WO2013089108A1 - Light emitting module - Google Patents
Light emitting module Download PDFInfo
- Publication number
- WO2013089108A1 WO2013089108A1 PCT/JP2012/082092 JP2012082092W WO2013089108A1 WO 2013089108 A1 WO2013089108 A1 WO 2013089108A1 JP 2012082092 W JP2012082092 W JP 2012082092W WO 2013089108 A1 WO2013089108 A1 WO 2013089108A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light emitting
- light
- sealing resin
- emitting module
- dome
- Prior art date
Links
- 229920005989 resin Polymers 0.000 claims abstract description 112
- 239000011347 resin Substances 0.000 claims abstract description 112
- 238000007789 sealing Methods 0.000 claims abstract description 104
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 38
- 238000000605 extraction Methods 0.000 abstract description 5
- 239000000463 material Substances 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 239000010931 gold Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 241000219122 Cucurbita Species 0.000 description 2
- 235000009852 Cucurbita pepo Nutrition 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000004904 UV filter Substances 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000004382 potting Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 102100032047 Alsin Human genes 0.000 description 1
- 101710187109 Alsin Proteins 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
- H01L25/0753—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/52—Encapsulations
- H01L33/54—Encapsulations having a particular shape
Definitions
- the present invention relates to a light emitting module using a phosphor, and more particularly, to a light emitting module using a phosphor that is excited by ultraviolet rays or short wavelength visible light to emit light.
- a module in which a plurality of light-emitting elements such as light-emitting diodes (LEDs) and laser diodes (LDs) made of InGaN-based compound semiconductors that emit ultraviolet light or short-wavelength visible light are mounted in a row is known.
- Patent Document 1 a sealing resin in which a phosphor is mixed in a liquid or gel binder material is molded into a long rectangular parallelepiped shape on a light emitting element. The phosphor emits light such as blue and yellow when excited by ultraviolet light or short wavelength visible light. As a result, the sealing resin emits light in a line shape by light emission of the phosphor excited by receiving light from the light emitting element.
- the boundary between the sealing resin surface and the air layer extends in a planar manner. For this reason, the light excited from the phosphor may be incident on the boundary surface at a critical angle or more. In this case, since the light from the phosphor is totally reflected at the boundary surface and returns to the inside of the resin and is not emitted outside the sealing resin, the light emission efficiency is poor.
- the part far from the light emitting element that is, the part between the light emitting element and the side edge of the sealing resin in the width direction, which is on the side of the light emitting element.
- the part becomes a dark part as compared with the part immediately above the light emitting element. As a result, uneven brightness occurs on the surface of the light emitting module.
- the present invention provides a light-emitting module that has high light extraction efficiency and low luminance unevenness in a light-emitting module that uses a phosphor that is excited by ultraviolet light or short-wavelength visible light.
- a light emitting device comprising: a light emitting element that emits ultraviolet light or short wavelength visible light; and a sealing resin containing at least one phosphor that emits visible light when excited by the ultraviolet light or short wavelength visible light emitted from the light emitting element.
- a plurality of the light emitting elements are placed in a line at predetermined intervals, and the sealing resin is molded in a dome shape on each of the light emitting elements. Are connected by the sealing resin.
- the dome portion of the sealing resin may be formed so as to share a ridge portion with each other and the dome portion is continuous.
- the sealing resin between the light emitting elements may be formed in a shape connecting the dome portion and the dome portion of the sealing resin in a line shape.
- the radius of the dome portion is r
- the distance between the light emitting elements is d
- the length in the width direction of the line shape portion is b
- the sealing resin since the sealing resin is formed in a substantially hemispherical shape around the light emitting element, the sealing resin has substantially the same thickness as the light emitting element, and the light emitting element directly above the light emitting element of the sealing resin and the light emission The distance from the light emitting element is substantially equal between the element side portions. For this reason, the difference between the bright part and the dark part appearing on the surface of the sealing resin is reduced according to the distance from the light emitting element, and the luminance unevenness on the module surface is reduced.
- the boundary surface between the sealing resin and the air layer has a curvature, and the light having an incident angle greater than the critical angle with respect to the boundary surface is greatly reduced. For this reason, the light from the phosphor is emitted outside the sealing resin without being totally reflected at the boundary surface. Thereby, since the light excited from the fluorescent substance does not stay in the resin, the light extraction efficiency from the sealing resin is improved, and the light emission efficiency of the module is improved accordingly.
- the volume of the sealing resin is smaller in the dome shape than in the rectangular parallelepiped shape.
- the amount of the stop resin used can be reduced. For this reason, the product cost of a module can be reduced.
- the upper perspective view of the light emitting module which concerns on a 1st Example.
- the top view of the light emitting module. The front view of the light emitting module.
- the upper perspective view of the light emitting module which concerns on a 2nd Example.
- the top view of the light emitting module. The front view of the light emitting module.
- the upper perspective view of the light emitting module which concerns on a 3rd Example.
- FIG. 1 is a top perspective view of the light emitting module according to the first embodiment
- FIG. 2 is a plan view of the light emitting module
- FIG. 3 is a front view of the light emitting module.
- the light emitting module 10A of this example includes a support substrate 12, a light emitting element 14, and a sealing resin 30 that contains two types of phosphors (not shown) and seals the light emitting element 14.
- the support substrate 12 is made of, for example, a rectangular plate-shaped aluminum nitride substrate having a predetermined electrode (anode and cathode) pattern formed on the surface by gold vapor deposition.
- a predetermined electrode anode and cathode
- substrate a metal substrate and a glass epoxy board
- substrate a glass epoxy board
- the light-emitting element 14 is an InGaN-based compound semiconductor that emits ultraviolet light or short-wavelength visible light having a peak wavelength in a wavelength range of 370 nm to 470 nm.
- the light emitting element 14 for example, a 0.3 to 1.0 mm square LED chip having a central wavelength of emitted light of about 400 nm can be employed.
- the light emitting element 14 may employ, for example, a laser diode (LD) that emits ultraviolet light or short wavelength visible light.
- LD laser diode
- the light emitting element 14 is fixed to the support substrate 12 using an adhesive such as silicone or silver paste. Further, the light emitting element 14 is connected to an anode and a cathode formed on the support substrate 12 by an Au bump, an Au wire or the like, and is electrically connected to the anode and the cathode. A plurality of light emitting elements 14 are placed in a line on the support substrate 12 at predetermined intervals.
- the “line shape” does not mean only a single line shape without a bend, but includes a line having a bend like an S shape or a bend like an L shape.
- the sealing resin 30 is a member that covers the light emitting element 14 in order to seal the light emitting element 14.
- the sealing resin 30 is formed by thermosetting a paste in which two kinds of phosphors described later are mixed in a binder material 16 made of a liquid or gel transparent silicone resin.
- the paste of the sealing resin 30 containing a phosphor is prepared by the method described in International Publication No. WO2010 / 150459 shown in Patent Document 1.
- the binder material 16 is not limited to the above, and other members having excellent ultraviolet resistance performance such as fluororesin may be used.
- white fine particles such as silica, alumina, zirconia, and titanium oxide as a light diffusing material, and metal oxide, fluorine compound, sulfide, etc. as a light refracting material are added to the binder material 16. May be.
- the first phosphor is a phosphor that emits yellow visible light by converting the wavelength of near-ultraviolet light or short-wavelength visible light.
- SiO 2 .1.0 (Ca 0.54 , Sr 0. 36 , Eu 0.1 ) O ⁇ 0.17SrCl 2 is employed.
- emits is in the wavelength range of 550 to 600 nm, it will not be limited to the above.
- the second phosphor is a phosphor that emits blue visible light by converting near-ultraviolet light or short-wavelength visible light.
- (Ca 4.67 Mg 0.5 ) (PO 4 ) 3 A material represented by Cl: Eu 0.08 is used. Note that the present invention is not limited to the above as long as the blue light is obtained and the peak wavelength of the emitted light is in the wavelength range of 440 nm to 500 nm.
- Red phosphor A phosphor that emits red visible light having a peak wavelength of emitted light in a wavelength range of 600 nm to 800 nm by converting near-ultraviolet light or short-wavelength visible light.
- Green phosphor The wavelength of near-ultraviolet light or short-wavelength visible light is converted to emit green visible light having a peak wavelength between the peak wavelength of light emitted from the yellow phosphor 25a and the peak wavelength of light emitted from the blue phosphor 25b.
- Phosphor to be used As an example, (Ba 1.4 Sr 0.45 ) 2 SiO 4 : Eu 2 + 0.15 can be mentioned.
- the light emitting module 10A can be formed as follows, for example. First, the light emitting element 14 is mounted on the support substrate 12. Next, the paste of the sealing resin 30 containing the two types of phosphors described above was placed on the outermost side of the support substrate 12 using a 2.5 cc syringe (discharge diameter ⁇ 1 mm) dispenser. The ink is discharged in a dome shape immediately above the element 14. Dispensing of the dispenser is temporarily stopped, and the dispenser is moved directly above the adjacent light emitting element 14. Subsequently, a paste of the sealing resin 30 is discharged in a dome shape immediately above the adjacent light emitting element 14. These series of operations are performed on all the light emitting elements 14 arranged in a line.
