[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013094636A1 - Conductive particles, conductive material, and connection structure - Google Patents

Conductive particles, conductive material, and connection structure Download PDF

Info

Publication number
WO2013094636A1
WO2013094636A1 PCT/JP2012/082910 JP2012082910W WO2013094636A1 WO 2013094636 A1 WO2013094636 A1 WO 2013094636A1 JP 2012082910 W JP2012082910 W JP 2012082910W WO 2013094636 A1 WO2013094636 A1 WO 2013094636A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
particles
conductive
particle
core
Prior art date
Application number
PCT/JP2012/082910
Other languages
French (fr)
Japanese (ja)
Inventor
敬三 西岡
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201810695985.2A priority Critical patent/CN108806824B/en
Priority to CN201280040642.3A priority patent/CN103748636A/en
Priority to KR1020137029906A priority patent/KR101942602B1/en
Priority to JP2012558095A priority patent/JP6049461B2/en
Publication of WO2013094636A1 publication Critical patent/WO2013094636A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron

Definitions

  • the present invention relates to conductive particles in which a conductive layer is disposed on the surface of base particles, and more particularly to conductive particles that can be used for electrical connection between electrodes, for example.
  • the present invention also relates to a conductive material and a connection structure using the conductive particles.
  • Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known.
  • anisotropic conductive material conductive particles are dispersed in a binder resin.
  • the anisotropic conductive material is used for connection between an IC chip and a flexible printed circuit board, connection between an IC chip and a circuit board having an ITO electrode, and the like. For example, after disposing an anisotropic conductive material between the electrode of the IC chip and the electrode of the circuit board, these electrodes can be electrically connected by heating and pressing.
  • Patent Document 1 discloses a conductive material in which a nickel conductive layer or a nickel alloy conductive layer is formed on the surface of spherical base particles having an average particle diameter of 1 to 20 ⁇ m by an electroless plating method. Sex particles are disclosed. The conductive particles have minute protrusions of 0.05 to 4 ⁇ m on the outermost layer of the conductive layer. The conductive layer and the protrusion are substantially continuously connected.
  • Patent Document 2 a plastic core, a polymer electrolyte layer covering the plastic core, metal particles adsorbed on the plastic core through the polymer electrolyte layer, and the metal particles are covered.
  • surroundings of the said plastic core is disclosed.
  • Patent Document 3 discloses conductive particles in which a multilayer conductive layer of a metal plating film layer containing nickel and phosphorus and a gold layer is formed on the surface of a base material particle.
  • a core substance is disposed on the surface of the base particle, and the core substance is covered with a conductive layer.
  • the conductive layer is raised by the core material, and protrusions are formed on the surface of the conductive layer.
  • Patent Documents 1 to 3 described above disclose conductive particles having protrusions on the outer surface of the conductive layer.
  • an oxide film is formed on the surfaces of the electrodes connected by the conductive particles and the conductive layer of the conductive particles.
  • the protrusion of the conductive layer is formed so as to contact the conductive layer and the electrode by eliminating the oxide film on the surface of the electrode and the conductive particle when the electrodes are pressure-bonded via the conductive particle. .
  • the oxide film on the surfaces of the electrodes and the conductive particles cannot be sufficiently eliminated, and the connection resistance is high. May be.
  • An object of the present invention is to provide conductive particles capable of reducing the connection resistance between electrodes when a connection structure is obtained by connecting electrodes, and a conductive material and connection structure using the conductive particles. Is to provide.
  • the method includes a base particle, a conductive layer covering the base particle, and a plurality of core substances embedded in the conductive layer, wherein the conductive layer is outside.
  • a plurality of protrusions on the surface, the core substance is disposed inside the protrusions of the conductive layer, the conductive layer is disposed between the base material particles and the core substance, and the base Conductive particles are provided in which the surface of the material particles and the surface of the core substance are separated from each other, and the average distance between the surface of the base material particles and the surface of the core substance exceeds 5 nm.
  • an average distance between the surface of the base material particle and the surface of the core substance is more than 5 nm and 800 nm or less.
  • the total number of the core materials is 100%, and the distance between the surface of the base material particles and the surface of the core material is more than 5 nm.
  • the ratio is more than 80% and not more than 100%.
  • the metal element contained most in the core material and the metal element contained most in the conductive layer are the same.
  • the conductive layer covers the first conductive layer covering the base particle, the first conductive layer, and the core substance.
  • the core material is disposed on the surface of the first conductive layer and embedded in the second conductive layer, and the second conductive layer.
  • Has a plurality of protrusions on the outer surface the core substance is disposed inside the protrusions of the second conductive layer, and the first substance is interposed between the base particle and the core substance.
  • a conductive layer is disposed.
  • the metal element contained most in the core material and the metal element contained most in the second conductive layer are the same.
  • the conductive layer is a single conductive layer.
  • the core substance is a metal particle.
  • an insulating material attached to the surface of the conductive layer is further provided.
  • the conductive material according to the present invention includes the above-described conductive particles and a binder resin.
  • connection structure includes a first connection target member, a second connection target member, and a connection portion connecting the first and second connection target members, and the connection
  • the part is formed of the above-described conductive particles, or is formed of a conductive material containing the conductive particles and a binder resin.
  • the conductive particle according to the present invention includes a base particle, a conductive layer covering the base particle, and a plurality of core substances embedded in the conductive layer. Protrusions on the outer surface, the core substance is disposed inside the protrusions of the conductive layer, the conductive layer is disposed between the substrate particles and the core substance, and the base The surface of the material particles and the surface of the core substance are separated from each other, and the average distance between the surface of the base material particles and the surface of the core substance exceeds 5 nm. When used for connection between electrodes, the connection resistance between the electrodes can be lowered.
  • FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing conductive particles according to the third embodiment of the present invention.
  • FIG. 4 is a front cross-sectional view schematically showing a connection structure using conductive particles according to the first embodiment of the present invention.
  • the conductive particles according to the present invention include base particles, a conductive layer covering the base particles, and a plurality of core substances embedded in the conductive layer.
  • the conductive layer has a plurality of protrusions on the outer surface.
  • the core substance is disposed inside the protrusion of the conductive layer.
  • the conductive layer is disposed between the base particle and the core substance.
  • a partial region of the conductive layer is disposed between the base particle and the core substance.
  • the surface of the base particle and the surface of the core substance are separated from each other.
  • the average distance between the surface of the substrate particle and the surface of the core substance is more than 5 nm.
  • An oxide film is often formed on the surface of the electrode connected by the conductive particles. Furthermore, an oxide film is often formed on the outer surface of the conductive layer.
  • the oxide film is eliminated by the protrusions by placing the conductive particles between the electrodes and then pressing them. For this reason, an electrode and electroconductive particle can be made to contact and the connection resistance between electrodes can be made low.
  • the conductive layer is disposed between the base particle and the core substance, and the surface of the base particle and the surface of the core substance are spaced apart from each other.
  • the core material is difficult to push the base material particle when the conductive particles are compressed between the electrodes. A part of the region is difficult to sink into the base particle.
  • the base particles are relatively soft resin particles
  • the core substance is difficult to push the base particles, and a part of the core substance is difficult to sink into the base particles.
  • the protrusions of the conductive layer are strongly pressed against the electrodes during pressure bonding between the electrodes. As a result, the oxide film is effectively eliminated by the protrusions. For this reason, an electrode and electroconductive particle can be made to contact effectively and the connection resistance between electrodes can be made low effectively.
  • the conductive particles according to the present invention have the above-described configuration, when the conductive particles are compressed to connect the electrodes, it is possible to form an appropriate indentation on the electrodes.
  • the indentation formed on the electrode is a concave portion of the electrode formed by pressing the electrode with conductive particles.
  • a conductive material such as anisotropic conductive material
  • the binder resin between the conductive layer and the electrode is effectively eliminated. it can.
  • the connection resistance between the electrodes can also be lowered by effectively eliminating the binder resin.
  • conductive particles including an insulating material are used, the insulating material between the conductive layer and the electrode can be effectively eliminated by the protrusions, so that the conduction reliability between the electrodes is effectively increased. Can do.
  • the average between the surface of the base particle and the surface of the core substance The distance is preferably 5 nm or more, more preferably 10 nm or more.
  • the upper limit of the average distance between the surface of the substrate particle and the surface of the core substance is not particularly limited, and is appropriately determined in consideration of the thickness of the conductive layer.
  • the average distance between the surface of the base material particle and the surface of the core substance may be 800 nm or less, or 100 nm or less.
  • the average distance between the surface of the base material particle and the surface of the core substance is preferably 30 nm or less, more preferably 20 nm or less.
  • the average distance between the surface of the base material particle and the surface of the core substance may be 9/10 or less, 1/2 or less, or 1/3 or less of the thickness of the conductive layer. There may be.
  • the surface of the base particle in the total number of 100% of the core substance is preferably 50% or more, more preferably more than 80% and 100% or less. In all of the core materials, the distance between the surface of the base particle and the surface of the core material may exceed 5 nm.
  • the average distance between the surface of the base particle and the surface of the core substance is measured after measuring the distance (the shortest distance between the gaps) between the surface of the base particle and each surface of the plurality of core substances. It is calculated by averaging the obtained values.
  • the conductive particles include five core materials A to E embedded in the conductive layer, the distance between the surface of the base material particle and the surface of the core material A, the surface of the base material particle and the core material B
  • the distance between the surface, the distance between the surface of the base material particle and the surface of the core material C, the distance between the surface of the base material particle and the surface of the core material D, the surface of the base material particle and the surface of the core material E Is calculated by averaging the five measured values.
  • the number of core materials is 10 or more, it is preferable to measure the distance between the surface of the base material particles and each surface of all the core materials. The distance from each surface of the core material may be measured, and the average distance may be calculated from the 10 measured values.
  • the distance between the surface of the base material particle and the surface of the core substance was obtained by photographing a plurality of cross-sections of the conductive particles to obtain an image, and creating a stereoscopic image from the obtained image. By using a stereoscopic image, it can be measured accurately.
  • the section can be imaged using a focused ion beam-scanning electron microscope (FIBSEM) or the like. For example, a thin film slice of conductive particles is prepared using a focused ion beam, and the cross section is observed with a scanning electron microscope. A three-dimensional image of the particles can be obtained by repeating the operation several hundred times and analyzing the image.
  • FIBSEM focused ion beam-scanning electron microscope
  • the conductive layer has protrusions on the outer surface. There are a plurality of protrusions. An oxide film is often formed on the surface of the conductive layer and the surface of the electrode connected by the conductive particles. By using conductive particles having protrusions on the outer surface of the conductive layer, the oxide particles are effectively eliminated by the protrusions by placing the conductive particles between the electrodes and pressing them. For this reason, an electrode and the conductive layer of electroconductive particle can be contacted still more reliably, and the connection resistance between electrodes can be made low.
  • the conductive particles are provided with an insulating material on the surface, or when the conductive particles are dispersed in a binder resin and used as a conductive material, the protrusions of the conductive particles cause a gap between the conductive particles and the electrode. Insulating substances or binder resins can be effectively eliminated. For this reason, the conduction
  • the average height of the plurality of protrusions is preferably 0.001 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 0.9 ⁇ m or less, more preferably 0.2 ⁇ m or less.
  • the connection resistance between the electrodes can be effectively lowered.
  • FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
  • the conductive layer 3 is disposed on the surface of the base particle 2.
  • a single conductive layer 3 is formed.
  • the conductive layer 3 covers the base particle 2.
  • the conductive layer 3 has a plurality of protrusions 3a on the outer surface.
  • the plurality of core substances 4 are arranged on the surface of the base particle 2 and are embedded in the conductive layer 3.
  • the core substance 4 is disposed inside the protrusion 3a.
  • One core material 4 is arranged inside one protrusion 3a.
  • the outer surface of the conductive layer 3 is raised by the plurality of core materials 4, and a plurality of protrusions 3 a are formed.
  • the conductive layer 3 is disposed between the surface of the base particle 2 and the surface of the core substance 4.
  • the surface of the base particle 2 and the surface of the core material 4 are separated from each other.
  • the core substance 4 is not in contact with the base particle 2.
  • the average distance between the surface of the base material particle 2 and the surface of the core substance 4 exceeds 5 nm.
  • the conductive layer 3 part (conductive layer part 3b) of sufficient thickness is arrange
  • the distance between the surface of the base material particle 2 and the surface of the core material 4 is the thickness of the conductive layer portion 3 b disposed between the surface of the base material particle 2 and the surface of the core material 4.
  • the insulating material 5 is disposed on the surface of the conductive layer 3.
  • the insulating material 5 is an insulating particle.
  • the insulating substance 5 is made of an insulating material.
  • the conductive particles do not necessarily include an insulating substance.
  • the conductive particles may include an insulating layer that covers the outer surface of the conductive layer instead of the insulating particles as an insulating substance.
  • FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention.
  • the conductive layer 2 includes a base particle 2, a conductive layer 12, a plurality of core substances 4, and an insulating substance 5.
  • the conductive layer 12 is disposed on the surface of the base particle 2.
  • the conductive layer 12 covers the base particle 2.
  • the conductive layer 12 has a plurality of protrusions 12a on the outer surface.
  • a multilayer conductive layer 12 is formed.
  • the conductive layer 12 includes a first conductive layer 16 and a second conductive layer 17.
  • the first conductive layer 16 is disposed on the surface of the base particle 2.
  • the first conductive layer 16 covers the base particle 2.
  • the first conductive layer 16 is a single layer.
  • the first conductive layer may be a multilayer.
  • the core material 4 is disposed on the first conductive layer 16.
  • the core material 4 is embedded in the conductive layer 12 and the second conductive layer 17.
  • a first conductive layer 16 is disposed between the base particle 2 and the core substance 4.
  • the distance between the surface of the base material particle 2 and the surface of the core material 4 is such that the conductive layer portion 12 b disposed between the surface of the base material particle 2 and the surface of the core material 4 and It is the thickness of the 1st conductive layer 16 (1st conductive layer 16 part).
  • the second conductive layer 17 is formed separately from the first conductive layer 16.
  • the second conductive layer 17 is formed on the surface of the first conductive layer 16 after the first conductive layer 16 is formed.
  • the second conductive layer 17 is disposed on the surface of the first conductive layer 16.
  • the second conductive layer 17 covers the core material 4 and the first conductive layer 16.
  • the second conductive layer 17 has a plurality of protrusions 17a on the outer surface.
  • the plurality of core materials 4 are embedded in the second conductive layer 17.
  • the core substance 4 is disposed inside the protrusion 17a.
  • the outer surface of the second conductive layer 17 is raised by the plurality of core materials 4 to form protrusions 17a.
  • FIG. 3 is a cross-sectional view showing conductive particles according to the third embodiment of the present invention.
  • the 3 includes a base particle 2, a conductive layer 22, a plurality of core materials 4, and an insulating material 5.
  • the conductive layer 22 is disposed on the surface of the base particle 2.
  • the conductive layer 22 covers the base particle 2.
  • the conductive layer 22 has a plurality of protrusions 22a on the outer surface.
  • a multilayer conductive layer 22 is formed.
  • the conductive layer 22 includes a first conductive layer 26, a second conductive layer 27, and a third conductive layer 28.
  • the first conductive layer 26 is disposed on the surface of the base particle 2.
  • the first conductive layer 26 covers the base particle 2.
  • the core material 4 is disposed on the first conductive layer 26.
  • the core material 4 is embedded in the conductive layer 22 and the second conductive layer 27.
  • a first conductive layer 26 is disposed between the base particle 2 and the core substance 4.
  • the average distance between the surface of the base particle 2 and the surface of the core substance 4 exceeds 5 nm.
  • the distance between the surface of the base material particle 2 and the surface of the core material 4 is such that the conductive layer portion 22 b disposed between the surface of the base material particle 2 and the surface of the core material 4 and This is the thickness of the first conductive layer 26 portion.
  • the second conductive layer 27 is disposed on the surface of the first conductive layer 26.
  • the second conductive layer 27 covers the core material 4 and the first conductive layer 26.
  • the second conductive layer 27 has a plurality of protrusions 27a on the outer surface.
  • the core substance 4 is disposed inside the protrusion 27a.
  • the outer surface of the second conductive layer 27 is raised by the plurality of core materials 4, and protrusions 27 a are formed.
  • the third conductive layer 28 is disposed on the surface of the second conductive layer 27.
  • the third conductive layer 28 covers the second conductive layer 27.
  • the third conductive layer 28 has a plurality of protrusions 28a on the outer surface.
  • the core substance 4 is disposed inside the protrusion 28a.
  • the outer surface of the third conductive layer 28 is raised by the plurality of core materials 4 to form protrusions 28a.
  • the metal element contained most in the core material and the metal element contained most in the conductive layer are the same.
  • the connection resistance in the connection structure is further improved.
  • the metal element contained most in the core substance and the metal element contained most in the conductive layer are the core substance, the conductive layer, or the core substance and the conductive layer. There may be a concentration gradient.
  • the metal element contained most in the core substance and the metal element contained most in the conductive layer may be alloyed with other metals.
  • the metal contained in the core material and the metal contained in the conductive layer may be alloyed at the interface.
  • the metal element contained most in the core material and the metal element contained most in the first conductive layer are the same.
  • the connection resistance in the connection structure is further improved.
  • the metal element contained most in the core material and the metal element contained most in the first conductive layer are the core material, the first conductive layer, or the core material and the above-described core material. There may be a concentration gradient in the first conductive layer.
  • the metal element contained most in the first conductive layer may be alloyed with another metal.
  • the metal contained in the core material and the metal contained in the first conductive layer may be alloyed at the interface.
  • the metal element contained most in the core material and the metal element contained most in the second conductive layer are the same.
  • the connection resistance in the connection structure is further improved.
  • the metal element contained most in the core material and the metal element contained most in the second conductive layer are the core material, the second conductive layer, or the core material and the above-described core material. There may be a concentration gradient in the second conductive layer.
  • the metal element contained most in the second conductive layer may be alloyed with another metal.
  • the metal contained in the core material and the metal contained in the second conductive layer may be alloyed at the interface.
  • the Mohs hardness of the core material is the same as the Mohs hardness of the conductive layer portion disposed between the base material particles and the core material, or the Mohs hardness of the core material is equal to the base material particles and the core material. It is preferable that it is larger than the Mohs hardness of the conductive layer part arrange
  • the Mohs hardness of the core material is preferably the same as the Mohs hardness of the first conductive layer, or the Mohs hardness of the core material is preferably larger than the Mohs hardness of the first conductive layer. In such a case, the core material is difficult to push the base material particles, and a part of the core material is difficult to sink into the base material particles.
  • the connection resistance between the electrodes can be further reduced.
  • the Mohs hardness of the core substance is determined by the conductive layer portion disposed between the base material particles and the core substance or the Mohs of the first conductive layer. It is preferable that it is larger than the hardness.
  • the connection resistance is further increased.
  • the absolute value of the difference between the Mohs hardness of the core material and the Mohs hardness of the conductive layer portion or the first conductive layer disposed between the base particle and the core material is: Preferably it is 0.1 or more, More preferably, it is 0.5 or more.
  • the Mohs hardness of the core substance is preferably smaller than the Mohs hardness of the conductive layer portion disposed between the base material particles and the core substance.
  • the Mohs hardness of the core material is preferably smaller than the Mohs hardness of the first conductive layer.
  • the conductive layer portion and the first conductive layer have some cushioning properties.
  • the impact resistance is further enhanced.
  • the absolute value of the difference between the Mohs hardness of the core material and the Mohs hardness of the conductive layer portion or the first conductive layer disposed between the base particle and the core material is preferably 0.1 or more, more preferably 0.5 or more.
  • Examples of the substrate particles include resin particles, inorganic particles excluding metals, organic-inorganic hybrid particles, and metal particles.
  • the substrate particles are preferably substrate particles excluding metal particles, and more preferably resin particles, inorganic particles excluding metal, or organic-inorganic hybrid particles.
  • the base material particles are preferably resin particles formed of a resin.
  • the substrate particles are resin particles, the effect of reducing the connection resistance obtained by the configuration of the conductive layer and the core substance of the present invention is considerably increased.
  • the said electroconductive particle is compressed by crimping
  • the substrate particles are resin particles, the conductive particles are easily deformed during the pressure bonding, and the contact area between the conductive particles and the electrode is increased. For this reason, the conduction
  • the resin for forming the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polypropylene, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate.
  • polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polypropylene, polyisobutylene, and polybutadiene
  • acrylic resins such as polymethyl methacrylate and polymethyl acrylate.
  • Resin for forming the resin particles can be designed and synthesized, and the hardness of the base particles can be easily controlled within a suitable range, which is suitable for conductive materials and having physical properties at the time of compression.
  • the monomer having an ethylenically unsaturated group includes a non-crosslinkable monomer and a crosslinkable monomer. And so on.
  • non-crosslinkable monomer examples include styrene monomers such as styrene and ⁇ -methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylates such as meth) acrylate and isobornyl (meth) acrylate; acids such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate and glycidyl (meth) acrylate Atom
  • crosslinkable monomer examples include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylates such as acrylate, (poly) tetramethylene di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) cyanurate, tri Lil
  • the resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.
  • the substrate particles are inorganic particles or organic-inorganic hybrid particles excluding metal particles
  • examples of the inorganic material for forming the substrate particles include silica and carbon black. Although it does not specifically limit as the particle
  • grains obtained by performing are mentioned.
  • examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the substrate particles are metal particles
  • examples of the metal for forming the metal particles include silver, copper, nickel, silicon, gold, and titanium.
  • the substrate particles are preferably not metal particles.
  • the particle diameter of the substrate particles is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, still more preferably 1 ⁇ m or more, still more preferably 1.5 ⁇ m or more, particularly preferably 2 ⁇ m or more, preferably 1000 ⁇ m or less, More preferably, it is 500 ⁇ m or less, still more preferably 300 ⁇ m or less, still more preferably 50 ⁇ m or less, still more preferably 30 ⁇ m or less, particularly preferably 5 ⁇ m or less, and most preferably 3 ⁇ m or less.
  • the particle diameter of the substrate particles When the particle diameter of the substrate particles is equal to or greater than the above lower limit, the contact area between the conductive particles and the electrodes is increased, so that the conduction reliability between the electrodes is further increased, and the electrodes are connected via the conductive particles. The connection resistance between them becomes even lower. Further, when forming the conductive layer on the surface of the base particle by electroless plating, it becomes difficult to aggregate and the aggregated conductive particles are hardly formed. When the particle diameter is not more than the above upper limit, the conductive particles are easily compressed, the connection resistance between the electrodes is further reduced, and the distance between the electrodes is further reduced.
  • the particle diameter of the base particle indicates a diameter when the base particle is a true sphere, and indicates a maximum diameter when the base particle is not a true sphere.
  • the particle diameter of the substrate particles is particularly preferably 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the particle diameter of the substrate particles is in the range of 0.1 to 5 ⁇ m, even when the distance between the electrodes is small and the thickness of the conductive layer is increased, small conductive particles can be obtained.
  • the particle diameter of the substrate particles is preferably 0.5 ⁇ m or more. More preferably, it is 2 ⁇ m or more, preferably 3 ⁇ m or less.
  • the metal for forming the conductive layer is not particularly limited. Furthermore, when the conductive particles are metal particles that are conductive layers as a whole, the metal for forming the metal particles is not particularly limited. Examples of the metal include gold, silver, copper, palladium, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, thallium, germanium, cadmium, silicon, and tungsten. , Molybdenum, and alloys thereof. Examples of the metal include tin-doped indium oxide (ITO) and solder.
  • ITO tin-doped indium oxide
  • the metal element constituting the conductive layer preferably contains nickel.
  • the conductive layer preferably contains at least one selected from the group consisting of nickel, tungsten, molybdenum, palladium, phosphorus and boron, and more preferably contains nickel and phosphorus or boron.
  • the material forming the conductive layer may be an alloy containing phosphorus, boron, or the like. In the conductive layer, nickel and tungsten or molybdenum may be alloyed.
  • the total content of phosphorus and boron is preferably 4% by weight or less in 100% by weight of the conductive layer.
  • the total content of phosphorus and boron is not more than the above upper limit, the content of metals such as nickel is relatively increased, so that the connection resistance between the electrodes is further reduced.
  • the total content of phosphorus and boron is preferably 0.1% by weight or more, more preferably 0.5% by weight or more.
  • the metal element contained most in the core material, the conductive layer, and the second conductive layer is preferably an alloy containing tin, nickel, palladium, copper, or gold, and more preferably nickel or palladium. .
  • the conductive layer may be formed of a single layer. Furthermore, like the conductive particles 11 and 21, the conductive layer may be formed of a plurality of layers. That is, the conductive layer may be a single layer or may have a stacked structure of two or more layers.
  • the outermost layer is preferably a gold layer, a nickel layer, a palladium layer, a copper layer, or an alloy layer containing tin and silver, and the gold layer or the palladium layer Is more preferable, and a gold layer is particularly preferable.
  • the outermost layer is these preferred conductive layers, the connection resistance between the electrodes is further reduced.
  • the outermost layer is a gold layer, the corrosion resistance is further enhanced.
  • the method for forming the conductive layer on the surface of the substrate particles is not particularly limited.
  • a method for forming the conductive layer for example, a method by electroless plating, a method by electroplating, a method by physical vapor deposition, and a method of coating the surface of base particles with metal powder or a paste containing metal powder and a binder Etc.
  • the method by electroless plating is preferable.
  • the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering.
  • the average particle diameter of the conductive particles is preferably 0.11 ⁇ m or more, more preferably 0.5 ⁇ m or more, further preferably 0.51 ⁇ m or more, particularly preferably 1 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 20 ⁇ m or less, More preferably, it is 5.6 micrometers or less, Most preferably, it is 3.6 micrometers or less. It is.
