[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013094585A1 - Glass fiber composite resin substrate - Google Patents

Glass fiber composite resin substrate Download PDF

Info

Publication number
WO2013094585A1
WO2013094585A1 PCT/JP2012/082744 JP2012082744W WO2013094585A1 WO 2013094585 A1 WO2013094585 A1 WO 2013094585A1 JP 2012082744 W JP2012082744 W JP 2012082744W WO 2013094585 A1 WO2013094585 A1 WO 2013094585A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
glass fiber
fiber composite
resin composition
cage
Prior art date
Application number
PCT/JP2012/082744
Other languages
French (fr)
Japanese (ja)
Inventor
正敏 湯浅
悠子 村上
Original Assignee
新日鐵住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金化学株式会社 filed Critical 新日鐵住金化学株式会社
Priority to KR1020147019805A priority Critical patent/KR20140105575A/en
Priority to CN201280063174.1A priority patent/CN104011118A/en
Publication of WO2013094585A1 publication Critical patent/WO2013094585A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • C08F283/122Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes on to saturated polysiloxanes containing hydrolysable groups, e.g. alkoxy-, thio-, hydroxy-
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/148Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • C08F222/1025Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate of aromatic dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups

Definitions

  • the present invention relates to a glass fiber composite resin substrate.
  • Glass has the characteristics of excellent transparency, heat resistance, low thermal expansion, chemical stability, etc., and has been widely used as optical glass for lenses, optical disks, display substrates, etc. and contributes to industrial development. is doing.
  • it has been studied to reduce the thickness and weight of optical glass having a large specific gravity.
  • glass has a drawback that it is vulnerable to impact and easily breaks, and its mechanical strength is further reduced when it is made thinner, so that the yield due to cracking during the manufacturing process is lowered.
  • Patent Document 1 discloses a metal oxide polymer containing an organic group.
  • a thin film sheet-like substrate is described in which a resin layer containing as a main component is laminated on the surface of a glass substrate.
  • Patent Document 2 discloses a metal oxide polymer containing an organic group.
  • a thin film sheet-like substrate is described in which a resin layer containing as a main component is laminated on the surface of a glass substrate.
  • Such a thin sheet-like substrate uses plate-like glass, further weight reduction is difficult, and mechanical strength is still insufficient.
  • transparent plastics have attracted attention as optical members that can replace glass, from the viewpoint of easy weight reduction and thinning, and excellent workability.
  • transparent plastics include polymethyl methacrylate (PMMA), alicyclic polyolefin, epoxy resin, silicone resin, etc.
  • PMMA and alicyclic polyolefin have particularly excellent transparency, and thus organic glass. It is often used for applications such as optical lenses, light guide plates for liquid crystal displays, and optical disks.
  • PMMA polymethyl methacrylate
  • alicyclic polyolefin have particularly excellent transparency, and thus organic glass. It is often used for applications such as optical lenses, light guide plates for liquid crystal displays, and optical disks.
  • a temperature of at least 300 ° C. to 350 ° C. is required, whereas a resin such as PMMA is used.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-231934
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-51960
  • a glass fiber such as a glass cloth and an Abbe number and a refractive index are respectively described in A composite resin obtained by combining a curable resin such as a near epoxy resin or an acrylate resin is described.
  • the present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a glass fiber composite resin substrate having a high level of heat resistance and transparency and a sufficiently low thermal expansion coefficient.
  • the present inventors have made a (meth) acryloyl group as the curable resin composition in a glass fiber composite resin substrate comprising a curable resin composition and glass fibers.
  • a specific cage silsesquioxane resin having at least one group selected from the group consisting of glycidyl group and vinyl group, and two or more unsaturated functional groups containing a carbon-carbon double bond
  • a curable resin composition containing a specific unsaturated compound having a curing catalyst and a content of the cage silsesquioxane resin within a specific range a high level of heat resistance
  • the present invention has been completed by finding that a glass fiber composite resin substrate having good properties and transparency and having a sufficiently small thermal expansion coefficient can be obtained.
  • the glass fiber composite resin substrate of the present invention is A glass fiber composite resin substrate comprising a curable resin composition and glass fiber
  • An unsaturated compound other than the above cage-type silsesquioxane resin having two or more unsaturated functional groups selected from the group consisting of the groups represented by: and (C) a curing catalyst, and (A) The content of the cage silsesquioxane resin is 5 to 90% by mass with respect to the entire curable resin composition.
  • the (A) cage silsesquioxane resin is represented by the following general formula (3): [R 3 SiO 3/2 ] n [R 4 SiO 3/2 ] m ⁇ (3) ⁇ In Formula (3), R 3 represents an organic group having a group selected from the group consisting of a (meth) acryloyl group, a glycidyl group, and a vinyl group, and R 4 represents a hydrogen atom, having 1 to 20 carbon atoms.
  • the ratio of n to m (n: m) is preferably 10: 0 to 4: 6, It is preferable that the cage silsesquioxane resin represented by the general formula (3) is 50% by mass or more based on the entire cage silsesquioxane resin (A).
  • the unsaturated functional group of the unsaturated compound (B) is at least one selected from the group consisting of acryloyl group, methacryloyl group, allyl group and vinyl group.
  • the number of the unsaturated functional groups of the unsaturated compound (B) is preferably 2 to 10 per molecule of the compound.
  • the glass fiber composite resin substrate of the present invention is preferably one obtained by impregnating the glass fiber with the curable resin composition and then curing the curable resin composition. Furthermore, the mass ratio of the cured product of the curable resin composition to the glass fiber (the mass of the cured product: the mass of the glass fiber) is preferably 20:80 to 70:30, and the thickness is 0.03. It is preferable that the thickness is ⁇ 0.5 mm.
  • the glass fiber composite resin substrate of the present invention is A glass fiber composite resin substrate comprising a curable resin composition and glass fiber
  • the curable resin composition is (A) a cage silsesquioxane resin having at least one group selected from the group consisting of (meth) acryloyl group, glycidyl group and vinyl group, (B) The cage silsesquioxane resin having two or more unsaturated functional groups selected from the group consisting of the group represented by the general formula (1) and the group represented by the general formula (2). Unsaturated compounds other than, and (C) a curing catalyst is contained, and the content of the (A) cage silsesquioxane resin is 5 to 90% by mass with respect to the entire curable resin composition.
  • the cage-type silsesquioxane resin refers to a siloxane having a completely closed polyhedral structure or a siloxane in which a part of —Si—O—Si— bond in the polyhedral structure is cleaved. It may be an oligomer obtained by polymerizing a type silsesquioxane resin as a monomer.
  • the cage silsesquioxane resin according to the present invention is at least one group selected from the group consisting of a (meth) acryloyl group, a glycidyl group, and a vinyl group (hereinafter sometimes collectively referred to as a curable functional group).
  • the curable functional group is preferably bonded directly or via a divalent organic group to a silicon atom arranged at the apex of the polyhedron of the cage silsesquioxane skeleton.
  • the divalent organic group include an alkylene group and a phenylene group.
  • the (meth) acryloyl group means a methacryloyl group and an acryloyl group.
  • the cage-type silsesquioxane resin according to the present invention has a cage-type silylene from the viewpoint that the crosslinking density of the curable resin composition is higher and the heat resistance of the glass fiber composite resin substrate tends to be further improved. It is preferable that the curable functional group is bonded to all the vertices of the polyhedron of the sesquioxane skeleton, and the molecular weight distribution and the molecular structure are controlled, but some of the curable functional groups are alkyl. Other groups such as a group and a phenyl group may be substituted.
  • the curable functional group in the cage silsesquioxane resin according to the present invention is preferably 10: 0 to 6: 4.
  • the ratio between the number of curable functional groups and the number of other groups in the cage silsesquioxane resin is 1 H-NMR (device name: JNM-ECA400 (manufactured by JEOL Ltd.) , Solvent: chloroform-d, temperature: 22.7 ° C., 400 MHz), and the integration ratio of peaks of the curable functional group and other groups.
  • the cage silsesquioxane resin according to the present invention since a crosslinked structure having a rigid structure is formed, the heat resistance in the obtained glass fiber composite resin substrate is further improved, and the thermal expansion coefficient is further increased. From the viewpoint of tending to decrease, the following general formula (3): [R 3 SiO 3/2 ] n [R 4 SiO 3/2 ] m ⁇ (3) It is preferable that it is the cage polysilsesquioxane resin of the closed polyhedral structure represented by these.
  • R 3 represents an organic group having any one group selected from the group consisting of a (meth) acryloyl group, a glycidyl group, and a vinyl group.
  • examples of such an organic group include a (meth) acryloyl group; a glycidyl group; a vinyl group; a (meth) acryloyl group, a glycidyl group, or a group in which a vinyl group is bonded to a divalent hydrocarbon group such as an alkylene group or a phenylene group. Is mentioned.
  • the alkylene group may be linear or branched, has a short bond distance, and from the viewpoint that the heat resistance of the obtained glass fiber composite resin substrate tends to be further improved.
  • the number is preferably 1 to 3.
  • the phenylene group include an unsubstituted phenylene group and a 1,2-phenylene group having a lower alkyl group.
  • the divalent hydrocarbon group is more preferably an alkylene group having 1 to 3 carbon atoms from the viewpoint of easy availability of raw materials, and a glass fiber composite resin substrate having a higher crosslink density. From the viewpoint of being obtained, a propylene group is more preferable.
  • R 3 examples include a methacryloxypropyl group, a glycidoxypropyl group, and an epoxycyclohexyl group. Among these, from the viewpoint of easy availability of raw materials and high polymerization reactivity, methacryloxy. A propyl group is preferred.
  • R 4 is any selected from the group consisting of a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkylsiloxy group having 1 to 20 carbon atoms.
  • the hydrocarbon group having 1 to 20 carbon atoms may be linear, branched or cyclic, and may be an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms. Examples thereof include an alkyl group, a C3-C20 cycloalkenyl group, a phenyl group, and a styryl group.
  • the alkyl group having 1 to 20 carbon atoms may be linear or branched, and has a carbon number from the viewpoint that it is easy to obtain a cage silsesquioxane skeleton. 2 to 10 chain alkyl groups are preferred.
  • Examples of the cycloalkyl group having 3 to 20 carbon atoms include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclohexylethyl group. Among these, from the viewpoint of easy availability. A cyclohexyl group is preferred.
  • Examples of the cycloalkenyl group having 3 to 20 carbon atoms include a cyclopentenyl group and a cyclohexenyl group. Among these, a cyclopentenyl group is preferable from the viewpoint of easy availability.
  • Examples of the alkoxy group having 1 to 20 carbon atoms include a methoxy group, an ethoxy group, and an isopropyl group. Among them, a methoxy group is preferable from the viewpoint of high reactivity.
  • examples of the alkylsiloxy group having 1 to 20 carbon atoms include trimethylsiloxy group, triethylsiloxy group, triphenylsiloxy group, dimethylsiloxy group, t-butyldimethylsiloxy group and the like.
  • R 4 an alkyl group having 2 to 10 carbon atoms and a phenyl group are more preferable from the viewpoint of easily obtaining a cage silsesquioxane skeleton.
  • the cage silsesquioxane resin according to the present invention has a cage structure almost completely condensed, and has a rigid structure by radical polymerization. Since a crosslinked structure is formed, a high level of heat resistance and transparency and a sufficiently small thermal expansion coefficient are achieved in the glass fiber composite resin substrate.
  • R 3 and R 4 may be the same or different.
  • the ratio of n to m is preferably 10: 0 to 4: 6, and 10: 0 to 5: 5. More preferably.
  • the number of m with respect to n exceeds the upper limit, the crosslink density of the glass fiber composite resin substrate is decreased, and the heat resistance tends to decrease or the thermal expansion coefficient tends to increase.
  • the ratio of n to m (n: m), that is, the number of curable functional groups bonded to the apex of the polyhedron of the cage silsesquioxane resin and the number of other groups
  • n: m the number of curable functional groups bonded to the apex of the polyhedron of the cage silsesquioxane resin and the number of other groups
  • the cage silsesquioxane resin according to the present invention since a crosslinked structure having a rigid structure is formed, the heat resistance in the obtained glass fiber composite resin substrate is further improved, and the thermal expansion coefficient is further increased.
  • the cage silsesquioxane resin represented by the formula (3) is preferably 50% by mass or more based on the entire cage silsesquioxane resin according to the present invention. 70% by mass or more is more preferable.
  • R 3 SiX 3 (4) As a method for obtaining such a cage silsesquioxane resin, for example, the following general formula (4): R 3 SiX 3 (4) [In the formula (4), R 3 has the same meaning as R 3 in the general formula (3), and X is any one selected from the group consisting of an alkoxy group, an acetoxy group, a halogen atom and a hydroxy group. The hydrolyzable group of is shown. ]
  • a silicon compound (a) represented by the following general formula (5): R 4 SiX 3 (5) [In Formula (5), R 4 has the same meaning as R 4 in General Formula (3), and X has the same meaning as X in General Formula (4). ] Can be obtained by hydrolyzing in the presence of water, an organic polar solvent and a basic catalyst.
  • X is each independently a hydrolyzable group selected from the group consisting of an alkoxy group, an acetoxy group, a halogen atom and a hydroxy group.
  • the hydrolyzable group is preferably an alkoxy group. Examples of the alkoxy group include methoxy group, ethoxy group, n- and i-propoxy group, n-, i- and t-butoxy group, and methoxy group is preferable from the viewpoint of high reactivity.
  • silicon compound (a) examples include methacryloxymethyltriethoxysilane, methacryloxymethyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, and 3-acryloxypropyltrimethoxy.
  • the silicon compound (a) is preferably 3-methacryloxypropyltrimethoxysilane or 3-acryloxypropyltrimethoxysilane.
  • 1 type may be used independently and 2 or more types may be used in combination.
  • Examples of the silicon compound (b) include phenyltrimethoxysilane, phenyltriethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-butyltrimethoxy. Examples thereof include silane, n-butyltriethoxysilane, t-butyltrimethoxysilane, t-butyltriethoxysilane, n-octyltrimethoxysilane, and n-octyltriethoxysilane.
  • 1 type may be used independently and 2 or more types may be used in combination.
  • the water may be a mass that is sufficient to hydrolyze the hydrolyzable groups in the silicon compounds (a) and (b), and is calculated from the mass of the silicon compounds (a) and (b).
  • the mass is preferably equivalent to 1.0 to 1.5 times mol of the theoretical amount (mol) of the number of hydrolyzable groups to be formed.
  • you may use the water contained in the aqueous solution of the basic catalyst mentioned later as it is.
  • organic polar solvent examples include alcohols such as methanol, ethanol and 2-propanol; acetone; tetrahydrofuran and the like. One of these may be used alone, or two or more may be used in combination. Among these, from the viewpoint of efficiently forming a cage silsesquioxane skeleton, lower alcohols having 1 to 6 carbon atoms that are soluble in water are preferable, and 2-propanol is more preferable. .
  • Examples of the basic catalyst include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, cesium hydroxide; tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, benzyl Examples thereof include ammonium hydroxide salts such as triethylammonium hydroxide. As the basic catalyst according to the present invention, one of these may be used alone, or two or more may be used in combination. Among these, tetramethylammonium hydroxide is preferably used from the viewpoint of high catalytic activity.
  • the amount of such a basic catalyst is preferably 0.1 to 10% by mass with respect to the total mass of the silicon compounds (a) and (b).
  • the said basic catalyst is normally used as aqueous solution, you may use the water contained in the aqueous solution of this basic catalyst as said water.
  • the reaction time is preferably 2 hours or longer, the reaction temperature is preferably 0 to 50 ° C., and more preferably 20 to 40 ° C.
  • the reaction temperature is preferably 0 to 50 ° C., and more preferably 20 to 40 ° C.
  • the reaction time and reaction temperature are less than the lower limit, the hydrolyzable group tends to remain in an unreacted state.
  • the reaction temperature exceeds the above upper limit, the reaction rate becomes too fast, so that a complicated condensation reaction proceeds, and as a result, an increase in the molecular weight of the hydrolysis product is promoted.
  • a reaction composition containing the cage silsesquioxane resin according to the present invention can be obtained.
  • the cage silsesquioxane resin according to the present invention (fully condensed cage silsesquioxane resin (for example, a resin represented by the above formula (3)), partially cleaved cage type
  • a plurality of ladder-type silsesquioxane resins, random-type silsesquioxane resins, and the like are contained as reaction by-products.
  • the content of the cage silsesquioxane resin according to the present invention from the viewpoint that the reaction composition can be used as a raw material of the curable resin composition according to the present invention as it is, It is preferable that it is 50 mass% or more with respect to the said whole reaction composition. Moreover, as content of cage-type silsesquioxane resin represented by said Formula (3) among the obtained cage-type silsesquioxane resins, it is 50 mass with respect to the said whole cage-type silsesquioxane resin. % Or more, and more preferably 70% by mass or more.
  • the total content of the cage silsesquioxane resin according to the present invention in the composition and the content of the cage silsesquioxane resin represented by the formula (3) are as follows: liquid chromatography mass spectrometry (LC-MS, HPLC: Agilent 1100 Series Systems ( manufactured by Agilent Technology Inc.), MS: QSTAR R XL Hybrid LC / MS / MS System (AB SCIEX Inc.) column: SunFire C18 column, mobile phase : H 2 O—CH 3 CN (30-70), speed: 1 ml / min, temperature: 40 ° C., detector: UV (254 nm)) structure of a cage silsesquioxane resin and gel permeation Chromatography (Equipment name: HLC-83 It can be determined from the molecular weight (number average molecular weight) measured by 20 GPC (manufactured by Tosoh Corporation), solvent: THF, column: ultra-high-speed semi-micro SEC column Super
  • one of these cage silsesquioxane resins may be used alone or in combination of two or more.
  • R 1 represents any one selected from the group consisting of an alkylene group, an alkylidene group, and an —OCO— group.
  • the alkylene group and the alkylidene group may be linear or branched, have a short bond distance, and the heat resistance of the obtained glass fiber composite resin substrate tends to be further improved. Therefore, the number of carbon atoms is preferably 1-6. Further, among these, R 1 is preferably an —OCO— group from the viewpoint of high radical polymerization reactivity.
  • R ⁇ 2 > shows a hydrogen atom or an alkyl group each independently.
  • the alkyl group may be linear or branched, and preferably has 1 to 3 carbon atoms from the viewpoint of better radical polymerization reactivity.
  • R 2 is preferably a hydrogen atom or a methyl group from the viewpoint that the reactivity of radical polymerization is further improved.
  • unsaturated functional groups include acryloyl groups, methacryloyl groups, allyl groups, and vinyl groups. Since the unsaturated compound according to the present invention has such an unsaturated functional group, it can be radically polymerized with the (A) cage-type silsesquioxane resin having the curable functional group, The glass fiber composite resin substrate of the present invention having a high level of heat resistance and transparency and a sufficiently small thermal expansion coefficient can be obtained.
  • the unsaturated compound according to the present invention has two or more unsaturated functional groups per molecule of the compound.
  • the number of the unsaturated functional groups is less than the lower limit, a sufficient cross-linked structure is not formed even by radical polymerization with the cage silsesquioxane resin.
  • the elastic modulus is lowered and the heat resistance is lowered.
  • the number of the unsaturated functional groups is preferably 2 to 10.
  • the unsaturated compound according to the present invention may be a monomer or a polymer. When the unsaturated compound is a polymer, the number of unsaturated functional groups is an average value per molecule of the compound. It is.
  • the number (or average number) of unsaturated functional groups per molecule of the compound was 1 H-NMR (device name: JNM-ECA400 (manufactured by JEOL Ltd.), solvent: chloroform-d, temperature: 22.7. Peak area of unsaturated functional group group and gel permeation chromatography (GPC, (device name: HLC-8320GPC (manufactured by Tosoh Corporation)), solvent: THF, column: ultra-high-speed semi-micro SEC column SuperH Series, temperature: 40 ° C., speed: 0.6 ml / min) can be determined from the molecular weight (or number average molecular weight) measured.
  • the unsaturated compound according to the present invention is not particularly limited as long as it has two or more unsaturated functional groups per molecule of the compound, and has a molecular weight (weight average molecular weight in the case of a polymer) of 80. It is preferably ⁇ 5000.
  • the molecular weight is less than the lower limit, when an unreacted unsaturated compound remains in the curing of the curable resin composition, the unreacted unsaturated compound becomes a volatile component in the heat treatment such as heat treatment, and the weight change after curing.
  • the solubility with the cage silsesquioxane resin may be reduced, or the resulting curable resin composition may have a high viscosity and be handled. It tends to be difficult.
  • unsaturated compounds include dicyclopentanyl diacrylate, tripropylene glycol diacrylate, 1,6-hexanediol diacrylate, bisphenol A diglycidyl ether diacrylate, bisphenol full orange acrylate, and tetraethylene glycol diacrylate.
  • the curing catalyst according to the present invention is a catalyst that accelerates a curing reaction (radical polymerization reaction) between the (A) cage silsesquioxane resin and the (B) unsaturated compound.
  • a curing catalyst include a radical polymerization initiator, and examples of the radical polymerization initiator include a photo radical polymerization initiator and a thermal radical polymerization initiator.
  • Examples of the photoradical polymerization initiator include acetophenone-based, benzoin-based, benzophenone-based, thioxanthone-based, and acylphosphine oxide-based photopolymerization initiators. Specific examples include trichloroacetophenone, diethoxyacetophenone, 1-phenyl- 2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, benzoin methyl ether, benzyldimethyl ketal, Examples include benzophenone, thioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, methylphenylglyoxylate, camphorquinone, benzyl, anthraquinone, Michler's ketone and the like.
  • thermal radical polymerization initiator examples include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxydicarbonate, and peroxyester heat.
  • a polymerization initiator is mentioned.
  • the curing catalyst according to the present invention one of these may be used alone, or two or more may be used in combination, and the photo radical polymerization initiator and the thermal radical polymerization initiator are used in combination. May be.
  • the curable resin composition according to the present invention contains the (A) cage-type silsesquioxane resin, the (B) unsaturated compound, and the (C) curing catalyst.
  • the content of the cage silsesquioxane resin needs to be 5 to 90% by mass with respect to the entire curable resin composition.
  • the content of the cage silsesquioxane resin is less than the lower limit, the glass transition temperature in the glass fiber composite resin substrate is lowered and the thermal expansion coefficient is increased. Become.
  • the upper limit is exceeded, the crosslink density in the cured product increases and the glass fiber composite resin substrate becomes brittle, making it difficult to handle.
  • the content of the cage silsesquioxane resin is preferably 8 to 80% by mass.
  • the cage silsesquioxane resin in which 50% by mass or more (more preferably 70% by mass or more) of the cage silsesquioxane resin is represented by the formula (3)
  • the content of the cage silsesquioxane resin represented by the formula (3) is 2.5 to 2.5% with respect to the entire curable resin composition. It is preferably 90% by mass, and more preferably 5 to 80% by mass.
  • the content of the unsaturated compound is preferably 5 to 90% by mass with respect to the entire curable resin composition, and is 10 to 70% by mass. More preferably.
  • the content of the unsaturated compound is less than the lower limit, the solubility of the curable resin composition is decreased or the solution viscosity is increased, so that the impregnation property to the glass fiber tends to be decreased.
  • cured material of curable resin composition falls, and it exists in the tendency for the heat resistance of the glass fiber composite resin substrate obtained to fall.
  • the content of the curing catalyst is preferably 0.1 to 5.0% by mass with respect to the entire curable resin composition, More preferably, it is -3.0 mass%.
  • the content of the curing catalyst is less than the lower limit, the curing reaction becomes insufficient, and the strength and rigidity of the resulting cured product tend to decrease. Coloring may occur.
  • a curable compound other than the (A) cage-type silsesquioxane resin and the (B) unsaturated compound hereinafter sometimes referred to as a curable compound.
  • a curable compound is not particularly limited as long as it is a compound that can be cured by heating or irradiation with active energy rays, and has compatibility and reactivity with the cage silsesquioxane resin. A compound is preferred.
  • Examples of such a curable compound include a reactive oligomer which is a polymer having about 2 to 20 repeating units of a structural unit, and a reactive monomer having a low molecular weight and a low viscosity.
  • Specific examples of the reactive oligomer include epoxy acrylate, epoxidized oil acrylate, urethane acrylate, unsaturated polyester, polyester acrylate, polyether acrylate, vinyl acrylate, polyene / thiol, silicone acrylate, polybutadiene, and polystyrylethyl methacrylate. Is mentioned.
  • the reactive monomer examples include styrene, vinyl acetate, N-vinyl pyrrolidone, butyl acrylate, 2-ethylhexyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, n-decyl acrylate, isobornyl acrylate, Monofunctional monomers such as cyclopentenyloxyethyl acrylate, phenoxyethyl acrylate, and trifluoroethyl methacrylate are exemplified. Such curable compounds may be used alone or in combination of two or more.
  • the content is preferably 40% by mass or less based on the entire curable resin composition.
  • the content of the curable compound exceeds the upper limit, it is difficult to form a sufficient crosslinked structure, and the heat resistance of the obtained glass fiber composite resin substrate tends to decrease.
  • the curable resin composition according to the present invention may further contain various additives within a range not impairing the effects of the present invention.
  • the additive include organic / inorganic fillers, plasticizers, flame retardants, heat stabilizers, antioxidants, light stabilizers, ultraviolet absorbers, lubricants, antistatic agents, mold release agents, foaming agents, and nucleating agents. , Coloring agents, crosslinking agents, dispersion aids and the like.
  • the content is preferably 30% by mass or less with respect to the entire curable resin composition.
  • the curable resin composition according to the present invention may further contain a solvent such as methyl ethyl ketone, toluene, ethyl acetate for the purpose of adjusting its viscosity, etc., but in the solvent devolatilization step. Since it takes time, the production efficiency decreases, and the solvent may remain inside the obtained glass fiber composite resin substrate, so that the characteristics of the substrate may decrease. It is preferable that it is 5 mass% or less with respect to the whole curable resin composition, and it is more preferable that the solvent is not contained.
  • a solvent such as methyl ethyl ketone, toluene, ethyl acetate for the purpose of adjusting its viscosity, etc.
  • Examples of the form of the glass fiber according to the present invention include a yarn-like yarn, a glass cloth, and a non-work cloth. Among these, glass cloth is preferable from the viewpoint that the effect of reducing the thermal expansion coefficient is high.
  • Examples of the glass cloth material include E glass, C glass, A glass, S glass, D glass, NE glass, T glass, and quartz glass depending on the composition of the glass. Among these, the refractive index range is preferable. E glass, S glass, T glass, and NE glass are preferred from the viewpoint of being within the above range and being easily available.
  • the glass fiber according to the present invention includes a silane coupling agent and various surfactants for the purpose of improving wettability, affinity, and adhesion at the interface between the curable resin composition and the glass fiber.
  • Cleaning with an inorganic acid; corona discharge treatment; ultraviolet irradiation treatment; a surface treated by plasma treatment or the like may be used.
  • the refractive index of the glass fiber according to the present invention is preferably such that the difference from the refractive index of the cured product of the curable resin composition is within a range of ⁇ 0.02 to +0.02. More preferably, it is within the range of 01 to +0.01.
  • the difference in refractive index is out of the above range, the interface scattering between the cured product of the curable resin composition and the glass fiber is increased, and the transparency of the glass fiber composite resin substrate is decreased. , It tends to be difficult to use as a glass substitute substrate for solar cells.
  • the thickness can be appropriately selected depending on the purpose of using the glass fiber composite resin substrate. From the viewpoint that the impregnation property to the glass fiber tends to be improved, the thickness is preferably 30 to 100 ⁇ m.
  • the glass fiber composite resin substrate of the present invention is a composite of the curable resin composition and the glass fiber.
  • a method for producing such a glass fiber composite resin substrate is not particularly limited, and examples thereof include a method of curing the curable resin composition after impregnating the glass fiber with the curable resin composition. .
  • the (A) cage silsesquioxane resin, the (B) unsaturated compound, the (C) curing catalyst, and, if necessary, other compounds and solvents, etc. at room temperature ( 20 to 25 ° C.) to obtain a curable resin composition according to the present invention.
  • the curable resin composition is impregnated into the glass fiber by a method such as dropping or dipping, and the solvent is removed as necessary.
  • the glass fiber impregnated with the curable resin composition is subjected to heat treatment and / or active energy ray irradiation treatment to cure the curable resin composition, and the glass fiber composite resin substrate of the present invention is obtained. obtain.
  • the mass ratio of the cured product of the curable resin composition to the glass fiber per 1 m 2 is 20:80 to 70. : 30 is preferable, and 40:60 to 60:40 is more preferable.
  • the ratio of the glass fiber to the cured product is less than the lower limit, the heat resistance of the glass fiber composite resin substrate is lowered and the thermal expansion coefficient tends to exceed 20 ppm / K, and on the other hand, exceeds the upper limit. In such a case, impregnation into the glass fibers becomes insufficient, and voids remain between the fibers, so that the transparency of the glass fiber composite resin substrate tends to decrease (increased haze). Therefore, in the impregnation, it is preferable to impregnate so that the ratio of the mass of the curable resin composition after curing and the mass of the glass fiber is within the above range.
  • the impregnation can be adjusted as appropriate depending on the type of glass fiber and the purpose of using the glass fiber composite resin substrate, but the thickness and production of liquid crystal displays and organic EL displays to which the glass fiber composite resin substrate is applied. From the viewpoint of compatibility with the process (roll to roll), it is preferable to impregnate the obtained glass fiber composite resin substrate so as to have a thickness of 0.03 to 0.5 mm, preferably 0.05 to 0.2 mm.
  • the heating temperature in the heat treatment can be appropriately adjusted according to the curable resin composition, but is preferably 50 to 200 ° C, more preferably 80 to 180 ° C. If the heating temperature is less than the lower limit, the curing reaction is not sufficiently progressed and a sufficient cross-linked structure tends not to be formed. On the other hand, if the heating temperature exceeds the upper limit, the curable resin composition is deteriorated or volatilized before being cured. There is a tendency for problems to occur. Further, the heating time in the heat treatment varies depending on the heating temperature and the curable resin composition, and thus cannot be generally described, but is preferably 30 to 60 minutes.
  • the heat treatment it is possible to suppress the inhibition of the radical polymerization reaction of the curable resin composition due to oxygen, and from the viewpoint that a more sufficient cross-linked structure tends to be formed, nitrogen or the like is not used. It is preferable to carry out in an active gas atmosphere.
  • the active energy ray irradiation conditions in the active energy ray irradiation treatment it is preferable to irradiate ultraviolet rays having a wavelength of 10 to 400 nm and visible rays having a wavelength of 400 to 700 nm, and to irradiate near ultraviolet rays having a wavelength of 200 to 400 nm. Is more preferable.
  • the integrated exposure amount is preferably 2000 to 10,000 mJ / cm 2 .
  • a low-pressure mercury lamp output: 0.4 to 4 W / cm
  • a high-pressure mercury lamp 40 to 160 W / cm
  • an ultra-high pressure mercury lamp (173 to 435 W / cm)
  • a metal halide lamp 80 to 160 W / cm
  • pulse xenon lamp 80 to 120 W / cm
  • electrodeless discharge lamp 80 to 120 W / cm
  • the glass fiber composite resin substrate of the present invention may further include a coating layer made of a resin on one surface or both surfaces of the glass fiber composite resin substrate for the purpose of smoothing the surface. good.
  • the resin preferably has heat resistance, transparency, and chemical resistance, and it is particularly preferable to use the curable resin composition according to the present invention.
  • the glass fiber composite resin substrate of the present invention may further include a gas barrier layer against oxygen and water vapor as necessary.
  • the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
  • the refractive index measurement, the total light transmittance measurement, and the heat resistance evaluation were performed by the following methods.
  • the curable resin composition obtained in each preparation example was cast (cast) to a thickness of 0.1 mm using a roll coater, and 2000 mJ / cm 2 using an 80 W / cm high-pressure mercury lamp. A sheet-like cured product was obtained by curing with the accumulated exposure amount. The obtained cured product was measured for the refractive index at 589 nm using a refractometer (DR-M2, manufactured by Atago Co., Ltd.).
  • Total light transmittance measurement About the glass fiber composite resin substrate obtained in each Example and the comparative example, the total light transmittance (%) was measured using the haze meter (NDH2000, Nippon Denshoku).
  • substrate is so high that a glass transition temperature is high and / or a dynamic viscoelastic fall rate is small.
  • thermomechanical analyzer TMA4000SA, manufacture company name: BRUKER company make
  • the elongation in the plane direction (X direction) of the glass fiber composite resin substrate was used.
  • the elongation in the plane direction (X direction) of the glass fiber composite resin substrate was used.
  • the elongation in the plane direction (X direction) of the glass fiber composite resin substrate was used.
  • the average value was determined, and the thermal expansion coefficient (ppm / K) in the surface direction (X direction) of the glass fiber composite resin substrate was determined from this value.
  • ppm / K thermal expansion coefficient
  • An addition funnel was charged with 15 ml of IPA and 12.7 g of 3-methacryloxypropyltrimethoxysilane to prepare an IPA solution of 3-methacryloxypropyltrimethoxysilane, which was stirred in the reaction vessel at room temperature. The solution was added dropwise over 30 minutes. After completion of dropping, the mixture was further stirred for 2 hours without heating. After stirring, IPA was removed under reduced pressure to obtain 7.5 g of a composition containing a cage silsesquioxane resin (I).
  • the cage-type silsesquioxane resin (I) according to the present invention is 97% by mass with respect to the entire composition, of which the cage-type silsesquioxane represented by the formula (3)
  • the sun resin is 90% by mass with respect to the entire cage silsesquioxane resin (I).
  • n in the formula (3) is 8, 10, 12. there were.
  • the cage-type silsesquioxane resin (II) according to the present invention is 96% by mass with respect to the whole composition, of which the cage-type silsesquioxane represented by the formula (3)
  • the sun resin is 92% by mass with respect to the entire cage silsesquioxane resin (II).
  • n + m in the formula (3) is 8, 10, and 12. there were.
  • n: m was 4: 4.
  • Curable resin composition (VI) 35 parts by mass of dicyclopentanyl diacrylate, 65 parts by mass of pentaerythritol tetraacrylate, and 2.5 parts by mass of 1-hydroxycyclohexyl phenyl ketone as a photopolymerization initiator are mixed to form a liquid curable resin composition ( VI) was obtained.
  • the composition of the obtained curable resin composition (VI) is shown in Table 1.
  • Example 1 First, the curable resin composition (I) obtained in Preparation Example 1 was placed on a glass plate with a T glass-based glass cloth (trade name: T glass yarn (manufactured by Nittobo Co., Ltd.), refractive index 1.530, The upper surface was covered with a glass plate and sandwiched between the upper and lower surfaces with a glass plate, and a glass cloth was impregnated with the curable resin composition while applying pressure. Next, with this glass cloth impregnated material sandwiched between glass plates, an ultraviolet ray (wavelength: 365 nm) is irradiated with an integrated exposure amount of 2000 mJ / cm 2 using an 80 W / cm high-pressure mercury lamp and a curable resin composition. The product was cured.
  • T glass-based glass cloth trade name: T glass yarn (manufactured by Nittobo Co., Ltd.), refractive index 1.530.
  • the upper surface was covered with a glass plate and sandwiched between the upper and lower surfaces with
  • Example 2 Curing per 0.1 mm thickness and 1 m 2 in the same manner as in Example 1 except that the curable resin composition (II) obtained in Preparation Example 2 was used instead of the curable resin composition (I).
  • Table 2 shows the results of total light transmittance measurement and heat resistance evaluation for the obtained glass fiber composite resin substrate.
  • Example 3 Curing per 0.1 mm thickness and 1 m 2 in the same manner as in Example 1 except that the curable resin composition (III) obtained in Preparation Example 3 was used instead of the curable resin composition (I).
  • Table 2 shows the results of total light transmittance measurement and heat resistance evaluation for the obtained glass fiber composite resin substrate.
  • Example 4 instead of the curable resin composition (I), the curable resin composition (IV) obtained in Preparation Example 4 was used, and instead of the T glass-based glass cloth, an E glass-based glass cloth (trade name: 2116 / AS887AW ( Asahi Kasei E-material Co., Ltd.), refractive index 1.558, thickness 96 ⁇ m)) was used in the same manner as in Example 1, and a cured product and glass of a curable resin composition per thickness of 0.1 mm and 1 m 2. A glass fiber composite resin substrate having a mass ratio to the fiber (the mass of the cured product: the mass of the glass fiber) of 52:48 was obtained. Table 2 shows the results of total light transmittance measurement and heat resistance evaluation for the obtained glass fiber composite resin substrate.
  • E glass-based glass cloth trade name: 2116 / AS887AW ( Asahi Kasei E-material Co., Ltd.), refractive index 1.558, thickness 96 ⁇ m
  • Example 5 Curing per 0.1 mm thickness and 1 m 2 in the same manner as in Example 4 except that the curable resin composition (V) obtained in Preparation Example 5 was used instead of the curable resin composition (IV).
  • Table 2 shows the results of total light transmittance measurement and heat resistance evaluation for the obtained glass fiber composite resin substrate.
  • a glass fiber composite resin substrate having a high level of heat resistance and transparency and having a sufficiently small thermal expansion coefficient.
  • Such a glass fiber composite resin substrate of the present invention has a high level of heat resistance that does not lower its modulus of elasticity even at high temperatures, so that it can be used in applications such as flexible displays, touch panels, solar cells, etc. As very useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

