WO2013001558A1 - Engine system - Google Patents
Engine system Download PDFInfo
- Publication number
- WO2013001558A1 WO2013001558A1 PCT/JP2011/003640 JP2011003640W WO2013001558A1 WO 2013001558 A1 WO2013001558 A1 WO 2013001558A1 JP 2011003640 W JP2011003640 W JP 2011003640W WO 2013001558 A1 WO2013001558 A1 WO 2013001558A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen
- engine
- fuel
- supplied
- concentration
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M25/00—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
- F02M25/10—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
- F02M25/12—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone the apparatus having means for generating such gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M27/00—Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
- F02M27/02—Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M31/00—Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
- F02M31/02—Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
- F02M31/04—Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
- F02M31/06—Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air
- F02M31/08—Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air the gases being exhaust gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to an engine system using hydrogen as a part of fuel.
- Organic hydride can be used for energy storage such as natural energy, surplus power, and by-product hydrogen. Since organic hydride is a liquid fuel at normal temperature and pressure, it can store hydrogen at high density. System efficiency is improved by efficiently converting hydrogen generated from organic hydride into engine power using engine exhaust heat.
- Patent Document 1 a system described in Patent Document 1 is known as an engine system that uses hydrogen generated from organic hydride by utilizing such engine exhaust heat and dehydrogenated fuel as fuel.
- An object of the present invention is to provide an engine system capable of converting hydrogen generated from organic hydride into power with high efficiency.
- the present invention is characterized in that an air flow is formed in the cylinder during intake of the engine, and the combustion speed in the engine is controlled by adjusting the strength of the air flow.
- an engine system using hydrogen as a part of fuel includes an engine that generates power by burning hydrogen and a hydrocarbon-based fuel, and heat from the exhaust gas of the engine.
- a reactor having a catalyst for producing hydrogen and dehydrogenated fuel by a dehydrogenation reaction, a hydrogen supply means for supplying a hydrogen-rich gas generated in the reactor to an engine, and an air flow for adjusting a flow of air to be supplied to the engine An adjustment device; and a control means for controlling the operation of the air flow adjustment device, wherein the control means controls the air flow adjustment device in accordance with a ratio of hydrogen in the fuel supplied to the engine. It is characterized by.
- the fluctuation of the exhaust temperature is small compared to the case of controlling the excess air ratio. Therefore, the combustion speed of the engine can be adjusted without significantly affecting the amount of hydrogen generated by the hydrogen generator, and as a result, the system efficiency can be improved.
- an engine system capable of converting hydrogen generated from organic hydride into power with high efficiency can be supplied.
- FIG. 1 shows the configuration of the engine system in the present embodiment.
- the engine system according to the present embodiment generates hydrogen rich gas from organic hydride using an engine 11 that is driven by burning a hydrogen rich gas and a hydrocarbon-based fuel, and heat of exhaust gas from the engine 11.
- a reactor 12, a hydrogen injector 16 that supplies the hydrogen-rich gas generated in the reactor 12 to the engine 11, a fuel injector 17 that supplies hydrocarbon fuel to the engine 11, and an intake pipe 29 of the engine 11 are provided.
- An air flow adjusting device 18 and a controller 19 (control means) for electronically controlling the system are provided.
- MCH methylcyclohexane
- the reactor 12 is provided in the exhaust pipe 28 of the engine 11 in order to use the heat of the exhaust gas of the engine 11.
- MCH is a component that can easily add and release hydrogen by the catalytic reaction of the following formula (1).
- the reaction for generating hydrogen from methylcyclohexane is an endothermic reaction with a reaction temperature of 250 to 350 ° C., and hydrogen can be easily generated by exhaust heat of the engine.
- MCH is stored in the organic hydride tank 13 and supplied from the organic hydride tank 13 to the reactor 12.
- Hydrogen produced in the reactor 12 and toluene as dehydrogenated fuel are sent to the separation device 14 through the pipe 24 and separated into hydrogen-rich gas and toluene.
- Toluene separated by the separation device 14 is stored in a dehydrogenation fuel tank through a pipe 25, and hydrogen-rich gas is supplied from the hydrogen injector 16 to the engine 11 through a pipe 26.
- the toluene in the dehydrogenated fuel tank 15 is supplied from the fuel injector 17 to the engine 11 through the pipe 27.
- a pipe 26 for supplying the hydrogen rich gas to the engine 11 is provided with a temperature detection device 21 and a pressure detection device 22 for detecting the temperature and pressure of the hydrogen rich gas.
- a supply amount measuring device 23 for measuring the supply amount is provided in the pipe for supplying the organic hydride to the reactor 12.
- a concentration detection device 20 for detecting the concentration of MCH in toluene separated by the separation device 14 is provided.
- the controller 19 receives the detection signals detected by these detection devices, the pulse widths from the hydrogen injector 16 and the fuel injector 17, and the pressure signal.
- the controller 19 calculates or estimates the hydrogen concentration in the fuel supplied to the engine 11 based on the input signal, and controls the opening degree of the air flow adjusting device 18 according to the hydrogen concentration.
- the combustion speed can be adjusted to a predetermined range, and the engine efficiency can be improved.
- the exhaust gas temperature changes and affects the hydrogen generation in the reactor 12.
- the exhaust gas temperature varies. Since the size can be reduced, the efficiency of the entire system can be improved.
- the form using the dehydrogenation fuel (toluene) was shown as a hydrocarbon fuel supplied to the engine 11 in FIG. 1, it is good also as a structure which supplies fuel other than a dehydrogenation fuel.
- a tank for storing hydrocarbon fuel may be further provided, and the hydrocarbon fuel may be supplied from the pipe 27 to the engine 11 through the fuel injector 17.
- a configuration using MCH methylcyclohexane
- MCH methylcyclohexane
- examples of dehydrogenated fuel produced by the dehydrogenation reaction include naphthalene and benzene.
- hydrocarbon fuel to be supplied to the engine 11 in addition to the dehydrogenated fuel produced by the organic hydride dehydrogenation, fuels generally used in the engine such as light oil, gasoline and natural gas are used. be able to.
- the octane number of toluene (about 120) is higher than gasoline, which is a normal spark ignition fuel, knocking hardly occurs in the engine 11, and the engine 11 is operated at a high compression ratio to increase combustion efficiency. It is also possible. Specifically, in the case of a general spark ignition type engine 11, the compression ratio of about 13 is the maximum value, but by using toluene, the compression ratio can be increased to about 15. Further, in the case of the spark ignition type engine 11, the theoretical cycle is the Otto cycle, so that the thermal efficiency is improved when the compression ratio is increased.
- the engine 11 is a four-stroke engine that repeats four cycles (intake, compression, combustion / expansion, and exhaust).
- the engine 11 includes a plurality of cylinders, a piston that reciprocates in the cylinder, a crankshaft connected to the piston via a connecting rod, an intake valve and an exhaust valve that are linked to the crankshaft, A spark plug to be controlled.
- the output of the engine 11 (rotation speed, torque, exhaust gas flow rate, etc.) is controlled by a controller 19 that controls the intake amount of fuel / air and ignition timing.
- the hydrogen injector 16 is a device that injects hydrogen rich gas into the intake port and supplies it to the engine 11 in accordance with a command from the controller 19. Further, the position of the hydrogen injector 16 is not limited to this, and it may be configured to inject directly into a cylinder formed in the engine 11. The hydrogen-rich gas is separated by the separation device and then led to the hydrogen injector 16 through the pipe 26.
- the fuel injector 17 is a device that injects toluene into the intake port (port injection) in accordance with a command from the controller 19 and supplies it to the engine. Note that the position of the fuel injector 17 is not limited to this, and the fuel injector 17 may be directly injected into a cylinder formed in the engine 11. In addition, toluene is led from the dehydrogenation fuel tank 15 to the fuel injector 24 via the pipe 27.
- the exhaust gas outlet of the engine 11 is connected to the exhaust gas inlet of the reactor 12 by an exhaust pipe 28.
- the exhaust gas from the engine 11 is led to the reactor 12 after operating (rotating) the supercharger.
- the reactor 12 includes a plurality of reaction cells 31 whose outer shape is columnar, and a cylindrical first casing 32 that accommodates the plurality of reaction cells 31.
- MCH hydrogen-containing fuel
- high-temperature exhaust gas flows outside the reaction cell 31 and in the first casing 32.
- the first casing 32 and the second casing 34 which will be described later are made of metal (for example, SUS) so as to have high thermal conductivity.
- the shape of the 1st casing 32 and the 2nd casing 34 is not limited to cylindrical shape, For example, a square cylinder shape and a polygonal cylinder shape may be sufficient.
- the reaction cell 31 includes a plurality of stacked reaction sheets 33 and a second casing 34 in which the plurality of reaction sheets 33 are accommodated.
- each reaction sheet 33 includes a base metal foil 35, a porous layer 36 formed on each surface of the metal foil 35, and a catalyst 37 supported on the porous layer 36. And. That is, each reaction sheet 33 has a three-layer structure in which the porous layer 36 supported by the catalyst 37, the metal foil 35, and the porous layer 36 supported by the catalyst 37 are stacked in this order.
- reaction sheet 33 is in the form of a sheet, its heat capacity is small, heat is quickly conducted through the reaction sheet 33, and the temperature of the catalyst 37 is quickly raised to a temperature at which the catalyst functions well. Thereby, the efficiency of the decomposition reaction which decomposes
- each reaction sheet 33 is formed with a plurality of through holes 33a.
- the heat of the exhaust gas is favorably conducted in the thickness direction, and MCH, generated hydrogen and toluene are also favorably passed in the thickness direction.
- the metal foil 35 is made of, for example, an aluminum foil and has a thickness of about 50 to 200 ⁇ m.
- the metal foil 35 may not be provided, or instead of the metal foil 35, a porous layer serving as a base may be provided, and the entire reaction sheet 33 may have a porous structure.
- the porous layer 36 is a layer for supporting the catalyst 37 and has a plurality of pores through which MCH, generated hydrogen and toluene can flow.
- a porous layer 36 is made of an oxide mainly composed of alumina, for example.