  • the average particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the contact area between the conductive particles and the electrode becomes sufficiently large when the electrodes are connected using the conductive particles, and the conductive Aggregated conductive particles are less likely to be formed when the layer is formed. Further, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive layer is difficult to peel from the surface of the base material particles.
  • the “average particle size” of the conductive particles indicates a number average particle size.
  • the average particle diameter of the conductive particles can be obtained by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.
  • the thickness of the conductive layer is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 1 ⁇ m or less, more preferably 0.3 ⁇ m or less.
  • the thickness of the conductive layer is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles do not become too hard, and the conductive particles are sufficiently deformed when connecting the electrodes. .
  • the thickness of the outermost conductive layer is preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 0.5 ⁇ m or less, more preferably 0. .1 ⁇ m or less.
  • the coating with the outermost conductive layer can be made uniform, corrosion resistance can be sufficiently enhanced, and the connection resistance between the electrodes can be increased. It can be made sufficiently low.
  • the thickness of the conductive layer can be measured by observing the cross section of the conductive particles or the conductive particles with insulating particles using, for example, a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the number of protrusions on the outer surface of the conductive layer per one of the conductive particles is preferably 3 or more, more preferably 5 or more.
  • the upper limit of the number of protrusions is not particularly limited. The upper limit of the number of protrusions can be appropriately selected in consideration of the average particle diameter of conductive particles and the like.
  • the conductive layer Since the core substance is embedded in the conductive layer, the conductive layer has a plurality of protrusions on the outer surface.
  • a first conductive layer is formed on the surface of the base particle, a core substance is disposed on the first conductive layer, and then a second conductive layer is formed.
  • Examples thereof include a method and a method of adding a core substance in the middle of forming a conductive layer on the surface of the base particle.
  • the material constituting the core material there may be mentioned a conductive material and a non-conductive material.
  • the conductive material include conductive non-metals such as metals, metal oxides, and graphite, and conductive polymers.
  • the conductive polymer include polyacetylene.
  • the non-conductive substance include silica, alumina, barium titanate, zirconia, and the like. Among them, metal is preferable because conductivity can be increased and connection resistance can be effectively reduced.
  • the core substance is preferably metal particles.
  • the metal examples include gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead.
  • examples thereof include alloys composed of two or more metals such as alloys, tin-copper alloys, tin-silver alloys, tin-lead-silver alloys, and tungsten carbide. Of these, nickel, copper, silver or gold is preferable.
  • the metal constituting the core material may be the same as or different from the metal constituting the conductive layer.
  • the metal constituting the core material preferably includes a metal constituting the conductive layer. It is preferable that the metal which comprises the said core substance contains nickel. It is preferable that the metal which comprises the said core substance contains nickel.
  • the shape of the core substance is not particularly limited.
  • the shape of the core substance is preferably a lump.
  • Examples of the core substance include a particulate lump, an agglomerate in which a plurality of fine particles are aggregated, and an irregular lump.
  • the average diameter (average particle diameter) of the core substance is preferably 0.001 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 0.9 ⁇ m or less, more preferably 0.2 ⁇ m or less.
  • the connection resistance between the electrodes can be effectively reduced.
  • the “average diameter (average particle diameter)” of the core substance indicates a number average diameter (number average particle diameter).
  • the average diameter of the core material is obtained by observing 50 arbitrary core materials with an electron microscope or an optical microscope and calculating an average value.
  • Inorganic particles may be disposed on the surface of the core substance. It is preferable that there are a plurality of inorganic particles arranged on the surface of the core substance. Inorganic particles may be attached to the surface of the core substance. You may use the composite particle provided with such an inorganic particle and a core substance.
  • the size (average diameter) of the inorganic particles is preferably smaller than the size (average diameter) of the core substance, and the inorganic particles are preferably inorganic fine particles.
  • Examples of the material of the inorganic particles arranged on the surface of the core substance include barium titanate (Mohs hardness 4.5), silica (silicon dioxide, Mohs hardness 6-7), zirconia (Mohs hardness 8-9), Examples include alumina (Mohs hardness 9), tungsten carbide (Mohs hardness 9), diamond (Mohs hardness 10), and the like.
  • the inorganic particles are preferably silica, zirconia, alumina, tungsten carbide or diamond, and are also preferably silica, zirconia, alumina or diamond.
  • the Mohs hardness of the inorganic particles is preferably 5 or more, more preferably 6 or more.
  • the Mohs hardness of the inorganic particles is preferably larger than the Mohs hardness of the conductive layer.
  • the Mohs hardness of the inorganic particles is preferably larger than the Mohs hardness of the second conductive layer.
  • the absolute value of the difference between the Mohs hardness of the inorganic particles and the Mohs hardness of the conductive layer, and the absolute value of the difference between the Mohs hardness of the inorganic particles and the Mohs hardness of the second conductive layer are preferably 0.1. Above, more preferably 0.2 or more, still more preferably 0.5 or more, particularly preferably 1 or more. Further, when the conductive layer is formed of a plurality of layers, the effect of reducing the connection resistance is more effectively exhibited when the inorganic particles are harder than all the metals constituting the plurality of layers.
  • the average particle size of the inorganic particles is preferably 0.0001 ⁇ m or more, more preferably 0.005 ⁇ m or more, preferably 0.5 ⁇ m or less, more preferably 0.1 ⁇ m or less.
  • the connection resistance between the electrodes can be effectively reduced.
  • the “average particle size” of the inorganic particles indicates the number average particle size.
  • the average particle diameter of the inorganic particles is obtained by observing 50 arbitrary inorganic particles with an electron microscope or an optical microscope and calculating an average value.
  • the average diameter of the composite particles is preferably 0.0012 ⁇ m or more, more preferably 0.0502 ⁇ m or more, preferably Is 1.9 ⁇ m or less, more preferably 1.2 ⁇ m or less.
  • the average diameter of the composite particles is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be effectively reduced.
  • the “average diameter (average particle diameter)” of the composite particles indicates a number average diameter (number average particle diameter).
  • the average diameter of the composite particles is determined by observing 50 arbitrary composite particles with an electron microscope or an optical microscope and calculating an average value.
  • the conductive particles according to the present invention preferably include an insulating material disposed on the surface of the conductive layer.
  • an insulating material disposed on the surface of the conductive layer.
  • an insulating material is present between the plurality of electrodes, so that it is possible to prevent a short circuit between electrodes adjacent in the lateral direction instead of between the upper and lower electrodes.
  • the insulating substance between the conductive layer of the conductive particles and the electrodes can be easily excluded. Since the conductive particles have a plurality of protrusions on the outer surface of the conductive layer, the insulating material between the conductive layer of the conductive particles and the electrode can be easily excluded.
  • the insulating material is an insulating particle because the insulating material can be more easily removed when the electrodes are crimped.
  • thermoplastic resin examples include vinyl polymers and vinyl copolymers.
  • thermosetting resin an epoxy resin, a phenol resin, a melamine resin, etc.
  • water-soluble resin examples include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinyl pyrrolidone, polyethylene oxide, and methyl cellulose. Of these, water-soluble resins are preferable, and polyvinyl alcohol is more preferable.
  • Examples of a method for disposing an insulating material on the surface of the conductive layer include a chemical method and a physical or mechanical method.
  • Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method.
  • Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion, spraying, dipping, and vacuum deposition. In particular, since the insulating substance is difficult to be detached, a method of disposing the insulating substance on the surface of the conductive layer through a chemical bond is preferable.
  • the average diameter (average particle diameter) of the insulating material can be appropriately selected depending on the particle diameter of the conductive particles and the use of the conductive particles.
  • the average diameter (average particle diameter) of the insulating material is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less.
  • the average diameter of the insulating material is not less than the above lower limit, the conductive layers of the plurality of conductive particles are difficult to contact when the conductive particles are dispersed in the binder resin.
  • the average diameter of the insulating particles is not more than the above upper limit, it is not necessary to make the pressure too high in order to eliminate the insulating material between the electrodes and the conductive particles when the electrodes are connected. There is no need for heating.
  • the “average diameter (average particle diameter)” of the insulating material indicates a number average diameter (number average particle diameter).
  • the average diameter of the insulating material is obtained using a particle size distribution measuring device or the like.
  • the conductive material according to the present invention includes the conductive particles described above and a binder resin.
  • the conductive particles are preferably dispersed in a binder resin and used as a conductive material.
  • the conductive material is preferably an anisotropic conductive material.
  • the binder resin is not particularly limited.
  • As the binder resin a known insulating resin is used.
  • binder resin examples include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers.
  • vinyl resins examples include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers.
  • the said binder resin only 1 type may be used and 2 or more types may be used together.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin.
  • examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, and polyamide resin.
  • examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin.
  • the curable resin may be used in combination with a curing agent.
  • thermoplastic block copolymer examples include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogenated products of styrene block copolymers.
  • the elastomer examples include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • the conductive material includes, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer.
  • a filler for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer.
  • Various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant may be contained.
  • the method for dispersing the conductive particles in the binder resin is not particularly limited, and a conventionally known dispersion method can be used.
  • Examples of a method for dispersing the conductive particles in the binder resin include a method in which the conductive particles are added to the binder resin and then kneaded and dispersed with a planetary mixer or the like. The conductive particles are dispersed in water. Alternatively, after uniformly dispersing in an organic solvent using a homogenizer or the like, it is added to the binder resin and kneaded with a planetary mixer or the like, and the binder resin is diluted with water or an organic solvent. Then, the method of adding the said electroconductive particle, kneading with a planetary mixer etc. and disperse
  • distributing is mentioned.
  • the conductive material according to the present invention can be used as a conductive paste and a conductive film.
  • the conductive material according to the present invention is a conductive film
  • a film that does not include conductive particles may be laminated on a conductive film that includes conductive particles.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive film is preferably an anisotropic conductive film.
  • the content of the binder resin is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably 70% by weight or more, preferably 99.% or more. It is 99 weight% or less, More preferably, it is 99.9 weight% or less.
  • the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further increased.
  • the content of the conductive particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 40% by weight or less, more preferably 20% by weight or less, More preferably, it is 10 weight% or less.
  • the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conduction reliability between the electrodes is further enhanced.
  • connection structure can be obtained by connecting the connection target members using the conductive particles of the present invention or using a conductive material containing the conductive particles and a binder resin.
  • connection structure includes a first connection target member, a second connection target member, and a connection portion connecting the first and second connection target members, and the connection portion is a conductive member of the present invention.
  • the connection structure is preferably formed of conductive particles or formed of a conductive material (such as an anisotropic conductive material) containing the conductive particles and a binder resin.
  • the connection portion itself is conductive particles. That is, the first and second connection target members are connected by the conductive particles.
  • FIG. 4 is a front cross-sectional view schematically showing a connection structure using conductive particles according to the first embodiment of the present invention.
  • connection portion 54 includes a first connection target member 52, a second connection target member 53, and a connection portion 54 that connects the first and second connection target members 52 and 53.
  • the connection portion 54 is formed by curing a conductive material including the conductive particles 1.
  • the conductive particles 1 are schematically shown for convenience of illustration.
  • the first connection target member 52 has a plurality of electrodes 52b on the upper surface 52a (front surface).
  • the second connection target member 53 has a plurality of electrodes 53b on the lower surface 53a (front surface).
  • the electrode 52 b and the electrode 53 b are electrically connected by one or a plurality of conductive particles 1. Therefore, the first and second connection target members 52 and 53 are electrically connected by the conductive particles 1.
  • connection structure is not particularly limited.
  • the conductive material is disposed between the first connection target member and the second connection target member to obtain a laminate, and then the laminate is heated and pressurized. Methods and the like.
  • the pressurizing pressure is about 9.8 ⁇ 10 4 to 4.9 ⁇ 10 6 Pa.
  • the heating temperature is about 120 to 220 ° C.
  • connection target member examples include electronic components such as semiconductor chips, capacitors, and diodes, and electronic components such as circuit boards such as printed boards, flexible printed boards, and glass boards.
  • the connection target member is preferably an electronic component.
  • the conductive particles are preferably used for electrical connection of electrodes in an electronic component.
  • the electrode provided on the connection target member examples include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, and a tungsten electrode.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode.
  • the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode.
  • the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated
  • the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.
  • Example 1 Palladium adhesion process Divinylbenzene resin particles (“Micropearl SP-205” manufactured by Sekisui Chemical Co., Ltd.) having a particle diameter of 5.0 ⁇ m were prepared. The resin particles were etched and washed with water. Next, resin particles were added to 100 mL of a palladium-catalyzed solution containing 8% by weight of a palladium catalyst and stirred. Then, it filtered and wash
  • a suspension was obtained by adding the resin particles to which palladium obtained in 1000 mL of pure water was adhered and dispersing with an ultrasonic disperser. While stirring the obtained suspension at 60 ° C., the nickel plating solution was gradually added dropwise to the suspension to perform electroless nickel plating. Thereafter, the suspension is filtered to remove the particles, washed with water, and dried to obtain a first conductive layer (nickel-molybdenum-phosphorus layer (Ni-Mo-P layer)) The resin particles were coated at a thickness of 5.2 nm) to obtain particles on which the first conductive layer was formed.
  • Nickel containing 0.25 mol / L nickel sulfate, 0.25 mol / L sodium hypophosphite, 0.15 mol / L sodium citrate and 0.01 mol / L sodium molybdate to form a nickel-phosphorus conductive layer A plating solution (pH 8.0) was prepared.
  • the above nickel plating solution is gradually dropped into the suspension, electroless nickel plating is performed, and a second conductive layer (nickel-molybdenum-phosphorus) having a thickness of 90 nm is obtained.
  • a layer Ni—Mo—P layer was formed, and then the suspension was filtered to take out the particles, washed with water, and dried to obtain conductive particles. , Having a protrusion on the outer surface of the second conductive layer, and a core substance disposed on the inner side of the protrusion of the second conductive layer, and the first conductive layer between the resin particles and the core substance. Layers were placed.
  • Example 2 Conductive particles were obtained in the same manner as in Example 1 except that the alumina (Al 2 O 3 ) particle slurry (average particle size 100 nm) was changed to a silica particle slurry (average particle size 100 nm).
  • Example 3 Conductive particles were obtained in the same manner as in Example 1 except that the alumina (Al 2 O 3 ) particle slurry (average particle size 100 nm) was changed to a tungsten carbide (WC) particle slurry (average particle size 100 nm).
  • alumina (Al 2 O 3 ) particle slurry average particle size 100 nm
  • WC tungsten carbide
  • Example 4 Conductive particles were obtained in the same manner as in Example 1 except that the thickness of the first conductive layer, which was a nickel-phosphorous layer, was changed to the value shown below.
  • the thickness of the first conductive layer Example 4: 10 ⁇ m
  • Example 5 20 ⁇ m
  • Example 6 100 ⁇ m
  • Example 7 750 ⁇ m
  • Example 8 860 ⁇ m
  • Example 9 (1) Preparation of insulating particles Into a 1000 mL separable flask equipped with a four-neck separable cover, stirring blade, three-way cock, cooling tube and temperature probe, 100 mmol of methyl methacrylate and N, N, N-trimethyl Ion-exchanged water containing a monomer composition containing 1 mmol of —N-2-methacryloyloxyethylammonium chloride and 1 mmol of 2,2′-azobis (2-amidinopropane) dihydrochloride so that the solid content is 5% by weight. Then, the mixture was stirred at 200 rpm and polymerized at 70 ° C. for 24 hours under a nitrogen atmosphere. After completion of the reaction, it was freeze-dried to obtain insulating particles having an ammonium group on the surface, an average particle size of 220 nm, and a CV value of 10%.
  • the insulating particles were dispersed in ion exchange water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles.
  • Example 2 10 g of the conductive particles obtained in Example 1 were dispersed in 500 mL of ion-exchanged water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtration through a 3 ⁇ m mesh filter, the particles were further washed with methanol and dried to obtain conductive particles having insulating particles attached thereto.
  • Example 10 Divinylbenzene resin particles having a particle diameter of 5.0 ⁇ m (“Micropearl SP-205” manufactured by Sekisui Chemical Co., Ltd.) and divinylbenzene resin particles having a particle diameter of 5.0 ⁇ m (“Micropearl SP manufactured by Sekisui Chemical Co., Ltd.) are used. Conductive particles were obtained in the same manner as in Example 1 except that the surface of -205 ”) was changed to silica-coated organic-inorganic hybrid particles (particle diameter 5.1 ⁇ m).
  • Example 1 Conductive particles were obtained in the same manner as in Example 1 except that the thickness of the first conductive layer, which was a nickel-phosphorous layer, was changed to 4.5 nm.
  • Divinylbenzene resin particles (“Micropearl SP-205” manufactured by Sekisui Chemical Co., Ltd.) having a particle diameter of 5.0 ⁇ m were prepared. Moreover, an alumina (Al 2 O 3 ) particle slurry (average particle diameter: 100 nm) was prepared. Using resin particles and metal particle slurry, the surface of the resin particles was coated with a core substance to obtain a suspension.
  • Nickel containing 0.25 mol / L nickel sulfate, 0.25 mol / L sodium hypophosphite, 0.15 mol / L sodium citrate and 0.01 mol / L sodium molybdate to form a nickel-phosphorus conductive layer A plating solution (pH 8.0) was prepared.
  • the nickel plating solution was gradually added dropwise to the suspension, and electroless nickel plating was performed to form a conductive layer having a thickness of 100 nm. Thereafter, the suspension was filtered to take out the particles, washed with water, and dried to obtain conductive particles. In the obtained conductive particles, the core substance and the base material particles were in contact.
  • Example 11 (1) Palladium adhesion process The resin particle to which the palladium obtained in Example 1 was adhered was prepared.
  • Nickel plating solution containing 0.23 mol / L nickel sulfate, 0.92 mol / L dimethylamine borane, 0.5 mol / L sodium citrate and 0.01 mol / L sodium tungstate (pH 8. 5) was prepared.
  • a suspension was obtained by adding the resin particles to which palladium obtained in 1000 mL of pure water was adhered and dispersing with an ultrasonic disperser. While stirring the obtained suspension at 60 ° C., the nickel plating solution was gradually added dropwise to the suspension to perform electroless nickel plating. Thereafter, by filtering the suspension, the particles are taken out, washed with water, and dried to cover the resin particles with the first conductive layer (thickness 5.1 nm) which is a nickel-tungsten-boron layer. The particle
  • a nickel plating solution (pH 8.5) containing 0.23 mol / L of nickel sulfate, 0.92 mol / L of dimethylamine borane, 0.5 mol / L of sodium citrate and 0.01 mol / L of sodium tungstate was prepared.
  • the above nickel plating solution was gradually added dropwise to the suspension, and electroless nickel plating was performed to form a second conductive layer having a thickness of 90 nm. Thereafter, the suspension was filtered to take out the particles, washed with water, and dried to obtain conductive particles.
  • the obtained conductive particles had protrusions on the outer surface of the second conductive layer, and the core substance was disposed inside the protrusions of the second conductive layer.
  • the 1st conductive layer was arrange
  • Example 12 Conductive particles were obtained in the same manner as in Example 11 except that the thickness of the first conductive layer, which was a nickel-tungsten-boron layer, was changed to 10 nm.
  • Example 13 Conductive particles were obtained in the same manner as in Example 11 except that the thickness of the first conductive layer, which was a nickel-tungsten-boron layer, was changed to 20 nm.
  • Example 14 A 10% by weight aqueous dispersion of the insulating particles obtained in Example 9 was prepared. 10 g of the conductive particles obtained in Example 11 were dispersed in 500 mL of ion exchange water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtration through a 3 ⁇ m mesh filter, the particles were further washed with methanol and dried to obtain conductive particles having insulating particles attached thereto.
  • Example 3 Conductive particles were obtained in the same manner as in Example 11 except that the thickness of the first conductive layer, which was a nickel-tungsten-boron layer, was changed to 3 nm.
  • Divinylbenzene resin particles (“Micropearl SP-205” manufactured by Sekisui Chemical Co., Ltd.) having a particle diameter of 5.0 ⁇ m were prepared. Moreover, an alumina (Al 2 O 3 ) particle slurry (average particle diameter: 100 nm) was prepared. Using resin particles and metal particle slurry, the surface of the resin particles was coated with a core substance to obtain a suspension.
  • a nickel plating solution (pH 8.5) containing 0.23 mol / L of nickel sulfate, 0.92 mol / L of dimethylamine borane, 0.5 mol / L of sodium citrate and 0.01 mol / L of sodium tungstate was prepared.
  • the nickel plating solution was gradually added dropwise to the suspension, and electroless nickel plating was performed to form a conductive layer having a thickness of 100 nm. Thereafter, the suspension was filtered to take out the particles, washed with water, and dried to obtain conductive particles. In the obtained conductive particles, the core substance and the base material particles were in contact.
  • Example 15 (1) Palladium adhesion process The resin particle to which the palladium obtained in Example 1 was adhered was prepared.
  • Nickel plating solution containing 0.23 mol / L nickel sulfate, 0.92 mol / L dimethylamine borane, 0.5 mol / L sodium citrate and 0.01 mol / L sodium tungstate (pH 8. 5) was prepared.
  • a suspension was obtained by adding the resin particles to which palladium obtained in 1000 mL of pure water was adhered and dispersing with an ultrasonic disperser. While stirring the obtained suspension at 60 ° C., the nickel plating solution was gradually added dropwise to the suspension to perform electroless nickel plating. Thereafter, the suspension is filtered to remove the particles, washed with water, and dried to coat the resin particles with the first conductive layer having a thickness of 10 nm, which is a nickel-tungsten-boron layer. Particles with a conductive layer formed were obtained.
  • a nickel plating solution (pH 7.0) containing 0.23 mol / L of nickel sulfate, 0.92 mol / L of dimethylamine borane and 0.5 mol / L of sodium citrate was prepared.
  • the above nickel plating solution was gradually added dropwise to the suspension, and electroless nickel plating was performed to form a second conductive layer having a thickness of 90 nm. Thereafter, the suspension was filtered to take out the particles, washed with water, and dried to obtain conductive particles.
  • the obtained conductive particles had protrusions on the outer surface of the second conductive layer, and the core substance was disposed inside the protrusions of the second conductive layer.
  • the 1st conductive layer was arrange
  • Example 16 Conductive particles were obtained in the same manner as in Example 15 except that the thickness of the first conductive layer, which was a nickel-tungsten-boron layer, was changed to 5.1 nm.
  • Example 17 Conductive particles were obtained in the same manner as in Example 15 except that the thickness of the first conductive layer, which was a nickel-tungsten-boron layer, was changed to 20 nm.
  • Example 18 Conductive particles were obtained in the same manner as in Example 15 except that the barium titanate (BaTiO 3 ) particle slurry (average particle size 100 nm) was changed to alumina (Al 2 O 3 ) particle slurry (average particle size 100 nm). It was.
  • Example 19 Conductive particles were obtained in the same manner as in Example 16 except that the barium titanate (BaTiO 3 ) particle slurry (average particle size 100 nm) was changed to alumina (Al 2 O 3 ) particle slurry (average particle size 100 nm). It was.
  • Example 20 Conductive particles were obtained in the same manner as in Example 17 except that the barium titanate (BaTiO 3 ) particle slurry (average particle size 100 nm) was changed to alumina (Al 2 O 3 ) particle slurry (average particle size 100 nm). It was.
  • Example 21 Conductive particles were obtained in the same manner as in Example 15 except that sodium tungstate 0.01 mol / L was added to the nickel plating solution for forming the second conductive layer.
  • Example 22 A 10% by weight aqueous dispersion of the insulating particles obtained in Example 9 was prepared. 10 g of the conductive particles obtained in Example 15 were dispersed in 500 mL of ion-exchanged water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtration through a 3 ⁇ m mesh filter, the particles were further washed with methanol and dried to obtain conductive particles having insulating particles attached thereto.
  • Divinylbenzene resin particles (“Micropearl SP-205” manufactured by Sekisui Chemical Co., Ltd.) having a particle diameter of 5.0 ⁇ m were prepared. Moreover, barium titanate (BaTiO 3 ) particle slurry (average particle diameter: 100 nm) was prepared. Using resin particles and metal particle slurry, the surface of the resin particles was coated with a core substance to obtain a suspension.
  • a nickel plating solution (pH 8.5) containing 0.23 mol / L of nickel sulfate, 0.92 mol / L of dimethylamine borane, 0.5 mol / L of sodium citrate and 0.01 mol / L of sodium tungstate was prepared.
  • the nickel plating solution was gradually added dropwise to the suspension, and electroless nickel plating was performed to form a conductive layer having a thickness of 100 nm. Thereafter, the suspension was filtered to take out the particles, washed with water, and dried to obtain conductive particles. In the obtained conductive particles, the core substance and the base material particles were in contact.
  • Example 6 Conductive particles were obtained in the same manner as in Example 18 except that the thickness of the first conductive layer, which was a nickel-tungsten-boron layer, was changed to 1 nm.
  • Example 23 A 10% by weight aqueous dispersion of the insulating particles obtained in Example 9 was prepared. 10 g of the conductive particles obtained in Example 18 were dispersed in 500 mL of ion-exchanged water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtration through a 3 ⁇ m mesh filter, the particles were further washed with methanol and dried to obtain conductive particles having insulating particles attached thereto.
  • a thin film slice of conductive particles was prepared using a focused ion beam, and the cross section was observed with a scanning electron microscope. The operation was repeated 200 times, and image analysis was performed to obtain a three-dimensional image of the particles. From the stereoscopic image, the distance between the surface of the base particle and the surface of the core material was determined.
  • connection resistance Fabrication of connection structure 10 parts by weight of bisphenol A type epoxy resin (“Epicoat 1009” manufactured by Mitsubishi Chemical Corporation), 40 parts by weight of acrylic rubber (weight average molecular weight of about 800,000), 200 parts by weight of methyl ethyl ketone, and a microcapsule type curing agent (Asahi Kasei Chemicals) "HX3941HP” manufactured by HX3941) and 2 parts by weight of a silane coupling agent ("SH6040" manufactured by Toray Dow Corning Silicone Co., Ltd.) are mixed, and the conductive particles are added so that the content is 3% by weight.
  • a resin composition was obtained by dispersing.
  • the obtained resin composition was applied to a 50 ⁇ m-thick PET (polyethylene terephthalate) film whose one surface was release-treated, and dried with hot air at 70 ° C. for 5 minutes to produce an anisotropic conductive film.
  • the thickness of the obtained anisotropic conductive film was 12 ⁇ m.
  • the obtained anisotropic conductive film was cut into a size of 5 mm ⁇ 5 mm.
  • a two-layer flexible printed board (width 2 cm, length 1 cm) having the same aluminum electrode was aligned and aligned so that the electrodes overlapped.
  • the laminated body of the glass substrate and the two-layer flexible printed circuit board was thermocompression bonded under pressure bonding conditions of 10 N, 180 ° C., and 20 seconds to obtain a connection structure.
  • a two-layer flexible printed board in which an aluminum electrode is directly formed on a polyimide film was used.
  • connection resistance measurement The connection resistance between the opposing electrodes of the obtained connection structure was measured by the 4-terminal method. Further, the connection resistance was determined according to the following criteria.
  • connection resistance is 2.0 ⁇ or less ⁇ : Connection resistance exceeds 2.0 ⁇ , 3.0 ⁇ or less ⁇ : Connection resistance exceeds 3.0 ⁇ , 5.0 ⁇ or less ⁇ : Connection resistance exceeds 5.0 ⁇
  • connection resistance was dropped from a position of 70 cm in height, and the impact resistance was evaluated by confirming conduction. From the rate of increase in resistance value from the initial resistance value, impact resistance was determined according to the following criteria.
  • The average value of the number of impressions per electrode area 0.02 mm 2 is 20 or more.
  • The average value of the number of impressions per electrode area 0.02 mm 2 is 5 or more and less than 20.
  • Tables 1 to 3 show the Mohs hardness of the first and second conductive layers and the core material. In Tables 1 to 3 below, “-” indicates no evaluation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Powder Metallurgy (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Chemically Coating (AREA)