- the discharge amount of the paste of the sealing resin 30 is controlled by the dispenser so that the dome radius r of the sealing resin 30 satisfies r> d / 2 (d is a distance between the two light emitting elements 14 and 14).
- the paste was discharged so that r ⁇ 2d / 3.
- the sealing resin 30 paste is subjected to, for example, a heat treatment that is maintained at 150 ° C. for 1 hour, and is cured in a dome shape.
- the sealing resin 30 is molded in a dome shape on the light emitting elements 14 placed in a line at predetermined intervals.
- the sealing resin 30 is formed in a shape (gourd shape) in which a plurality of sealing resin dome portions 31 share each other's ridge portions and the sealing resin dome portions 31 are continuous.
- the sealing resin dome part 31 is formed on each light emitting element 14, and the adjacent light emitting elements 14, 14 is connected by a sealing resin 30.
- the “dome shape” does not mean only a hemispherical shape but also includes a shape such as a bowl shape or an elliptical shape.
- a plurality of light emitting elements 14 are mounted in a line shape, and the sealing resin domes 31 are connected to each other so that the ridge portions of the sealing resin dome 31 wrap around each other.
- the thickness of the sealing resin 30 covering the light emitting element 14 becomes substantially uniform. That is, when considering the distance from the specific part of the sealing resin 30 and the light emitting element 14, the distance from the light emitting element 14 directly above the light emitting element 31a and the distance from the light emitting element 14 at the light emitting element side portion 31b Are equivalent.
- FIG. 9 is a plan view of the light emitting module according to the comparative example
- FIG. 10 is a front view of the light emitting module according to the comparative example.
- the sealing resin 3 when the surface of the light emitting module 1 was visually observed, a dark portion Q and a bright portion P were generated as shown in FIG. That is, in the sealing resin 3, the portion 3 ⁇ / b> B between the adjacent light emitting elements 4, 4 on the side of the light emitting element 4 and the width direction side edge 3 ⁇ / b> C of the sealing resin 3 become the dark part Q.
- the portion 3A immediately above the light emitting element 4 is a bright portion.
- the portions 3B and 3C of the sealing resin 3 are farther away from the light emitting element 4 than the portion 3A, and light source light is difficult to reach. For this reason, it is considered that the portions 3B and 3C are dark portions Q.
- the distance from the light emitting element 14 is the same for the light emitting element right upper portion 31a and the light emitting element side portion 31b. For this reason, it becomes difficult to produce a bright part and a dark part, and the brightness nonuniformity of 10 A of light emitting modules is reduced. Therefore, the light emitting module is suitable for general illumination applications that require uniform brightness.
- the boundary between the surface of the sealing resin 30 and the air layer 5 extends in a plane. For this reason, the light excited from the phosphor may enter the boundary surface at a critical angle or more, and a part of the light from the phosphor is confined in the resin 3.
- the boundary surface between the sealing resin 30 and the air layer 5 has a curvature. For this reason, the light incident on the boundary surface at an incident angle greater than the critical angle is greatly reduced, and the light from the phosphor is not totally reflected at the boundary surface and is outside the sealing resin 30 (air layer 5). To exit. Thereby, since the light excited from the phosphor does not stay in the resin 30, the light extraction efficiency from the sealing resin 30 is improved, and the light emission efficiency of the light emitting module 10A is improved.
- the dome-shaped light emitting module 10A of the present embodiment is more preferable than the rectangular light emitting module 1 as in the comparative example.
- the volume of the sealing resin 30 is small. For this reason, the usage-amount of expensive sealing resin 30 can be reduced, and product cost can be reduced.
- the light emission color of the light emitting module is determined only by light from the phosphor. . That is, the direct light with strong directivity emitted by the LED chip is not directly visible or difficult to see, and thus the color unevenness does not occur on the surface of the light emitting module 10A. In addition, color separation on the irradiated surface can be suppressed.
- FIG. 4 is an upper perspective view of the light emitting module according to the second embodiment
- FIG. 5 is a plan view of the light emitting module
- FIG. 6 is a front view of the light emitting module.
- the light emitting module 10B according to the second embodiment is obtained by changing the shape of the sealing resin 30 from the first embodiment.
- the dome radius r of the sealing resin dome portion 31 is reduced, and the sealing resin 30 is formed in a line shape between the sealing resin dome portions 31 and 31.
- the sealing resin dome portion 31 is formed on each light emitting element 14, and the light emitting elements 14 and 14 are connected by the sealing resin line shape portion 32.
- the light emitting module 10B can be formed as follows, for example. As in the first embodiment, after the plurality of light emitting elements 14 are mounted in a line shape, first, the sealing resin 30 integrally covers all the light emitting elements 14 in a line shape. At this time, the dispenser is moved at a speed of about 10 mm / sec, and the paste of the sealing resin 30 is discharged linearly. Subsequently, the liquid is discharged in a dome shape so that the dome radius r ⁇ d / 2 (r ⁇ d / 3 in the present embodiment) is applied only to the portion directly above each light emitting element 14.
- the method of creating the light emitting module 10B is not limited to the above.
- a method of pressure-molding the sealing resin line shape portion 32 may be employed.
- a sealing resin line-shaped portion 32 is formed between the dome portions 31 and 31, and the sealing resin 30 is formed in a shape in which the dome and the line are continuous. Emits light. That is, the sealing resin line-shaped portion 32 can also emit light between the dome portions 31 and 31 where the light emitting element 14 is not provided. As a result, the light emitting module 10B emits a line instead of a point light, so that the way of light is continuous and exhibits a novel shape.
- a sealing resin dome 31 is formed immediately above the light emitting element 14. Thereby, the brightness nonuniformity of the bright part and dark part in a dome part is reduced. Furthermore, since the dome radius r is small and the sealing resin dome portion 31 can be miniaturized, the amount of the sealing resin 30 used can be reduced as compared with the first embodiment. Thereby, the product cost can be further reduced.
- FIG. 7 is an upper perspective view of the light emitting module according to the third embodiment
- FIG. 8 is a plan view of the light emitting module. While the light emitting module 10B of the second embodiment has a linear shape that is long in one direction, the light emitting module 10C according to the third embodiment is a surface emitting module. Specifically, four rows of light emitting elements 14 similar to those of the second embodiment are arranged on the support substrate 12 of the light emitting module 10C.
- a sealing resin dome portion 31 is formed immediately above the light emitting elements 14, and the sealing resin line shape portions 32 are arranged in the longitudinal direction of the light emitting element 14 rows and in the direction orthogonal to the longitudinal direction. Is also formed.
- the sealing resin dome portions 31 are connected two-dimensionally in a mesh shape (lattice shape) by the sealing resin line shape portion 32.
- the light emitting module 10C can be formed as follows, for example. First, as shown in FIG. 7, the light emitting elements 14 are placed in a 10 ⁇ 4 matrix at a predetermined interval. Next, as in the second embodiment, using a dispenser, the paste of the sealing resin 30 is ejected in a grid pattern to form the sealing resin line shape portion 32, and further, the sealing is performed immediately above the light emitting element 14. The resin dome 31 is formed and cured. At this time, it is preferable to integrally form the sealing resin dome portion 31 and the sealing resin line shape portion 32. In the light emitting module 10C, the light emitting elements 14 may be arranged in a square matrix such as 5 ⁇ 5.
- the sealing resin line shape portion 32 between the sealing resin dome portions 31 and 31 as in the second embodiment can be emitted by the sealing resin line shape portion 32 between the sealing resin dome portions 31 and 31 as in the second embodiment.
- a surface emitting module having a novel shape and continuous light emission.
- the surface emitting module as in the third embodiment may be configured as one of the following.
- a plurality of sealing resin dome portions 31 are laid out in a dot shape without a gap, and are formed in a rectangular shape when viewed from the front of the module.
- the sealing resin 30 is simply molded into a rectangular shape when viewed from the front of the module.
- a plurality of linear sealing resins parallel to the linear sealing resin are spread without gaps to form a rectangular shape when viewed from the front of the module.
- the sealing resin 30 is potted in a rectangular spiral shape without a gap, and is formed into a rectangular shape when viewed from the front of the module.
- the light emitting module 10C of the present embodiment requires the least amount of resin compared with the surface light emitting modules having the configurations (i) to (iv), and thus has good cost performance.
- the light emitting modules of the first to third embodiments may be devised as shown in the following (I) to (IV).
- the surface of the sealing resin dome portion 31 is subjected to a graining process, or the surface is made uneven. Thereby, since the light from the phosphor is diffused when emitted from the surface of the roughened sealing resin dome part 31, the luminance unevenness can be further reduced, and the light extraction efficiency from the light emitting module is improved. More improved. Furthermore, not only the light emitting element 14 that serves as the light source but also the phosphor contained in the sealing resin 30 generates heat. However, since the surface area of the light emitting module is increased by the above processing, the heat dissipation of the entire light emitting module is also improved.
- Bubbles may be put into the sealing resin 30 instead of alumina fine particles as a light diffusing material. Light is also diffused by the bubbles, and the same effect as the light diffusing material is obtained. Therefore, since the bubble is an alternative to an expensive light diffusing material, the product cost can be further reduced. In addition, since the bubble volume and the amount of resin used can be reduced, there is also a cost reduction effect from this point.
