 16
A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 12 except that polyamide resins 2 to 5 were used.
比較例6
 ポリアミド樹脂10を使用したこと以外は、実施例12と同様にして共押出多層フィルム及び熱成形容器を作成した。
Comparative Example 6
A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 12 except that the polyamide resin 10 was used.
比較例7
 ポリアミド樹脂10を使用し、ステアリン酸コバルトをポリアミド樹脂10に対して、コバルト含有量が400ppmとなるように添加したこと以外は、実施例12と同様にして共押出多層フィルム及び熱成形容器を作成した。
Comparative Example 7
A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 12 except that polyamide resin 10 was used and cobalt stearate was added to polyamide resin 10 so that the cobalt content was 400 ppm. did.
比較例8
 ポリアミド樹脂10を使用し、ステアリン酸コバルトをポリアミド樹脂10に対して、コバルト含有量が100ppmとなるように添加し、さらに、マレイン酸変性ポリブタジエン(日本石油化学(株)製、商品名:M-2000-20)をポリアミド樹脂10に対して3質量部添加したこと以外は、実施例12と同様にして共押出多層フィルム及び熱成形容器を作成した。
Comparative Example 8
Polyamide resin 10 was used, cobalt stearate was added to polyamide resin 10 so that the cobalt content was 100 ppm, and maleic acid-modified polybutadiene (manufactured by Nippon Petrochemical Co., Ltd., trade name: M- A co-extruded multilayer film and a thermoformed container were prepared in the same manner as in Example 12 except that 3 parts by mass of 2000-20) was added to the polyamide resin 10.
 表3に、共押出多層フィルムの酸素透過率、包装容器の食品保存試験、並びに開封時の臭気及び味覚の結果を示す。 Table 3 shows the oxygen permeability of the co-extruded multilayer film, the food storage test of the packaging container, and the odor and taste results when opened.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実施例9~11及び12~16の共押出多層フィルム及び熱成形容器は、同形態の比較例3又は6と比べて、食品保存性並びに開封時の臭気及び味覚を損なうことなく酸素透過率を改善することができた。一方、酸素透過率を改善するためにステアリン酸コバルトやマレイン酸変性ポリブタジエンを用いた比較例4、5、7及び8では、共押出多層フィルムの酸素透過率は優れるものの、経時的にコバルト触媒によって樹脂が酸化分解して、熱成形容器の食品保存性並びに開封時の臭気及び味覚が悪化した。 The coextruded multilayer films and thermoformed containers of Examples 9 to 11 and 12 to 16 have oxygen permeability without impairing food storage stability and odor and taste at the time of opening compared to Comparative Example 3 or 6 of the same form. It was possible to improve. On the other hand, in Comparative Examples 4, 5, 7 and 8 using cobalt stearate or maleic acid-modified polybutadiene to improve oxygen permeability, the oxygen permeability of the coextruded multilayer film was excellent, but over time, the cobalt catalyst The resin was oxidized and decomposed, and the food storage stability of the thermoformed container and the odor and taste at the time of opening deteriorated.
[スタンディングパウチ(7層構成)]
実施例17
 3台の押出機、フィードブロック、Tダイ、冷却ロール、巻き取り機等を備えた多層フィルム製造装置を用い、1台目の押出機からポリアミド樹脂1を250℃で、2台目の押出機からナイロンMXD6(三菱ガス化学(株)製、商品名:MXナイロン、グレード:S6011)を260℃で、3台目の押出機からナイロン6(宇部興産(株)製、商品名:UBEナイロン6、グレード:1022B)を250℃でそれぞれ押し出し、フィードブロックを介してナイロン6層/ナイロンMXD6層/ポリアミド樹脂1層/ナイロンMXD6層/ナイロン6層の3種5層構造の多層フィルム(A3)を製造した。なお、各層の厚みは、80/80/80/80/80(μm)とした。
 次いで、バッチ式の2軸延伸機(東洋精機(株)製、センターストレッチ式二軸延伸機)を用いて、加熱温度140℃、延伸速度3000mm/min、熱固定温度200℃、熱固定時間30秒にて、縦4倍、横4倍に同時2軸延伸したフィルム(OA3)を得た。なお、延伸後の各層の厚みは、5/5/5/5/5(μm)となった。
 2軸延伸フィルム(OA1)に代えて2軸延伸フィルム(OA3)を使用したこと以外は実施例1と同様にして、(外層)OPET//OA3//CPP(内層)の構成のラミネートフィルム及びスタンディングパウチを作成した。
[Standing pouch (7 layers)]
Example 17
Using a multilayer film manufacturing apparatus equipped with three extruders, feed block, T die, cooling roll, winder, etc., the second extruder is polyamide resin 1 at 250 ° C. from the first extruder Nylon MXD6 (Mitsubishi Gas Chemical Co., Ltd., trade name: MX nylon, grade: S6011) at 260 ° C. and third extruder from nylon 6 (Ube Industries, trade name: UBE nylon 6) , Grade: 1022B) are extruded at 250 ° C., and a multilayer film (A3) of three types and five layers of nylon 6 layer / nylon MXD 6 layer / polyamide resin 1 layer / nylon MXD 6 layer / nylon 6 layer is fed through a feed block. Manufactured. The thickness of each layer was 80/80/80/80/80 (μm).