A glass fiber composite resin substrate comprising a curable resin composition and glass fibers, wherein the curable resin composition contains (A) a cage-type silsesquioxane resin having at least one functional group selected from the group consisting of (meth)acryloyol groups, glycidyl groups, and vinyl groups, (B) an unsaturated compound other than the aforementioned cage-type silsesquioxane resin, having two or more unsaturated functional groups selected from the group consisting of functional groups represented by the following general formulas (1) and (2): -R1-CR2=CH2 (1) -CR2=CH2 (2) [In formula (1), R1 represents a functional group selected from the group consisting of alkylene groups, alkylidene groups, and -OCO- groups, and in formulas (1) and (2), R2 independently represent a hydrogen atom or an alkyl group.], and (C) a curing catalyst, the amount of the cage-type silsesquioxane resin (A) being 5 to 90 mass % with respect to the total amount of the curable resin composition.

Description

ガラス繊維複合化樹脂基板Glass fiber composite resin substrate
 本発明は、ガラス繊維複合化樹脂基板に関する。 The present invention relates to a glass fiber composite resin substrate.
 ガラスは透明性、耐熱性、低熱膨張性、化学的安定性等に優れるという特徴を有しており、従来から、レンズ、光ディスク及びディスプレイ基板等の光学ガラスとして幅広く利用され、産業の発展に寄与している。近年では、各種光学機器の軽量化に伴い、比重が大きい光学ガラスを薄型化して軽量化することが検討されている。しかしながら、ガラスは衝撃に弱く割れやすいといった欠点を有しており、薄型化するとその機械的強度がさらに低下するため、製造プロセス時の割れによる歩留まりが低下するといった問題を有していた。 Glass has the characteristics of excellent transparency, heat resistance, low thermal expansion, chemical stability, etc., and has been widely used as optical glass for lenses, optical disks, display substrates, etc. and contributes to industrial development. is doing. In recent years, with the reduction in weight of various optical devices, it has been studied to reduce the thickness and weight of optical glass having a large specific gravity. However, glass has a drawback that it is vulnerable to impact and easily breaks, and its mechanical strength is further reduced when it is made thinner, so that the yield due to cracking during the manufacturing process is lowered.
 そこで、柔軟性と耐熱性に優れ、割れやすさを改善することを目的とした薄膜基板として、例えば、特開2004-50565号公報(特許文献1)には、有機基を含む金属酸化物ポリマーを主成分とした樹脂層をガラス基板の表面に積層した薄膜シート状基板が記載されている。しかしながら、このような薄膜シート状基板においては板状のガラスを用いているため、さらなる軽量化は困難であり、機械的強度が未だ不十分であるといった問題を有していた。 Therefore, as a thin film substrate that is excellent in flexibility and heat resistance and improves the ease of cracking, for example, Japanese Patent Application Laid-Open No. 2004-50565 (Patent Document 1) discloses a metal oxide polymer containing an organic group. A thin film sheet-like substrate is described in which a resin layer containing as a main component is laminated on the surface of a glass substrate. However, since such a thin sheet-like substrate uses plate-like glass, further weight reduction is difficult, and mechanical strength is still insufficient.
 また、近年では、軽量化や薄型化が容易である、加工性に優れるといった観点から、ガラスと代替可能な光学部材として、透明プラスチックが注目されている。このような透明プラスチックとしては、ポリメチルメタクリレート(PMMA)、脂環式ポリオレフィン、エポキシ樹脂、シリコーン樹脂等が挙げられ、中でもPMMAや脂環式ポリオレフィンは、特に優れた透明性を有することから有機ガラスと呼ばれ、光学レンズや液晶ディスプレイの導光板、光ディスク等の用途に多用されている。しかしながら、例えば、フレキシブル基板に低抵抗の透明電極を形成したりTFT等の能動素子を形成したりする際には少なくとも300℃~350℃の温度が必要であるのに対して、PMMA等の樹脂はガラスに比べて耐熱性が低いためにフレキシブル基板として採用することが困難である。さらに、このような樹脂からなる材料は線膨張係数が大きいため、透明電極やTFT等の素子材料における線膨張係数との差が大きく、これに起因してクラックや断線が発生するという問題を有していた。 In recent years, transparent plastics have attracted attention as optical members that can replace glass, from the viewpoint of easy weight reduction and thinning, and excellent workability. Examples of such transparent plastics include polymethyl methacrylate (PMMA), alicyclic polyolefin, epoxy resin, silicone resin, etc. Among them, PMMA and alicyclic polyolefin have particularly excellent transparency, and thus organic glass. It is often used for applications such as optical lenses, light guide plates for liquid crystal displays, and optical disks. However, for example, when forming a low resistance transparent electrode on a flexible substrate or forming an active element such as a TFT, a temperature of at least 300 ° C. to 350 ° C. is required, whereas a resin such as PMMA is used. Is difficult to adopt as a flexible substrate because it has lower heat resistance than glass. Furthermore, since the material made of such a resin has a large coefficient of linear expansion, there is a large difference from the coefficient of linear expansion in element materials such as transparent electrodes and TFTs, resulting in problems such as cracks and disconnections. Was.
 そこで、材料の耐熱性及び線膨張係数を改善する方法として、樹脂とガラス繊維とを複合化させる方法が開発されている。例えば、特開2004-231934号公報(特許文献2)及び特開2004-51960号公報(特許文献3)には、それぞれ、ガラスクロス等のガラス繊維と、アッベ数や屈折率が前記ガラス繊維に近いエポキシ樹脂やアクリレート樹脂等の硬化性樹脂とを複合化させて得られる複合化樹脂が記載されている。 Therefore, as a method for improving the heat resistance and linear expansion coefficient of the material, a method of combining a resin and glass fiber has been developed. For example, in Japanese Patent Application Laid-Open No. 2004-231934 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2004-51960 (Patent Document 3), a glass fiber such as a glass cloth and an Abbe number and a refractive index are respectively described in A composite resin obtained by combining a curable resin such as a near epoxy resin or an acrylate resin is described.
特開2004-50565号公報JP 2004-50565 A 特開2004-231934号公報JP 2004-231934 A 特開2004-51960号公報JP 2004-51960 A
 しかしながら、特許文献2及び3に記載されているような複合化樹脂においては、250℃程度までの熱に対する耐熱性はやや改善しているものの、ガラス転移温度は300℃未満であり、このような従来の複合化樹脂からなる基板をガラス転移温度以上の高温で加熱するとその弾性率が低下して基板の膨張や変形が生じるため、素子材料等の無機物層を安定して均一に積層することは未だ困難であるということを本発明者らは見出した。 However, in the composite resins as described in Patent Documents 2 and 3, although the heat resistance to heat up to about 250 ° C. is slightly improved, the glass transition temperature is less than 300 ° C. When a conventional composite resin substrate is heated at a temperature higher than the glass transition temperature, its elastic modulus decreases and the substrate expands and deforms. The present inventors have found that it is still difficult.
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、高水準の耐熱性及び透明性を有し、熱膨張係数が十分に小さいガラス繊維複合化樹脂基板を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a glass fiber composite resin substrate having a high level of heat resistance and transparency and a sufficiently low thermal expansion coefficient. And
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、硬化性樹脂組成物とガラス繊維とからなるガラス繊維複合化樹脂基板において、前記硬化性樹脂組成物として(メタ)アクリロイル基、グリシジル基及びビニル基からなる群から選択される少なくともいずれか1種の基を有する特定のかご型シルセスキオキサン樹脂と、炭素-炭素二重結合を含有する不飽和官能基を2個以上有する特定の不飽和化合物と、硬化触媒と、を含有しており、前記かご型シルセスキオキサン樹脂の含有量が特定の範囲内にある硬化性樹脂組成物を用いることにより、高水準の耐熱性及び透明性を有し、熱膨張係数が十分に小さいガラス繊維複合化樹脂基板が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have made a (meth) acryloyl group as the curable resin composition in a glass fiber composite resin substrate comprising a curable resin composition and glass fibers. , A specific cage silsesquioxane resin having at least one group selected from the group consisting of glycidyl group and vinyl group, and two or more unsaturated functional groups containing a carbon-carbon double bond By using a curable resin composition containing a specific unsaturated compound having a curing catalyst and a content of the cage silsesquioxane resin within a specific range, a high level of heat resistance The present invention has been completed by finding that a glass fiber composite resin substrate having good properties and transparency and having a sufficiently small thermal expansion coefficient can be obtained.
 すなわち、本発明のガラス繊維複合化樹脂基板は、
 硬化性樹脂組成物とガラス繊維とからなるガラス繊維複合化樹脂基板であって、
 前記硬化性樹脂組成物が、
 (A)(メタ)アクリロイル基、グリシジル基及びビニル基からなる群から選択される少なくとも1種の基を有するかご型シルセスキオキサン樹脂、
 (B)下記一般式(1)~(2):
 -R-CR=CH ・・・(1)
 -CR=CH ・・・(2)
[式(1)中、Rは、アルキレン基、アルキリデン基及び-OCO-基からなる群から選択されるいずれかを示し、式(1)~(2)中、Rは、それぞれ独立に水素原子又はアルキル基を示す。]
で表わされる基からなる群から選択される不飽和官能基を2個以上有する、前記かご型シルセスキオキサン樹脂以外の不飽和化合物、及び
 (C)硬化触媒
を含有しており、且つ、前記(A)かご型シルセスキオキサン樹脂の含有量が前記硬化性樹脂組成物全体に対して5~90質量%であるものである。
That is, the glass fiber composite resin substrate of the present invention is
A glass fiber composite resin substrate comprising a curable resin composition and glass fiber,
The curable resin composition is
(A) a cage silsesquioxane resin having at least one group selected from the group consisting of (meth) acryloyl group, glycidyl group and vinyl group,
(B) The following general formulas (1) to (2):
-R 1 -CR 2 = CH 2 (1)
-CR 2 = CH 2 (2)
[In Formula (1), R 1 represents any one selected from the group consisting of an alkylene group, an alkylidene group, and —OCO— group. In Formulas (1) to (2), R 2 is independently A hydrogen atom or an alkyl group is shown. ]
An unsaturated compound other than the above cage-type silsesquioxane resin, having two or more unsaturated functional groups selected from the group consisting of the groups represented by: and (C) a curing catalyst, and (A) The content of the cage silsesquioxane resin is 5 to 90% by mass with respect to the entire curable resin composition.
 前記本発明のガラス繊維複合化樹脂基板としては、前記(A)かご型シルセスキオキサン樹脂が、下記一般式(3):
  [RSiO3/2[RSiO3/2 ・・(3)
{式(3)中、Rは、(メタ)アクリロイル基、グリシジル基及びビニル基からなる群から選択される基を有する有機基を示し、Rは、水素原子、炭素数1~20の炭化水素基、炭素数1~20のアルコキシ基、及び炭素数1~20のアルキルシロキシ基からなる群から選択されるいずれかを示し、n及びmは、下記式(i)~(iii):
  n≧1   ・・・(i)
  m≧0   ・・・(ii)
  n+m=h   ・・・(iii)
[式(iii)中、hは8、10、12及び14からなる群から選択される整数を示す。]
で表わされる条件を満たす整数であり、n及びmがそれぞれ2以上の場合にはR及びRはそれぞれ同一でも異なっていてもよい。}
で表されるかご型シルセスキオキサン樹脂であることが好ましい。
As the glass fiber composite resin substrate of the present invention, the (A) cage silsesquioxane resin is represented by the following general formula (3):
[R 3 SiO 3/2 ] n [R 4 SiO 3/2 ] m ·· (3)
{In Formula (3), R 3 represents an organic group having a group selected from the group consisting of a (meth) acryloyl group, a glycidyl group, and a vinyl group, and R 4 represents a hydrogen atom, having 1 to 20 carbon atoms. Any one selected from the group consisting of a hydrocarbon group, an alkoxy group having 1 to 20 carbon atoms and an alkylsiloxy group having 1 to 20 carbon atoms, wherein n and m are the following formulas (i) to (iii):
n ≧ 1 (i)
m ≧ 0 (ii)
n + m = h (iii)
[In the formula (iii), h represents an integer selected from the group consisting of 8, 10, 12, and 14. ]
In the case where n and m are each 2 or more, R 3 and R 4 may be the same or different. }
It is preferable that it is a cage type silsesquioxane resin represented by these.
 また、本発明のガラス繊維複合化樹脂基板としては、前記一般式(3)中、nとmとの比(n:m)が、10:0~4:6であることが好ましく、さらに、前記一般式(3)で表されるかご型シルセスキオキサン樹脂が、前記(A)かご型シルセスキオキサン樹脂全体に対して50質量%以上であることが好ましい。 In the glass fiber composite resin substrate of the present invention, in the general formula (3), the ratio of n to m (n: m) is preferably 10: 0 to 4: 6, It is preferable that the cage silsesquioxane resin represented by the general formula (3) is 50% by mass or more based on the entire cage silsesquioxane resin (A).
 また、本発明のガラス繊維複合化樹脂基板としては、前記(B)不飽和化合物の有する前記不飽和官能基がアクリロイル基、メタクリロイル基、アリル基及びビニル基からなる群から選択される少なくとも一種の基であることが好ましく、さらに、前記(B)不飽和化合物の有する前記不飽和官能基の数が化合物1分子あたり2~10個であることが好ましい。 Moreover, as the glass fiber composite resin substrate of the present invention, the unsaturated functional group of the unsaturated compound (B) is at least one selected from the group consisting of acryloyl group, methacryloyl group, allyl group and vinyl group. The number of the unsaturated functional groups of the unsaturated compound (B) is preferably 2 to 10 per molecule of the compound.
 また、本発明のガラス繊維複合化樹脂基板としては、前記硬化性樹脂組成物を前記ガラス繊維に含浸させた後に前記硬化性樹脂組成物を硬化せしめたものであることが好ましい。さらに、前記硬化性樹脂組成物の硬化物と前記ガラス繊維との質量比(硬化物の質量:ガラス繊維の質量)が20:80~70:30であることが好ましく、厚さが0.03~0.5mmであることが好ましい。 The glass fiber composite resin substrate of the present invention is preferably one obtained by impregnating the glass fiber with the curable resin composition and then curing the curable resin composition. Furthermore, the mass ratio of the cured product of the curable resin composition to the glass fiber (the mass of the cured product: the mass of the glass fiber) is preferably 20:80 to 70:30, and the thickness is 0.03. It is preferable that the thickness is ˜0.5 mm.
 本発明によれば、高水準の耐熱性及び透明性を有し、熱膨張係数が十分に小さいガラス繊維複合化樹脂基板を提供することが可能となる。 According to the present invention, it is possible to provide a glass fiber composite resin substrate having a high level of heat resistance and transparency and having a sufficiently small thermal expansion coefficient.
 以下、本発明をその好適な実施形態に即して詳細に説明する。本発明のガラス繊維複合化樹脂基板は、
 硬化性樹脂組成物とガラス繊維とからなるガラス繊維複合化樹脂基板であって、
 前記硬化性樹脂組成物が、
 (A)(メタ)アクリロイル基、グリシジル基及びビニル基からなる群から選択される少なくとも1種の基を有するかご型シルセスキオキサン樹脂、
 (B)上記一般式(1)で表わされる基、及び上記一般式(2)で表わされる基からなる群から選択される不飽和官能基を2個以上有する、前記かご型シルセスキオキサン樹脂以外の不飽和化合物、及び、
 (C)硬化触媒
を含有しており、且つ、前記(A)かご型シルセスキオキサン樹脂の含有量が前記硬化性樹脂組成物全体に対して5~90質量%である。
Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof. The glass fiber composite resin substrate of the present invention is
A glass fiber composite resin substrate comprising a curable resin composition and glass fiber,
The curable resin composition is
(A) a cage silsesquioxane resin having at least one group selected from the group consisting of (meth) acryloyl group, glycidyl group and vinyl group,
(B) The cage silsesquioxane resin having two or more unsaturated functional groups selected from the group consisting of the group represented by the general formula (1) and the group represented by the general formula (2). Unsaturated compounds other than, and
(C) a curing catalyst is contained, and the content of the (A) cage silsesquioxane resin is 5 to 90% by mass with respect to the entire curable resin composition.
 <(A)かご型シルセスキオキサン樹脂>
 本発明において、かご型シルセスキオキサン樹脂とは、完全に閉じた多面体構造のシロキサン又は前記多面体構造における-Si-O-Si-結合の一部が開裂したシロキサンを指し、2つ以上のかご型シルセスキオキサン樹脂をモノマーとして重合せしめたオリゴマーであってもよい。本発明に係るかご型シルセスキオキサン樹脂は、(メタ)アクリロイル基、グリシジル基及びビニル基(以下、場合により硬化性官能基と総称する。)からなる群から選択される少なくとも1種の基を有している。前記硬化性官能基としては、かご型シルセスキオキサン骨格の多面体の頂点に配置されるケイ素原子に、直接又は2価の有機基を介して結合していることが好ましい。前記2価の有機基としては、アルキレン基、フェニレン基が挙げられる。なお、本発明において、(メタ)アクリロイル基とは、メタクリロイル基及びアクリロイル基を意味する。
<(A) Basket-type silsesquioxane resin>
In the present invention, the cage-type silsesquioxane resin refers to a siloxane having a completely closed polyhedral structure or a siloxane in which a part of —Si—O—Si— bond in the polyhedral structure is cleaved. It may be an oligomer obtained by polymerizing a type silsesquioxane resin as a monomer. The cage silsesquioxane resin according to the present invention is at least one group selected from the group consisting of a (meth) acryloyl group, a glycidyl group, and a vinyl group (hereinafter sometimes collectively referred to as a curable functional group). have. The curable functional group is preferably bonded directly or via a divalent organic group to a silicon atom arranged at the apex of the polyhedron of the cage silsesquioxane skeleton. Examples of the divalent organic group include an alkylene group and a phenylene group. In the present invention, the (meth) acryloyl group means a methacryloyl group and an acryloyl group.
 本発明に係るかご型シルセスキオキサン樹脂としては、硬化性樹脂組成物の架橋密度がより高くなり、ガラス繊維複合化樹脂基板の耐熱性がより向上する傾向にあるという観点から、かご型シルセスキオキサン骨格の多面体の頂点全てに前記硬化性官能基が結合しており、且つ、分子量分布及び分子構造が制御されていることが好ましいが、前記硬化性官能基のうちの一部がアルキル基、フェニル基等の他の基に置き換わっていてもよい。前記硬化性官能基のうちの一部が他の基に置き換わっている場合には、架橋密度の低下を避けるという観点から、本発明に係るかご型シルセスキオキサン樹脂における前記硬化性官能基と前記他の基とのモル比([硬化性官能基の平均モル数]:[他の基の平均モル数])としては、10:0~6:4であることが好ましい。なお、本発明において、前記かご型シルセスキオキサン樹脂における硬化性官能基の数とその他の基の数との比は、H-NMR(機器名:JNM-ECA400(日本電子株式会社製)、溶媒:クロロホルム-d、温度:22.7℃、400MHz)を用いて測定される硬化性官能基及びその他の基のピークの積分比から求めることができる。 The cage-type silsesquioxane resin according to the present invention has a cage-type silylene from the viewpoint that the crosslinking density of the curable resin composition is higher and the heat resistance of the glass fiber composite resin substrate tends to be further improved. It is preferable that the curable functional group is bonded to all the vertices of the polyhedron of the sesquioxane skeleton, and the molecular weight distribution and the molecular structure are controlled, but some of the curable functional groups are alkyl. Other groups such as a group and a phenyl group may be substituted. When a part of the curable functional group is replaced with another group, from the viewpoint of avoiding a decrease in the crosslinking density, the curable functional group in the cage silsesquioxane resin according to the present invention The molar ratio with other groups ([average number of moles of curable functional group]: [average number of moles of other groups]) is preferably 10: 0 to 6: 4. In the present invention, the ratio between the number of curable functional groups and the number of other groups in the cage silsesquioxane resin is 1 H-NMR (device name: JNM-ECA400 (manufactured by JEOL Ltd.) , Solvent: chloroform-d, temperature: 22.7 ° C., 400 MHz), and the integration ratio of peaks of the curable functional group and other groups.
 また、本発明に係るかご型シルセスキオキサン樹脂としては、剛直な構造を有する架橋構造が形成されるため、得られるガラス繊維複合化樹脂基板における耐熱性がより向上し、熱膨張係数がより小さくなる傾向にあるという観点から、下記一般式(3):
  [RSiO3/2[RSiO3/2 ・・(3)
で表される閉じた多面体構造のかご型シルセスキオキサン樹脂であることが好ましい。
Further, as the cage silsesquioxane resin according to the present invention, since a crosslinked structure having a rigid structure is formed, the heat resistance in the obtained glass fiber composite resin substrate is further improved, and the thermal expansion coefficient is further increased. From the viewpoint of tending to decrease, the following general formula (3):
