[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013088969A1 - Laminated nonwoven fabric and method for producing same - Google Patents

Laminated nonwoven fabric and method for producing same Download PDF

Info

Publication number
WO2013088969A1
WO2013088969A1 PCT/JP2012/080947 JP2012080947W WO2013088969A1 WO 2013088969 A1 WO2013088969 A1 WO 2013088969A1 JP 2012080947 W JP2012080947 W JP 2012080947W WO 2013088969 A1 WO2013088969 A1 WO 2013088969A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fiber layer
nonwoven fabric
laminated nonwoven
fibers
Prior art date
Application number
PCT/JP2012/080947
Other languages
French (fr)
Japanese (ja)
Inventor
宮本 孝信
泰樹 内山
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201280058824.3A priority Critical patent/CN103987887B/en
Publication of WO2013088969A1 publication Critical patent/WO2013088969A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/559Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving the fibres being within layered webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5412Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5414Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres side-by-side

Definitions

  • the present invention relates to a laminated nonwoven fabric and a method for producing the same.
  • Patent Document 1 has an upper layer sheet and a lower layer sheet, and these two sheets are partially joined by heating and pressurization to form a large number of joined portions, and the upper layer sheet is surrounded by a plurality of joined portions. In such a region, a plurality of convex portions are formed so as to protrude toward the skin contact surface side. Thereby, the form of a convex part is maintained stably and it is supposed that it is excellent in the liquid return prevention property to the surface.
  • Patent Document 2 a plurality of groove portions recessed in the thickness direction of the nonwoven fabric and a plurality of groove portions continuously formed on one surface side of the nonwoven fabric continuously formed along a predetermined direction are formed.
  • a non-woven fabric having a plurality of convex portions adjacent to each of the plurality of groove portions and protruding to one surface side of the non-woven fabric is disclosed.
  • the groove part in this nonwoven fabric is formed so that the basis weight is the lowest in the nonwoven fabric, the content of the horizontally oriented fibers is high, and the content of the vertically oriented fibers is low.
  • the side part of a convex-shaped part has the highest fabric weight in a nonwoven fabric, and the content rate of a longitudinally-oriented fiber is high. Thereby, it becomes easy to permeate
  • a first fiber web containing thermoplastic fibers is conveyed on a support having an uneven shape and air permeability, and hot air is blown onto the first fiber web.
  • hot air is blown onto the first fiber web to form the uneven shape of the support.
  • the first fiber web is fused with the fibers of the first fiber web to form a first fiber layer, and the second fiber web containing the first fiber layer and the thermoplastic fiber is laminated.
  • an unfused fiber web containing thermoplastic fibers to be the second fiber layer is laminated on the first fiber layer which is formed into a concavo-convex shape including thermoplastic fibers and is heat-sealed.
  • the fibers of the fiber web are thermally fused to form a second fiber layer, and the fibers of the first fiber layer and the first fiber layer A laminated nonwoven fabric in which fibers of two fiber layers are joined is provided.
  • the present invention has a convex portion projecting on the first surface side of the laminated nonwoven fabric of the sheet in plan view and a concave concave portion, a plurality of the convex portions are arranged so as to surround the concave portion, and the convex
  • the first and second fiber layers that are alternately and continuously arranged in each of different directions intersecting in plan view of the laminated nonwoven fabric, and having a concavo-convex shape due to the convex part and the concave part on the first surface side,
  • a second fiber layer bonded along the second surface side opposite to the first surface side of the first fiber layer, and the fiber density of the concave portion is 0.01 g / cm 3 or more and 0.0.
  • a laminated nonwoven fabric having a weight of 08 g / cm 3 or less.
  • FIG. 1 is a partial cross-sectional perspective view schematically showing a preferred embodiment of a laminated nonwoven fabric according to the present invention.
  • 3 is a drawing-substituting photograph in which a cross-section corresponding to the partial cross-sectional perspective view shown in FIG. 1 is imaged.
  • It is the schematic block diagram which showed typically an example of the manufacturing apparatus of the laminated nonwoven fabric suitable for producing the laminated nonwoven fabric of this invention.
  • It is the schematic block diagram which showed typically an example of the manufacturing apparatus of another laminated nonwoven fabric suitable for producing the laminated nonwoven fabric of this invention.
  • It is typical sectional drawing explaining the measuring method of fiber orientation degree, and its partial enlarged view.