Next, using a batch type biaxial stretching machine (manufactured by Toyo Seiki Co., Ltd., center stretch type biaxial stretching machine), heating temperature 140 ° C., stretching speed 3000 mm / min, heat setting temperature 200 ° C., heat setting time 30 In second, a film (OA3) biaxially stretched simultaneously 4 times in length and 4 times in width was obtained. In addition, the thickness of each layer after extending | stretching was set to 5/5/5/5/5 (micrometer).
In the same manner as in Example 1 except that the biaxially stretched film (OA3) was used instead of the biaxially stretched film (OA1), a laminate film having a configuration of (outer layer) OPET // OA3 // CPP (inner layer) and Created a standing pouch.
実施例18~25
 ポリアミド樹脂2~9を使用したこと以外は、実施例17と同様にして多層フィルム及びスタンディングパウチを作成した。
Examples 18-25
A multilayer film and a standing pouch were prepared in the same manner as in Example 17 except that polyamide resins 2 to 9 were used.
比較例9
 ポリアミド樹脂10を使用したこと以外は、実施例17と同様にして共押出多層フィルム及びスタンディングパウチを作成した。
Comparative Example 9
A coextruded multilayer film and a standing pouch were prepared in the same manner as in Example 17 except that the polyamide resin 10 was used.
 表4に、共押出多層フィルムの酸素透過率、包装容器の食品保存試験、並びに開封時の臭気及び味覚の結果を示す。 Table 4 shows the oxygen permeability of the coextruded multilayer film, the food preservation test of the packaging container, and the results of odor and taste at the time of opening.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 実施例17~25の共押出多層フィルム及びスタンディングパウチは、同形態の比較例9と比べて、食品保存性並びに開封時の臭気及び味覚を損なうことなく酸素透過率を改善することができた。 The coextruded multilayer films and standing pouches of Examples 17 to 25 were able to improve the oxygen permeability without impairing the food storage stability and the odor and taste at the time of opening as compared with Comparative Example 9 of the same form.
[ケーシング容器(5層構成)]
実施例26
 4台の押出機、フィードブロック、円筒ダイからなる同時二軸延伸多層フィルム製造装置を用い、1台目の押出機からポリアミド樹脂1を250℃で、2台目の押出機からポリプロピレン(日本ポリプロ(株)製、商品名:ノバテック、グレード:FY6)を230℃で、3台目の押出機から、ポリプロピレン(日本ポリプロ(株)製、商品名:ノバテック、グレード:FY6)80質量部と他のポリプロピレン(サンアロマー社製、商品名:Adsyl、グレード:5C37F)20質量部とを乾燥混合したブレンドポリプロピレンを230℃で、4台目の押出機から接着性樹脂(三井化学(株)製、商品名:アドマー、グレード:QB515)を220℃で、それぞれ押し出し、円筒ダイから、(外層)ポリプロピレン層/接着性樹脂層/ポリアミド樹脂1層/接着性樹脂層/ブレンドポリプロピレン層(内層)の順に4種5層構造の多層パリソンを製造した。なお、多層パリソンの直径は130mmであり、各層の構成比は、4/1/3/1/4とした。
 続いて、このパリソンを60℃で冷却後、加熱ゾーンで120℃に加熱した後、延伸ゾーンで、内部に空気を入れて、バブルを形成させて連続延伸を行い、延伸倍率が縦方向4倍、横方向4倍に同時二軸延伸し、200℃で熱固定後、共押出多層延伸フィルムを得た(B)。なお、延伸後の各層の厚みは、20/5/15/5/20(μm)となった。
 次いで、手製の自動充填包装機を用い、巾100mmとした上記フィルムを、フィルム速度5m/minで、筒状に形成した後、フィルムが重なる部分の外側にノッチを入れてから、熱風を吹き付け、封筒貼りにヒートシールした。ここで、熱風の温度は約400℃とし、ケーシング容器を作成した。
[Case casing (5-layer structure)]
Example 26
Using a simultaneous biaxially stretched multilayer film production system consisting of four extruders, feed blocks, and cylindrical dies, polyamide resin 1 was fed from the first extruder at 250 ° C. and polypropylene from the second extruder (Nippon Polypropylene). Co., Ltd., trade name: Novatec, grade: FY6) at 230 ° C. From the third extruder, 80 parts by mass of polypropylene (Nihon Polypro Co., Ltd., trade name: Novatec, grade: FY6) and others Polypropylene (trade name: Adsyl, grade: 5C37F) of 20 parts by mass of dry polypropylene and blended polypropylene at 230 ° C. from a fourth extruder, adhesive resin (Mitsui Chemicals, product) Name: Admer, Grade: QB515) were extruded at 220 ° C., respectively, and from the cylindrical die, (outer layer) polypropylene layer / adhesive resin layer It was produced multilayered parison of the four five-layer structure in the order of the polyamide resin 1 layer / adhesive resin layer / blend polypropylene layer (inner layer). The diameter of the multilayer parison was 130 mm, and the composition ratio of each layer was 4/1/3/1/4.