- a light diffusion plate or a resin portion containing a light diffusion material may be formed on the surface layer of the sealing resin 30 as a light diffusion layer.
- color unevenness and luminance unevenness are reduced, and light can be emitted more uniformly.
- a UV filter may be formed on the entire surface layer of the sealing resin 30 or on the surface layer immediately above the light emitting element 14. Although the light source light (UV light) leaks most directly above the light emitting element 14 due to the directivity of the light emitting element 14, the leakage of the light source light can be reduced by the UV filter.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
Abstract
Provided is a light emitting module which has high light extraction efficiency and less luminance unevenness. Provided is a light emitting module wherein a plurality of light emitting elements (14) are arranged in a line and a sealing resin (30), which contains a phosphor or the like that is excited by light from the light source and emits light, is molded over each light emitting element (14) in the shape of a dome, thereby connecting light emitting elements (14, 14) with each other by means of the sealing resin (30).
Description
本発明は、蛍光体を用いた発光モジュールに関し、特に、紫外線又は短波長可視光で励起され発光する蛍光体を用いた発光モジュールに関する。
The present invention relates to a light emitting module using a phosphor, and more particularly, to a light emitting module using a phosphor that is excited by ultraviolet rays or short wavelength visible light to emit light.
発光モジュールとして、紫外線又は短波長可視光を発光するInGaN系の化合物半導体からなる発光ダイオード(LED)やレーザダイオード(LD)等の発光素子を一列に複数個が搭載されたものが知られている(特許文献1)。この発光モジュールにおいては、発光素子の上に、液状又はゲル状のバインダー材に蛍光体を混入した封止樹脂が、長尺直方体形状にモールドされている。蛍光体は、紫外線又は短波長可視光によって励起されて青,黄色等の光を発光する。これにより、発光素子からの光を受けて励起した蛍光体の発光により封止樹脂がライン状に発光する。
As a light-emitting module, a module in which a plurality of light-emitting elements such as light-emitting diodes (LEDs) and laser diodes (LDs) made of InGaN-based compound semiconductors that emit ultraviolet light or short-wavelength visible light are mounted in a row is known. (Patent Document 1). In this light emitting module, a sealing resin in which a phosphor is mixed in a liquid or gel binder material is molded into a long rectangular parallelepiped shape on a light emitting element. The phosphor emits light such as blue and yellow when excited by ultraviolet light or short wavelength visible light. As a result, the sealing resin emits light in a line shape by light emission of the phosphor excited by receiving light from the light emitting element.
しかし、特許文献1のような直方体形状の発光モジュールでは、封止樹脂表面と空気層との境界が平面的に延在する。このため、蛍光体から励起した光が、該境界面に対して臨界角以上となって入射することがある。この場合、蛍光体からの光が前記境界面で全反射して樹脂内に戻り、封止樹脂の外に出射されないため、発光効率が悪い。
However, in the rectangular parallelepiped light emitting module as in Patent Document 1, the boundary between the sealing resin surface and the air layer extends in a planar manner. For this reason, the light excited from the phosphor may be incident on the boundary surface at a critical angle or more. In this case, since the light from the phosphor is totally reflected at the boundary surface and returns to the inside of the resin and is not emitted outside the sealing resin, the light emission efficiency is poor.
また一般に、発光素子からの距離が大きくなると光源光が届きにくく、蛍光体の励起が減る。このため、直方体形状の封止樹脂のうち、発光素子からの距離が遠い部分、即ち、発光素子の側方となる、発光素子と発光素子との間の部分や封止樹脂の幅方向側縁部は、発光素子直上の部分に比べて暗部となる。これにより、発光モジュール表面に輝度ムラが生じてしまう。
In general, when the distance from the light emitting element is increased, the light from the light source is difficult to reach and the excitation of the phosphor is reduced. For this reason, among the rectangular parallelepiped-shaped sealing resin, the part far from the light emitting element, that is, the part between the light emitting element and the side edge of the sealing resin in the width direction, which is on the side of the light emitting element. The part becomes a dark part as compared with the part immediately above the light emitting element. As a result, uneven brightness occurs on the surface of the light emitting module.
そこで本発明は、紫外線又は短波長可視光で励起され発光する蛍光体を用いた発光モジュールにおける光の取り出し効率が高く、輝度ムラが低い発光モジュールを提供する。
Therefore, the present invention provides a light-emitting module that has high light extraction efficiency and low luminance unevenness in a light-emitting module that uses a phosphor that is excited by ultraviolet light or short-wavelength visible light.
本発明に係る発光モジュールによれば、
紫外線又は短波長可視光を発する発光素子と、前記発光素子が発する紫外線又は短波長可視光により励起され可視光を発光する少なくとも1種以上の蛍光体を含有した封止樹脂と、を備えた発光モジュールにおいて、前記発光素子は、所定間隔をおいてライン状に複数個載置され、該各発光素子の上には、前記封止樹脂がドーム状にモールドされ、複数の前記発光素子の間は、前記封止樹脂により連結されている。 According to the light emitting module according to the present invention,
A light emitting device comprising: a light emitting element that emits ultraviolet light or short wavelength visible light; and a sealing resin containing at least one phosphor that emits visible light when excited by the ultraviolet light or short wavelength visible light emitted from the light emitting element. In the module, a plurality of the light emitting elements are placed in a line at predetermined intervals, and the sealing resin is molded in a dome shape on each of the light emitting elements. Are connected by the sealing resin.
紫外線又は短波長可視光を発する発光素子と、前記発光素子が発する紫外線又は短波長可視光により励起され可視光を発光する少なくとも1種以上の蛍光体を含有した封止樹脂と、を備えた発光モジュールにおいて、前記発光素子は、所定間隔をおいてライン状に複数個載置され、該各発光素子の上には、前記封止樹脂がドーム状にモールドされ、複数の前記発光素子の間は、前記封止樹脂により連結されている。 According to the light emitting module according to the present invention,
A light emitting device comprising: a light emitting element that emits ultraviolet light or short wavelength visible light; and a sealing resin containing at least one phosphor that emits visible light when excited by the ultraviolet light or short wavelength visible light emitted from the light emitting element. In the module, a plurality of the light emitting elements are placed in a line at predetermined intervals, and the sealing resin is molded in a dome shape on each of the light emitting elements. Are connected by the sealing resin.
上記本発明の発光モジュールにおいて、前記封止樹脂のドーム部は、互いの山麓部を共有し、該ドーム部が連なる形状となるように形成されていてもよい。
In the above light emitting module of the present invention, the dome portion of the sealing resin may be formed so as to share a ridge portion with each other and the dome portion is continuous.
上記本発明の発光モジュールにおいて、前記ドーム部の半径をr、前記発光素子間の間隔をdとした場合、2r>dとしてもよい。
In the above light emitting module of the present invention, when the radius of the dome is r and the distance between the light emitting elements is d, 2r> d may be satisfied.
上記本発明の発光モジュールにおいて、前記発光素子間の封止樹脂は、前記封止樹脂のドーム部とドーム部の間をライン状に連結する形状に形成されていてもよい。
In the light emitting module of the present invention, the sealing resin between the light emitting elements may be formed in a shape connecting the dome portion and the dome portion of the sealing resin in a line shape.
上記本発明の発光モジュールにおいて、前記ドーム部の半径をr、前記発光素子間の間隔をd、前記ライン形状部の幅方向長さをbとした場合、d>2rであり、1mm<r<5mm、2mm<b<10mmとしてもよい。
In the light emitting module of the present invention, when the radius of the dome portion is r, the distance between the light emitting elements is d, and the length in the width direction of the line shape portion is b, d> 2r, and 1 mm <r < It is good also as 5mm, 2mm <b <10mm.
本発明に係る発光モジュールによれば、発光素子を中心に略半球状に封止樹脂が形成されるため、封止樹脂が発光素子から略同厚みとなり、封止樹脂の発光素子直上部と発光素子側方部とで、発光素子からの距離が略同等となる。このため、発光素子からの距離に応じて封止樹脂表面に顕れる明部と暗部の差が減少して、モジュール表面の輝度ムラは低減される。
According to the light emitting module of the present invention, since the sealing resin is formed in a substantially hemispherical shape around the light emitting element, the sealing resin has substantially the same thickness as the light emitting element, and the light emitting element directly above the light emitting element of the sealing resin and the light emission The distance from the light emitting element is substantially equal between the element side portions. For this reason, the difference between the bright part and the dark part appearing on the surface of the sealing resin is reduced according to the distance from the light emitting element, and the luminance unevenness on the module surface is reduced.
また、封止樹脂と空気層との境界面が曲率を有するようになり、該境界面に対して臨界角以上の入射角となる光は大幅に減少する。このため、蛍光体からの光は境界面で全反射することなく封止樹脂外へ出射する。これにより、蛍光体から励起した光が樹脂内にこもることがないので、封止樹脂からの光の取り出し効率が向上し、その分モジュールの発光効率が向上する。
Also, the boundary surface between the sealing resin and the air layer has a curvature, and the light having an incident angle greater than the critical angle with respect to the boundary surface is greatly reduced. For this reason, the light from the phosphor is emitted outside the sealing resin without being totally reflected at the boundary surface. Thereby, since the light excited from the fluorescent substance does not stay in the resin, the light extraction efficiency from the sealing resin is improved, and the light emission efficiency of the module is improved accordingly.
