[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013095034A1 - 무선 접속 시스템에서 무선 통신 상태 측정 방법 및 이를 위한 장치 - Google Patents

무선 접속 시스템에서 무선 통신 상태 측정 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2013095034A1
WO2013095034A1 PCT/KR2012/011254 KR2012011254W WO2013095034A1 WO 2013095034 A1 WO2013095034 A1 WO 2013095034A1 KR 2012011254 W KR2012011254 W KR 2012011254W WO 2013095034 A1 WO2013095034 A1 WO 2013095034A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
resource
downlink
uplink
base station
Prior art date
Application number
PCT/KR2012/011254
Other languages
English (en)
French (fr)
Inventor
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/362,067 priority Critical patent/US10615931B2/en
Priority to KR1020147019028A priority patent/KR101615987B1/ko
Priority to CN201280063239.2A priority patent/CN104025484B/zh
Publication of WO2013095034A1 publication Critical patent/WO2013095034A1/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention 'relates to a wireless access system, a method for more particularly measuring the radio communication state, the amount of volume and the downlink resource of the uplink resources in a wireless access system supporting an environment that is dynamically changing, and the device that supports them It's about. ⁇
  • Mobile communication systems have been developed to provide voice services while ensuring user activity. Therefore, mobile communication systems are gradually expanding to not only voice but also data services, and now they have developed to the extent that they can provide high-speed data services. However, in the mobile communication system in which a service is currently provided, a more advanced mobile communication system is required because resource shortages and users require higher speed services.
  • MIMO Multiple Input Multiple Output
  • CoMP Cooperative Multiple Point Transmission
  • Relay Relay
  • the uplink resource and the downlink resource are fixed, so that the traffic is processed within the limited resource even if the uplink and downlink traffic are changed.
  • the base station is based on the amount of traffic in the uplink and downlink Accordingly, in consideration of an environment in which the amounts of uplink resources and downlink resources are dynamically changed, even uplink resources may be used as downlinks, and vice versa. In this situation, even if the resource is configured as uplink or downlink, the terminal needs to perform an appropriate operation according to the purpose for which the resource is used.
  • An object of the present invention is a method and apparatus for smoothly measuring a wireless communication state of a terminal in a wireless access system, preferably in a wireless access system supporting an environment in which the amount of uplink resources and the amount of downlink resources are dynamically changed. Suggest.
  • An object of the present invention is a wireless connection.
  • a method for a UE to measure a radio communication state in an uplink resource and / or a downlink resource in a system, preferably in a wireless access system supporting an environment in which the amount of uplink resources and the amount of downlink resources are dynamically changed Suggest a device for.
  • An object of the present invention is to use any resource (uplink resource or downlink resource) by the terminal in a wireless access system, preferably in a wireless access system that supports an environment in which the amount of uplink resources and the amount of downlink resources are dynamically changed.
  • An aspect of the present invention is a method for supporting measurement of a terminal in a wireless access system that supports an environment in which an amount of uplink resources and an amount of downlink resources are dynamically changed. Transmitting a reference signal to the terminal and receiving a result of the measurement using the reference signal from the measurement resource from the terminal, wherein the measurement resource is the same resource in the neighboring base station for downlink use; It is determined in consideration of whether it is used or used for uplink purposes.
  • the base station in the base station of the amount and quantity of the downlink resource of the uplink resources supporting a measurement (measurement) of the terminal in a wireless access system supporting an environment that is dynamically changes, for transmitting and receiving a radio signal And a processor for transmitting information about an adio frequency (RF) unit and measurement resources to the terminal, transmitting a reference signal to the terminal, and receiving a result of the measurement using the reference signal from the measurement resource from the terminal.
  • the measurement resource is determined by considering whether the same resource is used for downlink or uplink in the neighboring base station.
  • the measurement resource is set only in the subframe that the neighboring base station uses for downlink transmission.
  • the indication information indicating that the measurement resource is valid is transmitted to the terminal.
  • the measurement resource may include the first measurement resource and The first measurement resource is divided into a second measurement resource, and the first measurement resource is set only in a subframe used by the neighboring base station for downlink transmission, and the second measurement resource is set only in a subframe used by the neighboring base station for uplink transmission.
  • the measurement may comprise a reference signal received power (RSRP) measurement, a reference signal received quality (RSRQ) measurement, a received signal strength indicator (RSSI) ) At least one of a measurement and a radio link monitoring (RLM) measurement.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RLM radio link monitoring
  • RSRP is measured only in downlink resources and RSSI is measured only in uplink subframes used for downlink transmission.
  • the result of the measurement comprises distribution information of the RSSI measurement measured over a plurality of preset subframes.
  • the distribution information may include a maximum value and a minimum value of RSSIs measured during a plurality of preset subframes, a frequency at which the RSSI is measured above or below a preset threshold for a plurality of preset subframes, and preset.
  • the upper black is the RSSI measurement included in the preset percentage in the lower and measured during the plurality of preset subframes. It includes at least one of the average value of the RSSI measurement included in the preset percentage at the upper or lower of the SSI measurement.
  • Another aspect of the present invention provides a method for a user equipment to perform a measurement in a wireless access system that supports an environment in which the amount of uplink resources and the amount of downlink resources are dynamically changed.
  • Receiving information receiving a reference signal from a base station, performing a measurement using a reference signal in a measurement resource, and transmitting a result of the measurement to the base station, wherein the measurement resource is adjacent to the base station. It is determined by considering whether the same resource is used for downlink or black uplink at the base station.
  • RF for transmitting and receiving radio signals dio frequency
  • a processor that receives information about a measurement resource from a unit and a base station, receives a reference signal from the base station, performs a measurement using the reference signal in the measurement resource, and transmits the result of the measurement to the base station. It includes, but the measurement resource is determined in consideration of whether the same resource is used for downlink or uplink in the neighboring base station.
  • the measurement resource is set only in a subframe that the neighboring base station uses for downlink transmission.
  • the indication information indicating that the measurement resource is valid is received.
  • the measurement resource is divided into a first measurement resource and a second measurement resource, and the first measurement resource is set only in a subframe used by a neighboring base station for downlink transmission, and the second measurement resource Is set only in a subframe used by a neighbor base station for uplink transmission.
  • the measurement comprises at least one of a reference signal reception power (RSRP) measurement, a reference signal reception quality (RSRQ) measurement, a received signal strength indicator (RSSI) measurement and a radio link monitoring (RLM) measurement.
  • RSRP reference signal reception power
  • RSSI received signal strength indicator
  • RLM radio link monitoring
  • RSRP is measured only in downlink resources, and RSSI is determined only in uplink subframes used for downlink transmission. '
  • the result of the measurement includes distribution information of the RSSI measurement measured over a plurality of preset subframes.
  • the distribution information may include a maximum value and a minimum value of the RSSI measured during the plurality of preset sieve frames, a frequency at which the RSSI is measured above or below the preset threshold for the plurality of preset subframes, and the preset value.
  • the terminal in a wireless access system, preferably in a wireless access system supporting an environment in which the amount of uplink resources and the amount of downlink resources are dynamically changed, the terminal can smoothly measure the wireless communication state. .
  • the present invention preferably in consideration of the transmission direction of the in-cell cell in the radio access system that supports the environment in which the amount of uplink resources and the amount of downlink resources is dynamically changed uplink resources and / or By performing measurements in the downlink resources, more accurate and stable measurements can be performed.
  • a corresponding terminal may be scheduled in a resource in which a combination of communication directions of cells is indicated.
  • 1 shows physical channels used in 3GPP LTE system and using them A diagram for describing a general signal transmission method.
  • FIG. 2 shows a structure of a radio frame in 3GPP LTE.
  • 3 is a diagram illustrating a resource grid for one downlink slot.
  • 5 shows a structure of an uplink subframe.
  • FIG. 6 is a diagram illustrating a situation in which two adjacent cells perform transmission in different directions on the same time / frequency resource.
  • FIG. 7 is a diagram illustrating a measurement method of a terminal according to an embodiment of the present invention.
  • 8 is a diagram illustrating a situation in which a terminal performs measurement on downlink resources according to an embodiment of the present invention.
  • FIG. 9 is a block diagram of a wireless communication device according to an embodiment of the present invention.
  • the base station has a meaning as a terminal node of the network that directly communicates with the terminal.
  • Certain operations described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is apparent that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • BS Base Station
  • eNB eNode B
  • AP Access Point
  • the repeater may be replaced by terms such as relay node (RN) and relay sta ion (RS).
  • RN relay node
  • RS relay sta ion
  • 1 terminal (Terminal V is UEdJser Equiment), MS (Mobi le Station), MSS (Mobi le Subscriber Station), SS (Subscriber Station), AMS (Advanced Mobile Station), WT (Wireless terminal), MTC ( Machine-Type Communication (Device) Device can be replaced with terms such as machine-to-machine (M2M) device, device-to-I (evice) device.
  • M2M Machine-Type Communication
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the IEEE 802 system, the 3GPP system, the ⁇ , ⁇ LTE and LTE-Advanced (LTE-A) system and the 3GPP2 system, which are wireless access systems. That is, the embodiments of the present invention Steps or portions not described in order to clearly reveal the technical spirit of the invention may be supported by the above documents. In addition, all terms disclosed in this document may be described by the above standard document.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • MAO orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA can be implemented in wireless technologies such as Global System for Mobile Communications (GvSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GvSM Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • 0FDMA may be implemented by wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E—UTRA (Evolved UTRA), and the like.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd lb Generation Partnership Project (3GPP) LTE (1 ong term evolution) is part of Evolved UMTS (E-UMTS) using E ⁇ UTRA, and employs 0FDMA in downlink and SC-FDMA in uplink.
  • LTE—A Advanced is an evolution of 3GPP LTE.
  • 1 shows physical channels used in 3GPP LTE system and using them A diagram for describing a general signal transmission method.
  • step S101 an initial cell search operation such as synchronization with a base station is performed.
  • the terminal receives a primary synchronization channel (P-SCH) and a floating channel (S—SCH: Secondary Synchronization Channel) from the base station, synchronizes with the base station, and obtains information such as a cell ID.
  • P-SCH primary synchronization channel
  • S—SCH Secondary Synchronization Channel
  • the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain broadcast information in a cell.
  • PBCH physical broadcast channel
  • the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • DL RS downlink reference signal
  • the UE After completing the initial cell discovery, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S102. Specific system information can be obtained.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the terminal may perform a random access procedure (1 access procedure to Rand) as in steps S13 to S12 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), and a voice response message for the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S104).
  • PRACH physical random access channel
  • the UE transmits an additional physical random access channel signal (S105) and a physical downlink control channel signal.
  • S105 additional physical random access channel signal
  • S106 receives a downlink shared channel signal
  • the UE After performing the above-described procedure, the UE subsequently receives a physical downlink control channel signal and / or a physical downlink shared channel signal (S107) and a physical uplink shared channel (PUSCH) as a general uplink / downlink signal transmission procedure.
  • a transmission (Uplink Shared Channel) signal and / or a Physical Uplink Control Channel (PUCCH) signal may be transmitted (S108).
  • UCI uplink control information
  • HARQ-ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgement / Negative-ACK
  • SR Scheduling Request
  • CQI Channel Quality Indication
  • PMI Precoding Matrix Indica ion
  • RI Rank Indication
  • UCI is generally transmitted periodically through the PUCCH, but may be transmitted through the PUSCH when control information and traffic data should be transmitted at the same time.
  • FIG. 2 shows a structure of a radio frame in PP LTE.
  • uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • a type 1 radio frame structure applicable to a frequency division duplex (FD) and a type 2 radio frame applicable to a time division duplex (TDD) Support structure In the 3GPP LTE standard, a type 1 radio frame structure applicable to a frequency division duplex (FD) and a type 2 radio frame applicable to a time division duplex (TDD) Support structure.
  • FD frequency division duplex
  • TDD time division duplex
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is called a TTK transmission time interval.
  • one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of 0FDM (or thogona 1 frequency division multiplexing) symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain. Since 3GPP LTE uses 0FDMA in downlink, the 0FDM symbol is for representing one symbol period. The 0FDM symbol can be referred to as one SC-FDMA symbol or symbol interval.
  • a resource block (RB) as a resource allocation unit includes a plurality of consecutive subcarriers in one slot.
  • the number of 0FDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • CPs have an extended CP and a normal CP.
  • the number of 0FDM symbols in one slot may be seven.
  • the 0FDM symbol is composed of extended cyclic prefix, the length of one 0FDM symbol is increased, so the number of 0FDM symbols included in one slot is less than that of the normal cyclic prefix.
  • the number of 0FDM symbols included in one slot may be six.
  • an extended cyclic prefix is added to further reduce intersymbol interference. Can be used.
  • one slot contains 7 OFDM symbols, so one subframe contains 14 0FOM symbols.
  • the first up to three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • FIG. 2B illustrates scattering of frame structure type 2.
  • FIG. Type 2 radio frames consist of two half frames, each of which has five subframes, downlink pilot time slot (DwPTS), guard period (GP), and uplink pilot time (UpPTS). Slot), and one subframe consists of two slots.
  • DwPTS is the initial cell search in the terminal. Used for synchronization or channel estimation.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard interval is an interval for removing interference caused by the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • an uplink-downlink configuration is a rule indicating whether uplink and downlink are split (or reserved) for all subframes.
  • Table 1 shows the uplink ⁇ downlink configuration.
  • Uplink-Downlink configuration can be divided into seven types, and location of downlink subframe, special subframe, and uplink subframe for each gig-configuration And / or the number is different.
  • Switch-point periodicity refers to a period in which an uplink subframe and a downlink sieve frame are repeatedly switched in the same manner, and both 5ms or 10ms are supported.
  • the special subframe S exists every half-frame, and in case of having a period of 5ms downlink-uplink switching time, it exists only in the first half-frame.
  • subframes 0 and 5 and DwPTS are intervals for downlink transmission only.
  • the subframe immediately following the UpPTS and the subframe subframe is always an interval for uplink transmission.
  • the uplink-downlink configuration may be known to both the base station and the terminal as system information.
  • the base station is configured whenever the uplink-downlink configuration information changes By transmitting only the index of the information, it is possible to inform the terminal of the change of the uplink ⁇ downlink allocation state of the radio frame.
  • the configuration information is a kind of downlink control information and may be transmitted through a physical downlink control channel (PDCCH) like other scheduling information, and broadcasted as broadcast information. It may be transmitted in common to all terminals in a cell through a broadcast channel.
  • PDCCH physical downlink control channel
  • the structure of the above-described radio frame is only one example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of symbols included in the slot may be variously changed. ' ⁇
  • 3 is a diagram illustrating a resource grid for one downlink slot.
  • One downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block includes 12 ⁇ 7 resource elements.
  • the number N DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • Up to three previous OFDM symbols in the first slot in a subframe are control regions to which control channels are allocated, and the remaining OFDM The symbols are data regions to which a Physical Downlink Shared Channel (PDSCH) is allocated.
  • Examples of downlink control channels used in 3GPP LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid-ARQ indicator channel (PH ICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
  • the PHICH is a male answer channel for uplink and carries an acknowledgment (AC) / not-acknowledgement (ACACK) signal for a hybrid automatic repeat request (HARQ).
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information, or an uplink transmission (Tx) power control command for a certain terminal group.
  • P1XCH is a resource allocation and transmission format of DL-SCH (downlink shared channel), resource allocation information of UL-SCH (uplink shared channel) (also called uplink grant), PCH Resource allocation for upper layer control messages such as paging information on Paging Channel, system information on DL-SCH, random access response transmitted on PDSCH, It may carry a set of transmission power control commands, activation of Voice over IP (VoIP), etc. for individual terminals in the terminal group.
  • the plurality of PDCCHs may be transmitted in a control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH consists of a set of one or a plurality of consecutive CCEs.
  • the CCE is based on the state of the wireless channel Logical allocation unit used to provide a coding rate to the PDCCH.
  • the CCE is referred to a plurality of resource element groups.
  • the format of the PDCCH and the number of available bits of the PDCCH are determined according to the association between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and attaches a CRC (Cyclic Redundancy Check) to the control information.
  • the CRC is masked with a unique identifier (referred to as RNTI (Radio Network Temporary Identifier)) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • a unique identifier of the terminal for example, a C-RNTI (Cell-RNTI) may be masked to the CRC.
  • a paging indication identifier for example, P-RNTK Paging RNTI
  • SIB system information block
  • SI -RNTI system information RNTI
  • RA-RNTI random access RNTI
  • 5 shows a structure of an uplink subframe.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • the control region is allocated a PUCCi Physical Uplink Control Channel) that carries uplink control information.
  • the data region is allocated a Physical Uplink Shared Channel (PUSCH) that carries user data.
  • PUSCH Physical Uplink Shared Channel
  • one UE does not simultaneously transmit a PUCCH and a PUSCH.
  • the PUCCH for one UE is allocated an RB pair in a subframe. RB RBs belonging to the pair occupy different subcarriers in each of the two slots. This RB pair allocated to the PUCCH is said to be frequency hopping at the slot boundary (slot boundary).
  • the transmitted packet When a packet (or signal) is transmitted in a wireless communication system, the transmitted packet may be transmitted through a wireless channel, which may cause distortion of the signal. The distortion must be corrected in the received signal by using.
  • a signal known to both the transmitting side and the receiving side is transmitted, and a method of finding the channel information with a distortion degree when such a signal is received through the channel is mainly used.
  • a signal known to both the transmitter and the receiver is called a pilot signal or a reference signal.