Subsequently, the parison is cooled at 60 ° C. and heated to 120 ° C. in a heating zone, and then, in the stretching zone, air is introduced therein to form a bubble to perform continuous stretching, and the stretching ratio is 4 times in the longitudinal direction. The film was biaxially stretched 4 times in the transverse direction and heat-fixed at 200 ° C. to obtain a coextruded multilayer stretched film (B). In addition, the thickness of each layer after extending | stretching became 20/5/15/5/20 (micrometer).
Next, using a handmade automatic filling and packaging machine, the film having a width of 100 mm was formed into a cylindrical shape at a film speed of 5 m / min, and then a hot air was blown after placing a notch on the outside of the overlapping portion of the film, Heat-sealed on the envelope. Here, the temperature of the hot air was about 400 ° C., and a casing container was prepared.
実施例27~29
 ポリアミド樹脂2、3又は6を使用したこと以外は、実施例26と同様にして共押出多層フィルム及びケーシング容器を作成した。
Examples 27-29
A coextruded multilayer film and a casing container were prepared in the same manner as in Example 26 except that the polyamide resin 2, 3 or 6 was used.
比較例10
 ポリアミド樹脂10を使用したこと以外は、実施例26と同様にして共押出多層フィルム及びケーシング容器を作成した。
Comparative Example 10
A coextruded multilayer film and a casing container were prepared in the same manner as in Example 26 except that the polyamide resin 10 was used.
比較例11
 ポリアミド樹脂10を使用し、ステアリン酸コバルトをポリアミド樹脂10に対して、コバルト含有量が400ppmとなるように添加したこと以外は、実施例26と同様にして共押出多層フィルム及びケーシング容器を作成した。
Comparative Example 11
A coextruded multilayer film and a casing container were prepared in the same manner as in Example 26 except that polyamide resin 10 was used and cobalt stearate was added to polyamide resin 10 so that the cobalt content was 400 ppm. .
比較例12
 ポリアミド樹脂10を使用し、ステアリン酸コバルトをポリアミド樹脂10に対して、コバルト含有量が100ppmとなるように添加し、さらに、マレイン酸変性ポリブタジエン(日本石油化学(株)製、商品名:M-2000-20)をポリアミド樹脂10に対して3質量部添加したこと以外は、実施例26と同様にして共押出多層フィルム及びケーシング容器を作成した。
Comparative Example 12
Polyamide resin 10 was used, cobalt stearate was added to polyamide resin 10 so that the cobalt content was 100 ppm, and maleic acid-modified polybutadiene (manufactured by Nippon Petrochemical Co., Ltd., trade name: M-) A coextruded multilayer film and a casing container were prepared in the same manner as in Example 26 except that 3 parts by mass of 2000-20) was added to the polyamide resin 10.
 表5に、共押出多層フィルムの酸素透過率、包装容器の食品保存試験、並びに開封時の臭気及び味覚の結果を示す。 Table 5 shows the oxygen permeability of the coextruded multilayer film, the food preservation test of the packaging container, and the results of odor and taste at the time of opening.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 実施例26~29の共押出多層フィルム及びケーシング容器は、同形態の比較例10と比べて、食品保存性並びに開封時の臭気及び味覚を損なうことなく酸素透過率を改善することができた。一方、酸素透過率を改善するためにステアリン酸コバルトやマレイン酸変性ポリブタジエンを用いた比較例11及び12では、共押出多層フィルムの酸素透過率は優れるものの、経時的にコバルト触媒によって樹脂が酸化分解して、ケーシング容器の食品保存性並びに開封時の臭気及び味覚が悪化した。 The coextruded multilayer films and casing containers of Examples 26 to 29 were able to improve the oxygen permeability without impairing the food storage stability and the odor and taste at the time of opening as compared with Comparative Example 10 of the same form. On the other hand, in Comparative Examples 11 and 12 using cobalt stearate or maleic acid-modified polybutadiene to improve oxygen permeability, the oxygen permeability of the coextruded multilayer film is excellent, but the resin is oxidatively decomposed by the cobalt catalyst over time. Thus, the food storage stability of the casing container and the odor and taste at the time of opening deteriorated.