  • the present invention relates to a laminated nonwoven fabric having a good cushion feeling, a large thickness and a high liquid passage speed, and a method for producing the same.
  • the laminated nonwoven fabric 10 of the present invention is preferably applied to a surface sheet of an absorbent article such as a sanitary napkin or a disposable diaper.
  • the first surface side Z1 is used with the skin surface side of the wearer, and the second surface side. It is preferable to use Z2 on the absorber (not shown) side inside the article.
  • this invention is limited to this and is not interpreted.
  • a laminated nonwoven fabric 10 of the present invention includes an unfused fiber web (not shown) that includes thermoplastic fibers in a first fiber layer 11 that includes thermoplastic fibers and is formed into an uneven shape. And the fibers of the first fiber layer 11 and the fibers of the second fiber layer 12 obtained from the fiber web are bonded by heating with hot air.
  • the uneven shape is configured as follows.
  • the sheet has a convex portion 21 projecting on the first surface side Z1 on the side of the laminated nonwoven fabric 10 in plan view and a concave portion 22, and a plurality of convex portions 21 are arranged so as to surround the concave portion 22, and the convex portion 21 and the recessed part 22 are alternately and continuously arranged in each of the different directions where the laminated nonwoven fabric 10 intersects in plan view. Therefore, similarly to the laminated nonwoven fabric 10, the first fiber layer 11 also has a first convex portion 21A protruding to the first surface side Z1 and a concave first concave portion 22A, and a plurality of the first fibrous layer 11 so as to surround the first concave portion 22A.
  • 21 A of 1st convex parts are distribute
  • the fiber density of the recesses is 0.01 g / cm 3 or more and 0.08 g / cm 3 or less.
  • the fiber density of the concave portion here refers to the fiber density of the portion of the bottom portion of the concave portion 22 where the first fiber layer 11 and the second fiber layer 12 are combined. If the fiber density of the recess is too low, the shaping of the first fiber layer 11 becomes insufficient, making it difficult to obtain a clear uneven shape. If the fiber density of the recess is too high, the liquid passage time (Liquid passage speed) becomes slow.
  • the convex portion 21 has a truncated cone shape or a hemispherical shape with a rounded top.
  • the convex portion 21 is not limited to the above shape, and may have any protruding shape.
  • various cone shapes in this specification, the cone shape means a cone, a truncated cone, a pyramid, a truncated pyramid, an oblique shape, etc. It is practical to include a cone or the like.
  • the convex portion 21 holds a frustoconical or hemispherical inner space having a rounded top portion similar to the outer diameter thereof.
  • the second fiber layer 12 is disposed along the inner space wall.
  • the first fiber layer 11 shaped into irregularities has a wall portion 23 on the lower side of the top portion (hereinafter also referred to as a convex portion top portion) in the first convex portion 21A.
  • the wall portion 23 forms an annular structure at the convex portion 21.
  • the first recess 22A has a wall 24 on the upper side of the bottom (hereinafter also referred to as a recess bottom).
  • the wall portion 24 forms an annular structure in the recess 22.
  • the wall portion 23 and the wall portion 24 are continuous.
  • the “annular” herein is not particularly limited as long as it has a series of endless shapes in plan view, and may be any shape such as a circle, an ellipse, a rectangle, or a polygon in plan view.
  • a circle or an ellipse is preferable.
  • any ring structure such as a cylinder, a slanted cylinder, an elliptical column, a truncated cone, a truncated cone, a truncated elliptical cone, a truncated quadrangular pyramid, a truncated oblique pyramid can be mentioned.
  • a cylinder, an elliptical column, a truncated cone, and a truncated elliptical cone are preferable.
  • the above-described laminated nonwoven fabric 10 does not have a bent portion, and is configured by a curved surface that is continuous throughout.
  • the laminated nonwoven fabric 10 preferably has a continuous structure in the surface direction.
  • This “continuous” means that there are no intermittent portions or small holes.
  • fine holes such as gaps between fibers are not included in the small holes.
  • the small hole can be defined, for example, as a hole having a diameter equivalent to a circle of 1.0 mm or more.
  • the fiber material that can be used for the laminated nonwoven fabric 10 of the present invention is not particularly limited. Specific examples include the following fibers. Examples thereof include polyolefin fibers such as polyethylene (PE) fibers and polypropylene (PP) fibers, and fibers formed by using a thermoplastic resin such as polyethylene terephthalate (PET) and polyamide alone.