  • a reference signal may be classified into two types according to its purpose.
  • Reference signals include those used for channel information acquisition and data demodulation.
  • the terminal since the terminal can acquire downlink channel information, it needs to be transmitted over a wide band, and even a terminal that does not receive downlink data in a specific subframe can receive and measure the reference signal.
  • the reference signal for measuring these channels is It can also be used for the measurement of over.
  • the latter is a reference signal transmitted together with a corresponding resource when the base station transmits a downlink signal, and the terminal can estimate the channel by receiving the reference signal, and thus can demodulate the data.
  • Such a demodulation reference signal should be transmitted to an area where data is transmitted.
  • a downlink reference signal As a downlink reference signal, a common reference signal (CRS) shared by all terminals in a cell and a dedicated reference signal (DRS) for only a specific terminal are defined.
  • CRS is used for two purposes of channel information acquisition and data demodulation, and is also called cell specific RS.
  • the base station transmits the CRS every subframe over the broadband.
  • DRS is used only for data demodulation, and DRS may be transmitted through resource elements when data demodulation on PDSCI-1 is needed.
  • the UE may receive the presence or absence of a DRS through a higher layer and is valid only when a floating PDSCH is mapped.
  • the DRS may be referred to as a UE-specific RS or a demodulation RS (DMRS).
  • the receiving side can estimate the state of the channel from the CRS and feed back indicators related to the channel quality, such as the CQKChannel Quality Indicator (PQ), Precoding Matrix Index (PMI) and / or RHRank Indicator, to the transmitting side (base station).
  • a reference signal related to feedback of channel state information (CSI) such as CQ1 / PMI / RI may be separately defined as a CSI-RS.
  • CSI-RS for channel measurement purpose is characterized in that the conventional CRS is designed for channel measurement-oriented purpose, unlike the conventional CRS is used for data demodulation at the same time. As such, the CS ⁇ RS is transmitted only for the purpose of obtaining information about the channel state.
  • the base station transmits CSI—RS for all antenna ports.
  • the CSI-RS is transmitted for the purpose of knowing downlink channel information, unlike the DRS, the CSI-RS is transmitted over the entire band.
  • 3GPP LTE system defines two transmission methods, open-loop MIM0 (open-loop MIM0) and closed-loop MIMCX closed loop MIM0, which operate without channel information of the receiver. ),
  • the transceiver performs beamforming based on channel information, that is, channel state information (CSI).
  • the base station instructs the UE to feed back the downlink CS [by assigning a Physical Uplink Control Channel (PUCCH) or a Physical Uplink Shared Channel (PUSCH) to the terminal to obtain CS I from the terminal. .
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • CSI is largely classified into three types of information: R Rank Indicator, PMI (Precoding Matrix Index), and Channel Quality Indication (CQI).
  • RI represents tank (rank) information of the channel, and means the number of signal streams (or layers) that the terminal receives through the same frequency time resource. Since this value is determined to be dominant by long term fading of the channel, it is fed back from the terminal to the base station with a period longer than that of the PMI and CQI values.
  • the PMI reflects the spatial characteristics of the channel and represents a precoding index of the base station preferred by the terminal based on a metric such as a signal to interference plus noise ratio (SINR). That is, PMI is information about a precoding matrix used for transmission from the transmitter.
  • the precoding matrix fed back from the receiver is determined in consideration of the number of layers indicated by the RI.
  • the PMI is closed-loop spatial multiplexing and long delay CDD (large delay). It may be fed back in case of CDD) transmission. In the case of open-loop transmission, the transmitting end may select the precoding matrix according to a predetermined rule.
  • the receiver selects PMI for each rank as follows.
  • the receiving end may calculate a previously processed SINR for each PMI, convert the calculated SINR into a sum capacity, and select a best PMI based on the total capacity. That is, the calculation of the PMI by the receiver may be a process of finding an optimal PMI based on the total capacity.
  • the transmitter which has received PMI feedback from the receiver, can use the precoding matrix recommended by the receiver as it is, and can include this fact as an indicator of one bit in the data transmission scheduling assignment information to the receiver. Or, the transmitting end may not use the precoding matrix indicated by the PMI fed back from the receiving end. In such a case, it itdi transmitter can be explicitly included in the precoding matrix information used for the data transmission to the receiver on the scheduling assignment information.
  • CQI is a value representing the strength of the channel, and means the reception SINR that can be obtained when the base station uses PMI.
  • the terminal reports to the base station a CQI index indicating a specific combination in a set consisting of combinations of a predetermined modulation scheme and code rate.
  • MU-MIMO multi-user ⁇
  • a base station allocates each antenna resource to another terminal, and selects and schedules a terminal capable of a high data rate for each antenna.
  • MU-MIM0 In terms of channel feedback, higher accuracy is required. The reason is that in MU-MIM0, an interference channel between terminals multiplexed in an antenna domain exists, so that feedback channel accuracy greatly affects not only a terminal transmitting feedback but also other terminals multiplexed.
  • the final PMI is a long term and / or wideband PMI W1 and a short term and / or subband PM1. It was decided to design in two, such as W2, and the final PMI could be determined by the combination of and W2.
  • An example of a hierarchical codebook transformation that forms one final PMI from two channel information, W1 and W2, is a codebook using a long term covariance matrix of a channel as shown in Equation 1 below. Can be converted.
  • A denotes a matrix whose norm is normalized by i for each column of matrix A. denotes the codeword of the transformed final codebook, and W1 and W2. The specific structure of is shown in Equation 2 below.
  • Equation 2 uses a cross polarized antenna and correlation characteristics of a channel that occur when the spacing between the antennas is close (typically less than half of the signal wavelength between adjacent antennas). It is designed to reflect this.
  • the antennas can be classified into horizontal antenna groups and vertical antenna groups. Each antenna group has characteristics of a uniform linear array (ULA) antenna. The two antenna groups can be located together (c located). Therefore, the correlation between antennas in each group has the same linear phase increment, and Phase rotated characteristics.
  • UUA uniform linear array
  • Equation 2 Since the codebook is a quantized value of the channel, it is necessary to design the codebook by reflecting the characteristics of the channel corresponding to the source.
  • a rank 1 codeword having a structure of Equation 2 is, for example, as shown in Equation 3 below, and it can be seen that the channel characteristics are reflected in a codeword that satisfies Equation 2. .
  • the codeword is Nt (number of transmitting (Tx) antennas). It is represented by a vector consisting of one column (Nt by 1) and is structured into two vectors, the upper vector X 'and the lower vector a ' X W, each of which is a correlation between the horizontal antenna group and the vertical antenna group. (correlat ion) characteristics.
  • X '() is advantageously represented as a vector having a linear phase increment reflecting the correlation characteristics between the antennas of each of the 5 antenna groups, and a representative example is DFT (Discrete).
  • H It can be regarded as MIM0 system where antennas are geographically dispersed.
  • MIM0 system where antennas are geographically dispersed.
  • high channel accuracy is required to avoid co-scheduling between terminals, which is co-scheduled like single-cell MU-MIM0.
  • CoMP CB fine-channel information is required to avoid interference caused by neighboring cells to the serving cell.
  • Inter—Cell Interference Coordinat ion eICIC
  • the interfering cell is called an aggressor cell or a primary cell, respectively, and the interfering cell is called a victim cell or a secondary 0! defined as (secondary cell), and the attacker cell (aggressor ceH) stops data transmission in some specific resource regions so that the terminal can maintain connection with the victim cell or binary cell in the corresponding resource region. to be.
  • the attacker cell uses a silent subframe that reduces the transmission power / activity of some physical channels (including the operation of setting to 0 power) and the victim cell schedules the terminal in consideration of the time domain. Inter-cell interference coordination 0 ] is possible.
  • a silent subframe may be called an absolute blank subframe (ABS).
  • ABS absolute blank subframe
  • the interference level is greatly changed depending on whether the sibling subframe is present, and the UE located at the boundary between the attacker sal and the victim cell has a signal transmitted from each cell. Can act by interfering with each other.
  • the above-described monitoring / measurement is a set of subframes having uniform interference characteristics. It is preferred to be limited to.
  • the 3GPP LTE system defines the following limited RLM and RRM / CSI measurements.
  • the downlink radio link quality may be monitored at the physical layer of the terminal for the purpose of indicating an 'out-of'sync' or 'in-sync' state to the upper layer.
  • the physical layer in the UE In each radio frame, the radio link quality is monitored by comparing the measured values and thresholds (Q oui and Q, n ) over the previous time interval.
  • the physical layer in the terminal monitors the radio link quality by comparing the measured values and thresholds (Q out and Q in ) over at least one time interval before each DRX (Discontinuous Reception) interval.
  • the radio link quality is not monitored in other subframes other than the indicated subframes.
  • the physical layer in the terminal indicates' out-of 'sync' to the upper layer when the radio link quality is worse than the threshold Q ou t in the radio frames in which the radio link quality is evaluated. That is, the 'out-of-sync' instruction is a terminal by measuring the signal from the serving base station. Event that occurs when channel quality falls below a certain level.
  • the channel quality may be measured from a signal to noise ratio (SNR) measured using a Sal-Talk Reference Signal (CRS) in the downlink signal from the base station.
  • SNR signal to noise ratio
  • CRS Sal-Talk Reference Signal
  • the 'out-of-sync' indication may be provided to the upper layer when demodulation of the PDCCH received by the lower linkage (physical layer) is impossible or when SINR (SignaSignt Interference plus Noise Ratio) is low.
  • the physical layer in the terminal indicates 'in' sync to the upper layer when the radio link quality is better than the threshold Q 1 in the radio frames in which the radio link quality is evaluated. That is, the 'i n — S n nc ' indication is an event generated when the terminal measures the signal from the serving base station and the channel quality goes above a certain level.
  • CQI is information indicating channel quality.
  • CQI is a predetermined MCS combination Can be expressed.
  • the CQI index may be given as shown in Table 2 below. Table 2 shows the table for the CQI index.
  • Table 3 shows a PDSCH transmission scheme for a CSI reference resource.
  • the CQI index is represented by 4 bits (ie, CQI indexes 0 to 15), and each CQI index represents a corresponding modulation scheme and code rate.
  • the UE In the 3GPP LTE / LTE® A system, it is defined that the UE considers the following assumptions for calculating the CQI index in the CSI reference resource.
  • o (2) [dB]. Otherwise, for any modulation scheme and any number of layers, ⁇ ⁇ ⁇ ⁇ ⁇ off ⁇ [ dB ]
  • the CQI includes not only information about channel quality but also various information about the corresponding UE. it means . That is, even in the same channel quality can be fed back different CQI index according to the performance of the terminal. Therefore, it is to define certain criteria.
  • the measurement is performed using CRS.
  • DMRS for example, transmission mode 9
  • precoding is applied, so that the measurement for the link where actual transmission is performed is performed. Therefore, when the PMI / RI reporting mode is configured in transmission mode 9, the UE performs channel measurement to calculate the CQI value based only on the CSi reference signal. On the other hand, when the PM.I / RI report is not set in transmission mode 9, the UE performs channel measurement for CQI calculation based on the CRS.
  • the process of the terminal identifying the channel state and obtaining a suitable MCS may be designed in various ways in terms of the terminal implementation.
  • the terminal may calculate a channel state or an effective signal-to-interference plus noise ratio (SWR) using the reference signal.
  • the channel state or effective SINR may be measured over the overall system bandwidth (which may be referred to as set S) or may be measured over some bandwidth (specific subband or specific B).
  • the CQI for the overall system bandwidth (set S) may be referred to as a wideband (QB) CQI, and the CQI for some bands may be referred to as a subband (Q).
  • the terminal may obtain the highest MCS based on the calculated channel state or the effective SINR.
  • the highest MCS means an MCS whose transport block error rate in decoding does not exceed 10% and satisfies the assumptions for CQI calculation.
  • the terminal may determine the CQI index related to the obtained MCS, and report the determined CQI index to the base station.
  • the LTE / LTE-A system defines CSI Reference Resource for CSI feedback / reporting.
  • CSI reference resources are calculated in the frequency domain Frequency with which CQI is associated. It is defined as a group of downlink physical resource blocks (PRBs) corresponding to a band.
  • PRBs physical resource blocks
  • n denotes an uplink subframe index for transmitting / reporting CSI.
  • n WLref has the smallest value corresponding to a valid downlink subframe among 4 or more values. That is, a valid downlink subframe closest to the uplink subframe for reporting the CSI among the at least fourth subframes in the uplink subframe for reporting the CSI.
  • the CSI reference resource is equal to a valid downlink subframe in which a corresponding CSI request in an uplink DCI format (eg, DCI format 0) is transmitted.
  • n CQUef is equal to four.
  • each CSI reference resource is included in any one of the two subframe sets ( Ccsi . 0 , CcS1- '). But not both.
  • Single Frequency Network is not a subframe, and iii) if the length of the DwPTS is less than or equal to a certain size in a special subframe of the TDD system, it does not include a DwPTS-field, and iv) a measurement gap configured for the corresponding UE. Not included And vi) when the UE is configured to have a CSI subframe set in the periodic CSI report, it should correspond to an element of the CSI subframe set related to the periodic CSI report. On the other hand, if there is no valid downlink subframe for the CSI reference resource, CSI reporting is omitted in uplink subframe n.
  • RRM radio resource management
  • Measurements for RRM can be largely divided into RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), and RSRQ is a combination of RSRP and E-UTRA Carrier Received Signal Strength Indicator (RSSI). It can be measured through.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RSSI E-UTRA Carrier Received Signal Strength Indicator
  • Reference Signal Received Power is defined as a linear average of the power distribution of resource elements in which a cell reference reference signal (CRS) is transmitted within a measurement frequency band.
  • CRS cell reference reference signal
  • a cell specific reference signal R 0 corresponding to antenna port '0' may be used.
  • the cell-specific reference signal () corresponding to the antenna port ' ⁇ may be additionally used for RSRP determination.
  • reception diversity is used by the terminal, the reported value may not be smaller than the corresponding RSRP of the individual diversity branch.
  • the number of resource elements used in the measurement frequency band and the measurement interval used by the terminal to determine the RSRP may be determined by the terminal as long as the corresponding accuracy requirements are met.
  • the power per resource element may be determined from the energy received within the portion of the symbol except for the cyclic prefix (CP).
  • Reference Signal Received Quility (RSRQ) is defined as N x RSRP / (E JTRA Carrier RSS I (Received Signal Strength Indicator).
  • N means the number of resource blocks (RBs) of the E-UTRA carrier RSSI measurement band.
  • the measurement of the numerator and denominator in the above formula can be obtained from the same set of resource blocks (RB).
  • the E-UTRA Carrier Received Signal Strength Indicator is a co-channel in OFDM symbols that includes a reference symbol corresponding to antenna port '0' in the measurement band and across N resource blocks.
  • RSSI is measured over de in every OFDM symbol in the indicated subframe.
  • reception diversity is used by the terminal, the reported value may not be smaller than a corresponding RSRP of an individual diversity branch.
  • the base station communicates using a certain resource (uplink resource or downlink resource) in a situation that the base station dynamically changes the amount of uplink and downlink resources according to the amount of uplink and downlink traffic
  • the present invention proposes a method for the UE to perform a measurement on the communication state of each resource and report it.
  • FIG. 6 is a diagram illustrating a situation in which two adjacent cells perform transmission in different directions on the same time / frequency resource.
  • the base station 2 eNB 2
  • the terminal 2 JE 2 of an adjacent cell are transmitted.
  • the base station 2 eNB 2
  • the terminal 2 JE 2 of an adjacent cell are transmitted.
  • the amount of interference between cells increases as compared with a case in which two cells transmit in the same direction (uplink or downlink).
  • a terminal located at a specific location may receive a strong interference from an adjacent cell, and thus may be in a situation where communication in different directions between adjacent cells is impossible. Therefore , the terminal performs the estimation of the communication state in the uplink resource and / or downlink resource and reports it to the network, whereby a combination of communication directions most suitable for the situation of each terminal (communication of the serving cell to which the terminal is connected). Direction and the communication direction of the neighboring cell) and scheduling the corresponding terminal in the time / frequency resources such combinations appear.
  • the base station dynamically changes the amount of uplink / downlink resources according to the amount of traffic.
  • the base station performs uplink in a resource configured as a downlink resource .
  • the resource set as an uplink resource means an uplink band (UL band) in an FDD system and an uplink subframe (UL subframe) in a TDD system.
  • a resource set as a downlink resource is a downlink band (DL) in an FDD system.
  • the network can be set separately by specifying a resource in which the utilization method of the uplink / downlink resource is dynamically changed, it is obvious that the principles of the present invention can be applied in this case.
  • the downlink resources do not include the uplink resources (or subframes) temporarily changed for downlink transmission purposes.
  • the uplink resources are temporary. It is assumed that downlink resources (or subframes) changed for uplink transmission are not included.
  • the measurement includes RRM measurement such as RSRP, SRQ and RSSI defined in the 3GPP LTE system, and radio link monitoring (RLM) measurement for observing basic communication state with the current serving cell.
  • RRM radio link monitoring
  • the base station may transmit resource information configured for the terminal to perform measurement (S701).
  • the information on the measurement resource may be transmitted through an upper linkage signal such as an RRC layer, a MAC linkage signal, or a physical layer signal. There is-.
  • the terminal may perform measurements on the downlink resource and / or uplink resource (especially, uplink resource used for downlink use).
  • the terminal may transmit resource information for performing measurement for each resource.
  • the measurement resource may be determined in consideration of whether the same resource is used for downlink use or uplink use in a neighboring base station.
  • the base station determines the terminal in the downlink resources and / or uplink resources in consideration of whether the same resource is used for the downlink or uplink in the neighboring base station for each resource in order to report a stable measurement from the terminal You can limit the resources to perform this measurement to specific resources.
  • the base station may be configured to separately measure a set of resources for the UE to perform the measurement in consideration of whether the same resource is used for downlink or uplink in the neighboring base station for each resource.
  • the base station may set different measurement resources for each measurement metric. Resources for performing the measurement by the terminal may be preset and known to the base station and the terminal, in which case step S701 may be omitted.
  • the base station transmits a reference signal to the terminal in the resource for the terminal to perform the measurement (S705).
  • the base station may transmit the same reference signal defined in the existing system to the terminal, and when the terminal performs the measurement on the uplink resource used for downlink purposes, the base station is a corresponding resource In the UE may transmit a reference signal set for the measurement of the terminal.
  • the terminal performs measurement on the corresponding resource set as the measurement resource (S705), and reports the measured result to the base station periodically or aperiodically (S707).