Abstract

Provided are conductive particles which are capable of reducing connection resistance between electrodes. Conductive particles (1) according to the present invention are each provided with: a base particle (2); a conductive layer (3) covering the base particle (2); and cores (4) of a substance embedded in the conductive layer (3). The conductive layer (3) has protrusions (3a) on the outside surface thereof. The cores (4) of a substance are disposed inside the protrusions (3a) on the conductive layer (3). Distances separate the surface of the base particle (2) from the surfaces of the cores (4) of a substance, the average distance therebetween being over 5nm.

Description

導電性粒子、導電材料及び接続構造体Conductive particles, conductive materials, and connection structures
 本発明は、基材粒子の表面上に導電層が配置されている導電性粒子に関し、より詳細には、例えば、電極間の電気的な接続に用いることができる導電性粒子に関する。また、本発明は、上記導電性粒子を用いた導電材料及び接続構造体に関する。 The present invention relates to conductive particles in which a conductive layer is disposed on the surface of base particles, and more particularly to conductive particles that can be used for electrical connection between electrodes, for example. The present invention also relates to a conductive material and a connection structure using the conductive particles.
 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。該異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。 Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known. In the anisotropic conductive material, conductive particles are dispersed in a binder resin.
 上記異方性導電材料は、ICチップとフレキシブルプリント回路基板との接続、及びICチップとITO電極を有する回路基板との接続等に用いられている。例えば、ICチップの電極と回路基板の電極との間に異方性導電材料を配置した後、加熱及び加圧することにより、これらの電極を電気的に接続できる。 The anisotropic conductive material is used for connection between an IC chip and a flexible printed circuit board, connection between an IC chip and a circuit board having an ITO electrode, and the like. For example, after disposing an anisotropic conductive material between the electrode of the IC chip and the electrode of the circuit board, these electrodes can be electrically connected by heating and pressing.
 上記導電性粒子の一例として、下記の特許文献1には、平均粒径1~20μmの球状の基材粒子の表面に、無電解めっき法によりニッケル導電層又はニッケル合金導電層が形成された導電性粒子が開示されている。この導電性粒子は、導電層の最表層に0.05~4μmの微小な突起を有する。該導電層と該突起とは実質的に連続的に連なっている。 As an example of the conductive particles, the following Patent Document 1 discloses a conductive material in which a nickel conductive layer or a nickel alloy conductive layer is formed on the surface of spherical base particles having an average particle diameter of 1 to 20 μm by an electroless plating method. Sex particles are disclosed. The conductive particles have minute protrusions of 0.05 to 4 μm on the outermost layer of the conductive layer. The conductive layer and the protrusion are substantially continuously connected.
 下記の特許文献2には、プラスチック核体と、該プラスチック核体を覆う高分子電解質層と、該高分子電解質層を介して上記プラスチック核体に吸着した金属粒子と、該金属粒子を覆うように上記プラスチック核体の周囲に形成された無電解金属めっき層とを備える導電性粒子が開示されている。 In Patent Document 2 below, a plastic core, a polymer electrolyte layer covering the plastic core, metal particles adsorbed on the plastic core through the polymer electrolyte layer, and the metal particles are covered. The electroconductive particle provided with the electroless metal plating layer formed in the circumference | surroundings of the said plastic core is disclosed.
 下記の特許文献3には、基材粒子の表面に、ニッケル及びリンを含有する金属めっき被膜層と金層との多層の導電層が形成されている導電性粒子が開示されている。該導電性粒子では、基材粒子の表面上に芯物質が配置されており、該芯物質は導電層により被覆されている。芯物質により導電層が隆起されており、導電層の表面に突起が形成されている。 The following Patent Document 3 discloses conductive particles in which a multilayer conductive layer of a metal plating film layer containing nickel and phosphorus and a gold layer is formed on the surface of a base material particle. In the conductive particles, a core substance is disposed on the surface of the base particle, and the core substance is covered with a conductive layer. The conductive layer is raised by the core material, and protrusions are formed on the surface of the conductive layer.
特開2000-243132号公報JP 2000-243132 A 特開2011-108446号公報JP 2011-108446 A 特開2006-228475号公報JP 2006-228475 A
 上述した特許文献1~3には、導電層の外側の表面に突起を有する導電性粒子が開示されている。導電性粒子により接続される電極、及び導電性粒子の導電層の表面には、酸化被膜が形成されていることが多い。上記導電層の突起は、導電性粒子を介して電極間を圧着する際に、電極及び導電性粒子の表面の酸化被膜を排除して、導電層と電極とを接触させるために形成されている。 Patent Documents 1 to 3 described above disclose conductive particles having protrusions on the outer surface of the conductive layer. In many cases, an oxide film is formed on the surfaces of the electrodes connected by the conductive particles and the conductive layer of the conductive particles. The protrusion of the conductive layer is formed so as to contact the conductive layer and the electrode by eliminating the oxide film on the surface of the electrode and the conductive particle when the electrodes are pressure-bonded via the conductive particle. .
 しかしながら、導電層の外側の表面に突起を有する従来の導電性粒子を用いて電極間を接続した場合には、電極及び導電性粒子の表面の酸化被膜を十分に排除できず、接続抵抗が高くなることがある。 However, when the electrodes are connected using conventional conductive particles having protrusions on the outer surface of the conductive layer, the oxide film on the surfaces of the electrodes and the conductive particles cannot be sufficiently eliminated, and the connection resistance is high. May be.
 本発明の目的は、電極間を接続して接続構造体を得た場合に、電極間の接続抵抗を低くすることができる導電性粒子、並びに該導電性粒子を用いた導電材料及び接続構造体を提供することである。 An object of the present invention is to provide conductive particles capable of reducing the connection resistance between electrodes when a connection structure is obtained by connecting electrodes, and a conductive material and connection structure using the conductive particles. Is to provide.
 本発明の広い局面によれば、基材粒子と、該基材粒子を被覆している導電層と、該導電層内に埋め込まれている複数の芯物質とを備え、上記導電層が外側の表面に複数の突起を有し、上記導電層の上記突起の内側に上記芯物質が配置されており、上記基材粒子と上記芯物質との間に上記導電層が配置されており、上記基材粒子の表面と上記芯物質の表面とが距離を隔てており、上記基材粒子の表面と上記芯物質の表面との間の平均距離が5nmを超える、導電性粒子が提供される。 According to a wide aspect of the present invention, the method includes a base particle, a conductive layer covering the base particle, and a plurality of core substances embedded in the conductive layer, wherein the conductive layer is outside. A plurality of protrusions on the surface, the core substance is disposed inside the protrusions of the conductive layer, the conductive layer is disposed between the base material particles and the core substance, and the base Conductive particles are provided in which the surface of the material particles and the surface of the core substance are separated from each other, and the average distance between the surface of the base material particles and the surface of the core substance exceeds 5 nm.
 本発明に係る導電性粒子のある特定の局面では、上記基材粒子の表面と上記芯物質の表面との間の平均距離が、5nmを超えかつ800nm以下である。 In a specific aspect of the conductive particle according to the present invention, an average distance between the surface of the base material particle and the surface of the core substance is more than 5 nm and 800 nm or less.
 本発明に係る導電性粒子のある特定の局面では、上記芯物質の全個数100%中、上記基材粒子の表面と上記芯物質の表面との間の距離が5nmを超える芯物質の個数の割合が、80%を超えかつ100%以下である。 In a specific aspect of the conductive particles according to the present invention, the total number of the core materials is 100%, and the distance between the surface of the base material particles and the surface of the core material is more than 5 nm. The ratio is more than 80% and not more than 100%.
 本発明に係る導電性粒子のある特定の局面では、上記芯物質に最も多く含まれる金属元素と上記導電層に最も多く含まれる金属元素とが同じである。 In a specific aspect of the conductive particle according to the present invention, the metal element contained most in the core material and the metal element contained most in the conductive layer are the same.
 本発明に係る導電性粒子の他の特定の局面では、上記導電層は、上記基材粒子を被覆している第1の導電層と、上記第1の導電層及び上記芯物質を被覆している第2の導電層とを備え、上記芯物質は、上記第1の導電層の表面上に配置されており、かつ上記第2の導電層内に埋め込まれており、上記第2の導電層が外側の表面に複数の突起を有し、上記第2の導電層の上記突起の内側に上記芯物質が配置されており、上記基材粒子と上記芯物質との間に、上記第1の導電層が配置されている。 In another specific aspect of the conductive particle according to the present invention, the conductive layer covers the first conductive layer covering the base particle, the first conductive layer, and the core substance. The core material is disposed on the surface of the first conductive layer and embedded in the second conductive layer, and the second conductive layer. Has a plurality of protrusions on the outer surface, the core substance is disposed inside the protrusions of the second conductive layer, and the first substance is interposed between the base particle and the core substance. A conductive layer is disposed.
 本発明に係る導電性粒子の別の特定の局面では、上記芯物質に最も多く含まれる金属元素と上記第2の導電層に最も多く含まれる金属元素とが同じである。 In another specific aspect of the conductive particle according to the present invention, the metal element contained most in the core material and the metal element contained most in the second conductive layer are the same.
 本発明に係る導電性粒子のさらに別の特定の局面では、上記導電層は単層の導電層である。 In yet another specific aspect of the conductive particles according to the present invention, the conductive layer is a single conductive layer.
 本発明に係る導電性粒子の他の特定の局面では、上記芯物質が金属粒子である。 In another specific aspect of the conductive particle according to the present invention, the core substance is a metal particle.
 本発明に係る導電性粒子の他の特定の局面では、上記導電層の表面に付着している絶縁物質がさらに備えられる。 In another specific aspect of the conductive particle according to the present invention, an insulating material attached to the surface of the conductive layer is further provided.
 本発明に係る導電材料は、上述した導電性粒子と、バインダー樹脂とを含む。 The conductive material according to the present invention includes the above-described conductive particles and a binder resin.
 本発明に係る接続構造体は、第1の接続対象部材と、第2の接続対象部材と、該第1,第2の接続対象部材を接続している接続部とを備えており、該接続部が、上述した導電性粒子により形成されているか、又は該導電性粒子とバインダー樹脂とを含む導電材料により形成されている。 The connection structure according to the present invention includes a first connection target member, a second connection target member, and a connection portion connecting the first and second connection target members, and the connection The part is formed of the above-described conductive particles, or is formed of a conductive material containing the conductive particles and a binder resin.
 本発明に係る導電性粒子は、基材粒子と、該基材粒子を被覆している導電層と、該導電層内に埋め込まれている複数の芯物質とを備えており、上記導電層が外側の表面に突起を有し、上記導電層の上記突起の内側に上記芯物質が配置されており、上記基材粒子と上記芯物質との間に上記導電層が配置されており、上記基材粒子の表面と上記芯物質の表面とが距離を隔てており、上記基材粒子の表面と上記芯物質の表面との間の平均距離が5nmを超えるので、本発明に係る導電性粒子を電極間の接続に用いた場合に、電極間の接続抵抗を低くすることができる。 The conductive particle according to the present invention includes a base particle, a conductive layer covering the base particle, and a plurality of core substances embedded in the conductive layer. Protrusions on the outer surface, the core substance is disposed inside the protrusions of the conductive layer, the conductive layer is disposed between the substrate particles and the core substance, and the base The surface of the material particles and the surface of the core substance are separated from each other, and the average distance between the surface of the base material particles and the surface of the core substance exceeds 5 nm. When used for connection between electrodes, the connection resistance between the electrodes can be lowered.
図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。FIG. 3 is a cross-sectional view showing conductive particles according to the third embodiment of the present invention. 図4は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に示す正面断面図である。FIG. 4 is a front cross-sectional view schematically showing a connection structure using conductive particles according to the first embodiment of the present invention.
 以下、本発明の詳細を説明する。 Hereinafter, the details of the present invention will be described.
 本発明に係る導電性粒子は、基材粒子と、該基材粒子を被覆している導電層と、該導電層内に埋め込まれている複数の芯物質とを備える。上記導電層は外側の表面に、複数の突起を有する。上記導電層の上記突起の内側に、上記芯物質が配置されている。上記基材粒子と上記芯物質との間に、上記導電層が配置されている。上記導電層の一部の領域が、上記基材粒子と上記芯物質との間に配置されている。上記基材粒子の表面と上記芯物質の表面とが距離を隔てている。上記基材粒子の表面と上記芯物質の表面との間の平均距離は5nmを超える。 The conductive particles according to the present invention include base particles, a conductive layer covering the base particles, and a plurality of core substances embedded in the conductive layer. The conductive layer has a plurality of protrusions on the outer surface. The core substance is disposed inside the protrusion of the conductive layer. The conductive layer is disposed between the base particle and the core substance. A partial region of the conductive layer is disposed between the base particle and the core substance. The surface of the base particle and the surface of the core substance are separated from each other. The average distance between the surface of the substrate particle and the surface of the core substance is more than 5 nm.
 導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。さらに、上記導電層の外側の表面には、酸化被膜が形成されていることが多い。上記導電層が外側の表面に複数の突起を有することにより、電極間に導電性粒子を配置した後、圧着させることにより、突起により酸化被膜が排除される。このため、電極と導電性粒子とを接触させることができ、電極間の接続抵抗を低くすることができる。 An oxide film is often formed on the surface of the electrode connected by the conductive particles. Furthermore, an oxide film is often formed on the outer surface of the conductive layer. When the conductive layer has a plurality of protrusions on the outer surface, the oxide film is eliminated by the protrusions by placing the conductive particles between the electrodes and then pressing them. For this reason, an electrode and electroconductive particle can be made to contact and the connection resistance between electrodes can be made low.
 さらに、本発明に係る導電性粒子では、上記基材粒子と上記芯物質との間に上記導電層が配置されており、上記基材粒子の表面と上記芯物質の表面とが距離を隔てており、上記基材粒子の表面と上記芯物質の表面との間の平均距離が5nmを超えるので、電極間で導電性粒子を圧縮したときに、芯物質が基材粒子を押し込み難く、芯物質の一部の領域が基材粒子内にめり込みにくい。特に、基材粒子が比較的柔らかい樹脂粒子であっても、芯物質が基材粒子を押し込み難く、芯物質の一部の領域が基材粒子内にめり込みにくい。このため、電極間の圧着時に、導電層の突起が電極に強く押し付けられる。この結果、突起により酸化被膜が効果的に排除される。このため、電極と導電性粒子とを効果的に接触させることができ、電極間の接続抵抗を効果的に低くすることができる。 Furthermore, in the conductive particles according to the present invention, the conductive layer is disposed between the base particle and the core substance, and the surface of the base particle and the surface of the core substance are spaced apart from each other. In addition, since the average distance between the surface of the base material particle and the surface of the core material exceeds 5 nm, the core material is difficult to push the base material particle when the conductive particles are compressed between the electrodes. A part of the region is difficult to sink into the base particle. In particular, even if the base particles are relatively soft resin particles, the core substance is difficult to push the base particles, and a part of the core substance is difficult to sink into the base particles. For this reason, the protrusions of the conductive layer are strongly pressed against the electrodes during pressure bonding between the electrodes. As a result, the oxide film is effectively eliminated by the protrusions. For this reason, an electrode and electroconductive particle can be made to contact effectively and the connection resistance between electrodes can be made low effectively.
 また、本発明に係る導電性粒子では、上述の構成が備えられているので、導電性粒子を圧縮して電極間を接続したとき、電極に適度な圧痕を形成することも可能である。なお、電極に形成される圧痕は、導電性粒子が電極を押してできた電極の凹部である。さらに、導電性粒子をバインダー樹脂中に分散させた導電材料(異方性導電材料など)を電極間の圧着に用いた場合には、導電層と電極との間のバインダー樹脂を効果的に排除できる。バインダー樹脂を効果的に排除することによっても、電極間の接続抵抗を低くすることができる。さらに、絶縁物質を備える導電性粒子を用いた場合には、上記突起によって、導電層と電極との間の絶縁物質も効果的に排除できるので、電極間の導通信頼性を効果的に高めることができる。 In addition, since the conductive particles according to the present invention have the above-described configuration, when the conductive particles are compressed to connect the electrodes, it is possible to form an appropriate indentation on the electrodes. The indentation formed on the electrode is a concave portion of the electrode formed by pressing the electrode with conductive particles. Furthermore, when a conductive material (such as anisotropic conductive material) in which conductive particles are dispersed in a binder resin is used for pressure bonding between electrodes, the binder resin between the conductive layer and the electrode is effectively eliminated. it can. The connection resistance between the electrodes can also be lowered by effectively eliminating the binder resin. In addition, when conductive particles including an insulating material are used, the insulating material between the conductive layer and the electrode can be effectively eliminated by the protrusions, so that the conduction reliability between the electrodes is effectively increased. Can do.
 電極及び導電性粒子の表面の酸化被膜をより一層効果的に排除し、電極間の導通信頼性をより一層高める観点からは、上記基材粒子の表面と上記芯物質の表面との間の平均距離は好ましくは5nm以上、より好ましくは10nm以上である。上記基材粒子の表面と上記芯物質の表面との間の平均距離の上限は特に限定されず、導電層の厚みなどを考慮して適宜決定される。上記基材粒子の表面と上記芯物質の表面との間の平均距離は800nm以下であってもよく、100nm以下であってもよい。上記基材粒子の表面と上記芯物質の表面との間の平均距離は、好ましくは30nm以下、より好ましくは20nm以下である。上記基材粒子の表面と上記芯物質の表面との間の平均距離は、導電層の厚みの9/10以下であってもよく、1/2以下であってもよく、1/3以下であってもよい。 From the viewpoint of further effectively eliminating the oxide film on the surface of the electrode and the conductive particles and further improving the conduction reliability between the electrodes, the average between the surface of the base particle and the surface of the core substance The distance is preferably 5 nm or more, more preferably 10 nm or more. The upper limit of the average distance between the surface of the substrate particle and the surface of the core substance is not particularly limited, and is appropriately determined in consideration of the thickness of the conductive layer. The average distance between the surface of the base material particle and the surface of the core substance may be 800 nm or less, or 100 nm or less. The average distance between the surface of the base material particle and the surface of the core substance is preferably 30 nm or less, more preferably 20 nm or less. The average distance between the surface of the base material particle and the surface of the core substance may be 9/10 or less, 1/2 or less, or 1/3 or less of the thickness of the conductive layer. There may be.
 電極及び導電性粒子の表面の酸化被膜をより一層効果的に排除し、電極間の導通信頼性をより一層高める観点からは、上記芯物質の全個数100%中、上記基材粒子の表面と上記芯物質の表面との間の距離が5nmを超える芯物質の個数の割合は、好ましくは50%以上、より好ましくは80%を超え、100%以下である。上記芯物質の全てにおいて、上記基材粒子の表面と上記芯物質の表面との間の距離が5nmを超えていてもよい。 From the viewpoint of more effectively eliminating the oxide film on the surface of the electrode and the conductive particles and further improving the conduction reliability between the electrodes, the surface of the base particle in the total number of 100% of the core substance The ratio of the number of core materials whose distance from the surface of the core material exceeds 5 nm is preferably 50% or more, more preferably more than 80% and 100% or less. In all of the core materials, the distance between the surface of the base particle and the surface of the core material may exceed 5 nm.
 上記基材粒子の表面と上記芯物質の表面との間の平均距離とは、基材粒子の表面と複数の芯物質の各表面との距離(隙間の最短距離)をそれぞれ測定した後、測定された値を平均することにより算出される。導電性粒子が導電層内に埋め込まれた5つの芯物質A~Eを備える場合には、基材粒子の表面と芯物質Aの表面との距離と、基材粒子の表面と芯物質Bの表面との距離と、基材粒子の表面と芯物質Cの表面との距離と、基材粒子の表面と芯物質Dの表面との距離と、基材粒子の表面と芯物質Eの表面との距離とを測定し、測定された5つの値を平均することにより算出される。なお、芯物質が10個以上する場合には、基材粒子の表面と全ての芯物質の各表面との距離を測定することが好ましいが、基材粒子の表面と任意に選択された10個の芯物質の各表面との距離を測定し、測定された10個の値から上記平均距離を算出してもよい。 The average distance between the surface of the base particle and the surface of the core substance is measured after measuring the distance (the shortest distance between the gaps) between the surface of the base particle and each surface of the plurality of core substances. It is calculated by averaging the obtained values. When the conductive particles include five core materials A to E embedded in the conductive layer, the distance between the surface of the base material particle and the surface of the core material A, the surface of the base material particle and the core material B The distance between the surface, the distance between the surface of the base material particle and the surface of the core material C, the distance between the surface of the base material particle and the surface of the core material D, the surface of the base material particle and the surface of the core material E Is calculated by averaging the five measured values. In addition, when the number of core materials is 10 or more, it is preferable to measure the distance between the surface of the base material particles and each surface of all the core materials. The distance from each surface of the core material may be measured, and the average distance may be calculated from the 10 measured values.
 上記基材粒子の表面と上記芯物質の表面との間の距離は、導電性粒子の複数箇所の断面を撮影して画像を得て、得られた画像から立体画像を作成し、得られた立体画像を用いることで、正確に測定することができる。上記断面の撮影は、集光イオンビーム-走査電子顕微鏡(FIBSEM)等を用いて行うことができる。例えば、集束イオンビームを用いて、導電性粒子の薄膜切片を作製し、走査型電子顕微鏡にて断面を観察する。その操作を数百回繰り返し、画像解析することで粒子の立体画像を得ることができる。 The distance between the surface of the base material particle and the surface of the core substance was obtained by photographing a plurality of cross-sections of the conductive particles to obtain an image, and creating a stereoscopic image from the obtained image. By using a stereoscopic image, it can be measured accurately. The section can be imaged using a focused ion beam-scanning electron microscope (FIBSEM) or the like. For example, a thin film slice of conductive particles is prepared using a focused ion beam, and the cross section is observed with a scanning electron microscope. A three-dimensional image of the particles can be obtained by repeating the operation several hundred times and analyzing the image.
 上記導電層は外側の表面に突起を有する。該突起は複数である。導電層の表面並びに導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。導電層の外側の表面に突起を有する導電性粒子を用いることで、電極間に導電性粒子を配置して圧着させることにより、突起により上記酸化被膜が効果的に排除される。このため、電極と導電性粒子の導電層とをより一層確実に接触させることができ、電極間の接続抵抗を低くすることができる。さらに、導電性粒子が表面に絶縁物質を備える場合に、又は導電性粒子がバインダー樹脂中に分散されて導電材料として用いられる場合に、導電性粒子の突起によって、導電性粒子と電極との間の絶縁物質又はバインダー樹脂を効果的に排除できる。このため、電極間の導通信頼性を高めることができる。 The conductive layer has protrusions on the outer surface. There are a plurality of protrusions. An oxide film is often formed on the surface of the conductive layer and the surface of the electrode connected by the conductive particles. By using conductive particles having protrusions on the outer surface of the conductive layer, the oxide particles are effectively eliminated by the protrusions by placing the conductive particles between the electrodes and pressing them. For this reason, an electrode and the conductive layer of electroconductive particle can be contacted still more reliably, and the connection resistance between electrodes can be made low. Furthermore, when the conductive particles are provided with an insulating material on the surface, or when the conductive particles are dispersed in a binder resin and used as a conductive material, the protrusions of the conductive particles cause a gap between the conductive particles and the electrode. Insulating substances or binder resins can be effectively eliminated. For this reason, the conduction | electrical_connection reliability between electrodes can be improved.
 複数の上記突起の平均高さは、好ましくは0.001μm以上、より好ましくは0.05μm以上、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記突起の平均高さが上記下限以上及び上記上限以下であると、電極間の接続抵抗を効果的に低くすることができる。 The average height of the plurality of protrusions is preferably 0.001 μm or more, more preferably 0.05 μm or more, preferably 0.9 μm or less, more preferably 0.2 μm or less. When the average height of the protrusions is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be effectively lowered.
 以下、導電性粒子、導電材料及び接続構造体の詳細を説明する。 Hereinafter, details of the conductive particles, the conductive material, and the connection structure will be described.
 (導電性粒子)
 図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。
(Conductive particles)
FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
 図1に示す導電性粒子1は、基材粒子2と、導電層3と、複数の芯物質4と、絶縁物質5とを備える。導電層3は、基材粒子2の表面上に配置されている。導電性粒子1では、単層の導電層3が形成されている。導電層3は、基材粒子2を被覆している。導電層3は、外側の表面に複数の突起3aを有する。複数の芯物質4は、基材粒子2の表面上に配置されており、導電層3内に埋め込まれている。芯物質4は、突起3aの内側に配置されている。1つの突起3aの内側に1つの芯物質4が配置されている。複数の芯物質4により導電層3の外側の表面が隆起されており、複数の突起3aが形成されている。 1 includes a base particle 2, a conductive layer 3, a plurality of core materials 4, and an insulating material 5. The conductive particles 1 shown in FIG. The conductive layer 3 is disposed on the surface of the base particle 2. In the conductive particles 1, a single conductive layer 3 is formed. The conductive layer 3 covers the base particle 2. The conductive layer 3 has a plurality of protrusions 3a on the outer surface. The plurality of core substances 4 are arranged on the surface of the base particle 2 and are embedded in the conductive layer 3. The core substance 4 is disposed inside the protrusion 3a. One core material 4 is arranged inside one protrusion 3a. The outer surface of the conductive layer 3 is raised by the plurality of core materials 4, and a plurality of protrusions 3 a are formed.
 基材粒子2の表面と芯物質4の表面との間に、導電層3が配置されている。基材粒子2の表面と芯物質4の表面とが距離を隔てている。芯物質4は基材粒子2に接触していない。導電性粒子1では、基材粒子2の表面と芯物質4の表面との間の平均距離は5nmを超える。このため、基材粒子2の表面と芯物質4の表面との間には、十分な厚みの導電層3部分(導電層部分3b)が配置されている。基材粒子2の表面と芯物質4の表面との間の距離は、基材粒子2の表面と芯物質4の表面との間に配置されている導電層部分3bの厚みである。 The conductive layer 3 is disposed between the surface of the base particle 2 and the surface of the core substance 4. The surface of the base particle 2 and the surface of the core material 4 are separated from each other. The core substance 4 is not in contact with the base particle 2. In the electroconductive particle 1, the average distance between the surface of the base material particle 2 and the surface of the core substance 4 exceeds 5 nm. For this reason, between the surface of the base material particle 2 and the surface of the core substance 4, the conductive layer 3 part (conductive layer part 3b) of sufficient thickness is arrange | positioned. The distance between the surface of the base material particle 2 and the surface of the core material 4 is the thickness of the conductive layer portion 3 b disposed between the surface of the base material particle 2 and the surface of the core material 4.
 絶縁物質5は、導電層3の表面上に配置されている。絶縁物質5は絶縁性粒子である。絶縁物質5は、絶縁性を有する材料により形成されている。導電性粒子は絶縁物質を、必ずしも備えていなくてもよい。また、導電性粒子は、絶縁物質として、絶縁性粒子にかえて導電層の外側の表面を被覆している絶縁層を備えていてもよい。 The insulating material 5 is disposed on the surface of the conductive layer 3. The insulating material 5 is an insulating particle. The insulating substance 5 is made of an insulating material. The conductive particles do not necessarily include an insulating substance. In addition, the conductive particles may include an insulating layer that covers the outer surface of the conductive layer instead of the insulating particles as an insulating substance.
 図2に、本発明の第2の実施形態に係る導電性粒子を断面図で示す。 FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention.
 図2に示す導電性粒子11は、基材粒子2と、導電層12と、複数の芯物質4と、絶縁物質5とを備える。導電層12は、基材粒子2の表面上に配置されている。導電層12は、基材粒子2を被覆している。導電層12は外側の表面に、複数の突起12aを有する。 2 includes a base particle 2, a conductive layer 12, a plurality of core substances 4, and an insulating substance 5. The conductive particles 11 shown in FIG. The conductive layer 12 is disposed on the surface of the base particle 2. The conductive layer 12 covers the base particle 2. The conductive layer 12 has a plurality of protrusions 12a on the outer surface.
 導電性粒子11では、多層の導電層12が形成されている。導電層12は、第1の導電層16と第2の導電層17とを有する。第1の導電層16は、基材粒子2の表面上に配置されている。第1の導電層16は、基材粒子2を被覆している。第1の導電層16は単層である。第1の導電層は多層であってもよい。 In the conductive particles 11, a multilayer conductive layer 12 is formed. The conductive layer 12 includes a first conductive layer 16 and a second conductive layer 17. The first conductive layer 16 is disposed on the surface of the base particle 2. The first conductive layer 16 covers the base particle 2. The first conductive layer 16 is a single layer. The first conductive layer may be a multilayer.
 芯物質4は、第1の導電層16上に配置されている。芯物質4は、導電層12及び第2の導電層17内に埋め込まれている。基材粒子2と芯物質4との間に第1の導電層16が配置されている。基材粒子2と芯物質4との間に第1の導電層16が配置されていることによって、基材粒子2の表面と芯物質4の表面とが距離を隔てている。基材粒子2の表面と芯物質4の表面との間の平均距離は5nmを超える。導電性粒子11では、基材粒子2の表面と芯物質4の表面との間の距離は、基材粒子2の表面と芯物質4の表面との間に配置されている導電層部分12b及び第1の導電層16(第1の導電層16部分)の厚みである。 The core material 4 is disposed on the first conductive layer 16. The core material 4 is embedded in the conductive layer 12 and the second conductive layer 17. A first conductive layer 16 is disposed between the base particle 2 and the core substance 4. By disposing the first conductive layer 16 between the base material particle 2 and the core material 4, the surface of the base material particle 2 and the surface of the core material 4 are separated from each other. The average distance between the surface of the base particle 2 and the surface of the core material 4 exceeds 5 nm. In the conductive particle 11, the distance between the surface of the base material particle 2 and the surface of the core material 4 is such that the conductive layer portion 12 b disposed between the surface of the base material particle 2 and the surface of the core material 4 and It is the thickness of the 1st conductive layer 16 (1st conductive layer 16 part).