[R 3 SiO 3/2 ] n [R 4 SiO 3/2 ] m ·· (3)
It is preferable that it is the cage polysilsesquioxane resin of the closed polyhedral structure represented by these.
 前記式(3)において、Rは、(メタ)アクリロイル基、グリシジル基及びビニル基からなる群から選択されるいずれか1種の基を有する有機基を示す。このような有機基としては、(メタ)アクリロイル基;グリシジル基;ビニル基;(メタ)アクリロイル基、グリシジル基又はビニル基とアルキレン基、フェニレン基等の2価の炭化水素基とが結合した基が挙げられる。前記アルキレン基としては、直鎖状であっても分岐鎖状であってもよく、結合距離が短く、得られるガラス繊維複合化樹脂基板の耐熱性がより向上する傾向にあるという観点から、炭素数が1~3であることが好ましい。前記フェニレン基としては、例えば、無置換フェニレン基、低級アルキル基を有する1,2-フェニレン基等が挙げられる。これらの中でも、前記2価の炭化水素基としては、原料の入手が容易であるという観点から、炭素数が1~3のアルキレン基がより好ましく、より架橋密度が高いガラス繊維複合化樹脂基板が得られるという観点から、プロピレン基がさらに好ましい。 In the formula (3), R 3 represents an organic group having any one group selected from the group consisting of a (meth) acryloyl group, a glycidyl group, and a vinyl group. Examples of such an organic group include a (meth) acryloyl group; a glycidyl group; a vinyl group; a (meth) acryloyl group, a glycidyl group, or a group in which a vinyl group is bonded to a divalent hydrocarbon group such as an alkylene group or a phenylene group. Is mentioned. The alkylene group may be linear or branched, has a short bond distance, and from the viewpoint that the heat resistance of the obtained glass fiber composite resin substrate tends to be further improved. The number is preferably 1 to 3. Examples of the phenylene group include an unsubstituted phenylene group and a 1,2-phenylene group having a lower alkyl group. Among these, the divalent hydrocarbon group is more preferably an alkylene group having 1 to 3 carbon atoms from the viewpoint of easy availability of raw materials, and a glass fiber composite resin substrate having a higher crosslink density. From the viewpoint of being obtained, a propylene group is more preferable.
 また、Rとしては、具体的には、メタクリロキシプロピル基、グリシドキシプロピル基、エポキシシクロヘキシル基が挙げられ、中でも、原料の入手が容易であり重合反応性が高いという観点から、メタクリロキシプロピル基が好ましい。 Specific examples of R 3 include a methacryloxypropyl group, a glycidoxypropyl group, and an epoxycyclohexyl group. Among these, from the viewpoint of easy availability of raw materials and high polymerization reactivity, methacryloxy. A propyl group is preferred.
 前記式(3)において、Rは、水素原子、炭素数1~20の炭化水素基、炭素数1~20のアルコキシ基及び炭素数1~20のアルキルシロキシ基からなる群から選択されるいずれかを示す。前記炭素数1~20の炭化水素基としては、直鎖状であっても分岐鎖状であっても環状であってもよく、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数3~20のシクロアルケニル基、フェニル基、スチリル基が挙げられる。前記炭素数1~20のアルキル基としては、直鎖状であっても分岐鎖状であってもよく、かご型シルセスキオキサンの骨格を得ることが容易であるという観点から、炭素数が2~10の鎖状アルキル基が好ましい。前記炭素数3~20のシクロアルキル基としては、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロヘキシルエチル基等が挙げられ、中でも、入手が容易であるという観点から、シクロヘキシル基が好ましい。前記炭素数3~20のシクロアルケニル基としては、例えば、シクロペンテニル基、シクロヘキセニル基等が挙げられ、中でも、入手が容易であるという観点から、シクロペンテニル基が好ましい。また、前記炭素数1~20のアルコキシ基としては、例えば、メトキシ基、エトキシ基、イソプロピル基等が挙げられ、中でも、反応性が高いという観点から、メトキシ基が好ましい。さらに、前記炭素数1~20のアルキルシロキシ基としては、例えば、トリメチルシロキシ基、トリエチルシロキシ基、トリフェニルシロキシ基、ジメチルシロキシ基、t-ブチルジメチルシロキシ基等が挙げられる。これらの中でも、Rとしては、かご型シルセスキオキサンの骨格を得ることが容易であるという観点から、炭素数が2~10のアルキル基、フェニル基がより好ましい。 In the formula (3), R 4 is any selected from the group consisting of a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkylsiloxy group having 1 to 20 carbon atoms. Indicate. The hydrocarbon group having 1 to 20 carbon atoms may be linear, branched or cyclic, and may be an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms. Examples thereof include an alkyl group, a C3-C20 cycloalkenyl group, a phenyl group, and a styryl group. The alkyl group having 1 to 20 carbon atoms may be linear or branched, and has a carbon number from the viewpoint that it is easy to obtain a cage silsesquioxane skeleton. 2 to 10 chain alkyl groups are preferred. Examples of the cycloalkyl group having 3 to 20 carbon atoms include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclohexylethyl group. Among these, from the viewpoint of easy availability. A cyclohexyl group is preferred. Examples of the cycloalkenyl group having 3 to 20 carbon atoms include a cyclopentenyl group and a cyclohexenyl group. Among these, a cyclopentenyl group is preferable from the viewpoint of easy availability. Examples of the alkoxy group having 1 to 20 carbon atoms include a methoxy group, an ethoxy group, and an isopropyl group. Among them, a methoxy group is preferable from the viewpoint of high reactivity. Further, examples of the alkylsiloxy group having 1 to 20 carbon atoms include trimethylsiloxy group, triethylsiloxy group, triphenylsiloxy group, dimethylsiloxy group, t-butyldimethylsiloxy group and the like. Among these, as R 4 , an alkyl group having 2 to 10 carbon atoms and a phenyl group are more preferable from the viewpoint of easily obtaining a cage silsesquioxane skeleton.
 さらに、前記式(3)において、n及びmは、下記式(i)~(iii):
  n≧1   ・・・(i)
  m≧0   ・・・(ii)
  n+m=h   ・・・(iii)
[式(iii)中、hは8、10、12及び14からなる群から選択される整数を示す。]
で表わされる条件を満たす整数を示す。nが前記式(i)で表わされる条件を満たすことにより、本発明に係るかご型シルセスキオキサン樹脂は1つ以上の硬化性官能基を有するため、本発明に係る(B)不飽和化合物とラジカル重合せしめることで高水準の耐熱性及び透明性を有し、熱膨張係数が十分に小さいガラス繊維複合化樹脂基板を得ることが可能となる。また、n及びmが前記式(iii)で表わされる条件を満たすことにより、本発明に係るかご型シルセスキオキサン樹脂はほぼ完全に縮合したかご型構造となり、ラジカル重合により剛直な構造を有する架橋構造が形成されるため、ガラス繊維複合化樹脂基板において、高水準の耐熱性及び透明性、並びに、十分に小さい熱膨張係数が達成される。なお、n及びmがそれぞれ2以上の場合にはR及びRはそれぞれ同一でも異なっていてもよい。
Further, in the above formula (3), n and m are the following formulas (i) to (iii):
n ≧ 1 (i)
m ≧ 0 (ii)
n + m = h (iii)
[In the formula (iii), h represents an integer selected from the group consisting of 8, 10, 12, and 14. ]
An integer satisfying the condition represented by When n satisfies the condition represented by the above formula (i), the cage silsesquioxane resin according to the present invention has one or more curable functional groups. Therefore, the unsaturated compound (B) according to the present invention It is possible to obtain a glass fiber composite resin substrate having a high level of heat resistance and transparency and having a sufficiently low thermal expansion coefficient by radical polymerization. In addition, when n and m satisfy the condition represented by the above formula (iii), the cage silsesquioxane resin according to the present invention has a cage structure almost completely condensed, and has a rigid structure by radical polymerization. Since a crosslinked structure is formed, a high level of heat resistance and transparency and a sufficiently small thermal expansion coefficient are achieved in the glass fiber composite resin substrate. When n and m are each 2 or more, R 3 and R 4 may be the same or different.
 また、本発明に係るかご型シルセスキオキサン樹脂において、nとmとの比(n:m)としては、10:0~4:6であることが好ましく、10:0~5:5であることがより好ましい。nに対するmの数が前記上限を超える場合には、ガラス繊維複合化樹脂基板の架橋密度が減少して耐熱性が低下したり熱膨張係数が大きくなる傾向にある。 In the cage silsesquioxane resin according to the present invention, the ratio of n to m (n: m) is preferably 10: 0 to 4: 6, and 10: 0 to 5: 5. More preferably. When the number of m with respect to n exceeds the upper limit, the crosslink density of the glass fiber composite resin substrate is decreased, and the heat resistance tends to decrease or the thermal expansion coefficient tends to increase.
 なお、本発明において、nとmとの比(n:m)、すなわち、前記かご型シルセスキオキサン樹脂の多面体の頂点に結合している硬化性官能基の数とその他の基の数との比は、前述と同様の方法で求めることができる。 In the present invention, the ratio of n to m (n: m), that is, the number of curable functional groups bonded to the apex of the polyhedron of the cage silsesquioxane resin and the number of other groups The ratio can be obtained by the same method as described above.
 また、本発明に係るかご型シルセスキオキサン樹脂としては、剛直な構造を有する架橋構造が形成されるため、得られるガラス繊維複合化樹脂基板における耐熱性がより向上し、熱膨張係数がより小さくなる傾向にあるという観点から、前記式(3)で表わされるかご型シルセスキオキサン樹脂が、本発明に係るかご型シルセスキオキサン樹脂全体に対して50質量%以上であることが好ましく、70質量%以上であることがより好ましい。 Further, as the cage silsesquioxane resin according to the present invention, since a crosslinked structure having a rigid structure is formed, the heat resistance in the obtained glass fiber composite resin substrate is further improved, and the thermal expansion coefficient is further increased. In view of the tendency to decrease, the cage silsesquioxane resin represented by the formula (3) is preferably 50% by mass or more based on the entire cage silsesquioxane resin according to the present invention. 70% by mass or more is more preferable.
 このようなかご型シルセスキオキサン樹脂を得る方法としては、例えば、下記一般式(4):
  RSiX    ・・・(4)
[式(4)中、Rは、上記一般式(3)中のRと同義であり、Xはアルコキシ基、アセトキシ基、ハロゲン原子及びヒドロキシ基からなる群から選択されるいずれか1種の加水分解性基を示す。]
で表わされるケイ素化合物(a)、及び必要に応じて下記一般式(5):
  RSiX    ・・・(5)
[式(5)中、Rは、上記一般式(3)中のRと同義であり、Xは上記一般式(4)中のXと同義である。]
で表わされるケイ素化合物(b)を、水、有機極性溶媒及び塩基性触媒存在下で加水分解せしめることにより得ることができる。
As a method for obtaining such a cage silsesquioxane resin, for example, the following general formula (4):
R 3 SiX 3 (4)
[In the formula (4), R 3 has the same meaning as R 3 in the general formula (3), and X is any one selected from the group consisting of an alkoxy group, an acetoxy group, a halogen atom and a hydroxy group. The hydrolyzable group of is shown. ]
A silicon compound (a) represented by the following general formula (5):
R 4 SiX 3 (5)
[In Formula (5), R 4 has the same meaning as R 4 in General Formula (3), and X has the same meaning as X in General Formula (4). ]
Can be obtained by hydrolyzing in the presence of water, an organic polar solvent and a basic catalyst.
 前記式(4)及び(5)において、Xは、それぞれ独立に、アルコキシ基、アセトキシ基、ハロゲン原子及びヒドロキシ基からなる群から選択される加水分解性基である。前記加水分解性基としては、アルコキシ基であることが好ましい。前記アルコキシ基としては、メトキシ基、エトキシ基、n-及びi-プロポキシ基、n-、i-及びt-ブトキシ基等が挙げられ、反応性が高いという観点から、メトキシ基が好ましい。 In the above formulas (4) and (5), X is each independently a hydrolyzable group selected from the group consisting of an alkoxy group, an acetoxy group, a halogen atom and a hydroxy group. The hydrolyzable group is preferably an alkoxy group. Examples of the alkoxy group include methoxy group, ethoxy group, n- and i-propoxy group, n-, i- and t-butoxy group, and methoxy group is preferable from the viewpoint of high reactivity.
 前記ケイ素化合物(a)としては、例えば、メタクリロキシメチルトリエトキシシラン、メタクリロキシメチルトリメトキシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシランが挙げられる。これらの中でも、原料の入手が容易であるという観点から、前記ケイ素化合物(a)としては、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシランが好ましい。また、前記ケイ素化合物(a)としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the silicon compound (a) include methacryloxymethyltriethoxysilane, methacryloxymethyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, and 3-acryloxypropyltrimethoxy. Silane, allyltrimethoxysilane, allyltriethoxysilane, p-styryltrimethoxysilane, p-styryltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycid Examples thereof include xylpropyltriethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Among these, from the viewpoint of easy availability of raw materials, the silicon compound (a) is preferably 3-methacryloxypropyltrimethoxysilane or 3-acryloxypropyltrimethoxysilane. Moreover, as said silicon compound (a), 1 type may be used independently and 2 or more types may be used in combination.
 前記ケイ素化合物(b)としては、例えば、フェニルトリメトキシシラン、フェニルトリエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-ブチルトリメトキシシラン、n-ブチルトリエトキシシラン、t-ブチルトリメトキシシラン、t-ブチルトリエトキシシラン、n-オクチルトリメトキシシラン、n-オクチルトリエトキシシラン等が挙げられる。また、前記ケイ素化合物(b)としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the silicon compound (b) include phenyltrimethoxysilane, phenyltriethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-butyltrimethoxy. Examples thereof include silane, n-butyltriethoxysilane, t-butyltrimethoxysilane, t-butyltriethoxysilane, n-octyltrimethoxysilane, and n-octyltriethoxysilane. Moreover, as said silicon compound (b), 1 type may be used independently and 2 or more types may be used in combination.
 前記ケイ素化合物(a)及び前記ケイ素化合物(b)の混合比としては、混合モル比(a:b)が下記式(vi):
  a:b=n:m   ・・・(vi)
[式(vi)中、n及びmは上記式(3)中のn及びmと同義である。]
で表わされる条件を満たすことが好ましい。
As a mixing ratio of the silicon compound (a) and the silicon compound (b), a mixing molar ratio (a: b) is represented by the following formula (vi):
a: b = n: m (vi)
[In formula (vi), n and m are synonymous with n and m in said formula (3). ]
It is preferable that the condition represented by
 前記水としては、前記ケイ素化合物(a)及び(b)における加水分解性基が加水分解されるのに十分な質量以上であればよく、前記ケイ素化合物(a)及び(b)の質量から算出される加水分解性基の数の理論量(モル)の1.0~1.5倍モルに相当する質量であることが好ましい。なお、前記水としては、後述する塩基性触媒の水溶液に含有される水をそのまま用いてもよい。 The water may be a mass that is sufficient to hydrolyze the hydrolyzable groups in the silicon compounds (a) and (b), and is calculated from the mass of the silicon compounds (a) and (b). The mass is preferably equivalent to 1.0 to 1.5 times mol of the theoretical amount (mol) of the number of hydrolyzable groups to be formed. In addition, as said water, you may use the water contained in the aqueous solution of the basic catalyst mentioned later as it is.
 前記有機極性溶媒としては、メタノール、エタノール、2-プロパノール等のアルコール類;アセトン;テトラヒドロフラン等が挙げられ、これらのうちの1種を単独で用いても2種以上を組み合わせて用いてもよい。中でも、効率的にかご型シルセスキオキサン骨格が形成されるという観点から、水と溶解性のある炭素数1~6の低級アルコール類を用いることが好ましく、2-プロパノールを用いることがより好ましい。 Examples of the organic polar solvent include alcohols such as methanol, ethanol and 2-propanol; acetone; tetrahydrofuran and the like. One of these may be used alone, or two or more may be used in combination. Among these, from the viewpoint of efficiently forming a cage silsesquioxane skeleton, lower alcohols having 1 to 6 carbon atoms that are soluble in water are preferable, and 2-propanol is more preferable. .
 前記塩基性触媒としては、水酸化カリウム、水酸化ナトリウム、水酸化セシウム等のアルカリ金属水酸化物;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ベンジルトリエチルアンモニウムヒドロキシド等の水酸化アンモニウム塩が挙げられる。本発明に係る塩基性触媒としては、これらのうちの1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも、触媒活性が高いという観点からテトラメチルアンモニウムヒドロキシドを用いることが好ましい。このような塩基性触媒の量としては、前記ケイ素化合物(a)及び(b)の合計質量に対して0.1~10質量%であることが好ましい。なお、前記塩基性触媒は、通常水溶液として使用されるため、この塩基性触媒の水溶液に含有される水を前記水として用いてもよい。 Examples of the basic catalyst include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, cesium hydroxide; tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, benzyl Examples thereof include ammonium hydroxide salts such as triethylammonium hydroxide. As the basic catalyst according to the present invention, one of these may be used alone, or two or more may be used in combination. Among these, tetramethylammonium hydroxide is preferably used from the viewpoint of high catalytic activity. The amount of such a basic catalyst is preferably 0.1 to 10% by mass with respect to the total mass of the silicon compounds (a) and (b). In addition, since the said basic catalyst is normally used as aqueous solution, you may use the water contained in the aqueous solution of this basic catalyst as said water.
 前記加水分解において、反応時間としては2時間以上であることが好ましく、反応温度としては0~50℃であることが好ましく、20~40℃であることがより好ましい。前記反応時間及び反応温度が前記下限未満の場合には、加水分解性基が未反応の状態で残存してしまう傾向にある。他方、反応温度が前記上限を超える場合には、反応速度が速くなりすぎるために複雑な縮合反応が進行し、結果として加水分解生成物の高分子量化が促進されるため好ましくない。 In the hydrolysis, the reaction time is preferably 2 hours or longer, the reaction temperature is preferably 0 to 50 ° C., and more preferably 20 to 40 ° C. When the reaction time and reaction temperature are less than the lower limit, the hydrolyzable group tends to remain in an unreacted state. On the other hand, when the reaction temperature exceeds the above upper limit, the reaction rate becomes too fast, so that a complicated condensation reaction proceeds, and as a result, an increase in the molecular weight of the hydrolysis product is promoted.
 このような方法により本発明に係るかご型シルセスキオキサン樹脂を含有する反応組成物を得ることができる。なお、このような反応組成物においては、本発明に係るかご型シルセスキオキサン樹脂(完全縮合かご型シルセスキオキサン樹脂(例えば前記式(3)で表わされる樹脂)、一部開裂かご型シルセスキオキサン樹脂)の他に、反応の副生成物として、複数種のはしご型シルセスキオキサン樹脂、ランダム型シルセスキオキサン樹脂等が含有される。このような反応組成物において、本発明に係るかご型シルセスキオキサン樹脂の含有量としては、反応組成物をそのまま本発明に係る硬化性樹脂組成物の原料として用いることができるという観点から、前記反応組成物全体に対して50質量%以上であることが好ましい。また、得られたかご型シルセスキオキサン樹脂のうち、前記式(3)で表わされるかご型シルセスキオキサン樹脂の含有量としては、前記かご型シルセスキオキサン樹脂全体に対して50質量%以上であることが好ましく、70質量%以上であることがより好ましい。 By such a method, a reaction composition containing the cage silsesquioxane resin according to the present invention can be obtained. In such a reaction composition, the cage silsesquioxane resin according to the present invention (fully condensed cage silsesquioxane resin (for example, a resin represented by the above formula (3)), partially cleaved cage type In addition to (silsesquioxane resin), a plurality of ladder-type silsesquioxane resins, random-type silsesquioxane resins, and the like are contained as reaction by-products. In such a reaction composition, as the content of the cage silsesquioxane resin according to the present invention, from the viewpoint that the reaction composition can be used as a raw material of the curable resin composition according to the present invention as it is, It is preferable that it is 50 mass% or more with respect to the said whole reaction composition. Moreover, as content of cage-type silsesquioxane resin represented by said Formula (3) among the obtained cage-type silsesquioxane resins, it is 50 mass with respect to the said whole cage-type silsesquioxane resin. % Or more, and more preferably 70% by mass or more.