  • a composite fiber having a structure such as a core-sheath type or a side-by-side type, for example, a fiber having a core-sheath structure in which the sheath component is polyethylene or low-melting-point polypropylene is preferably exemplified.
  • the constituent fibers preferably include polyolefin fibers such as polyethylene fibers and polypropylene fibers, polyethylene composite fibers, and polypropylene composite fibers.
  • the composite composition of the polyethylene composite fiber is polyethylene terephthalate and polyethylene
  • the composite composition of the polypropylene composite fiber is preferably polyethylene terephthalate and low-melting polypropylene, and more specifically, PET (core).
  • the fibers constituting the wall portion 23 have fiber orientation in the direction connecting the convex top portion of the convex portion 21 and the concave bottom portion of the concave portion 22. Therefore, when the 1st fiber layer 11 is planarly viewed, it has the radial fiber orientation which goes outside from a convex part top part and a recessed part bottom part. Unlike the fiber orientation degree of the first convex portion 21A of the first fiber layer 11 and the fiber orientation degree of the second convex portion 21B of the second fiber layer 12, the fiber orientation degree of the second convex portion 21B is first. It faces in the direction perpendicular to the surface of the first fiber layer 11 (thickness direction) rather than the fiber orientation degree of the convex portion 21A.
  • the fiber orientation degree of the first convex portion 21A is preferably 10 ° to 30 °
  • the fiber orientation degree of the second convex portion 21B is preferably 30 ° to 60 °.
  • the laminated nonwoven fabric 10 has a portion 25 having a fiber density lower than that of the first fiber layer 11 and the second fiber layer 12 between the first convex portion 21A and the second convex portion 21B.
  • the presence of the portion 25 having a low fiber density makes it easy for the first convex portion 21A of the first fiber layer 11 to be depressed even at a low load, so that the cushioning property of the laminated nonwoven fabric 10 is enhanced.
  • the density of the first convex portion 21A, the density of the upper portion of the second convex portion 21B, and the density of the lower portion of the second convex portion 21B may have the following relationship. preferable.
  • the density of the first protrusions 21A is preferably 8 mg / cm 3 to 25 mg / cm 3
  • the density of the second protrusions 21B is preferably 2 mg / cm 3 to 8 mg / cm 3.
  • the density of the upper part of the second convex part 21B is preferably 1.5 mg / cm 3 or more and 4 mg / cm 3 or less
  • the fiber density of the lower part of the second convex part 21B is 3.5 mg / cm 3 or more and 6 mg / cm 3 or less. Preferably there is.
  • the upper part of the 2nd convex part 21B means the 1st fiber layer 11 side when the 2nd fiber layer 12 is divided into 1/2 in the thickness direction.
  • the portion of the second convex portion 21B excluding the upper portion of the second convex portion 21B is referred to as the lower portion.
  • the thickness of the sheet the total thickness when viewed from the side of the laminated nonwoven fabric 10 is the sheet thickness TS, and the local thickness of the sheet curved in the unevenness is the layer thickness TL.
  • the sheet thickness TS may be appropriately adjusted depending on the application, but when used as a surface sheet for diapers, sanitary products, etc., it is preferably 1 mm or more and 7 mm or less, and more preferably 1.5 mm or more and 5 mm or less. By setting it as the range, the body fluid absorption speed at the time of use is high, the liquid return from an absorber is suppressed, and also moderate cushioning property is realizable.
  • the layer thickness TL may be different in each part in the sheet, and may be appropriately adjusted depending on the application.
  • the layer thickness TL of the convex top 21T including the first fiber layer 11 and the second fiber layer 12 is 1.3 mm or more and 7 mm or less, preferably 1.5 mm. It is 5 mm or less.
  • the layer thickness TL1 of the convex portion top portion 21TA of the first fiber layer 11 is not less than 0.3 mm and not more than 2.5 mm, preferably not less than 0.6 mm and not more than 1.5 mm.
  • the layer thickness TL2 of the convex top portion 21TB of the second fiber layer 12 is 1 mm or more and 5 mm or less, preferably 1.5 mm or more and 4 mm or less.
  • the interval between the convex portions 21 may be appropriately adjusted depending on the application, and when used as a surface sheet of a diaper or sanitary product, it is 2 mm or more and 10 mm or less, preferably 3 mm or more and 7 mm or less.