  • the measurement result may include a measurement measured by the terminal in one or more subframes.
  • the communication state measurement method proposed by the present invention will be described by dividing the measurement into the downlink resource and the uplink resource, but the measurement of the downlink resource and the uplink resource by the same terminal are described. Of course, the measurement for may be performed together.
  • each method described below may be used independently, but may be used in combination of at least one or more methods.
  • the terminal performs the measurement for the downlink resource, in this case, may follow the definition of the measurement defined in the existing radio access system (for example, 3GPP LTE system). This is because all measurements are defined for downlink resources in the existing system. For example, CRS, CSI—RS, etc. may be used as a reference signal for measuring downlink resources of the UE.
  • the existing radio access system for example, 3GPP LTE system.
  • CRS, CSI—RS, etc. may be used as a reference signal for measuring downlink resources of the UE.
  • FIG. 8 is a diagram illustrating a situation in which a terminal performs measurement on downlink resources according to an embodiment of the present invention.
  • FIG. 8A illustrates that when UE 1 located in the coverage of eNB 1 (eNB 1) performs measurement on downlink resources, BS 2 (eNB) of a neighbor cell in a resource for which UE 1 performs measurement is performed. 2) shows a situation in which downlink transmission is performed to UE 2 JE 2), and (b) of FIG. 8 shows when UE 1 JE 1) located in coverage of the base station KeNB 1 performs measurement on downlink resources. In addition, it illustrates a situation in which the base station 2 (eNB 2) of the neighbor cell receives the uplink transmission from the terminal 2 JE 2 in the resource that the terminal 1 performs the measurement.
  • terminal 1 receives interference from an adjacent base station 2, but in case of (b) of FIG. 8, terminal 1 receives interference from terminal 2. That is, when the UE performs the measurement on the downlink resource, depending on whether the neighbor cell performs the uplink transmission or the downlink transmission in the same time 7 frequency resource as the resource for performing the downlink measurement.
  • the observed intercell interference can be very different.
  • a terminal located at a cell boundary may also observe a very large interference by a signal transmitted by the terminal of a neighboring cell having a very close distance in uplink.
  • the base station may limit the downlink resources for which the UE performs measurement (particularly, the UE located at the cell boundary) to resources that do not use neighboring uplink transmission.
  • the base station may limit the downlink resource for which the UE performs measurement to a resource for performing downlink propagation by the neighbor cell necessarily or with a very high probability. That is, the base station of each cell must be used by itself or at a very high rate for downlink transmission purpose (use) or uplink transmission.
  • An index (or bitmap for a plurality of subframes) of a downlink subframe to be used for a purpose (purpose) may be transmitted to a base station of a neighboring cell.
  • the base station may inform the base station of the neighboring cell of a subframe having a probability that is equal to or greater than the specific threshold compared to the specific threshold and the calculated probability.
  • index (or bitmap) information of such a subframe and information indicating the use of resources at the corresponding location may be transmitted to the neighboring base station.
  • a base station of a serving cell When a base station of a serving cell receives index (black bitmap) information of a downlink subframe to be used for downlink transmission purposes (use) from a base station of a neighboring cell, the UE measures the downlink resource of the serving cell only in the corresponding subframe. It can be set to perform a itdi ⁇ .
  • the base station of the serving cell that receives the index (or bitmap) information of the downlink subframe to be used for uplink transmission purposes (use) from the base station of the neighboring cell is the terminal downlink of the serving cell only in the remaining resources except the header Can be configured to perform measurements on link resources.
  • the base station of the serving cell may be configured such that the UE performs measurement on the downlink resource of the serving cell only in a resource used by the neighbor cell for downlink transmission.
  • FIG. 8A when viewed from the perspective of UE 1, FIG. 8A corresponds to the limited resource described above.
  • the base station of the serving seal is configured such that the UE performs measurement on the downlink resource of the serving cell only in the limited resources described above, so that the neighboring cell can dynamically change the usage of the resource. The measurement results can be reported.
  • the UE separates the uplink resource from the measurement for the downlink resource. Measurement can be performed.
  • the base station performs downlink transmission through the uplink resource, such that the neighboring base station enjoys the transmission power of the base station itself in order to reduce interference caused by receiving the uplink signal from the same time / frequency resource.
  • the operation can be performed, and as a result, various measurement characteristics can be significantly different from the downlink measurement. Accordingly, the base station sets the measurement for the uplink resources separately from the measurement for the downlink resources to the terminal, and the terminal performs a separate measurement for the uplink resources according to this configuration to report to the base station.
  • the reference signal for the measurement of the uplink resources may have the form of CRS or CSI—RS used for conventional downlink measurement, and also of the DMRS or SRS used as a reference signal in the existing uplink. It may have a form. That is, the base station may inform the terminal by transmitting the configuration information of the reference signal for the measurement of the uplink resources, and as an example of the configuration information of the reference signal, the sequence information of the reference signal, the cyclic shift of the set reference signal sequence (cyclic shifts) Information), spreading code information, frequency shift information, and the like.
  • the reference signal for the measurement of the uplink resource is fixedly set may be known in advance by the base station and the terminal.
  • the base station may configure some of the uplink subframes as a subframe in which the UE performs measurement, and may instruct to perform measurement only in the corresponding subframe.
  • the measurement configuration for such an uplink resource may be set to semi-static through a higher layer signal such as RRC (Radio Resource Control) negotiation.
  • the UE may be configured to perform such measurement in uplink subframes to be used for downlink transmission with a relatively high probability. That is, the base station of each cell must have a high probability of at least one of an index of an uplink subframe or a period black offset of the uplink subframe to be used for downlink transmission purpose (use) with a very high probability. It can be transmitted to the terminal through a layer signal. In this case, the base station may inform the terminal of a subframe having a certain threshold or greater than a specific threshold by comparing the specific threshold and the calculated probability.
  • an uplink subframe set to semi-static is still used mainly for downlink transmission, it is more effective to use uplink transmission depending on uplink / downlink traffic conditions of a corresponding cell. Can occur. If the UE performs the measurement in the uplink subframe expecting the downlink transmission due to the signal of the base station, but the corresponding uplink subframe is actually used for the uplink transmission, the UE may seriously affect the measurement result due to unintended interference. Distortion may occur. Therefore, even when the use of uplink subframes is dynamically changed, In order to perform the measurement of the UE more effectively, the following method may be used. '
  • the base station uses each uplink subframe (or one or more subframes) through a physical layer signal or a MACXMedia Access Control layer signal (e.g., the uplink subframe is used for either uplink transmission or downlink transmission). Can be used).
  • the base station transmits information indicating usage for every uplink subframe (or one or more subframes) within the uplink subframe set to semi-static and receives the indication information from the base station.
  • the UE may determine only an uplink subframe in which downlink transmission usage is indicated by the indication information among the uplink subframes as a valid measurement target.
  • Such indication information may be configured in the form of an indicator for indicating whether the use of the corresponding subframe is downlink or uplink.
  • the terminal may receive a scheduling message for uplink / downlink transmission transmitted from the base station, and may regard the uplink subframe that is the target of the received scheduling message as a valid subframe that is the target of measurement. For example, if the UE receives a message for scheduling downlink transmission in a specific uplink subframe, the uplink subframe is considered valid as a measurement target and performs measurement.
  • the scheduling information may be transmitted through a downlink subframe black or an uplink subframe used for downlink purposes. Can be.
  • the base station informs the terminal of a candidate group of an uplink subframe to be measured through an upper layer signal such as RRC, and then corresponds to a specific uplink subframe among the uplink subframes included in the candidate group. If the uplink transmission from the terminal is scheduled, the uplink subframe may be regarded as invalid as a measurement target. In other words, the UE may determine that an uplink subframe in which an uplink transmission is not scheduled within a candidate group of an uplink subframe is valid as a measurement target and perform measurement in the corresponding uplink subframe.
  • the candidate group of valid uplink subframes to be measured may be configured of uplink subframes used by the base station for downlink transmission with a relatively high rate of the uplink subframes described above.
  • the base station may be configured to perform the measurement in the uplink subframe that is actually used for the downlink of the uplink subframe, and further downlink use as described in 2.
  • the UE may configure the UE to measure uplink resources of the serving cell only in resources used by the neighbor cell for downlink transmission.
  • RSRQ is defined as the ratio of RSRP and RSSI (that is, RSRQ is defined as NxRSRP / (E-UTRA carrier RSSI)). It may be difficult to transmit a reference signal in a stable period in an uplink subframe in a situation in which the use of the variable is variable.
  • the RSRQ for the uplink subframe can be derived using RSRP measured only in the downlink subframe and RSSI measured only in the uplink subframe.
  • the UE measures RSRP only in a downlink subframe capable of stable transmission without performing RSRP measurement in an uplink subframe, and in the case of RSSI, an uplink subframe used for downlink transmission to reflect an actual interference situation. Can be measured in frames.
  • the UE measures RSRP in the downlink subframe by the method described in 2. 1.
  • RSSI in the uplink subframe used for downlink transmission using the method described in 2. 1.
  • the RSSI is a value corresponding to the total power of all signals received by the terminal and can be measured using all time / frequency resources within a valid subframe for the terminal to perform measurement. This may be possible because less effective measurement resources are needed compared to RSRP, which can only be measured at element (RE).
  • the base station lowers the transmission power of the reference signal in the uplink subframe compared to the downlink subframe, the power signal of the reference signal between the uplink subframe and the downlink subframe is signaled to the terminal, the terminal uplink The power difference value may be reflected when calculating the RSRQ in the subframe.
  • the UE calculates the RSRQ after adjusting the transmission powers of the reference signals transmitted in the uplink subframe and the downlink subframe to the same level.
  • the RSRQ may be calculated using the corrected RSRP value and / or the RSSI value.
  • the base station may operate to perform a separate measurement and report the UE according to when the neighboring cell is operating in the uplink and downlink. For example, in the case of measurement of a downlink subframe, the base station divides the downlink subframe into two sets, and each set has a high probability of neighboring cells performing downlink transmission and uplink transmission. It can be specified to correspond to the downlink subframe. As described above, the base station of each cell must have a very high probability or the index of the downlink subframe (or bits for the plurality of subframes) to use for the downlink transmission purpose (use) or the uplink transmission purpose (use).
  • the base station may inform the base station of the neighboring cell of a subframe having a probability of a specific threshold or more by comparing the specific threshold and the calculated expansion.
  • the base station configures two sets of measurements for the downlink subframe, a subframe in which the neighbor cell performs downlink transmission with high probability and a subframe performing uplink transmission with high probability, You can easily see the effect of the transmission direction on the terminal, It is also known whether transmission should be performed in a subframe.
  • the base station distinguishes a set of a downlink subframe in which the operation of FIG. 8a is generated and a downlink subframe in which the operation of FIG. 8b is generated and informs the terminal.
  • the terminal may report the measured value to the base station by performing a separate measurement for each set. This operation is equally applicable to the measurement of uplink subframes used for downlink transmission.
  • each of the embodiments described in 2. 1. 1. to 2. 1. 3. can be applied to both the measurement of the downlink resources and uplink resources, or resources of either the downlink resources or uplink resources May apply only in-. That is, any one embodiment of the above-described embodiment is applied to both the measurement of the downlink resource and the uplink resource-two embodiments of the above-described embodiments may be applied to the downlink resource or the uplink resource, respectively. .
  • the base station instructs the terminal to separately perform the measurement for the downlink resource and the uplink resource, and the terminal measures the downlink resource is 2. 1.
  • the hinge is at 2.1.
  • the embodiment according to the sub-frame or itdi use indicator is operable to perform a measurement only in a sub-frame indicated as valid i according to the received scheduling message described in the. Also.
  • the base station instructs the UE to separately perform measurements for the downlink resource and the uplink resource, and the measurement for the downlink resource is 2. 1.
  • the two according to the transmission direction of the adjacent cell The measurement is performed by dividing the data into sets and measuring the uplink resources only in the subframe indicated as valid according to the reception of the subframe usage indicator or the scheduling message according to the embodiment described in 2.1. It may also operate to perform.
  • the base station measures the signal of the neighbor cell and the base station measures the signal of the neighbor cell reported by the terminal without giving the terminal separate information on the operation direction of the neighbor cell.
  • the transmission direction may be identified and the adjacent cell may be distinguished from when operating in uplink and when operating in downlink.
  • the UE measures and reports to the base station in a downlink subframe in which the serving base station performs downlink transmission stably, and in the case of RSSI, each subframe (downlink subframe or uplink). It is possible to report distribution information of RSSI measurement values measured over a plurality of preset subframes to each base station after each link subframe).
  • the terminal i itdi can report the distribution information on the UL sub-measured RSSI for each sub-frame in a frame, the number of RSSI measurements for the sub-frame used in downlink transmission purpose to the base station.
  • the distribution information on the RSSI measurement may be reported to the base station as a measurement result together with the RSSI measurement previously reported by the terminal to the base station, and the distribution of the RSSI measurement value by replacing the RSSI measurement previously reported by the terminal to the base station. Only information may be reported to the base station.
  • a maximum value and a minimum value of the RSSI may correspond, and the terminal transmits the maximum value and the minimum value of the RSSI observed for a predetermined time to the base station.
  • the base station can determine the communication status of the terminal. For example, if the maximum and minimum values of the RSSI are reported to be similarly low through the RSSI distribution information, the terminal may be aware that it is not significantly influenced by the communication direction of the neighboring cell, and the terminal is transmitted to the neighboring cell.
  • banghim it may be a downlink transmission from the independent UL subframe and a.
  • the base station corresponds to an uplink subframe in which an adjacent cell mainly performs downlink transmission.
  • -Can perform downlink transmission to the terminal.
  • the distribution information of the RSSI measurement may have the following form in addition to the maximum and minimum values of the RSSI.
  • the UE may report to the base station a frequency at which RSSIs above (or above) and / or below (or below) a predetermined threshold is measured or information on a subframe in which the RSSI is measured.
  • the subframe information means information for specifying a subframe in which the aforementioned RSSI is measured.
  • the subframe information may include a subframe index.
  • the radio frame index may be specified.
  • the threshold may be given as x% of an average RSSI value calculated in a plurality of subframe time intervals in which the terminal measures the RSSI.
  • the terminal may report to the base station an average value of RSSI measurements that are above (or above) and / or below (or below) a predetermined threshold.
  • the threshold may be given as x% of an average RSSI value calculated in a plurality of subframe time intervals in which the UE measures RSSI.
  • the time interval for calculating the average value of the RSSI measurement reported to the base station may be the same as the plurality of subframe time intervals for the terminal to measure the RSSI.
  • the UE is one of the RSSI measurements taken within a "plurality of sub-frame period of time to measure the RSSI sorted by size, and then, pre-set particular the upper and / or lower x% the RSSI value and the upper and / or lower to the The average value of RSSI measurements belonging to x% may be reported to the base station.
  • an operation in which the terminal measures a signal of a neighbor cell and reports the signal to the base station that is, the terminal reports the RSSI distribution information to the base station for a predetermined subframe period may be applied to both the downlink resource and the uplink resource measurement. It may be applied to only one resource of the downlink resource or the uplink resource. It can also be used in combination with the method described in 2. 1. above.
  • Figure 9 illustrates a block diagram of a wireless communication device according to an embodiment of the present invention.
  • a wireless communication system includes a base station 90 and a plurality of terminals 100 located within an area of a base station 90.
  • the base station 90 includes a processor 91, a memory 92, and a radio frequency unit 93.
  • Processor 91 implements the proposed functions, processes and / or methods. The tradeoffs of the air interface protocol can be implemented by the processor 91.
  • the memory 92 is connected to the processor 91 and stores various information for driving the processor 91.
  • the RF unit 93 is connected to the processor 91 to transmit and / or receive a radio signal.
  • the terminal 100 includes a processor 101, a memory 102, and an RF unit 103.
  • the processor 101 implements the proposed functions, processes and / or methods. Layers of the air interface protocol may be implemented by the processor 101.
  • the memory 102 is connected to the processor 101 and stores various information for driving the processor 101.
  • the RF unit 103 is connected to the processor 101 and transmits and / or receives a radio signal.
  • the memory 92. 102 may be internal or external to the processors 91 and 101, and may be connected to the processors 91 and 101 by various well-known means.
  • the base station 90 and / or the terminal 100 is one antenna (single antenna) or multiple It may have a multiple antenna.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or toppings to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Embodiment according to the present invention can be implemented by various means, "for example, hardware, 3 ⁇ 4 i Wars control (firmware), software, or a combination thereof.
  • one embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPs), and PLDs (pr ogr ammab).
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPs digital signal processing devices
  • PLDs pr ogr ammab
  • one embodiment of the present invention can be implemented by a type of a itdi modeul, a procedure, a function, which performs functions or operations described above,.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, such that various known It is possible to exchange data with the processor by means.
  • the data transmission / reception scheme in the wireless access system of the present invention has been described with reference to the example applied to the 3GPP LTE system, but it is possible to apply to various wireless access systems in addition to the 3GPP LTE system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명에서는 상향링크 자원의 양과 하향링크 자원의 양이 동적이 변경되는 환경을 지원하는 무선 접속 시스템에서 무선 통신 상태 측정 방법 및 이를 위한 장치가 개시된다. 구체적으로, 측정 자원에 대한 정보를 단말에 전송하는 단계, 참조 신호(reference signal)을 단말에 전송하는 단계 및 단말로부터 측정 자원에서 참조 신호를 이용한 측정의 결과를 수신하는 단계를 포함하되, 측정 자원은 인접 기지국에서 동일한 자원이 하향링크 용도로 사용되는지 혹은 상향링크 용도로 사용되는지를 고려하여 결정된다.