 なお、本発明において、組成物中における本発明に係るかご型シルセスキオキサン樹脂の合計含有量、及び前記式(3)で表わされるかご型シルセスキオキサン樹脂の含有量は、組成物の液体クロマトグラフ質量分析(LC-MS、HPLC:Agilent 1100 Series Systems(Agilent Technology社製)、MS:QSTAR XL Hybrid LC/MS/MS System(AB SCIEX社製)、カラム:SunFire C18 Column、移動相:HO-CHCN(30-70)、速度:1ml/min、温度:40℃、検出器:UV(254nm))から求められるかご型シルセスキオキサン樹脂の構造、及びゲルパーミエーションクロマトグラフィ(機器名:HLC-8320GPC(東ソー社製)、溶媒:THF、カラム:超高速セミミクロSECカラム SuperH シリーズ、温度:40℃、速度:0.6ml/min)により測定される分子量(数平均分子量)から求めることができる。 In the present invention, the total content of the cage silsesquioxane resin according to the present invention in the composition and the content of the cage silsesquioxane resin represented by the formula (3) are as follows: liquid chromatography mass spectrometry (LC-MS, HPLC: Agilent 1100 Series Systems ( manufactured by Agilent Technology Inc.), MS: QSTAR R XL Hybrid LC / MS / MS System (AB SCIEX Inc.) column: SunFire C18 column, mobile phase : H 2 O—CH 3 CN (30-70), speed: 1 ml / min, temperature: 40 ° C., detector: UV (254 nm)) structure of a cage silsesquioxane resin and gel permeation Chromatography (Equipment name: HLC-83 It can be determined from the molecular weight (number average molecular weight) measured by 20 GPC (manufactured by Tosoh Corporation), solvent: THF, column: ultra-high-speed semi-micro SEC column SuperH series, temperature: 40 ° C., speed: 0.6 ml / min).
 本発明においては、このようなかご型シルセスキオキサン樹脂のうちの1種を単独で用いても2種以上を組み合わせて用いてもよい。 In the present invention, one of these cage silsesquioxane resins may be used alone or in combination of two or more.
 <(B)不飽和化合物>
 本発明に係る不飽和化合物は、下記一般式(1)~(2):
 -R-CR=CH ・・・(1)
 -CR=CH ・・・(2)
[式(1)中、Rは、アルキレン基、アルキリデン基及び-OCO-基からなる群から選択されるいずれかを示し、式(1)~(2)中、Rは、それぞれ独立に水素原子又はアルキル基を示す。]
で表わされる基からなる群から選択される不飽和官能基を2個以上有する、前記かご型シルセスキオキサン樹脂以外の化合物である。また、前記式(2)で表される基が含まれる基からは、前記式(1)で表される基を除く。
<(B) unsaturated compound>
The unsaturated compound according to the present invention includes the following general formulas (1) to (2):
-R 1 -CR 2 = CH 2 (1)
-CR 2 = CH 2 (2)
[In Formula (1), R 1 represents any one selected from the group consisting of an alkylene group, an alkylidene group, and —OCO— group. In Formulas (1) to (2), R 2 is independently A hydrogen atom or an alkyl group is shown. ]
A compound other than the above cage-type silsesquioxane resin, having two or more unsaturated functional groups selected from the group consisting of groups represented by: Moreover, the group represented by the formula (1) is excluded from the group containing the group represented by the formula (2).
 前記式(1)において、Rは、アルキレン基、アルキリデン基及び-OCO-基からなる群から選択されるいずれかを示す。前記アルキレン基及びアルキリデン基としては、直鎖状であっても分岐鎖状であってもよく、結合距離が短く、得られるガラス繊維複合化樹脂基板の耐熱性がより向上する傾向にあるという観点から、炭素数が1~6であることが好ましい。さらに、これらの中でも、Rとしては、ラジカル重合の反応性が高い傾向にあるという観点から、-OCO-基が好ましい。 In the formula (1), R 1 represents any one selected from the group consisting of an alkylene group, an alkylidene group, and an —OCO— group. The alkylene group and the alkylidene group may be linear or branched, have a short bond distance, and the heat resistance of the obtained glass fiber composite resin substrate tends to be further improved. Therefore, the number of carbon atoms is preferably 1-6. Further, among these, R 1 is preferably an —OCO— group from the viewpoint of high radical polymerization reactivity.
 式(1)及び(2)において、Rは、それぞれ独立に水素原子又はアルキル基を示す。前記アルキル基としては、直鎖状であっても分岐鎖状であってもよく、ラジカル重合の反応性がより優れるという観点から、炭素数が1~3であることが好ましい。このようなRとしては、ラジカル重合の反応性がさらに優れるという観点から、水素原子又はメチル基が好ましい。 In formula (1) and (2), R < 2 > shows a hydrogen atom or an alkyl group each independently. The alkyl group may be linear or branched, and preferably has 1 to 3 carbon atoms from the viewpoint of better radical polymerization reactivity. Such R 2 is preferably a hydrogen atom or a methyl group from the viewpoint that the reactivity of radical polymerization is further improved.
 このような不飽和官能基としては、具体的には、アクリロイル基、メタクリロイル基、アリル基及びビニル基が挙げられる。本発明に係る不飽和化合物は、このような不飽和官能基を有していることにより、前記硬化性官能基を有する前記(A)かご型シルセスキオキサン樹脂とラジカル重合が可能であり、高水準の耐熱性及び透明性を有し、熱膨張係数が十分に小さい本発明のガラス繊維複合化樹脂基板を得ることができる。 Specific examples of such unsaturated functional groups include acryloyl groups, methacryloyl groups, allyl groups, and vinyl groups. Since the unsaturated compound according to the present invention has such an unsaturated functional group, it can be radically polymerized with the (A) cage-type silsesquioxane resin having the curable functional group, The glass fiber composite resin substrate of the present invention having a high level of heat resistance and transparency and a sufficiently small thermal expansion coefficient can be obtained.
 本発明に係る不飽和化合物としては、前記不飽和官能基を化合物1分子あたりに2個以上有する。前記不飽和官能基の数が前記下限未満である場合には、前記かご型シルセスキオキサン樹脂とラジカル重合せしめても十分な架橋構造が形成されないため、ガラス繊維複合化樹脂基板の高温時における弾性率が低くなり耐熱性が低下する。また、前記弾性率及び耐熱性がより向上するという観点から、前記不飽和官能基の数としては、2~10個であることが好ましい。なお、本発明に係る不飽和化合物としては、モノマーであってもポリマーであってもよく、前記不飽和化合物がポリマーである場合には前記不飽和官能基の数は化合物1分子あたりの平均値である。また、化合物1分子あたりの不飽和官能基の数(又は平均数)は、H-NMR(機器名:JNM-ECA400(日本電子株式会社製)、溶媒:クロロホルム-d、温度:22.7℃、400MHz)により測定される不飽和官能基の基のピーク面積及びゲルパーミエーションクロマトグラフィ(GPC、(機器名:HLC-8320GPC(東ソー社製)、溶媒:THF、カラム:超高速セミミクロSECカラム SuperH シリーズ、温度:40℃、速度:0.6ml/min)により測定される分子量(又は数平均分子量)から求めることができる。 The unsaturated compound according to the present invention has two or more unsaturated functional groups per molecule of the compound. When the number of the unsaturated functional groups is less than the lower limit, a sufficient cross-linked structure is not formed even by radical polymerization with the cage silsesquioxane resin. The elastic modulus is lowered and the heat resistance is lowered. Further, from the viewpoint of further improving the elastic modulus and heat resistance, the number of the unsaturated functional groups is preferably 2 to 10. The unsaturated compound according to the present invention may be a monomer or a polymer. When the unsaturated compound is a polymer, the number of unsaturated functional groups is an average value per molecule of the compound. It is. The number (or average number) of unsaturated functional groups per molecule of the compound was 1 H-NMR (device name: JNM-ECA400 (manufactured by JEOL Ltd.), solvent: chloroform-d, temperature: 22.7. Peak area of unsaturated functional group group and gel permeation chromatography (GPC, (device name: HLC-8320GPC (manufactured by Tosoh Corporation)), solvent: THF, column: ultra-high-speed semi-micro SEC column SuperH Series, temperature: 40 ° C., speed: 0.6 ml / min) can be determined from the molecular weight (or number average molecular weight) measured.
 本発明に係る不飽和化合物としては、前記不飽和官能基を化合物1分子あたりに2個以上有していればよく、特に制限されないが、分子量(ポリマーである場合には重量平均分子量)が80~5000であることが好ましい。分子量が前記下限未満であると、硬化性樹脂組成物の硬化において未反応の不飽和化合物が残存した場合に、熱処理等の加熱処理において未反応の不飽和化合物が揮発成分となり硬化後の重量変化や寸法変化をひきおこすおそれがあり、他方、前記上限を超える場合には、かご型シルセスキオキサン樹脂との溶解性が低下したり、得られる硬化性樹脂組成物の粘度が高くなって取り扱いが困難となる傾向にある。 The unsaturated compound according to the present invention is not particularly limited as long as it has two or more unsaturated functional groups per molecule of the compound, and has a molecular weight (weight average molecular weight in the case of a polymer) of 80. It is preferably ˜5000. When the molecular weight is less than the lower limit, when an unreacted unsaturated compound remains in the curing of the curable resin composition, the unreacted unsaturated compound becomes a volatile component in the heat treatment such as heat treatment, and the weight change after curing. On the other hand, when the above upper limit is exceeded, the solubility with the cage silsesquioxane resin may be reduced, or the resulting curable resin composition may have a high viscosity and be handled. It tends to be difficult.
 このような不飽和化合物としては、例えば、ジシクロペンタニルジアクリレート、トリプロピレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ビスフェノールAジグリシジルエーテルジアクリレート、ビスフェノールフルオレンジアクリレート、テトラエチレングリコールジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレートが挙げられ、中でも、かご型シルセスキオキサン樹脂との溶解性が高く、また、得られるガラス繊維複合化樹脂基板における耐熱性がより向上する傾向にあるという観点から、炭素数1~30の炭化水素化合物に前記不飽和官能基が2個以上結合した化合物が好ましく、ジシクロペンタニルジアクリレート、ビスフェノールフルオレンジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレートがより好ましい。また、本発明に係る不飽和化合物としては、1種を単独で用いても2種以上を組み合わせて用いてもよい
 <(C)硬化触媒>
 本発明に係る硬化触媒は、前記(A)かご型シルセスキオキサン樹脂と前記(B)不飽和化合物との硬化反応(ラジカル重合反応)を促進する触媒である。このような硬化触媒としては、ラジカル重合開始剤が挙げられ、前記ラジカル重合開始剤としては、光ラジカル重合開始剤及び熱ラジカル重合開始剤が挙げられる。
Examples of such unsaturated compounds include dicyclopentanyl diacrylate, tripropylene glycol diacrylate, 1,6-hexanediol diacrylate, bisphenol A diglycidyl ether diacrylate, bisphenol full orange acrylate, and tetraethylene glycol diacrylate. Acrylate, hydroxypivalate neopentyl glycol diacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, among others, solubility in cage silsesquioxane resin From the viewpoint that the heat resistance of the obtained glass fiber composite resin substrate tends to be higher, the number of carbon atoms The compound unsaturated functional groups are bonded two or more preferably in hydrocarbon compounds and 30, dicyclopentanyl diacrylate, bisphenol fluorene diacrylate, trimethylolpropane triacrylate, pentaerythritol tetraacrylate is more preferable. In addition, as the unsaturated compound according to the present invention, one kind may be used alone, or two or more kinds may be used in combination. <(C) Curing Catalyst>
The curing catalyst according to the present invention is a catalyst that accelerates a curing reaction (radical polymerization reaction) between the (A) cage silsesquioxane resin and the (B) unsaturated compound. Examples of such a curing catalyst include a radical polymerization initiator, and examples of the radical polymerization initiator include a photo radical polymerization initiator and a thermal radical polymerization initiator.
 前記光ラジカル重合開始剤としては、アセトフェノン系、ベンゾイン系、ベンゾフェノン系、チオキサンソン系、アシルホスフィンオキサイド系の光重合開始剤が挙げられ、具体的には、トリクロロアセトフェノン、ジエトキシアセトフェノン、1-フェニル-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-メチルチオフェニル)-2-モルホリノプロパン-1-オン、ベンゾインメチルエーテル、ベンジルジメチルケタール、ベンゾフェノン、チオキサンソン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、メチルフェニルグリオキシレート、カンファーキノン、ベンジル、アンスラキノン、ミヒラーケトン等が挙げられる。また、前記熱ラジカル重合開始剤としては、例えば、ケトンパーオキサイド系、パーオキシケタール系、ハイドロパーオキサイド系、ジアルキルパーオキサイド系、ジアシルパーオキサイド系、パーオキシジカーボネート系、パーオキシエステル系の熱重合開始剤が挙げられる。本発明に係る硬化触媒としては、これらのうちの1種を単独で用いても2種以上を組み合わせて用いてもよく、前記光ラジカル重合開始剤と前記熱ラジカル重合開始剤とを組み合わせて用いてもよい。 Examples of the photoradical polymerization initiator include acetophenone-based, benzoin-based, benzophenone-based, thioxanthone-based, and acylphosphine oxide-based photopolymerization initiators. Specific examples include trichloroacetophenone, diethoxyacetophenone, 1-phenyl- 2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, benzoin methyl ether, benzyldimethyl ketal, Examples include benzophenone, thioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, methylphenylglyoxylate, camphorquinone, benzyl, anthraquinone, Michler's ketone and the like. Examples of the thermal radical polymerization initiator include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxydicarbonate, and peroxyester heat. A polymerization initiator is mentioned. As the curing catalyst according to the present invention, one of these may be used alone, or two or more may be used in combination, and the photo radical polymerization initiator and the thermal radical polymerization initiator are used in combination. May be.
 <硬化性樹脂組成物>
 本発明に係る硬化性樹脂組成物は、前記(A)かご型シルセスキオキサン樹脂と前記(B)不飽和化合物と前記(C)硬化触媒とを含有する。
<Curable resin composition>
The curable resin composition according to the present invention contains the (A) cage-type silsesquioxane resin, the (B) unsaturated compound, and the (C) curing catalyst.
 本発明に係る硬化性樹脂組成物において、前記かご型シルセスキオキサン樹脂の含有量は、前記硬化性樹脂組成物全体に対して5~90質量%であることが必要である。前記かご型シルセスキオキサン樹脂の含有量が前記下限未満である場合には、ガラス繊維複合化樹脂基板におけるガラス転移温度が低下し、且つ熱膨張係数が大きくなるため、耐熱性が不十分となる。他方、前記上限を超える場合には、硬化物における架橋密度が増加しガラス繊維複合化樹脂基板が脆くなるため、取り扱いが困難となる。 In the curable resin composition according to the present invention, the content of the cage silsesquioxane resin needs to be 5 to 90% by mass with respect to the entire curable resin composition. When the content of the cage silsesquioxane resin is less than the lower limit, the glass transition temperature in the glass fiber composite resin substrate is lowered and the thermal expansion coefficient is increased. Become. On the other hand, when the upper limit is exceeded, the crosslink density in the cured product increases and the glass fiber composite resin substrate becomes brittle, making it difficult to handle.
 また、ガラス繊維複合化樹脂基板の耐熱性がより向上し、且つ強度がより向上するという観点から、前記かご型シルセスキオキサン樹脂の含有量としては、8~80質量%であることが好ましい。さらに、前記と同様の観点から、前記かご型シルセスキオキサン樹脂のうちの50質量%以上(より好ましくは70質量%以上)が前記式(3)で表わされるかご型シルセスキオキサン樹脂であることが好ましく、本発明に係る硬化性樹脂組成物としては、前記式(3)で表わされるかご型シルセスキオキサン樹脂の含有量が前記硬化性樹脂組成物全体に対して2.5~90質量%であることが好ましく、5~80質量%であることがより好ましい。 In addition, from the viewpoint of further improving the heat resistance of the glass fiber composite resin substrate and further improving the strength, the content of the cage silsesquioxane resin is preferably 8 to 80% by mass. . Further, from the same viewpoint as described above, the cage silsesquioxane resin in which 50% by mass or more (more preferably 70% by mass or more) of the cage silsesquioxane resin is represented by the formula (3) Preferably, as the curable resin composition according to the present invention, the content of the cage silsesquioxane resin represented by the formula (3) is 2.5 to 2.5% with respect to the entire curable resin composition. It is preferably 90% by mass, and more preferably 5 to 80% by mass.
 また、本発明に係る硬化性樹脂組成物において、前記不飽和化合物の含有量としては、前記硬化性樹脂組成物全体に対して5~90質量%であることが好ましく、10~70質量%であることがより好ましい。前記不飽和化合物の含有量が前記下限未満である場合には、硬化性樹脂組成物の溶解性が低下したり、溶液粘度が増加するため、ガラス繊維への含浸性が低下する傾向にあり、他方、前記上限を超える場合には、硬化性樹脂組成物の硬化物のガラス転移温度が低下し、得られるガラス繊維複合化樹脂基板の耐熱性が低下する傾向にある。 In the curable resin composition according to the present invention, the content of the unsaturated compound is preferably 5 to 90% by mass with respect to the entire curable resin composition, and is 10 to 70% by mass. More preferably. When the content of the unsaturated compound is less than the lower limit, the solubility of the curable resin composition is decreased or the solution viscosity is increased, so that the impregnation property to the glass fiber tends to be decreased. On the other hand, when exceeding the said upper limit, the glass transition temperature of the hardened | cured material of curable resin composition falls, and it exists in the tendency for the heat resistance of the glass fiber composite resin substrate obtained to fall.
 さらに、本発明に係る硬化性樹脂組成物において、前記硬化触媒の含有量としては、前記硬化性樹脂組成物全体に対して0.1~5.0質量%であることが好ましく、0.1~3.0質量%であることがより好ましい。前記硬化触媒の含有量が前記下限未満である場合には、硬化反応が不十分となり、得られる硬化物の強度、剛性が低下する傾向にあり、他方、前記上限を超える場合には硬化物に着色が生じたりするおそれがある。 Furthermore, in the curable resin composition according to the present invention, the content of the curing catalyst is preferably 0.1 to 5.0% by mass with respect to the entire curable resin composition, More preferably, it is -3.0 mass%. When the content of the curing catalyst is less than the lower limit, the curing reaction becomes insufficient, and the strength and rigidity of the resulting cured product tend to decrease. Coloring may occur.
 また、本発明に係る硬化性樹脂組成物としては、前記(A)かご型シルセスキオキサン樹脂及び前記(B)不飽和化合物以外の硬化可能な化合物(以下、場合により硬化性化合物という)をさらに含有していてもよい。このような硬化性化合物としては、加熱又は活性エネルギー線の照射により硬化せしめることが可能な化合物であればよく、特に制限されないが、前記かご型シルセスキオキサン樹脂と相溶性及び反応性を有する化合物であることが好ましい。 Further, as the curable resin composition according to the present invention, a curable compound other than the (A) cage-type silsesquioxane resin and the (B) unsaturated compound (hereinafter sometimes referred to as a curable compound). Furthermore, you may contain. Such a curable compound is not particularly limited as long as it is a compound that can be cured by heating or irradiation with active energy rays, and has compatibility and reactivity with the cage silsesquioxane resin. A compound is preferred.
 このような硬化性化合物としては、例えば、構造単位の繰り返し数が2~20程度の重合体である反応性オリゴマー、低分子量且つ低粘度である反応性モノマーが挙げられる。前記反応性オリゴマーとしては、具体的には、エポキシアクリレート、エポキシ化油アクリレート、ウレタンアクリレート、不飽和ポリエステル、ポリエステルアクリレート、ポリエーテルアクリレート、ビニルアクリレート、ポリエン/チオール、シリコーンアクリレート、ポリブタジエン、ポリスチリルエチルメタクリレートが挙げられる。また、前記反応性モノマーとしては、具体的には、スチレン、酢酸ビニル、N-ビニルピロリドン、ブチルアクリレート、2-エチルヘキシルアクリレート、n-ヘキシルアクリレート、シクロヘキシルアクリレート、n-デシルアクリレート、イソボニルアクリレート、ジシクロペンテニロキシエチルアクリレート、フェノキシエチルアクリレート、トリフルオロエチルメタクリレート等の単官能モノマーが挙げられる。このような硬化性化合物としては、1種を単独で用いても2種以上を組み合わせて用いてもよい。 Examples of such a curable compound include a reactive oligomer which is a polymer having about 2 to 20 repeating units of a structural unit, and a reactive monomer having a low molecular weight and a low viscosity. Specific examples of the reactive oligomer include epoxy acrylate, epoxidized oil acrylate, urethane acrylate, unsaturated polyester, polyester acrylate, polyether acrylate, vinyl acrylate, polyene / thiol, silicone acrylate, polybutadiene, and polystyrylethyl methacrylate. Is mentioned. Specific examples of the reactive monomer include styrene, vinyl acetate, N-vinyl pyrrolidone, butyl acrylate, 2-ethylhexyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, n-decyl acrylate, isobornyl acrylate, Monofunctional monomers such as cyclopentenyloxyethyl acrylate, phenoxyethyl acrylate, and trifluoroethyl methacrylate are exemplified. Such curable compounds may be used alone or in combination of two or more.
 本発明に係る硬化性樹脂組成物が前記硬化性化合物を含有する場合、その含有量としては、前記硬化性樹脂組成物全体に対して40質量%以下であることが好ましい。前記硬化性化合物の含有量が前記上限を超える場合には十分な架橋構造が形成されにくくなり、得られるガラス繊維複合化樹脂基板の耐熱性が低下する傾向にある。 When the curable resin composition according to the present invention contains the curable compound, the content is preferably 40% by mass or less based on the entire curable resin composition. When the content of the curable compound exceeds the upper limit, it is difficult to form a sufficient crosslinked structure, and the heat resistance of the obtained glass fiber composite resin substrate tends to decrease.