 第2の導電層17は、第1の導電層16とは別に形成されている。第2の導電層17は、第1の導電層16を形成した後に、第1の導電層16の表面に形成されている。第2の導電層17は、第1の導電層16の表面上に配置されている。第2の導電層17は、芯物質4及び第1の導電層16を被覆している。第2の導電層17は外側の表面に、複数の突起17aを有する。複数の芯物質4は、第2の導電層17内に埋め込まれている。芯物質4は、突起17aの内側に配置されている。複数の芯物質4により第2の導電層17の外側の表面が隆起されており、突起17aが形成されている。 The second conductive layer 17 is formed separately from the first conductive layer 16. The second conductive layer 17 is formed on the surface of the first conductive layer 16 after the first conductive layer 16 is formed. The second conductive layer 17 is disposed on the surface of the first conductive layer 16. The second conductive layer 17 covers the core material 4 and the first conductive layer 16. The second conductive layer 17 has a plurality of protrusions 17a on the outer surface. The plurality of core materials 4 are embedded in the second conductive layer 17. The core substance 4 is disposed inside the protrusion 17a. The outer surface of the second conductive layer 17 is raised by the plurality of core materials 4 to form protrusions 17a.
 図3に、本発明の第3の実施形態に係る導電性粒子を断面図で示す。 FIG. 3 is a cross-sectional view showing conductive particles according to the third embodiment of the present invention.
 図3に示す導電性粒子21は、基材粒子2と、導電層22と、複数の芯物質4と、絶縁物質5とを備える。導電層22は、基材粒子2の表面上に配置されている。導電層22は、基材粒子2を被覆している。導電層22は外側の表面に、複数の突起22aを有する。 3 includes a base particle 2, a conductive layer 22, a plurality of core materials 4, and an insulating material 5. The conductive particles 21 shown in FIG. The conductive layer 22 is disposed on the surface of the base particle 2. The conductive layer 22 covers the base particle 2. The conductive layer 22 has a plurality of protrusions 22a on the outer surface.
 導電性粒子21では、多層の導電層22が形成されている。導電層22は、第1の導電層26と第2の導電層27と第3の導電層28とを有する。第1の導電層26は、基材粒子2の表面上に配置されている。第1の導電層26は、基材粒子2を被覆している。 In the conductive particles 21, a multilayer conductive layer 22 is formed. The conductive layer 22 includes a first conductive layer 26, a second conductive layer 27, and a third conductive layer 28. The first conductive layer 26 is disposed on the surface of the base particle 2. The first conductive layer 26 covers the base particle 2.
 芯物質4は、第1の導電層26上に配置されている。芯物質4は、導電層22内及び第2の導電層27内に埋め込まれている。基材粒子2と芯物質4との間に第1の導電層26が配置されている。基材粒子2と芯物質4との間に第1の導電層26が配置されていることによって、基材粒子2の表面と芯物質4の表面とが距離を隔てている。基材粒子2の表面と芯物質4の表面との間の平均距離が5nmを超える。導電性粒子21では、基材粒子2の表面と芯物質4の表面との間の距離は、基材粒子2の表面と芯物質4の表面との間に配置されている導電層部分22b及び第1の導電層26部分の厚みである。 The core material 4 is disposed on the first conductive layer 26. The core material 4 is embedded in the conductive layer 22 and the second conductive layer 27. A first conductive layer 26 is disposed between the base particle 2 and the core substance 4. By disposing the first conductive layer 26 between the base material particle 2 and the core material 4, the surface of the base material particle 2 and the surface of the core material 4 are separated from each other. The average distance between the surface of the base particle 2 and the surface of the core substance 4 exceeds 5 nm. In the conductive particle 21, the distance between the surface of the base material particle 2 and the surface of the core material 4 is such that the conductive layer portion 22 b disposed between the surface of the base material particle 2 and the surface of the core material 4 and This is the thickness of the first conductive layer 26 portion.
 第2の導電層27は、第1の導電層26の表面上に配置されている。第2の導電層27は、芯物質4及び第1の導電層26を被覆している。第2の導電層27は、外側の表面に複数の突起27aを有する。芯物質4は、突起27aの内側に配置されている。複数の芯物質4により第2の導電層27の外側の表面が隆起されており、突起27aが形成されている。 The second conductive layer 27 is disposed on the surface of the first conductive layer 26. The second conductive layer 27 covers the core material 4 and the first conductive layer 26. The second conductive layer 27 has a plurality of protrusions 27a on the outer surface. The core substance 4 is disposed inside the protrusion 27a. The outer surface of the second conductive layer 27 is raised by the plurality of core materials 4, and protrusions 27 a are formed.
 第3の導電層28は、第2の導電層27の表面上に配置されている。第3の導電層28は、第2の導電層27を被覆している。第3の導電層28は、外側の表面に複数の突起28aを有する。芯物質4は、突起28aの内側に配置されている。複数の芯物質4により第3の導電層28の外側の表面が隆起されており、突起28aが形成されている。 The third conductive layer 28 is disposed on the surface of the second conductive layer 27. The third conductive layer 28 covers the second conductive layer 27. The third conductive layer 28 has a plurality of protrusions 28a on the outer surface. The core substance 4 is disposed inside the protrusion 28a. The outer surface of the third conductive layer 28 is raised by the plurality of core materials 4 to form protrusions 28a.
 上記芯物質に最も多く含まれる金属元素と上記導電層に最も多く含まれる金属元素とが同じであることが好ましい。この場合には、芯物質と導電層との密着性が良好になる結果、接続構造体における接続抵抗がより一層良好になる。なお、上記芯物質に最も多く含まれる金属元素と上記導電層に最も多く含まれる金属元素とは、上記芯物質中で、上記導電層中で、又は上記芯物質と上記導電層中とで、濃度勾配があってもよい。また、上記芯物質に最も多く含まれる金属元素と上記導電層に最も多く含まれる金属元素は、他の金属と合金化していてもよい。また、上記芯物質に含まれる金属と上記導電層に含まれる金属とは界面で、合金化していてもよい。 It is preferable that the metal element contained most in the core material and the metal element contained most in the conductive layer are the same. In this case, as a result of good adhesion between the core substance and the conductive layer, the connection resistance in the connection structure is further improved. The metal element contained most in the core substance and the metal element contained most in the conductive layer are the core substance, the conductive layer, or the core substance and the conductive layer. There may be a concentration gradient. Moreover, the metal element contained most in the core substance and the metal element contained most in the conductive layer may be alloyed with other metals. The metal contained in the core material and the metal contained in the conductive layer may be alloyed at the interface.
 上記芯物質に最も多く含まれる金属元素と上記第1の導電層に最も多く含まれる金属元素とは同じであることが好ましい。この場合には、芯物質と導電層との密着性が良好になる結果、接続構造体における接続抵抗がより一層良好になる。なお、上記芯物質に最も多く含まれる金属元素と上記第1の導電層に最も多く含まれる金属元素とは、上記芯物質中で、上記第1の導電層中で、又は上記芯物質と上記第1の導電層中とで、濃度勾配があってもよい。上記第1の導電層に最も多く含まれる金属元素は、他の金属と合金化していてもよい。上記芯物質に含まれる金属と上記第1の導電層に含まれる金属とは界面で、合金化していてもよい。 It is preferable that the metal element contained most in the core material and the metal element contained most in the first conductive layer are the same. In this case, as a result of good adhesion between the core substance and the conductive layer, the connection resistance in the connection structure is further improved. The metal element contained most in the core material and the metal element contained most in the first conductive layer are the core material, the first conductive layer, or the core material and the above-described core material. There may be a concentration gradient in the first conductive layer. The metal element contained most in the first conductive layer may be alloyed with another metal. The metal contained in the core material and the metal contained in the first conductive layer may be alloyed at the interface.
 上記芯物質に最も多く含まれる金属元素と上記第2の導電層に最も多く含まれる金属元素とは同じであることが好ましい。この場合には、芯物質と導電層との密着性が良好になる結果、接続構造体における接続抵抗がより一層良好になる。なお、上記芯物質に最も多く含まれる金属元素と上記第2の導電層に最も多く含まれる金属元素とは、上記芯物質中で、上記第2の導電層中で、又は上記芯物質と上記第2の導電層中とで、濃度勾配があってもよい。上記第2の導電層に最も多く含まれる金属元素は、他の金属と合金化していてもよい。上記芯物質に含まれる金属と上記第2の導電層に含まれる金属とは界面で、合金化していてもよい。 It is preferable that the metal element contained most in the core material and the metal element contained most in the second conductive layer are the same. In this case, as a result of good adhesion between the core substance and the conductive layer, the connection resistance in the connection structure is further improved. The metal element contained most in the core material and the metal element contained most in the second conductive layer are the core material, the second conductive layer, or the core material and the above-described core material. There may be a concentration gradient in the second conductive layer. The metal element contained most in the second conductive layer may be alloyed with another metal. The metal contained in the core material and the metal contained in the second conductive layer may be alloyed at the interface.
 上記芯物質のモース硬度は、上記基材粒子と上記芯物質との間に配置されている導電層部分のモース硬度と同じか、又は、上記芯物質のモース硬度は、上記基材粒子と上記芯物質との間に配置されている導電層部分のモース硬度よりも大きいことが好ましい。また、上記芯物質のモース硬度は、上記第1の導電層のモース硬度と同じであるか、又は上記芯物質のモース硬度は、上記第1の導電層のモース硬度よりも大きいことが好ましい。こられの場合には、芯物質が基材粒子を押し込み難く、芯物質の一部の領域が基材粒子内にめり込みにくい。この結果、電極間の接続抵抗をより一層低くすることができる。電極間の接続抵抗をより一層低くする観点からは、上記芯物質のモース硬度は、上記基材粒子と上記芯物質との間に配置されている導電層部分又は上記第1の導電層のモース硬度よりも大きいことが好ましい。 The Mohs hardness of the core material is the same as the Mohs hardness of the conductive layer portion disposed between the base material particles and the core material, or the Mohs hardness of the core material is equal to the base material particles and the core material. It is preferable that it is larger than the Mohs hardness of the conductive layer part arrange | positioned between core materials. The Mohs hardness of the core material is preferably the same as the Mohs hardness of the first conductive layer, or the Mohs hardness of the core material is preferably larger than the Mohs hardness of the first conductive layer. In such a case, the core material is difficult to push the base material particles, and a part of the core material is difficult to sink into the base material particles. As a result, the connection resistance between the electrodes can be further reduced. From the viewpoint of further reducing the connection resistance between the electrodes, the Mohs hardness of the core substance is determined by the conductive layer portion disposed between the base material particles and the core substance or the Mohs of the first conductive layer. It is preferable that it is larger than the hardness.
 上記芯物質のモース硬度が、上記基材粒子と上記芯物質との間に配置されている導電層部分又は上記第1の導電層のモース硬度と同等以上である場合に、接続抵抗をより一層低くする観点からは、上記芯物質のモース硬度と上記基材粒子と上記芯物質との間に配置されている導電層部分又は上記第1の導電層のモース硬度との差の絶対値は、好ましくは0.1以上、より好ましくは0.5以上である。 When the Mohs hardness of the core material is equal to or higher than the Mohs hardness of the conductive layer portion or the first conductive layer disposed between the base material particles and the core material, the connection resistance is further increased. From the viewpoint of lowering, the absolute value of the difference between the Mohs hardness of the core material and the Mohs hardness of the conductive layer portion or the first conductive layer disposed between the base particle and the core material is: Preferably it is 0.1 or more, More preferably, it is 0.5 or more.
 上記芯物質のモース硬度は、上記基材粒子と上記芯物質との間に配置されている導電層部分のモース硬度よりも小さいことが好ましい。上記芯物質のモース硬度は、上記第1の導電層のモース硬度よりも小さいことが好ましい。これらの場合には、上記導電層部分及び上記第1の導電層がある程度のクッション性を有する。このことによって、基材粒子と芯物質との間に配置されている導電層部分又は第1の導電層による接続抵抗を低くすることができるだけでなく、導電性粒子により電極間を接続した接続構造体に衝撃が与えられても、導通不良が生じ難くなる。すなわち、接続構造体の耐衝撃性を高めることもできる。 The Mohs hardness of the core substance is preferably smaller than the Mohs hardness of the conductive layer portion disposed between the base material particles and the core substance. The Mohs hardness of the core material is preferably smaller than the Mohs hardness of the first conductive layer. In these cases, the conductive layer portion and the first conductive layer have some cushioning properties. By this, not only can the connection resistance due to the conductive layer portion or the first conductive layer disposed between the base particle and the core substance be lowered, but also the connection structure in which the electrodes are connected by the conductive particles. Even when an impact is applied to the body, poor conduction is less likely to occur. That is, the impact resistance of the connection structure can be increased.
 上記芯物質のモース硬度が、上記基材粒子と上記芯物質との間に配置されている導電層部分又は上記第1の導電層のモース硬度よりも小さい場合に、耐衝撃性をより一層高める観点からは、上記芯物質のモース硬度と上記基材粒子と上記芯物質との間に配置されている導電層部分又は上記第1の導電層のモース硬度との差の絶対値は、好ましくは0.1以上、より好ましくは0.5以上である。 When the Mohs hardness of the core material is smaller than the Mohs hardness of the conductive layer portion or the first conductive layer disposed between the base particle and the core material, the impact resistance is further enhanced. From the viewpoint, the absolute value of the difference between the Mohs hardness of the core material and the Mohs hardness of the conductive layer portion or the first conductive layer disposed between the base particle and the core material is preferably 0.1 or more, more preferably 0.5 or more.
 [基材粒子]
 上記基材粒子としては、樹脂粒子、金属を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、金属粒子を除く基材粒子であることが好ましく、樹脂粒子、金属を除く無機粒子又は有機無機ハイブリッド粒子であることがより好ましい。
[Base material particles]
Examples of the substrate particles include resin particles, inorganic particles excluding metals, organic-inorganic hybrid particles, and metal particles. The substrate particles are preferably substrate particles excluding metal particles, and more preferably resin particles, inorganic particles excluding metal, or organic-inorganic hybrid particles.
 上記基材粒子は、樹脂により形成された樹脂粒子であることが好ましい。上記基材粒子が樹脂粒子であると、本発明の導電層及び芯物質の構成により得られる接続抵抗の低減効果がかなり大きくなる。上記導電性粒子を用いて電極間を接続する際には、上記導電性粒子を電極間に配置した後、圧着することにより上記導電性粒子を圧縮させる。基材粒子が樹脂粒子であると、上記圧着の際に上記導電性粒子が変形しやすく、導電性粒子と電極との接触面積が大きくなる。このため、電極間の導通信頼性が高くなる。 The base material particles are preferably resin particles formed of a resin. When the substrate particles are resin particles, the effect of reducing the connection resistance obtained by the configuration of the conductive layer and the core substance of the present invention is considerably increased. When connecting between electrodes using the said electroconductive particle, after arrange | positioning the said electroconductive particle between electrodes, the said electroconductive particle is compressed by crimping | bonding. When the substrate particles are resin particles, the conductive particles are easily deformed during the pressure bonding, and the contact area between the conductive particles and the electrode is increased. For this reason, the conduction | electrical_connection reliability between electrodes becomes high.
 上記樹脂粒子を形成するための樹脂として、種々の有機物が好適に用いられる。上記樹脂粒子を形成するための樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリアルキレンテレフタレート、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、及び、エチレン性不飽和基を有する種々の重合性単量体を1種もしくは2種以上重合させて得られる重合体等が挙げられる。導電材料に適した任意の圧縮時の物性を有する樹脂粒子を設計及び合成することができ、かつ基材粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子を形成するための樹脂は、エチレン性不飽和基を複数有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 Various organic substances are suitably used as the resin for forming the resin particles. Examples of the resin for forming the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polypropylene, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate. Polyalkylene terephthalate, polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polysulfone , Polyphenylene oxide, polyacetal, polyimide, polyamideimide, poly Ether ketone, polyether sulfone, and polymers such as obtained by a variety of polymerizable monomer having an ethylenically unsaturated group is polymerized with one or more thereof. Resin for forming the resin particles can be designed and synthesized, and the hardness of the base particles can be easily controlled within a suitable range, which is suitable for conductive materials and having physical properties at the time of compression. Is preferably a polymer obtained by polymerizing one or more polymerizable monomers having a plurality of ethylenically unsaturated groups.
 上記樹脂粒子を、エチレン性不飽和基を有する単量体を重合させて得る場合、上記エチレン性不飽和基を有する単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。 When the resin particles are obtained by polymerizing a monomer having an ethylenically unsaturated group, the monomer having an ethylenically unsaturated group includes a non-crosslinkable monomer and a crosslinkable monomer. And so on.
 上記非架橋性の単量体としては、例えば、スチレン、α-メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート類;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル類;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル類;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。 Examples of the non-crosslinkable monomer include styrene monomers such as styrene and α-methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylates such as meth) acrylate and isobornyl (meth) acrylate; acids such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate and glycidyl (meth) acrylate Atom-containing (meth) acrylates; Nitrile-containing monomers such as (meth) acrylonitrile; Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and propyl vinyl ether; Vinyl acetates such as vinyl acetate, vinyl butyrate, vinyl laurate and vinyl stearate Esters; Unsaturated hydrocarbons such as ethylene, propylene, isoprene and butadiene; Halogen-containing monomers such as trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride and chlorostyrene Is mentioned.
 上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレンジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート類;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ-(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。 Examples of the crosslinkable monomer include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylates such as acrylate, (poly) tetramethylene di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) cyanurate, tri Lil trimellitate, divinyl benzene, diallyl phthalate, diallyl acrylamide, diallyl ether, .gamma. (meth) acryloxy propyl trimethoxy silane, trimethoxy silyl styrene, include silane-containing monomers such as vinyltrimethoxysilane.
 上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。 The resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.
 上記基材粒子が金属粒子を除く無機粒子又は有機無機ハイブリッド粒子である場合に、上記基材粒子を形成するための無機物としては、シリカ及びカーボンブラック等が挙げられる。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシル基を2つ以上持つケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。 When the substrate particles are inorganic particles or organic-inorganic hybrid particles excluding metal particles, examples of the inorganic material for forming the substrate particles include silica and carbon black. Although it does not specifically limit as the particle | grains formed with the said silica, For example, after hydrolyzing the silicon compound which has two or more hydrolysable alkoxysil groups, and forming a crosslinked polymer particle, it calcinates as needed. The particle | grains obtained by performing are mentioned. Examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
 上記基材粒子が金属粒子である場合に、該金属粒子を形成するための金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。但し、上記基材粒子は金属粒子ではないことが好ましい。 When the substrate particles are metal particles, examples of the metal for forming the metal particles include silver, copper, nickel, silicon, gold, and titanium. However, the substrate particles are preferably not metal particles.
 上記基材粒子の粒子径は、好ましくは0.1μm以上、より好ましくは0.5μm以上、より一層好ましくは1μm以上、更に好ましくは1.5μm以上、特に好ましくは2μm以上、好ましくは1000μm以下、より好ましくは500μm以下、より一層好ましくは300μm以下、更に好ましくは50μm以下、更に一層好ましくは30μm以下、特に好ましくは5μm以下、最も好ましくは3μm以下である。基材粒子の粒子径が上記下限以上であると、導電性粒子と電極との接触面積が大きくなるため、電極間の導通信頼性がより一層高くなり、導電性粒子を介して接続された電極間の接続抵抗がより一層低くなる。さらに、基材粒子の表面に導電層を無電解めっきにより形成する際に凝集し難くなり、凝集した導電性粒子が形成されにくくなる。粒子径が上記上限以下であると、導電性粒子が充分に圧縮されやすく、電極間の接続抵抗がより一層低くなり、更に電極間の間隔が小さくなる。上記基材粒子の粒子径は、基材粒子が真球状である場合には、直径を示し、基材粒子が真球状ではない場合には、最大径を示す。 The particle diameter of the substrate particles is preferably 0.1 μm or more, more preferably 0.5 μm or more, still more preferably 1 μm or more, still more preferably 1.5 μm or more, particularly preferably 2 μm or more, preferably 1000 μm or less, More preferably, it is 500 μm or less, still more preferably 300 μm or less, still more preferably 50 μm or less, still more preferably 30 μm or less, particularly preferably 5 μm or less, and most preferably 3 μm or less. When the particle diameter of the substrate particles is equal to or greater than the above lower limit, the contact area between the conductive particles and the electrodes is increased, so that the conduction reliability between the electrodes is further increased, and the electrodes are connected via the conductive particles. The connection resistance between them becomes even lower. Further, when forming the conductive layer on the surface of the base particle by electroless plating, it becomes difficult to aggregate and the aggregated conductive particles are hardly formed. When the particle diameter is not more than the above upper limit, the conductive particles are easily compressed, the connection resistance between the electrodes is further reduced, and the distance between the electrodes is further reduced. The particle diameter of the base particle indicates a diameter when the base particle is a true sphere, and indicates a maximum diameter when the base particle is not a true sphere.
 上記基材粒子の粒子径は、0.1μm以上、5μm以下であることが特に好ましい。上記基材粒子の粒子径が0.1~5μmの範囲内であると、電極間の間隔が小さくなり、かつ導電層の厚みを厚くしても、小さい導電性粒子が得られる。電極間の間隔をより一層小さくしたり、導電層の厚みを厚くしても、より一層小さい導電性粒子を得たりする観点からは、上記基材粒子の粒子径は、好ましくは0.5μm以上、より好ましくは2μm以上、好ましくは3μm以下である。 The particle diameter of the substrate particles is particularly preferably 0.1 μm or more and 5 μm or less. When the particle diameter of the substrate particles is in the range of 0.1 to 5 μm, even when the distance between the electrodes is small and the thickness of the conductive layer is increased, small conductive particles can be obtained. From the standpoint of obtaining even smaller conductive particles even when the distance between the electrodes is further reduced or the conductive layer is thickened, the particle diameter of the substrate particles is preferably 0.5 μm or more. More preferably, it is 2 μm or more, preferably 3 μm or less.
 [導電層]
 上記導電層を形成するための金属は特に限定されない。さらに、導電性粒子が、全体が導電層である金属粒子である場合、該金属粒子を形成するための金属は特に限定されない。該金属としては、例えば、金、銀、銅、パラジウム、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素、タングステン、モリブデン及びこれらの合金等が挙げられる。また、上記金属としては、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。なかでも、電極間の接続抵抗をより一層低くすることができるので、錫を含む合金、ニッケル、パラジウム、銅又は金が好ましく、ニッケル又はパラジウムがより好ましい。上記導電層を構成する金属元素はニッケルを含むことが好ましい。上記導電層は、ニッケル、タングステン、モリブデン、パラジウム、リン及びボロンからなる群から選択される少なくとも1種を含むことが好ましく、ニッケルと、リン又はボロンとを含むことがより好ましい。上記導電層を構成する材料は、リン及びボロンなどを含む合金であってもよい。上記導電層では、ニッケルとタングステン又はモリブデンとが合金化していてもよい。
[Conductive layer]
The metal for forming the conductive layer is not particularly limited. Furthermore, when the conductive particles are metal particles that are conductive layers as a whole, the metal for forming the metal particles is not particularly limited. Examples of the metal include gold, silver, copper, palladium, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, thallium, germanium, cadmium, silicon, and tungsten. , Molybdenum, and alloys thereof. Examples of the metal include tin-doped indium oxide (ITO) and solder. Especially, since the connection resistance between electrodes can be made still lower, an alloy containing tin, nickel, palladium, copper or gold is preferable, and nickel or palladium is more preferable. The metal element constituting the conductive layer preferably contains nickel. The conductive layer preferably contains at least one selected from the group consisting of nickel, tungsten, molybdenum, palladium, phosphorus and boron, and more preferably contains nickel and phosphorus or boron. The material forming the conductive layer may be an alloy containing phosphorus, boron, or the like. In the conductive layer, nickel and tungsten or molybdenum may be alloyed.
 上記導電層がリン又はボロンを含む場合に、上記導電層100重量%中、リンとボロンとの合計の含有量は好ましくは4重量%以下である。リンとボロンとの合計の含有量が上記上限以下であると、ニッケルなどの金属の含有量が相対的に多くなるので、電極間の接続抵抗がより一層低くなる。上記導電層100重量%中、リンとボロンとの合計の含有量は好ましくは0.1重量%以上、より好ましくは0.5重量%以上である。 When the conductive layer contains phosphorus or boron, the total content of phosphorus and boron is preferably 4% by weight or less in 100% by weight of the conductive layer. When the total content of phosphorus and boron is not more than the above upper limit, the content of metals such as nickel is relatively increased, so that the connection resistance between the electrodes is further reduced. In 100% by weight of the conductive layer, the total content of phosphorus and boron is preferably 0.1% by weight or more, more preferably 0.5% by weight or more.
 上記芯物質、上記導電層及び上記第2の導電層に最も多く含まれる金属元素は、錫を含む合金、ニッケル、パラジウム、銅又は金であることが好ましく、ニッケル又はパラジウムであることがより好ましい。 The metal element contained most in the core material, the conductive layer, and the second conductive layer is preferably an alloy containing tin, nickel, palladium, copper, or gold, and more preferably nickel or palladium. .
 導電性粒子1のように、上記導電層は、1つの層により形成されていてもよい。さらに、導電性粒子11,21のように、上記導電層は複数の層により形成されていてもよい。すなわち、導電層は、単層であってもよく、2層以上の積層構造を有していてもよい。導電層が複数の層により形成されている場合には、最外層は、金層、ニッケル層、パラジウム層、銅層又は錫と銀とを含む合金層であることが好ましく、金層又はパラジウム層であることがより好ましく、金層であることが特に好ましい。最外層がこれらの好ましい導電層である場合には、電極間の接続抵抗がより一層低くなる。また、最外層が金層である場合には、耐腐食性がより一層高くなる。 Like the conductive particles 1, the conductive layer may be formed of a single layer. Furthermore, like the conductive particles 11 and 21, the conductive layer may be formed of a plurality of layers. That is, the conductive layer may be a single layer or may have a stacked structure of two or more layers. When the conductive layer is formed of a plurality of layers, the outermost layer is preferably a gold layer, a nickel layer, a palladium layer, a copper layer, or an alloy layer containing tin and silver, and the gold layer or the palladium layer Is more preferable, and a gold layer is particularly preferable. When the outermost layer is these preferred conductive layers, the connection resistance between the electrodes is further reduced. Moreover, when the outermost layer is a gold layer, the corrosion resistance is further enhanced.
 上記基材粒子の表面上に導電層を形成する方法は特に限定されない。導電層を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げられる。なかでも、導電層の形成が簡便であるので、無電解めっきによる方法が好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。 The method for forming the conductive layer on the surface of the substrate particles is not particularly limited. As a method for forming the conductive layer, for example, a method by electroless plating, a method by electroplating, a method by physical vapor deposition, and a method of coating the surface of base particles with metal powder or a paste containing metal powder and a binder Etc. Especially, since formation of a conductive layer is simple, the method by electroless plating is preferable. Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering.
 上記導電性粒子の平均粒子径は、好ましくは0.11μm以上、より好ましくは0.5μm以上、更に好ましくは0.51μm以上、特に好ましくは1μm以上、好ましくは100μm以下、より好ましくは20μm以下、更に好ましくは5.6μm以下、特に好ましくは3.6μm以下である。である。導電性粒子の平均粒子径が上記下限以上及び上記上限以下であると、導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が充分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が基材粒子の表面から剥離し難くなる。 The average particle diameter of the conductive particles is preferably 0.11 μm or more, more preferably 0.5 μm or more, further preferably 0.51 μm or more, particularly preferably 1 μm or more, preferably 100 μm or less, more preferably 20 μm or less, More preferably, it is 5.6 micrometers or less, Most preferably, it is 3.6 micrometers or less. It is. When the average particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the contact area between the conductive particles and the electrode becomes sufficiently large when the electrodes are connected using the conductive particles, and the conductive Aggregated conductive particles are less likely to be formed when the layer is formed. Further, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive layer is difficult to peel from the surface of the base material particles.
 上記導電性粒子の「平均粒子径」は、数平均粒子径を示す。導電性粒子の平均粒子径は、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。 The “average particle size” of the conductive particles indicates a number average particle size. The average particle diameter of the conductive particles can be obtained by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.
 上記導電層の厚みは好ましくは0.005μm以上、より好ましくは0.01μm以上、好ましくは1μm以下、より好ましくは0.3μm以下である。導電層の厚みが上記下限以上及び上記上限以下であると、充分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子が充分に変形する。 The thickness of the conductive layer is preferably 0.005 μm or more, more preferably 0.01 μm or more, preferably 1 μm or less, more preferably 0.3 μm or less. When the thickness of the conductive layer is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles do not become too hard, and the conductive particles are sufficiently deformed when connecting the electrodes. .
 上記導電層が複数の層により形成されている場合に、最外層の導電層の厚みは、好ましくは0.001μm以上、より好ましくは0.01μm以上、好ましくは0.5μm以下、より好ましくは0.1μm以下である。上記最外層の導電層の厚みが上記下限以上及び上記上限以下であると、最外層の導電層による被覆を均一にでき、耐腐食性を充分に高めることができ、かつ電極間の接続抵抗を充分に低くすることができる。 When the conductive layer is formed of a plurality of layers, the thickness of the outermost conductive layer is preferably 0.001 μm or more, more preferably 0.01 μm or more, preferably 0.5 μm or less, more preferably 0. .1 μm or less. When the thickness of the outermost conductive layer is not less than the above lower limit and not more than the above upper limit, the coating with the outermost conductive layer can be made uniform, corrosion resistance can be sufficiently enhanced, and the connection resistance between the electrodes can be increased. It can be made sufficiently low.
 上記導電層の厚みは、例えば透過型電子顕微鏡(TEM)を用いて、導電性粒子又は絶縁性粒子付き導電性粒子の断面を観察することにより測定できる。 The thickness of the conductive layer can be measured by observing the cross section of the conductive particles or the conductive particles with insulating particles using, for example, a transmission electron microscope (TEM).