Description

【명세서】
【발명의 명칭】
무선 접속 시스템에서 무선 통신 상태 측정 방법 및 이를 위한 장치 【기술분야】
본 발명은 무선 접속 시스템에' 관한 것으로서, 보다 상세하게 상향링크 자원의 양과 하향링크 자원의 양이 동적이 변화되는 환경을 지원하는 무선 접속 시스템에서 무선 통신 상태를 측정하는 방법 및 이를 지원하는 장치에 관한 것이디-. ᅳ
【배경기술】
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었디-. 그러니- 이동통신 시스템은 점차로 음성뿐 아니라 데이터 서비스까지 영역을 확장하고 있으며, 현재에는 고속의 데이터 서비스를 제공할 수 있는 정도까지 발전하였다. 그러나 현재 서비스가 제공되고 있는 이동 통신 시스템에서는 자원의 부족 현상 및 사용자들이 보다 고속의 서비스를 요구하므로 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 무선 접속 시스템의 요구 조건애서 가장 중요한 것 중 하나는 높은 데이터 전송율 요구량을 지원할 수 있어야 하는 것이다. 이를 위하여 다중 입출력 (MIMO: Multiple Input Multiple Output), CoMP(Cooperat ive Multiple Point transmission), 릴레이 (relay) 등 다양한 기술들이 연구되고 있다.
종래 무선 접속 시스템에서는 상향링크 자원과 하향링크 자원이 고정적으로 섶정되어 상향링크와 하향링크의 트래픽이 변동되더라도 제한된 자원 내에서 트래픽을 처리하였다. 다만, 기지국이 상향링크와 하향링크의 트래픽의 양에 따라 상향링크 자원과 하향링크 자원의 양을 동적으로 변경시키는 환경을 고려한다면, 상향링크 자원이라도 하더라도 하향링크로 사용될 가능성이 있으며 또한 그 반대의 경우의 가능성도 존재한다. 이러한 상황에서 단말은 상향링크 또는 하향링크로 설정된 자원이더라도 해당 자원이 사용되는 용도에 맞게 적절한 동작을 수행하여야 할 필요가 있다.
【발명의 상세한 설명】
【기술적 과제】
본 발명의 목적은 무선 접속 시스템, 바람직하게 상향링크 자원의 양과 하향링크 자원의 양이 동적이 변화되는 환경을 지원하는 무선 접속 시스템에서 단말이 무선 통신 상태를 원활하게 측정하기 위한 방법 및 이를 위한 장치를 제안한다.
본 발명의 목적은 무선 접속. 시스템, 바람직하게 상향링크 자원의 양과 하향링크 자원의 양이 동적이 변화되는 환경을 지원하는 무선 접속 시스템에서 단말이 상향링크 자원 및 /또는 하향링크 자원에서 무선 통신 상태를 측정하기 위한 방법 및 이를 위한 장치를 제안한다.
본 발명의 목적은 무선 접속 시스템, 바람직하게 상향링크 자원의 양과 하향링크 자원의 양이 동적이 변화되는 환경을 지원하는 무선 접속 시스템에서 단말이 어떤 자원 (상향링크 자원 혹은 하향링크 자원)을 이용하여 통신하는 것이 효과적인지 결정하기 위한 방법 및 이를 위한 장치를 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【기술적 해결방법】
본 발명의 일 양상은, 상향링크 자원의 양과 하향링크 자원의 양이 동적이 변경되는 환경을 지원하는 무선 접속 시스템에서 단말의 측정 (measurement)을 지원하는 방법에 있어서, 측정 자원에 대한 정보를 단말에 전송하는 단계 참조 신호 (reference signal)을 단말에 전송하는 단계 및 단말로부터 측정 자원에서 참조 신호를 이용한 측정의 결과를 수신하는 단계를 포함하되, 측정 자원은 인접 기지국에서 동일한 자원이 하향링크 용도로 사용되는지 혹은 상향링크 용도로 사용되는지를 고려하여 결정된다.
본 발명의 다른 양상은, 상향링크 자원의 양과 하향링크 자원의 양이 동적이 변경되는 환경을 지원하는 무선 접속 시스템에서 단말의 측정 (measurement)을 지원하는 기지국에 있어서 , 무선 신호를 송수신하기 위한 RF( adio Frequency) 유닛 및 측정 자원에 대한 정보를 단말에 전송하고, 참조 신호 (reference signal)을 단말에 전송하며, 단말로부터 측정 자원에서 참조 신호를 이용한 측정의 결과를 수신하는 프로세서를.포함하되, 측정 자원은 인접 기지국에서 동일한 자원이 하향링크 용도로 사용되는지 혹은 상향링크 용도로 사용되는지를 고려하여 결정된다.
바람직하게, 대안적으로 혹은 추가적으로, 측정 자원은 인접 기지국이 하향링크 전송 용도로 사용하는 서브프레임에서만 설정된다.
바람직하게, 대안적으로 혹은 추가적으로, 측정 자원이 상향링크 자원에 설정된 경우, 측정 자원이 유효함을 지시하는 지시 정보를 단말에 전송한다. 바람직하게, 대안적으로 흑은 추가적으로, 측정 자원은 제 1 측정 자원 및 제 2 측정 자원으로 구분되고, 제 1 측정 자원은 인접 기지국이 하향링크 전송 용도로 사용하는 서브프레임에서만 설정되며, 제 2 측정 자원은 인접 기지국이 상향링크 전송 용도로 사용하는 서브프레임에서만 설정된다.
바람직하게, 대안적으로 혹은 추가적으로, 측정은 참조 신호 수신 파워 (RSRP: Reference Signal Received Power ) 측정, 참조 신호 수신 품질 (RSRQ: Reference Signal Received Quality) 측정, 수신 신호 강도 지시자 (RSSI: Received Signal Strength Indicator) 측정 및 무선 링크 모니터링 (RLM: Radio Link Monitoring) 측정 중 적어도 어느 하나를 포함한다.
바람직하게, 대안적으로 흑은 추가적으로, RSRP는 하향링크 자원에서만 축정되며, RSSI는 하향링크 전송 용도로 사용되는 상향링크 서브프레임에서만 측정된디-.
바람직하게, 대안적으로 혹은 추가적으로, RSSI의 측정의 경우, 측정의 결과는 미리 설정된 복수의 서브프레임 동안에 걸쳐서 측정된 RSSI 측정치의 분포 정보를 포함한디-.
바람직하게, 대안적으로 혹은 추가적으로, 분포 정보는 미리 설정된 복수의 서브프레임 동안 측정된 RSSI의 최대값과 최소값, 미리 설정된 복수의 서브프레임 동안 미리 설정된 임계치 이상 또는 이하의 RSSI가 측정되는 빈도수, 미리 설정된 복수의 서브프레임 동안 미리 설정된 임계치 이상 또는 이하의 RSSI기- 측정되는 서브프레임 정보, 미리 설정된 복수의 서브프레임 동안 미리 설정된 임계치 이상 또는 이하인 RSSI 측정치의 평균값, 미리 설정된 복수의 서브프레임 동안 측정된 RSSI 측정치 중 상위 흑은 하위에서 미리 설정된 백분율에 포함되는 RSSI 측정치 및 미리 설정된 복수의 서브프레임 동안 측정된 SSI 측정치 중 상위 혹은 하위에서 미리 설정된 백분율에 포함되는 RSSI 측정치의 평균값 중 적어도 어느 하나를 포함한다.
본 발명의 다른 일 양상은, 상향링크 자원의 양과 하향링크 자원의 양이 동적이 변경되는 환경을 지원하는 무선 접속 시스템에서 단말이 측정 (measurement)을 수행하는 방법에 있어서, 기지국으로부터 측정 자원에 대한 정보를 수신하는 단계, 기지국으로부터 참조 신호 (reference signal)을 수신하는 단계, 측정 자원에서 참조 신호를 이용하여 측정을 수행하는 단계 및 측정의 결과를 기지국에 전송하는 단계를 포함하되, 측정 자원은 인접 기지국에서 동일한 자원이 하향링크 용도로 사용되는지 흑은 상향링크 용도로 사용되는지를 고려하여 결정된디-.
본 발명의 다른 양상은, 상향링크 자원의 양과 하향링크 자원의 양이 동적이 변경되는 환경을 지원하는 무선 접속 시스템에서 측정 (measurement)을 수행하는 단말에 있어서, 무선 신호를 송수신하기 위한 RF(I dio Frequency) 유닛 및 기지국으로부터 측정 자원에 대한 정보를 수신하고, 기지국으로부터 참조 신호 (reference signal)을 수신하며, 측정 자원에서 참조 신호를 이용하여 측정을 수행하고, 측정의 결과를 기지국에 전송하는 프로세서를 포함하되, 측정 자원은 인접 기지국에서 동일한 자원이 하향링크 용도로 사용되는지 혹은 상향링크 용도로 사용되는지를 고려하여 결정된다.
바람직하게, 대안적으로 혹은 추가적으로, 측정 자원은 인접 기지국이 하향링크 전송 용도로 사용하는 서브프레임에서만 설정된다.
바람직하게, 대안적으로 혹은 추가적으로, 측정 자원이 상향링크 자원에 설정된 경우, 측정 자원이 유효함을 지시하는 지시 정보를 수신한다. 바람직하게, 대안적으로 혹은 추가적으로ᅳ 측정 자원은 제 1 측정 자원 및 제 2 측정 자원으로 구분되고, 제 1 측정 자원은 인접 기지국이 하향링크 전송 용도로 사용하는 서브프레임에서만 설정되며, 제 2 측정 자원은 인접 기지국이 상향링크 전송 용도로 사용하는 서브프레임에서만 설정된다.
바람직하게, 대안적으로 혹은 추가적으로, 측정은 참조 신호 수신 파워 (RSRP) 측정 , 참조 신호 수신 품질 (RSRQ) 측정, 수신 신호 강도 지시자 (RSSI) 측정 및 무선 링크 모니터링 (RLM) 측정 중 적어도 어느 하나를 포함한다.
바람직하게, 대안적으로 혹은 추가적으로ᅳ RSRP는 하향링크 자원에서만 측정되며 , RSSI는 하향링크 전송 용도로 사용되는 상향링크 서브프레임에서만 축정된디—. '
바람직하게, 대안적으로 혹은 추가적으로, RSSI의 측정의 경우, 측정의 결과는 미리 설정된 복수의 서브프레임 동안에 걸쳐서 측정된 RSSI 측정치의 분포 정보를 포함한다.
바람직하게, 대안적으로 혹은 추가적으로, 분포 정보는 미리 설정된 복수의 시브프레임 동안 측정된 RSSI의 최대값과 최소값, 미리 설정된 복수의 서브프레임 동안 미리 설정된 임계치 이상 또는 이하의 RSSI가 측정되는 빈도수, 미리 설정된 복수의 서브프레임 동안 미리 설정된 임계치 이상 또는 이하의 RSS1가 측정되는 서브프레임 정보, 미리 설정된 복수의 서브프레임 동안 미리 설정된 임계치 이상 또는 이하인 RSSI 측정치의 평균값, 미리 설정된 복수의 서브프레임 동안 측정된 RSSI 측정치 증 상위 혹은 하위에서 미리 설정된 백분율에 포함되는 RSSI 측정치 및 미리 설정된 복수의 서브프레임 동안 측정된 RSS1 측정치 중 상위 혹은 하위에서 미리 설정된 백분율에 포함되는 RSSI 측정치의 평균값 중 적어도 어느 하나를 포함한다.
【유리한 효과】
본 발명의 실시예에 따르면, 무선 접속 시스템, 바람직하게는 상향링크 자원의 양과 하향링크 자원의 양이 동적이 변화되는 환경을 지원하는 무선 접속 시스템에서 단말이 무선 통신 상태를 원활하게 측정할 수 있다.
또한, 본 발명의 실시예에 따르면, 바람직하게 상향링크 자원의 양과 하향링크 자원의 양이 동적이 변화되는 환경을 지원하는 무선 접속 시스템에서 인¾ 셀의 전송 방향을 고려하여 상향링크 자원 및 /또는 하향링크 자원에서 측정을 수행함으로써 보다 정확하며, 안정적인 측정을 수행할 수 있다.
본 발명의 목적은 무선 접속 시스템, 바람직하게 상향링크 자원의 양과 하향링크 자원의 양이 동적이 변화되는 환경을 지원하는 무선 접속 시스템에서 긱- 단말의 상황에 가장 적절하게 서빙 셀의 통신 방향과 인접 셀의 통신 방향의 조합이 나타나는 자원에서 해당 단말을 스케줄링 할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【도면의 간단한 설명】
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
도 2는 3GPP LTE에서 무선 프레임의 구조를 나타낸다.
도 3은 하나의 하향링크 슬롯에 대한 자원 그리드 (resource grid)를 예시한 도면이다.
도 4는 하향링크 서브 프레임의 구조를 나타낸다.
도 5는 상향링크 서브 프레임의 구조를 나타낸다.
도 6은 인접한 두 셀이 동일한 시간 /주파수 자원에서 서로 다른 방향의 전송을 수행하는 상황을 도식화한 도면이다.
도 7은 본 발명의 일 실시예에 따른 단말의 측정 방법을 예시하는 도면이다. 도 8은 본 발명의 일 실시예에 따른 단말이 하향링크 자원에 대한 측정을 수행하는 상황을 도식화한 도면이다.
도 9는 본 발명의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 에시한디-.
【발명의 실시를 위한 형티 Π
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한디-. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조. 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 본 발명의 실시예들을 기지국과 단말 간의 데이터 송신 및 수신의 관계를 중심으로 설명한다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드 (terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드 (upper node)에 의해 수행될 수도 있다 . 즉 , 기지국을 포함하는 다수의 네트워크 노드들 (network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국 (BS: Base S tioii)'은 고정국 (fixed station), Node B, eNode B(eNB), 액세스 포인트 (AP: Access Point) 등의 용어에 의해 대체될 수 있다. 중계기는 Relay Node(RN), Relay Sta ion(RS) 등의 용어에 의해 대체될 수 있다. 또한, 1단말 (Terminal V은 UEdJser Equi ment ) , MS(Mobi le Station), MSS(Mobi le Subscriber Station), SS(Subscr iber Station), AMS(Advanced Mobile Station), WT(Wireless terminal ) , MTC( Machine-Type Communication) 장치 M2M(Machine-to-Machine) 장치, D2D 장치 (Device-to-I)evice) 장치 등의 용어로 대체될 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다. . 본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802 시스템 , 3GPP 시스템, ,Τ,ΡΡ LTE 및 LTE-A(LTE-Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 증 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 CDMA (code division multiple access) , FDMA( frequency
.5 division multiple access) , TDMA(t ime division multiple access) , 0Ί)ΜΑ( orthogonal frequency division multiple access) , SC-FDMA( single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA (Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술 (radio technology)로 구현될 수 있다. TDMA는 it) GvSM (Global System for Mobile communicat ions)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)외- 같은 무선 기술로 구현될 수 있다. 0FDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802- 20, E— UTRA (Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS (Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd lb Generation Partnership Project ) LTE ( 1 ong term evolution)은 Eᅳ UTRA를 사용하는 E-UMTS( Evolved UMTS)의 일부로써, 하향링크에서 0FDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE— A (Advanced)는 3GPP LTE의 진화이다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다. >0 1. 본 발명이 적용될 수 있는 3GPP LTE/LTE-A시스템
1. 1. 시스템 일반
도 1은 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은
S101 단계애서 ᅳ 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한디-. 이를 위해 단말은 기지국으로부터 주동기 채널 (P- SCH: Primary Synchronization Channel) 및 부동기 채널 (S—SCH: Secondary Synchronization Channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다.
그 후, 단말은 기지국으로부터 물리방송채널 (PBCH: Physical Broadcast Channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 람색 단계에서 하향링크 참조 신호 (DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색올 마친 단말은 S102 단계에서 물리하향링크제어채널 (PDCCH: Physical Downlink Control Channel) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (PDSCH: Physical Downlink Control Channel)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S13 내지 단계 과 같은 임의 접속 과정 (Rand에 1 Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리임의접속채널 (PRACH: Physical Random Access Channel)을 통해 프리앰블 (preamble)을 전송하고 (S103), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 웅답 메시지를 수신할 수 있다 (S104). 경쟁 기빈- 임의 접속의 경우, 단말은 추가적인 물리임의접속채널 신호의 전송 (S105) 및 물리하향링크제어채널 신호 및 이에 대웅하는 리하향링크공유 채널 신호의 수신 (S106)과 같은 층돌해결절차 (Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상 /하향링크 신호 전송 절차로서 물리하향링크제어채널 신호 및 /또는 물리하향링크공유채널 신호의 수신 (S107) 및 물리상향링크공유채널 (PUSCH: Physical Uplink Shared Channel) 신호 및 /또는 물리상향링크제어채널 (PUCCH: Physical Uplink Control Channel) 신호의 전송 (S108)을 수행할 수 있다.
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보 (UCI: Uplink Control Informat ion)라고 지칭한다. UCI는. HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negat ive-ACK) , SR (Scheduling Request ) , CQI (Channel Quality Indication), PMI (Precoding Matrix Indica ion), RI (Rank Indication) 정보 등을 포함한다.
LTE 시스템에서 UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 제어정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있디-. 또힌-, 네트워크의 요청 /지시에 의해 PUSCH를 통해 UCI를 비주기적으로 진송할 수 있다.
도 2는 PP LTE에서 무선 프레임의 구조를 나타낸다.
셀롤라 OFDM 무선 패킷 통신 시스템에서, 상향링크 /하향링크 데이터 패킷 전송은 서브프레임 (subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 - FD ( Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임 (radio frame) 구조와 TDD (Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다 .
도 2(a)는 타입 1 무선 프레임의 구조를 예시한다. 하향링크 무선 프레임 (radio frame)은 10개의 서브프레임 (subf rame)으로 구성되고, 하나의 서브프레임은 시간 영역 (time domain)에서 2개의 슬롯 (slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTK transmission time interval)라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 0FDM(or thogona 1 frequency division multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원블톡 (RB: Resource Block)을 포함한다. 3GPP LTE는 하향링크에서 0FDMA를 사용하므로 0FDM 심볼은 하나의 심볼 구간 (symbol period)을 표현하기 위한 것이다. 0FDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있디-. 자원 할당 단위로서의 자원 블록 (RB)은, 하나의 슬롯에서 복수의 연속적인 부 반송파 (subcarrier)를 포함한다.
하나의 슬롯에 포함되는 0FDM 심볼의 수는 순환 전치 (CP: Cyclic Prefix)의 구성 (configuration)에 따라 달라질 수 있다. CP에는 확장 순환 전치 (extended CP)와 일반 순환 전치 (normal CP)가 있다. 예를 들어 , 0FDM 심볼이 일반 순환 전치에 의해 구성된 경우, 하나의 슬롯에 포함되는 0FDM 심볼의 수는 7개일 수 있디-. 0FDM 심볼이 확장 순환 전치에 의해 구성된 경우, 한 0FDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 0FDM 심볼의 수는 일반 순환 전치인 경우보다 적디-. 확장 순흰ᅳ 전치의 경우에, 예를 들어, 하나의 슬롯에 포함되는 0FDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태기- 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장 순환 전치가 사용될 수 있디-.