 また、本発明に係る硬化性樹脂組成物としては、本発明の効果を阻害しない範囲内において、各種添加剤をさらに含有していてもよい。前記添加剤としては、例えば、有機/無機フィラー、可塑剤、難燃剤、熱安定剤、酸化防止剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤、離型剤、発泡剤、核剤、着色剤、架橋剤、分散助剤等が挙げられる。このような添加剤を含有する場合、その含有量としては、前記硬化性樹脂組成物全体に対して30質量%以下であることが好ましい。 Moreover, the curable resin composition according to the present invention may further contain various additives within a range not impairing the effects of the present invention. Examples of the additive include organic / inorganic fillers, plasticizers, flame retardants, heat stabilizers, antioxidants, light stabilizers, ultraviolet absorbers, lubricants, antistatic agents, mold release agents, foaming agents, and nucleating agents. , Coloring agents, crosslinking agents, dispersion aids and the like. When such an additive is contained, the content is preferably 30% by mass or less with respect to the entire curable resin composition.
 さらに、本発明に係る硬化性樹脂組成物としては、その粘度等を調整することを目的として、メチルエチルケトン、トルエン、酢酸エチル等の溶媒をさらに含有していてもよいが、溶媒の揮発除去工程に時間を要するため生産効率が低下すること、及び、得られるガラス繊維複合化樹脂基板の内部に溶媒が残留して基板の特性が低下するおそれがあることから、前記溶媒の含有量としては、前記硬化性樹脂組成物全体に対して5質量%以下であることが好ましく、溶媒を含有していないことがより好ましい。 Furthermore, the curable resin composition according to the present invention may further contain a solvent such as methyl ethyl ketone, toluene, ethyl acetate for the purpose of adjusting its viscosity, etc., but in the solvent devolatilization step. Since it takes time, the production efficiency decreases, and the solvent may remain inside the obtained glass fiber composite resin substrate, so that the characteristics of the substrate may decrease. It is preferable that it is 5 mass% or less with respect to the whole curable resin composition, and it is more preferable that the solvent is not contained.
 <ガラス繊維>
 本発明に係るガラス繊維の形態としては、糸状のヤーン、ガラスクロス、不職布等が挙げられる。これらの中でも、熱膨張係数の低減効果が高いという観点から、ガラスクロスが好ましい。前記ガラスクロスの原料としては、ガラスの組成によってEガラス、Cガラス、Aガラス、Sガラス、Dガラス、NEガラス、Tガラス、石英ガラス等が挙げられ、これらの中でも、屈折率の範囲が好適な範囲内にあり、また、入手が容易であるという観点から、Eガラス、Sガラス、Tガラス、NEガラスが好ましい。
<Glass fiber>
Examples of the form of the glass fiber according to the present invention include a yarn-like yarn, a glass cloth, and a non-work cloth. Among these, glass cloth is preferable from the viewpoint that the effect of reducing the thermal expansion coefficient is high. Examples of the glass cloth material include E glass, C glass, A glass, S glass, D glass, NE glass, T glass, and quartz glass depending on the composition of the glass. Among these, the refractive index range is preferable. E glass, S glass, T glass, and NE glass are preferred from the viewpoint of being within the above range and being easily available.
 また、本発明に係るガラス繊維としては、前記硬化性樹脂組成物と前記ガラス繊維との界面における濡れ性、親和性、密着性を向上させることを目的として、シランカップリング剤、各種界面活性剤、無機酸による洗浄;コロナ放電処理;紫外線照射処理;プラズマ処理等により表面処理が施されているものを用いてもよい。 In addition, the glass fiber according to the present invention includes a silane coupling agent and various surfactants for the purpose of improving wettability, affinity, and adhesion at the interface between the curable resin composition and the glass fiber. Cleaning with an inorganic acid; corona discharge treatment; ultraviolet irradiation treatment; a surface treated by plasma treatment or the like may be used.
 さらに、本発明に係るガラス繊維の屈折率としては、前記硬化性樹脂組成物の硬化物の屈折率との差が-0.02~+0.02の範囲内にあることが好ましく、-0.01~+0.01の範囲内にあることがより好ましい。前記屈折率の差が前記範囲から外れる場合には、硬化性樹脂組成物の硬化物とガラス繊維との界面散乱が増大し、ガラス繊維複合化樹脂基板の透明性が低下するため、フレキシブルディスプレイや、太陽電池用ガラス代替基板として使用することが困難となる傾向にある。 Further, the refractive index of the glass fiber according to the present invention is preferably such that the difference from the refractive index of the cured product of the curable resin composition is within a range of −0.02 to +0.02. More preferably, it is within the range of 01 to +0.01. When the difference in refractive index is out of the above range, the interface scattering between the cured product of the curable resin composition and the glass fiber is increased, and the transparency of the glass fiber composite resin substrate is decreased. , It tends to be difficult to use as a glass substitute substrate for solar cells.
 また、本発明に係るガラス繊維の形態がガラスクロス、不職布等である場合、その厚さとしては、ガラス繊維複合化樹脂基板を使用する目的により適宜選択できるが、硬化性樹脂組成物のガラス繊維への含浸性が向上する傾向にあるという観点から、30~100μmであることが好ましい。 Further, when the glass fiber according to the present invention is a glass cloth, a non-woven cloth, etc., the thickness can be appropriately selected depending on the purpose of using the glass fiber composite resin substrate. From the viewpoint that the impregnation property to the glass fiber tends to be improved, the thickness is preferably 30 to 100 μm.
 <ガラス繊維複合化樹脂基板>
 本発明のガラス繊維複合化樹脂基板は、前記硬化性樹脂組成物と前記ガラス繊維とを複合化せしめたものである。このようなガラス繊維複合化樹脂基板の製造方法としては、特に制限されないが、例えば、前記硬化性樹脂組成物を前記ガラス繊維に含浸させた後に前記硬化性樹脂組成物を硬化せしめる方法が挙げられる。
<Glass fiber composite resin substrate>
The glass fiber composite resin substrate of the present invention is a composite of the curable resin composition and the glass fiber. A method for producing such a glass fiber composite resin substrate is not particularly limited, and examples thereof include a method of curing the curable resin composition after impregnating the glass fiber with the curable resin composition. .
 このような方法においては、先ず、前記(A)かご型シルセスキオキサン樹脂、前記(B)不飽和化合物、前記(C)硬化触媒、及び必要に応じてその他の化合物や溶媒等を室温(20~25℃)で混合して本発明に係る硬化性樹脂組成物を得る。次いで、前記硬化性樹脂組成物を前記ガラス繊維に滴下、浸漬等の方法により含浸せしめ、必要に応じて溶媒を除去する。次いで、前記硬化性樹脂組成物を含浸せしめたガラス繊維に対して加熱処理及び/又は活性エネルギー線照射処理を施して前記硬化性樹脂組成物を硬化せしめ、本発明のガラス繊維複合化樹脂基板を得る。 In such a method, first, the (A) cage silsesquioxane resin, the (B) unsaturated compound, the (C) curing catalyst, and, if necessary, other compounds and solvents, etc. at room temperature ( 20 to 25 ° C.) to obtain a curable resin composition according to the present invention. Next, the curable resin composition is impregnated into the glass fiber by a method such as dropping or dipping, and the solvent is removed as necessary. Next, the glass fiber impregnated with the curable resin composition is subjected to heat treatment and / or active energy ray irradiation treatment to cure the curable resin composition, and the glass fiber composite resin substrate of the present invention is obtained. obtain.
 本発明のガラス繊維複合化樹脂基板としては、1m当たりの前記硬化性樹脂組成物の硬化物と前記ガラス繊維との質量比(硬化物の質量:ガラス繊維の質量)が20:80~70:30であることが好ましく、40:60~60:40であることがより好ましい。前記硬化物に対するガラス繊維の割合が前記下限未満である場合には、ガラス繊維複合化樹脂基板の耐熱性が低下し、熱膨張係数が20ppm/Kを越える傾向にあり、他方、前記上限を超える場合には、ガラス繊維への含浸が不十分となり、繊維間に空隙が残存してガラス繊維複合化樹脂基板の透明性が低下(ヘイズ増加)する傾向にある。そのため、前記含浸においては、硬化後の前記硬化性樹脂組成物の質量と前記ガラス繊維の質量との比が前記範囲内となるように含浸せしめることが好ましい。 As the glass fiber composite resin substrate of the present invention, the mass ratio of the cured product of the curable resin composition to the glass fiber per 1 m 2 (mass of cured product: mass of glass fiber) is 20:80 to 70. : 30 is preferable, and 40:60 to 60:40 is more preferable. When the ratio of the glass fiber to the cured product is less than the lower limit, the heat resistance of the glass fiber composite resin substrate is lowered and the thermal expansion coefficient tends to exceed 20 ppm / K, and on the other hand, exceeds the upper limit. In such a case, impregnation into the glass fibers becomes insufficient, and voids remain between the fibers, so that the transparency of the glass fiber composite resin substrate tends to decrease (increased haze). Therefore, in the impregnation, it is preferable to impregnate so that the ratio of the mass of the curable resin composition after curing and the mass of the glass fiber is within the above range.
 さらに、前記含浸においては、ガラス繊維の種類やガラス繊維複合化樹脂基板を使用する目的により適宜調整することができるが、ガラス繊維複合化樹脂基板を適用した液晶ディスプレイや有機ELディスプレイの厚みや製造プロセス(roll to roll)対応の観点から、得られるガラス繊維複合化樹脂基板の厚さが0.03~0.5mm、好ましくは0.05~0.2mmとなるように含浸せしめることが好ましい。 Furthermore, the impregnation can be adjusted as appropriate depending on the type of glass fiber and the purpose of using the glass fiber composite resin substrate, but the thickness and production of liquid crystal displays and organic EL displays to which the glass fiber composite resin substrate is applied. From the viewpoint of compatibility with the process (roll to roll), it is preferable to impregnate the obtained glass fiber composite resin substrate so as to have a thickness of 0.03 to 0.5 mm, preferably 0.05 to 0.2 mm.
 また、前記加熱処理における加熱温度としては、前記硬化性樹脂組成物に応じて適宜調整することができるが、50~200℃であることが好ましく、80~180℃であることがより好ましい。加熱温度が前記下限未満では硬化反応の進行が不十分となり、十分な架橋構造が形成されない傾向にあり、他方、前記上限を超えると硬化性樹脂組成物が硬化される前に変質したり、揮発するといった不具合が生じる傾向にある。さらに、前記加熱処理における加熱時間としては、前記加熱温度や前記硬化性樹脂組成物に応じて異なるため一概にはいえないが、30~60分間であることが好ましい。また、前記加熱処理としては、硬化性樹脂組成物のラジカル重合反応の酸素による阻害を抑制することができ、より十分な架橋構造を形成せしめることができる傾向にあるという観点から、窒素等の不活性ガス雰囲気下で行うことが好ましい。 The heating temperature in the heat treatment can be appropriately adjusted according to the curable resin composition, but is preferably 50 to 200 ° C, more preferably 80 to 180 ° C. If the heating temperature is less than the lower limit, the curing reaction is not sufficiently progressed and a sufficient cross-linked structure tends not to be formed. On the other hand, if the heating temperature exceeds the upper limit, the curable resin composition is deteriorated or volatilized before being cured. There is a tendency for problems to occur. Further, the heating time in the heat treatment varies depending on the heating temperature and the curable resin composition, and thus cannot be generally described, but is preferably 30 to 60 minutes. In addition, as the heat treatment, it is possible to suppress the inhibition of the radical polymerization reaction of the curable resin composition due to oxygen, and from the viewpoint that a more sufficient cross-linked structure tends to be formed, nitrogen or the like is not used. It is preferable to carry out in an active gas atmosphere.
 さらに、前記活性エネルギー線照射処理における活性エネルギー線照射の条件としては、波長10~400nmの紫外線、波長400~700nmの可視光線を照射することが好ましく、波長200~400nmの近紫外線を照射することがより好ましい。また、積算露光量としては、2000~10000mJ/cmであることが好ましい。前記活性エネルギー線の発生源としては、低圧水銀ランプ(出力:0.4~4W/cm)、高圧水銀ランプ(40~160W/cm)、超高圧水銀ランプ(173~435W/cm)、メタルハライドランプ(80~160W/cm)、パルスキセノンランプ(80~120W/cm)、無電極放電ランプ(80~120W/cm)等が挙げられる。 Further, as the active energy ray irradiation conditions in the active energy ray irradiation treatment, it is preferable to irradiate ultraviolet rays having a wavelength of 10 to 400 nm and visible rays having a wavelength of 400 to 700 nm, and to irradiate near ultraviolet rays having a wavelength of 200 to 400 nm. Is more preferable. The integrated exposure amount is preferably 2000 to 10,000 mJ / cm 2 . As a source of the active energy ray, a low-pressure mercury lamp (output: 0.4 to 4 W / cm), a high-pressure mercury lamp (40 to 160 W / cm), an ultra-high pressure mercury lamp (173 to 435 W / cm), a metal halide lamp (80 to 160 W / cm), pulse xenon lamp (80 to 120 W / cm), electrodeless discharge lamp (80 to 120 W / cm), and the like.
 本発明のガラス繊維複合化樹脂基板としては、表面を平滑化することを目的として、前記ガラス繊維複合化樹脂基板の一方の表面又は両方の表面に、樹脂からなるコート層をさらに備えていても良い。前記樹脂としては、耐熱性、透明性、耐薬品性を有しているものであることが好ましく、本発明に係る前記硬化性樹脂組成物を用いることが特に好ましい。また、本発明のガラス繊維複合化樹脂基板としては、必要に応じて酸素や水蒸気に対するガスバリア層をさらに備えていてもよい。 The glass fiber composite resin substrate of the present invention may further include a coating layer made of a resin on one surface or both surfaces of the glass fiber composite resin substrate for the purpose of smoothing the surface. good. The resin preferably has heat resistance, transparency, and chemical resistance, and it is particularly preferable to use the curable resin composition according to the present invention. The glass fiber composite resin substrate of the present invention may further include a gas barrier layer against oxygen and water vapor as necessary.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、各調製例、実施例及び比較例において、屈折率測定、全光線透過率測定、耐熱性評価はそれぞれ以下に示す方法により行った。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples. In each of the preparation examples, examples, and comparative examples, the refractive index measurement, the total light transmittance measurement, and the heat resistance evaluation were performed by the following methods.
 (屈折率測定)
 各調製例において得られた硬化性樹脂組成物を、ロールコーターを用いて、厚さ0.1mmになるようにキャスト(流延)し、80W/cmの高圧水銀ランプを用い、2000mJ/cmの積算露光量で硬化させてシート状の硬化物を得た。得られた硬化物について、屈折率計(DR-M2、アタゴ社製)を用いて、589nmにおける屈折率をそれぞれ測定した。
(Refractive index measurement)
The curable resin composition obtained in each preparation example was cast (cast) to a thickness of 0.1 mm using a roll coater, and 2000 mJ / cm 2 using an 80 W / cm high-pressure mercury lamp. A sheet-like cured product was obtained by curing with the accumulated exposure amount. The obtained cured product was measured for the refractive index at 589 nm using a refractometer (DR-M2, manufactured by Atago Co., Ltd.).
 (全光線透過率測定)
 各実施例及び比較例において得られたガラス繊維複合化樹脂基板について、ヘイズメーター(NDH2000、日本電色製)を用いて、全光線透過率(%)を測定した。
(Total light transmittance measurement)
About the glass fiber composite resin substrate obtained in each Example and the comparative example, the total light transmittance (%) was measured using the haze meter (NDH2000, Nippon Denshoku).
 (耐熱性評価)
 ・ガラス転移温度測定、動的粘弾性低下率測定
 各実施例及び比較例において得られたガラス繊維複合化樹脂基板について、動的粘弾性測定装置(商品名:DVE-V4、製造社名:ユービーエム社製)を用いて、昇温速度5℃/minの条件にて、温度30~300℃の範囲で動的粘弾性測定を行い、温度30~300℃の範囲におけるTanδのピーク温度をガラス転移温度(Tg(℃))とした。また、動的粘弾性低下率(ΔE’(%))は、次式:
   ΔE’(%)=(E’30-E’300)/ E’30
[式中、E’30は30℃における動的粘弾性を示し、E’300は300℃における動的粘弾性を示す]
により求めた。なお、ガラス転移温度が高い及び/又は動的粘弾性低下率が小さい程、ガラス繊維複合化樹脂基板の耐熱性が高いことを示す。
(Heat resistance evaluation)
Glass transition temperature measurement, dynamic viscoelasticity reduction rate measurement About the glass fiber composite resin substrate obtained in each Example and Comparative Example, a dynamic viscoelasticity measuring apparatus (trade name: DVE-V4, manufacturer: UBM) The dynamic viscoelasticity measurement is performed in the temperature range of 30 to 300 ° C under the condition of the temperature rising rate of 5 ° C / min., And the Tanδ peak temperature in the temperature range of 30 to 300 ° C is the glass transition. The temperature (Tg (° C.)) was used. The dynamic viscoelasticity reduction rate (ΔE ′ (%)) is expressed by the following formula:
ΔE ′ (%) = (E ′ 30 −E ′ 300 ) / E ′ 30
[In the formula, E ′ 30 indicates dynamic viscoelasticity at 30 ° C., and E ′ 300 indicates dynamic viscoelasticity at 300 ° C.]
Determined by In addition, it shows that the heat resistance of a glass fiber composite resin board | substrate is so high that a glass transition temperature is high and / or a dynamic viscoelastic fall rate is small.
 ・熱膨張係数(線熱膨張係数)測定
 各実施例及び比較例において得られたガラス繊維複合化樹脂基板について、熱機械分析装置(TMA、商品名:TMA4000SA、製造社名:BRUKER社製)を用いて、昇温速度5℃/min、圧縮荷重0.1Nの条件にて、温度30~200℃の範囲におけるガラス繊維複合化樹脂基板(0.1mm厚)の面方向(X方向)の伸びの平均値を求め、この値からガラス繊維複合化樹脂基板の面方向(X方向)の熱膨張係数(ppm/K)を求めた。なお、熱膨張係数が小さい程、ガラス繊維複合化樹脂基板の耐熱性が高いことを示す。
-Thermal expansion coefficient (linear thermal expansion coefficient) measurement About the glass fiber composite resin substrate obtained in each Example and the comparative example, the thermomechanical analyzer (TMA, brand name: TMA4000SA, manufacture company name: BRUKER company make) was used. The elongation in the plane direction (X direction) of the glass fiber composite resin substrate (thickness 0.1 mm) in the temperature range of 30 to 200 ° C. under the conditions of a temperature rising rate of 5 ° C./min and a compressive load of 0.1 N. The average value was determined, and the thermal expansion coefficient (ppm / K) in the surface direction (X direction) of the glass fiber composite resin substrate was determined from this value. In addition, it shows that the heat resistance of a glass fiber composite resin substrate is so high that a thermal expansion coefficient is small.
 (合成例1:かご型シルセスキオキサン樹脂(I))
 かご型シルセスキオキサン樹脂(I)は、特開2004-143449号公報に記載された方法に従って製造した。先ず、撹拌機、滴下ロート、及び温度計を備えた反応容器に、溶媒として2-プロパノール(IPA)40mlと、塩基性触媒として5%テトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)3.1gを装入した。また、滴下ロートにIPA 15mlと3-メタクリロキシプロピルトリメトキシシラン12.7gを装入して3-メタクリロキシプロピルトリメトキシシランのIPA溶液を調製し、これを前記反応容器に、室温において撹拌しながら30分間かけて滴下した。滴下終了後、加熱することなくさらに2時間撹拌した。撹拌後、減圧下でIPAを除去し、かご型シルセスキオキサン樹脂(I)を含む組成物7.5gを得た。得られた組成物中において、本発明に係るかご型シルセスキオキサン樹脂(I)は前記組成物全体に対して97質量%であり、そのうち、式(3)で表わされるかご型シルセスキオキサン樹脂は前記かご型シルセスキオキサン樹脂(I)全体に対して90質量%であり、液体クロマトクラフィー分離後の質量分析の結果、式(3)中のnは8、10、12であった。
(Synthesis example 1: basket type silsesquioxane resin (I))
The cage silsesquioxane resin (I) was produced according to the method described in JP-A No. 2004-143449. First, a reaction vessel equipped with a stirrer, a dropping funnel, and a thermometer was charged with 40 ml of 2-propanol (IPA) as a solvent and 3.1 g of 5% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution) as a basic catalyst. I entered. An addition funnel was charged with 15 ml of IPA and 12.7 g of 3-methacryloxypropyltrimethoxysilane to prepare an IPA solution of 3-methacryloxypropyltrimethoxysilane, which was stirred in the reaction vessel at room temperature. The solution was added dropwise over 30 minutes. After completion of dropping, the mixture was further stirred for 2 hours without heating. After stirring, IPA was removed under reduced pressure to obtain 7.5 g of a composition containing a cage silsesquioxane resin (I). In the obtained composition, the cage-type silsesquioxane resin (I) according to the present invention is 97% by mass with respect to the entire composition, of which the cage-type silsesquioxane represented by the formula (3) The sun resin is 90% by mass with respect to the entire cage silsesquioxane resin (I). As a result of mass spectrometry after liquid chromatographic separation, n in the formula (3) is 8, 10, 12. there were.
 (合成例2:かご型シルセスキオキサン樹脂(II))