[熱成形容器(7層構成)]
実施例30
 4台の押出機、フィードブロック、Tダイ、冷却ロール、巻き取り機等を備えた多層フィルム製造装置を用い、1台目の押出機からポリアミド樹脂1を250℃で、2台目の押出機からエチレン-ビニルアルコール共重合体(EVOH)(クラレ(株)製、商品名:エバール、グレード:F101B)を230℃で、3台目の押出機からポリプロピレン(日本ポリプロ(株)製、商品名:ノバテック、グレード:FY6)を230℃で、4台目の押出機から接着性樹脂(三井化学(株)製、商品名:アドマー、グレード:QB515)を220℃でそれぞれ押し出し、フィードブロックを介して、(外層)ポリプロピレン層/接着性樹脂層/EVOH層/ポリアミド樹脂1層/EVOH層/接着性樹脂層/ポリプロピレン層(内層)の4種7層構造の多層フィルム(C3)を製造した。なお、各層の厚みは、60/5/5/15/5/5/60(μm)とした。
 次いで、プラグアシストを備えた圧空真空成形機((株)浅野研究所製)を使用して、フィルム表面温度が170℃に達した時点で熱成形を行い、開口部100mm角×底部90mm×深さ10mm、表面積119cm2、容積90mlの熱成形容器を作成した。
[Thermoforming container (7-layer construction)]
Example 30
Using a multilayer film manufacturing apparatus equipped with four extruders, feed blocks, T-die, cooling roll, winder, etc., polyamide resin 1 is fed from the first extruder at 250 ° C., and the second extruder To ethylene-vinyl alcohol copolymer (EVOH) (manufactured by Kuraray Co., Ltd., trade name: EVAL, grade: F101B) at 230 ° C. from the third extruder to polypropylene (manufactured by Nippon Polypro Co., Ltd., trade name) : Novatec, Grade: FY6) at 230 ° C, Adhesive resin (Mitsui Chemicals, trade name: Admer, Grade: QB515) was extruded at 220 ° C from the 4th extruder, respectively, through the feed block 4 types of (outer layer) polypropylene layer / adhesive resin layer / EVOH layer / polyamide resin 1 layer / EVOH layer / adhesive resin layer / polypropylene layer (inner layer) 7 To produce a multi-layer film of the structure (C3). The thickness of each layer was 60/5/5/15/5/5/60 (μm).
Next, thermoforming was performed when the film surface temperature reached 170 ° C. using a pressure-air vacuum forming machine (manufactured by Asano Laboratory Co., Ltd.) equipped with plug assist, and the opening 100 mm square × bottom 90 mm × depth A thermoformed container having a thickness of 10 mm, a surface area of 119 cm 2 and a volume of 90 ml was prepared.
実施例31~38
 ポリアミド樹脂2~9を使用したこと以外は、実施例30と同様にして共押出多層フィルム及び熱成形容器を作成した。
Examples 31-38
A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 30 except that polyamide resins 2 to 9 were used.
比較例13
 ポリアミド樹脂10を使用したこと以外は、実施例30と同様にして共押出多層フィルム及び熱成形容器を作成した。
Comparative Example 13
A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 30 except that the polyamide resin 10 was used.
比較例14
 ポリアミド樹脂10を使用し、ステアリン酸コバルトをポリアミド樹脂10に対して、コバルト含有量が400ppmとなるように添加したこと以外は、実施例30と同様にして共押出多層フィルム及び熱成形容器を作成した。
Comparative Example 14
A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 30, except that polyamide resin 10 was used and cobalt stearate was added to polyamide resin 10 so that the cobalt content was 400 ppm. did.
比較例15
 ポリアミド樹脂10を使用し、ステアリン酸コバルトをポリアミド樹脂10に対して、コバルト含有量が100ppmとなるように添加し、さらに、マレイン酸変性ポリブタジエン(日本石油化学(株)製、商品名:M-2000-20)をポリアミド樹脂10に対して3質量部添加したこと以外は、実施例30と同様にして共押出多層フィルム及び熱成形容器を作成した。
Comparative Example 15
Polyamide resin 10 was used, cobalt stearate was added to polyamide resin 10 so that the cobalt content was 100 ppm, and maleic acid-modified polybutadiene (manufactured by Nippon Petrochemical Co., Ltd., trade name: M-) A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 30 except that 3 parts by mass of 2000-20) was added to the polyamide resin 10.