さらに、発光素子載置面からの封止樹脂の高さが同一である場合、直方体形状よりもドーム形状のほうが封止樹脂の体積が減るので、耐紫外光線性能を備える必要から高価である封止樹脂の使用量を減らすことができる。このため、モジュールの製品コストを削減することができる。
Furthermore, when the height of the sealing resin from the light emitting element mounting surface is the same, the volume of the sealing resin is smaller in the dome shape than in the rectangular parallelepiped shape. The amount of the stop resin used can be reduced. For this reason, the product cost of a module can be reduced.
次に、本発明の実施の形態を実施例に基づいて説明する。図1は第1の実施例に係る発光モジュールの上方斜視図、図2は同発光モジュールの平面図、図3は同発光モジュールの正面図、である。
Next, embodiments of the present invention will be described based on examples. 1 is a top perspective view of the light emitting module according to the first embodiment, FIG. 2 is a plan view of the light emitting module, and FIG. 3 is a front view of the light emitting module.
本実施例の発光モジュール10Aは、支持基板12、発光素子14、及び2種類の蛍光体(図示せず)を含有し発光素子14を封止する封止樹脂30を備えている。
The light emitting module 10A of this example includes a support substrate 12, a light emitting element 14, and a sealing resin 30 that contains two types of phosphors (not shown) and seals the light emitting element 14.
支持基板12は、一例として金蒸着によって表面に所定の電極(陽極及び陰極)パターンを形成した長方形プレート状の窒化アルミニウム基板からなる。なお、金属基板、ガラスエポキシ基板等の他の材料によって形成されてもよい。
The support substrate 12 is made of, for example, a rectangular plate-shaped aluminum nitride substrate having a predetermined electrode (anode and cathode) pattern formed on the surface by gold vapor deposition. In addition, you may form with other materials, such as a metal substrate and a glass epoxy board | substrate.
発光素子14は、370nm~470nmの波長域にピーク波長を有する紫外線又は短波長可視光を発光するInGaN系の化合物半導体である。発光素子14として、例えば発する光の中心波長が約400nmの、0.3~1.0mm角LEDチップを採用できる。このほかに、発光素子14には、例えば紫外線又は短波長可視光を発光するレーザダイオード(LD)を採用しても良い。
The light-emitting element 14 is an InGaN-based compound semiconductor that emits ultraviolet light or short-wavelength visible light having a peak wavelength in a wavelength range of 370 nm to 470 nm. As the light emitting element 14, for example, a 0.3 to 1.0 mm square LED chip having a central wavelength of emitted light of about 400 nm can be employed. In addition, the light emitting element 14 may employ, for example, a laser diode (LD) that emits ultraviolet light or short wavelength visible light.
発光素子14は、支持基板12にシリコーンや銀ペースト等の接着材を用いて固定されている。さらに発光素子14は、支持基板12に形成された陽極及び陰極に、Auバンプ、Auワイヤ等で接続されて、陽極及び陰極に導通されている。発光素子14は、支持基板12上に、所定間隔をおいてライン状に一列に複数個載置されている。なお、本明細書において「ライン状」とは、折れのない一列形状のみを意味するものではなく、S字のような曲がりやL字のような折れを有するラインを含む。
The light emitting element 14 is fixed to the support substrate 12 using an adhesive such as silicone or silver paste. Further, the light emitting element 14 is connected to an anode and a cathode formed on the support substrate 12 by an Au bump, an Au wire or the like, and is electrically connected to the anode and the cathode. A plurality of light emitting elements 14 are placed in a line on the support substrate 12 at predetermined intervals. In the present specification, the “line shape” does not mean only a single line shape without a bend, but includes a line having a bend like an S shape or a bend like an L shape.
封止樹脂30は、発光素子14を封止するために発光素子14上を被覆する部材である。封止樹脂30は、液状又はゲル状の透明なシリコーン樹脂からなるバインダー材16に、後述する2種類の蛍光体を混入させたペーストを熱硬化させて形成されている。蛍光体を含有した封止樹脂30のペーストは、一例として、特許文献1に示す国際公開第WO2010/150459号公報に記載の方法で作成される。
The sealing resin 30 is a member that covers the light emitting element 14 in order to seal the light emitting element 14. The sealing resin 30 is formed by thermosetting a paste in which two kinds of phosphors described later are mixed in a binder material 16 made of a liquid or gel transparent silicone resin. As an example, the paste of the sealing resin 30 containing a phosphor is prepared by the method described in International Publication No. WO2010 / 150459 shown in Patent Document 1.
なお、バインダー材16は上記に限定されるものではなく、フッ素樹脂等の耐紫外線性能に優れた他の部材を採用しても良い。また、バインダー材16には、蛍光体等以外に、例えば光拡散材としてシリカ,アルミナ,ジルコニア,酸化チタン等の白色微粒子や、光屈折材として金属酸化物,フッ素化合物,硫化物等を添加しても良い。
In addition, the binder material 16 is not limited to the above, and other members having excellent ultraviolet resistance performance such as fluororesin may be used. In addition to the phosphor and the like, for example, white fine particles such as silica, alumina, zirconia, and titanium oxide as a light diffusing material, and metal oxide, fluorine compound, sulfide, etc. as a light refracting material are added to the binder material 16. May be.
第一の蛍光体は、近紫外線又は短波長可視光を波長変換して黄色の可視光を発光する蛍光体であって、一例として、SiO2・1.0(Ca0.54,Sr0.36,Eu0.1)O・0.17SrCl2で表されるものを採用している。なお、上記黄色光が得られ、放射する光のピーク波長が550nm以上600nm以下の波長域にあるものであれば上記に限定されない。
The first phosphor is a phosphor that emits yellow visible light by converting the wavelength of near-ultraviolet light or short-wavelength visible light. As an example, SiO 2 .1.0 (Ca 0.54 , Sr 0. 36 , Eu 0.1 ) O · 0.17SrCl 2 is employed. In addition, if the said yellow light is obtained and the peak wavelength of the light to radiate | emits is in the wavelength range of 550 to 600 nm, it will not be limited to the above.
第二の蛍光体は、近紫外線又は短波長可視光を波長変換して青色の可視光を発光する蛍光体であって、一例として、(Ca4.67Mg0.5)(PO4)3Cl:Eu0.08で表されるものを採用している。なお、上記青色光が得られ、放射する光のピーク波長が440nm以上500nm以下の波長域にあるものであれば上記に限定されない。
The second phosphor is a phosphor that emits blue visible light by converting near-ultraviolet light or short-wavelength visible light. As an example, (Ca 4.67 Mg 0.5 ) (PO 4 ) 3 A material represented by Cl: Eu 0.08 is used. Note that the present invention is not limited to the above as long as the blue light is obtained and the peak wavelength of the emitted light is in the wavelength range of 440 nm to 500 nm.
なお、上記第一の蛍光体および第二の蛍光体とともに、又は上記第一の蛍光体および第二の蛍光体に代えて、以下の2種類の蛍光体の少なくとも一方を採用してもよい。
赤色蛍光体:
近紫外線又は短波長可視光を波長変換して、放射する光のピーク波長が600nm以上800nm以下の波長域にある赤色の可視光を発光する蛍光体。一例として、(Ca1-x-ySrx)AlSiN3:Eu2+y(ここで、xは0≦x≦0.992、yは0.001≦y≦0.015の範囲である)を挙げることができる。
緑色蛍光体:
近紫外線又は短波長可視光を波長変換して、黄色蛍光体25aが放射する光のピーク波長と青色蛍光体25bが放射する光のピーク波長との間にピーク波長を有する緑色の可視光を発光する蛍光体。一例として、(Ba1.4Sr0.45)2SiO4:Eu2+0.15を挙げることができる。 It should be noted that at least one of the following two types of phosphors may be employed together with the first phosphor and the second phosphor, or instead of the first phosphor and the second phosphor.
Red phosphor:
A phosphor that emits red visible light having a peak wavelength of emitted light in a wavelength range of 600 nm to 800 nm by converting near-ultraviolet light or short-wavelength visible light. As an example, (Ca 1-xy Sr x ) AlSiN 3 : Eu 2 + y (where x is in the range of 0 ≦ x ≦ 0.992 and y is in the range of 0.001 ≦ y ≦ 0.015). be able to.
Green phosphor:
The wavelength of near-ultraviolet light or short-wavelength visible light is converted to emit green visible light having a peak wavelength between the peak wavelength of light emitted from the yellow phosphor 25a and the peak wavelength of light emitted from the blue phosphor 25b. Phosphor to be used. As an example, (Ba 1.4 Sr 0.45 ) 2 SiO 4 : Eu 2 + 0.15 can be mentioned.
赤色蛍光体:
近紫外線又は短波長可視光を波長変換して、放射する光のピーク波長が600nm以上800nm以下の波長域にある赤色の可視光を発光する蛍光体。一例として、(Ca1-x-ySrx)AlSiN3:Eu2+y(ここで、xは0≦x≦0.992、yは0.001≦y≦0.015の範囲である)を挙げることができる。
緑色蛍光体:
近紫外線又は短波長可視光を波長変換して、黄色蛍光体25aが放射する光のピーク波長と青色蛍光体25bが放射する光のピーク波長との間にピーク波長を有する緑色の可視光を発光する蛍光体。一例として、(Ba1.4Sr0.45)2SiO4:Eu2+0.15を挙げることができる。 It should be noted that at least one of the following two types of phosphors may be employed together with the first phosphor and the second phosphor, or instead of the first phosphor and the second phosphor.