- Catalyst 37 is a catalyst for decomposing MCH to generate hydrogen and toluene (see formula (1)).
- a catalyst 37 is composed of at least one selected from, for example, platinum, nickel, palladium, rhodium, iridium, ruthenium, molybdenum, rhenium, tungsten, vanadium, osmium, chromium, cobalt, iron and the like.
- the separation device 14 is a device that separates hydrogen and toluene.
- the separation device 14 cools a mixture of hydrogen and toluene by air cooling, thereby liquefying only toluene (boiling point: 110 ° C.) and separating it into a hydrogen-rich gas and toluene. . Therefore, for example, on the outer peripheral surface of the separation device 14, heat radiating fins (not shown) for promoting air-cooling are provided.
- the separation method is not limited to this, and other methods such as a pressure swing adsorption device or a hydrogen permeable membrane (Pd membrane or the like) that selectively permeates hydrogen may be used.
- the hydrogen rich gas separated by the separation device 14 is supplied to the hydrogen injector 16 through the pipe 26.
- the structure provided with the pump which pumps hydrogen into the piping 26 may be sufficient.
- the toluene separated by being liquefied by the separator 14 flows through the piping 25 extending from the bottom of the separator 52 by its own weight, and is stored in the dehydrogenation fuel tank 15.
- the pipe 27 may be provided with a pump that pumps the toluene in the tank 54 to the fuel injector 17.
- the hydrogen rich gas means a hydrogen gas containing such a dehydrogenated fuel.
- the controller 19 is a control device that electronically controls the engine system, and includes a CPU, a ROM, a RAM, various interfaces, an electronic circuit, and the like, and exhibits various functions according to programs stored therein. It is designed to control various devices.
- An air flow adjusting device 18 that adjusts the flow is mounted in the middle of the intake pipe of the engine.
- the air flow adjusting device 18 only needs to form a swirl flow or a tumble flow in the cylinder, and can be realized by a valve means such as a swirl control valve or a tumble control valve disposed at a part of the intake port.
- 3 and 4 show examples of tumble valves and swirl valves.
- FIG. 3 shows a tumble valve, which shows a cross-sectional shape in the longitudinal direction of the engine.
- the tumble valve 18a is located in the intake pipe 29 of the engine, and a vertical vortex is generated in the engine cylinder by changing the flow path position of the air flowing through the intake pipe 29 by the tumble valve 18a.
- FIG. 3 shows a tumble valve, which shows a cross-sectional shape in the longitudinal direction of the engine.
- the tumble valve 18a is located in the intake pipe 29 of the engine, and a vertical vortex is generated in the engine cylinder by changing the flow path position of the air flowing through the intake
- the intake pipe has a shape for generating a lateral vortex (swirl), and an air flow valve is installed on one of the intake pipes, and the swirl strength is adjusted by the opening degree.
- the air flow in the engine can be changed by changing the flow path cross-sectional position of the air supply pipe supplied to the engine. Further, the air flow can be enhanced by stopping the opening of the intake valve of the engine or one of the plurality of intake valves.
- the smaller the opening of the tumble valve 18a and the swirl valve 18b the smaller the flow passage cross-sectional area of the intake pipe 29 and the stronger the air flow strength (tumble strength, swirl strength). The stronger the air flow, the better the combustion rate.
- the combustion speed can be controlled by adjusting the opening degree of the tumble valve 18a or the swirl valve 18b.
- 1, 3, and 4 show the configuration in which the air flow valve is provided in the intake pipe, the air flow adjusting device 18 may be any device that forms a swirl flow or a tumble flow. May be provided in the combustion chamber of the engine 11.
- the laminar combustion rate formula of gasoline is shown in the following formula (2).
- the hydrogen laminar burning velocity equation is shown in the following equation (3).
- S L is a laminar burning velocity
- P and T are pressure and temperature, respectively.
- the subscripts u and 0 are the engine internal state and the standard state.
- ⁇ is the equivalent ratio
- x egr is the EGR rate.
- the laminar burning rate of hydrogen is about 10 times that of gasoline.
- the higher the pressure the lower the laminar combustion rate, while the higher the pressure, the higher the laminar combustion rate of hydrogen. Therefore, in the case of an engine with a high load condition and a high compression ratio, there is a feature that the amount of change in the combustion speed due to the change in the hydrogen mixing ratio becomes larger.
- FIG. 5 shows the relationship between the in-cylinder flow strength for making the combustion speed constant with respect to the hydrogen concentration in the fuel under the conditions of constant torque and rotational speed.
- control is performed to reduce the air flow so that the increase in the combustion speed is suppressed as the hydrogen mixing ratio in the fuel increases.
- the air flow is controlled by controlling the opening degree of the tumble valve 17a or the swirl valve 17b of the air flow adjusting device.
- the combustion speed changes due to the change in excess air ratio.
- the dependence of the laminar combustion rate of hydrogen on the excess air ratio is smaller than that of hydrocarbon fuel, so the laminar combustion rate at a high excess air rate is greatly influenced by the hydrogen mixing ratio. Is the factor. Therefore, the amount of change in the combustion rate due to the change in the hydrogen mixing ratio is greater when the excess air ratio is larger than when the excess air ratio is small. That is, the dependence of the combustion rate on the hydrogen mixing ratio increases as the air excess ratio increases. Therefore, as shown in FIG. 5, the amount of change in the in-cylinder flow strength increases when the excess air ratio is high. When operating with the excess air ratio changed, control is performed to correct the valve opening so that the higher the excess air ratio, the greater the amount of decrease in air flow as the hydrogen mixing ratio increases.
- the air flow is also adjusted by the ratio of the liquid fuel in the hydrocarbon fuel supplied to the engine.
- liquid fuel it passes through the process of evaporation, mixing with air, and ignition in the engine. Therefore, the amount of evaporation is increased compared to gas fuel, and the mixture tends to become non-uniform. Accordingly, the combustion speed is optimized by increasing the air flow.
- FIG. 8 shows an estimation method 1 of the hydrogen mixing ratio supplied to the engine.
- the flow rate of the hydrogen rich gas estimates the flow rate of the hydrogen rich gas supplied to the engine 11 from the pressure and pulse width of the hydrogen injector 16. Further, a small amount of toluene corresponding to the vapor pressure is mixed in the hydrogen rich after the toluene and hydrogen produced in the reactor 12 are separated by the separation device 14.
- the toluene concentration is calculated by assuming a saturated vapor pressure based on the temperature and pressure values of the hydrogen rich gas detected by the temperature detector 21 and the pressure detector 22. Further, the flow rate of the hydrocarbon-based fuel supplied to the engine 11 is estimated from the pressure of the fuel injector 17 and the pulse width. The hydrogen concentration in the fuel supplied to the engine is estimated from the flow rates of the hydrogen-rich gas and hydrocarbon fuel supplied to the engine 11 and the toluene concentration contained in the hydrogen-rich gas.
- Fig. 9 shows the estimation method 2 of the hydrogen mixing ratio in the fuel supplied to the engine.
- the reaction of the reaction formula (1) almost no by-products are generated, and therefore the production efficiency of producing hydrogen from MCH can be grasped by measuring the concentration of MCH in toluene after production by the concentration detector 20.
- a sensor for detecting the MCH concentration in toluene a sensor using the difference in density and dielectric constant between toluene and MCH can be used.
- the supply amount of MCH supplied to the reactor 12 is measured by the supply amount measuring device 23.
- the amount of hydrogen generation can be calculated by the following equation (4).
- the toluene concentration in the hydrogen gas and the hydrocarbon-based supply amount to the engine 11 are estimated by the same method as the estimation method 1. Then, the hydrogen concentration in the fuel supplied to the engine is estimated from the hydrogen gas generation amount, the supply amount of the hydrocarbon-based fuel, and the toluene concentration contained in the hydrogen gas.
- the hydrocarbon fuel is a liquid fuel such as light oil
- the ratio of the liquid fuel can also be grasped.
- the controller 19 uses the estimation method 1 or the estimation method 2 to estimate the hydrogen concentration in the fuel supplied to the engine based on the signals input from the respective detection devices and injectors, and based on the result, the air A valve opening control command signal is output to the flow control device 18.
- the air flow adjusting device 18 controls the valve opening degree according to a control command signal from the controller 19 to control the strength of the air flow.
- the hydrogen concentration in the fuel supplied to the engine and the excess air ratio are determined so as to increase the efficiency with respect to the engine operating range (torque, rotation speed).
- the hydrogen-rich gas contains dehydrogenated fuel and its concentration varies as described above. Therefore, when the hydrogen concentration in the fuel is adjusted only by the supply amounts of the hydrogen injector and the fuel injector, the hydrogen concentration in the fuel varies.
- the controller 19 controls the supply amounts from the hydrogen injector and the fuel injector.
- the excess air ratio When the combustion rate is controlled by the excess air ratio, there are the following restrictions. That is, misfire occurs when the excess air ratio exceeds a predetermined value, and therefore the maximum excess air ratio that can be combusted is determined according to the hydrogen mixing ratio. Also, from the viewpoint of exhaust purification of NO x , unburned hydrocarbons, CO, etc., when using a three-way catalyst, the excess air ratio is around 1, and to eliminate the need for NO x purification, the excess air ratio is 1.8. It is desirable to set it above. For this reason, there is a limit to the adjustment of the excess air ratio, and it becomes difficult to control the combustion rate only with the excess air ratio.
- the exhaust gas temperature changes with the change in the excess air ratio
- the amount of hydrogen produced in the reactor changes. Therefore, controlling the combustion rate with the excess air ratio affects the hydrogen generation, and as a result, the efficiency of the entire system may be reduced.
- the engine system of the present embodiment by controlling the strength of the air flow according to the hydrogen concentration, the thermal efficiency of the engine is suppressed and the influence on the dehydrogenation reaction of the reactor is small. The overall efficiency can be kept stable.