 上記導電性粒子1個当たりの上記導電層の外側の表面の突起は、好ましくは3個以上、より好ましくは5個以上である。上記突起の数の上限は特に限定されない。突起の数の上限は導電性粒子の平均粒子径等を考慮して適宜選択できる。 The number of protrusions on the outer surface of the conductive layer per one of the conductive particles is preferably 3 or more, more preferably 5 or more. The upper limit of the number of protrusions is not particularly limited. The upper limit of the number of protrusions can be appropriately selected in consideration of the average particle diameter of conductive particles and the like.
 [芯物質]
 上記芯物質が上記導電層中に埋め込まれていることによって、上記導電層が外側の表面に複数の突起を有する。
[Core material]
Since the core substance is embedded in the conductive layer, the conductive layer has a plurality of protrusions on the outer surface.
 上記突起を形成する方法としては、基材粒子の表面上に第1の導電層を形成した後、該第1の導電層上に芯物質を配置し、次に第2の導電層を形成する方法、及び基材粒子の表面上に導電層を形成する途中段階で、芯物質を添加する方法等が挙げられる。 As a method for forming the protrusions, a first conductive layer is formed on the surface of the base particle, a core substance is disposed on the first conductive layer, and then a second conductive layer is formed. Examples thereof include a method and a method of adding a core substance in the middle of forming a conductive layer on the surface of the base particle.
 上記芯物質を構成する物質としては、導電性物質及び非導電性物質が挙げられる。上記導電性物質としては、例えば、金属、金属の酸化物、黒鉛等の導電性非金属及び導電性ポリマー等が挙げられる。上記導電性ポリマーとしては、ポリアセチレン等が挙げられる。上記非導電性物質としては、シリカ、アルミナ、チタン酸バリウム及びジルコニア等が挙げられる。なかでも、導電性を高めることができ、更に接続抵抗を効果的に低くすることができるので、金属が好ましい。上記芯物質は金属粒子であることが好ましい。 As the material constituting the core material, there may be mentioned a conductive material and a non-conductive material. Examples of the conductive material include conductive non-metals such as metals, metal oxides, and graphite, and conductive polymers. Examples of the conductive polymer include polyacetylene. Examples of the non-conductive substance include silica, alumina, barium titanate, zirconia, and the like. Among them, metal is preferable because conductivity can be increased and connection resistance can be effectively reduced. The core substance is preferably metal particles.
 上記金属としては、例えば、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム等の金属、並びに錫-鉛合金、錫-銅合金、錫-銀合金、錫-鉛-銀合金及び炭化タングステン等の2種類以上の金属で構成される合金等が挙げられる。なかでも、ニッケル、銅、銀又は金が好ましい。上記芯物質を構成する金属は、上記導電層を構成する金属と同じであってもよく、異なっていてもよい。上記芯物質を構成する金属は、上記導電層を構成する金属を含むことが好ましい。上記芯物質を構成する金属は、ニッケルを含むことが好ましい。上記芯物質を構成する金属は、ニッケルを含むことが好ましい。 Examples of the metal include gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead. Examples thereof include alloys composed of two or more metals such as alloys, tin-copper alloys, tin-silver alloys, tin-lead-silver alloys, and tungsten carbide. Of these, nickel, copper, silver or gold is preferable. The metal constituting the core material may be the same as or different from the metal constituting the conductive layer. The metal constituting the core material preferably includes a metal constituting the conductive layer. It is preferable that the metal which comprises the said core substance contains nickel. It is preferable that the metal which comprises the said core substance contains nickel.
 上記芯物質の形状は特に限定されない。芯物質の形状は塊状であることが好ましい。芯物質としては、例えば、粒子状の塊、複数の微小粒子が凝集した凝集塊、及び不定形の塊等が挙げられる。 The shape of the core substance is not particularly limited. The shape of the core substance is preferably a lump. Examples of the core substance include a particulate lump, an agglomerate in which a plurality of fine particles are aggregated, and an irregular lump.
 上記芯物質の平均径(平均粒子径)は、好ましくは0.001μm以上、より好ましくは0.05μm以上、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記芯物質の平均径が上記下限以上及び上記上限以下であると、電極間の接続抵抗を効果的に低くすることができる。 The average diameter (average particle diameter) of the core substance is preferably 0.001 μm or more, more preferably 0.05 μm or more, preferably 0.9 μm or less, more preferably 0.2 μm or less. When the average diameter of the core substance is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be effectively reduced.
 上記芯物質の「平均径(平均粒子径)」は、数平均径(数平均粒子径)を示す。芯物質の平均径は、任意の芯物質50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。 The “average diameter (average particle diameter)” of the core substance indicates a number average diameter (number average particle diameter). The average diameter of the core material is obtained by observing 50 arbitrary core materials with an electron microscope or an optical microscope and calculating an average value.
 上記芯物質の表面上に、無機粒子が配置されていてもよい。芯物質の表面上に配置された無機粒子は複数であることが好ましい。芯物質の表面に、無機粒子が付着していてもよい。このような無機粒子と芯物質とを備える複合粒子を用いてもよい。無機粒子の大きさ(平均径)は、芯物質の大きさ(平均径)よりも小さいことが好ましく、上記無機粒子は、無機微粒子であることが好ましい。 Inorganic particles may be disposed on the surface of the core substance. It is preferable that there are a plurality of inorganic particles arranged on the surface of the core substance. Inorganic particles may be attached to the surface of the core substance. You may use the composite particle provided with such an inorganic particle and a core substance. The size (average diameter) of the inorganic particles is preferably smaller than the size (average diameter) of the core substance, and the inorganic particles are preferably inorganic fine particles.
 上記芯物質の表面上に配置される上記無機粒子の材料としては、チタン酸バリウム(モース硬度4.5)、シリカ(二酸化珪素、モース硬度6~7)、ジルコニア(モース硬度8~9)、アルミナ(モース硬度9)、炭化タングステン(モース硬度9)及びダイヤモンド(モース硬度10)等が挙げられる。上記無機粒子は、シリカ、ジルコニア、アルミナ、炭化タングステン又はダイヤモンドであることが好ましく、シリカ、ジルコニア、アルミナ又はダイヤモンドであることも好ましい。上記無機粒子のモース硬度は好ましくは5以上、より好ましくは6以上である。上記無機粒子のモース硬度は上記導電層のモース硬度よりも大きいことが好ましい。上記無機粒子のモース硬度は上記第2の導電層のモース硬度よりも大きいことが好ましい。上記無機粒子のモース硬度と上記導電層のモース硬度との差の絶対値、並びに上記無機粒子のモース硬度と上記第2の導電層のモース硬度との差の絶対値は、好ましくは0.1以上、より好ましくは0.2以上、更に好ましくは0.5以上、特に好ましくは1以上である。また、導電層が複数の層により形成されていている場合には、複数の層を構成する全ての金属よりも無機粒子が硬いほうが、接続抵抗の低減効果がより一層効果的に発揮される。 Examples of the material of the inorganic particles arranged on the surface of the core substance include barium titanate (Mohs hardness 4.5), silica (silicon dioxide, Mohs hardness 6-7), zirconia (Mohs hardness 8-9), Examples include alumina (Mohs hardness 9), tungsten carbide (Mohs hardness 9), diamond (Mohs hardness 10), and the like. The inorganic particles are preferably silica, zirconia, alumina, tungsten carbide or diamond, and are also preferably silica, zirconia, alumina or diamond. The Mohs hardness of the inorganic particles is preferably 5 or more, more preferably 6 or more. The Mohs hardness of the inorganic particles is preferably larger than the Mohs hardness of the conductive layer. The Mohs hardness of the inorganic particles is preferably larger than the Mohs hardness of the second conductive layer. The absolute value of the difference between the Mohs hardness of the inorganic particles and the Mohs hardness of the conductive layer, and the absolute value of the difference between the Mohs hardness of the inorganic particles and the Mohs hardness of the second conductive layer are preferably 0.1. Above, more preferably 0.2 or more, still more preferably 0.5 or more, particularly preferably 1 or more. Further, when the conductive layer is formed of a plurality of layers, the effect of reducing the connection resistance is more effectively exhibited when the inorganic particles are harder than all the metals constituting the plurality of layers.
 上記無機粒子の平均粒子径は、好ましくは0.0001μm以上、より好ましくは0.005μm以上、好ましくは0.5μm以下、より好ましくは0.1μm以下である。上記無機粒子の平均粒子径が上記下限以上及び上記上限以下であると、電極間の接続抵抗を効果的に低くすることができる。 The average particle size of the inorganic particles is preferably 0.0001 μm or more, more preferably 0.005 μm or more, preferably 0.5 μm or less, more preferably 0.1 μm or less. When the average particle size of the inorganic particles is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be effectively reduced.
 上記無機粒子の「平均粒子径」は、数平均粒子径を示す。無機粒子の平均粒子径は、任意の無機粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。 The “average particle size” of the inorganic particles indicates the number average particle size. The average particle diameter of the inorganic particles is obtained by observing 50 arbitrary inorganic particles with an electron microscope or an optical microscope and calculating an average value.
 上記芯物質の表面上に無機粒子が配置されている複合粒子を用いる場合に、上記複合粒子の平均径(平均粒子径)は、好ましくは0.0012μm以上、より好ましくは0.0502μm以上、好ましくは1.9μm以下、より好ましくは1.2μm以下である。上記複合粒子の平均径が上記下限以上及び上記上限以下であると、電極間の接続抵抗を効果的に低くすることができる。 When using composite particles in which inorganic particles are arranged on the surface of the core substance, the average diameter of the composite particles (average particle diameter) is preferably 0.0012 μm or more, more preferably 0.0502 μm or more, preferably Is 1.9 μm or less, more preferably 1.2 μm or less. When the average diameter of the composite particles is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be effectively reduced.
 上記複合粒子の「平均径(平均粒子径)」は、数平均径(数平均粒子径)を示す。上記複合粒子の平均径は、任意の複合粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。 The “average diameter (average particle diameter)” of the composite particles indicates a number average diameter (number average particle diameter). The average diameter of the composite particles is determined by observing 50 arbitrary composite particles with an electron microscope or an optical microscope and calculating an average value.
 [絶縁物質]
 本発明に係る導電性粒子は、上記導電層の表面上に配置された絶縁物質を備えることが好ましい。この場合には、導電性粒子を電極間の接続に用いると、隣接する電極間の短絡を防止できる。具体的には、複数の導電性粒子が接触したときに、複数の電極間に絶縁物質が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で導電性粒子を加圧することにより、導電性粒子の導電層と電極との間の絶縁物質を容易に排除できる。導電性粒子が導電層の外側の表面に複数の突起を有するので、導電性粒子の導電層と電極との間の絶縁物質を容易に排除できる。
[Insulating material]
The conductive particles according to the present invention preferably include an insulating material disposed on the surface of the conductive layer. In this case, when the conductive particles are used for connection between the electrodes, a short circuit between adjacent electrodes can be prevented. Specifically, when a plurality of conductive particles are in contact with each other, an insulating material is present between the plurality of electrodes, so that it is possible to prevent a short circuit between electrodes adjacent in the lateral direction instead of between the upper and lower electrodes. Note that when the conductive particles are pressurized with the two electrodes at the time of connection between the electrodes, the insulating substance between the conductive layer of the conductive particles and the electrodes can be easily excluded. Since the conductive particles have a plurality of protrusions on the outer surface of the conductive layer, the insulating material between the conductive layer of the conductive particles and the electrode can be easily excluded.
 電極間の圧着時に上記絶縁物質をより一層容易に排除できることから、上記絶縁物質は、絶縁性粒子であることが好ましい。 It is preferable that the insulating material is an insulating particle because the insulating material can be more easily removed when the electrodes are crimped.
 上記絶縁物質の材料である絶縁性樹脂の具体例としては、ポリオレフィン類、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。 Specific examples of the insulating resin that is the material of the insulating material include polyolefins, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, crosslinked thermoplastic resins, and thermosetting. Resin, water-soluble resin, and the like.
 上記ポリオレフィン類としては、ポリエチレン、エチレン-酢酸ビニル共重合体及びエチレン-アクリル酸エステル共重合体等が挙げられる。上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート及びポリブチル(メタ)アクリレート等が挙げられる。上記ブロックポリマーとしては、ポリスチレン、スチレン-アクリル酸エステル共重合体、SB型スチレン-ブタジエンブロック共重合体、及びSBS型スチレン-ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。上記熱可塑性樹脂としては、ビニル重合体及びビニル共重合体等が挙げられる。上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。なかでも、水溶性樹脂が好ましく、ポリビニルアルコールがより好ましい。 Examples of the polyolefins include polyethylene, ethylene-vinyl acetate copolymer, and ethylene-acrylic acid ester copolymer. Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polyethyl (meth) acrylate, and polybutyl (meth) acrylate. Examples of the block polymer include polystyrene, styrene-acrylate copolymer, SB type styrene-butadiene block copolymer, SBS type styrene-butadiene block copolymer, and hydrogenated products thereof. Examples of the thermoplastic resin include vinyl polymers and vinyl copolymers. As said thermosetting resin, an epoxy resin, a phenol resin, a melamine resin, etc. are mentioned. Examples of the water-soluble resin include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinyl pyrrolidone, polyethylene oxide, and methyl cellulose. Of these, water-soluble resins are preferable, and polyvinyl alcohol is more preferable.
 上記導電層の表面上に絶縁物質を配置する方法としては、化学的方法、及び物理的もしくは機械的方法等が挙げられる。上記化学的方法としては、例えば、界面重合法、粒子存在下での懸濁重合法及び乳化重合法等が挙げられる。上記物理的もしくは機械的方法としては、スプレードライ、ハイブリダイゼーション、静電付着法、噴霧法、ディッピング及び真空蒸着による方法等が挙げられる。なかでも、絶縁物質が脱離し難いことから、上記導電層の表面に、化学結合を介して上記絶縁物質を配置する方法が好ましい。 Examples of a method for disposing an insulating material on the surface of the conductive layer include a chemical method and a physical or mechanical method. Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method. Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion, spraying, dipping, and vacuum deposition. In particular, since the insulating substance is difficult to be detached, a method of disposing the insulating substance on the surface of the conductive layer through a chemical bond is preferable.
 上記絶縁物質の平均径(平均粒子径)は、導電性粒子の粒子径及び導電性粒子の用途等によって適宜選択できる。上記絶縁物質の平均径(平均粒子径)は好ましくは0.005μm以上、より好ましくは0.01μm以上、好ましくは1μm以下、より好ましくは0.5μm以下である。絶縁物質の平均径が上記下限以上であると、導電性粒子がバインダー樹脂中に分散されたときに、複数の導電性粒子における導電層同士が接触し難くなる。絶縁性粒子の平均径が上記上限以下であると、電極間の接続の際に、電極と導電性粒子との間の絶縁物質を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。 The average diameter (average particle diameter) of the insulating material can be appropriately selected depending on the particle diameter of the conductive particles and the use of the conductive particles. The average diameter (average particle diameter) of the insulating material is preferably 0.005 μm or more, more preferably 0.01 μm or more, preferably 1 μm or less, more preferably 0.5 μm or less. When the average diameter of the insulating material is not less than the above lower limit, the conductive layers of the plurality of conductive particles are difficult to contact when the conductive particles are dispersed in the binder resin. When the average diameter of the insulating particles is not more than the above upper limit, it is not necessary to make the pressure too high in order to eliminate the insulating material between the electrodes and the conductive particles when the electrodes are connected. There is no need for heating.
 上記絶縁物質の「平均径(平均粒子径)」は、数平均径(数平均粒子径)を示す。絶縁物質の平均径は、粒度分布測定装置等を用いて求められる。 The “average diameter (average particle diameter)” of the insulating material indicates a number average diameter (number average particle diameter). The average diameter of the insulating material is obtained using a particle size distribution measuring device or the like.
 (導電材料)
 本発明に係る導電材料は、上述した導電性粒子と、バインダー樹脂とを含む。上記導電性粒子は、バインダー樹脂中に分散され、導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。
(Conductive material)
The conductive material according to the present invention includes the conductive particles described above and a binder resin. The conductive particles are preferably dispersed in a binder resin and used as a conductive material. The conductive material is preferably an anisotropic conductive material.
 上記バインダー樹脂は特に限定されない。上記バインダー樹脂として、公知の絶縁性の樹脂が用いられる。 The binder resin is not particularly limited. As the binder resin, a known insulating resin is used.
 上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. As for the said binder resin, only 1 type may be used and 2 or more types may be used together.
 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。 Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin. Examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, and polyamide resin. Examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin. The curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin. The curable resin may be used in combination with a curing agent. Examples of the thermoplastic block copolymer include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogenated products of styrene block copolymers. Examples of the elastomer include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
 上記導電材料は、上記導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。 In addition to the conductive particles and the binder resin, the conductive material includes, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer. Various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant may be contained.
 上記バインダー樹脂中に上記導電性粒子を分散させる方法は、従来公知の分散方法を用いることができ特に限定されない。上記バインダー樹脂中に上記導電性粒子を分散させる方法としては、例えば、上記バインダー樹脂中に上記導電性粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法、上記導電性粒子を水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、上記バインダー樹脂中に添加し、プラネタリーミキサー等で混練して分散させる方法、並びに上記バインダー樹脂を水又は有機溶剤等で希釈した後、上記導電性粒子を添加し、プラネタリーミキサー等で混練して分散させる方法等が挙げられる。 The method for dispersing the conductive particles in the binder resin is not particularly limited, and a conventionally known dispersion method can be used. Examples of a method for dispersing the conductive particles in the binder resin include a method in which the conductive particles are added to the binder resin and then kneaded and dispersed with a planetary mixer or the like. The conductive particles are dispersed in water. Alternatively, after uniformly dispersing in an organic solvent using a homogenizer or the like, it is added to the binder resin and kneaded with a planetary mixer or the like, and the binder resin is diluted with water or an organic solvent. Then, the method of adding the said electroconductive particle, kneading with a planetary mixer etc. and disperse | distributing is mentioned.
 本発明に係る導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは、異方性導電ペーストであることが好ましい。上記導電フィルムは、異方性導電フィルムであることが好ましい。 The conductive material according to the present invention can be used as a conductive paste and a conductive film. When the conductive material according to the present invention is a conductive film, a film that does not include conductive particles may be laminated on a conductive film that includes conductive particles. The conductive paste is preferably an anisotropic conductive paste. The conductive film is preferably an anisotropic conductive film.
 上記導電材料100重量%中、上記バインダー樹脂の含有量は好ましくは10重量%以上、より好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性がより一層高くなる。 In 100% by weight of the conductive material, the content of the binder resin is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably 70% by weight or more, preferably 99.% or more. It is 99 weight% or less, More preferably, it is 99.9 weight% or less. When the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further increased.
 上記導電材料100重量%中、上記導電性粒子の含有量は好ましくは0.01重量%以上、より好ましくは0.1重量%以上、好ましくは40重量%以下、より好ましくは20重量%以下、更に好ましくは10重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極間の導通信頼性がより一層高くなる。 In 100% by weight of the conductive material, the content of the conductive particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 40% by weight or less, more preferably 20% by weight or less, More preferably, it is 10 weight% or less. When the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conduction reliability between the electrodes is further enhanced.
 (接続構造体)
 本発明の導電性粒子を用いて、又は該導電性粒子とバインダー樹脂とを含む導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。
(Connection structure)
A connection structure can be obtained by connecting the connection target members using the conductive particles of the present invention or using a conductive material containing the conductive particles and a binder resin.
 上記接続構造体は、第1の接続対象部材と、第2の接続対象部材と、第1,第2の接続対象部材を接続している接続部とを備え、該接続部が本発明の導電性粒子により形成されているか、又は該導電性粒子とバインダー樹脂とを含む導電材料(異方性導電材料など)により形成されている接続構造体であることが好ましい。導電性粒子が用いられた場合には、接続部自体が導電性粒子である。すなわち、第1,第2の接続対象部材が導電性粒子により接続される。 The connection structure includes a first connection target member, a second connection target member, and a connection portion connecting the first and second connection target members, and the connection portion is a conductive member of the present invention. The connection structure is preferably formed of conductive particles or formed of a conductive material (such as an anisotropic conductive material) containing the conductive particles and a binder resin. In the case where conductive particles are used, the connection portion itself is conductive particles. That is, the first and second connection target members are connected by the conductive particles.
 図4に、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に正面断面図で示す。 FIG. 4 is a front cross-sectional view schematically showing a connection structure using conductive particles according to the first embodiment of the present invention.
 図4に示す接続構造体51は、第1の接続対象部材52と、第2の接続対象部材53と、第1,第2の接続対象部材52,53を接続している接続部54とを備える。接続部54は、導電性粒子1を含む導電材料を硬化させることにより形成されている。なお、図4では、導電性粒子1は、図示の便宜上、略図的に示されている。 4 includes a first connection target member 52, a second connection target member 53, and a connection portion 54 that connects the first and second connection target members 52 and 53. Prepare. The connection portion 54 is formed by curing a conductive material including the conductive particles 1. In FIG. 4, the conductive particles 1 are schematically shown for convenience of illustration.
 第1の接続対象部材52は上面52a(表面)に、複数の電極52bを有する。第2の接続対象部材53は下面53a(表面)に、複数の電極53bを有する。電極52bと電極53bとが、1つ又は複数の導電性粒子1により電気的に接続されている。従って、第1,第2の接続対象部材52,53が導電性粒子1により電気的に接続されている。 The first connection target member 52 has a plurality of electrodes 52b on the upper surface 52a (front surface). The second connection target member 53 has a plurality of electrodes 53b on the lower surface 53a (front surface). The electrode 52 b and the electrode 53 b are electrically connected by one or a plurality of conductive particles 1. Therefore, the first and second connection target members 52 and 53 are electrically connected by the conductive particles 1.
 上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例としては、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。 The manufacturing method of the connection structure is not particularly limited. As an example of the manufacturing method of the connection structure, the conductive material is disposed between the first connection target member and the second connection target member to obtain a laminate, and then the laminate is heated and pressurized. Methods and the like.
 上記加圧の圧力は9.8×10~4.9×10Pa程度である。上記加熱の温度は、120~220℃程度である。 The pressurizing pressure is about 9.8 × 10 4 to 4.9 × 10 6 Pa. The heating temperature is about 120 to 220 ° C.
 上記接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板及びガラス基板等の回路基板などの電子部品等が挙げられる。上記接続対象部材は電子部品であることが好ましい。上記導電性粒子は、電子部品における電極の電気的な接続に用いられることが好ましい。 Specific examples of the connection target member include electronic components such as semiconductor chips, capacitors, and diodes, and electronic components such as circuit boards such as printed boards, flexible printed boards, and glass boards. The connection target member is preferably an electronic component. The conductive particles are preferably used for electrical connection of electrodes in an electronic component.
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。 Examples of the electrode provided on the connection target member include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, and a tungsten electrode. When the connection object member is a flexible printed board, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode. When the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode. In addition, when the said electrode is an aluminum electrode, the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated | stacked on the surface of the metal oxide layer may be sufficient. Examples of the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. The present invention is not limited only to the following examples.
 (実施例1)
 (1)パラジウム付着工程
 粒子径が5.0μmであるジビニルベンゼン樹脂粒子(積水化学工業社製「ミクロパールSP-205」)を用意した。この樹脂粒子をエッチングし、水洗した。次に、パラジウム触媒を8重量%含むパラジウム触媒化液100mL中に樹脂粒子を添加し、攪拌した。その後、ろ過し、洗浄した。pH6の0.5重量%ジメチルアミンボラン液に樹脂粒子を添加し、パラジウムが付着された樹脂粒子を得た。
Example 1
(1) Palladium adhesion process Divinylbenzene resin particles (“Micropearl SP-205” manufactured by Sekisui Chemical Co., Ltd.) having a particle diameter of 5.0 μm were prepared. The resin particles were etched and washed with water. Next, resin particles were added to 100 mL of a palladium-catalyzed solution containing 8% by weight of a palladium catalyst and stirred. Then, it filtered and wash | cleaned. Resin particles were added to 0.5 wt% dimethylamine borane solution at pH 6 to obtain resin particles to which palladium was attached.
 (2)無電解ニッケルめっき工程
 ニッケル-リン導電層を形成するために、硫酸ニッケル0.25mol/L、次亜リン酸ナトリウム0.25mol/L、クエン酸ナトリウム0.15mol/L及びモリブデン酸ナトリウム0.01mol/Lを含むニッケルめっき液(pH8.0)を用意した。
(2) Electroless nickel plating step In order to form a nickel-phosphorus conductive layer, nickel sulfate 0.25 mol / L, sodium hypophosphite 0.25 mol / L, sodium citrate 0.15 mol / L and sodium molybdate A nickel plating solution (pH 8.0) containing 0.01 mol / L was prepared.
 純水1000mL中に得られたパラジウムが付着された樹脂粒子を添加して、超音波分散器にて分散することにより、懸濁液を得た。得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行った。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、ニッケル-リン層(ニッケル-モリブデン-リン層(Ni-Mo-P層)である第1の導電層(厚み5.2nm)で樹脂粒子を被覆して、第1の導電層が形成された粒子を得た。 A suspension was obtained by adding the resin particles to which palladium obtained in 1000 mL of pure water was adhered and dispersing with an ultrasonic disperser. While stirring the obtained suspension at 60 ° C., the nickel plating solution was gradually added dropwise to the suspension to perform electroless nickel plating. Thereafter, the suspension is filtered to remove the particles, washed with water, and dried to obtain a first conductive layer (nickel-molybdenum-phosphorus layer (Ni-Mo-P layer)) The resin particles were coated at a thickness of 5.2 nm) to obtain particles on which the first conductive layer was formed.
 (3)芯物質付着工程及び無電解ニッケルめっき工程
 アルミナ(Al)粒子スラリー(平均粒子径100nm)を用意した。第1の導電層が形成された粒子と金属粒子スラリーとを用いて被覆した。
(3) Core substance adhering step and electroless nickel plating step An alumina (Al 2 O 3 ) particle slurry (average particle size 100 nm) was prepared. It coat | covered using the particle | grains in which the 1st conductive layer was formed, and metal particle slurry.
 ニッケル-リン導電層を形成するために、硫酸ニッケル0.25mol/L、次亜リン酸ナトリウム0.25mol/L、クエン酸ナトリウム0.15mol/L及びモリブデン酸ナトリウム0.01mol/Lを含むニッケルめっき液(pH8.0)を用意した。 Nickel containing 0.25 mol / L nickel sulfate, 0.25 mol / L sodium hypophosphite, 0.15 mol / L sodium citrate and 0.01 mol / L sodium molybdate to form a nickel-phosphorus conductive layer A plating solution (pH 8.0) was prepared.
 得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行い、厚み90nmの第2の導電層(ニッケル-モリブデン-リン層(Ni-Mo-P層)を形成した。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、導電性粒子を得た。得られた導電性粒子は、第2の導電層の外側の表面に突起を有し、第2の導電層の突起の内側に芯物質が配置されていた。また、樹脂粒子と芯物質との間に、第1の導電層が配置されていた。 While stirring the obtained suspension at 60 ° C., the above nickel plating solution is gradually dropped into the suspension, electroless nickel plating is performed, and a second conductive layer (nickel-molybdenum-phosphorus) having a thickness of 90 nm is obtained. A layer (Ni—Mo—P layer) was formed, and then the suspension was filtered to take out the particles, washed with water, and dried to obtain conductive particles. , Having a protrusion on the outer surface of the second conductive layer, and a core substance disposed on the inner side of the protrusion of the second conductive layer, and the first conductive layer between the resin particles and the core substance. Layers were placed.
 (実施例2)
 アルミナ(Al)粒子スラリー(平均粒子径100nm)をシリカ粒子スラリー(平均粒子径100nm)に変更したこと以外は実施例1と同様にして、導電性粒子を得た。
(Example 2)
Conductive particles were obtained in the same manner as in Example 1 except that the alumina (Al 2 O 3 ) particle slurry (average particle size 100 nm) was changed to a silica particle slurry (average particle size 100 nm).
 (実施例3)
 アルミナ(Al)粒子スラリー(平均粒子径100nm)を炭化タングステン(WC)粒子スラリー(平均粒子径100nm)に変更したこと以外は実施例1と同様にして、導電性粒子を得た。
(Example 3)
Conductive particles were obtained in the same manner as in Example 1 except that the alumina (Al 2 O 3 ) particle slurry (average particle size 100 nm) was changed to a tungsten carbide (WC) particle slurry (average particle size 100 nm).
 (実施例4~8)
 ニッケル-リン層である第1の導電層の厚みを下記に示す値に変更したこと以外は実施例1と同様にして、導電性粒子を得た。
(Examples 4 to 8)
Conductive particles were obtained in the same manner as in Example 1 except that the thickness of the first conductive layer, which was a nickel-phosphorous layer, was changed to the value shown below.
 第1の導電層の厚み:
 実施例4:10μm
 実施例5:20μm
 実施例6:100μm
 実施例7:750μm
 実施例8:860μm
The thickness of the first conductive layer:
Example 4: 10 μm
Example 5: 20 μm
Example 6: 100 μm
Example 7: 750 μm
Example 8: 860 μm
 (実施例9)
 (1)絶縁性粒子の作製
 4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブが取り付けられた1000mLのセパラブルフラスコに、メタクリル酸メチル100mmolと、N,N,N-トリメチル-N-2-メタクリロイルオキシエチルアンモニウムクロライド1mmolと、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩1mmolとを含むモノマー組成物を固形分率が5重量%となるようにイオン交換水に秤取した後、200rpmで攪拌し、窒素雰囲気下70℃で24時間重合を行った。反応終了後、凍結乾燥して、表面にアンモニウム基を有し、平均粒子径220nm及びCV値10%の絶縁性粒子を得た。
Example 9