  • the basis weight of the laminated nonwoven fabric 10 is not particularly limited, but the 15 g / m 2 or more 70 g / m 2 or less the average value of the entire sheet, preferably not 20 g / m 2 or more 40 g / m 2 or less.
  • the first fiber layer 11 and the second fiber layer 12 are joined by the contact of the fibers of the first fiber layer 11 and the fibers of the second fiber layer 12 by blowing hot air. Since the fiber layers are not heat-bonded to each other, there is no pressure between the fiber layers, so that there is a gap between the fibers at the joint between the fiber layers as compared to the conventional partial joining of the sheet by heating and pressurization. . For this reason, even if it is the recessed part 22 used as a junction part, a liquid passage time (liquid passage speed) becomes quick. Moreover, a bulky low basis weight can be achieved. Furthermore, since the first fiber layer 11 has a concavo-convex shape and the concavo-convex shape is maintained by joining the fiber layers by blowing hot air, the cushion feeling (KES / WC value) under a low load is good.
  • the laminated nonwoven fabric 10 described in the above embodiment has the following effects.
  • the laminated nonwoven fabric 10 has excellent liquid permeability even in the recess 22.
  • the fiber density of the recesses 22 is 0.01 g / cm 3 or more and 0.08 g / cm 3 or less, so the first fiber layer 11 is shaped into a clear uneven shape. Since the state is maintained and the fiber density of the concave portion 22 is not too high, the liquid passage time (liquid passage speed) of the portion is increased. Therefore, the laminated nonwoven fabric 10 excellent in liquid permeability can be obtained.
  • the laminated nonwoven fabric 10 has excellent cushioning properties at low loads. Since the laminated nonwoven fabric 10 of this embodiment has the part which protruded not only on the single side
  • the laminated nonwoven fabric 10 includes the portion 25 having a low fiber density, the first convex portion 21A of the first fiber layer 11 is easily recessed even at a low load. If it can be obtained even at low loads, it has an excellent effect.
  • the laminated nonwoven fabric 10 is obtained by laminating a fiber web on the first fiber layer 11 shaped into a concavo-convex shape, and heat-sealing the fibers of the fiber web to obtain a second fiber layer 12. Since the fiber of the 1st fiber layer 11 and the fiber of the 2nd fiber layer 12 are heat-sealed and joined, it has a clear concavo-convex shape, a low basis weight (30 g / m 2 or less), and a thickness of 4.0 mm. It can be set as the above bulky nonwoven fabric.
  • the manufacturing apparatus of a laminated nonwoven fabric is not limited to the following structures, The manufacturing apparatus of what kind of structure may be sufficient as long as the laminated nonwoven fabric 10 of this invention can be manufactured.
  • the laminated nonwoven fabric manufacturing apparatus 101 has a support 110 that transports a first fiber web 13 containing thermoplastic fibers that produce the first fiber layer 11.
  • the first fiber web 13 is supplied to the surface of the support 110, and is subjected to a shaping process for imparting a concavo-convex shape by an air-through method while being placed on the surface of the support 110, and is sent out in a predetermined direction.
  • the support 110 is constituted by a conveyor, and the conveyor belt 110B is supported and rotated by rotation support rollers 110R (110Ra, 110Rb, 110Rc, 110Rd) disposed at four positions on the upper and lower ends. It is configured.
  • the rotation support rollers 110R are not limited to four places, and may be arranged so that the conveyor belt 110B rotates smoothly.
  • the conveyor belt 110 ⁇ / b> B has an uneven shape constituted by a plurality of protrusions 110 ⁇ / b> T on its surface, and further has a plurality of ventilation portions (not shown).
  • the protrusions 110T and the ventilation portions are alternately arranged in the longitudinal and lateral directions of the conveyor belt 110B.
  • the conveyor belt 110B is an endless belt.
  • the protrusion 110T has a shape that tapers toward the tip, and the tip has a rounded shape, for example, one end of a spindle.
  • the height varies depending on the use, standard, etc. of the nonwoven fabric, and is not particularly limited. Usually, it is preferably formed to 2 mm to 10 mm, and the protrusion pitch is 6 mm to 10 mm in the MD direction, and in the CD direction. 4 mm or more and 6 mm or less.
  • the MD is the machine direction and the flow direction of the first fiber web 13 during the production of the nonwoven fabric.
  • the CD is the width direction of the first fiber web 13 and the direction perpendicular to the machine direction.