- the control by the air excess rate can be used together for the control of the combustion speed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
The purpose of the invention is to provide an engine system which can highly efficiently convert hydrogen generated from organic hydride to power. The engine system is provided with: an engine (11); a reactor (12) which generates hydrogen-rich gas from organic hydride using the heat of the exhaust gas from the engine (11); a hydrogen injector (16) which supplies the hydrogen-rich gas generated in the reactor (12) to the engine (11); a fuel injector (17) which supplies hydrocarbon fuel to the engine (11); an air flow regulation apparatus (18) provided in an intake pipe (29) of the engine (11); and a controller (19) (control means) which electronically controls the system. The engine system is characterized by controlling the combustion rate by regulating the air flow intensity according to the proportion of hydrogen in the fuel. DRAWING: FIG. 1: 19 Controller AA Air 11 Engine 12 Reactor
Description
本発明は、水素を燃料の一部とするエンジンシステムに関するものである。
The present invention relates to an engine system using hydrogen as a part of fuel.
自然エネルギー,余剰電力,副生水素などのエネルギー貯蔵に有機ハイドライドを活用できる。有機ハイドライドは常温常圧で液体燃料であることから、高密度に水素を貯蔵可能である。エンジン排熱を活用して有機ハイドライドから生成した水素を効率よく、動力に変換することでシステム効率が向上する。
Organic hydride can be used for energy storage such as natural energy, surplus power, and by-product hydrogen. Since organic hydride is a liquid fuel at normal temperature and pressure, it can store hydrogen at high density. System efficiency is improved by efficiently converting hydrogen generated from organic hydride into engine power using engine exhaust heat.
このようなエンジン排熱を活用して有機ハイドライドから生成した水素と脱水素燃料を燃料として使用するエンジンシステムとしては、例えば特許文献1に記載されたシステムが知られている。
For example, a system described in Patent Document 1 is known as an engine system that uses hydrogen generated from organic hydride by utilizing such engine exhaust heat and dehydrogenated fuel as fuel.
水素は他の炭化水素燃料と比較し、燃焼速度が速いため、エンジンに供給する水素割合に応じてエンジンの燃焼速度を制御する必要がある。これは燃焼速度の増加とともにエンジンの冷却損失が大きくなり、熱効率が低下してしまうためである。特に、高負荷条件,高圧縮比エンジンの場合、水素混合割合に変化による燃焼速度の変化量がさらに大きくなり、熱効率低下の課題が顕著となる。
Since hydrogen has a higher combustion speed than other hydrocarbon fuels, it is necessary to control the combustion speed of the engine according to the proportion of hydrogen supplied to the engine. This is because as the combustion rate increases, the cooling loss of the engine increases and the thermal efficiency decreases. In particular, in the case of a high load condition, high compression ratio engine, the amount of change in the combustion speed due to the change in the hydrogen mixing ratio is further increased, and the problem of reduced thermal efficiency becomes significant.
特許文献1に記載のエンジンシステムでは、目的は異なるが、エンジンに供給する燃料の水素の添加割合が大きくなった場合に混合気を更にリーンにすることが記載されている。特許文献1のように空気過剰率を変化させることでも燃焼速度を調整可能である。しかしながら、一方で空気過剰率を変化させることで燃焼温度も大きく変わることから、排気管に設置した反応器(水素発生装置)に供給される排気ガスの排気温度も変化する。そのため反応器で生成される水素量が変化し、システム効率を安定に保つことが困難になる。
In the engine system described in Patent Document 1, although the purpose is different, it is described that the air-fuel mixture is made leaner when the hydrogen addition ratio of the fuel supplied to the engine increases. The combustion speed can also be adjusted by changing the excess air ratio as in Patent Document 1. However, on the other hand, since the combustion temperature changes greatly by changing the excess air ratio, the exhaust temperature of the exhaust gas supplied to the reactor (hydrogen generator) installed in the exhaust pipe also changes. As a result, the amount of hydrogen produced in the reactor changes, making it difficult to keep the system efficiency stable.
本発明は、有機ハイドライドから生成した水素を高効率に動力に変換可能なエンジンシステムを提供することを目的とする。
An object of the present invention is to provide an engine system capable of converting hydrogen generated from organic hydride into power with high efficiency.
上記課題に対して、本発明では、エンジンの吸気時に筒内に空気流動が形成されるようにし、空気流動の強度を調整することでエンジン内の燃焼速度を制御することを特徴とする。
In response to the above problems, the present invention is characterized in that an air flow is formed in the cylinder during intake of the engine, and the combustion speed in the engine is controlled by adjusting the strength of the air flow.
すなわち、本発明の水素を燃料の一部とするエンジンシステムは、水素および炭化水素系燃料を燃焼して動力を発生するエンジンと、前記エンジンの排気ガスの熱を利用して、水素含有燃料から脱水素反応により水素及び脱水素燃料を生成する触媒を有する反応器と、前記反応器で生成した水素リッチガスをエンジンに供給する水素供給手段と、前記エンジンへ供給する空気の流動を調整する空気流動調整装置と、前記空気流動調整装置の動作を制御する制御手段とを備え、前記制御手段は、前記エンジンに供給される燃料中の水素の割合に応じて、前記空気流動調整装置を制御することを特徴とする。
That is, an engine system using hydrogen as a part of fuel according to the present invention includes an engine that generates power by burning hydrogen and a hydrocarbon-based fuel, and heat from the exhaust gas of the engine. A reactor having a catalyst for producing hydrogen and dehydrogenated fuel by a dehydrogenation reaction, a hydrogen supply means for supplying a hydrogen-rich gas generated in the reactor to an engine, and an air flow for adjusting a flow of air to be supplied to the engine An adjustment device; and a control means for controlling the operation of the air flow adjustment device, wherein the control means controls the air flow adjustment device in accordance with a ratio of hydrogen in the fuel supplied to the engine. It is characterized by.
本発明の流動強度調整による燃焼速度の制御では、空気過剰率を制御する場合と比較して、排気温度の変動は小さい。そのため、水素発生装置の水素生成量に大きく影響せずに、エンジンの燃焼速度を調整することができ、結果的にシステム効率を向上できる。
In the control of the combustion speed by adjusting the flow strength according to the present invention, the fluctuation of the exhaust temperature is small compared to the case of controlling the excess air ratio. Therefore, the combustion speed of the engine can be adjusted without significantly affecting the amount of hydrogen generated by the hydrogen generator, and as a result, the system efficiency can be improved.
本発明により、有機ハイドライドから生成した水素を高効率に動力に変換可能なエンジンシステムを供給できる。
According to the present invention, an engine system capable of converting hydrogen generated from organic hydride into power with high efficiency can be supplied.
以下、本発明の一実施形態について、図1~図8を参照して説明する。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
図1に本実施形態におけるエンジンシステムの構成を示す。図1に示すように本実施形態に係るエンジンシステムは、水素リッチガス及び炭化水素系燃料を燃焼して駆動するエンジン11と、エンジン11の排ガスの熱を利用して有機ハイドライドから水素リッチガスを生成する反応器12と、反応器12で生成された水素リッチガスをエンジン11に供給する水素インジェクタ16と、炭化水素系燃料をエンジン11に供給する燃料インジェクタ17と、エンジン11の吸気管29に設けられた空気流動調整装置18と、システムを電子制御するコントローラ19(制御手段)を備えている。
FIG. 1 shows the configuration of the engine system in the present embodiment. As shown in FIG. 1, the engine system according to the present embodiment generates hydrogen rich gas from organic hydride using an engine 11 that is driven by burning a hydrogen rich gas and a hydrocarbon-based fuel, and heat of exhaust gas from the engine 11. A reactor 12, a hydrogen injector 16 that supplies the hydrogen-rich gas generated in the reactor 12 to the engine 11, a fuel injector 17 that supplies hydrocarbon fuel to the engine 11, and an intake pipe 29 of the engine 11 are provided. An air flow adjusting device 18 and a controller 19 (control means) for electronically controlling the system are provided.
以下、有機ハイドライドにメチルシクロヘキサン(以下、MCHという)を利用した形態を例として説明する。反応器12は、エンジン11の排ガスの熱を利用するため、エンジン11の排気管28に設けられている。MCHは、下記式(1)の触媒反応により容易に水素を添加,放出可能な成分である。
Hereinafter, an embodiment using methylcyclohexane (hereinafter referred to as MCH) as an organic hydride will be described as an example. The reactor 12 is provided in the exhaust pipe 28 of the engine 11 in order to use the heat of the exhaust gas of the engine 11. MCH is a component that can easily add and release hydrogen by the catalytic reaction of the following formula (1).