 表6に、共押出多層フィルムの酸素透過率、包装容器の食品保存試験、並びに開封時の臭気及び味覚の結果を示す。 Table 6 shows the oxygen permeability of the co-extruded multilayer film, the food storage test of the packaging container, and the results of odor and taste at the time of opening.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 実施例30~38の共押出多層フィルム及び熱成形容器は、同形態の比較例13と比べて、食品保存性並びに開封時の臭気及び味覚を損なうことなく酸素透過率を改善することができた。一方、酸素透過率を改善するためにステアリン酸コバルトやマレイン酸変性ポリブタジエンを用いた比較例14及び15では、共押出多層フィルムの酸素透過率は優れるものの、経時的にコバルト触媒によって樹脂が酸化分解して、熱成形容器の食品保存性並びに開封時の臭気及び味覚が悪化した。 The coextruded multilayer films and thermoformed containers of Examples 30 to 38 were able to improve oxygen permeability without impairing food storage stability and odor and taste at the time of opening compared to Comparative Example 13 of the same form. . On the other hand, in Comparative Examples 14 and 15 using cobalt stearate or maleic acid-modified polybutadiene to improve oxygen permeability, the oxygen permeability of the coextruded multilayer film is excellent, but the resin is oxidatively decomposed by the cobalt catalyst over time. Thus, the food storage stability of the thermoformed container and the odor and taste at the time of opening deteriorated.
[熱成形容器(5層構成)]
実施例39
 3台の押出機、フィードブロック、Tダイ、冷却ロール、巻き取り機等を備えた多層フィルム製造装置を用い、1台目の押出機からポリアミド樹脂1を250℃で、2台目の押出機からポリエチレンテレフタレート(PET)(INVISTA社製、商品名:POLYCLEAR、グレード:1101E)を260℃で、3台目の押出機から接着性樹脂(三菱化学(株)製、商品名:Modic-AP、グレード:F534A)を220℃でそれぞれ押し出し、フィードブロックを介して、(外層)PET層/接着性樹脂層/ポリアミド樹脂1層/接着性樹脂層/PET層(内層)の3種5層構造の多層フィルム(C4)を製造した。なお、各層の厚みは、60/5/10/5/60(μm)とした。
 次いで、プラグアシストを備えた圧空真空成形機((株)浅野研究所製)を使用して、フィルム表面温度が170℃に達した時点で熱成形を行い、開口部100mm角×底部90mm×深さ10mm、表面積119cm2、容積90mlの熱成形容器を作成した。
[Thermoforming container (5 layers)]
Example 39
Using a multilayer film manufacturing apparatus equipped with three extruders, feed block, T die, cooling roll, winder, etc., the second extruder is polyamide resin 1 at 250 ° C. from the first extruder To polyethylene terephthalate (PET) (trade name: POLYCLEAR, grade: 1101E manufactured by INVISTA) at 260 ° C. and adhesive resin (trade name: Modic-AP, manufactured by Mitsubishi Chemical Corporation) from the third extruder. Grade: F534A) is extruded at 220 ° C., and through a feed block, (outer layer) PET layer / adhesive resin layer / polyamide resin 1 layer / adhesive resin layer / PET layer (inner layer), having three types and five layers. A multilayer film (C4) was produced. The thickness of each layer was 60/5/10/5/60 (μm).
Next, thermoforming was performed when the film surface temperature reached 170 ° C. using a pressure-air vacuum forming machine (manufactured by Asano Laboratory Co., Ltd.) equipped with plug assist, and the opening 100 mm square × bottom 90 mm × depth A thermoformed container having a thickness of 10 mm, a surface area of 119 cm 2 and a volume of 90 ml was prepared.
実施例40及び41
 ポリアミド樹脂2又は3を使用したこと以外は、実施例39と同様にして共押出多層フィルム及び熱成形容器を作成した。
Examples 40 and 41
A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 39 except that the polyamide resin 2 or 3 was used.
比較例16
 ポリアミド樹脂10を使用したこと以外は、実施例39と同様にして共押出多層フィルム及び熱成形容器を作成した。
Comparative Example 16
A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 39 except that the polyamide resin 10 was used.
比較例17
 ポリアミド樹脂10を使用し、ステアリン酸コバルトをポリアミド樹脂10に対して、コバルト含有量が400ppmとなるように添加したこと以外は、実施例39と同様にして共押出多層フィルム及び熱成形容器を作成した。
Comparative Example 17
A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 39 except that polyamide resin 10 was used and cobalt stearate was added to polyamide resin 10 so that the cobalt content was 400 ppm. did.