(1) Preparation of insulating particles Into a 1000 mL separable flask equipped with a four-neck separable cover, stirring blade, three-way cock, cooling tube and temperature probe, 100 mmol of methyl methacrylate and N, N, N-trimethyl Ion-exchanged water containing a monomer composition containing 1 mmol of —N-2-methacryloyloxyethylammonium chloride and 1 mmol of 2,2′-azobis (2-amidinopropane) dihydrochloride so that the solid content is 5% by weight. Then, the mixture was stirred at 200 rpm and polymerized at 70 ° C. for 24 hours under a nitrogen atmosphere. After completion of the reaction, it was freeze-dried to obtain insulating particles having an ammonium group on the surface, an average particle size of 220 nm, and a CV value of 10%.
 絶縁性粒子を超音波照射下でイオン交換水に分散させ、絶縁性粒子の10重量%水分散液を得た。 The insulating particles were dispersed in ion exchange water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles.
 実施例1で得られた導電性粒子10gをイオン交換水500mLに分散させ、絶縁性粒子の水分散液4gを添加し、室温で6時間攪拌した。3μmのメッシュフィルターでろ過した後、更にメタノールで洗浄し、乾燥し、絶縁性粒子が付着した導電性粒子を得た。 10 g of the conductive particles obtained in Example 1 were dispersed in 500 mL of ion-exchanged water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtration through a 3 μm mesh filter, the particles were further washed with methanol and dried to obtain conductive particles having insulating particles attached thereto.
 走査電子顕微鏡(SEM)により観察したところ、導電性粒子の表面に絶縁性粒子による被覆層が1層のみ形成されていた。画像解析により導電性粒子の中心より2.5μmの面積に対する絶縁性粒子の被覆面積(即ち絶縁性粒子の粒子径の投影面積)を算出したところ、被覆率は30%であった。 When observed with a scanning electron microscope (SEM), only one coating layer of insulating particles was formed on the surface of the conductive particles. The coverage of the insulating particles with respect to the area of 2.5 μm from the center of the conductive particles by image analysis (that is, the projected area of the particle diameter of the insulating particles) was calculated to be 30%.
 (実施例10)
 粒子径が5.0μmであるジビニルベンゼン樹脂粒子(積水化学工業社製「ミクロパールSP-205」)を、粒子径が5.0μmであるジビニルベンゼン樹脂粒子(積水化学工業社製「ミクロパールSP-205」)の表面をシリカで被覆した有機無機ハイブリッド粒子(粒子径5.1μm)に変更したこと以外は実施例1と同様にして、導電性粒子を得た。
(Example 10)
Divinylbenzene resin particles having a particle diameter of 5.0 μm (“Micropearl SP-205” manufactured by Sekisui Chemical Co., Ltd.) and divinylbenzene resin particles having a particle diameter of 5.0 μm (“Micropearl SP manufactured by Sekisui Chemical Co., Ltd.) are used. Conductive particles were obtained in the same manner as in Example 1 except that the surface of -205 ") was changed to silica-coated organic-inorganic hybrid particles (particle diameter 5.1 μm).
 (比較例1)
 ニッケル-リン層である第1の導電層の厚みを4.5nmに変更したこと以外は実施例1と同様にして、導電性粒子を得た。
(Comparative Example 1)
Conductive particles were obtained in the same manner as in Example 1 except that the thickness of the first conductive layer, which was a nickel-phosphorous layer, was changed to 4.5 nm.
 (比較例2)
 粒子径が5.0μmであるジビニルベンゼン樹脂粒子(積水化学工業社製「ミクロパールSP-205」)を用意した。また、アルミナ(Al)粒子スラリー(平均粒子径100nm)を用意した。樹脂粒子と金属粒子スラリーとを用いて、樹脂粒子の表面を芯物質で被覆し、懸濁液を得た。
(Comparative Example 2)
Divinylbenzene resin particles (“Micropearl SP-205” manufactured by Sekisui Chemical Co., Ltd.) having a particle diameter of 5.0 μm were prepared. Moreover, an alumina (Al 2 O 3 ) particle slurry (average particle diameter: 100 nm) was prepared. Using resin particles and metal particle slurry, the surface of the resin particles was coated with a core substance to obtain a suspension.
 ニッケル-リン導電層を形成するために、硫酸ニッケル0.25mol/L、次亜リン酸ナトリウム0.25mol/L、クエン酸ナトリウム0.15mol/L及びモリブデン酸ナトリウム0.01mol/Lを含むニッケルめっき液(pH8.0)を用意した。 Nickel containing 0.25 mol / L nickel sulfate, 0.25 mol / L sodium hypophosphite, 0.15 mol / L sodium citrate and 0.01 mol / L sodium molybdate to form a nickel-phosphorus conductive layer A plating solution (pH 8.0) was prepared.
 得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行い、厚み100nmの導電層を形成した。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、導電性粒子を得た。得られた導電性粒子では、芯物質と基材粒子とが接触していた。 While stirring the obtained suspension at 60 ° C., the nickel plating solution was gradually added dropwise to the suspension, and electroless nickel plating was performed to form a conductive layer having a thickness of 100 nm. Thereafter, the suspension was filtered to take out the particles, washed with water, and dried to obtain conductive particles. In the obtained conductive particles, the core substance and the base material particles were in contact.
 (実施例11)
 (1)パラジウム付着工程
 実施例1で得られたパラジウムが付着された樹脂粒子を用意した。
(Example 11)
(1) Palladium adhesion process The resin particle to which the palladium obtained in Example 1 was adhered was prepared.
 (2)無電解ニッケルめっき工程
 硫酸ニッケル0.23mol/L、ジメチルアミンボラン0.92mol/L、クエン酸ナトリウム0.5mol/L及びタングステン酸ナトリウム0.01mol/Lを含むニッケルめっき液(pH8.5)を用意した。
(2) Electroless nickel plating step Nickel plating solution containing 0.23 mol / L nickel sulfate, 0.92 mol / L dimethylamine borane, 0.5 mol / L sodium citrate and 0.01 mol / L sodium tungstate (pH 8. 5) was prepared.
 純水1000mL中に得られたパラジウムが付着された樹脂粒子を添加して、超音波分散器にて分散することにより、懸濁液を得た。得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行った。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、ニッケル-タングステン-ボロン層である第1の導電層(厚み5.1nm)で樹脂粒子を被覆して、第1の導電層が形成された粒子を得た。 A suspension was obtained by adding the resin particles to which palladium obtained in 1000 mL of pure water was adhered and dispersing with an ultrasonic disperser. While stirring the obtained suspension at 60 ° C., the nickel plating solution was gradually added dropwise to the suspension to perform electroless nickel plating. Thereafter, by filtering the suspension, the particles are taken out, washed with water, and dried to cover the resin particles with the first conductive layer (thickness 5.1 nm) which is a nickel-tungsten-boron layer. The particle | grains in which the 1st conductive layer was formed were obtained.
 (3)芯物質付着工程及び無電解ニッケルめっき工程
 アルミナ(Al)粒子スラリー(平均粒子径100nm)を用意した。第1の導電層が形成された粒子と金属粒子スラリーとを用いて被覆した。
(3) Core substance adhering step and electroless nickel plating step An alumina (Al 2 O 3 ) particle slurry (average particle size 100 nm) was prepared. It coat | covered using the particle | grains in which the 1st conductive layer was formed, and metal particle slurry.
 硫酸ニッケル0.23mol/L、ジメチルアミンボラン0.92mol/L、クエン酸ナトリウム0.5mol/L及びタングステン酸ナトリウム0.01mol/Lを含むニッケルめっき液(pH8.5)を用意した。 A nickel plating solution (pH 8.5) containing 0.23 mol / L of nickel sulfate, 0.92 mol / L of dimethylamine borane, 0.5 mol / L of sodium citrate and 0.01 mol / L of sodium tungstate was prepared.
 得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行い、厚み90nmの第2の導電層を形成した。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、導電性粒子を得た。得られた導電性粒子は、第2の導電層の外側の表面に突起を有し、第2の導電層の突起の内側に芯物質が配置されていた。また、樹脂粒子と芯物質との間に、第1の導電層が配置されていた。 While stirring the obtained suspension at 60 ° C., the above nickel plating solution was gradually added dropwise to the suspension, and electroless nickel plating was performed to form a second conductive layer having a thickness of 90 nm. Thereafter, the suspension was filtered to take out the particles, washed with water, and dried to obtain conductive particles. The obtained conductive particles had protrusions on the outer surface of the second conductive layer, and the core substance was disposed inside the protrusions of the second conductive layer. Moreover, the 1st conductive layer was arrange | positioned between the resin particle and the core substance.
 (実施例12)
 ニッケル-タングステン-ボロン層である第1の導電層の厚みを10nmに変更したこと以外は実施例11と同様にして、導電性粒子を得た。
Example 12
Conductive particles were obtained in the same manner as in Example 11 except that the thickness of the first conductive layer, which was a nickel-tungsten-boron layer, was changed to 10 nm.
 (実施例13)
 ニッケル-タングステン-ボロン層である第1の導電層の厚みを20nmに変更したこと以外は実施例11と同様にして、導電性粒子を得た。
(Example 13)
Conductive particles were obtained in the same manner as in Example 11 except that the thickness of the first conductive layer, which was a nickel-tungsten-boron layer, was changed to 20 nm.
 (実施例14)
 実施例9で得られた絶縁性粒子の10重量%水分散を用意した。実施例11で得られた導電性粒子10gをイオン交換水500mLに分散させ、絶縁性粒子の水分散液4gを添加し、室温で6時間攪拌した。3μmのメッシュフィルターでろ過した後、更にメタノールで洗浄し、乾燥し、絶縁性粒子が付着した導電性粒子を得た。
(Example 14)
A 10% by weight aqueous dispersion of the insulating particles obtained in Example 9 was prepared. 10 g of the conductive particles obtained in Example 11 were dispersed in 500 mL of ion exchange water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtration through a 3 μm mesh filter, the particles were further washed with methanol and dried to obtain conductive particles having insulating particles attached thereto.
 走査電子顕微鏡(SEM)により観察したところ、導電性粒子の表面に絶縁性粒子による被覆層が1層のみ形成されていた。画像解析により導電性粒子の中心より2.5μmの面積に対する絶縁性粒子の被覆面積(即ち絶縁性粒子の粒子径の投影面積)を算出したところ、被覆率は30%であった。 When observed with a scanning electron microscope (SEM), only one coating layer of insulating particles was formed on the surface of the conductive particles. The coverage of the insulating particles with respect to the area of 2.5 μm from the center of the conductive particles by image analysis (that is, the projected area of the particle diameter of the insulating particles) was calculated to be 30%.
 (比較例3)
 ニッケル-タングステン-ボロン層である第1の導電層の厚みを3nmに変更したこと以外は実施例11と同様にして、導電性粒子を得た。
(Comparative Example 3)
Conductive particles were obtained in the same manner as in Example 11 except that the thickness of the first conductive layer, which was a nickel-tungsten-boron layer, was changed to 3 nm.
 (比較例4)
 粒子径が5.0μmであるジビニルベンゼン樹脂粒子(積水化学工業社製「ミクロパールSP-205」)を用意した。また、アルミナ(Al)粒子スラリー(平均粒子径100nm)を用意した。樹脂粒子と金属粒子スラリーとを用いて、樹脂粒子の表面を芯物質で被覆し、懸濁液を得た。
(Comparative Example 4)
Divinylbenzene resin particles (“Micropearl SP-205” manufactured by Sekisui Chemical Co., Ltd.) having a particle diameter of 5.0 μm were prepared. Moreover, an alumina (Al 2 O 3 ) particle slurry (average particle diameter: 100 nm) was prepared. Using resin particles and metal particle slurry, the surface of the resin particles was coated with a core substance to obtain a suspension.
 硫酸ニッケル0.23mol/L、ジメチルアミンボラン0.92mol/L、クエン酸ナトリウム0.5mol/L及びタングステン酸ナトリウム0.01mol/Lを含むニッケルめっき液(pH8.5)を用意した。 A nickel plating solution (pH 8.5) containing 0.23 mol / L of nickel sulfate, 0.92 mol / L of dimethylamine borane, 0.5 mol / L of sodium citrate and 0.01 mol / L of sodium tungstate was prepared.
 得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行い、厚み100nmの導電層を形成した。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、導電性粒子を得た。得られた導電性粒子では、芯物質と基材粒子とが接触していた。 While stirring the obtained suspension at 60 ° C., the nickel plating solution was gradually added dropwise to the suspension, and electroless nickel plating was performed to form a conductive layer having a thickness of 100 nm. Thereafter, the suspension was filtered to take out the particles, washed with water, and dried to obtain conductive particles. In the obtained conductive particles, the core substance and the base material particles were in contact.
 (実施例15)
 (1)パラジウム付着工程
 実施例1で得られたパラジウムが付着された樹脂粒子を用意した。
(Example 15)
(1) Palladium adhesion process The resin particle to which the palladium obtained in Example 1 was adhered was prepared.
 (2)無電解ニッケルめっき工程
 硫酸ニッケル0.23mol/L、ジメチルアミンボラン0.92mol/L、クエン酸ナトリウム0.5mol/L及びタングステン酸ナトリウム0.01mol/Lを含むニッケルめっき液(pH8.5)を用意した。
(2) Electroless nickel plating step Nickel plating solution containing 0.23 mol / L nickel sulfate, 0.92 mol / L dimethylamine borane, 0.5 mol / L sodium citrate and 0.01 mol / L sodium tungstate (pH 8. 5) was prepared.
 純水1000mL中に得られたパラジウムが付着された樹脂粒子を添加して、超音波分散器にて分散することにより、懸濁液を得た。得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行った。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、ニッケル-タングステン-ボロン層である厚み10nmの第1の導電層で樹脂粒子を被覆して、第1の導電層が形成された粒子を得た。 A suspension was obtained by adding the resin particles to which palladium obtained in 1000 mL of pure water was adhered and dispersing with an ultrasonic disperser. While stirring the obtained suspension at 60 ° C., the nickel plating solution was gradually added dropwise to the suspension to perform electroless nickel plating. Thereafter, the suspension is filtered to remove the particles, washed with water, and dried to coat the resin particles with the first conductive layer having a thickness of 10 nm, which is a nickel-tungsten-boron layer. Particles with a conductive layer formed were obtained.
 (3)芯物質付着工程及び無電解ニッケルめっき工程
 チタン酸バリウム(BaTiO)粒子スラリー(平均粒子径100nm)を用意した。第1の導電層が形成された粒子と金属粒子スラリーとを用いて、第1の導電層の表面を金属粒子で被覆し、懸濁液を得た。
(3) Core substance adhesion step and electroless nickel plating step A barium titanate (BaTiO 3 ) particle slurry (average particle size of 100 nm) was prepared. Using the particles on which the first conductive layer was formed and the metal particle slurry, the surface of the first conductive layer was coated with metal particles to obtain a suspension.
 硫酸ニッケル0.23mol/L、ジメチルアミンボラン0.92mol/L及びクエン酸ナトリウム0.5mol/Lを含むニッケルめっき液(pH7.0)を用意した。 A nickel plating solution (pH 7.0) containing 0.23 mol / L of nickel sulfate, 0.92 mol / L of dimethylamine borane and 0.5 mol / L of sodium citrate was prepared.
 得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行い、厚み90nmの第2の導電層を形成した。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、導電性粒子を得た。得られた導電性粒子は、第2の導電層の外側の表面に突起を有し、第2の導電層の突起の内側に芯物質が配置されていた。また、樹脂粒子と芯物質との間に、第1の導電層が配置されていた。 While stirring the obtained suspension at 60 ° C., the above nickel plating solution was gradually added dropwise to the suspension, and electroless nickel plating was performed to form a second conductive layer having a thickness of 90 nm. Thereafter, the suspension was filtered to take out the particles, washed with water, and dried to obtain conductive particles. The obtained conductive particles had protrusions on the outer surface of the second conductive layer, and the core substance was disposed inside the protrusions of the second conductive layer. Moreover, the 1st conductive layer was arrange | positioned between the resin particle and the core substance.
 (実施例16)
 ニッケル-タングステン-ボロン層である第1の導電層の厚みを5.1nmに変更したこと以外は実施例15と同様にして、導電性粒子を得た。
(Example 16)
Conductive particles were obtained in the same manner as in Example 15 except that the thickness of the first conductive layer, which was a nickel-tungsten-boron layer, was changed to 5.1 nm.
 (実施例17)
 ニッケル-タングステン-ボロン層である第1の導電層の厚みを20nmに変更したこと以外は実施例15と同様にして、導電性粒子を得た。
(Example 17)
Conductive particles were obtained in the same manner as in Example 15 except that the thickness of the first conductive layer, which was a nickel-tungsten-boron layer, was changed to 20 nm.
 (実施例18)
 チタン酸バリウム(BaTiO)粒子スラリー(平均粒子径100nm)をアルミナ(Al)粒子スラリー(平均粒子径100nm)に変更したこと以外は実施例15と同様にして、導電性粒子を得た。
(Example 18)
Conductive particles were obtained in the same manner as in Example 15 except that the barium titanate (BaTiO 3 ) particle slurry (average particle size 100 nm) was changed to alumina (Al 2 O 3 ) particle slurry (average particle size 100 nm). It was.
 (実施例19)
 チタン酸バリウム(BaTiO)粒子スラリー(平均粒子径100nm)をアルミナ(Al)粒子スラリー(平均粒子径100nm)に変更したこと以外は実施例16と同様にして、導電性粒子を得た。
(Example 19)
Conductive particles were obtained in the same manner as in Example 16 except that the barium titanate (BaTiO 3 ) particle slurry (average particle size 100 nm) was changed to alumina (Al 2 O 3 ) particle slurry (average particle size 100 nm). It was.
 (実施例20)
 チタン酸バリウム(BaTiO)粒子スラリー(平均粒子径100nm)をアルミナ(Al)粒子スラリー(平均粒子径100nm)に変更したこと以外は実施例17と同様にして、導電性粒子を得た。
(Example 20)
Conductive particles were obtained in the same manner as in Example 17 except that the barium titanate (BaTiO 3 ) particle slurry (average particle size 100 nm) was changed to alumina (Al 2 O 3 ) particle slurry (average particle size 100 nm). It was.
 (実施例21)
 第2の導電層を形成するためのニッケルめっき液に、タングステン酸ナトリウム0.01mol/Lを追加したこと以外は実施例15と同様にして、導電性粒子を得た。
(Example 21)
Conductive particles were obtained in the same manner as in Example 15 except that sodium tungstate 0.01 mol / L was added to the nickel plating solution for forming the second conductive layer.
 (実施例22)
 実施例9で得られた絶縁性粒子の10重量%水分散を用意した。実施例15で得られた導電性粒子10gをイオン交換水500mLに分散させ、絶縁性粒子の水分散液4gを添加し、室温で6時間攪拌した。3μmのメッシュフィルターでろ過した後、更にメタノールで洗浄し、乾燥し、絶縁性粒子が付着した導電性粒子を得た。
(Example 22)
A 10% by weight aqueous dispersion of the insulating particles obtained in Example 9 was prepared. 10 g of the conductive particles obtained in Example 15 were dispersed in 500 mL of ion-exchanged water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtration through a 3 μm mesh filter, the particles were further washed with methanol and dried to obtain conductive particles having insulating particles attached thereto.
 走査電子顕微鏡(SEM)により観察したところ、導電性粒子の表面に絶縁性粒子による被覆層が1層のみ形成されていた。画像解析により導電性粒子の中心より2.5μmの面積に対する絶縁性粒子の被覆面積(即ち絶縁性粒子の粒子径の投影面積)を算出したところ、被覆率は30%であった。 When observed with a scanning electron microscope (SEM), only one coating layer of insulating particles was formed on the surface of the conductive particles. The coverage of the insulating particles with respect to the area of 2.5 μm from the center of the conductive particles by image analysis (that is, the projected area of the particle diameter of the insulating particles) was calculated to be 30%.
 (比較例5)
 粒子径が5.0μmであるジビニルベンゼン樹脂粒子(積水化学工業社製「ミクロパールSP-205」)を用意した。また、チタン酸バリウム(BaTiO)粒子スラリー(平均粒子径100nm)を用意した。樹脂粒子と金属粒子スラリーとを用いて、樹脂粒子の表面を芯物質で被覆し、懸濁液を得た。
(Comparative Example 5)
Divinylbenzene resin particles (“Micropearl SP-205” manufactured by Sekisui Chemical Co., Ltd.) having a particle diameter of 5.0 μm were prepared. Moreover, barium titanate (BaTiO 3 ) particle slurry (average particle diameter: 100 nm) was prepared. Using resin particles and metal particle slurry, the surface of the resin particles was coated with a core substance to obtain a suspension.
 硫酸ニッケル0.23mol/L、ジメチルアミンボラン0.92mol/L、クエン酸ナトリウム0.5mol/L及びタングステン酸ナトリウム0.01mol/Lを含むニッケルめっき液(pH8.5)を用意した。 A nickel plating solution (pH 8.5) containing 0.23 mol / L of nickel sulfate, 0.92 mol / L of dimethylamine borane, 0.5 mol / L of sodium citrate and 0.01 mol / L of sodium tungstate was prepared.
 得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行い、厚み100nmの導電層を形成した。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、導電性粒子を得た。得られた導電性粒子では、芯物質と基材粒子とが接触していた。 While stirring the obtained suspension at 60 ° C., the nickel plating solution was gradually added dropwise to the suspension, and electroless nickel plating was performed to form a conductive layer having a thickness of 100 nm. Thereafter, the suspension was filtered to take out the particles, washed with water, and dried to obtain conductive particles. In the obtained conductive particles, the core substance and the base material particles were in contact.
 (比較例6)
 ニッケル-タングステン-ボロン層である第1の導電層の厚みを1nmに変更したこと以外は実施例18と同様にして、導電性粒子を得た。
(Comparative Example 6)
Conductive particles were obtained in the same manner as in Example 18 except that the thickness of the first conductive layer, which was a nickel-tungsten-boron layer, was changed to 1 nm.
 (実施例23)
 実施例9で得られた絶縁性粒子の10重量%水分散を用意した。実施例18で得られた導電性粒子10gをイオン交換水500mLに分散させ、絶縁性粒子の水分散液4gを添加し、室温で6時間攪拌した。3μmのメッシュフィルターでろ過した後、更にメタノールで洗浄し、乾燥し、絶縁性粒子が付着した導電性粒子を得た。
(Example 23)
A 10% by weight aqueous dispersion of the insulating particles obtained in Example 9 was prepared. 10 g of the conductive particles obtained in Example 18 were dispersed in 500 mL of ion-exchanged water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtration through a 3 μm mesh filter, the particles were further washed with methanol and dried to obtain conductive particles having insulating particles attached thereto.
 走査電子顕微鏡(SEM)により観察したところ、導電性粒子の表面に絶縁性粒子による被覆層が1層のみ形成されていた。画像解析により導電性粒子の中心より2.5μmの面積に対する絶縁性粒子の被覆面積(即ち絶縁性粒子の粒子径の投影面積)を算出したところ、被覆率は30%であった。 When observed with a scanning electron microscope (SEM), only one coating layer of insulating particles was formed on the surface of the conductive particles. The coverage of the insulating particles with respect to the area of 2.5 μm from the center of the conductive particles by image analysis (that is, the projected area of the particle diameter of the insulating particles) was calculated to be 30%.
 (評価)
 (1)基材粒子の表面と芯物質の表面との間の平均距離
 得られた導電性粒子を切断し、断面観察することにより、基材粒子の表面と複数の芯物質との間の距離を測定した。基材粒子の表面と芯物質の表面との間の距離は、導電性粒子の複数箇所の断面を撮影して画像を得て、得られた画像から立体画像を作成し、得られた立体画像を用いることで、測定した。上記断面の撮影は、日本FEI社製、集光イオンビーム-走査電子顕微鏡(FIBSEM)装置名Helious NanoLab.650を用いて行った。集束イオンビームを用いて、導電性粒子の薄膜切片を作製し、走査型電子顕微鏡にて断面を観察した。その操作を200回繰り返し、画像解析することで粒子の立体画像を得た。立体画像から、基材粒子の表面と芯物質の表面との間の距離を求めた。
(Evaluation)
(1) Average distance between the surface of the base particle and the surface of the core material The distance between the surface of the base particle and a plurality of core materials by cutting the obtained conductive particles and observing the cross section Was measured. The distance between the surface of the base material particle and the surface of the core material is obtained by photographing a plurality of cross-sections of the conductive particles to obtain an image, creating a stereoscopic image from the obtained image, and obtaining the stereoscopic image It was measured by using. The above cross-section was photographed by FEI Japan, focused ion beam-scanning electron microscope (FIBSEM) apparatus name Helios NanoLab. 650. A thin film slice of conductive particles was prepared using a focused ion beam, and the cross section was observed with a scanning electron microscope. The operation was repeated 200 times, and image analysis was performed to obtain a three-dimensional image of the particles. From the stereoscopic image, the distance between the surface of the base particle and the surface of the core material was determined.
 (2)芯物質の全個数100重量%中、基材粒子の表面と芯物質の表面との間の距離が5nmを超える芯物質の個数の割合(%)
 上記(1)の評価項目と同様にして、芯物質の全個数100重量%中、基材粒子の表面と芯物質の表面との間の距離が5nmを超える芯物質の個数の割合(%)を測定し、下記の基準で判定した。
(2) The ratio (%) of the number of core materials in which the distance between the surface of the base material particles and the surface of the core material exceeds 5 nm in 100% by weight of the total number of core materials.
In the same manner as the evaluation item (1) above, the ratio (%) of the number of core materials in which the distance between the surface of the base material particles and the surface of the core material exceeds 5 nm in the total number of core materials of 100% by weight. Was measured and judged according to the following criteria.
 [基材粒子の表面と芯物質の表面との間の距離が5nmを超える芯物質の個数の割合(%)の判定基準]
 A:上記個数の割合が80%を超える
 B:上記個数の割合が80%以下
[Criteria for the ratio (%) of the number of core materials in which the distance between the surface of the substrate particles and the surface of the core material exceeds 5 nm]
A: The ratio of the number exceeds 80% B: The ratio of the number is 80% or less
 (3)接続抵抗
 接続構造体の作製:
 ビスフェノールA型エポキシ樹脂(三菱化学社製「エピコート1009」)10重量部と、アクリルゴム(重量平均分子量約80万)40重量部と、メチルエチルケトン200重量部と、マイクロカプセル型硬化剤(旭化成ケミカルズ社製「HX3941HP」)50重量部と、シランカップリング剤(東レダウコーニングシリコーン社製「SH6040」)2重量部とを混合し、導電性粒子を含有量が3重量%となるように添加し、分散させ、樹脂組成物を得た。
(3) Connection resistance Fabrication of connection structure:
10 parts by weight of bisphenol A type epoxy resin (“Epicoat 1009” manufactured by Mitsubishi Chemical Corporation), 40 parts by weight of acrylic rubber (weight average molecular weight of about 800,000), 200 parts by weight of methyl ethyl ketone, and a microcapsule type curing agent (Asahi Kasei Chemicals) "HX3941HP" manufactured by HX3941) and 2 parts by weight of a silane coupling agent ("SH6040" manufactured by Toray Dow Corning Silicone Co., Ltd.) are mixed, and the conductive particles are added so that the content is 3% by weight. A resin composition was obtained by dispersing.
 得られた樹脂組成物を、片面が離型処理された厚さ50μmのPET(ポリエチレンテレフタレート)フィルムに塗布し、70℃の熱風で5分間乾燥し、異方性導電フィルムを作製した。得られた異方性導電フィルムの厚さは12μmであった。 The obtained resin composition was applied to a 50 μm-thick PET (polyethylene terephthalate) film whose one surface was release-treated, and dried with hot air at 70 ° C. for 5 minutes to produce an anisotropic conductive film. The thickness of the obtained anisotropic conductive film was 12 μm.
 得られた異方性導電フィルムを5mm×5mmの大きさに切断した。切断された異方性導電フィルムを、一方に抵抗測定用の引き回し線を有するアルミニウム電極(高さ0.2μm、L/S=20μm/20μm)を有するガラス基板(幅3cm、長さ3cm)のアルミニウム電極側のほぼ中央に貼り付けた。次いで、同じアルミニウム電極を有する2層フレキシブルプリント基板(幅2cm、長さ1cm)を、電極同士が重なるように位置合わせをしてから貼り合わせた。このガラス基板と2層フレキシブルプリント基板との積層体を、10N、180℃、及び20秒間の圧着条件で熱圧着し、接続構造体を得た。なお、ポリイミドフィルムにアルミニウム電極が直接形成されている2層フレキシブルプリント基板を用いた。 The obtained anisotropic conductive film was cut into a size of 5 mm × 5 mm. The cut anisotropic conductive film is formed of a glass substrate (width 3 cm, length 3 cm) having an aluminum electrode (height 0.2 μm, L / S = 20 μm / 20 μm) having a lead wire for resistance measurement on one side. Affixed almost at the center on the aluminum electrode side. Next, a two-layer flexible printed board (width 2 cm, length 1 cm) having the same aluminum electrode was aligned and aligned so that the electrodes overlapped. The laminated body of the glass substrate and the two-layer flexible printed circuit board was thermocompression bonded under pressure bonding conditions of 10 N, 180 ° C., and 20 seconds to obtain a connection structure. A two-layer flexible printed board in which an aluminum electrode is directly formed on a polyimide film was used.
 接続抵抗の測定:
 得られた接続構造体の対向する電極間の接続抵抗を4端子法により測定した。また、接続抵抗を下記の基準で判定した。
Connection resistance measurement:
The connection resistance between the opposing electrodes of the obtained connection structure was measured by the 4-terminal method. Further, the connection resistance was determined according to the following criteria.
 [接続抵抗の判定基準]
 ○○:接続抵抗が2.0Ω以下
 ○:接続抵抗が2.0Ωを超え、3.0Ω以下
 △:接続抵抗が3.0Ωを超え、5.0Ω以下
 ×:接続抵抗が5.0Ωを超える
[Criteria for connection resistance]
○○: Connection resistance is 2.0Ω or less ○: Connection resistance exceeds 2.0Ω, 3.0Ω or less △: Connection resistance exceeds 3.0Ω, 5.0Ω or less ×: Connection resistance exceeds 5.0Ω
 (4)耐衝撃性
 上記(3)接続抵抗の評価で得られた接続構造体を高さ70cmの位置から落下させ、導通を確認することにより耐衝撃性の評価を行った。初期抵抗値からの抵抗値の上昇率から、耐衝撃性を下記の基準で判定した。
(4) Impact resistance The connection structure obtained by the evaluation of (3) connection resistance was dropped from a position of 70 cm in height, and the impact resistance was evaluated by confirming conduction. From the rate of increase in resistance value from the initial resistance value, impact resistance was determined according to the following criteria.
 [耐衝撃性の判定基準]
 ○○:初期抵抗値からの抵抗値の上昇率が20%以下
 ○:初期抵抗値からの抵抗値の上昇率が20%を超え、35%以下
 △:初期抵抗値からの抵抗値の上昇率が35%を超え、50%以下
 ×:初期抵抗値からの抵抗値の上昇率が50%を超える
[Evaluation criteria for impact resistance]
○○: Resistance value increase rate from initial resistance value is 20% or less ○: Resistance value increase rate from initial resistance value exceeds 20%, 35% or less Δ: Resistance value increase rate from initial resistance value Exceeds 35% and 50% or less ×: The rate of increase in resistance value from the initial resistance value exceeds 50%
 (5)圧痕の状態
 微分干渉顕微鏡を用いて、上記(3)接続抵抗の評価で得られた接続構造体のガラス基板側から、ガラス基板に設けられた電極を観察し、導電性粒子が接触した電極の圧痕の形成の有無を下記の判定基準で評価した。なお、電極の圧痕の形成の有無について、電極面積が0.02mmとなるように、微分干渉顕微鏡にて観察し、電極面積0.02mmあたりの圧痕の個数を算出した。任意の10箇所を微分干渉顕微鏡にて観察し、電極面積0.02mmあたりの圧痕の個数の平均値を算出した。
(5) Indentation state Using a differential interference microscope, the electrode provided on the glass substrate is observed from the glass substrate side of the connection structure obtained in the above (3) connection resistance evaluation, and the conductive particles are in contact with each other. The presence or absence of formation of indentations on the electrodes was evaluated according to the following criteria. In addition, the presence or absence of formation of the impression of the electrode was observed with a differential interference microscope so that the electrode area was 0.02 mm 2, and the number of impressions per electrode area of 0.02 mm 2 was calculated. Arbitrary ten places were observed with the differential interference microscope, and the average value of the number of indentations per electrode area of 0.02 mm 2 was calculated.
 [圧痕の状態の判定基準]
 ○:電極面積0.02mmあたりの圧痕の個数の平均値が20個以上
 △:電極面積0.02mmあたりの圧痕の個数の平均値が5個以上、20個未満
 ×:電極面積0.02mmあたりの圧痕の個数の平均値が5個未満
[Criteria for indentation state]
◯: The average value of the number of impressions per electrode area 0.02 mm 2 is 20 or more. Δ: The average value of the number of impressions per electrode area 0.02 mm 2 is 5 or more and less than 20. ×: Electrode area 0. The average number of impressions per 02 mm 2 is less than 5
 結果を下記の表1~3に示す。なお、下記の表1~3に、第1,第2の導電層及び芯物質のモース硬度を示した。また、下記表1~3において、「-」は評価していないことを示す。 The results are shown in Tables 1 to 3 below. Tables 1 to 3 below show the Mohs hardness of the first and second conductive layers and the core material. In Tables 1 to 3 below, “-” indicates no evaluation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 1…導電性粒子
 2…基材粒子
 3…導電層
 3a…突起
 3b…導電層部分
 4…芯物質
 5…絶縁物質
 11…導電性粒子
 12…導電層
 12a…突起
 12b…導電層部分
 16…第1の導電層
 17…第2の導電層
 17a…突起
 21…導電性粒子
 22…導電層
 22a…突起
 22b…導電層部分
 26…第1の導電層
 27…第2の導電層
 27a…突起
 28…第3の導電層
 28a…突起
 51…接続構造体
 52…第1の接続対象部材
 52a…上面
 52b…電極
 53…第2の接続対象部材
 53a…下面
 53b…電極
 54…接続部
DESCRIPTION OF SYMBOLS 1 ... Conductive particle 2 ... Base material particle 3 ... Conductive layer 3a ... Protrusion 3b ... Conductive layer part 4 ... Core substance 5 ... Insulating substance 11 ... Conductive particle 12 ... Conductive layer 12a ... Protrusion 12b ... Conductive layer part 16 ... First 1 conductive layer 17 second conductive layer 17a projection 21 conductive particles 22 conductive layer 22a projection 22b conductive layer portion 26 first conductive layer 27 second conductive layer 27a projection 28 3rd conductive layer 28a ... projection 51 ... connection structure 52 ... 1st connection object member 52a ... upper surface 52b ... electrode 53 ... 2nd connection object member 53a ... lower surface 53b ... electrode 54 ... connection part