メチルシクロヘキサンから水素を生成する反応は、反応温度が250~350℃の吸熱反応であり、エンジンの排熱で容易に水素を生成可能である。MCHは有機ハイドライドタンク13に貯蔵されており、有機ハイドライドタンク13から反応器12に供給される。反応器12で生成された水素と脱水素燃料であるトルエンは配管24を通って分離装置14に送られ、水素リッチガスとトルエンに分離される。分離装置14で分離されたトルエンは配管25を通って脱水素燃料タンクに貯蔵され、水素リッチガスは配管26を通って水素インジェクタ16からエンジン11に供給される。また、脱水素燃料タンク15内のトルエンは、配管27を通って燃料インジェクタ17からエンジン11に供給される。エンジン11に水素リッチガスを供給する配管26には、水素リッチガスの温度,圧力を検出するための温度検出装置21,圧力検出装置22が設けられている。また、有機ハイドライドを反応器12に供給する配管には供給量を計測するための供給量計測装置23が設けられている。また、分離装置14で分離されたトルエン中のMCHの濃度を検出するための濃度検出装置20が設けられている。コントローラ19には、これらの検出装置で検出された検出信号、水素インジェクタ16,燃料インジェクタ17からのパルス幅,圧力信号が入力される。コントローラ19は入力信号に基づいて、エンジン11に供給される燃料中の水素濃度を算出あるいは推定し、水素濃度に応じて空気流動調整装置18の開度を制御する。このように水素濃度に応じて空気流動調整装置18の開度を制御することによって、燃焼速度を所定の範囲に調整することが可能となり、エンジン効率を向上することができる。また、空気過剰率による燃焼速度の制御では排ガス温度が変化し、反応器12での水素生成に影響を及ぼすが、本実施形態の空気流動調整装置18を用いた制御では、排ガス温度の変動を小さくできるため、システム全体での効率向上が図れる。
The reaction for generating hydrogen from methylcyclohexane is an endothermic reaction with a reaction temperature of 250 to 350 ° C., and hydrogen can be easily generated by exhaust heat of the engine. MCH is stored in the organic hydride tank 13 and supplied from the organic hydride tank 13 to the reactor 12. Hydrogen produced in the reactor 12 and toluene as dehydrogenated fuel are sent to the separation device 14 through the pipe 24 and separated into hydrogen-rich gas and toluene. Toluene separated by the separation device 14 is stored in a dehydrogenation fuel tank through a pipe 25, and hydrogen-rich gas is supplied from the hydrogen injector 16 to the engine 11 through a pipe 26. The toluene in the dehydrogenated fuel tank 15 is supplied from the fuel injector 17 to the engine 11 through the pipe 27. A pipe 26 for supplying the hydrogen rich gas to the engine 11 is provided with a temperature detection device 21 and a pressure detection device 22 for detecting the temperature and pressure of the hydrogen rich gas. Further, a supply amount measuring device 23 for measuring the supply amount is provided in the pipe for supplying the organic hydride to the reactor 12. Further, a concentration detection device 20 for detecting the concentration of MCH in toluene separated by the separation device 14 is provided. The controller 19 receives the detection signals detected by these detection devices, the pulse widths from the hydrogen injector 16 and the fuel injector 17, and the pressure signal. The controller 19 calculates or estimates the hydrogen concentration in the fuel supplied to the engine 11 based on the input signal, and controls the opening degree of the air flow adjusting device 18 according to the hydrogen concentration. Thus, by controlling the opening degree of the air flow adjusting device 18 according to the hydrogen concentration, the combustion speed can be adjusted to a predetermined range, and the engine efficiency can be improved. Further, in the control of the combustion speed based on the excess air ratio, the exhaust gas temperature changes and affects the hydrogen generation in the reactor 12. However, in the control using the air flow control device 18 of the present embodiment, the exhaust gas temperature varies. Since the size can be reduced, the efficiency of the entire system can be improved.
なお、図1ではエンジン11に供給する炭化水素系燃料として、脱水素燃料(トルエン)を利用した形態を示したが、脱水素燃料以外の燃料を供給する構成としてもよい。具体的には、図1の構成に対して、さらに炭化水素系燃料を貯蔵するタンクを設け、炭化水素系燃料を配管27から燃料インジェクタ17によりエンジン11に供給する構成とすればよい。
In addition, although the form using the dehydrogenation fuel (toluene) was shown as a hydrocarbon fuel supplied to the engine 11 in FIG. 1, it is good also as a structure which supplies fuel other than a dehydrogenation fuel. Specifically, in addition to the configuration of FIG. 1, a tank for storing hydrocarbon fuel may be further provided, and the hydrocarbon fuel may be supplied from the pipe 27 to the engine 11 through the fuel injector 17.
本実施形態では、有機ハイドライドとして、MCH(メチルシクロヘキサン)を使用した構成を例示するが、その他に例えば、シクロヘキサン,デカリン等も使用できる。また、脱水素反応で生成される脱水素燃料としては、トルエンの他に例えば、ナフタレン,ベンゼン等がある。
In the present embodiment, a configuration using MCH (methylcyclohexane) is exemplified as the organic hydride, but, for example, cyclohexane, decalin, or the like can also be used. In addition to toluene, examples of dehydrogenated fuel produced by the dehydrogenation reaction include naphthalene and benzene.
エンジン11に供給する炭化水素系燃料としては、有機ハイドライドの脱水素反応で生成された脱水素燃料の他にも、軽油,ガソリン,天然ガスなど一般的にエンジンに使われている燃料を使用することができる。
As the hydrocarbon fuel to be supplied to the engine 11, in addition to the dehydrogenated fuel produced by the organic hydride dehydrogenation, fuels generally used in the engine such as light oil, gasoline and natural gas are used. be able to.
炭化水素系燃料として脱水素燃料を利用した場合は以下の利点がある。トルエンのオクタン価(約120)は、通常の火花点火用の燃料であるガソリンに対して高いため、エンジン11でノッキングが発生し難く、また、高圧縮比でエンジン11を作動させ、燃焼効率を高めることも可能となる。具体的には、一般的な火花点火式のエンジン11の場合、圧縮比13程度が最大値であるが、トルエンを使用することにより、圧縮比15程度に高めることも可能となる。さらに、火花点火式のエンジン11の場合、理論サイクルがオットーサイクルであるから、圧縮比が高くなると、熱効率が向上する関係である。
When dehydrogenated fuel is used as hydrocarbon fuel, there are the following advantages. Since the octane number of toluene (about 120) is higher than gasoline, which is a normal spark ignition fuel, knocking hardly occurs in the engine 11, and the engine 11 is operated at a high compression ratio to increase combustion efficiency. It is also possible. Specifically, in the case of a general spark ignition type engine 11, the compression ratio of about 13 is the maximum value, but by using toluene, the compression ratio can be increased to about 15. Further, in the case of the spark ignition type engine 11, the theoretical cycle is the Otto cycle, so that the thermal efficiency is improved when the compression ratio is increased.
エンジン11は、4サイクル(吸気,圧縮,燃焼・膨張,排気)を繰り返す4ストローク機関である。エンジン11は、複数の気筒(シリンダ)と、気筒内を往復運動するピストンと、ピストンにコンロッドを介して接続されたクランク軸と、クランク軸に連動する吸気弁及び排気弁と、コントローラ19により電子制御される点火プラグと、を備えている。エンジン11の出力(回転速度,トルク,排気ガスの流量等)は、燃料・空気の吸気量,点火タイミングを制御するコントローラ19で制御される。
The engine 11 is a four-stroke engine that repeats four cycles (intake, compression, combustion / expansion, and exhaust). The engine 11 includes a plurality of cylinders, a piston that reciprocates in the cylinder, a crankshaft connected to the piston via a connecting rod, an intake valve and an exhaust valve that are linked to the crankshaft, A spark plug to be controlled. The output of the engine 11 (rotation speed, torque, exhaust gas flow rate, etc.) is controlled by a controller 19 that controls the intake amount of fuel / air and ignition timing.
水素インジェクタ16は、コントローラ19からの指令に従って、水素リッチガスを吸気ポートに噴射し、エンジン11に供給する装置である。また、水素インジェクタ16の位置はこれに限定されず、エンジン11内に形成された気筒に直接噴射する構成でもよい。なお、水素リッチガスは分離装置で分離された後、配管26を介して、水素インジェクタ16に導かれる。
The hydrogen injector 16 is a device that injects hydrogen rich gas into the intake port and supplies it to the engine 11 in accordance with a command from the controller 19. Further, the position of the hydrogen injector 16 is not limited to this, and it may be configured to inject directly into a cylinder formed in the engine 11. The hydrogen-rich gas is separated by the separation device and then led to the hydrogen injector 16 through the pipe 26.
そして、このようにして、燃焼速度の大きい水素がエンジン11に供給されるので、エンジン11において、希薄・均一燃焼が可能となり、また、ポンピングロスも低減される。また、エンジン11内の混合気(トルエン,水素,空気が混合したもの)の比熱比(定容比熱(Cv)/定圧比熱(Cp))が向上し、エンジン11の熱効率を高めることができる。
Since hydrogen having a high combustion speed is supplied to the engine 11 in this manner, lean and uniform combustion is possible in the engine 11, and pumping loss is reduced. Further, the specific heat ratio (constant volume specific heat (Cv) / constant pressure specific heat (Cp)) of the air-fuel mixture (a mixture of toluene, hydrogen and air) in the engine 11 is improved, and the thermal efficiency of the engine 11 can be increased.
燃料インジェクタ17は、コントローラ19からの指令に従って、トルエンを吸気ポートに噴射し(ポート噴射)、エンジンに供給する装置である。なお、燃料インジェクタ17の位置はこれに限定されず、エンジン11内に形成された気筒に直接噴射する構成でもよい。また、トルエンは、脱水素燃料タンク15から、配管27を介して、燃料インジェクタ24に導かれている。
The fuel injector 17 is a device that injects toluene into the intake port (port injection) in accordance with a command from the controller 19 and supplies it to the engine. Note that the position of the fuel injector 17 is not limited to this, and the fuel injector 17 may be directly injected into a cylinder formed in the engine 11. In addition, toluene is led from the dehydrogenation fuel tank 15 to the fuel injector 24 via the pipe 27.
そして、このようにして高オクタン価のトルエンがエンジン11に供給されるので、前記したように、エンジン11でノッキングが発生し難くなり、エンジン11を高圧縮比で作動させ、燃焼効率を高めることも可能となる。
Since the high-octane toluene is supplied to the engine 11 in this way, as described above, it is difficult for knocking to occur in the engine 11, and the engine 11 can be operated at a high compression ratio to increase combustion efficiency. It becomes possible.
エンジン11の排気ガス出口は排気管28により、反応器12の排気ガス入口に接続されている。そして、エンジン11からの排気ガスは、過給器を作動(回転)させた後、反応器12に導かれるようになっている。
The exhaust gas outlet of the engine 11 is connected to the exhaust gas inlet of the reactor 12 by an exhaust pipe 28. The exhaust gas from the engine 11 is led to the reactor 12 after operating (rotating) the supercharger.
反応器12は、図2(a)に示すように、外形が円柱状を呈する複数本の反応セル31と、複数の反応セル31を収容した円筒状の第1ケーシング32と、を備えている。そして、MCH(水素含有燃料)が各反応セル31内を通流し、高温の排気ガスが反応セル31の外であって第1ケーシング32内を通流するようになっている。
As shown in FIG. 2A, the reactor 12 includes a plurality of reaction cells 31 whose outer shape is columnar, and a cylindrical first casing 32 that accommodates the plurality of reaction cells 31. . MCH (hydrogen-containing fuel) flows in each reaction cell 31, and high-temperature exhaust gas flows outside the reaction cell 31 and in the first casing 32.