 滴下ロートにIPA 15ml、3-メタクリロキシプロピルトリメトキシシラン7.2g及びフェニルトリメトキシシラン5.7gを装入して3-メタクリロキシプロピルトリメトキシシラン及びフェニルトリメトキシシランのIPA溶液を調製し、これを3-メタクリロキシプロピルトリメトキシシランのIPA溶液に代えて用いたこと以外は合成例1と同様にして、かご型シルセスキオキサン樹脂(II)を含む組成物8.7gを得た。得られた組成物中において、本発明に係るかご型シルセスキオキサン樹脂(II)は前記組成物全体に対して96質量%であり、そのうち、式(3)で表わされるかご型シルセスキオキサン樹脂は前記かご型シルセスキオキサン樹脂(II)全体に対して92質量%であり、液体クロマトクラフィー分離後の質量分析の結果、式(3)中のn+mは8、10、12であった。また、n:mは4:4であった。
(Synthesis example 2: basket type silsesquioxane resin (II))
A dropping funnel was charged with 15 ml of IPA, 7.2 g of 3-methacryloxypropyltrimethoxysilane and 5.7 g of phenyltrimethoxysilane to prepare an IPA solution of 3-methacryloxypropyltrimethoxysilane and phenyltrimethoxysilane, 8.7 g of a composition containing a cage-type silsesquioxane resin (II) was obtained in the same manner as in Synthesis Example 1 except that this was used in place of the IPA solution of 3-methacryloxypropyltrimethoxysilane. In the obtained composition, the cage-type silsesquioxane resin (II) according to the present invention is 96% by mass with respect to the whole composition, of which the cage-type silsesquioxane represented by the formula (3) The sun resin is 92% by mass with respect to the entire cage silsesquioxane resin (II). As a result of mass spectrometry after liquid chromatographic separation, n + m in the formula (3) is 8, 10, and 12. there were. Moreover, n: m was 4: 4.
 (調製例1:硬化性樹脂組成物(I))
 合成例1で得られたかご型シルセスキオキサン樹脂(I):60質量部(かご型シルセスキオキサン樹脂に換算)、トリメチロールプロパントリアクリレート:25質量部、ジシクロペンタニルジアクリレート:15質量部、及び光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン:2.5質量部を混合し、液状の硬化性樹脂組成物(I)を得た。この硬化性樹脂組成物(I)について屈折率測定を行ったところ、屈折率は1.529であり、透明な硬化物が得られることが確認された。得られた硬化性樹脂組成物(I)の組成を表1に示す。
(Preparation Example 1: Curable resin composition (I))
Cage-type silsesquioxane resin (I) obtained in Synthesis Example 1: 60 parts by mass (converted to cage-type silsesquioxane resin), trimethylolpropane triacrylate: 25 parts by mass, dicyclopentanyl diacrylate: 15 parts by mass and 1-hydroxycyclohexyl phenyl ketone: 2.5 parts by mass as a photopolymerization initiator were mixed to obtain a liquid curable resin composition (I). When refractive index measurement was performed for this curable resin composition (I), the refractive index was 1.529, and it was confirmed that a transparent cured product was obtained. The composition of the resulting curable resin composition (I) is shown in Table 1.
 (調製例2:硬化性樹脂組成物(II))
 合成例1で得られたかご型シルセスキオキサン樹脂(I):30質量部(かご型シルセスキオキサン樹脂に換算)、ジシクロペンタニルジアクリレート:35質量部、ペンタエリスリトールテトラアクリレート:35質量部、及び光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン:2.5質量部を混合し、液状の硬化性樹脂組成物(II)を得た。この硬化性樹脂組成物(II)について屈折率測定を行ったところ、屈折率は1.531であり、透明な硬化物が得られることが確認された。得られた硬化性樹脂組成物(II)の組成を表1に示す。
(Preparation Example 2: Curable resin composition (II))
Cage-type silsesquioxane resin (I) obtained in Synthesis Example 1: 30 parts by mass (converted to cage-type silsesquioxane resin), dicyclopentanyl diacrylate: 35 parts by mass, pentaerythritol tetraacrylate: 35 A liquid curable resin composition (II) was obtained by mixing 2.5 parts by mass of 1-hydroxycyclohexyl phenyl ketone as a photopolymerization initiator. When refractive index measurement was performed for this curable resin composition (II), the refractive index was 1.531, and it was confirmed that a transparent cured product was obtained. The composition of the resulting curable resin composition (II) is shown in Table 1.
 (調製例3:硬化性樹脂組成物(III))
 合成例1で得られたかご型シルセスキオキサン樹脂(I):10質量部(かご型シルセスキオキサン樹脂に換算)、トリメチロールプロパントリアクリレート:65質量部、ジシクロペンタニルジアクリレート:35質量部、及び光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン:2.5質量部を混合し、液状の硬化性樹脂組成物(III)を得た。この硬化性樹脂組成物(III)について屈折率測定を行ったところ、屈折率は1.531であり、透明な硬化物が得られることが確認された。得られた硬化性樹脂組成物(III)の組成を表1に示す。
(Preparation Example 3: Curable resin composition (III))
Cage-type silsesquioxane resin (I) obtained in Synthesis Example 1: 10 parts by mass (converted to cage-type silsesquioxane resin), trimethylolpropane triacrylate: 65 parts by mass, dicyclopentanyl diacrylate: 35 parts by mass and 1-hydroxycyclohexyl phenyl ketone: 2.5 parts by mass as a photopolymerization initiator were mixed to obtain a liquid curable resin composition (III). When refractive index measurement was performed for this curable resin composition (III), the refractive index was 1.531, and it was confirmed that a transparent cured product was obtained. The composition of the obtained curable resin composition (III) is shown in Table 1.
 (調製例4:硬化性樹脂組成物(IV))
 合成例2で得られたかご型シルセスキオキサン樹脂(II):15質量部(かご型シルセスキオキサン樹脂に換算)、トリメチロールプロパントリアクリレート:50質量部、ビスフェノールフルオレンジアクリレート:35質量部、及び光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン:2.5質量部を混合し、液状の硬化性樹脂組成物(IV)を得た。この硬化性樹脂組成物(IV)について屈折率測定を行ったところ、屈折率は1.558であり、透明な硬化物が得られることが確認された。得られた硬化性樹脂組成物(IV)の組成を表1に示す。
(Preparation Example 4: Curable resin composition (IV))
Cage-type silsesquioxane resin (II) obtained in Synthesis Example 2: 15 parts by mass (converted to cage-type silsesquioxane resin), trimethylolpropane triacrylate: 50 parts by mass, bisphenol full orange acrylate: 35 parts by mass And 2.5 parts by mass of 1-hydroxycyclohexyl phenyl ketone as a photopolymerization initiator were mixed to obtain a liquid curable resin composition (IV). When refractive index measurement was performed for this curable resin composition (IV), the refractive index was 1.558, and it was confirmed that a transparent cured product was obtained. The composition of the obtained curable resin composition (IV) is shown in Table 1.
 (調製例5:硬化性樹脂組成物(V))
 合成例2で得られたかご型シルセスキオキサン樹脂(II):35質量部(かご型シルセスキオキサン樹脂に換算)、ペンタエリスリトールテトラアクリレート:25質量部、ビスフェノールフルオレンジアクリレート:40質量部、及び光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン:2.5質量部を混合し、液状の硬化性樹脂組成物(V)を得た。この硬化性樹脂組成物(V)について屈折率測定を行ったところ、屈折率は1.560であり、透明な硬化物が得られることが確認された。得られた硬化性樹脂組成物(V)の組成を表1に示す。
(Preparation Example 5: Curable resin composition (V))
Cage-type silsesquioxane resin (II) obtained in Synthesis Example 2: 35 parts by mass (converted to cage-type silsesquioxane resin), pentaerythritol tetraacrylate: 25 parts by mass, bisphenol fluorenediacrylate acrylate: 40 parts by mass And 1-hydroxycyclohexyl phenyl ketone: 2.5 parts by mass as a photopolymerization initiator were mixed to obtain a liquid curable resin composition (V). When refractive index measurement was performed for this curable resin composition (V), the refractive index was 1.560, and it was confirmed that a transparent cured product was obtained. The composition of the obtained curable resin composition (V) is shown in Table 1.
 (調製例6:硬化性樹脂組成物(VI))
 ジシクロペンタニルジアクリレート:35質量部、ペンタエリスリトールテトラアクリレート:65質量部、及び光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン:2.5質量部を混合し、液状の硬化性樹脂組成物(VI)を得た。得られた硬化性樹脂組成物(VI)の組成を表1に示す。
(Preparation Example 6: Curable resin composition (VI))
35 parts by mass of dicyclopentanyl diacrylate, 65 parts by mass of pentaerythritol tetraacrylate, and 2.5 parts by mass of 1-hydroxycyclohexyl phenyl ketone as a photopolymerization initiator are mixed to form a liquid curable resin composition ( VI) was obtained. The composition of the obtained curable resin composition (VI) is shown in Table 1.
 (調製例7:硬化性樹脂組成物(VII))
 ペンタエリスリトールテトラアクリレート:25質量部、ビスフェノールフルオレンジアクリレート:40質量部、及び光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン:2.5質量部を混合し、液状の硬化性樹脂組成物(VII)を得た。得られた硬化性樹脂組成物(VII)の組成を表1に示す。
(Preparation Example 7: Curable resin composition (VII))
Pentaerythritol tetraacrylate: 25 parts by mass, bisphenol fluorene acrylate: 40 parts by mass, and 1-hydroxycyclohexyl phenyl ketone as a photopolymerization initiator: 2.5 parts by mass are mixed to obtain a liquid curable resin composition (VII). Got. The composition of the resulting curable resin composition (VII) is shown in Table 1.
 (調製例8:硬化性樹脂組成物(VIII))
 合成例1で得られたかご型シルセスキオキサン樹脂(I):5質量部、ジシクロペンタニルジアクリレート:40重量部、ペンタエリスリトールテトラアクリレート:55質量部、及び光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン:2.5質量部を混合し、液状の硬化性樹脂組成物(VIII)を得た。得られた硬化性樹脂組成物(VIII)の組成を表1に示す。
(Preparation Example 8: Curable resin composition (VIII))
Cage-type silsesquioxane resin (I) obtained in Synthesis Example 1: 5 parts by weight, dicyclopentanyl diacrylate: 40 parts by weight, pentaerythritol tetraacrylate: 55 parts by weight, and 1-as a photopolymerization initiator Hydroxycyclohexyl phenyl ketone: 2.5 parts by mass were mixed to obtain a liquid curable resin composition (VIII). The composition of the obtained curable resin composition (VIII) is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例1)
 先ず、調製例1で得られた硬化性樹脂組成物(I)を、ガラス板上に設置したTガラス系ガラスクロス(商品名:Tガラスヤーン(日東紡績社製)、屈折率1.530、厚み96μm)に滴下し、上面をガラス板で覆って上下面からガラス板で挟み、圧力をかけながら硬化性樹脂組成物をガラスクロスに含浸せしめた。次いで、このガラスクロス含浸物をガラス板に挟んだ状態で、80W/cmの高圧水銀ランプを用いて、2000mJ/cmの積算露光量で紫外線(波長:365nm)を照射して硬化性樹脂組成物を硬化せしめた。次いで、窒素雰囲気下において250℃で10分間加熱し、厚み0.1mm、1m当たりの硬化性樹脂組成物の硬化物とガラス繊維との質量比(硬化物の質量:ガラス繊維の質量)が46:54のガラス繊維複合化樹脂基板を得た。得られたガラス繊維複合化樹脂基板について全光線透過率測定及び耐熱性評価を行った結果を表2に示す。
Example 1
First, the curable resin composition (I) obtained in Preparation Example 1 was placed on a glass plate with a T glass-based glass cloth (trade name: T glass yarn (manufactured by Nittobo Co., Ltd.), refractive index 1.530, The upper surface was covered with a glass plate and sandwiched between the upper and lower surfaces with a glass plate, and a glass cloth was impregnated with the curable resin composition while applying pressure. Next, with this glass cloth impregnated material sandwiched between glass plates, an ultraviolet ray (wavelength: 365 nm) is irradiated with an integrated exposure amount of 2000 mJ / cm 2 using an 80 W / cm high-pressure mercury lamp and a curable resin composition. The product was cured. Subsequently, it heated at 250 degreeC for 10 minute (s) in nitrogen atmosphere, and the mass ratio (mass of hardened | cured material: mass of glass fiber) of the hardened | cured material and glass fiber of thickness 0.1mm and 1 m < 2 > is. A 46:54 glass fiber composite resin substrate was obtained. Table 2 shows the results of total light transmittance measurement and heat resistance evaluation for the obtained glass fiber composite resin substrate.
 (実施例2)
 硬化性樹脂組成物(I)に代えて調製例2で得られた硬化性樹脂組成物(II)を用いたこと以外は実施例1と同様にして、厚み0.1mm、1m当たりの硬化性樹脂組成物の硬化物とガラス繊維との質量比(硬化物の質量:ガラス繊維の質量)が48:52のガラス繊維複合化樹脂基板を得た。得られたガラス繊維複合化樹脂基板について全光線透過率測定及び耐熱性評価を行った結果を表2に示す。
(Example 2)
Curing per 0.1 mm thickness and 1 m 2 in the same manner as in Example 1 except that the curable resin composition (II) obtained in Preparation Example 2 was used instead of the curable resin composition (I). A glass fiber composite resin substrate having a mass ratio of cured resin composition to glass fiber (mass of cured product: mass of glass fiber) of 48:52 was obtained. Table 2 shows the results of total light transmittance measurement and heat resistance evaluation for the obtained glass fiber composite resin substrate.
 (実施例3)
 硬化性樹脂組成物(I)に代えて調製例3で得られた硬化性樹脂組成物(III)を用いたこと以外は実施例1と同様にして、厚み0.1mm、1m当たりの硬化性樹脂組成物の硬化物とガラス繊維との質量比(硬化物の質量:ガラス繊維の質量)が44:56のガラス繊維複合化樹脂基板を得た。得られたガラス繊維複合化樹脂基板について全光線透過率測定及び耐熱性評価を行った結果を表2に示す。
(Example 3)
Curing per 0.1 mm thickness and 1 m 2 in the same manner as in Example 1 except that the curable resin composition (III) obtained in Preparation Example 3 was used instead of the curable resin composition (I). A glass fiber composite resin substrate having a mass ratio of the cured resin composition to the glass fiber (the mass of the cured product: the mass of the glass fiber) of 44:56 was obtained. Table 2 shows the results of total light transmittance measurement and heat resistance evaluation for the obtained glass fiber composite resin substrate.
 (実施例4)
 硬化性樹脂組成物(I)に代えて調製例4で得られた硬化性樹脂組成物(IV)を用い、Tガラス系ガラスクロスに代えてEガラス系ガラスクロス(商品名:2116/AS887AW(旭化成イーマテリアル社製)、屈折率1.558、厚み96μm))を用いたこと以外は実施例1と同様にして、厚み0.1mm、1m当たりの硬化性樹脂組成物の硬化物とガラス繊維との質量比(硬化物の質量:ガラス繊維の質量)が52:48のガラス繊維複合化樹脂基板を得た。得られたガラス繊維複合化樹脂基板について全光線透過率測定及び耐熱性評価を行った結果を表2に示す。
(Example 4)
Instead of the curable resin composition (I), the curable resin composition (IV) obtained in Preparation Example 4 was used, and instead of the T glass-based glass cloth, an E glass-based glass cloth (trade name: 2116 / AS887AW ( Asahi Kasei E-material Co., Ltd.), refractive index 1.558, thickness 96 μm)) was used in the same manner as in Example 1, and a cured product and glass of a curable resin composition per thickness of 0.1 mm and 1 m 2. A glass fiber composite resin substrate having a mass ratio to the fiber (the mass of the cured product: the mass of the glass fiber) of 52:48 was obtained. Table 2 shows the results of total light transmittance measurement and heat resistance evaluation for the obtained glass fiber composite resin substrate.
 (実施例5)
 硬化性樹脂組成物(IV)に代えて調製例5で得られた硬化性樹脂組成物(V)を用いたこと以外は実施例4と同様にして、厚み0.1mm、1m当たりの硬化性樹脂組成物の硬化物とガラス繊維との質量比(硬化物の質量:ガラス繊維の質量)が48:52のガラス繊維複合化樹脂基板を得た。得られたガラス繊維複合化樹脂基板について全光線透過率測定及び耐熱性評価を行った結果を表2に示す。
(Example 5)
Curing per 0.1 mm thickness and 1 m 2 in the same manner as in Example 4 except that the curable resin composition (V) obtained in Preparation Example 5 was used instead of the curable resin composition (IV). A glass fiber composite resin substrate having a mass ratio of cured resin composition to glass fiber (mass of cured product: mass of glass fiber) of 48:52 was obtained. Table 2 shows the results of total light transmittance measurement and heat resistance evaluation for the obtained glass fiber composite resin substrate.
 (比較例1)
 硬化性樹脂組成物(I)に代えて調製例6で得られた硬化性樹脂組成物(VI)を用いたこと以外は実施例1と同様にして、厚み0.1mm、1m当たりの硬化性樹脂組成物の硬化物とガラス繊維との質量比(硬化物の質量:ガラス繊維の質量)が47:53のガラス繊維複合化樹脂基板を得た。得られたガラス繊維複合化樹脂基板について全光線透過率測定及び耐熱性評価を行った結果を表2に示す。
(Comparative Example 1)
Curing per 0.1 mm thickness and 1 m 2 in the same manner as in Example 1 except that the curable resin composition (VI) obtained in Preparation Example 6 was used instead of the curable resin composition (I). A glass fiber composite resin substrate having a mass ratio of cured resin composition to glass fiber (mass of cured product: mass of glass fiber) of 47:53 was obtained. Table 2 shows the results of total light transmittance measurement and heat resistance evaluation for the obtained glass fiber composite resin substrate.
 (比較例2)
 硬化性樹脂組成物(I)に代えて調製例7で得られた硬化性樹脂組成物(VII)を用いたこと以外は実施例4と同様にして、厚み0.1mm、1m当たりの硬化性樹脂組成物の硬化物とガラス繊維との質量比(硬化物の質量:ガラス繊維の質量)が49:51のガラス繊維複合化樹脂基板を得た。得られたガラス繊維複合化樹脂基板について全光線透過率測定及び耐熱性評価を行った結果を表2に示す。
(Comparative Example 2)
Curing per 0.1 mm thickness and 1 m 2 in the same manner as in Example 4 except that the curable resin composition (VII) obtained in Preparation Example 7 was used instead of the curable resin composition (I). A glass fiber composite resin substrate having a mass ratio of cured resin composition to glass fiber (mass of cured product: mass of glass fiber) of 49:51 was obtained. Table 2 shows the results of total light transmittance measurement and heat resistance evaluation for the obtained glass fiber composite resin substrate.
 (比較例3)
 硬化性樹脂組成物(I)に代えて調製例8で得られた硬化性樹脂組成物(VIII)を用いたこと以外は実施例1と同様にして、厚み0.1mm、1m当たりの硬化性樹脂組成物の硬化物とガラス繊維との質量比(硬化物の質量:ガラス繊維の質量)が47:53のガラス繊維複合化樹脂基板を得た。得られたガラス繊維複合化樹脂基板について全光線透過率測定及び耐熱性評価を行った結果を表2に示す。
(Comparative Example 3)
Curing per 0.1 mm thickness and 1 m 2 in the same manner as in Example 1 except that the curable resin composition (VIII) obtained in Preparation Example 8 was used instead of the curable resin composition (I). A glass fiber composite resin substrate having a mass ratio of cured resin composition to glass fiber (mass of cured product: mass of glass fiber) of 47:53 was obtained. Table 2 shows the results of total light transmittance measurement and heat resistance evaluation for the obtained glass fiber composite resin substrate.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示した結果から明らかな通り、本発明のガラス繊維複合化樹脂基板はいずれも、全光透過率が90%以上であり、且つ、ガラス転移温度が十分に大きく、動的粘弾性率低下率も20%以下に維持されており、高水準の耐熱性及び透明性を有することが確認された。また、熱膨張係数が15ppm/K以下であり、熱膨張係数が十分に小さいことも確認された。これに対して、従来のガラス繊維複合化樹脂基板(比較例1、2)においては、全光透過率は90%以上であるものの、ガラス転移温度が低く、動的粘弾性率低下率及び熱膨張係数も劣ることが確認された。 As is clear from the results shown in Table 2, all of the glass fiber composite resin substrates of the present invention have a total light transmittance of 90% or more, a sufficiently high glass transition temperature, and a dynamic viscoelastic modulus. The reduction rate was also maintained at 20% or less, and it was confirmed that the material had a high level of heat resistance and transparency. It was also confirmed that the thermal expansion coefficient was 15 ppm / K or less and the thermal expansion coefficient was sufficiently small. In contrast, in the conventional glass fiber composite resin substrate (Comparative Examples 1 and 2), although the total light transmittance is 90% or more, the glass transition temperature is low, the dynamic viscoelastic modulus reduction rate and the heat are reduced. It was confirmed that the expansion coefficient was inferior.
 以上説明したように、本発明によれば、高水準の耐熱性及び透明性を有し、熱膨張係数が十分に小さいガラス繊維複合化樹脂基板を提供することが可能となる。このような本発明のガラス繊維複合化樹脂基板は、特に高温時においても弾性率が低下しない高水準の耐熱性を有するため、例えば、フレキシブルディスプレイ、タッチパネル、太陽電池等の用途に用いるガラス代替基板として非常に有用である。 As described above, according to the present invention, it is possible to provide a glass fiber composite resin substrate having a high level of heat resistance and transparency and having a sufficiently small thermal expansion coefficient. Such a glass fiber composite resin substrate of the present invention has a high level of heat resistance that does not lower its modulus of elasticity even at high temperatures, so that it can be used in applications such as flexible displays, touch panels, solar cells, etc. As very useful.