  • the protrusion 110T is appropriately set within the above range. More preferably, it is formed at a height of 3 mm or more and 8 mm or less, is arranged in the MD direction at 6 mm or more and 10 mm or less, and is arranged in the CD direction at 4 mm or more and 6 mm or less.
  • the ventilation portion (not shown) includes a plurality of openings disposed on the support 110, and the opening ratio is preferably set to 20% or more and 45% or less with respect to the surface area of the support 110. If the aperture ratio is too low, it will be difficult to form a sufficient uneven shape on the first fiber web 13. If the aperture ratio is too high, the first fiber web 13 will move below the support 110 when hot air is blown. Then, it becomes difficult to peel from the support 110, and there is a possibility that the shaped shape is deteriorated and fluff is likely to be formed. Therefore, the aperture ratio is set.
  • the aperture ratio is more preferably 25% or more and 40% or less, and particularly preferably 30% or more and 35% or less.
  • the support 110 is configured so that the first fiber web 13 is hooked by the protrusion 110T on the surface side having the protrusion 110T by rotating the conveyor belt 110B supported by the rotation support roller 110R. 13 is conveyed.
  • the first nozzle 111 that performs the first air-through process by blowing the first hot air W1 in order along the supply direction of the first fiber web 13
  • a second nozzle 112 that blows the second hot air W2 to perform the second air-through process
  • a third nozzle 113 that blows the third hot air W3 to perform the third air-through process are arranged.
  • a cooling unit (not shown) for cooling the first fiber web 13 may be disposed between the third nozzle 113 and the third nozzle 113.
  • the first and second nozzles 111 and 112 perform upstream air-through, and the third nozzle 113 performs downstream air-through.
  • the first nozzle 111 includes a first heater (not shown), and the first hot air W1 heated by the first heater is applied to the surface of the first fiber web 13 conveyed by the support 110, for example. Spray almost vertically.
  • the blowout hole of the first nozzle 111 preferably has a length in the MD direction of 1 mm or more and 20 mm or less, and a length in the CD direction is a web width or more, or a width for performing a shaping process.
  • the blowout holes have a form in which one or more rows of slits, and one or more rows of round holes, long holes, or square holes are arranged in a staggered manner or in parallel. More preferably, it has a row of slits of 2 mm or more and 20 mm or less.
  • the first hot air W1 is blown at a uniform wind speed in the width direction of the surface of the first fiber web 13.
  • air, nitrogen or water vapor heated to a predetermined temperature by the first heater can be used.
  • air with low cost is used.
  • the first hot air W1 blown out from the first nozzle 11 is controlled by the first heater to a temperature at which the fibers of the first fiber web 13 are fused to maintain a concavo-convex shape.
  • the temperature of the first hot air W1 is preferably It is controlled to 80 ° C. or more and 155 ° C. or less.
  • the first hot air W1 is preferably controlled to a wind speed of 20 m / sec or more and 120 m / sec or less.
  • the spraying time of the first hot air W1 is preferably controlled to be 0.01 seconds or more and 0.5 seconds or less.
  • the second nozzle 112 blows the second hot air W2 heated by a second heater (not shown) onto the surface of the first fiber web 13 conveyed by the conveyor belt 110B, for example, substantially perpendicularly. It is desirable to use a punching metal that is regularly opened in the width direction and the flow direction for the blowing holes of the second nozzle 112.
  • the hole area ratio is preferably 10% or more and 40% or less, and punching metals may be combined in multiple stages.
  • the second hot air W2 is blown at a uniform temperature and wind speed in the width direction of the surface of the first fiber web 13.
  • air nitrogen or water vapor heated by the second heater can be used.
  • air with low cost is used.
  • the second hot air W2 blown out from the second nozzle 112 is formed between the fibers of the first fiber web 13 while maintaining the irregular shape of the first fiber web 13 shaped by a second heater (not shown).
  • the temperature is controlled so as to fuse.
  • the fiber of the first fiber web 13 is a composite fiber having a low melting point component and a high melting point component having a higher melting point than the low melting point component
  • the second hot air W1 is equal to or higher than the melting point of the low melting point component.
  • the temperature is controlled below the melting point of the high melting point component of the fibers of the web 13.
  • the second hot air W1 is a temperature of 130 ° C. or higher and 155 ° C. or lower. It is controlled by hot air.