第1ケーシング32及び後記する第2ケーシング34は、熱伝導率が高くなるように金属製(例えば、SUS)で形成されている。なお、第1ケーシング32,第2ケーシング34の形状は、円筒状に限定されず、その他に例えば、四角形筒状,多角形筒状でもよい。
The first casing 32 and the second casing 34 which will be described later are made of metal (for example, SUS) so as to have high thermal conductivity. In addition, the shape of the 1st casing 32 and the 2nd casing 34 is not limited to cylindrical shape, For example, a square cylinder shape and a polygonal cylinder shape may be sufficient.
反応セル31は、図2(b)に示すように、積層された複数枚の反応シート33と、複数枚の反応シート33を収容した第2ケーシング34と、を備えている。
As shown in FIG. 2B, the reaction cell 31 includes a plurality of stacked reaction sheets 33 and a second casing 34 in which the plurality of reaction sheets 33 are accommodated.
各反応シート33は、図2(c)に示すように、ベースとなる金属箔35と、金属箔35の両面にそれぞれ形成された多孔質層36と、多孔質層36に担持された触媒37と、を備えている。つまり、各反応シート33は、触媒37が担持した多孔質層36,金属箔35,触媒37が担持した多孔質層36の順で積層した三層構造である。
As shown in FIG. 2 (c), each reaction sheet 33 includes a base metal foil 35, a porous layer 36 formed on each surface of the metal foil 35, and a catalyst 37 supported on the porous layer 36. And. That is, each reaction sheet 33 has a three-layer structure in which the porous layer 36 supported by the catalyst 37, the metal foil 35, and the porous layer 36 supported by the catalyst 37 are stacked in this order.
なお、厚さ方向において隣り合う反応シート33,33間には、MCH,生成した水素及びトルエンが通流可能な隙間が形成されている。
Note that a gap through which MCH, generated hydrogen and toluene can flow is formed between the reaction sheets 33 adjacent to each other in the thickness direction.
また、反応シート33はシート状であるから、その熱容量が小さく、熱が反応シート33を速やかに伝導し、触媒37がその触媒機能を良好に発揮する温度に速やかに昇温する。これにより、MCHを水素とトルエンとに分解する分解反応の効率は、高くなっている。
Also, since the reaction sheet 33 is in the form of a sheet, its heat capacity is small, heat is quickly conducted through the reaction sheet 33, and the temperature of the catalyst 37 is quickly raised to a temperature at which the catalyst functions well. Thereby, the efficiency of the decomposition reaction which decomposes | disassembles MCH into hydrogen and toluene is high.
さらに、各反応シート33には、複数の貫通孔33aが形成されている。これにより、排気ガスの熱が厚さ方向に良好に伝導し、また、MCH,生成した水素及びトルエンが、厚さ方向にも良好に通流するようになっている。
Furthermore, each reaction sheet 33 is formed with a plurality of through holes 33a. As a result, the heat of the exhaust gas is favorably conducted in the thickness direction, and MCH, generated hydrogen and toluene are also favorably passed in the thickness direction.
金属箔35は、例えばアルミニウム箔で構成され、その厚さは50~200μm程度とされる。
The metal foil 35 is made of, for example, an aluminum foil and has a thickness of about 50 to 200 μm.
ただし、金属箔35を備えず、又は、金属箔35に代えて、ベースとなる多孔質層を備え、反応シート33全体を多孔質構造としてもよい。
However, the metal foil 35 may not be provided, or instead of the metal foil 35, a porous layer serving as a base may be provided, and the entire reaction sheet 33 may have a porous structure.
多孔質層36は、触媒37を担持するための層であって、MCH,生成した水素及びトルエンが通流可能な複数の細孔を有している。このような多孔質層36は、例えば、アルミナを主体とする酸化物で構成される。
The porous layer 36 is a layer for supporting the catalyst 37 and has a plurality of pores through which MCH, generated hydrogen and toluene can flow. Such a porous layer 36 is made of an oxide mainly composed of alumina, for example.
触媒37は、MCHを分解し、水素及びトルエンを生成させるための触媒である(式(1)参照)。このような触媒37は、例えば、白金,ニッケル,パラジウム,ロジウム,イリジウム,ルテニウム,モリブデン,レニウム,タングステン,バナジウム,オスミウム,クロム,コバルト,鉄等から選択された少なくとも1種で構成される。
Catalyst 37 is a catalyst for decomposing MCH to generate hydrogen and toluene (see formula (1)). Such a catalyst 37 is composed of at least one selected from, for example, platinum, nickel, palladium, rhodium, iridium, ruthenium, molybdenum, rhenium, tungsten, vanadium, osmium, chromium, cobalt, iron and the like.
分離装置14は、水素とトルエンとを分離する装置である。本実施形態に係る分離装置14は、水素及びトルエンが混在したものを空冷式で冷却することで、トルエン(沸点:110℃)のみを液化させ、水素リッチガスとトルエンに分離するようになっている。よって、例えば、分離装置14の外周面には、空冷式による冷却を促進するための放熱フィン(図示しない)が設けられている。
The separation device 14 is a device that separates hydrogen and toluene. The separation device 14 according to the present embodiment cools a mixture of hydrogen and toluene by air cooling, thereby liquefying only toluene (boiling point: 110 ° C.) and separating it into a hydrogen-rich gas and toluene. . Therefore, for example, on the outer peripheral surface of the separation device 14, heat radiating fins (not shown) for promoting air-cooling are provided.
なお、分離方式はこれに限定されず、その他に例えば、圧力スイング吸着装置、水素を選択的に透過する水素透過膜(Pd膜等)によって水素を分離する方式でもよい。
The separation method is not limited to this, and other methods such as a pressure swing adsorption device or a hydrogen permeable membrane (Pd membrane or the like) that selectively permeates hydrogen may be used.
そして、分離装置14で分離された水素リッチガスは、配管26を通って、水素インジェクタ16に供給されるようになっている。なお、配管26に水素を圧送するポンプが設けられた構成でもよい。
The hydrogen rich gas separated by the separation device 14 is supplied to the hydrogen injector 16 through the pipe 26. In addition, the structure provided with the pump which pumps hydrogen into the piping 26 may be sufficient.
一方、分離装置14で液化することで分離されたトルエンは、分離器52の底部から延びる配管25を自重により通流し、脱水素燃料タンク15で貯溜されるようになっている。配管27に、タンク54内のトルエンを燃料インジェクタ17に圧送するポンプが設けられた構成でもよい。
On the other hand, the toluene separated by being liquefied by the separator 14 flows through the piping 25 extending from the bottom of the separator 52 by its own weight, and is stored in the dehydrogenation fuel tank 15. The pipe 27 may be provided with a pump that pumps the toluene in the tank 54 to the fuel injector 17.
なお、分離装置14で分離された水素ガス中には少量のトルエン等の脱水素化燃料が混在している。水素リッチガスは、このような脱水素化燃料を含む水素ガスを意味する。
Note that a small amount of dehydrogenated fuel such as toluene is mixed in the hydrogen gas separated by the separator 14. The hydrogen rich gas means a hydrogen gas containing such a dehydrogenated fuel.
コントローラ19は、エンジンシステムを電子制御する制御装置であり、CPU,ROM,RAM,各種インタフェイス,電子回路などを含んで構成されており、その内部に記憶されたプログラムに従って、各種機能を発揮し、各種機器を制御するようになっている。
The controller 19 is a control device that electronically controls the engine system, and includes a CPU, a ROM, a RAM, various interfaces, an electronic circuit, and the like, and exhibits various functions according to programs stored therein. It is designed to control various devices.
エンジンの吸気管の途中には流動を調整する空気流動調整装置18が搭載されている。空気流動調整装置18は、筒内にスワール流又はタンブル流を形成するものであればよく、吸気ポートの一部に配置されたスワールコントロールバルブやタンブルコントロールバルブ等の弁手段により実現できる。図3,図4にタンブル弁,スワール弁の例を示す。図3はタンブル弁であり、エンジンの縦方向の断面形状を示す。タンブル弁18aはエンジンの吸気管29にあり、吸気管29内を流れる空気の流路位置をタンブル弁18aにより変化させることで、エンジン筒内に縦渦が生成される。一方、図4はスワール弁18bであり、エンジンの横断面形状を示す。吸気管は図に示すように、横渦(スワール)を発生させるための形状となっており、その吸気管の一方に空気流動弁が設置されており、その開度によりスワール強度を調整する。エンジンに供給する空気供給管の流路断面位置を変化させることで、エンジン内の空気流動を変化することができる。またエンジンの吸気バルブの開度または複数の吸気バルブの内、1つのバルブを休止することで空気流動を強化することができる。タンブル弁18a,スワール弁18bの開度が小さいほど吸気管29の流路断面積が小さくなり、空気流動の強さ(タンブル強度,スワール強度)が強くなる。空気流動が強くなるほど燃焼速度が向上する。したがって、タンブル弁18aあるいはスワール弁18bの開度を調整することにより、燃焼速度をコントロールすることが可能となる。なお、図1,図3,図4では吸気管に空気流動弁を設けた構成を示したが、空気流動調整装置18としてはスワール流又はタンブル流を形成するものであればよく、空気流動弁をエンジン11の燃焼室内に設けた構成でもよい。
An air flow adjusting device 18 that adjusts the flow is mounted in the middle of the intake pipe of the engine. The air flow adjusting device 18 only needs to form a swirl flow or a tumble flow in the cylinder, and can be realized by a valve means such as a swirl control valve or a tumble control valve disposed at a part of the intake port. 3 and 4 show examples of tumble valves and swirl valves. FIG. 3 shows a tumble valve, which shows a cross-sectional shape in the longitudinal direction of the engine. The tumble valve 18a is located in the intake pipe 29 of the engine, and a vertical vortex is generated in the engine cylinder by changing the flow path position of the air flowing through the intake pipe 29 by the tumble valve 18a. On the other hand, FIG. 4 shows the swirl valve 18b and shows the cross-sectional shape of the engine. As shown in the drawing, the intake pipe has a shape for generating a lateral vortex (swirl), and an air flow valve is installed on one of the intake pipes, and the swirl strength is adjusted by the opening degree. The air flow in the engine can be changed by changing the flow path cross-sectional position of the air supply pipe supplied to the engine. Further, the air flow can be enhanced by stopping the opening of the intake valve of the engine or one of the plurality of intake valves. The smaller the opening of the tumble valve 18a and the swirl valve 18b, the smaller the flow passage cross-sectional area of the intake pipe 29 and the stronger the air flow strength (tumble strength, swirl strength). The stronger the air flow, the better the combustion rate. Therefore, the combustion speed can be controlled by adjusting the opening degree of the tumble valve 18a or the swirl valve 18b. 1, 3, and 4 show the configuration in which the air flow valve is provided in the intake pipe, the air flow adjusting device 18 may be any device that forms a swirl flow or a tumble flow. May be provided in the combustion chamber of the engine 11.