Claims (9)

  1.  硬化性樹脂組成物とガラス繊維とからなるガラス繊維複合化樹脂基板であって、
     前記硬化性樹脂組成物が、
     (A)(メタ)アクリロイル基、グリシジル基及びビニル基からなる群から選択される少なくとも1種の基を有するかご型シルセスキオキサン樹脂、
     (B)下記一般式(1)~(2):
     -R-CR=CH ・・・(1)
     -CR=CH ・・・(2)
    [式(1)中、Rは、アルキレン基、アルキリデン基及び-OCO-基からなる群から選択されるいずれかを示し、式(1)~(2)中、Rは、それぞれ独立に水素原子又はアルキル基を示す。]
    で表わされる基からなる群から選択される不飽和官能基を2個以上有する、前記かご型シルセスキオキサン樹脂以外の不飽和化合物、及び
     (C)硬化触媒
    を含有しており、且つ、前記(A)かご型シルセスキオキサン樹脂の含有量が前記硬化性樹脂組成物全体に対して5~90質量%である、ガラス繊維複合化樹脂基板。
    A glass fiber composite resin substrate comprising a curable resin composition and glass fiber,
    The curable resin composition is
    (A) a cage silsesquioxane resin having at least one group selected from the group consisting of (meth) acryloyl group, glycidyl group and vinyl group,
    (B) The following general formulas (1) to (2):
    -R 1 -CR 2 = CH 2 (1)
    -CR 2 = CH 2 (2)
    [In Formula (1), R 1 represents any one selected from the group consisting of an alkylene group, an alkylidene group, and —OCO— group. In Formulas (1) to (2), R 2 is independently A hydrogen atom or an alkyl group is shown. ]
    An unsaturated compound other than the above cage-type silsesquioxane resin, having two or more unsaturated functional groups selected from the group consisting of the groups represented by: and (C) a curing catalyst, and (A) A glass fiber composite resin substrate, wherein the content of the cage silsesquioxane resin is 5 to 90% by mass with respect to the entire curable resin composition.
  2.  前記(A)かご型シルセスキオキサン樹脂が、下記一般式(3):
      [RSiO3/2[RSiO3/2 ・・(3)
    {式(3)中、Rは、(メタ)アクリロイル基、グリシジル基及びビニル基からなる群から選択される基を有する有機基を示し、Rは、水素原子、炭素数1~20の炭化水素基、炭素数1~20のアルコキシ基、及び炭素数1~20のアルキルシロキシ基からなる群から選択されるいずれかを示し、n及びmは、下記式(i)~(iii):
      n≧1   ・・・(i)
      m≧0   ・・・(ii)
      n+m=h   ・・・(iii)
    [式(iii)中、hは8、10、12及び14からなる群から選択される整数を示す。]
    で表わされる条件を満たす整数であり、n及びmがそれぞれ2以上の場合にはR及びRはそれぞれ同一でも異なっていてもよい。}
    で表されるかご型シルセスキオキサン樹脂である請求項1に記載のガラス繊維複合化樹脂基板。
    The (A) cage-type silsesquioxane resin is represented by the following general formula (3):
    [R 3 SiO 3/2 ] n [R 4 SiO 3/2 ] m ·· (3)
    {In Formula (3), R 3 represents an organic group having a group selected from the group consisting of a (meth) acryloyl group, a glycidyl group, and a vinyl group, and R 4 represents a hydrogen atom, having 1 to 20 carbon atoms. Any one selected from the group consisting of a hydrocarbon group, an alkoxy group having 1 to 20 carbon atoms and an alkylsiloxy group having 1 to 20 carbon atoms, wherein n and m are the following formulas (i) to (iii):
    n ≧ 1 (i)
    m ≧ 0 (ii)
    n + m = h (iii)
    [In the formula (iii), h represents an integer selected from the group consisting of 8, 10, 12, and 14. ]
    In the case where n and m are each 2 or more, R 3 and R 4 may be the same or different. }
    The glass fiber composite resin substrate according to claim 1, which is a cage silsesquioxane resin represented by:
  3.  前記一般式(3)中、nとmとの比(n:m)が、10:0~4:6である、請求項2に記載のガラス繊維複合化樹脂基板。 The glass fiber composite resin substrate according to claim 2, wherein the ratio of n to m (n: m) in the general formula (3) is 10: 0 to 4: 6.
  4.  前記一般式(3)で表されるかご型シルセスキオキサン樹脂が、前記(A)かご型シルセスキオキサン樹脂全体に対して50質量%以上である、請求項2又は3に記載のガラス繊維複合化樹脂基板。 The glass according to claim 2 or 3, wherein the cage-type silsesquioxane resin represented by the general formula (3) is 50% by mass or more based on the whole (A) the cage-type silsesquioxane resin. Fiber composite resin substrate.
  5.  前記(B)不飽和化合物の有する前記不飽和官能基がアクリロイル基、メタクリロイル基、アリル基及びビニル基からなる群から選択される少なくとも一種の基である、請求項1~4のうちのいずれか一項に記載のガラス繊維複合化樹脂基板。 The unsaturated functional group of the (B) unsaturated compound is at least one group selected from the group consisting of acryloyl group, methacryloyl group, allyl group and vinyl group. The glass fiber composite resin substrate according to one item.
  6.  前記(B)不飽和化合物の有する前記不飽和官能基の数が化合物1分子あたり2~10個である、請求項1~5のうちのいずれか一項に記載のガラス繊維複合化樹脂基板。 The glass fiber composite resin substrate according to any one of claims 1 to 5, wherein the number of the unsaturated functional groups of the (B) unsaturated compound is 2 to 10 per molecule of the compound.
  7.  前記硬化性樹脂組成物を前記ガラス繊維に含浸させた後に前記硬化性樹脂組成物を硬化せしめたものである請求項1~6のうちのいずれか一項に記載のガラス繊維複合化樹脂基板。 The glass fiber composite resin substrate according to any one of claims 1 to 6, wherein the glass fiber is impregnated with the curable resin composition and then the curable resin composition is cured.
  8.  前記硬化性樹脂組成物の硬化物と前記ガラス繊維との質量比(硬化物の質量:ガラス繊維の質量)が20:80~70:30である請求項7に記載のガラス繊維複合化樹脂基板。 The glass fiber composite resin substrate according to claim 7, wherein a mass ratio of the cured product of the curable resin composition to the glass fiber (the mass of the cured product: the mass of the glass fiber) is 20:80 to 70:30. .
  9.  厚さが0.03~0.5mmである、請求項1~8のうちのいずれか一項に記載のガラス繊維複合化樹脂基板。
     