Red phosphor:
A phosphor that emits red visible light having a peak wavelength of emitted light in a wavelength range of 600 nm to 800 nm by converting near-ultraviolet light or short-wavelength visible light. As an example, (Ca 1-xy Sr x ) AlSiN 3 : Eu 2 + y (where x is in the range of 0 ≦ x ≦ 0.992 and y is in the range of 0.001 ≦ y ≦ 0.015). be able to.
Green phosphor:
The wavelength of near-ultraviolet light or short-wavelength visible light is converted to emit green visible light having a peak wavelength between the peak wavelength of light emitted from the yellow phosphor 25a and the peak wavelength of light emitted from the blue phosphor 25b. Phosphor to be used. As an example, (Ba 1.4 Sr 0.45 ) 2 SiO 4 : Eu 2 + 0.15 can be mentioned.
発光モジュール10Aは、例えば以下のようにして形成することができる。
まず発光素子14を支持基板12上に実装する。次に、2.5ccのシリンジ(吐出口径φ1mm)のディスペンサを用いて、上記二種類の蛍光体を含有した封止樹脂30のペーストを、支持基板12の最端部側に載置された発光素子14の直上にドーム状に吐出する。ディスペンサの吐出を一旦中止し、ディスペンサを隣の発光素子14の直上に移動させる。続いて、この隣の発光素子14の直上にドーム状に封止樹脂30のペーストを吐出する。これら一連の動作を一列に並ぶ発光素子14全てに対して行う。 Thelight emitting module 10A can be formed as follows, for example.
First, thelight emitting element 14 is mounted on the support substrate 12. Next, the paste of the sealing resin 30 containing the two types of phosphors described above was placed on the outermost side of the support substrate 12 using a 2.5 cc syringe (discharge diameter φ1 mm) dispenser. The ink is discharged in a dome shape immediately above the element 14. Dispensing of the dispenser is temporarily stopped, and the dispenser is moved directly above the adjacent light emitting element 14. Subsequently, a paste of the sealing resin 30 is discharged in a dome shape immediately above the adjacent light emitting element 14. These series of operations are performed on all the light emitting elements 14 arranged in a line.
まず発光素子14を支持基板12上に実装する。次に、2.5ccのシリンジ(吐出口径φ1mm)のディスペンサを用いて、上記二種類の蛍光体を含有した封止樹脂30のペーストを、支持基板12の最端部側に載置された発光素子14の直上にドーム状に吐出する。ディスペンサの吐出を一旦中止し、ディスペンサを隣の発光素子14の直上に移動させる。続いて、この隣の発光素子14の直上にドーム状に封止樹脂30のペーストを吐出する。これら一連の動作を一列に並ぶ発光素子14全てに対して行う。 The
First, the
この際、ディスペンサによって封止樹脂30のペーストの吐出量を制御し、封止樹脂30のドーム半径rが、r>d/2(dは2つの発光素子14,14間の距離)となるようにする。本実施例では、r≒2d/3となるようにペーストを吐出した。これにより、隣り合うドームの下部(山麓部)が重複する。最後に、封止樹脂30ペーストを、例えば1時間150℃で維持する加熱処理を施し、ドーム形状のまま硬化させる。
At this time, the discharge amount of the paste of the sealing resin 30 is controlled by the dispenser so that the dome radius r of the sealing resin 30 satisfies r> d / 2 (d is a distance between the two light emitting elements 14 and 14). To. In this example, the paste was discharged so that r≈2d / 3. Thereby, the lower part (mountain part) of an adjacent dome overlaps. Finally, the sealing resin 30 paste is subjected to, for example, a heat treatment that is maintained at 150 ° C. for 1 hour, and is cured in a dome shape.
これにより、所定間隔をおいてライン状に載置された発光素子14の上には、封止樹脂30がドーム状にモールドされる。また、この封止樹脂30は、複数の封止樹脂ドーム部31が互いの山麓部を共有し、該封止樹脂ドーム部31が連なる形状(ひょうたん形状)に、形成される。言い換えると、発光モジュール10Aにおいて、各発光素子14の上には封止樹脂ドーム部31が形成されており、封止樹脂ドーム部31の山麓部が連結していることによって隣り合う発光素子14,14の間が封止樹脂30により連結されている。なお、本明細書において「ドーム状」とは、半球形状のみを意味するものではなく、椀形状や楕円形状のような形態も含む。
Thus, the sealing resin 30 is molded in a dome shape on the light emitting elements 14 placed in a line at predetermined intervals. In addition, the sealing resin 30 is formed in a shape (gourd shape) in which a plurality of sealing resin dome portions 31 share each other's ridge portions and the sealing resin dome portions 31 are continuous. In other words, in the light emitting module 10A, the sealing resin dome part 31 is formed on each light emitting element 14, and the adjacent light emitting elements 14, 14 is connected by a sealing resin 30. In the present specification, the “dome shape” does not mean only a hemispherical shape but also includes a shape such as a bowl shape or an elliptical shape.
本実施例によれば、発光素子14をライン状に複数個載置し、封止樹脂ドーム部31の相互の山麓部がラップするように封止樹脂ドーム31同士が連結されている。これにより、発光素子14を覆う封止樹脂30の厚みは略均一となる。つまり、封止樹脂30の特定の部位と発光素子14からの距離を考えた場合、発光素子直上部31aにおける発光素子14からの距離と、発光素子側方部31bにおける発光素子14からの距離とが同等となる。
According to the present embodiment, a plurality of light emitting elements 14 are mounted in a line shape, and the sealing resin domes 31 are connected to each other so that the ridge portions of the sealing resin dome 31 wrap around each other. Thereby, the thickness of the sealing resin 30 covering the light emitting element 14 becomes substantially uniform. That is, when considering the distance from the specific part of the sealing resin 30 and the light emitting element 14, the distance from the light emitting element 14 directly above the light emitting element 31a and the distance from the light emitting element 14 at the light emitting element side portion 31b Are equivalent.
ここで、図9は比較例に係る発光モジュールの平面図であり、図10は比較例に係る発光モジュールの正面図である。
比較例のような直方体形状の発光モジュール1では、図9のように、発光モジュール1の表面を目視したときに、暗部Qと明部Pが生じていた。つまり、封止樹脂3のうち、発光素子4の側方となる隣り合う発光素子4,4の間の部分3Bや、封止樹脂3の幅方向側縁部3Cは、暗部Qとなる。また、発光素子4直上の部分3Aは明部となる。封止樹脂3の部位3B,3Cは、部位3Aよりも発光素子4からの距離が遠く、光源光が届きにくい。このため、部位3B,3Cが暗部Qとなっていると考えられる。 Here, FIG. 9 is a plan view of the light emitting module according to the comparative example, and FIG. 10 is a front view of the light emitting module according to the comparative example.
In the rectangular parallelepiped-shapedlight emitting module 1 as in the comparative example, when the surface of the light emitting module 1 was visually observed, a dark portion Q and a bright portion P were generated as shown in FIG. That is, in the sealing resin 3, the portion 3 </ b> B between the adjacent light emitting elements 4, 4 on the side of the light emitting element 4 and the width direction side edge 3 </ b> C of the sealing resin 3 become the dark part Q. The portion 3A immediately above the light emitting element 4 is a bright portion. The portions 3B and 3C of the sealing resin 3 are farther away from the light emitting element 4 than the portion 3A, and light source light is difficult to reach. For this reason, it is considered that the portions 3B and 3C are dark portions Q.
比較例のような直方体形状の発光モジュール1では、図9のように、発光モジュール1の表面を目視したときに、暗部Qと明部Pが生じていた。つまり、封止樹脂3のうち、発光素子4の側方となる隣り合う発光素子4,4の間の部分3Bや、封止樹脂3の幅方向側縁部3Cは、暗部Qとなる。また、発光素子4直上の部分3Aは明部となる。封止樹脂3の部位3B,3Cは、部位3Aよりも発光素子4からの距離が遠く、光源光が届きにくい。このため、部位3B,3Cが暗部Qとなっていると考えられる。 Here, FIG. 9 is a plan view of the light emitting module according to the comparative example, and FIG. 10 is a front view of the light emitting module according to the comparative example.
In the rectangular parallelepiped-shaped
しかし本実施例では、上述したように、発光素子14からの距離は発光素子直上部31aも発光素子側方部31bも同等である。このため、明部と暗部が生じにくくなり、発光モジュール10Aの輝度ムラは低減される。よって均一な輝度が求められる一般照明の用途に好適な発光モジュールとなる。
However, in the present embodiment, as described above, the distance from the light emitting element 14 is the same for the light emitting element right upper portion 31a and the light emitting element side portion 31b. For this reason, it becomes difficult to produce a bright part and a dark part, and the brightness nonuniformity of 10 A of light emitting modules is reduced. Therefore, the light emitting module is suitable for general illumination applications that require uniform brightness.