比較例18
 ポリアミド樹脂10を使用し、ステアリン酸コバルトをポリアミド樹脂10に対して、コバルト含有量が100ppmとなるように添加し、さらに、マレイン酸変性ポリブタジエン(日本石油化学(株)製、商品名:M-2000-20)をポリアミド樹脂10に対して3質量部添加したこと以外は、実施例39と同様にして共押出多層フィルム及び熱成形容器を作成した。
Comparative Example 18
Polyamide resin 10 was used, cobalt stearate was added to polyamide resin 10 so that the cobalt content was 100 ppm, and maleic acid-modified polybutadiene (manufactured by Nippon Petrochemical Co., Ltd., trade name: M- A coextruded multilayer film and a thermoformed container were prepared in the same manner as in Example 39 except that 3 parts by mass of 2000-20) was added to the polyamide resin 10.
 表7に、共押出多層フィルムの酸素透過率、包装容器の食品保存試験、並びに開封時の臭気及び味覚の結果を示す。 Table 7 shows the oxygen permeability of the coextruded multilayer film, the food preservation test of the packaging container, and the results of odor and taste at the time of opening.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 実施例39~41の共押出多層フィルム及び熱成形容器は、同形態の比較例16と比べて、共押出多層フィルムの酸素透過率が優れるだけでなく、熱成形容器での食品保存性が優れていた。特に、ステアリン酸コバルトを用いた比較例17は、味噌をホットパックした際に、ポリアミド樹脂層とPET層との間で層間剥離が生じ、熱成形容器の食品保存性が悪化した。また、マレイン酸変性ポリブタジエンを用いた比較例18は、酸素吸収後のマレイン酸変性ポリブタジエンの分解により、開封時の臭気及び味覚が悪化した。 The co-extruded multilayer films and thermoformed containers of Examples 39 to 41 have not only excellent oxygen permeability of the co-extruded multilayer film but also excellent food preservability in the thermoformed containers as compared with Comparative Example 16 of the same form. It was. In particular, in Comparative Example 17 using cobalt stearate, delamination occurred between the polyamide resin layer and the PET layer when miso was hot-packed, and the food storage stability of the thermoformed container deteriorated. In Comparative Example 18 using maleic acid-modified polybutadiene, the odor and taste at the time of opening deteriorated due to decomposition of maleic acid-modified polybutadiene after oxygen absorption.
 本発明の多層フィルムは、包装材料として好適に用いることができる。 The multilayer film of the present invention can be suitably used as a packaging material.

Claims (12)

  1.  ポリアミド樹脂(A)を含有する層(A)と、樹脂(B)を主成分とする層(B)とを含む多層フィルムであって、
     該ポリアミド樹脂(A)が、
     下記一般式(I-1)で表される芳香族ジアミン単位、下記一般式(I-2)で表される脂環族ジアミン単位、及び下記一般式(I-3)で表される直鎖脂肪族ジアミン単位からなる群から選ばれる少なくとも1つのジアミン単位を合計で50モル%以上含むジアミン単位25~50モル%と、
     下記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位及び/又は下記一般式(II-2)で表される芳香族ジカルボン酸単位を合計で50モル%以上含むジカルボン酸単位25~50モル%と、
     下記一般式(III)で表される構成単位0.1~50モル%と
    を含有する、多層フィルム。
    Figure JPOXMLDOC01-appb-C000001
    [前記一般式(I-3)中、mは2~18の整数を表す。前記一般式(II-1)中、nは2~18の整数を表す。前記一般式(II-2)中、Arはアリーレン基を表す。前記一般式(III)中、Rは置換もしくは無置換のアルキル基又は置換もしくは無置換のアリール基を表す。]
    A multilayer film comprising a layer (A) containing a polyamide resin (A) and a layer (B) containing the resin (B) as a main component,
    The polyamide resin (A) is
    An aromatic diamine unit represented by the following general formula (I-1), an alicyclic diamine unit represented by the following general formula (I-2), and a straight chain represented by the following general formula (I-3) 25 to 50 mol% of diamine units containing a total of 50 mol% or more of at least one diamine unit selected from the group consisting of aliphatic diamine units;
    A dicarboxylic acid unit containing a total of 50 mol% or more of a linear aliphatic dicarboxylic acid unit represented by the following general formula (II-1) and / or an aromatic dicarboxylic acid unit represented by the following general formula (II-2) 25 to 50 mol%,
    A multilayer film containing 0.1 to 50 mol% of a structural unit represented by the following general formula (III).
    Figure JPOXMLDOC01-appb-C000001
    [In the general formula (I-3), m represents an integer of 2 to 18. In the general formula (II-1), n represents an integer of 2 to 18. In the general formula (II-2), Ar represents an arylene group. In the general formula (III), R represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. ]
  2.  前記一般式(III)におけるRが、置換もしくは無置換の炭素数1~6のアルキル基又は置換もしくは無置換の炭素数6~10のアリール基である、請求項1に記載の多層フィルム。 2. The multilayer film according to claim 1, wherein R in the general formula (III) is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms.