一般的に水素は炭化水素系燃料と比較し、燃焼速度が大幅に高いことから、炭化系水素と同じ燃焼条件の場合、エンジンの冷却損失が大きくなり、熱効率が低下するという課題がある。
Generally, hydrogen has a significantly higher combustion speed than hydrocarbon-based fuels. Therefore, under the same combustion conditions as hydrocarbon-based hydrogen, there is a problem that engine cooling loss increases and thermal efficiency decreases.
ガソリンの層流燃焼速度式を下記式(2)に示す。
The laminar combustion rate formula of gasoline is shown in the following formula (2).
また水素の層流燃焼速度式を下記式(3)に示す。
The hydrogen laminar burning velocity equation is shown in the following equation (3).
SLは層流燃焼速度であり、P,Tはそれぞれ圧力,温度である。添え字のu,0はエンジン内の状態,標準状態である。またφは当量比、xegrはEGR率である。
S L is a laminar burning velocity, and P and T are pressure and temperature, respectively. The subscripts u and 0 are the engine internal state and the standard state. Φ is the equivalent ratio, and x egr is the EGR rate.
水素,ガソリンの層流燃焼速度を比較すると、水素はガソリンに対し約10倍層流燃焼速度が高くなる。また、ガソリンは圧力が高いほど、層流燃焼速度が低下するのに対し、水素は圧力が高いほど層流燃焼速度が高くなる。そのため高負荷条件,高圧縮比エンジンの場合、水素混合割合に変化による燃焼速度の変化量がさらに大きくなるという特徴がある。
When comparing the laminar burning rates of hydrogen and gasoline, the laminar burning rate of hydrogen is about 10 times that of gasoline. In addition, the higher the pressure, the lower the laminar combustion rate, while the higher the pressure, the higher the laminar combustion rate of hydrogen. Therefore, in the case of an engine with a high load condition and a high compression ratio, there is a feature that the amount of change in the combustion speed due to the change in the hydrogen mixing ratio becomes larger.
そのため、水素混合割合に応じて、燃焼速度を最適に調整する必要がある。式(2)(3)より空気過剰率に関しても下記に示すように層流燃焼速度は変化するが、燃焼室内に供給される不活性ガスの濃度が変化することで、水素発生装置に供給される排気温度が変化しやすくなり、水素発生装置から生成される水素量に影響を与えやすくなる。そのため、空気流動変化による燃焼速度を調整する手法をシステムに組み込むことは重要である。図5にトルク及び回転数が一定の条件において、燃料中の水素濃度に対して燃焼速度を一定にするための筒内流動強度の関係を示す。空気過剰率一定の場合、エンジンに供給する燃料中の水素混合割合が大きくなるほど燃焼速度が速くなる。従って、燃焼速度を一定にするためには燃料中の水素混合割合が増加するにつれて燃焼速度の増加が抑制されるように空気流動を小さくする制御を行う。空気流動の制御は、空気流動調整装置のタンブル弁17aまたはスワール弁17bの開度を制御することにより行う。
Therefore, it is necessary to optimally adjust the combustion rate according to the hydrogen mixing ratio. From equations (2) and (3), the laminar combustion speed also changes with respect to the excess air ratio as shown below. However, the concentration of the inert gas supplied into the combustion chamber changes, so that it is supplied to the hydrogen generator. As a result, the exhaust gas temperature is likely to change, and the amount of hydrogen produced from the hydrogen generator is easily affected. Therefore, it is important to incorporate into the system a technique for adjusting the combustion rate due to changes in air flow. FIG. 5 shows the relationship between the in-cylinder flow strength for making the combustion speed constant with respect to the hydrogen concentration in the fuel under the conditions of constant torque and rotational speed. When the excess air ratio is constant, the combustion speed increases as the hydrogen mixing ratio in the fuel supplied to the engine increases. Therefore, in order to make the combustion speed constant, control is performed to reduce the air flow so that the increase in the combustion speed is suppressed as the hydrogen mixing ratio in the fuel increases. The air flow is controlled by controlling the opening degree of the tumble valve 17a or the swirl valve 17b of the air flow adjusting device.
また、空気過剰率の変化によっても燃焼速度は変化する。これは図6に示すように水素の層流燃焼速度の空気過剰率依存性が炭化水素燃料のそれに比べ小さいことから、高空気過剰率における層流燃焼速度は水素混合割合に大きく影響を受けることがその要因である。そのため、空気過剰率が小さい場合よりも空気過剰率が大きい場合の方が水素混合割合の変化による燃焼速度の変化量が大きくなる。すなわち、水素混合割合に対する燃焼速度の依存性は高空気過剰率になるほど強くなる。従って、図5に示すように空気過剰率が高い場合の方が筒内流動強度の変化量が大きくなる。空気過剰率を変化させて運転する場合には、空気過剰率が高いほど、水素混合割合の増加に応じて空気流動の減少量が大きくなるようバルブ開度を補正する制御を行う。
Also, the combustion speed changes due to the change in excess air ratio. This is because, as shown in FIG. 6, the dependence of the laminar combustion rate of hydrogen on the excess air ratio is smaller than that of hydrocarbon fuel, so the laminar combustion rate at a high excess air rate is greatly influenced by the hydrogen mixing ratio. Is the factor. Therefore, the amount of change in the combustion rate due to the change in the hydrogen mixing ratio is greater when the excess air ratio is larger than when the excess air ratio is small. That is, the dependence of the combustion rate on the hydrogen mixing ratio increases as the air excess ratio increases. Therefore, as shown in FIG. 5, the amount of change in the in-cylinder flow strength increases when the excess air ratio is high. When operating with the excess air ratio changed, control is performed to correct the valve opening so that the higher the excess air ratio, the greater the amount of decrease in air flow as the hydrogen mixing ratio increases.
また図7に示すようにエンジンに供給する炭化水素燃料中の液体燃料の割合によっても空気流動を調整する。液体燃料の場合、エンジン内で蒸発,空気との混合、着火という過程を通過するため、ガス燃料に比べ、蒸発過程が増える分、混合気が不均一になりやすい、そのため、液体燃料の割合に応じて、空気流動を強くすることで、燃焼速度を最適化する。
Further, as shown in FIG. 7, the air flow is also adjusted by the ratio of the liquid fuel in the hydrocarbon fuel supplied to the engine. In the case of liquid fuel, it passes through the process of evaporation, mixing with air, and ignition in the engine. Therefore, the amount of evaporation is increased compared to gas fuel, and the mixture tends to become non-uniform. Accordingly, the combustion speed is optimized by increasing the air flow.
このように燃焼速度が所定の範囲になるように水素混合割合に応じて空気流動の強度を制御することにより、燃焼速度の増加による冷却損失の増加を低減することが可能となる。次に、エンジンに供給する水素混合割合の推定手法を説明する。図8にエンジンに供給する水素混合割合の推定手法1を示す。水素リッチガスの流量は、水素インジェクタ16の圧力とパルス幅からエンジン11に供給される水素リッチガスの流量を推定する。また、反応器12で生成したトルエンと水素を分離装置14で分離した後の水素リッチ中には蒸気圧分のトルエンが少量混合する。温度検出装置21,圧力検出装置22により検出した水素リッチガスの温度,圧力の値に基づき飽和蒸気圧を仮定することでトルエン濃度を算出する。さらに燃料インジェクタ17の圧力とパルス幅からエンジン11に供給される炭化水素系燃料の流量を推定する。そして、エンジン11に供給される水素リッチガスと炭化水素系燃料の流量と、水素リッチガスに含まれるトルエン濃度から、エンジンに供給する燃料中の水素濃度を推定する。この手法により、炭化水素系燃料が軽油などの液体燃料の場合には、液体燃料の割合も把握できる。
As described above, by controlling the strength of the air flow according to the hydrogen mixing ratio so that the combustion speed is in a predetermined range, it is possible to reduce the increase in cooling loss due to the increase in the combustion speed. Next, a method for estimating the hydrogen mixing ratio supplied to the engine will be described. FIG. 8 shows an estimation method 1 of the hydrogen mixing ratio supplied to the engine. The flow rate of the hydrogen rich gas estimates the flow rate of the hydrogen rich gas supplied to the engine 11 from the pressure and pulse width of the hydrogen injector 16. Further, a small amount of toluene corresponding to the vapor pressure is mixed in the hydrogen rich after the toluene and hydrogen produced in the reactor 12 are separated by the separation device 14. The toluene concentration is calculated by assuming a saturated vapor pressure based on the temperature and pressure values of the hydrogen rich gas detected by the temperature detector 21 and the pressure detector 22. Further, the flow rate of the hydrocarbon-based fuel supplied to the engine 11 is estimated from the pressure of the fuel injector 17 and the pulse width. The hydrogen concentration in the fuel supplied to the engine is estimated from the flow rates of the hydrogen-rich gas and hydrocarbon fuel supplied to the engine 11 and the toluene concentration contained in the hydrogen-rich gas. By this method, when the hydrocarbon fuel is a liquid fuel such as light oil, the ratio of the liquid fuel can also be grasped.