また、封止樹脂ドーム部31を連結したことで、ドームが連続するひょうたん形の新規な形状及び新規な見栄えの発光モジュールが提供できる。
Also, by connecting the sealing resin dome portion 31, it is possible to provide a light-emitting module having a new shape of a gourd shape in which the dome is continuous and a new appearance.
また、図9および図10に示した、比較例のような直方体形状の発光モジュール1では、封止樹脂30の表面と空気層5との境界が平面的に延在する。このため、蛍光体から励起した光が、該境界面に対して臨界角以上となって入射することがあり、蛍光体からの光の一部は樹脂3内にこもっていた。
In the rectangular parallelepiped light emitting module 1 as shown in FIGS. 9 and 10, the boundary between the surface of the sealing resin 30 and the air layer 5 extends in a plane. For this reason, the light excited from the phosphor may enter the boundary surface at a critical angle or more, and a part of the light from the phosphor is confined in the resin 3.
しかし本実施例の発光モジュール10Aでは、封止樹脂30と空気層5との境界面が曲率を有する。このため、該境界面に対して臨界角以上の入射角で入射する光は大幅に減少し、蛍光体からの光は境界面で全反射することなく封止樹脂30の外(空気層5)へ出射する。これにより、蛍光体から励起した光が樹脂30内にこもることがないので、封止樹脂30からの光の取り出し効率が向上し、発光モジュール10Aの発光効率が向上する。
However, in the light emitting module 10A of the present embodiment, the boundary surface between the sealing resin 30 and the air layer 5 has a curvature. For this reason, the light incident on the boundary surface at an incident angle greater than the critical angle is greatly reduced, and the light from the phosphor is not totally reflected at the boundary surface and is outside the sealing resin 30 (air layer 5). To exit. Thereby, since the light excited from the phosphor does not stay in the resin 30, the light extraction efficiency from the sealing resin 30 is improved, and the light emission efficiency of the light emitting module 10A is improved.
さらに、封止樹脂30を、支持基板12から厚みr(ドーム半径)でモールドする場合、比較例のような直方体形状の発光モジュール1よりも、本実施例のドーム形状の発光モジュール10Aのほうが、封止樹脂30の体積が小さい。このため、高価な封止樹脂30の使用量を減らすことができ、製品コストを低減できる。
Further, when the sealing resin 30 is molded from the support substrate 12 with a thickness r (dome radius), the dome-shaped light emitting module 10A of the present embodiment is more preferable than the rectangular light emitting module 1 as in the comparative example. The volume of the sealing resin 30 is small. For this reason, the usage-amount of expensive sealing resin 30 can be reduced, and product cost can be reduced.
また、発光素子14として、370nm~420nmの波長域にピーク波長を有する紫外線又は短波長可視光を発光するLEDチップを採用すれば、発光モジュールの発光色は蛍光体からの光のみによって決定される。つまり、LEDチップが発光する指向性の強い直接光は直接目視されない、あるいは目視しにくいため、発光モジュール10Aの表面に色ムラが生じない。また、照射面における色分離を抑制することができる。
If an LED chip that emits ultraviolet light or short wavelength visible light having a peak wavelength in the wavelength range of 370 nm to 420 nm is employed as the light emitting element 14, the light emission color of the light emitting module is determined only by light from the phosphor. . That is, the direct light with strong directivity emitted by the LED chip is not directly visible or difficult to see, and thus the color unevenness does not occur on the surface of the light emitting module 10A. In addition, color separation on the irradiated surface can be suppressed.
図4は第2の実施例に係る発光モジュールの上方斜視図であり、図5は同発光モジュールの平面図であり、図6は同発光モジュールの正面図である。
第2の実施例に係る発光モジュール10Bは、第1の実施例から封止樹脂30の形状を変更したものである。本実施例においては、封止樹脂ドーム部31のドーム半径rが縮小され、封止樹脂ドーム部31,31間は封止樹脂30がライン状に形成されている。言い換えると、各発光素子14の上に封止樹脂ドーム部31が形成され、発光素子14,14間は封止樹脂ライン形状部32によって連結されている。 4 is an upper perspective view of the light emitting module according to the second embodiment, FIG. 5 is a plan view of the light emitting module, and FIG. 6 is a front view of the light emitting module.
Thelight emitting module 10B according to the second embodiment is obtained by changing the shape of the sealing resin 30 from the first embodiment. In this embodiment, the dome radius r of the sealing resin dome portion 31 is reduced, and the sealing resin 30 is formed in a line shape between the sealing resin dome portions 31 and 31. In other words, the sealing resin dome portion 31 is formed on each light emitting element 14, and the light emitting elements 14 and 14 are connected by the sealing resin line shape portion 32.
第2の実施例に係る発光モジュール10Bは、第1の実施例から封止樹脂30の形状を変更したものである。本実施例においては、封止樹脂ドーム部31のドーム半径rが縮小され、封止樹脂ドーム部31,31間は封止樹脂30がライン状に形成されている。言い換えると、各発光素子14の上に封止樹脂ドーム部31が形成され、発光素子14,14間は封止樹脂ライン形状部32によって連結されている。 4 is an upper perspective view of the light emitting module according to the second embodiment, FIG. 5 is a plan view of the light emitting module, and FIG. 6 is a front view of the light emitting module.
The
発光モジュール10Bは、例えば以下のようにして形成することができる。
第1の実施例と同様、複数の発光素子14をライン状に載置したのち、まず、封止樹脂30が全発光素子14をライン状に一体的に被覆する。このとき、速度約10mm/secでディスペンサを移動させて、封止樹脂30のペーストを直線状に吐出する。続いて、各発光素子14直上部分にのみ、ドーム半径r<d/2(本実施例では、r≒d/3)となるようにドーム状に吐出する。 Thelight emitting module 10B can be formed as follows, for example.
As in the first embodiment, after the plurality oflight emitting elements 14 are mounted in a line shape, first, the sealing resin 30 integrally covers all the light emitting elements 14 in a line shape. At this time, the dispenser is moved at a speed of about 10 mm / sec, and the paste of the sealing resin 30 is discharged linearly. Subsequently, the liquid is discharged in a dome shape so that the dome radius r <d / 2 (r≈d / 3 in the present embodiment) is applied only to the portion directly above each light emitting element 14.
第1の実施例と同様、複数の発光素子14をライン状に載置したのち、まず、封止樹脂30が全発光素子14をライン状に一体的に被覆する。このとき、速度約10mm/secでディスペンサを移動させて、封止樹脂30のペーストを直線状に吐出する。続いて、各発光素子14直上部分にのみ、ドーム半径r<d/2(本実施例では、r≒d/3)となるようにドーム状に吐出する。 The
As in the first embodiment, after the plurality of
なお、好ましくは、1mm<r<5mmであり、ライン形状部32の幅方向長さをbとした場合、2mm<b<10mmとする。このようにして吐出した封止樹脂30のペーストを第1の実施例と同様に熱硬化させて、発光モジュール10Bが得られる。
Note that, preferably, 1 mm <r <5 mm, and assuming that the length in the width direction of the line-shaped portion 32 is b, 2 mm <b <10 mm. The paste of the sealing resin 30 thus discharged is thermally cured in the same manner as in the first embodiment, and the light emitting module 10B is obtained.
なお、発光モジュール10Bの作成方法は上記に限られない。例えば、載置した発光素子14,14間に封止樹脂ライン形状部32を断続的にポッティングしたのちに封止樹脂ドーム部31をポッティングする方法、あるいは、型を用いて封止樹脂ドーム部31,封止樹脂ライン形状部32を加圧成形する方法を採用してもよい。
Note that the method of creating the light emitting module 10B is not limited to the above. For example, a method of potting the sealing resin dome portion 31 after intermittently potting the sealing resin line shape portion 32 between the light emitting elements 14 and 14 mounted, or a sealing resin dome portion 31 using a mold. A method of pressure-molding the sealing resin line shape portion 32 may be employed.
本実施例によれば、該ドーム部31,31間には封止樹脂ライン形状部32が形成され、封止樹脂30はドームとラインが連なる形状とされ、これらドーム部分とライン部分とが共に発光する。つまり、発光素子14の設けられていないドーム部31,31の間も、封止樹脂ライン形状部32によって発光させることができる。これにより、発光モジュール10Bは、点発光ではなくライン発光するので、光り方が連続的であり、斬新な形状を呈する。
According to the present embodiment, a sealing resin line-shaped portion 32 is formed between the dome portions 31 and 31, and the sealing resin 30 is formed in a shape in which the dome and the line are continuous. Emits light. That is, the sealing resin line-shaped portion 32 can also emit light between the dome portions 31 and 31 where the light emitting element 14 is not provided. As a result, the light emitting module 10B emits a line instead of a point light, so that the way of light is continuous and exhibits a novel shape.
さらに、発光素子14の直上には封止樹脂ドーム部31が形成されている。これにより、ドーム部における明部と暗部の輝度ムラが低減される。さらには、ドーム半径rが小さく封止樹脂ドーム部31を小型化できるので、封止樹脂30の使用量を第1の実施例より減らすことができる。これにより、更に製品コストを低減できる。
Furthermore, a sealing resin dome 31 is formed immediately above the light emitting element 14. Thereby, the brightness nonuniformity of the bright part and dark part in a dome part is reduced. Furthermore, since the dome radius r is small and the sealing resin dome portion 31 can be miniaturized, the amount of the sealing resin 30 used can be reduced as compared with the first embodiment. Thereby, the product cost can be further reduced.