일반 순환 전치기- 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 0FOM 심불을 포함한다. 이때, 각 서브프레임의 처음 최대 3 개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 2의 (b)는 타입 2 프레임 구조 (frame structure type 2)흩 나타낸다. 타입 2 무선 프레임은 2개의 하프 프레임 (half frame)으로 구성되며, 각 하프 프레임은 5개의 서브프레임과 DwPTS( Down link Pilot Time Slot), 보호구간 (GP: Guard Period), UpPTS (Up link Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색. 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이디-.
TDD 시스템의 타입 2 프레임 구조에서 상향링크-하향링크 구성 (uplink- downlink configuration)은 모든 서브프레임에 대하여 상향링크와 하향링크가 할딩- (또는 예약)되는지 나타내는 규칙이다. 표 1은 상향링크ᅳ하향링크 구성을 나타낸디—.
【표 1】 '
Figure imgf000016_0001
표 1을 참조하면, 무선 프레임의 각 서브프레임 별로, 는 하향링크 전송을 위한 서브프레임을 나타내고, "U1 '는 상향링크 전송을 위한 서브프레임을 나타내며, "S"는 DwPTS, GP, UpPTS 3가지의 필드로 구성되는 스페셜 서브프레임 (special subframe)을 나타낸다. 상향링크―하향링크 구성은 7가지로 구분될 수 있으며, 긱- 구성 별로 하향링크 서브프레임, 스페셜 서브프레임, 상향링크 서브프레임의 위치 및 /또는 개수가 다르다.
하향링크에서 상향링크로 변경되는 시점 또는 상향링크에서 하향링크로 전환되는 시점을 전환 시점 (switching point)이라 한다. 전환 시점의 주기성 (Switch-point periodicity)은 상향링크 서브프레임과 하향링크 시브프레임이 전환되는 양상이 동일하게 반복되는 주기를 의미하며, 5ms 또는 10ms가 모두 지원된다. 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 스페셜 서브프레임 (S)은 하프-프레임 마다 존재하고, 5ms 하향링크- 상향링크 전환 시점의 주기를 가지는 경우에는 첫번째 하프 -프레임에만 존재한다. 모든 구성에 있어서, 0번, 5번 서브프레임 및 DwPTS는 하향링크 전송만을 위한 구간이디-. UpPTS 및 서브프레임 서브프레임에 바로 이어지는 서브프레임은 항상 상향링크 전송을 위한 구간이다.
이러한, 상향링크ᅳ하향링크 구성은 시스템 정보로써 기지국과 단말이 모두 알고 있을 수 있다. 기지국은 상향링크-하향링크 구성 정보가 바뀔 때마다 구성 정보의 인덱스만을 전송함으로써 무선 프레임의 상향링크ᅳ하향링크 할당상태의 변경을 단말에 알려줄 수 있다. 또한, 구성 정보는 일종의 하향링크 제어정보로서 다른 스케즐링 정보와 마찬가지로 PDCCH(Physical Downlink Control Channel)를 통해 전송될 수 있으며, 방송 정보로서 브로드캐스트. 채널 (broadcast channel)을 통해 셀 내의 모든 단말에 공통으로 전송될 수도 있다.
상술한 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 서브 프레임의 수 또는 서브 프레임에 포함되는 슬릇의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다. 'Γ
도 3은 하나의 하향링크 슬롯에 대한 자원 그리드 (resource grid)를 예시한 도면이다.
도 3을 참조하면 . 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소 (element)를 자원 요소 (resource element)하고, 하나의 자원 블록은 12 X 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 NDL은 하향링크.전송 대역폭 (bandwidth)에 종속한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 4는 하향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면. 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역 (control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)이 할당되는 데이터 영역 (data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PH I CH( Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫번째 OFDM 심볼에서 전송되고, 서브 프레임ᅳ내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수 (즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향링크에 대한 웅답 채널이고, HARQ( Hybrid Automatic Repeat Request)에 대한 AC (Acknow 1 edgement ) /NACK (Not - Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보 (downlink control information, DCI)라고 한다. 하향링크 제어정보는 상향링크 자원 할딩 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송 (Tx) 파워 제어 명령을 포함한다.
P1XCH는 DL-SCH( Down link Shared Channel)의 자원 할당 및 전송 포맷 (이를 하향링크 그랜트라고도 한다.) , UL-SCH(Uplink Shared Channel)의 자원 할당 정보 (이를 상향링크 그랜트라고도 한다.) , PCH( Paging Channel)에서의 페이징 (paging) 정보, DL-SCH에서의 시스템 정보, PDSCH에서 전송되는 랜덤 액세스 응답 (random access response)과 같은 상위 레이어 (upper— layer) 제어 메시지애 대한 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령들의 집합, VoIP(Voice over IP)의 활성화 등을 나를 수 있다. 복수의 PDCCH들은 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH들을 모니터링할 수 있다. PDCCH는 하나 또는 복수의 연속적인 CCE(control channel elements)의 집합으로 구성된다. CCE는 무선 채널의 상태에 따른 부호화율 (coding rate)을 PDCCH에 제공하기 위하여 사용되는 논리적 할당 단위이디-. CCE는 복수의 자원 요소 그룹 (resource element group)들에 대웅된다. PDCCH의 포맷 및 사용 가능한 PDCCH의 비트 수는 CCE들의 수와 CCE들에 의해 제공되는 부호화율 간의 연관 관계에 따라 결정된다.
기지국은 단말에게 전송하려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자 (owner)나 용도에 따라 고유한 식별자 (이를 RNTI (Radio Network Temporary Identifier)라고 한다.)가 마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTK Paging一 RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블록 (system information block, SIB)를 위한 PDCCH라면 시스템 정보 식별자, SI -RNTI (system information RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 웅답인 랜덤 액세스 응답을 지시하기 위하여, RA-RNTI (random accessᅳ RNTI )가 CRC에 마스킹될 수 있다.
도 5는 상향링크 서브 프레임의 구조를 나타낸다.
도 5를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCi Physical Uplink Control Channel)이 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)이 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH을 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH에는 서브 프레임 내에 RB 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이를 PUCCH에 할당된 RB 쌍은 슬롯 경계 (slot boundary)에서 주파수 도약 (frequency hopping)된다고 한다.
1. 2. 하향링크 측정
무선 통신 시스템에서 패킷 (혹은 신호)을 전송할 때, 전송되는 패킷은 무선 채널을 통해서 전송되기 때문에 전송과정에서 신호의 왜곡이 발생할 수 있다.. 왜곡된 신호를 수신측에서 을바로 수신하기 위해서는 채널 정보를 이용하여 수신 신호에서 왜곡을 보정하여야 한다. 채널 정보를 알아내기 위해서, 송신측과 수신측에서 모두 알고 있는 신호를 전송하여, 이러한 신호가 채널을 통해 수신될 때의 왜곡 정도를 가지고 채널 정보를 알아내는 방법을 주로 사용한다. 이와 같이 송신측과 수신측에서 모두 알고 있는 신호를 파일럿 신호 (Pi lot Signal) 또는 참조 신호 (Reference Signal)라고 한다.
무선 통신 시스템의 송신단 혹은 수신단에서 용량 증대, 통신 성능을 개선하기 위해서 다중안테나를 사용하여 데이터를 송수신하는 경우에는 각 송신 안테나와 수신 안테나 사이의 채널 상황을 알아야 올바른 신호를 수신할 수 있다. 따라서 , 각 송신 안테나 별로 별도의 참조 신호가 존재하여야 한다.
무선 통신 시스템에서 참조신호는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 참조신호에는 채널 정보 획득을 위한 목적을 위한 것과 데이터 복조를 위해 사용되는 것이 있다. 전자는 단말이 하향링크로의 채널 정보를 획득할 수 있는데 그 목적이 있으므로, 광대역으로 전송될 필요가 있으며, 특정 서브 프레임에서 하향링크 데이터를 수신하지 않는 단말이라도 그 참조신호를 수신하고 측정할 수 있어야 한다ᅳ 또한 이러한 채널 측정용 참조 신호는 핸드 오버의 측정 등을 위해서도 사용될 수 있다. 후자는 기지국이 하향링크 신호를 전송할 때 해당 자원에 함께 보내는 참조신호로서, 단말은 해당 참조신호를 수신함으로써 채널 추정을 할 수 있고, 따라서 데이터를 복조할 수 있게 된다. 이러한 복조용 참조신호는 데이터가 전송되는 영역에 전송되어야 한다.
3GPP LTE 시스템에서는 하향링크 참조신호로서 셀 내의 모든 단말이 공유하는 공용 참조신호 (CRS: Co睡 on Reference Signal)와 특정 단말만을 위한 전용 참조신호 (DRS: Dedicated Reference Signal)를 정의하고 있다. CRS는 채널 정보 획득 및 데이터 복조의 두 가지 목적으로 사용되며, 샐 특정 기준신호 (cellᅳ specific RS)라고도 한다. 기지국은 광대역에 걸쳐 매 서브 프레임마다 CRS를 전송한다. 반면, DRS는 데이터 복조용으로만 사용되며, DRS는 PDSCI-1 상의 데이터 복조가 필요한 경우 자원 요소들을 통해 전송될 수 있다. 단말은 상위 계층을 통하여 DRS의 존재 여부를 수신할 수 있으며, 상웅하는 PDSCH가 매핑되었을 때만 유효하다. DRS를 단말 특정 참조 신호 (UE-specific RS) 또는 복조 참조 신호 (DMRS: Demodulation RS)라고 할 수 있다.
수신측 (단밀-)은 CRS로부터 채널의 상태를 추정하여 CQKChannel Quality Indicator), PMI (Precoding Matrix Index) 및 /또는 RHRank Indicator)와 같은 채널 품질과 관련된 지시자를 송신측 (기지국)으로 피드백할 수 있디ᅳ. 또는 CQ1/PMI/RI와 같은 채널 상태 정보 (CSI: Channel State Information)의 피드백과 관련된 참조 신호를 별도로 CSI-RS로 정의할 수도 있다. 채널 측정 목적의 CSI- RS는 기존의 CRS가 채널 측정 둥의 목적과 동시에 데이터 복조를 위해 사용되는 것과 달리 채널 측정 위주의 목적을 위해서 설계되었다는 것에 특징이 있다. 이의 같이, CS卜 RS가 채널 상태에 대한 정보를 얻는 목적으로만 전송되므로 기지국은 모든 안테나 포트에 대한 CSI— RS를 전송한다. 또한, CSI-RS는 하향링크 채널 정보를 알기 위한 목적으로 전송되므로 DRS와 달리 전 대역으로 전송된다. 현재 3GPP LTE 시스템에서는 수신단의 채널 정보 없이 운용되는 개루프 MIM0( open- loop MIM0)와 폐루프 MIMCXclosedᅳ loop MIM0) 두 가지 송신 방식을 정의하고 있으며, 폐루프 MIM0에서는 MIM0 안테나의 다중화 이득 (multiplexing gain)을 얻기 위해 송수신단은 각각 채널 정보 즉, 채널 상태 정보 (CSI: Channel State Information)를 바탕으로 빔포밍 (beamforming)을 수행한다. 기지국은 단말로부터 CS I를 획득하기 위하여 단말에게 PUCCH (Physical Uplink Control Channel) 또는 PUSCH( Physical Uplink Shared Channel)을 할당하여 하향링크 CS【를 피드백 하도록 명령한다. .
CSI는 크게 R Rank Indicator), PMI (Precoding Matrix Index) , CQI (Channel Quality Indication) 세가지 정보로 분류된다.
RI는 채널의 탱크 (rank) 정보를 나타내며, 단말이 동일 주파수 시간 자원을 통해 수신 하는 신호 스트림 (혹은 레이어 )의 개수를 의미한다. 이 값은 채널의 장기 페이딩 (long term fading)에 의해 우세 (dominant )하게 결정되므로 PMI, CQI 값 보다 통상 더 긴 주기를 가지고 단말에서 기지국으로 피드백 된다.
PMI는 채널의 공간 특성을 반영한 값으로 SINR(Signal to Interference plus Noise Ratio) 등의 측정값 (metric)을 기준으로 단말이 선호하는 기지국의 프리코딩 인텍스 (precoding index)를 나타낸다. 즉, PMI는 송신단으로부터의 전송에 이용되는 프리코딩 행렬에 대한 정보이다. 수신단으로부터 피드백되는 프리코딩 행렬은, RI에 의하여 지시되는 레이어의 개수를 고려하여 결정된다ᅳ PMI는 폐 -루프 공간다중화 (Spacial Mutiplexing) 및 긴 지연 CDD(large delay CDD) 전송의 경우에 피드백될 수 있다. 개 -루프 전송의 경우에는, 송신단이 미리 결정된 규칙에 따라 프리코딩 행렬을 선택할 수 있다. 수신단이 각각의 랭크에 대해서 PMI를 선택하는 과정은 다음과 같다. 수신단은 각각의 PMI에 대하여 아전에 처리한 SINR을 계산하고, 계산된 SINR을 총합 용량 (sum capacity)로 변환하여, 총합 용량에 기초하여 최적의 (best) PMI를 선택할 수 있다. 즉, 수신단이 PMI를 계산하는 것은 총합 용량에 기초하여 최적의 PMI를 찾는 과정이라 할 수 있다. 수신단으로부터 PMI를 피드백 받은 송신단은, 수신단이 추천하는 프리코딩 행렬을 그대로 이용할 수 있고, 이러한 사실을 수신단으로의 데이터 전송 스케줄링 할당 정보에 1 비트의 지시자로서 포함시킬 수 있다. 또는, 송신단은 수신단으로부터 피드백 받은 PMI가 나타내는 프리코딩 행렬을 그대로 이용하지 않을 수도 있디-. 이러한 경우, 송신단이 수신단으로와 데이터 전송에 이용하는 프리코딩 행렬 정보를 스케줄링 할당 정보에 명시적으로 포함시킬 수 있디 .
CQI는 채널의 세기를 나타내는 값으로 통상 기지국이 PMI를 이용했을 때 얻을 수 있는 수신 SINR을 의미한다. 단말은 미리 정해진 변조 방식 (modulation scheme) 및 코딩율 (code rate)의 조합들로 구성되는 집합에서 특정 조합을 지시하는 CQI 인덱스를 기지국에 보고한다.
LTE-A 시스템과 같은 보다 진보된 통신 시스템에서는 MU-MIMO(multi-user ΜίΜΟ)를 이용한 추가적인 다중 사용자 다이버시티 (mult i -user diversity) 이득을 얻는 것이 추가되었디-. MU-MIM0 기술은 기지국이 각 안테나 자원을 다른 단말에게 할당하는 것으로, 안테나 별로 고속 데이터 전송률이 가능한 단말을 선택하여 스케줄링하는 방식이다. 이러한 다중 사용자 다이버시티 이득을 위하여 채널 피드백 관점에서는 보다 높은 정확도가 요구된다. 그 이유는 MU-MIM0에서는 안테나 영역 (domain)에서 다중화되는 단말 간의 간섭 채널이 존재하므로, 피드백 채널 정확도가 피드백을 전송하는 단말뿐만 아니라 다중화되는 다른 단말에 간섭으로 큰 영향을 미치기 때문이다. 따라서 LTEᅳ A 시스템에서는 피드백 채널의 정확도를 향상시키기 위하여 최종 PMI를 장기 (long term) 및 /또는 광대역 (wideband) PMI인 W1과 단기 (short term) 및 /또는 서브밴드 (sub-band) PM1인 W2와 같이 둘로 나누어 설계하는 것이 결정되었으며, 최종 PMI는 과 W2의 조합으로 결정될 수 있다.
W1과 W2, 두 채널 정보로부터 하나의 최종 PMI를 구성하는 계층적 코드북 변환 (hierarchical codebook transformation) 방식의 예시로 아래 수학식 1과 같이 채널의 장기 공분산 행렬 (long— term covariance matrix)을 이용하여 코드북을 변환할 수 있다.
【수학식 1】
W = /7orw( W1W2)
수학식 1을 참조하면, W2 (=short term PMI)는 단기 (shortᅳ term) 채널 정보를 반영하기 위해 만들어진 코드북의 코드워드이며, W1은 장기 (long-term) 공분산 행렬을 나타내며, "0 ?(A)은 행렬 A의 각 열 (colu隱) 별로 놈 (norm)이 i로 정규화 (normal ization)된 행렬을 의미한다. 은 변환 (transform)된 최종 코드북의 코드워드를 나타내고, 기존 W1과 W2의 구체적인 구조는 아래 수학식 2와 같다.
【수학식 2】 s Nt/2 by M matrix.
(if rank = r) , where 1 < :, /, m < M and k, I, m are integer.
Figure imgf000025_0001
수학식 2에서의 코드워드 구조는 크로스 편파된 안테나 (cross polarized antenna)를 사용하고 각 안테나 간 간격이 조밀한 경우 (통상 인접 안테나 간 신호 파장의 반 이하인 경우) 발생하는 채널의 상관 (correlation) 특성을 반영하여 설계한 구조이다. 크로스 편파된 (cross polari ed) 안테나의 경우 안테나를 수평 안테나 그룹 (horizontal antenna group)과 수직 안테나 그룹 (vertical antenna group)으로 구분 할 수 있는데, 각 안테나 그룹은 ULA( uniform linear array) 안테나의 특성을 가지며, 두 안테나 그룹은 같이 위치 (c으 located)할 수 있다. 따라서 각 그룹의 안테나 간 상관 (correlat ion)은 동일한 선형 위상 증분 (linear phase increment) 특성을 가지며, 안테나 그룹 간
Figure imgf000025_0002
위상 회전 (phase rotation)된 특성을 갖는다. 코드북은 결국 채널을 양자화 (quantization) 한 값이기 때문에 소스에 해당하는 채널의 특성을 그대로 반영하여 코드북을 설계하는 것이 필요하다. 설명의 편의를 위해 '학식 2의 구조로 만든 랭크 1 코드워드 (rank 1 codeword)를 예를 들면 아래 수학식 3과 같으며, 채널 특성이 수학식 2를 만족하는 코드워드에 반영되었음을 확인할 수 있다.
【수학식 3】
Figure imgf000025_0003
위 식에서 코드워드는 Nt (송신 (Tx) 안테나 수) 개의 행과. 1 열로 구성 (Nt by 1)되는 백터로 표현되며 상위 백터 X' ( 와 하위 백터 a'XW 둘로 구조화 되어있고, 각각은 수평 안테나 그룹 (horizontal antenna group)과 수직 안테나 그 Hvertical antenna group)의 상관 (correlat ion) 특성을 보여준다. X'( )는 5 각 안테나 그룹의 안테나 간 상관 특성을 반영하여 선형 위상 증분 (linear phase increment)를 갖는 백터로 표현하는 것이 유리하며, 대표적인 예로 DFT(Discrete
Fourier Transform) 행렬을 이용할 수 있다.
또한 , CoMP를 위해서도 보다 높은 채널 정확도가 필요하다. CoMP JT의 경우 여러 기지국이 특정 단말에게 동일한 데이터를 협력 전송하므로 이론적으로
H) 안테나가 지리적으로 분산되어 있는 MIM0 시스템으로 간주 할 수 있다. 즉, JT에서 MU-ΜίΜΟ를 하는 경우도 단일 셀 MU-MIM0와 마찬가지로 공통 스케줄링 (co- scheduling) 되는 단말 간 간섭을 피하기 위해 높은 수준의 채널 정확도가 요구 된디-. CoMP CB의 경우 역시 인접 셀이 서빙 셀에게 주는 간섭을 회피하기 위해서 정교힌- 채널 정보가 요구된다.
lr: 한편. 최근 3GPP LTE-A 시스템에서는 기지국간 간섭 조정 방법의 하나로써 eICIC(enhanced Inter— Cell Interference Coordinat ion)에 대한 활발한 연구가 수행되고 있디-. 이는, 간섭 조정 (Interference coordination) 기법의 하나로 간섭을 일으키는 셀을 각각 공격자 셀 (aggressor cell) 또는 1차 셀 (primary Cell)이라고 하고, 간섭을 받는 셀을 회생 셀 (victim cell) 또는 2차0 ! (secondary Cell)로 정의하고, 공격자 셀 (aggressor ceH)이 일부 특정 자원 영역에서 데이터 전송을 중지하여 단말이 해당 자원 영역에서 희생 셀 (victim cell) 또는 2치- 셀과 접속을 유지할 수 있게 하는 방법이다. 즉, 공격자 셀이 일부 물리 채널의 전송 파워 (power)/동작 (activity)를 줄이는 (0 파워로 설정하는 동작까지 포함) 사이런트 서브프레임 (si lent subframe)을 사용하고 희생 셀은 이를 고려하여 단말을 스케줄링하여 시간 영역 셀 간 간섭 조정 (time domain inter一 cell interference coordination)0] 가능하다. 사이런트 서브프레임 (si lent subframe)은 ABS(almost blank subframe)라고 불릴 수도 있다. 이 경우, 회생 셀 내 위치한 단말의 입장에서는 간섭 레벨 (interference level)이 사이런트 서브프레임 여부에 따라서 크게 변화하게 되며, 공격자 샐과 희생 셀의 경계에 위치한 단말은 각각의 셀에서 송신된 신호가 상호간에 서로 간섭으로써 작용할 수 있다.