Claims (11)

  1.  基材粒子と、
     前記基材粒子を被覆している導電層と、
     前記導電層内に埋め込まれている複数の芯物質とを備え、
     前記導電層が外側の表面に複数の突起を有し、前記導電層の前記突起の内側に前記芯物質が配置されており、
     前記基材粒子と前記芯物質との間に前記導電層が配置されており、前記基材粒子の表面と前記芯物質の表面とが距離を隔てており、前記基材粒子の表面と前記芯物質の表面との間の平均距離が5nmを超える、導電性粒子。
    Substrate particles,
    A conductive layer covering the substrate particles;
    A plurality of core materials embedded in the conductive layer,
    The conductive layer has a plurality of protrusions on the outer surface, and the core substance is disposed inside the protrusions of the conductive layer;
    The conductive layer is disposed between the base material particle and the core material, and the surface of the base material particle and the surface of the core material are spaced apart from each other, and the surface of the base material particle and the core Conductive particles having an average distance from the surface of the substance of more than 5 nm.
  2.  前記基材粒子の表面と前記芯物質の表面との間の平均距離が、5nmを超えかつ800nm以下である、請求項1に記載の導電性粒子。 The conductive particle according to claim 1, wherein an average distance between the surface of the substrate particle and the surface of the core substance is more than 5 nm and not more than 800 nm.
  3.  前記芯物質の全個数100%中、前記基材粒子の表面と前記芯物質の表面との間の距離が5nmを超える芯物質の個数の割合が、80%を超えかつ100%以下である、請求項1又は2に記載の導電性粒子。 In a total number of 100% of the core material, the ratio of the number of core materials in which the distance between the surface of the base material particle and the surface of the core material exceeds 5 nm is more than 80% and not more than 100%. The electroconductive particle of Claim 1 or 2.
  4.  前記芯物質に最も多く含まれる金属元素と前記導電層に最も多く含まれる金属元素とが同じである、請求項1~3のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 1 to 3, wherein the metal element contained most in the core substance and the metal element contained most in the conductive layer are the same.
  5.  前記導電層が、前記基材粒子を被覆している第1の導電層と、前記第1の導電層及び前記芯物質を被覆している第2の導電層とを備え、
     前記芯物質は、前記第1の導電層の表面上に配置されており、かつ前記第2の導電層内に埋め込まれており、
     前記第2の導電層が外側の表面に複数の突起を有し、
     前記第2の導電層の前記突起の内側に前記芯物質が配置されており、
     前記基材粒子と前記芯物質との間に、前記第1の導電層が配置されている、請求項1~4のいずれか1項に記載の導電性粒子。
    The conductive layer comprises a first conductive layer covering the base particles, and a second conductive layer covering the first conductive layer and the core substance,
    The core material is disposed on a surface of the first conductive layer and embedded in the second conductive layer;
    The second conductive layer has a plurality of protrusions on an outer surface;
    The core substance is disposed inside the protrusion of the second conductive layer;
    The conductive particle according to any one of claims 1 to 4, wherein the first conductive layer is disposed between the base particle and the core substance.
  6.  前記芯物質に最も多く含まれる金属元素と前記第2の導電層に最も多く含まれる金属元素とが同じである、請求項5に記載の導電性粒子。 The conductive particle according to claim 5, wherein the metal element contained most in the core material and the metal element contained most in the second conductive layer are the same.
  7.  前記導電層が単層の導電層である、請求項1~4のいずれか1項に記載の導電性粒子。 The conductive particles according to any one of claims 1 to 4, wherein the conductive layer is a single conductive layer.
  8.  前記芯物質が金属粒子である、請求項1~7のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 1 to 7, wherein the core substance is a metal particle.
  9.  前記導電層の表面に付着している絶縁物質をさらに備える、請求項1~8のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 1 to 8, further comprising an insulating material attached to a surface of the conductive layer.
  10.  請求項1~9のいずれか1項に記載の導電性粒子と、バインダー樹脂とを含む、導電材料。 A conductive material comprising the conductive particles according to any one of claims 1 to 9 and a binder resin.
  11.  第1の接続対象部材と、
     第2の接続対象部材と、
     前記第1,第2の接続対象部材を接続している接続部とを備え、
     前記接続部が、請求項1~9のいずれか1項に記載の導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されている、接続構造体。
    A first connection target member;
    A second connection target member;
    A connecting portion connecting the first and second connection target members;
    A connection structure in which the connection portion is formed of the conductive particles according to any one of claims 1 to 9, or is formed of a conductive material containing the conductive particles and a binder resin.
PCT/JP2012/082910 2011-12-21 2012-12-19 Conductive particles, conductive material, and connection structure WO2013094636A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201810695985.2A CN108806824B (en) 2011-12-21 2012-12-19 Conductive particle, conductive material, and connection structure
CN201280040642.3A CN103748636A (en) 2011-12-21 2012-12-19 Conductive particles, conductive material, and connection structure
KR1020137029906A KR101942602B1 (en) 2011-12-21 2012-12-19 Conductive particles, conductive material, and connection structure
JP2012558095A JP6049461B2 (en) 2011-12-21 2012-12-19 Conductive particles, conductive materials, and connection structures