図7は第3の実施例に係る発光モジュールの上方斜視図であり、図8は同発光モジュールの平面図である。
第2の実施例の発光モジュール10Bが一方向に長い直線形状であったのに対し、第3の実施例に係る発光モジュール10Cは、面発光型モジュールである。具体的には、発光モジュール10Cの支持基板12上には、第2の実施例と同様の発光素子14の列が4列配置されている。 FIG. 7 is an upper perspective view of the light emitting module according to the third embodiment, and FIG. 8 is a plan view of the light emitting module.
While thelight emitting module 10B of the second embodiment has a linear shape that is long in one direction, the light emitting module 10C according to the third embodiment is a surface emitting module. Specifically, four rows of light emitting elements 14 similar to those of the second embodiment are arranged on the support substrate 12 of the light emitting module 10C.
第2の実施例の発光モジュール10Bが一方向に長い直線形状であったのに対し、第3の実施例に係る発光モジュール10Cは、面発光型モジュールである。具体的には、発光モジュール10Cの支持基板12上には、第2の実施例と同様の発光素子14の列が4列配置されている。 FIG. 7 is an upper perspective view of the light emitting module according to the third embodiment, and FIG. 8 is a plan view of the light emitting module.
While the
また、第2の実施例と同様に発光素子14の直上には封止樹脂ドーム部31が形成され、封止樹脂ライン形状部32が、発光素子14列の長手方向及び長手方向の直交方向にも形成されている。これにより、封止樹脂ドーム部31,31間が、封止樹脂ライン形状部32によって網目状(格子状)に、二次元的に連結されている。
Further, as in the second embodiment, a sealing resin dome portion 31 is formed immediately above the light emitting elements 14, and the sealing resin line shape portions 32 are arranged in the longitudinal direction of the light emitting element 14 rows and in the direction orthogonal to the longitudinal direction. Is also formed. Thus, the sealing resin dome portions 31 are connected two-dimensionally in a mesh shape (lattice shape) by the sealing resin line shape portion 32.
発光モジュール10Cは、例えば以下のようにして形成することができる。
まず、図7に示したように、発光素子14を所定間隔をおいて10×4のマトリクス状に載置する。次に、第2の実施例と同様、ディスペンサを用いて、封止樹脂30のペーストを格子状に吐出して封止樹脂ライン形状部32を形成し、更に、発光素子14直上部分に封止樹脂ドーム部31を形成して硬化させる。このとき、封止樹脂ドーム部31および封止樹脂ライン形状部32とを一体的に形成することが好ましい。なお、発光モジュール10Cは、発光素子14を5×5のような正方形のマトリクス状に配置しても良い。 Thelight emitting module 10C can be formed as follows, for example.
First, as shown in FIG. 7, thelight emitting elements 14 are placed in a 10 × 4 matrix at a predetermined interval. Next, as in the second embodiment, using a dispenser, the paste of the sealing resin 30 is ejected in a grid pattern to form the sealing resin line shape portion 32, and further, the sealing is performed immediately above the light emitting element 14. The resin dome 31 is formed and cured. At this time, it is preferable to integrally form the sealing resin dome portion 31 and the sealing resin line shape portion 32. In the light emitting module 10C, the light emitting elements 14 may be arranged in a square matrix such as 5 × 5.
まず、図7に示したように、発光素子14を所定間隔をおいて10×4のマトリクス状に載置する。次に、第2の実施例と同様、ディスペンサを用いて、封止樹脂30のペーストを格子状に吐出して封止樹脂ライン形状部32を形成し、更に、発光素子14直上部分に封止樹脂ドーム部31を形成して硬化させる。このとき、封止樹脂ドーム部31および封止樹脂ライン形状部32とを一体的に形成することが好ましい。なお、発光モジュール10Cは、発光素子14を5×5のような正方形のマトリクス状に配置しても良い。 The
First, as shown in FIG. 7, the
本実施例によれば、第2の実施例と同様、封止樹脂ドーム部31,31間も封止樹脂ライン形状部32によって発光させることができる。これにより、光り方が連続的で、斬新な形状の面発光モジュールを提供できる。
According to the present embodiment, light can be emitted by the sealing resin line shape portion 32 between the sealing resin dome portions 31 and 31 as in the second embodiment. As a result, it is possible to provide a surface emitting module having a novel shape and continuous light emission.
なお、第3の実施例のような面発光モジュールは、以下のいずれかのように構成することも考えられる。(i)封止樹脂ドーム部31を、隙間のないドット状に複数個敷き詰めて、モジュール正面視矩形状に形成する。(ii)封止樹脂30を、単純に、モジュール正面視矩形状にモールドする。(iii)封止樹脂30を、一直線状に形成したのち、係る直線封止樹脂と平行な直線封止樹脂を複数本隙間無く敷き詰めて、モジュール正面視矩形状に形成する。(iv)封止樹脂30を、隙間無く、矩形渦巻き状にポッティングし、モジュール正面視矩形に形成する。しかし、これら(i)~(iv)の構成の面発光モジュールと比較して、本実施例の発光モジュール10Cは、使用樹脂量が最も少なくすむため、コストパフォーマンスも良い。
It should be noted that the surface emitting module as in the third embodiment may be configured as one of the following. (I) A plurality of sealing resin dome portions 31 are laid out in a dot shape without a gap, and are formed in a rectangular shape when viewed from the front of the module. (Ii) The sealing resin 30 is simply molded into a rectangular shape when viewed from the front of the module. (Iii) After forming the sealing resin 30 in a straight line, a plurality of linear sealing resins parallel to the linear sealing resin are spread without gaps to form a rectangular shape when viewed from the front of the module. (Iv) The sealing resin 30 is potted in a rectangular spiral shape without a gap, and is formed into a rectangular shape when viewed from the front of the module. However, the light emitting module 10C of the present embodiment requires the least amount of resin compared with the surface light emitting modules having the configurations (i) to (iv), and thus has good cost performance.
また、第1の実施例~3の発光モジュールは、以下の(I)~(IV)のような工夫を施しても良い。
Also, the light emitting modules of the first to third embodiments may be devised as shown in the following (I) to (IV).
(I)封止樹脂ドーム部31の表面にシボ加工を施す、或いは該表面を凹凸形状とする。これにより、蛍光体からの光が、粗面化された封止樹脂ドーム部31の表面から出射する際に光拡散されるため、よりいっそう輝度ムラが低減でき、発光モジュールからの光取り出し効率がより向上する。
さらに、光源となる発光素子14だけでなく、封止樹脂30に含有される蛍光体もまた発熱するが、上記加工によって発光モジュールの表面積が増加するので、発光モジュール全体の放熱性も向上する。 (I) The surface of the sealingresin dome portion 31 is subjected to a graining process, or the surface is made uneven. Thereby, since the light from the phosphor is diffused when emitted from the surface of the roughened sealing resin dome part 31, the luminance unevenness can be further reduced, and the light extraction efficiency from the light emitting module is improved. More improved.
Furthermore, not only thelight emitting element 14 that serves as the light source but also the phosphor contained in the sealing resin 30 generates heat. However, since the surface area of the light emitting module is increased by the above processing, the heat dissipation of the entire light emitting module is also improved.
さらに、光源となる発光素子14だけでなく、封止樹脂30に含有される蛍光体もまた発熱するが、上記加工によって発光モジュールの表面積が増加するので、発光モジュール全体の放熱性も向上する。 (I) The surface of the sealing
Furthermore, not only the
(II)封止樹脂30に、光拡散材としてのアルミナ微粒子等に替えて、気泡を入れても良い。気泡によっても光が拡散され、光拡散材と同等の効果を奏する。よって、気泡が高価な光拡散材の代替となるので、製品コストがいっそう削減できる。また、気泡体積分、使用樹脂量を減らすことができるので、この点からもコスト削減効果がある。
(II) Bubbles may be put into the sealing resin 30 instead of alumina fine particles as a light diffusing material. Light is also diffused by the bubbles, and the same effect as the light diffusing material is obtained. Therefore, since the bubble is an alternative to an expensive light diffusing material, the product cost can be further reduced. In addition, since the bubble volume and the amount of resin used can be reduced, there is also a cost reduction effect from this point.
(III)光拡散の観点から、封止樹脂30の表面層に、光拡散層として、光拡散板や光拡散材入り樹脂部を形成してもよい。これにより、色ムラ,輝度ムラが低減されてよりいっそう均一に発光させることができる。これにより、一般照明器具に、上述した本実施例に係る発光モジュールを光源として採用した場合、光拡散板を使用する必要が無くなる。これにより、照明器具全体としてコストを削減できる。
(III) From the viewpoint of light diffusion, a light diffusion plate or a resin portion containing a light diffusion material may be formed on the surface layer of the sealing resin 30 as a light diffusion layer. As a result, color unevenness and luminance unevenness are reduced, and light can be emitted more uniformly. Thereby, when the light emitting module according to this embodiment described above is adopted as a light source for a general lighting fixture, it is not necessary to use a light diffusing plate. Thereby, cost can be reduced as the whole lighting fixture.