図9にはエンジンに供給する燃料中の水素混合割合の推定手法2を示す。反応式(1)の反応は、副生物がほとんど生成されないことから、生成後のトルエン中のMCHの濃度を濃度検出装置20により計測することでMCHからの水素を生成する生成効率を把握できる。トルエン中のMCH濃度を検出するものとして、トルエンとMCHの密度,誘電率の違いを利用したセンサを用いることができる。
Fig. 9 shows the estimation method 2 of the hydrogen mixing ratio in the fuel supplied to the engine. In the reaction of the reaction formula (1), almost no by-products are generated, and therefore the production efficiency of producing hydrogen from MCH can be grasped by measuring the concentration of MCH in toluene after production by the concentration detector 20. As a sensor for detecting the MCH concentration in toluene, a sensor using the difference in density and dielectric constant between toluene and MCH can be used.
反応器12に供給するMCHの供給量を供給量計測装置23により計測する。反応器12へのMCH供給量と水素生成効率を把握することで、下記式(4)により水素発生量を算出できる。
The supply amount of MCH supplied to the reactor 12 is measured by the supply amount measuring device 23. By grasping the amount of MCH supplied to the reactor 12 and the hydrogen generation efficiency, the amount of hydrogen generation can be calculated by the following equation (4).
次に、推定手法1と同様の方法により、水素ガス中のトルエン濃度と、エンジン11への炭化水素系の供給量を推定する。そして、水素ガス発生量と炭化水素系燃料の供給量と水素ガスに含まれるトルエン濃度から、エンジンに供給する燃料中の水素濃度を推定する。この手法により、炭化水素系燃料が軽油などの液体燃料の場合には、液体燃料の割合も把握できる。
Next, the toluene concentration in the hydrogen gas and the hydrocarbon-based supply amount to the engine 11 are estimated by the same method as the estimation method 1. Then, the hydrogen concentration in the fuel supplied to the engine is estimated from the hydrogen gas generation amount, the supply amount of the hydrocarbon-based fuel, and the toluene concentration contained in the hydrogen gas. By this method, when the hydrocarbon fuel is a liquid fuel such as light oil, the ratio of the liquid fuel can also be grasped.
コントローラ19は、推定手法1または推定手法2を用いて、各検出装置やインジェクタから入力された信号をもとにエンジンに供給される燃料中の水素濃度を推定し、その結果に基づいて、空気流動調整装置18に対してバルブ開度の制御指令信号を出力する。空気流動調整装置18はコントローラ19からの制御指令信号によりバルブ開度を制御し、空気流動の強度が制御される。水素濃度に応じて空気流動の強度を制御することにより、水素濃度が変化しても燃焼速度を所定の範囲に保つことが可能となる。これにより、エンジンの熱効率低下を抑制するとともに、反応器の脱水素反応への影響を小さくできるため、システム全体の効率を安定に保つことができる。
The controller 19 uses the estimation method 1 or the estimation method 2 to estimate the hydrogen concentration in the fuel supplied to the engine based on the signals input from the respective detection devices and injectors, and based on the result, the air A valve opening control command signal is output to the flow control device 18. The air flow adjusting device 18 controls the valve opening degree according to a control command signal from the controller 19 to control the strength of the air flow. By controlling the strength of the air flow according to the hydrogen concentration, it is possible to keep the combustion speed within a predetermined range even if the hydrogen concentration changes. Thereby, while suppressing the thermal efficiency fall of an engine, since the influence on the dehydrogenation reaction of a reactor can be made small, the efficiency of the whole system can be kept stable.
また、エンジンシステムでは、エンジンの運転領域(トルク,回転数)に対して、効率が高くなるようにエンジンに供給される燃料中の水素濃度,空気過剰率が決定される。一方、反応器で生成された水素リッチガスをエンジンに供給するエンジンシステムでは、上述のように水素リッチガスには脱水素化燃料が含まれ、その濃度は変動する。そのため、水素インジェクタおよび燃料インジェクタの供給量のみで燃料中の水素濃度を調整した場合には、燃料中の水素濃度にばらつきが生じることとなる。これに対して、推定手法1,2で説明したエンジンに供給される水素リッチガス中の水素濃度の推定結果を用いて、水素インジェクタおよび燃料インジェクタからの供給量を補正することが好ましい。これにより、水素リッチガス中の水素濃度が考慮されることで、エンジンに供給される燃料中の水素濃度を精度良くコントロールすることが可能となる。なお、水素インジェクタおよび燃料インジェクタからの供給量の制御はコントローラ19により行われる。
In the engine system, the hydrogen concentration in the fuel supplied to the engine and the excess air ratio are determined so as to increase the efficiency with respect to the engine operating range (torque, rotation speed). On the other hand, in the engine system that supplies the hydrogen-rich gas generated in the reactor to the engine, the hydrogen-rich gas contains dehydrogenated fuel and its concentration varies as described above. Therefore, when the hydrogen concentration in the fuel is adjusted only by the supply amounts of the hydrogen injector and the fuel injector, the hydrogen concentration in the fuel varies. On the other hand, it is preferable to correct the supply amounts from the hydrogen injector and the fuel injector using the estimation result of the hydrogen concentration in the hydrogen rich gas supplied to the engine described in the estimation methods 1 and 2. Thereby, the hydrogen concentration in the hydrogen-rich gas is taken into consideration, so that the hydrogen concentration in the fuel supplied to the engine can be accurately controlled. The controller 19 controls the supply amounts from the hydrogen injector and the fuel injector.
以上で説明した本実施形態のエンジンシステムの代表的な効果は以下の通りである。
Typical effects of the engine system of the present embodiment described above are as follows.
空気過剰率によって燃焼速度の制御する場合には以下の制約がある。すなわち、空気過剰率が所定以上になると失火するため、水素混合割合に応じて、燃焼可能な最大空気過剰率が決まる。また,NOX,未燃炭化水素,COなどの排気浄化の観点から、三元触媒を利用する際には空気過剰率1付近、NOX浄化を不要化するためには空気過剰率1.8以上とすることが望ましい。そのため、空気過剰率の調整には限界があり、空気過剰率のみでの燃焼速度の制御は困難となる。また、空気過剰率の変化とともに排気温度が変化するため、反応器での水素生成量が変化してしまう。そのため、空気過剰率で燃焼速度を制御すると水素生成に影響を及ぼし、結果的に全体システムの効率低下を招く場合がある。これに対して、本実施形態のエンジンシステムでは、水素濃度に応じて空気流動の強度を制御することにより、エンジンの熱効率低下を抑制するとともに、反応器の脱水素反応への影響が少なく、システム全体の効率を安定に保つことができる。なお、燃焼速度の制御は、本実施形態の空気流動による制御に加えて、空気過剰率による制御を併用することも可能である。
When the combustion rate is controlled by the excess air ratio, there are the following restrictions. That is, misfire occurs when the excess air ratio exceeds a predetermined value, and therefore the maximum excess air ratio that can be combusted is determined according to the hydrogen mixing ratio. Also, from the viewpoint of exhaust purification of NO x , unburned hydrocarbons, CO, etc., when using a three-way catalyst, the excess air ratio is around 1, and to eliminate the need for NO x purification, the excess air ratio is 1.8. It is desirable to set it above. For this reason, there is a limit to the adjustment of the excess air ratio, and it becomes difficult to control the combustion rate only with the excess air ratio. Moreover, since the exhaust gas temperature changes with the change in the excess air ratio, the amount of hydrogen produced in the reactor changes. Therefore, controlling the combustion rate with the excess air ratio affects the hydrogen generation, and as a result, the efficiency of the entire system may be reduced. On the other hand, in the engine system of the present embodiment, by controlling the strength of the air flow according to the hydrogen concentration, the thermal efficiency of the engine is suppressed and the influence on the dehydrogenation reaction of the reactor is small. The overall efficiency can be kept stable. In addition to the control by the air flow of this embodiment, the control by the air excess rate can be used together for the control of the combustion speed.
11 エンジン
12 反応器
13 有機ハイドライドタンク
14 分離装置
15 脱水素燃料タンク
16 水素インジェクタ
17 燃料インジェクタ
18 空気流動調整装置
18a タンブル弁
18b スワール弁
19 コントローラ
20 濃度検出装置
21 温度検出装置
22 圧力検出装置
23 供給量計測装置
28 排気管
29 吸気管
31 反応セル
32 第1ケーシング
33 反応シート
34 第2ケーシング
35 金属箔
36 多孔質層
37 触媒 DESCRIPTION OFSYMBOLS 11 Engine 12 Reactor 13 Organic hydride tank 14 Separation device 15 Dehydrogenation fuel tank 16 Hydrogen injector 17 Fuel injector 18 Air flow control device 18a Tumble valve 18b Swirl valve 19 Controller 20 Concentration detection device 21 Temperature detection device 22 Pressure detection device 23 Supply Quantity measuring device 28 Exhaust pipe 29 Intake pipe 31 Reaction cell 32 First casing 33 Reaction sheet 34 Second casing 35 Metal foil 36 Porous layer 37 Catalyst
12 反応器
13 有機ハイドライドタンク
14 分離装置
15 脱水素燃料タンク
16 水素インジェクタ
17 燃料インジェクタ
18 空気流動調整装置
18a タンブル弁
18b スワール弁
19 コントローラ
20 濃度検出装置
21 温度検出装置
22 圧力検出装置
23 供給量計測装置
28 排気管
29 吸気管
31 反応セル
32 第1ケーシング
33 反応シート
34 第2ケーシング
35 金属箔
36 多孔質層
37 触媒 DESCRIPTION OF
Claims (10)
- 水素を燃料の一部とするエンジンシステムであって、
水素および炭化水素系燃料を燃焼して動力を発生するエンジンと、
前記エンジンの排気ガスの熱を利用して、水素含有燃料から脱水素反応により水素及び脱水素燃料を生成する触媒を有する反応器と、
前記反応器で生成した水素リッチガスをエンジンに供給する水素供給手段と、
前記エンジンへ供給する空気の流動を調整する空気流動調整装置と、
前記空気流動調整装置の動作を制御する制御手段と、を備え、
前記制御手段は、前記エンジンに供給される燃料中の水素の割合に応じて、前記空気流動調整装置を制御することを特徴とするエンジンシステム。 An engine system using hydrogen as a part of fuel,
An engine that generates power by burning hydrogen and hydrocarbon fuel;
A reactor having a catalyst for generating hydrogen and dehydrogenated fuel from a hydrogen-containing fuel by a dehydrogenation reaction using heat of exhaust gas of the engine;
Hydrogen supply means for supplying the hydrogen-rich gas generated in the reactor to the engine;
An air flow adjusting device for adjusting the flow of air supplied to the engine;
Control means for controlling the operation of the air flow control device,
The engine system according to claim 1, wherein the control means controls the air flow control device in accordance with a ratio of hydrogen in the fuel supplied to the engine. - 請求項1において、
前記空気流動調整装置はスワール流又はタンブル流を形成する手段を備え、
前記制御手段は、前記エンジンに供給される燃料中の水素の割合が大きいほど、前記タンブル流またはスワール流の強度を小さくする制御を行うことを特徴とするエンジンシステム。 In claim 1,
The air flow adjusting device comprises means for forming a swirl flow or a tumble flow,
The engine system, wherein the control means performs control to reduce the strength of the tumble flow or swirl flow as the proportion of hydrogen in the fuel supplied to the engine increases. - 請求項1において、
前記空気流動調整装置がタンブル弁またはスワール弁であり、
前記制御手段は、前記エンジンに供給される燃料中の水素の割合が大きいほど、前記タンブル弁またはスワール弁の開度を小さくする制御を行うことを特徴とするエンジンシステム。 In claim 1,
The air flow control device is a tumble valve or a swirl valve;
The engine system according to claim 1, wherein the control means performs control to reduce the opening degree of the tumble valve or swirl valve as the proportion of hydrogen in the fuel supplied to the engine increases. - 請求項3において、前記制御手段は、前記エンジンに供給される燃料中の水素の割合と空気過剰率に応じて、前記空気流動調整装置を制御することを特徴とするエンジンシステム。 4. The engine system according to claim 3, wherein the control means controls the air flow adjusting device in accordance with a ratio of hydrogen in the fuel supplied to the engine and an excess air ratio.