    The glass fiber composite resin substrate according to any one of claims 1 to 8, which has a thickness of 0.03 to 0.5 mm.
PCT/JP2012/082744 2011-12-22 2012-12-18 Glass fiber composite resin substrate WO2013094585A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147019805A KR20140105575A (en) 2011-12-22 2012-12-18 Glass fiber composite resin substrate
CN201280063174.1A CN104011118A (en) 2011-12-22 2012-12-18 Glass fiber composite resin substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011280772A JP2013129766A (en) 2011-12-22 2011-12-22 Glass fiber-composited resin substrate
JP2011-280772 2011-12-22

Publications (1)

Publication Number Publication Date
WO2013094585A1 true WO2013094585A1 (en) 2013-06-27

Family

ID=48668474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082744 WO2013094585A1 (en) 2011-12-22 2012-12-18 Glass fiber composite resin substrate

Country Status (5)

Country Link
JP (1) JP2013129766A (en)
KR (1) KR20140105575A (en)
CN (1) CN104011118A (en)
TW (1) TW201339247A (en)
WO (1) WO2013094585A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5462973B1 (en) * 2013-08-26 2014-04-02 ユニチカ株式会社 Transparent incombustible sheet
JP5634591B1 (en) * 2013-12-13 2014-12-03 ユニチカ株式会社 Transparent incombustible sheet
JPWO2017038943A1 (en) * 2015-09-02 2018-06-14 日産化学工業株式会社 Polymerizable composition containing silsesquioxane compound having acrylic group
EP3470484A1 (en) * 2017-10-16 2019-04-17 Samsung Electronics Co., Ltd. Composition, article, window for electronic device, and electronic device
JP2019515965A (en) * 2016-08-18 2019-06-13 老虎表面技術新材料(蘇州)有限公司Tiger New Surface Materials (Suzhou) Co.,Ltd. Sealing material for photovoltaic module and method of manufacturing the same
JP2019536296A (en) * 2016-10-31 2019-12-12 上邁(香港)有限公司 Laminated structure of solar power generation module and manufacturing method thereof, solar power generation module

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106232684B (en) 2014-04-23 2019-09-24 胡网加成股份有限公司 Resin combination for transparent plastic substrate
KR102657436B1 (en) * 2015-08-18 2024-04-16 닛산 가가쿠 가부시키가이샤 Polymerizable composition comprising a reactive silsesquioxane compound and an aromatic vinyl compound
IT201700089430A1 (en) * 2017-08-03 2019-02-03 Petroceramics S P A PRE-IMPREGIATED FIBRO-REINFORCED COMPOSITE MATERIAL AND MANUFACTURED OBTAINED BY FORMING AND COMPLETE HARDENING OF SUCH PRE-IMPREGNATED FIBER-REINFORCED COMPOSITE MATERIAL
JP6984006B2 (en) * 2017-09-15 2021-12-17 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Curable organopolysiloxane composition
KR102439234B1 (en) * 2018-10-26 2022-09-01 와커 헤미 아게 Curable organopolysiloxane composition
CN115466393B (en) * 2022-10-19 2023-08-08 开封大学 Incombustible light composite material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035646A1 (en) * 2004-09-27 2006-04-06 Nippon Steel Chemical Co., Ltd. Silica-containing silicone resin composition and its molded product
WO2007119627A1 (en) * 2006-04-10 2007-10-25 Ube Industries, Ltd. Curable composition, cured silsesquioxanes, and process for production of both
WO2010119903A1 (en) * 2009-04-14 2010-10-21 チッソ株式会社 Glass fiber-silsesquioxane composite molded article and method for producing same
JP2011006610A (en) * 2009-06-26 2011-01-13 Nagase Chemtex Corp Transparent composite
WO2011037083A1 (en) * 2009-09-25 2011-03-31 積水化学工業株式会社 Transparent composite sheet
JP2012158731A (en) * 2011-02-03 2012-08-23 Nippon Steel Chem Co Ltd Composite material, formed body, and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035646A1 (en) * 2004-09-27 2006-04-06 Nippon Steel Chemical Co., Ltd. Silica-containing silicone resin composition and its molded product
WO2007119627A1 (en) * 2006-04-10 2007-10-25 Ube Industries, Ltd. Curable composition, cured silsesquioxanes, and process for production of both
WO2010119903A1 (en) * 2009-04-14 2010-10-21 チッソ株式会社 Glass fiber-silsesquioxane composite molded article and method for producing same
JP2011006610A (en) * 2009-06-26 2011-01-13 Nagase Chemtex Corp Transparent composite
WO2011037083A1 (en) * 2009-09-25 2011-03-31 積水化学工業株式会社 Transparent composite sheet
JP2012158731A (en) * 2011-02-03 2012-08-23 Nippon Steel Chem Co Ltd Composite material, formed body, and method for manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5462973B1 (en) * 2013-08-26 2014-04-02 ユニチカ株式会社 Transparent incombustible sheet
WO2015029992A1 (en) * 2013-08-26 2015-03-05 ユニチカ株式会社 Transparent nonflammable sheet
US20160208483A1 (en) * 2013-08-26 2016-07-21 Unitika Ltd. Transparent noncombustible sheet
US10400446B2 (en) 2013-08-26 2019-09-03 Unitika Ltd. Transparent noncombustible sheet
JP5634591B1 (en) * 2013-12-13 2014-12-03 ユニチカ株式会社 Transparent incombustible sheet
JP2015042721A (en) * 2013-12-13 2015-03-05 ユニチカ株式会社 Transparent noncombustible sheet
JPWO2017038943A1 (en) * 2015-09-02 2018-06-14 日産化学工業株式会社 Polymerizable composition containing silsesquioxane compound having acrylic group
EP3345943A4 (en) * 2015-09-02 2019-06-26 Nissan Chemical Corporation Polymerizable composition comprising silsesquioxane compound having acrylic group
US10703863B2 (en) 2015-09-02 2020-07-07 Nissan Chemical Industries, Ltd. Polymerizable composition comprising silsesquioxane compound having acrylic group
JP2019515965A (en) * 2016-08-18 2019-06-13 老虎表面技術新材料(蘇州)有限公司Tiger New Surface Materials (Suzhou) Co.,Ltd. Sealing material for photovoltaic module and method of manufacturing the same
JP2019536296A (en) * 2016-10-31 2019-12-12 上邁(香港)有限公司 Laminated structure of solar power generation module and manufacturing method thereof, solar power generation module
EP3470484A1 (en) * 2017-10-16 2019-04-17 Samsung Electronics Co., Ltd. Composition, article, window for electronic device, and electronic device

Also Published As

Publication number Publication date
KR20140105575A (en) 2014-09-01
CN104011118A (en) 2014-08-27
TW201339247A (en) 2013-10-01
JP2013129766A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
WO2013094585A1 (en) Glass fiber composite resin substrate
US7345125B2 (en) Silicone resin composition and molded product thereof
TWI488910B (en) Photocurable resin composition, method of fabricating optical film using the same, and optical film including the same
JP6021605B2 (en) Cage type silsesquioxane compound, curable resin composition and resin cured product using the same
JP5281607B2 (en) Laminate film
JP2003137944A (en) Silicone resin composition and silicone resin molded article
JP5000303B2 (en) Silica-containing silicone resin composition and molded article thereof
KR20050109515A (en) Silicone resin composition and moldings thereof
JP5730009B2 (en) Laminated body
KR101768307B1 (en) Silicone adhesive composition, silicone adhesive film prepared using the same and optical display apparatus comprising the same
KR101861774B1 (en) Curable silicone resin composition and cured silicone resin
JP2013107354A (en) Laminate
JP2013091703A (en) Resin composition, resin molded body using the same, and method for producing resin molded body
JP5698566B2 (en) Silicone resin composition and molded body thereof
JP2020530520A (en) A coating film containing a coating resin composition and a cured product thereof as a coating layer.
JP2006098444A (en) Laminate having scratch resistance and antireflection
JP5385832B2 (en) Curable resin composition and molded product obtained therefrom
JP2020019870A (en) Photocurable silicone resin composition and molded body thereof
JP5336399B2 (en) Heat-resistant compound lens
WO2020162615A1 (en) Photocurable silicone resin composition, silicone resin molded body obtained by curing same and method for manufacturing said molded body
US20210317321A1 (en) Resin composition for anti-glare coating and anti-glare coating film prepared thereby
JP5466461B2 (en) Laminated body
WO2023120495A1 (en) Photocurable silicone resin composition and cured product thereof
US20130236728A1 (en) Laminated body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147019805

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12860091

Country of ref document: EP

Kind code of ref document: A1