이러힌 · 상황에서 각 서브프레임에서의 보다 정확한 무선 링크 모니터링 (RLM: radio link moni toring)이나 참조 신호 수신 파워 (RSRP: Reference Signal Recei ed Power)나 참조 신호 수신 품질 (RSRQ: Reference Signal Received Quality) 등을 측정하는 무선 자원 측정 (RRM: radio resource management ) 동작을 수행하거나 보다 정확한 링크 적웅 (link adaptation)을 위한 CS11- 측정하기 위해, 상술한 모니터링 /측정은 균일한 간섭 특성을 지니는 서브프레임 세트들로 제한되는 것이 바람직하다.
3GPP LTE 시스 ¾에서는 아래와 같이 제한된 RLM 및 RRM/CSI 측정을 정의한디-.
1) RLM( radio link monitoring)
하향링크 무선 링크 품질은 상위 계층에 'out-ofᅳ sync' 또는 'in-sync' 상태를 지시하기 위한 목적으로 단말의 물리 계층에서 모니터링될 수 있다.
non-DRX(discontinuous reception) 모드 동작의 경우, 단말 내 물리 계층은 매 무선 프레임 마다 이전의 시간 구간에 걸쳐 측정된 값과 임계치 (Qoui 및 Q,n)를 비교하여 무선 링크 품질을 모니터링한다. 반면, DRX 모드 동작에서, 단말 내 물리 계층은 매 DRX(Discontinuous Reception) 구간 당 적어도 한번 이전의 시간 구간에 걸쳐 측정된 값과 임계치 (Qout 및 Qin)를 비교하여 무선 링크 품질을 모니터링한다. 여기서, 상위 계층 시그널링이 제한된 무선 링크 모니터링을 위하여 특정 서브프레임들을 지시한 경우, 무선 링크 품질은 지시된 서브프레임들 이외의 다른 서브프레임에서 모니터링되지 않는다.
단말 내 물리 계층은 무선 링크 품질을 평가한 무선 프레임들 내에서 임계치 (Qout) 보다 무선 링크 품질이 열악한 경우에, 상위 계층에 'out-ofᅳ sync'를 지시한다. 즉, 'out-of-sync' 지시는 단말이 서빙 기지국으로부터의 신호를 측정하여. 채널 품질이 일정한 레벨 이하로 떨어지는 경우에 발생하는 이벤트이디-. 여기서, 채널 품질은 기지국으로부터의 하향링크 신호 중애서 샐- 톡정 참조신호 (CRS)를 이용하여 측정되는 SNR(Signa to-Noise Ratio)로부터 측정될 수 있디-. 또는, 'out-of-sync' 지시는 하위 계충 (물리 계층)에서 수신하는 PDCCH의 복조가 불가능하거나 SINR(Signa卜 t으 Interference plus Noise Ratio)가 낮을 때 상위 계층으로 제공될 수 있다.
반면, 단말 내 물리 계층은 무선 링크 품질을 평가한 무선 프레임들 내에서 임계치 (Q 1) 보다 무선 링크 품질이 양호한 경우에, 상위 계층에 'inᅳ sync'를 지시한다. 즉, 'inSync' 지시는 단말이 서빙 기지국으로부터의 신호를 측정하여, 재널 품질이 일정한 레벨 이상으로 을라가는 경우에 발생하는 이벤트이다ᅳ
2) CQ1 (channel quality indicator)
CQI는 채널 품질을 나타내는 정보이다. CQI는 미리 결정된 MCS 조합으로서 표현될 수 있다. CQI 인덱스는 아래 표 2와 같이 주어질 수 있다. 표 2는 CQI 인텍스에 대한 테이블을 나타낸다.
【표 2】
Figure imgf000029_0001
표 3은 CSI 참조 자원을 위한 PDSCH 전송 방식을 나타낸다. 【표 3】
Figure imgf000030_0001
표 2를 참조하면, CQI 인덱스는 4 비트 (즉, CQI 인덱스 0 내지 15)로 표현되고, 각각의 CQI 인덱스는 해당하는 변조 방식 (modulation scheme) 및 코딩율 (code rate)를 나타낸다.
3GPP LTE/LTEᅳ A 시스템에서는 CSI 참조 자원 (CSI reference resource)에서 단말이 CQI 인덱스를 계산하기 위하여 다음과 같은 가정을 고려할 것을 정의하고 있디-.
(1) 한 서브프레임의 처음 3 개의 0FDM 심볼들은 제어 시그널링에 의해 점유됨
(2) 주 동기신호 (primary synchronization signal ) , 부 동기 신호 (secondary synchronization signal) 또는 물리 방송 채널 (PBCH)에 의해 사용되는 자원 요소는 없음
(3) 비 -MBSFN 서브프레임의 CP 길이
(4) 리던던시 버전 (Redundancy Vers ion)은 0 임
(5) 전송 모드 9에서 CSI 보고의 경우 단말이 PMI/RI 보고가 설정되면, DMRS 오버해드는 가장 최근에 보고한 랭크와 일치함
(6) CSI-RS 및 제로 파워 (zero-power) CSI-RS를 위하여 할당된 자원 요소는 없음 '
(7) PRS(Positioning Reference Signal)을 위해 할당된 자원 요소는 없는
(8) PDSCH 전송 기법은 단말에 대해 현재 설정된 전송 모드 (디폴트 모드일 수 있음)에 따름 표 3과 같이 주어짐
(9) CRS가 채널 측정에 사용되면, PDSCH EPRECEnergy Per Resource li lenient) 대 셀—톡정 참조신호 EPRE의 비 (ratio)는 의 예외를 가지고 주어진 바와 같음 PA 는 다음과 같은 가정에 따를 수 있다. 단말이 4 개의 셀 -특정 안테나 포트 구성의 전송 모드 2로 설정되거나, 또는 4 개의 셀 -특정 안테나 포트 구성이면서 관련된 RI가 1인 전송 모드 3으로 설정되는 경우에는, 임의의 변조 기법에 대해서, ^ = ΡΑ + ΔΟ +101og|o(2) [dB] 이다. 그 외의 경우에는, 임의의 변조 기법 및 임의의 레이어 개수에 대해서, ΡΛ = ΡΑ ^ ^off^ [dB] 이다ᅳ
Δ ( · 은 상위계층 시그널링에 의해 설정되는 nomPDSCH-RS-EPRE-Ofiset 파라미터에 의해 주어진다.) 이와 같은 가정을 정의한 것은 CQI가 채널 품질에 대한 정보뿐만 아니라 해당 단말에 대한 다양한 정보를 포함하고 있음을 의미한다 . 즉, 같은 채널 품질에서도 해당 단말의 성능에 따라 서로 다른 CQI 인텍스를 피드백할 수 있기 때문에 일정한 기준을 정의하는 것이다.
기존의 서빙 셀에 대한 RLM/RRM 측정은 CRS를 이용하여 측정을 수행하였으나, DMRS를 사용하는 전송 모드 (예를 들어, 전송 모드 9)에서는 프리코딩이 적용되므로 실제 전송이 이루어지는 링크에 대한 측정과 상이할 수 있디-, 따라서, 전송 모드 9에서 PMI/RI 보고 모드 (reporting mode)가 설정된 경우, 단말은 CSi 참조 신호만을 기초로 CQI 값을 계산하기 위하여 채널 측정을 수행한다. 반면, 전송 모드 9에서 PM.I/RI 보고를 하지 않도록 설정된 경우, 단말은 CRS를 기초로 CQI 계산을 위하여 채널 측정을 수행한다.
단말이 채널의 상태를 파악하고 적합한 MCS를 구하는 과정은 단말 구현 측면에서 다양한 방식으로 설계될 수 있다. 예를 들어 단말은 참조 신호를 이용하여 채널 상태 또는 유효 SWR(Signal-to-Interference plus Noise Ratio)를 계산할 수 있다. 또한, 채널 상태 또는 유효 SINR은 전체 시스템 대역폭 (set S 라 칭할 수 있음) 상에서 측정되거나, 또는 일부 대역폭 (특정 서브밴드 또는 특정 B) 상에서 측정될 수 있다. 전체 시스템 대역폭 (set S)에 대한 CQI를 광대역 VB: Wideband) CQI라 하고, 일부 대역애 대한 CQI를 서브밴드 (SB: Subband) CQI라 할 수 있다. 단말은 계산된 채널 상태 또는 유효 SINR에 기반하여 , 가장 높은 MCS를 구할 수 있다. 가장 높은 MCS는, 디코딩시 전송 블록 에러율이 10%를 초과하지 않고 CQI 계산에 대한 가정을 만족하는 MCS를 의미한다. 단말은 구해진 MCS에 관련된 CQI 인덱스를 결정하고, 결정된 CQI 인덱스를 기지국으로 보고할 수 있다.
LTE/LTE-A 시스템에서는 CSI 피드백 /보고를 위한 CSI 참조 자원 (CSI Reference Resource)를 정의하고 있다. CSI 참조 자원은 주파수 영역에서 산출된 CQI가 연관된 주파수. 대역에 해당하는 하향링크 물리 자원 블록 (PRB)들의 그룹으로 정의된다. 그리고, 시간 영역에서는 단일의 하향링크 서브프레임 /그 nCQLrei으一 — 정의된다. 여기서 n은 CSI를 전송 /보고하기 위한 상향링크 서브프레임 인텍스를 의미한다.
nWLref 는 주기적 CSI 보고의 경우, 4 이상의 값들 중 유효한 하향링크 서브프레임에 해당하는 가장 작은 값을 가진다. 즉, CSI를 보고하기 위한 상향링크 서브프레임에서 최소 4번째 이전의 서브프레임들 중에서 CSI를 보고하기 위한 상향링크 서브프레임과 가장 가까운 유효한 하향링크 서브프레임이 해당된다. 그리고, 그리고, 비주기적 CSI 보고의 경우, CSI 참조 자원은 상향링크 DCI 포맷 (예를 들어, DCI 포맷 0) 내 해당 CSI 요청 (CSI request)이 전송된 유효한 하향링크 서브프레임과 같다. 또한, 비주기적 CSI 보고에서, 하향링크 서브프레임 n-nCQLref 랜덤 액세스 웅답 승인 (random access response grant) 내에 해당 CSI 요청이 전송되는 경우, nCQUef 는 4와 같디-.
또한, CSI 서브프레임 세트 (Ccsi.0 , ccsu )가 상위 계층에 의해 해당 단말에 설정되는 경우, 각 CSI 참조 자원은 두 개의 서브프레임 세트 (Ccsi.0, CcS1-' ) 중 어느 하나에 포함되나, 둘 모두에 포함될 수는 없다.
하향링크 서브프레임이 유효하기 위해서는 i ) 해당 단말을 위한 하향링크 서브프레임이고, ii ) 전송 모드 9 이외의 경우에는 MBSFN(Multi cast -Broadcast
Single Frequency Network) 서브프레임이 아니며, iii) TDD 시스템의 스페셜 서브프레임 (special subframe)에서 DwPTS의 길이가 일정 크기 이하인 경우 DwPTS - 필드를 포함하지 않고, iv) 해당 단말을 위해 설정된 측정 갭 (gap)에 포함되지 않으며, vi) 주기적 CSI 보고에서 단말이 CSI 서브프레임 세트 (CSI subframe set)를 가지도록 설정된 경우 주기적 CSI 보고와 관련된 CSI 서브프레임 세트의 요소에 해당되어야 한다. 반면, CSI 참조 자원을 위한 유효한 하향링크 서브프레임이 존재하지 않는 경우, 상향링크 서브프레임 n에서 CSI 보고는 생략된디-.
3) RRM( radio resource management )
RRM을 위한 측정은 크게 RSRP(Reference Signal Received Power), RSRQ(Reference Signal Received Quality) 등으로 구분될 수 있으며, RSRQ는 RSRP와 E-UTRA 캐리어 수신 신호 강도 지시자 (RSSI: Received Signal Strength Indicator) 의 조합을 통해 측정될 수 있다.
RSRP( Reference Signal Received Power)는 측정 주파수 대역 내에서 셀 톡정 참조 신호 (CRS)가 전송되는 자원 요소들의 파워 분포에 대한 선형 평균으로 정의된디-. RSRP 결정을 위해, 안테나 포트 '0'에 해당하는 셀 특정 참조 신호 (R0)가 사용될 수 있다. 또한, RSRP 결정을 위해, 안테나 포트 'Γ에 해당하는 셀 특정 참조 신호 ( )가 추가로 사용될 수도 있다. 단말에 의하여 수신 다이버시티 (diversity)가 이용되는 경우, 보고되는 값은 개별적인 다이버시티 지로 (diversity branch)의 해당 RSRP 보다 작지 않을 수 있다. RSRP를 결정히ᅳ기 위하여 단말에 의해 이용되는 측정 주파수 대역 및 측정 구간 내에서 이용하는 자원 요소들의 수는 해당 측정 정확도 요구 (accuracy requirements)가 만족되는 한도에서 단말이 결정할 수 있다. 또한, 자원 요소 당 파워는 순환 전치 (CP)를 제외한 심볼의 부분 내에서 수신한 에너지로부터 결정될 수 있다. RSRQ(Reference Signal Received Quility)는 N x RSRP/ ( E JTRA 캐리어 RSS I (Received Signal Strength Indicator))로 정의된다. 여기서, N은 E-UTRA 캐리어 RSSI 측정 대역의 자원 블록 (RB)들의 수를 의미한다. 또한, 상술한 식에서 분자 및 분모의 측정은 동일한 자원 블록 (RB)의 세트에서 구해질 수 있다.
E-UTRA 캐리어 RSSI (Received Signal Strength Indicator)는 측정 대역 내, N 기ᅵ의 자원 블록에 걸쳐 , 안테나 포트 '0'에 해당하는 참조 심볼을 포함하는 OFDM 심볼들 내에서 공동—채널 (co-channel)의 서빙 셀 (serving cell) 과 년—서빙 셀 (non— serving cell), 인접 채널 간섭, 열 잡음 (thermal noise) 등을 포함하는 모든 소스들로부터 감지된 총 수신 파워에 대한 선형 평균을 포함한다. 반면, 상위 계층 시그널링에 의하여 ' RSRQ 측정을 수행하기 위한 특정 서브프레임들이 지시되는 경우, RSSI는 지시된 서브프레임들 내의 모든 OFDM 심볼에 통해 측정된디 . 단말에 의하여 수신 다이버시티 (diversity)가 이용되는 경우, 보고되는 값은 개별적인 다이버시티 지로 (divers.ity branch)의 해당 RSRP 보다 작지 않을 수 있다.
2. 통신 상태 측정 방법
본 발명에서는 기지국이 상향링크와 하향링크의 트래픽의 양에 따라서 상향링크 자원과 하향링크 자원의 양을 동적으로 변경시키는 상황에서 단말이 어떤 자원 (상향링크 자원 혹은 하향링크 자원)을 이용하여 통신하는 것이 보다 효과적인지 네트워크에 알리기 위하여 단말이 각 자원에서의 통신 상태에 대한 측정을 수행하고 이를 보고하는 방법을 제안한다.
도 6은 인접한 두 셀이 동일한 시간 /주파수 자원에서 서로 다른 방향의 전송을 수행하는 상황을 도식화한 도면이다. 도 6을 참조하면, 인접한 두 셀이 동일한 시간 /주파수 자원에서 기지국 KeNB 1)과 단말 1(UE 1)은 하향링크 전송을 수행하는 반면, 인접한 셀의 기지국 2(eNB 2)와 단말 2 JE 2)는 상향링크 전송을 수행한다. 이와 같이, 인접한 두 셀이 동일한 시간 /주파수 자원에서 서로 다른 방향으로 전송을 수행하게 되면, 두 셀이 같은 방향 (상향링크 혹은 하향링크)으로 전송을 수행하는 경우에 비하여 셀 간 간섭양이 증가하게 되며, 특정한 위치에 있는 단말 (예를 들어, 셀 간 경계에 위치한 단말 등)은 인접 셀로부터의 강한 간섭을 받게 되어 결국 인접 셀 간에 서로 다른 방향으로의 통신이 불가능한 상황에 처할 수 있다. 따라서 이러힌 · 단말이 상향링크 자원 및 /또는 하향링크 자원에서 통신 상태에 대한 축정을 수행하고 이를 네트워크에 보고함으로써, 각 단말의 상황에 가장 적절한 통신 방향의 조합 (단말이 접속한 서빙 셀의 통신 방향과 인접 셀의 통신 방향의 조합)을 찾고 그러한 조합이 나타나는 시간 /주파수 자원에서 해당 단말을 스케줄링하는 것이 매우 중요하다.
이하, 본 발명에서는 기지국이 트래픽의 양에 따라서 상 /하향링크 자원의 양을 동적으로 변화하는 상황을 가정한다. 이러한 동적 변화를 구현하기 위해서 기지국이 하향링크 자원으로 설정된 자원에서 상향링크. 트래픽이 많은 경우에 일시적으로 단말의 상향링크 전송을 스케줄링하거나 하향링크 트래픽이 많은 경우에 일시적으로 상향링크 자원으로 설정된 자원을 이용하여 단말로의 하향링크 전송을 수행하는 경우를 고려한다. 여기서, 상향링크 자원으로 설정해 둔 자원은 FDD 시스템에서는 상향링크 밴드 (UL band)를 의미하며, TDD 시스템에서는 상향링크 서브프레임 (UL subframe)을 의미한다. 또한, 반대로 하향링크 자원으로 설정해 둔 자원은 FDD 시스템에서는 하향링크 밴드 (DL band)를 의미하며, TDD 시스템에서는 하향링크 서브프레임 (DL subframe)을 의미한디-. 일례로, 기지국은 특정 서브프레임이 상향링크 서브프레임으로 설정되었다는 정보를 불특정 다수의 단말에게 알린 상황에서 하향링크 트래픽이 많은 경우에 일시적으로 특정 단말에게 해당 서브프레임이 하향링크 전송의 용도로 전환이 됨을 알릴 수 있다. 또한, 네트워크는 상 /하향링크 자원의 활용 방법이 동적으로 변화하는 자원을 특정하여 별도로 설정할 수 있으며, 이 경우에도 본 발명의 원리가 적용될 수 있음은 자명하다.
이하, 설명을 명확히 하기 위하여 하향링크 자원 (혹은 서브프레임)은 일시적으로 하향링크 전송 용도로 변경된 상향링크 자원 (혹은 서브프레임)은 포함되지 않으며 , 이의- 반대로 상향링크 자원 (혹은 서브프레임 )은 일시적으로 상향링크 전송 용도로 변경된 하향링크 자원 (혹은 서브프레임)은 포함되지 않는 것을 가정한다.
본 발명에서 측정 (measurement)은 3GPP LTE 시스템에서 정의하고 있는 RSRP, SRQ, RSSI와 같은 RRM 측정이나 현재 서빙 셀과의 기본적 통신 상태를 관찰하는 RLM( radio link monitoring) 측정 등을 포함한다. 이하, 설명의 편의를 위해 인접 셀 간의 상향링크 /하향링크 서브프레임의 경계가 정렬 (align)되어 있다고 가정한디-.
도 7은 본 발명의 일 실시예에 따른 단말의 측정 방법을 예시하는 도면이다. 도 7을 참조하면, 상향링크 자원과 하향링크 자원이 동적으로 용도가 변경되는 상황에서 기지국은 단말이 측정을 수행하기 위하여 설정된 자원 정보를 단말에 전송할 수 있다 (S701). 여기서, 측정 자원에 대한 정보는 RRC 계층과 같은 상위 계충 신호, MAC 계충 신호 혹은 물리 계층 신호를 통해 전송될 수 있디- .
상향링크 자원과 하향링크 자원이 동적으로 용도가 변경되므로 , 단말은 하향링크 자원 및 /또는 상향링크 자원 (특히, 하향링크 용도로 사용되는 상향링크 자원)에서 각각 측정을 수행할 수 있으몌 기지국은 각 자원 별로 단말이 측정을 수행하기 위한 자원 정보를 전송할 수 있다. 여기서, 측정 자원은 인접 기지국에서 동일한 자원이 하향링크 용도로 사용되는지 혹은 상향링크 용도로 사용되는지를 고려하여 결정될 수 있다. 구체적으로, 기지국은 단말로부터 안정적인 측정을 보고받기 위하여 각 자원 별로 인접 기지국에서 동일한 자원이 하향링크 용도로 사용되는지 혹은 상향링크 용도로 사용되는지 여부를 고려하여 하향링크 자원 및 /또는 상향링크 자원에서 단말이 측정을 수행하기 위한 자원을 특정 자원으로 제한할 수 있다. 또한, 기지국은 각 자원 별로 인접 기지국에서 동일한 자원이 하향링크 용도로 사용되는지 혹은 상향링크 용도로 사용되는지 여부를 고려하여 단말이 측정을 수행하기 위한 자원의 세트를 구분하여 각각 측정하도록 설정할 수도 있다. 또한, 기지국은 각 측정 지수 (measurement metric) 별로 측정 자원을 상이하게 설정할 수도 있다. 이러한 단말이 측정을 수행하기 위한 자원은 미리 설정되어 기지국과 단말이 알고 있을 수 있으며, 이 경우 S701 단계는 생략될 수 있다.
기지국은 단말이 측정을 수행하기 위한 자원에서 단말에 참조 신호를 진송한다 (S705). 단말이 하향링크 자원에서 측정을 수행하는 경우 기지국은 기존 시스템에서 정의된 참조 신호를 동일하게 단말에 전송할 수 있으며, 단말이 하향링크 용도로 이용되는 상향링크 자원에서 측정을 수행하는 경우 기지국은 해당 자원에서 단말의 측정을 위하여 설정된 참조 신호를 전송할 수 있다. 단말은 측정 자원으로 설정된 해당 자원에서 측정을 수행하고 (S705), 측정된 결과를 주기적 흑은 비주기적으로 기지국에 보고한다 (S707). 여기서, 측정 결과는 하나 이상의 서브프레임에서 단말이 측정한 측정치가 포함될 수 있다.
이하, 본 발명에 따른 통신 상태의 측정 방법에 대하여 상세히 설명한다. 2. 1. 즉정 (measurement)
이하, 설명의 편의를 위해 본 발명에서 제안하는 통신 상태 측정 (measurement) 방식을 하향링크 자원과 상향링크 자원에서의 측정으로 구분하여 설명하나, 동일한 단말에 의하여 하향링크 자원에 대한 측정과 상향링크 자원에 대한 측정이 함께 수행될 수 있음은 물론이다. 또한, 이하 설명하는 각 방식은 독립적으로 사용될 수 있으나, 적어도 어느 하나 이상의 방식을 조합하여 사용될 수도 있다.
2. 1. 1. 하향링크 자원에 대한 측정
단말은 하향링크 자원에 대한 측정을 수행하되, 이 경우에는 기존의 무선 접속 시스템 (예를 들어, 3GPP LTE 시스템)에 정의된 측정의 정의를 따를 수 있다. 이는 기존의 시스템에서 모든 측정은 하향링크 자원에 대해서 정의되었기 때문이디_. 예를 들어, 단말의 하향링크 자원에 대한 측정을 위한 참조 신호 (reference signal)로 CRS나 CSI—RS 등을 이용할 수 있다.
다만, 단말이 하향링크 자원에 대한 측정을 수행할 띠ᅵ, 측정을 수행하는 자원과 동일한 시간 /주파수 자원을 인접 셀에서 하향링크 전송의 용도로 사용하는지 상향링크 전송의 사용하는지에 따라 셀 간 간섭이 크게 차이가 날 수 있다. 도 8은 본 발명의 일 실시예에 따른 단말이 하향링크 자원에 대한 측정을 수행하는 상황을 도식화한 도면이다.
도 8의 (a)는 기지국 l(eNB 1)의 커버리지 내에 위치한 단말 1(UE 1)이 하향링크 자원에서 측정을 수행할 때, 단말 1이 측정을 수행하는 자원에서 인접 셀의 기지국 2(eNB 2)이 단말 2 JE 2)에게 하향링크 전송을 수행하는 상황을 에시하고, 도 8의 (b)는 기지국 KeNB 1)의 커버리지 내에 위치한 단말 1 JE 1)이 하향링크 자원에서 측정을 수행할 때, 단말 1이 측정을 수행하는 자원에서 인접 셀의 기지국 2(eNB 2)가 단말 2 JE 2)로부터 상향링크 전송을 수신하는 상황을 예시한다.
도 8의 (a)의 경우 단말 1은 인접한 기지국 2로부터 간섭을 받게 되나, 도 8의 (b)의 경우 단말 1은 단말 2로부터 간섭을 받게 된다. 즉, 단말이 하향링크 자원에 대한 측정을 수행할 때, 하향링크 측정을 수행하는 자원과 동일한 시긴 7주파수 자원에서 인접 셀이 상향링크 전송을 수행하는지 아니면 하향링크 전송을 수행하는지에 따라서 해당 단말이 관찰하는 셀 간 간섭은 큰 차이를 보일 수 있으며. 특히 셀 경계에 위치한 단말은 거리가 매우 가까운 인접 셀의 단말이 상향링크로 전송하는 신호에 의해 매우 큰 간섭을 관찰하는 경우도 발생한다. 이러한 문제를 해결하기 위하여, 기지국은 단말이 (특히 셀 경계에 위치한 단말이) 측정을 수행하는 하향링크 자원을 인접 썰이 상향링크 전송으로 사용하지 않는 자원으로 제한할 수 있다. 다시 말해, 기지국은 단말이 측정을 수행하는 하향링크 자원을 인접 샐이 반드시 혹은 매우 높은 확률로 하향링크 진송을 수행하는 자원으로 제한할 수 있다. 즉, 각 셀의 기지국은 자신이 반드시 혹은 매우 높은 확를로 하향링크 전송 목적 (용도) 혹은 상향링크 전송 목적 (용도)으로 사용할 하향링크 서브프레임의 인덱스 (또는 복수의 서브프레임에 대힌- 비트맵)을 인접 셀의 기지국에게 전달할 수 있다. 이때, 기지국은 특정 임계치와 산출된 확률과 비교하여 특정 임계치 이상인 확률을 가지는 서브프레임을 인접 셀의 기지국에게 알려줄 수 있다. 또한, 이러한 서브프레임의 인덱스 (혹은 비트맵 ) 정보와 해당 위치에서 자원의 용도를 지시하는 정보를 함께 인접 기지국에게 전달할 수도 있다.