  3.  前記ジアミン単位が、メタキシリレンジアミン単位を50モル%以上含む、請求項1又は2に記載の多層フィルム。 The multilayer film according to claim 1 or 2, wherein the diamine unit contains 50 mol% or more of a metaxylylenediamine unit.
  4.  前記直鎖脂肪族ジカルボン酸単位が、アジピン酸単位、セバシン酸単位、及び1,12-ドデカンジカルボン酸単位からなる群から選ばれる少なくとも1つを合計で50モル%以上含む、請求項1~3のいずれかに記載の多層フィルム。 The linear aliphatic dicarboxylic acid unit contains at least one selected from the group consisting of an adipic acid unit, a sebacic acid unit, and a 1,12-dodecanedicarboxylic acid unit in total of 50 mol% or more. A multilayer film according to any one of the above.
  5.  前記芳香族ジカルボン酸単位が、イソフタル酸単位、テレフタル酸単位、及び2,6-ナフタレンジカルボン酸単位からなる群から選ばれる少なくとも1つを合計で50モル%以上含む、請求項1~4のいずれかに記載の多層フィルム。 The aromatic dicarboxylic acid unit contains at least one selected from the group consisting of an isophthalic acid unit, a terephthalic acid unit, and a 2,6-naphthalenedicarboxylic acid unit in total of 50 mol% or more. A multilayer film according to any one of the above.
  6.  前記ポリアミド樹脂(A)が更に、下記一般式(X)で表されるω-アミノカルボン酸単位を、ポリアミド樹脂(A)の全構成単位中0.1~49.9モル%含有する、請求項1~5のいずれかに記載の多層フィルム。
    Figure JPOXMLDOC01-appb-C000002
    [前記一般式(X)中、pは2~18の整数を表す。]
    The polyamide resin (A) further contains 0.1 to 49.9 mol% of ω-aminocarboxylic acid units represented by the following general formula (X) in all the structural units of the polyamide resin (A). Item 6. The multilayer film according to any one of Items 1 to 5.
    Figure JPOXMLDOC01-appb-C000002
    [In the general formula (X), p represents an integer of 2 to 18. ]
  7.  前記ω-アミノカルボン酸単位が、6-アミノヘキサン酸単位及び/又は12-アミノドデカン酸単位を合計で50モル%以上含む、請求項6に記載の多層フィルム。 The multilayer film according to claim 6, wherein the ω-aminocarboxylic acid unit contains a total of 50 mol% or more of 6-aminohexanoic acid units and / or 12-aminododecanoic acid units.
  8.  前記ポリアミド樹脂(A)の相対粘度が1.8以上4.2以下である、請求項1~7のいずれかに記載の多層フィルム。 The multilayer film according to any one of claims 1 to 7, wherein the polyamide resin (A) has a relative viscosity of 1.8 or more and 4.2 or less.
  9.  前記層(A)及び(B)が共延伸成形されてなる、請求項1~8のいずれかに記載の多層フィルム。 The multilayer film according to any one of claims 1 to 8, wherein the layers (A) and (B) are co-stretched.
  10.  MD方向に1.1~15倍、TD方向に1.1~15倍に二軸延伸して得られる、請求項9に記載の多層フィルム。 The multilayer film according to claim 9, which is obtained by biaxially stretching 1.1 to 15 times in the MD direction and 1.1 to 15 times in the TD direction.
  11.  前記層(A)及び(B)がラミネートされてなる、請求項1~8のいずれかに記載の多層フィルム。 The multilayer film according to any one of claims 1 to 8, wherein the layers (A) and (B) are laminated.
  12.  請求項1~11のいずれかに記載の多層フィルムを含むフィルム包装容器。 A film packaging container comprising the multilayer film according to any one of claims 1 to 11.