- 請求項1において、
前記反応器で生成した水素と脱水素化燃料を分離する分離装置を備え、
前記分離装置で分離された水素リッチガスが前記水素供給手段により前記エンジンに供給されることを特徴とするエンジンシステム。 In claim 1,
A separation device for separating hydrogen produced in the reactor and dehydrogenated fuel;
An engine system, wherein the hydrogen rich gas separated by the separation device is supplied to the engine by the hydrogen supply means. - 請求項5において、
前記エンジンに供給される前記炭化水素系燃料として前記脱水素化燃料を用いることを特徴とするエンジンシステム。 In claim 5,
An engine system using the dehydrogenated fuel as the hydrocarbon-based fuel supplied to the engine. - 請求項3において、
前記エンジンに供給される前記水素リッチガスの流量を推定する第一の流量推定手段と、
前記エンジンに供給される前記炭化水素系燃料の流量を推定する第二の流量推定手段と、
前記エンジンに供給される前記水素リッチガスに含まれる脱水素化燃料の濃度を推定する濃度推定手段と、を備え、
前記制御手段は、前記第一流量推定手段,第二の流量推定手段、及び、前記濃度推定手段で推定された情報に基づいて、前記エンジンに供給される燃料中の水素の割合を推定し、推定結果に基づいて前記空気流動調整装置を制御することを特徴とするエンジンシステム。 In claim 3,
First flow rate estimating means for estimating a flow rate of the hydrogen-rich gas supplied to the engine;
Second flow rate estimating means for estimating a flow rate of the hydrocarbon fuel supplied to the engine;
A concentration estimation means for estimating the concentration of dehydrogenated fuel contained in the hydrogen rich gas supplied to the engine,
The control means estimates the proportion of hydrogen in the fuel supplied to the engine based on the information estimated by the first flow rate estimating means, the second flow rate estimating means, and the concentration estimating means, An engine system that controls the air flow control device based on an estimation result. - 請求項7において、
前記水素供給手段に水素リッチガスを供給する水素供給管を有し、
前記濃度推定手段は、前記水素供給管に備えられた温度検出装置,圧力検出装置を備え、前記温度検出装置、前記圧力検出装置で検出された水素リッチガスの温度,圧力から前記水素リッチガスに含まれる前記脱水素燃料の濃度を推定することを特徴とするエンジンシステム。 In claim 7,
A hydrogen supply pipe for supplying a hydrogen-rich gas to the hydrogen supply means;
The concentration estimation means includes a temperature detection device and a pressure detection device provided in the hydrogen supply pipe, and is included in the hydrogen rich gas from the temperature and pressure of the hydrogen rich gas detected by the temperature detection device and the pressure detection device. An engine system for estimating a concentration of the dehydrogenated fuel. - 請求項7において、
前記第一の流量推定手段が、前記反応器に供給される水素含有燃料の量と、前記分離装置で分離された脱水素燃料中に含まれる未反応の水素含有燃料の濃度から、前記水素リッチガスの流量を推定することを特徴とするエンジンシステム。 In claim 7,
The first flow rate estimation means is configured to calculate the hydrogen-rich gas from the amount of hydrogen-containing fuel supplied to the reactor and the concentration of unreacted hydrogen-containing fuel contained in the dehydrogenated fuel separated by the separator. Engine system characterized by estimating the flow rate of the engine. - 請求項7において、
前記濃度推定手段で推定した水素リッチガス中の脱水素化燃料濃度をもとに前記エンジンへ供給する水素濃度を補正することを特徴とするエンジンシステム。 In claim 7,
An engine system, wherein the concentration of hydrogen supplied to the engine is corrected based on the concentration of dehydrogenated fuel in the hydrogen-rich gas estimated by the concentration estimating means.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013522348A JP5696215B2 (en) | 2011-06-27 | 2011-06-27 | Engine system |
PCT/JP2011/003640 WO2013001558A1 (en) | 2011-06-27 | 2011-06-27 | Engine system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/003640 WO2013001558A1 (en) | 2011-06-27 | 2011-06-27 | Engine system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013001558A1 true WO2013001558A1 (en) | 2013-01-03 |
Family
ID=47423512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/003640 WO2013001558A1 (en) | 2011-06-27 | 2011-06-27 | Engine system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5696215B2 (en) |
WO (1) | WO2013001558A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112983655A (en) * | 2021-02-26 | 2021-06-18 | 重庆凯瑞动力科技有限公司 | Natural gas and hydrogen double-injection device and control method thereof |
CN113236454A (en) * | 2021-06-09 | 2021-08-10 | 杭州电子科技大学 | Novel engine system and injection pulse width correction method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009138695A (en) * | 2007-12-10 | 2009-06-25 | Toyota Motor Corp | Internal combustion engine |
JP2010121630A (en) * | 2010-02-01 | 2010-06-03 | Hitachi Ltd | Engine system |
-
2011
- 2011-06-27 WO PCT/JP2011/003640 patent/WO2013001558A1/en active Application Filing
- 2011-06-27 JP JP2013522348A patent/JP5696215B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009138695A (en) * | 2007-12-10 | 2009-06-25 | Toyota Motor Corp | Internal combustion engine |
JP2010121630A (en) * | 2010-02-01 | 2010-06-03 | Hitachi Ltd | Engine system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112983655A (en) * | 2021-02-26 | 2021-06-18 | 重庆凯瑞动力科技有限公司 | Natural gas and hydrogen double-injection device and control method thereof |
CN113236454A (en) * | 2021-06-09 | 2021-08-10 | 杭州电子科技大学 | Novel engine system and injection pulse width correction method |
Also Published As
Publication number | Publication date |
---|---|
JP5696215B2 (en) | 2015-04-08 |
JPWO2013001558A1 (en) | 2015-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8037850B2 (en) | Method for operating an engine | |
US8402928B2 (en) | Method for operating an engine with variable charge density | |
Shi et al. | Effect of spark timing on combustion and emissions of a hydrogen direct injection stratified gasoline engine | |
US8516980B2 (en) | Method for operating a vehicle with a fuel reformer | |
JP6318000B2 (en) | Ethanol engine system | |
US7587998B2 (en) | Power plant and fuel supply method therefor | |
US8146541B2 (en) | Method for improving transient engine operation | |
US8613263B2 (en) | Method for operating a charge diluted engine | |
JP4039383B2 (en) | Internal combustion engine using hydrogen | |
US8370049B1 (en) | Control system of internal combustion engine | |
Wang et al. | Comparison of the performance of a spark-ignited gasoline engine blended with hydrogen and hydrogen–oxygen mixtures | |
JP2009150397A (en) | Fuel rail assembly and method of operating fuel system for engine | |
Li et al. | A novel strategy for hydrous-ethanol utilization: Demonstration of a spark-ignition engine fueled with hydrogen-rich fuel from an onboard ethanol/steam reformer | |
JP5696215B2 (en) | Engine system | |
WO2011152366A1 (en) | Energy-generating system | |
Escobar-Jimenez et al. | The effects of not controlling the hydrogen supplied to an internal combustion engine | |
JP2013130179A (en) | Internal combustion engine control device | |
US8839606B2 (en) | Engine system with reformer | |
JP2007231937A (en) | Fuel supply device of internal combustion engine | |
JP2008240707A (en) | Internal combustion engine with fuel reformer | |
US10787959B2 (en) | Operation of internal combustion engine with improved fuel efficiency | |
Hamdan | Feasibility of Supporting Diesel Engine Using Solar–Hydrogen Energy Cycle | |
Choi et al. | A study on the improvement of combustion and emission performance in an EGR-assisted gasoline engine bi-fueled with hydrogen | |
Velmanirajan et al. | Analysis of Nickel and Silver Metal Catalytic Coating in Performance of Two Stroke Internal Combustion Engine | |
WO2019059015A1 (en) | Internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11868624 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013522348 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11868624 Country of ref document: EP Kind code of ref document: A1 |