인접 셀의 기지국으로부터 하향링크 전송 목적 (용도)으로 사용할 하향링크 서브프레임의 인덱스 (흑은 비트맵) 정보를 수신한 서빙 셀의 기지국은 해당 서브프레임에서만 단말이 서빙 셀의 하향링크 자원에 대한 측정을 수행하도록 설정할 수 있디 ·. 또한, 인접 셀의 기지국으로부터 상향링크 전송 목적 (용도)으로 사용할 하향링크 서브프레임의 인덱스 (혹은 비트맵) 정보를 수신한 서빙 셀의 기지국은 해딩- 자원을 제외한 나머지 자원에서만 단말이 서빙 셀의 하향링크 자원에 대한 측정을 수행하도록 설정할 수 있다. 즉, 서빙 셀의 기지국은 인접 샐이 하향링크 전송 용도로 사용하는 자원에서만 단말이 서빙 셀의 하향링크 자원에 대한 측정을 수행하도록 설정할 수 있다. 도 8의 경우, 단말 1의 입장에서 살펴보면 , 도 8의 (a)가 상술한 제한된 자원에 해당한다 . 이와 같이 , 서빙 씰의 기지국은 상술한 제한된 자원에서만 단말이 서빙 셀의 하향링크 자원에 대한 측정을 수행하도록 설정함으로써, 인접 셀이 동적으로 자원의 용도를 변경하는 상황에서도 안정적으로 하향링크 자원에 대한 측정 결과를 보고받을 수 있다.
2. 1. 2. 상향링크 자원에 대한 측정
단말은 하향링크 자원에 대한 측정과는 별도로 상향링크 자원에 대한 측정을 수행할 수 있다. 이는 기지국이 상향링크 자원을 통해서 하향링크 전송을 수행하는 경우에, 이로 인한 인접 기지국이 동일한 시간 /주파수 자원에서 상향링크 신호를 수신하는데 생기는 간섭을 줄이기 위해서 기지국 자신의 전송 전력을 즐이는 등의 동작을 수행할 수 있으며, 그 결과로 각종 측정 특성이 하향링크의 측정과는 크게 달라질 수 있기 때문이다. 따라서, 기지국은 단말에게 하향링크 자원에 대한 측정과는 별개로 상향링크 자원에 대한 측정을 설정하고, 단말은 이러한 설정에 따라 상향링크 자원에 대한 별도의 측정을 수행하여 기지국에 보고한디-.
이외 같이, 단말이 상향링크 자원에 대한 측정을 수행하기 위하여 해당 상향링크 자원에서 전송되는 참조 신호 (reference signal)가 필요하다. 여기서, 상향링크 자원에 대한 측정을 위한 참조 신호는 기존의 하향링크 측정을 위해서 사용하는 CRS나 CSI— RS의 형태를 가질 수도 있으며 , 또한 기존의 상향링크에서의 참조 신호로 사용되는 DMRS나 SRS의 형태를 가질 수도 있다. 즉, 기지국은 상향링크 자원에 대한 측정을 위한 참조 신호의 설정 정보를 단말에 전송하여 알려줄 수 있으며, 참조 신호의 설정 정보의 일례로 참조 신호의 시퀀스 정보, 설정된 참조 신호 시퀀스의 순환 시프트 (cyclic shifts) 정보, 확산 코드 (spreading code) 정보, 주파수 시프트 (frequency shift) 정보 등을 포함할 수 있디-. 또한, 상향링크 자원에 대한 측정을 위한 참조 신호가 고정적으로 설정되어 기지국과 단말이 미리 알고 있을 수도 있다.
시간 자원 관점에서 모든 상향링크 서브프레임에서 단말이 측정을 수행하는 것은 불가능할 수 있다. 이는 해당 샐 커버리지에 위치하는 특정 단말은 적어도 일부 상향링크 서브프레임을 기지국으로의 상향링크 신호 전송의 용도로 사용하여야 하기 때문이다. 따라서, 하향링크 자원에 대한 측정과 유사하게 기지국은 상향링크 서브프레임 중에서 일부를 단말이 측정을 수행하는 서브프레임으로 설정하고, 해당 서브프레임에서만 측정을 수행할 것을 지시할 수 있디-.
일반적으로 이러한 상향링크 자원에 대한 측정 설정은 RRC(Radio Resource Control) 계충과 같은 상위 계층 신호를 통해서 반정적 (semi-stat i c)으로 설정될 수 있으므로, 이 경우 기지국이 상향링 ,、크 서브프레임 중 비교적 높은 확률로 하향링크 전송에 사용할 상향링크 서브프레임들에서 이러한 측정을 수행할 것을 단말에 설정할 수 있다. 즉, 각 셀의 기지국은 자신이 반드시 혹은 매우 높은 확률로 하향링크 전송 목적 (용도)으로 사용할 상향링크 서브프레임의 인덱스 혹은 서브프레임의 주기 흑은 오프셋 (offset) 중 적어도 어느 하나에 대한 정보를 상위 계층 신호를 통해 단말에 전송할 수 있다. 이때, 기지국은 특정 임계치와 산출된 확를과 비교하여 특정 임계치 이상인 확를을 가지는 서브프레임을 단말에게 알려줄 수 있다.
다만, 여전히 하향링크 전송으로 주로 이용될 것으로 반정적 (semi- static)으로 설정된 상향링크 서브프레임이라도 하더라도 해당 셀의 상향링크 /하향링크 트래픽 상황에 따라서는 상향링크 전송으로 사용하는 것이 더 효과적인 경우기- 발생할 수 있다. 만일 기지국의 신호에 의하여 단말이 하향링크 진송을 기대하는 상향링크 서브프레임에서 측정을 수행하였으나 실제로 해당 상향링크 서브프레임이 상향링크 전송으로 사용된다면, 의도치 않은 간섭의 영향으로 단말의 측정 결과에 심각한 왜곡이 발생할 수 있다. 따라서 상향링크 서브프레임의 용도가 동적으로 변화하는 상황에서도 상향링크 서브프레임에 대한 단말의 측정을 보다 효과적으로 수행하기 위하여 다음과 같은 방법이 이용될 수 있다. '
1) 서브프레임 용도 지시자에 따른 동작
기지국이 물리 계층 신호 혹은 MACXMedia Access Control) 계층 신호를 통해서 매 상향링크 서브프레임 (혹은 하나 이상의 서브프레임)의 용도 (예를 들어 해당 상향링크 서브프레임이 상향링크 전송과 하향링크 전송 중 어떤 것을 위해서 사용되는지의 용도)를 지시할 수 있다. 일례로, 기지국은 앞서 설명한 반정적 (semi— static)으로 설정된 상향링크 서브프레임 내에서 매 상향링크 서브프레임 (혹은 하나 이상의 서브프레임)마다 용도를 지시하는 정보를 전송하며 기지국으로부터 지시 정보를 수신하는 단말은 상향링크 서브프레임 중에서 지시 정보에 의하여 하향링크의 전송 용도가 지시된 상향링크 서브프레임만을 유효한 측정 대상으로 판단할 수 있다. 이러한 지시 정보는 해당 서브프레임의 용도가 하향링크인지 상향링크인지 알리기 위한 지시자 (indicator)의 형태로 구성될 수 있디-.
2) 스케줄링 메시지 수신에 따른 동작
단말은 기지국으로부터 전송되는 상 /하향링크 전송에 대한 스케줄링 메시지를 수신하고, 수신한 스케줄링 메시지의 대상이 되는 상향링크 서브프레임을 측정의 대상이 되는 유효한 서브프레임으로 간주할 수 있다. 예를 들어, 단말이 특정 상향링크 서브프레임에서 하향링크 전송을 스케줄링하는 메시지를 수신하였다면, 해당 상향링크 서브프레임은 측정의 대상으로 유효한 것으로 간주하고 측정을 수행한다. 여기서, 스케줄링 정보는 하향링크 서브프레임 흑은 하향링크 용도로 이용되는 상향링크 서브프레임을 통해 전송될 수 있다.
. 또 다른 일례로는, 기지국은 RRC와 같은 상위 계층 신호를 통해서 측정의 대상이 되는 상향링크 서브프레임의 후보군을 단말에 알려준 다음, 그 후보군에 포함된 상향링크 서브프레임 중 특정 상향링크 서브프레임에서 해당 단말로부터의 상향링크 전송이 스케줄링된다면, 해당 상향링크 서브프레임은 측정의 대상으로 유효하지 않은 것으로 간주할 수 있다. 다시 말해, 단말은 상향링크 서브프레임의 후보군 내에서 상향링크 전송이 스케즐링되지 않은 상향링크 서브프레임은 측정의 대상으로 유효하다고 판단하여, 해당 상향링크 서브프레임에서 측정을 수행할 수 있다. 여기서, 측정의 대상이 되는 유효한 상향링크 서브프레임의 후보군은 앞서, 설명한 상향링크 서브프레임 중 기지국이 비교적 높은 확를로 하향링크 전송에 사용할 상향링크 서브프레임들로 구성될 수 있다.
이와 길 -이, 기지국은 상향링크 서브프레임 중에서 실제로 하향링크 용도로 사용되는 상향링크 서브프레임에서 단말이 측정을 수행하도록 설정할 수 있으며, 나아가 앞서 2. 1. 1. 에서 설명한 바와 같이 실제로 하향링크 용도로 사용되는 상향링크 서브프레임 중에서도 인접 셀이 하향링크 전송 용도로 사용하는 자원에서만 단말이 서빙 셀의 상향링크 자원에 대한 측정을 수행하도록 설정할 수도 있다.
한편, 상술한 바와 같이, RRM 측정 지수 (RRM measurement metric) 중 RSRQ는 RSRP와 RSSI의 비율로 정의 (즉, RSRQ는 NxRSRP/(E-UTRA 캐리어 RSSI)로 정의된다.)되는데, 동적으로 서브프레임의 용도가 가변하는 상황에서 상향링크 서브프레임에서 안정적인 주기로 참조 신호를 전송하기에 어려움이 따를 수 있다ᅳ 이러한 문제를 해결하기 위해서 상향링크 서브프레임에 대한 RSRQ는 하향링크 서브프레임에서만 측정된 RSRP와 상향링크 서브프레임에서만 측정된 RSSI를 사용하여 유도될 수 있디-. 즉, 단말은 상향링크 서브프레임에서는 RSRP 측정을 수행하지 않고 안정적인 전송이 가능한 하향링크 서브프레임에서만 RSRP를 측정하며, RSSI의 경우에는 실제 간섭 상황을 반영하기 위해서 하향링크 전송 용도로 활용되는 상향링크 서브프레임에서 측정할 수 있다. 다시 말해, 단말은 앞서 2. 1. 1. 에서 설명한 방법으로 하향링크 서브프레임에서는 RSRP를 측정하고, 2. 1. 2. 에서 설명한 방법으로 하향링크 전송 용도로 사용되는 상향링크 서브프레임에서 RSSI를 측정하며, 측정된 RSRP와 RSSI를 이용하여 상향링크 서브프레임에 대한 RSRQ 값으로 기지국에 보고할 수 있디-.
상술한 RSSI의 정의와 같이 RSSI는 단말이 수신하는 모든 신호의 총 전력에 해당하는 값이고, 단말이 측정을 수행하기 위한 유효한 서브프레임 내의 모든 시간 /주파수 자원을 사용하여 측정할 수 있으므로, 특정 자원 요소 (RE)에서만 측정 가능한 RSRP에 비해서 유효한 측정 자원이 덜 필요하기 때문에 이러한 동작이 가능할 수 있디-. 또한, 만일 기지국이 상향링크 서브프레임에서는 하향링크 서브프레임에 비하여 참조 신호의 전송 전력을 낮춘다면, 상향링크 서브프레임과 하향링크 서브프레임 간 참조 신호의 전력 차이를 단말에게 시그널링하고, 단말은 상향링크 서브프레임에서 RSRQ를 계산할 때 전력 차이 값을 반영할 수 있다. 즉, RSRP는 하향링크 서브프레임에서만 측정되며, RSSI는 상향링크 서브프레임에서만 측정되므로 단말은 상향링크 서브프레임과 하향링크 서브프레임에서 전송되는 참조 신호의 전송 전력을 동일한 수준으로 맞춘 후 RSRQ를 산출할 수 있디-. 예를 들어, 하향링크 서브프레임에서만 측정되는 RSRP 값 및 /또는 상향링크 서브프레임에서만 측정되는 RSSI 값을 참조 신호의 전력 차이 값을 이용하여 보정한 후, 보정된 RSRP 값 및 /또는 RSSI 값을 이용하여 RSRQ를 산출할 수 있다.
2. 1. 3. 상향링크 /하향링크 자원에서 구분 측정
특정 단말이 인접 샐의 상 /하향링크 동작에 얼마나 영향을 받는지 알기 위해서 . 기지국은 단말로 하여금 인접 셀이 상향링크로 동작할 때와 하향링크로 동작할 때에 따라 각각 별도의 측정을 수행하고 이를 보고하도록 동작할 수도 있디ᅳ. 일례로 하향링크 서브프레임에 대한 측정의 경우를 살펴보면, 기지국은 하향링크 서브프레임을 두 개의 세트 (set)로 구분하고, 각각의 세트는 인접 셀이 하향링크 전송과 상향링크 전송을 높은 확률로 수행하는 하향링크 서브프레임에 대응하도록 지정할 수 있디-. 상술한 바와 같이, 각 셀의 기지국은 자신이 반드시 혹은 매우 높은 확률로 하향링크 전송 목적 (용도) 혹은 상향링크 전송 목적 (용도)으로 사용할 하향링크 서브프레임의 인덱스 (또는 복수의 서브프레임에 대한 비트' )을 인접 셀의 기지국에게 전달할 수 있다. 이때, 기지국은 특정 임계치와 산출된 확를과 비교하여 특정 임,계치 이상인 확률을 가지는 서브프레임을 인접 셀의 기지국에게 알려줄 수 있다. 또한, 이러한 서브프레임의 인렉스 (혹은 비트맵) 정보와 해당 위치에서 자원의 용도를 지시하는 정보를 함께 인접 기지국에게 전달할 수도 있다.
이와 같이 기지국이 인접 셀이 하향링크 전송을 높은 확률로 수행하는 서브프레임과 상향링크 전송을 높은 확률로 수행하는 서브프레임으로 두 가지 측정 세트를 하향링크 서브프레임에 대하여 설정한다면, 기지국은 인접 샐의 전송 방향이 해당 단말에 미치는 영향을 쉽게 파악할 수 있으며, 어떤 서브프레임에서 전송을 수행해야 하는지도 알 수 있게 된다. 다시 도 8을 참조하여 설명하면, 기지국은 도 8의 (a)의 동작이 발생되는 하향링크 서브프레임과 도 8의 (b)의 동작이 발생되는 하향링크 서브프레임의 세트를 구분하여 단말에 알려주고, 단말은 각 세트 별로 별도의 측정을 수행하여 측정값을 기지국에 보고할 수 있다. 이러한 동작은 하향링크 전송 용도로 사용되는 상향링크 서브프레임에 대한 측정의 경우에도 동일하게 적용이 가능하다.
한편, 앞서 2. 1. 1. 내지 2. 1. 3.에서 설명한 각 실시예들은 하향링크 자원 및 상향링크 자원에 대한 측정 모두에 적용될 수 있으며, 혹은 하향링크 자원 혹은 상향링크 자원 어느 하나의 자원에서만 적용될 수도 있디-. 즉, 앞서 설명한 실시예 증 어느 하나의 실시예가 하향링크 자원 및 상향링크 자원에 대한 측정 모두에 적용되거니-, 앞서 설명한 실시예 중 2가지의 실시예가 하향링크 자원 혹은 상향링크 자원에 각각 적용될 수도 있다. 실시예가 조합되어 적용되는 일례로, 기지국은 단말에서 하향 링크 자원과 상향 링크 자원에 대한 측정을 별도로 수행할 것을 지시하고, 단말은 하향 링크 자원에 대한 측정은 2. 1.
1.에서 설명힌 · 실시예에 따라서 인접 셀이 높은 확률로 하향 링크 자원으로 설정한 자원에서만 측정을 수행하는 반면 상향 링크 자원에 대한 측정은 2. 1.
2.에서 설명한 실시예에 따라서 서브프레임 용도 지시자 혹은 스케줄링 메시지 수신에 따라서 유효한 것으로 지시된 서브프레임에서만 측정을 수행하도록 동작할 수 있디. 또한. 기지국은 단말에서 하향 링크 자원과 상향 링크 자원에 대한 측정을 별도로 수행할 것을 지시하고 하향 링크 자원에 대한 측정은 2. 1.
3.에서 설명한 실시예에 따라서 인접 셀의 전송 방향에 따라 두 개의 세트 (set)로 구분하여 각각 측정하도록 동작하고, 상향링크 자원에 대한 측정은 2. 1. 2.에서 설명한 실시예에 따라서 서브프레임 용도 지시자 혹은 스케줄링 메시지 수신에 따라서 유효한 것으로 지시된 서브프레임에서만 측정을 수행하도록 동작할 수도 있다.
2. 2. 인접 셀의 신호가 포함되어 있는 RSSI의 측정
기지국은 인접 셀의 동작 방향에 대한 별도의 정보를 단말에게 주지 않은 상태에서 단말이 인접 셀의 신호를 측정하고, 단말이 보고한 인접 셀의 신호를 측정힌- 값을 기초로 기지국은 인접 셀의 전송 방향을 파악하고, 인접 샐이 상향링크로 동작할 때와 하향링크로 동작할 때를 구분할 수 있다. 예를 들어, RSRP의 경우 앞서 설명한 바와 같이 단말은 서빙 기지국이 안정적으로 하향링크 전송을 수행하는 하향링크 서브프레임에서 측정하여 기지국에 보고하되, RSSI의 경우에는 각 서브프레임 (하향링크 서브프레임 혹은 상향링크 서브프레임) 별로 쭉정한 다음 미리 설정된 복수의 서브프레임 동안에 걸쳐서 측정된 RSSI 측정치의 분포 정보를 기지국에 보고할 수 있다. 일례로, RSSI의 경우, 단말은 하향링크 전송 용도로 사용되는 상향링크 서브프레임에서 각 서브프레임 별로 RSSI를 측정하고, 여러 서브프레임 동안 RSSI 측정치에 대한 분포 정보를 기지국에 보고할 수 있디. 이러한, RSSI 측정치에 대한 분포 정보는 기존에 단말이 기지국에 보고하는 RSSI 측정치와 함께 측정 결과로서 기지국에 보고될 수 있으며, 기존에 단말이 기지국에 보고하는 RSSI 측정치를 대체하여 RSSI 축정치에 대한 분포 정보만이 기지국에 보고될 수도 있다.
이러한 분포 정보의 일례로 RSSI의 최대값과 최소값이 해당될 수 있으며, 단말은 미리 설정된 일정 시간 동안에 관찰된 RSSI의 최대값, 최소값을 기지국에 보고함으로써, 기지국으로 하여금 해당 단말의 통신 상황을 파악하게 할 수 있다 . 예를 들어, 만일 RSSI 분포 정보를 통해 RSSI의 최대값과 최소값이 비슷한 수준으로 낮게 보고되었다면 해당 단말은 인접 셀의 통신 방향에 크게 영향을 받지 않는다는 사실을 파악할 수 있으며, 해당 단말에게는 인접 셀의 전송 방힘:과 무관하게 상향링크 서브프레임에서 하향링크 전송이 가능할 수 있다. 반면, 만일 RSSI의 최대값과 최소값이 큰 차이를 보인다면 이렇게 큰 RSSI 값은 해딩- 단말에 인접한 인¾ 샐 단말의 상향링크 전송으로부터 기인한다는 사실을 유추할 수 있으며, 바람직하게 기지국은 인접 샐이 하향링크 전송을 주로 수행하는 자원을 이용하여 해당 단말로의 하향링크 전송을 수행한다. 즉, 단말이 하향링크 전송 용도로 사용되는 하향링크 서브프레임에서 RSSI에 대한 .분포 정보를 기지국에 보고한 경우에는 기지국은 인접 셀이 하향링크 전송을 주로 수행하는 하향링크 서브프레임에서 해당 단말에게 하향링크 전송을 수행하고, 단말이 하향링크 전송 용도로 사용되는 상향링크 서브프레임에서 RSSI에 대한 분포 정보를 기지국에 보고한 경우에는 기지국은 인접 셀이 하향링크 전송을 주로 수행하는 상향링크 서브프레임에서 해당 단말에게 하향링크 전송을 수행할 수 있디- .
RSSI 측정치의 분포 정보는 RSSI의 최대값 및 최소값 이외에도 다음과 같은 형태를 가질 수 있다.
1) 단말은 미리 설정된 일정 임계치 (threshold) 이상 (또는 초과) 및 /또는 이하 (또는 미만)의 RSSI가 측정되는 빈도수나 이러한 RSSI가 측정된 서브프레임에 대한 정보 등을 기지국에게 보고할 수 있다. 또한, 이러한 RSSI의 빈도수외- 서브프레임 정보를 모두 기지국에 보고할 수도 있다. 여기서, 서브프레임 정보는 상술한 RSSI가 측정되는 서브프레임을 특정할 수 있는 정보를 의미하고, 일례로 서브프레임 인덱스를 포함할 수 있으나, 서브프레임 인덱스만으로 해당 서브프레임의 특정이 가능하지 않은 경우 무선 프레임 인텍스와 서브프레임 인덱스 모두를 포함할 수도 있다. 또한, 임계치는 단말이 RSSI를 측정하는 복수의 서브프레임 시간 구간에서 산출된 평균 RSSI 값의 x%로 주어질 수 있다.
2) 단말은 미리 설정된 일정 임계치 이상 (또는 초과) 및 /또는 이하 (또는 미만)가 되는 RSSI 측정치의 평균값을 기지국에게 보고할 수 있다. 1)과 마찬가지로 임계치는 단말이 RSSI를 측정하는 복수의 서브프레임 시간 구간에서 산출된 평균 RSSI 값의 x%로 주어질 수 있다. 또한, 기지국에 보고하는 RSSI 측정치의 평균값을 산출하기 위한 시간 구간은 단말이 RSSI를 측정하는 복수의 서브프레임 시간 구간과 동일할 수 있다.
3) 단말은 RSSI를 측정하는'복수의 서브프레임 시간 구간 내에서 측정된 RSSI 측정치를 크기 순으로 정렬한 다음, 미리 설정된 특정 상위 및 /또는 하위 x%에 해당하는 RSSI 값이나 상위 및 /또는 하위 x%에 속하는 RSSI 측정치의 평균값을 기지국에게 보고할 수 있다.
한편, 단말이 인접 셀의 신호를 측정하여 기지국에 보고하는 동작, 즉 단말이 일정 서브프레임 구간 동안 RSSI 분포 정보를 기지국에 보고하는 동작은 하향링크 자원 및 상향링크 자원에 대한 측정 모두에 적용될 수 있으며, 하향링크 자원 혹은 상향링크 자원 어느 하나의 자원에서만 적용될 수도 있다. 또한, 앞서 2. 1. 에서 설명한 방법과 조합하여 사용될 수 있다.
앞서 설명한 RSSI의 분포 정보를 보고하는 방식은 RSSI의 분포 정보를 직접 기지국에 보고하는 형태로도 가능하지만, RSRP 측정치와 결합하여 획득한 RSRQ의 분포 정보를 기지국에 보고하는 형태로도 구현이 가능하다.
3. 본 발명이 적용될 수 있는 장치 일반
도 9는 본 발명의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한디-.
도 9를 참조하면, 무선 통신 시스템은 기지국 (90)과 기지국 (90) 영역 내에 위치한 다수의 단말 (100)을 포함한다.
기지국 (90)은 프로세서 (processor, 91), 메모리 (memory, 92) 및 RF부 (radio frequency unit, 93)을 포함한다. 프로세서 (91)는 제안된 기능, 과정 및 /또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계충들은 프로세서 (91)에 의해 구현될 수 있디-. 메모리 (92)는 프로세서 (91)와 연결되어 , 프로세서 (91)를 구동하기 위한 다양한 정보를 저장한다. RF부 (93)는 프로세서 (91)와 연결되어, 무선 신호를 송신 및 /또는 수신한다.
단말 (100)은 프로세서 (101), 메모리 (102) 및 RF부 (103)을 포함한다. 프로세서 (101)는 제안된 기능, 과정 및 /또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서 (101)에 의해 구현될 수 있다. 메모리 (102)는 프 , 세서 (101)와 연결되어, 프로세서 (101)를 구동하기 위한 다양한 정보를 저장한다. RF부 (103)는 프로세서 (101)와 연결되어, 무선 신호를 송신 및 /또는 수신한디-.
메모리 (92. 102)는 프로세서 (91, 101) 내부 또는 외부에 있을 수 있고 , 잘 알려진 다양한 수단으로 프로세서 (91, 101)와 연결될 수 있다. 또한, 기지국 (90) 및 /또는 단말 (100)은 한 개의 안테나 (single antenna) 또는 다중 안테나 (multiple antenna)를 가질 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다-. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 톡징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예돌에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, ' 예를 들어, 하드웨어, ¾워 i어 (firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의힌 _ 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(appl ication specific integrated circuits) , DSPs(digi tal signal processors) , DSPDs(digi tal signal processing devices) , PLDs (pr ogr ammab 1 e lo ic devices) , FPGAs (field programmable gate arrays) , 프로세서 , 콘트를러 , 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나,소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모들, 절차, 함수 등의 형태로 구현될 수 있디 ·. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
【산업상 이용가능성】
본 발명의 무선 접속 시스템에서 데이터 송수신 방안은 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 접속 시스템에 적용하는 것이 가능하다.