  • the second hot air W2 is controlled to a wind speed of 1 m / sec or more and 10 m / sec or less. Further, the blowing time of the second hot air W2 is controlled to be 0.03 seconds or more and 5 seconds or less. In this way, the first fiber web 13 is shaped and fused to obtain the first fiber layer 11.
  • the cooling section (not shown) is a space arranged between the second nozzle 112 that performs the second air-through process and the third nozzle 113 that performs the third air-through process.
  • This space in other words, by not performing the second air-through process and the third air-through process continuously, the melting point of the fibers of the first fiber layer 11 after the second air-through process. Cool naturally to a lower temperature.
  • means for forcibly cooling the first fiber layer 11 can be used for the cooling unit.
  • the second fiber web 14 is supplied from the upper surface side to the first fiber layer 11, and the second fiber web 14 is superimposed on the first fiber layer 11 by the guide roller 121.
  • the third nozzle 113 is a conveyor belt (not shown) in a state in which the third hot air W3 heated by a third heater (not shown) is overlapped with the second fiber web 14 on the first fiber layer 11. ), For example, is blown out substantially perpendicular to the overlapped fiber web. It is desirable to use a punching metal that is regularly opened in the width direction and the flow direction for the blowing holes of the third nozzle 113.
  • the hole area ratio is preferably 10% or more and 40% or less, and a multi-stage punching metal may be combined.
  • the third hot air W3 is blown at a uniform temperature in the width direction of the surface of the second fiber web 14.
  • the third hot air W3 can be air, nitrogen, or water vapor heated by the third heater.
  • air with low cost is used.
  • the said conveyor belt which has the air permeability which supports the 1st fiber layer 11 and the 2nd fiber web 14 which were piled up is distribute
  • the third hot air W3 blown out from the third nozzle 113 is in a state where the second fiber web 14 is superposed on the first fiber layer 11 by a third heater (not shown) and the first fiber layer 11.
  • the first fiber layer 11 and the second fiber web 14 are controlled to a temperature at which the first and second fiber webs 14 are fused in a state where the uneven shape is maintained.
  • the third hot air W3 has a temperature of 130 ° C. or higher and 155 ° C. or lower. It is controlled by hot air.
  • the third hot air W3 is controlled to a wind speed of 0.4 m / sec or more and 5 m / sec or less. Further, the blowing time of the third hot air W3 is controlled to be not shorter than 2 seconds and not longer than 20 seconds.
  • a duct 115 is arranged to exhaust the first hot air W1 blown out from the first nozzle 111 and passed through the first fiber web 13 and the support body 10.
  • the duct 115 may be connected to an exhaust device (not shown) that discharges the sucked first hot air W1.
  • a duct 116 is arranged for exhausting the second hot air W2 blown from the second nozzle 112 and passed through the first fiber web 13 and the support 110.
  • the duct 116 may be connected to an exhaust device (not shown) that discharges the sucked second hot air W2.
  • a duct 17 is arranged for exhausting the third hot air W ⁇ b> 3 blown out from the third nozzle 113 and passed through the second fiber web 14 and the first fiber layer 11.
  • An exhaust device (not shown) that discharges the sucked third hot air W3 may be connected to the duct 17.
  • Each of the exhaust devices may be connected to the ducts 115, 116, 117 as one exhaust device.
  • the laminated nonwoven fabric manufacturing apparatus 102 supplies the second fiber web 14 from the lower surface side of the first fiber layer 11 in the above-described laminated nonwoven fabric manufacturing apparatus 101, and is guided by the guide roll 122.
  • the second fiber web 14 is superposed under the one fiber layer 11.
  • the third hot air W3 is blown from the first fiber layer 11 side. Therefore, except the supply part of the said 2nd fiber web 14, it has the same structure by the component similar to the manufacturing apparatus 101 of the said laminated nonwoven fabric.
  • This laminated nonwoven fabric manufacturing method is realized, for example, by the laminated nonwoven fabric manufacturing apparatus 101 or 102 described above.
  • the manufacturing method by the manufacturing apparatus 101 of a laminated nonwoven fabric is demonstrated.
  • the first fiber web 13 made to a predetermined thickness by a card machine (not shown) is supplied to the upper surface side where the protrusion 110T of the support 110 is disposed.
  • the fiber material that can be used for the fibers of the first fiber web 13 is not particularly limited. Specific examples include the following fibers. There are polyolefin fibers such as polyethylene (PE) fibers and polypropylene (PP) fibers; fibers using a thermoplastic resin such as polyethylene terephthalate (PET) and polyamide alone. In addition, there are composite fibers having a structure such as a core-sheath type and a side-by-side type. In the present invention, it is preferable to use a composite fiber.