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011280083 2011-12-21
JP2011-280083 2011-12-21
JP2011280082 2011-12-21
JP2011280084 2011-12-21
JP2011-280082 2011-12-21
JP2011-280084 2011-12-21

Publications (1)

Publication Number Publication Date
WO2013094636A1 true WO2013094636A1 (en) 2013-06-27

Family

ID=48668520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082910 WO2013094636A1 (en) 2011-12-21 2012-12-19 Conductive particles, conductive material, and connection structure

Country Status (5)

Country Link
JP (2) JP6049461B2 (en)
KR (1) KR101942602B1 (en)
CN (2) CN103748636A (en)
TW (1) TWI615858B (en)
WO (1) WO2013094636A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038865A (en) * 2013-07-16 2015-02-26 積水化学工業株式会社 Conductive particles, conductive material and connection structure
JP2015057769A (en) * 2013-08-12 2015-03-26 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP2015057768A (en) * 2013-08-12 2015-03-26 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP2015109268A (en) * 2013-10-21 2015-06-11 積水化学工業株式会社 Conductive particle, conductive material, and connection structure
JP2015109269A (en) * 2013-10-21 2015-06-11 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP2015109271A (en) * 2013-10-23 2015-06-11 積水化学工業株式会社 Conductive particle, conductive material, and connection structure
JP2015118931A (en) * 2013-11-18 2015-06-25 積水化学工業株式会社 Conductive particle, conductive material and connection structure
WO2015146434A1 (en) * 2014-03-26 2015-10-01 デクセリアルズ株式会社 Electroconductive particles, electroconductive adhesive, method for manufacturing connection body, method for connecting electronic component, and connection body
JP2015197955A (en) * 2014-03-31 2015-11-09 日立化成株式会社 Conductive particle
JP2016015312A (en) * 2014-06-11 2016-01-28 積水化学工業株式会社 Conductive particle, method of producing conductive particle, conductive material and connection structure
JP2016018705A (en) * 2014-07-09 2016-02-01 日立化成株式会社 Conductive particle, insulation coated conductive particle, anisotropic conductive adhesive, connection structure and method of producing conductive particle
WO2016068165A1 (en) * 2014-10-29 2016-05-06 デクセリアルズ株式会社 Conductive material
JP2016076338A (en) * 2014-10-03 2016-05-12 日立化成株式会社 Conductive particle
JP2016089153A (en) * 2014-10-29 2016-05-23 デクセリアルズ株式会社 Conductive material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106605273A (en) * 2014-10-22 2017-04-26 积水化学工业株式会社 Conductive particles, conductive material and connection structure
CN107851482B (en) * 2016-02-08 2020-03-20 积水化学工业株式会社 Conductive particle, conductive material, and connection structure
KR102649652B1 (en) * 2016-02-10 2024-03-19 가부시끼가이샤 레조낙 Conductive particles, insulating coated conductive particles, anisotropic conductive adhesive, bonded structure, and manufacturing method of conductive particles
CN114951647A (en) * 2022-05-31 2022-08-30 安徽安坤新材科技有限公司 Preparation method of copper-aluminum composite material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027569A (en) * 2008-07-24 2010-02-04 Sony Chemical & Information Device Corp Conductive particle, anisotropic conductive film, joined body and connecting method
JP2011204531A (en) * 2010-03-26 2011-10-13 Sekisui Chem Co Ltd Conductive particle, manufacturing method of conductive particle, anisotropic conductive material, and connection structure

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3696429B2 (en) 1999-02-22 2005-09-21 日本化学工業株式会社 Conductive electroless plating powder, method for producing the same, and conductive material comprising the plating powder
CN100437838C (en) * 2003-07-07 2008-11-26 积水化学工业株式会社 Coated conductive particle, anisotropic conductive material, and conductive connection structure
KR101131229B1 (en) * 2004-01-30 2012-03-28 세키스이가가쿠 고교가부시키가이샤 Conductive particle and anisotropic conductive material
JP4563110B2 (en) * 2004-08-20 2010-10-13 積水化学工業株式会社 Method for producing conductive fine particles
JP4860163B2 (en) 2005-02-15 2012-01-25 積水化学工業株式会社 Method for producing conductive fine particles
JP2007207665A (en) * 2006-02-03 2007-08-16 Sekisui Chem Co Ltd Manufacturing method of conductive particle, conductive particle and anisotropic conductive material
CN101529574A (en) * 2006-10-31 2009-09-09 日立化成工业株式会社 Circuit connection structure
JP2009032397A (en) * 2007-07-24 2009-02-12 Sekisui Chem Co Ltd Conductive fine particle
JP2011100605A (en) * 2009-11-05 2011-05-19 Hitachi Chem Co Ltd Circuit connecting material and connection structure of circuit member using the same
JP5589361B2 (en) 2009-11-16 2014-09-17 日立化成株式会社 Conductive particles and method for producing the same
CN102272863B (en) * 2010-03-17 2013-09-04 积水化学工业株式会社 Conductive particle, method for manufacturing conductive particle, anisotropic conductive material, and connection structure
JP5476210B2 (en) * 2010-05-19 2014-04-23 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures
JP5940760B2 (en) * 2010-05-19 2016-06-29 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027569A (en) * 2008-07-24 2010-02-04 Sony Chemical & Information Device Corp Conductive particle, anisotropic conductive film, joined body and connecting method
JP2011204531A (en) * 2010-03-26 2011-10-13 Sekisui Chem Co Ltd Conductive particle, manufacturing method of conductive particle, anisotropic conductive material, and connection structure

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038865A (en) * 2013-07-16 2015-02-26 積水化学工業株式会社 Conductive particles, conductive material and connection structure
JP2015057769A (en) * 2013-08-12 2015-03-26 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP2015057768A (en) * 2013-08-12 2015-03-26 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP2015109268A (en) * 2013-10-21 2015-06-11 積水化学工業株式会社 Conductive particle, conductive material, and connection structure
JP2015109269A (en) * 2013-10-21 2015-06-11 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP2019075380A (en) * 2013-10-21 2019-05-16 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP2015109271A (en) * 2013-10-23 2015-06-11 積水化学工業株式会社 Conductive particle, conductive material, and connection structure
JP2015118931A (en) * 2013-11-18 2015-06-25 積水化学工業株式会社 Conductive particle, conductive material and connection structure
CN106133846A (en) * 2014-03-26 2016-11-16 迪睿合株式会社 Conducting particles, conductive adhesive, the manufacture method of connector, the method for attachment of electronic unit and connector
JP2015195178A (en) * 2014-03-26 2015-11-05 デクセリアルズ株式会社 Conductive particle, conductive adhesive, method for producing connection body, method for connecting electronic component, and connection body
WO2015146434A1 (en) * 2014-03-26 2015-10-01 デクセリアルズ株式会社 Electroconductive particles, electroconductive adhesive, method for manufacturing connection body, method for connecting electronic component, and connection body
JP2015197955A (en) * 2014-03-31 2015-11-09 日立化成株式会社 Conductive particle
JP2016015312A (en) * 2014-06-11 2016-01-28 積水化学工業株式会社 Conductive particle, method of producing conductive particle, conductive material and connection structure
JP2016018705A (en) * 2014-07-09 2016-02-01 日立化成株式会社 Conductive particle, insulation coated conductive particle, anisotropic conductive adhesive, connection structure and method of producing conductive particle
JP2016076338A (en) * 2014-10-03 2016-05-12 日立化成株式会社 Conductive particle
WO2016068165A1 (en) * 2014-10-29 2016-05-06 デクセリアルズ株式会社 Conductive material
JP2016089153A (en) * 2014-10-29 2016-05-23 デクセリアルズ株式会社 Conductive material
US20170310020A1 (en) * 2014-10-29 2017-10-26 Dexerials Corporation Electrically conductive material
US10177465B2 (en) 2014-10-29 2019-01-08 Dexerials Corporation Electrically conductive material
JP2020170706A (en) * 2014-10-29 2020-10-15 デクセリアルズ株式会社 Conductive material
JP7100088B2 (en) 2014-10-29 2022-07-12 デクセリアルズ株式会社 Conductive material

Also Published As

Publication number Publication date
KR101942602B1 (en) 2019-01-25
JPWO2013094636A1 (en) 2015-04-27
CN108806824B (en) 2023-07-25
KR20140106384A (en) 2014-09-03
JP6247371B2 (en) 2017-12-13
CN108806824A (en) 2018-11-13
JP6049461B2 (en) 2016-12-21
TW201333980A (en) 2013-08-16
JP2017084794A (en) 2017-05-18
TWI615858B (en) 2018-02-21
CN103748636A (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP6247371B2 (en) Conductive particles, conductive materials, and connection structures
JP6470810B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP5216165B1 (en) Conductive particles, conductive materials, and connection structures
JP6034177B2 (en) Conductive particles, conductive materials, and connection structures
JP6333552B2 (en) Conductive particles, conductive materials, and connection structures
JP6009933B2 (en) Conductive particles, conductive materials, and connection structures
JP6276351B2 (en) Conductive particles, conductive materials, and connection structures
JP5636118B2 (en) Conductive particles, conductive materials, and connection structures
JP6084868B2 (en) Conductive particles, conductive materials, and connection structures
JP6478308B2 (en) Conductive particles, conductive materials, and connection structures
JP2014026971A (en) Conductive particle, conductive material, and connection structure
JP7180981B2 (en) Conductive particles, conductive materials and connecting structures
JP6441555B2 (en) Conductive particles, conductive materials, and connection structures
JP7132274B2 (en) Conductive particles, conductive materials and connecting structures
JP2015109267A (en) Conductive particle, conductive material, and connection structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012558095

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137029906

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858965

Country of ref document: EP

Kind code of ref document: A1