(IV)封止樹脂30の表面層全体或いは発光素子14直上の表面層にUVフィルタを形成してもよい。発光素子14の指向性により、発光素子14直上での光源光(UV光)の漏れが最も多いが、UVフィルタにより光源光の漏れを低減できる。
(IV) A UV filter may be formed on the entire surface layer of the sealing resin 30 or on the surface layer immediately above the light emitting element 14. Although the light source light (UV light) leaks most directly above the light emitting element 14 due to the directivity of the light emitting element 14, the leakage of the light source light can be reduced by the UV filter.
本出願は、2011年12月14日出願の日本特許出願(特願2011-273001)に基づくものであり、その内容はここに参照として取り込まれる。
This application is based on a Japanese patent application filed on December 14, 2011 (Japanese Patent Application No. 2011-273001), the contents of which are incorporated herein by reference.
10A、10B、10C 発光モジュール
14 発光素子
25a 黄色蛍光体
25b 青色蛍光体
30 封止樹脂
31 封止樹脂ドーム部
32 封止樹脂ライン形状部 10A, 10B, 10CLight emitting module 14 Light emitting element 25a Yellow phosphor 25b Blue phosphor 30 Sealing resin 31 Sealing resin dome portion 32 Sealing resin line shape portion
14 発光素子
25a 黄色蛍光体
25b 青色蛍光体
30 封止樹脂
31 封止樹脂ドーム部
32 封止樹脂ライン形状部 10A, 10B, 10C
Claims (5)
- 紫外線又は短波長可視光を発する発光素子と、
前記発光素子が発する紫外線又は短波長可視光により励起され可視光を発光する少なくとも1種以上の蛍光体を含有した封止樹脂と、
を備えた発光モジュールにおいて、
前記発光素子は、所定間隔をおいてライン状に複数個載置され、該各発光素子の上には、前記封止樹脂がドーム状にモールドされ、複数の前記発光素子の間は、前記封止樹脂により連結されていることを特徴とする発光モジュール。 A light emitting element emitting ultraviolet light or short wavelength visible light;
A sealing resin containing at least one phosphor that emits visible light when excited by ultraviolet light or short-wavelength visible light emitted from the light-emitting element;
In the light emitting module with
A plurality of the light emitting elements are mounted in a line at a predetermined interval, and the sealing resin is molded in a dome shape on each light emitting element, and the sealing between the plurality of light emitting elements is performed. A light emitting module characterized by being connected by a stop resin. - 前記封止樹脂のドーム部は、互いの山麓部を共有し、該ドーム部が連なる形状となるように形成されたことを特徴とする請求項1に記載の発光モジュール。 2. The light emitting module according to claim 1, wherein the dome portion of the sealing resin is formed so as to share a ridge portion with each other and the dome portion is continuous.
- 前記ドーム部の半径をr、前記発光素子間の間隔をdとした場合、2r>dであることを特徴とする請求項2に記載の発光モジュール。 3. The light emitting module according to claim 2, wherein 2r> d, where r is the radius of the dome and d is the distance between the light emitting elements.
- 前記発光素子間の封止樹脂は、前記封止樹脂のドーム部とドーム部の間をライン状に連結する形状に形成されたことを特徴とする請求項1に記載の発光モジュール。 2. The light emitting module according to claim 1, wherein the sealing resin between the light emitting elements is formed in a shape connecting the dome portion and the dome portion of the sealing resin in a line shape.
- 前記ドーム部の半径をr、前記発光素子間の間隔をd、前記ライン形状部の幅方向長さをbとした場合、d>2rであり、1mm<r<5mm、2mm<b<10mmであることを特徴とする請求項4に記載の発光モジュール。 When the radius of the dome portion is r, the distance between the light emitting elements is d, and the width direction length of the line-shaped portion is b, d> 2r, and 1 mm <r <5 mm, 2 mm <b <10 mm. The light emitting module according to claim 4, wherein the light emitting module is provided.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011273001A JP2013125808A (en) | 2011-12-14 | 2011-12-14 | Light-emitting module |
JP2011-273001 | 2011-12-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013089108A1 true WO2013089108A1 (en) | 2013-06-20 |
Family
ID=48612554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/082092 WO2013089108A1 (en) | 2011-12-14 | 2012-12-11 | Light emitting module |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013125808A (en) |
WO (1) | WO2013089108A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016052471A1 (en) * | 2014-10-02 | 2016-04-07 | ウシオ電機株式会社 | Light emitting module |
CN105957942A (en) * | 2016-06-30 | 2016-09-21 | 广州市鸿利光电股份有限公司 | LED production method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014049625A (en) * | 2012-08-31 | 2014-03-17 | Panasonic Corp | Led module |
JP5942263B2 (en) * | 2012-11-29 | 2016-06-29 | パナソニックIpマネジメント株式会社 | Light emitting module and illumination light source using the light emitting module |
JP6835000B2 (en) * | 2018-01-31 | 2021-02-24 | 日亜化学工業株式会社 | Light emitting device and light source |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0294673A (en) * | 1988-09-30 | 1990-04-05 | Toshiba Lighting & Technol Corp | Light-emitting diode array |
JPH0492660U (en) * | 1990-12-28 | 1992-08-12 | ||
JP2008294309A (en) * | 2007-05-25 | 2008-12-04 | Showa Denko Kk | Light emitting device and display device |
JP2008300170A (en) * | 2007-05-31 | 2008-12-11 | Hitachi Displays Ltd | Lighting system, and liquid crystal display device using it |
JP2009088054A (en) * | 2007-09-28 | 2009-04-23 | Toyoda Gosei Co Ltd | Linear light-emitting device and method of manufacturing the same |
JP2011129531A (en) * | 2011-02-04 | 2011-06-30 | Stanley Electric Co Ltd | Headlamp for vehicle |
JP2011243935A (en) * | 2010-04-20 | 2011-12-01 | Toshiba Lighting & Technology Corp | Light-emitting device and lighting device |
-
2011
- 2011-12-14 JP JP2011273001A patent/JP2013125808A/en active Pending
-
2012
- 2012-12-11 WO PCT/JP2012/082092 patent/WO2013089108A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0294673A (en) * | 1988-09-30 | 1990-04-05 | Toshiba Lighting & Technol Corp | Light-emitting diode array |
JPH0492660U (en) * | 1990-12-28 | 1992-08-12 | ||
JP2008294309A (en) * | 2007-05-25 | 2008-12-04 | Showa Denko Kk | Light emitting device and display device |
JP2008300170A (en) * | 2007-05-31 | 2008-12-11 | Hitachi Displays Ltd | Lighting system, and liquid crystal display device using it |
JP2009088054A (en) * | 2007-09-28 | 2009-04-23 | Toyoda Gosei Co Ltd | Linear light-emitting device and method of manufacturing the same |
JP2011243935A (en) * | 2010-04-20 | 2011-12-01 | Toshiba Lighting & Technology Corp | Light-emitting device and lighting device |
JP2011129531A (en) * | 2011-02-04 | 2011-06-30 | Stanley Electric Co Ltd | Headlamp for vehicle |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016052471A1 (en) * | 2014-10-02 | 2016-04-07 | ウシオ電機株式会社 | Light emitting module |
JP2016072584A (en) * | 2014-10-02 | 2016-05-09 | ウシオ電機株式会社 | Light-emitting module |
CN105957942A (en) * | 2016-06-30 | 2016-09-21 | 广州市鸿利光电股份有限公司 | LED production method |
Also Published As
Publication number | Publication date |
---|---|
JP2013125808A (en) | 2013-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10163975B2 (en) | Light emitting apparatus | |
JP5844335B2 (en) | Light emitting device, surface light source, and liquid crystal display device | |
KR101937643B1 (en) | A light emitting module, a lamp, a luminaire and a display device | |
US8147081B2 (en) | Directional linear light source | |
JP6735072B2 (en) | LED light source device and projector | |
JP5676599B2 (en) | LED package having scattering particle region | |
US9431583B2 (en) | Semiconductor light emitting device | |
US20180261572A1 (en) | Manufacturing method of semiconductor light-emitting device | |
US8546834B2 (en) | LED package | |
JP5899507B2 (en) | LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME | |
JP6673410B2 (en) | LED module | |
CN107565009B (en) | LED module | |
KR20130032110A (en) | Lighting device | |
JP2009302339A (en) | Semiconductor light emitting device | |
US9812495B2 (en) | Light emitting device and lighting apparatus | |
WO2013089108A1 (en) | Light emitting module | |
JP2011511445A (en) | Illumination device for backlighting display and display equipped with the illumination device | |
JP6212989B2 (en) | Light emitting device and manufacturing method thereof | |
KR20120024104A (en) | Light emitting element | |
US20130168714A1 (en) | Light emitting diode package structure | |
KR20130016940A (en) | Lighting device | |
US9989197B2 (en) | Optical device and light source module including the same | |
US9890924B2 (en) | Optical device and light source module including the same | |
KR20160040384A (en) | Light emitting device | |
JP5811770B2 (en) | Light emitting device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12856779 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12856779 Country of ref document: EP Kind code of ref document: A1 |