Claims

【청구의 범위】
【청구항 1】
상향링크 자원의 양과 하향링크 자원의 양이 동적이 변경되는 환경을 지원하는 무선 접속 시스템에서 단말의 측정 (measurement)을 지원하는 방법에 있어서 ,
측정 자원에 대한 정보를 상기 단말에 전송하는 단계;
참조 신호 (reference signal)을 상기 단말에 전송하는 단계; 및
상기 단말로부터 상기 측정 자원에서 상기 참조 신호를 이용한 측정의 결과를 수신하는 단계를 포함하되,
상기 측정 자원은 인접 기지국에서 동일한 자원이 하향링크 용도로 사용되는지 흑은 상향링크 용도로 사용되는지를 고려하여 결정되는, 측정 지원
L-)l- i:M
【청구항 2]
제 1항에 있어서,
상기 측정 자원은 상기 인접 기지국이 하향링크 전송 용도로 사용하는 서브프레임에서만 설정되는, 측정 지원 방법.
【청구항 3]
제 Γ항에 있어서,
상기 측정 자원이 상향링크 자원에 설정된 경우, 상기 측정 자원이 유효함을 지시하는 지시 정보를 상기 단말에 전송하는 단계를 더 포함하는, 측정 지원 방법.
【청구항 4】 제 1항애 있어서,
상기 측정 자원은 제 1 측정 자원 및 제 2 측정 자원으로 구분되고, 상기 제 1 측정 자원은 상기 인접 기지국이 하향링크 전송 용도로 사용하는 서브프레임에서만 설정되며 , 상기 제 2 측정 자원은 상기 인접 기지국이 상향링크 전송 용도로 사용하는 서브프레임에서만 설정되는, 측정 지원 방법.
【청구항 5】
저 U항에 있어서,
상기 측정은 참조 신호 수신 파워 (RSRP: Reference Signal Received Power) 측정, 참조 신호 수신 품질 (RSRQ: Reference Signal Recei ed Quality) 측정, 수신 신호 강도 지시자 (RSSI: Received Signal Strength Indicator) 측정 및 무선 링크 모니터링 (RLM: Radio Link Monitoring) 측정 중 적어도 어느 하나를 포함하는, 측정 지원 방법.
【청구항 6】
제 5항에 있어서,
상기 RSRP는 하향링크 자원에서만 측정되며, 상기 RSSI는 하향링크 전송 용도로 사용되는 상향링크 서브프레임에서만 측정되는, 측정 지원 방법.
【청구항 7】
제 5힝-에 있어서,
상기 RSSI의 측정의 경우, 상기 측정의 결과는 미리 설정된 복수의 서브프레임 동안에 걸쳐서 측정된 RSSI 측정치의 분포 정보를 포함하는, 측정 지원 방법 .
【청구항 8] 저 17항에 있어서,
상기 분포 정보는 상기 미리 설정된 복수의 서브프레임 동안 측정된 RSSI의 최대값괴- 최소값, 상기 미리 설정된 복수의 서브프레임 동안 미리 설정된 임계치 이상 또는 이하의 RSSI가 측정되는 빈도수, 상기 미리 설정된 복수의 서브프레임 동안 미리 설정된 임계치 이상 또는 이하의 RSSI가 측정되는 서브프레임 정보, 상기 미리 설정된 복수의 서브프레임 동안 미리 설정된 임계치 이상 또는 이하인 RSS1 측정치의 평균값, 상기 미리 설정된 복수의 서브프레임 동인ᅳ 측정된 RSSI 측정치 중 상위 혹은 하위에서 미리 설정된 백분율에 포함되는 RSSI 측정치 및 상기 미리 설정된 복수의 서브프레임 동안 측정된 RSSI 측정치 중 상위 혹은 하위에서 미리 설정된 백분율에 포함되는 RSSI 측정치의 평균값 중 적어도 어느 하나를 포함하는, 측정 지원 방법.
【청구항 9】
상향링크 자원의 양과 하향링크 자원의 양이 동적이 변경되는 환경을 지원하는 무선 접속 시스템에서 단말이 측정 (measurement)을 수행하는 방법에 있어서,
기지국으로부터 측정 자원에 대한 정보를 수신하는 단계 ;
상기 기지국으로부터 참조 신호 (reference signal)을 수신하는 단계;
상기 측정 자원에서 상기 참조 신호를 이용하여 측정을 수행하는 단계; 및 상기 측정의 결과를 상기 기지국에 전송하는 단계를 포함하되,
상기 측정 자원은 인접 기지국에서 동일한 자원이 하향링크 용도로 사용되는지 혹은 상향링크 용도로 사용되는지를 고려하여 결정되는, 측정 수행 방법.
【청구항 10】
제 9항에 있어서,
상기 측정 자원은 상기 인접 기지국이 하향링크 전송 용도로 사용하는 서브프레임에서만 설정되는, 측정 수행 방법.
【청구항 11】
제 9항에 있어서,
상기 측정 자원이 상향링크 자원에 설정된 경우, 상기 측정 자원이 유효함을 지시하는 지시 정보를 수신하는 단계를 더 포함하는, 측정 수행 방법.
【청구항 12】
저 19항에 있어서,
상기 측정 자원은 제 1 측정 자원 및 제 2 측정 자원으로 구분되고, 상기 제 1 측정 자원은 상기 인접 기지국이 하향링크 전송 용도로 사용하는 서브프레임에서만 설정되며, 상기 제 2 측정 자원은 상기 인접 기지국이 상향링크 전송 용도로 사용하는 서브프레임에서만 설정되는, 측정 수행 방법.
【청구항 13】
제 9항에 있어서,
상기 측정은 참조 신호 수신 파워 (RSRP: Reference Signal Received Power) 측정, 참조 신호 수신 품질 (RSRQ: Reference Signal Received Quality) 측정, 수신 신호 강도 지시자 (RSSI: Received Signal Strength Indicator) 측정 및 무선 링크 모니터링 (RLM: Radio Link Monitoring) 측정 중 적어도 어느 하나를 포함하는, 측정 수행 방법。
【청구항 14】 제 13항에 있어서,
상기 RSRP는 하향링크 자원에서만 측정되며, 상기 RSSI는 하향링크 전송 용도로 사용되는 상향링크 서브프레임에서만 측정되는, 측정 수행 방법.
【청구항 15】
제 13항에 있어서,
상기 RSSI의 측정의 경우, 상기 측정의 결과는 미리 설정된 복수의 서브프레임 동안에 걸쳐서 측정된 RSSI 측정치의 분포 정보를 포함하는, 측정 수행 방법.
【청구항 16】
제 15항에 있어서,
상기 분포 정보는 상기 미리 설정된 복수의 서브프레임 동안 측정된 RSSI의 최대값과 최소값, 상기 미리 설정된 복수의 서브프레임 동안 미리 설정된 임계치 이상 또는 이하의 RSSI가 측정되는 빈도수, 상기 미리 설정된 복수의 서브프레임 동안 미리 설정된 임계치 이상 또는 이하의 RSSI가 측정되는 서브프레임 정보, 상기 미리 설정된 복수의 서브프레임 동안 미리 설정된 임계치 이상 또는 이하인 RSSI 측정치의 평균값. 상기 미리 설정된 복수의 서브프레임 동안 측정된 RSSI 측정치 중 상위 혹은 하위에서 미리 설정된 백분율에 포함되는 RSSI 측정치 및 상기 미리 설정된 복수의 서브프레임 동안 측정된 RSSI 측정치 중 상위 흑은 하위에서 미리 설정된 백분율에 포함되는 RSSI 측정치의 평균값 중 적어도 어느 하나를 포함하는, 측정 수행 방법 .
【청구항 17】
상향링크 자원의 양과 하향링크 자원의 양이 동적이 변경되는' 환경을 지원하는 무선 접속 시스템에서 단말의 측정 (measurement)을 지원하는 기지국에 있어서 ,
무선 신호를 송수신하기 위한 RF(Radio Frequency) 유닛; 및
측정 자원에 대한 정보를 상기 단말에 전송하고, 참조 신호 (reference signal)을 상기 단말에 전송하며, 상기 단말로부터 상기 측정 자원에서 상기 참조 신호를 이용한 측정의 결과를 수신하는 프로세서를 포함하되 ,
상기 측정 자원은 인접 기지국에서 동일한 자원이 하향링크 용도로 사용되는지 혹은 상향링크 용도로 사용되는지를 고려하여 결정되는, 기지국. 【청구항 18】
상향링크 자원의 양과 하향링크 자원의 양이 동적이 변경되는 환경을 지원하는 무선 접속 시스템에서 측정 (measurement)을 수행하는 단말에 있어서, 무선 신호를 송수신하가위한 RF(Radio Frequency) 유닛; 및
기지국으로부터 측정 자원에 대한 정보를 수신하고, 상기 기지국으로부터 참조 신호 (reference signal)을 수신하며, 상기 측정 자원에서 상기 참조 신호를 이용하여 측정을 수행하고 , 상기 측정의 결과를 상기 기지국에 전송하는 프로세서를 포함하되,
상기 측정 자원은 인접 기지국에서 동일한 자원이 하향링크 용도로 사용되는지 혹은 상향링크 용도로 사용되는지를 고려하여 결정되는, 단말.
PCT/KR2012/011254 2011-12-22 2012-12-21 무선 접속 시스템에서 무선 통신 상태 측정 방법 및 이를 위한 장치 WO2013095034A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/362,067 US10615931B2 (en) 2011-12-22 2012-12-21 Method for measuring a wireless communication state in a wireless access system, and apparatus therefor
KR1020147019028A KR101615987B1 (ko) 2011-12-22 2012-12-21 무선 접속 시스템에서 무선 통신 상태 측정 방법 및 이를 위한 장치
CN201280063239.2A CN104025484B (zh) 2011-12-22 2012-12-21 在无线接入系统中测量无线通信状态的方法及其设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161579635P 2011-12-22 2011-12-22
US61/579,635 2011-12-22

Publications (1)

Publication Number Publication Date
WO2013095034A1 true WO2013095034A1 (ko) 2013-06-27

Family

ID=48668834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011254 WO2013095034A1 (ko) 2011-12-22 2012-12-21 무선 접속 시스템에서 무선 통신 상태 측정 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (1) US10615931B2 (ko)
KR (1) KR101615987B1 (ko)
CN (1) CN104025484B (ko)
WO (1) WO2013095034A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015176296A1 (zh) * 2014-05-23 2015-11-26 华为技术有限公司 一种资源配置方法、基站和用户设备
CN111132184A (zh) * 2014-05-27 2020-05-08 Lg电子株式会社 执行针对同步信号块的测量的方法和用户设备

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355292A (zh) * 2011-08-05 2012-02-15 中兴通讯股份有限公司 参数传输方法及装置、参数生成方法及装置
WO2014153739A1 (zh) * 2013-03-27 2014-10-02 华为技术有限公司 一种测量无线资源管理信息的方法、装置和设备
EP3007490A4 (en) * 2013-06-05 2017-01-18 Sony Corporation Communications control device, communications control method, wireless communications system, base station, and terminal device
EP3016302B1 (en) * 2013-06-26 2018-05-23 LG Electronics Inc. Method and apparatus for acquiring control information in wireless communication system
KR102065791B1 (ko) * 2013-08-09 2020-02-11 애플 인크. Tdd 환경에서 적응적 리포팅을 제어하는 방법 및 장치
US10009925B2 (en) * 2014-10-03 2018-06-26 Qualcomm Incorporated Physical layer procedures for LTE in unlicensed spectrum
CN107005787B (zh) * 2014-10-31 2020-07-07 Lg电子株式会社 在无线通信系统中终端发送用于装置对装置(d2d)操作的同步信号的方法及使用该方法的终端
ES2758978T3 (es) * 2015-02-12 2020-05-07 Huawei Tech Co Ltd Dispositivo y método de transmisión de señal
KR102287526B1 (ko) * 2015-05-14 2021-08-06 에스케이텔레콤 주식회사 기지국장치, 전이중전송 제어 방법 및 시스템
CN106375047B (zh) * 2015-07-20 2018-09-04 普天信息技术有限公司 一种探测信号的检测方法、基站和用户设备
WO2017014111A1 (ja) * 2015-07-22 2017-01-26 シャープ株式会社 端末装置、基地局装置、測定方法および集積回路
US10993130B2 (en) 2015-09-01 2021-04-27 Huawei Technologies Co., Ltd. Measurement method and apparatus
US11032780B2 (en) * 2015-09-03 2021-06-08 Qualcomm Incorporated Power control in wireless networks
WO2017166192A1 (zh) * 2016-03-31 2017-10-05 华为技术有限公司 用于测量信道状态信息的方法、网络侧设备和用户设备
US10440520B2 (en) * 2016-05-12 2019-10-08 Sharp Kabushiki Kaisha Method and apparatus for selecting radio resources for vehicle (V2X) communications from an overlapping resource pool
US10602390B2 (en) 2016-05-31 2020-03-24 Lg Electronics Inc. RRM reporting method in wireless communication system, and apparatus supporting same
US10367577B2 (en) * 2016-11-10 2019-07-30 Cable Television Laboratories, Inc. Systems and methods for beacon detection infrastructures
US11686852B2 (en) 2016-11-10 2023-06-27 Cable Television Laboratories, Inc. Systems and methods for interference detection in shared spectrum channels
US10656281B2 (en) 2016-11-10 2020-05-19 Cable Television Laboratories, Inc. Systems and methods for interference detection in shared spectrum channels
US10542445B2 (en) * 2017-02-06 2020-01-21 Lg Electronics Inc. Method and device for performing radio link monitoring by user equipment in wireless communication system
US10785667B2 (en) * 2017-03-06 2020-09-22 Qualcomm Incorporated Reference signal measurement and reporting for new radio (NR) systems
US11122543B2 (en) * 2017-03-08 2021-09-14 Lg Electronics Inc. Method for performing sidelink communication in wireless communication system and apparatus therefor
US10003418B1 (en) * 2017-04-11 2018-06-19 Litepoint Corporation Performing parametric measurement for verification of a wireless communication device
US10727995B2 (en) * 2017-05-18 2020-07-28 Qualcomm Incorporated Configuring reference signal transmission in wireless communications
KR20190017620A (ko) * 2017-08-10 2019-02-20 삼성전자주식회사 다중 기준 신호를 사용하는 시스템에서 무선 연결 실패 처리 방법
KR102103875B1 (ko) * 2017-09-29 2020-05-29 에스케이 텔레콤주식회사 셀 간 간섭을 제어하기 위한 tdd 기반의 링크 구성 방법 및 그를 위한 장치
US11324014B2 (en) * 2017-12-22 2022-05-03 Qualcomm Incorporated Exposure detection in millimeter wave systems
CN110839164A (zh) * 2018-08-17 2020-02-25 北京松果电子有限公司 视频传输方法和装置
WO2020154871A1 (zh) 2019-01-28 2020-08-06 Oppo广东移动通信有限公司 一种测量控制方法、终端设备及网络设备
WO2020161907A1 (ja) * 2019-02-08 2020-08-13 株式会社Nttドコモ ユーザ装置
CN111294941B (zh) * 2019-03-28 2023-03-14 北京紫光展锐通信技术有限公司 用于v2x业务的反馈资源确定方法及装置、存储介质、终端
CN113727395B (zh) * 2020-05-26 2023-09-19 中移(成都)信息通信科技有限公司 服务质量控制方法、装置、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6982959B1 (en) * 1998-02-17 2006-01-03 Nokia Corporation Measurement reporting in a telecommunication system
KR20060067403A (ko) * 2004-12-15 2006-06-20 삼성전자주식회사 직교 주파수 분할 다중 방식을 사용하는 이동 통신시스템에서 기지국 신호를 스캐닝하는 시스템 및 방법
KR100689566B1 (ko) * 2003-03-08 2007-03-02 삼성전자주식회사 광대역 무선 접속 통신 시스템에서 초기 레인징을 이용한핸드오프 시스템 및 방법
KR20070054805A (ko) * 2005-11-24 2007-05-30 한국전자통신연구원 무선 통신 시스템의 기지국 및 그의 방송 정보 스케줄링방법
KR20080083939A (ko) * 2007-03-14 2008-09-19 삼성전자주식회사 이동통신 시스템에서 스캐닝 구간에서의 상향링크 파일럿 전송 장치 및 방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100559979B1 (ko) 2003-04-03 2006-03-13 엘지전자 주식회사 이동통신 시스템에서의 메시지 전송방법
US8000272B2 (en) * 2007-08-14 2011-08-16 Nokia Corporation Uplink scheduling grant for time division duplex with asymmetric uplink and downlink configuration
EP2239968A1 (en) 2008-01-29 2010-10-13 Sharp Kabushiki Kaisha Communication device and communication method
US20090268678A1 (en) * 2008-04-24 2009-10-29 Fujitsu Limited Method and apparatus for automatic gain control in a mobile orthogonal frequency division multiple access (ofdma) network
CN101730115B (zh) * 2008-10-24 2013-01-30 华为技术有限公司 中继传输的方法及设备
US8792427B2 (en) * 2009-05-04 2014-07-29 Qualcomm Incorporated Transmission of feedback information for data transmissions on multiple carriers
US9014138B2 (en) * 2009-08-07 2015-04-21 Blackberry Limited System and method for a virtual carrier for multi-carrier and coordinated multi-point network operation
JP2011130412A (ja) 2009-11-18 2011-06-30 Sony Corp 端末装置、基地局、通信制御方法及び無線通信システム
US20120115463A1 (en) * 2010-11-10 2012-05-10 Research In Motion Limited Method and device for improved user equipment measurements and reporting
CN103262595B (zh) * 2010-12-17 2016-09-07 日本电气株式会社 无线参数控制装置、基站装置、控制无线参数的方法和非瞬时计算机可读介质
CN103493556B (zh) * 2011-02-21 2020-02-14 安华高科技股份有限公司 用于时分双工的动态上行链路/下行链路配置
EP2719216B1 (en) * 2011-06-06 2018-11-28 Telefonaktiebolaget LM Ericsson (publ) Signal quality measurements of a user equipment on a subset of radio resource elements
EP2727305A4 (en) * 2011-07-01 2015-01-07 Intel Corp LAYER SHIFTING IN MULTIPLE INPUT COMMUNICATIONS, MULTIPLE OPEN LOOP OUTPUTS
DE112011105358T5 (de) * 2011-07-05 2014-03-13 Broadcom Corporation Mechanismus zur verbesserung einer leistungssteuerung in zeitmultiplex-basierten kommunikationen
US8934424B2 (en) * 2011-09-29 2015-01-13 Sharp Laboratories Of America, Inc. Devices for reconfiguring a subframe allocation
EP2761927A4 (en) * 2011-09-30 2015-08-12 Intel Corp METHODS OF SIMULTANEOUSLY TRANSPORTING INTERNET TRAFFIC ON MULTIPLE WIRELESS NETWORKS
WO2013079090A1 (en) * 2011-11-28 2013-06-06 Telefonaktiebolaget L M Ericsson (Publ) Traffic characteristic based selection of serving base station

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6982959B1 (en) * 1998-02-17 2006-01-03 Nokia Corporation Measurement reporting in a telecommunication system
KR100689566B1 (ko) * 2003-03-08 2007-03-02 삼성전자주식회사 광대역 무선 접속 통신 시스템에서 초기 레인징을 이용한핸드오프 시스템 및 방법
KR20060067403A (ko) * 2004-12-15 2006-06-20 삼성전자주식회사 직교 주파수 분할 다중 방식을 사용하는 이동 통신시스템에서 기지국 신호를 스캐닝하는 시스템 및 방법
KR20070054805A (ko) * 2005-11-24 2007-05-30 한국전자통신연구원 무선 통신 시스템의 기지국 및 그의 방송 정보 스케줄링방법
KR20080083939A (ko) * 2007-03-14 2008-09-19 삼성전자주식회사 이동통신 시스템에서 스캐닝 구간에서의 상향링크 파일럿 전송 장치 및 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015176296A1 (zh) * 2014-05-23 2015-11-26 华为技术有限公司 一种资源配置方法、基站和用户设备
CN105519206A (zh) * 2014-05-23 2016-04-20 华为技术有限公司 一种资源配置方法、基站和用户设备
CN105519206B (zh) * 2014-05-23 2019-04-12 华为技术有限公司 一种资源配置方法、基站和用户设备
CN111132184A (zh) * 2014-05-27 2020-05-08 Lg电子株式会社 执行针对同步信号块的测量的方法和用户设备
CN111132184B (zh) * 2014-05-27 2023-07-21 Lg电子株式会社 执行针对同步信号块的测量的方法和用户设备

Also Published As

Publication number Publication date
KR101615987B1 (ko) 2016-05-11
CN104025484B (zh) 2017-05-17
US20140293953A1 (en) 2014-10-02
US10615931B2 (en) 2020-04-07
KR20140123485A (ko) 2014-10-22
CN104025484A (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
KR101615988B1 (ko) 무선 접속 시스템에서 채널 상태 정보 측정 방법 및 이를 위한 장치
KR101615987B1 (ko) 무선 접속 시스템에서 무선 통신 상태 측정 방법 및 이를 위한 장치
EP3471311B1 (en) Method for reporting channel state in wireless communication system and device therefor
JP6951416B2 (ja) 無線通信システムにおけるチャネル態報告のための方法及びその装置
US9635618B2 (en) Method for setting downlink transmission power in wireless access system, and apparatus therefor
KR102295820B1 (ko) 무선 통신 시스템에서 간섭 제거를 위한 방법 및 이를 위한 장치
US9282558B2 (en) Method for transmitting and receiving signal using time division duplex mode in wireless access system, and apparatus therefor
KR101611328B1 (ko) 무선 통신 시스템에서 채널상태정보 전송 방법 및 장치
US10158472B2 (en) Method for transmitting channel state information report and user equipment, and method for receiving channel state information report and base station
CN109479307B (zh) 无线通信系统中用于发送和接收的方法及其装置
JP2019532544A (ja) 無線通信システムにおけるチャンネル状態報告のための方法及びその装置
KR102047705B1 (ko) 무선 통신 시스템에서 단말이 상향링크 송신 전력을 결정하는 방법 및 이를 위한 장치
EP3503426A1 (en) Csi-rs based channel estimating method in a wireless communication system and device for same
WO2014007539A1 (ko) 무선 통신 시스템에서 하향링크 신호 수신 방법 및 장치
CN111386661A (zh) 无线通信系统中非周期性的csi的报告方法及其装置
US10021585B2 (en) Method for measuring wireless communication state in wireless communication system and apparatus therefor
KR20140098075A (ko) 무선 통신 시스템에서 채널상태정보 전송 방법 및 장치
WO2012086998A2 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
WO2013162233A1 (ko) 무선 통신 시스템에서 채널 상태를 측정하는 방법 및 이를 위한 장치
US20160295454A1 (en) Method and apparatus for removing interference and receiving signal in wireless communication system
JP2020516173A (ja) 無線通信システムにおいてチャネル状態測定のための方法及びそのための装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860565

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14362067

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147019028

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12860565

Country of ref document: EP

Kind code of ref document: A1