PCT/JP2012/065642 2011-06-27 2012-06-19 Multi-layer film and film packaging container WO2013002069A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013522772A JP5954323B2 (en) 2011-06-27 2012-06-19 Multilayer film and film packaging container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-142155 2011-06-27
JP2011142155 2011-06-27

Publications (1)

Publication Number Publication Date
WO2013002069A1 true WO2013002069A1 (en) 2013-01-03

Family

ID=47423967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065642 WO2013002069A1 (en) 2011-06-27 2012-06-19 Multi-layer film and film packaging container

Country Status (4)

Country Link
JP (1) JP5954323B2 (en)
AR (1) AR086751A1 (en)
TW (1) TW201307063A (en)
WO (1) WO2013002069A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016198918A (en) * 2015-04-08 2016-12-01 住友ベークライト株式会社 Sealant film, multilayer film, and package
WO2019026500A1 (en) * 2017-07-31 2019-02-07 三菱瓦斯化学株式会社 Easily-torn film, multilayer film, packaging material, and container
WO2019044882A1 (en) * 2017-08-31 2019-03-07 宇部興産株式会社 Polyamide resin and film formed from same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160297182A1 (en) * 2013-12-05 2016-10-13 Mitsubishi Gas Chemical Company, Inc. Multilayer container
CN111869951B (en) * 2020-06-23 2022-09-27 山西洁康惠医疗器械有限公司 Preparation method of mask filter layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273027A (en) * 1990-03-13 1991-12-04 Ajinomoto Co Inc New polyamide
JP2008503371A (en) * 2004-06-22 2008-02-07 アルケマ フランス Polyamide-based multilayer structure for substrate coating
WO2011081099A1 (en) * 2009-12-28 2011-07-07 三菱瓦斯化学株式会社 Polyamide compound
WO2011132456A1 (en) * 2010-04-20 2011-10-27 三菱瓦斯化学株式会社 Polyamide compound
WO2012090797A1 (en) * 2010-12-27 2012-07-05 三菱瓦斯化学株式会社 Polyamide composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI438264B (en) * 2009-11-02 2014-05-21 Hosokawa Yoko Kk Plastic film and infusion bag having oxigen absorption capability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273027A (en) * 1990-03-13 1991-12-04 Ajinomoto Co Inc New polyamide
JP2008503371A (en) * 2004-06-22 2008-02-07 アルケマ フランス Polyamide-based multilayer structure for substrate coating
WO2011081099A1 (en) * 2009-12-28 2011-07-07 三菱瓦斯化学株式会社 Polyamide compound
WO2011132456A1 (en) * 2010-04-20 2011-10-27 三菱瓦斯化学株式会社 Polyamide compound
WO2012090797A1 (en) * 2010-12-27 2012-07-05 三菱瓦斯化学株式会社 Polyamide composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
I.ARVANITOYANNIS ET AL., POLYMER, vol. 36, no. 15, 1995, pages 2957 - 2967 *
I.ARVANITOYANNIS ET AL.: "Studies in Polymer Science", BIODEGRADABLE PLASTICS AND POLYMERS, vol. 12, 1994, pages 562 - 569 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016198918A (en) * 2015-04-08 2016-12-01 住友ベークライト株式会社 Sealant film, multilayer film, and package
WO2019026500A1 (en) * 2017-07-31 2019-02-07 三菱瓦斯化学株式会社 Easily-torn film, multilayer film, packaging material, and container
CN110997766A (en) * 2017-07-31 2020-04-10 三菱瓦斯化学株式会社 Easy-tear film, multilayer film, packaging material, and container
JPWO2019026500A1 (en) * 2017-07-31 2020-08-20 三菱瓦斯化学株式会社 Easy tear film, multilayer film, packaging material and container
JP7218724B2 (en) 2017-07-31 2023-02-07 三菱瓦斯化学株式会社 Easy-to-tear films, multilayer films, packaging materials and containers
US11873401B2 (en) 2017-07-31 2024-01-16 Mitsubishi Gas Chemical Company, Inc. Easily tearable film, multilayer film, packaging material, and container
WO2019044882A1 (en) * 2017-08-31 2019-03-07 宇部興産株式会社 Polyamide resin and film formed from same
JPWO2019044882A1 (en) * 2017-08-31 2020-10-15 宇部興産株式会社 Polyamide resin and film made of it
JP7180604B2 (en) 2017-08-31 2022-11-30 Ube株式会社 Polyamide resin and film made thereof

Also Published As

Publication number Publication date
JP5954323B2 (en) 2016-07-20
TW201307063A (en) 2013-02-16
AR086751A1 (en) 2014-01-22
JPWO2013002069A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5975031B2 (en) Film and film packaging container
JP5928462B2 (en) Multi-layer injection molding
JP5971243B2 (en) Injection molded body
JP5954324B2 (en) Multi-layer injection molding
WO2014034624A1 (en) Polyamide resin composition and method for producing same
JP2015131438A (en) Multilayer injection-molded body
JP5954323B2 (en) Multilayer film and film packaging container
JP2013039964A (en) Multilayer container for printing ink
JP5928463B2 (en) Laminate and paper container
JP5971244B2 (en) Direct blow bottle
JP5954325B2 (en) Multilayer sheet
JP2015142986A (en) Multilayer injection-molded body
JP5895935B2 (en) Direct blow multilayer bottle
JP5971245B2 (en) Sheet
JP6011531B2 (en) Tubular container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522772

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12805147

Country of ref document: EP

Kind code of ref document: A1