  • the composite fiber examples include a core-sheath fiber having a high melting point component as a core portion and a low melting point component as a sheath portion, and a side-by-side fiber in which a high melting point component and a low melting point component are arranged in parallel.
  • Preferable examples thereof include core-sheath fibers in which the sheath component is polyethylene or low-melting polypropylene.
  • Typical examples of the core / sheath fibers are PET (core) / PE (sheath), PP (core ) / PE (sheath), PP (core) / low melting point PP (sheath) and the like.
  • the constituent fibers preferably include polyolefin fibers such as polyethylene fibers and polypropylene fibers, polyethylene composite fibers, and polypropylene composite fibers.
  • the composite composition of the polyethylene composite fiber is polyethylene terephthalate / polyethylene
  • the composite composition of the polypropylene composite fiber is preferably polyethylene terephthalate / low melting point polypropylene, and more specifically, PET (core). / PE (sheath), PET (core) / low melting point PP (sheath).
  • PET core
  • PE sheath
  • PET (core) / low melting point PP sheath
  • a first nozzle is applied to the first fiber web 13 fed to the surface of the support 110 as a previous air-through process in which hot air is blown onto the first fiber web 13 to follow the uneven shape of the breathable support 110.
  • the 1st air through process which blows the 1st hot air W1 from 111 is performed.
  • the first hot air W1 is blown from the vertical direction on the surface of the first fiber web 13 mounted on the support 110.
  • the number of blowouts of the first nozzle 111 may be a plurality of locations along the conveying direction of the first fiber web 13.
  • the first hot air W1 the first fiber web 13 is shaped into a concavo-convex shape along the shape of the protrusion 110T of the support 110.
  • the fusion of the fibers of the first fiber web 13 may be such that the uneven shape can be maintained.
  • the temperature of the first hot air W1 varies depending on the type of fiber, the processing speed, the wind speed of the hot air, and the like, but is not uniquely determined.
  • the fiber of the first fiber web 13 has a polyethylene terephthalate (core portion).
  • PET polyethylene terephthalate
  • the sheath part is a composite fiber having a core-sheath structure of polyethylene (PE), preferably 80 ° C. or higher and 155 ° C. or lower, more preferably 130 ° C. or higher and 135 ° C. or lower.
  • the first hot air W1 is preferably set to a wind speed of 20 m / sec or more and 120 m / sec or less.
  • the wind speed of the 1st hot air W1 is too slow, sufficient shaping cannot be performed and shaping property may be impaired.
  • the wind speed of the 1st hot air W1 shall be said range, More preferably, you may be 40 m / sec or more and 80 m / sec or less.
  • the blowing time of the first hot air W1 is preferably 0.01 seconds to 0.5 seconds, and more preferably 0.04 seconds to 0.08 seconds. If the spraying time is too short, the fibers of the first fiber web 13 are not sufficiently fused with each other, and the uneven shape cannot be sufficiently shaped. On the other hand, if the spraying time is too long, the fusion of the fibers of the first fiber web 13 proceeds too much, and the formability is impaired due to a decrease in the degree of freedom. And the 1st hot air W1 which passed the 1st fiber web 13 is discharged
  • the first fiber web 13 is conveyed to the position where the second hot air W2 is blown from the second nozzle 112 along with the rotation of the conveyor belt 110B of the support 110. Further, as a previous air-through process, the second hot air W2 is blown to the first fiber web 13 by the second nozzle 112, and the fibers are fused while maintaining the uneven shape of the first fiber web 13, thereby forming the uneven shape.
  • a second air-through step for fixing is performed. At this time, the second hot air W ⁇ b> 2 is blown from the direction perpendicular to the surface of the first fiber web 13.
  • the number of blowouts of the second nozzle 112 is preferably set at a plurality of locations along the conveying direction of the first fiber web 13.
  • the temperature of the second hot air W2 varies depending on the type of fiber, the processing speed, the wind speed of the hot air, etc., but is not uniquely determined.
  • the fibers of the first fiber web 13 are the core of PET and PE as described above.
  • it is set to be equal to or higher than the melting point of the low melting point component of the fiber of the first fiber web 13 and lower than the melting point of the high melting point component of the fiber of the first fiber web 13. It is set to 130 ° C. or higher and 155 ° C. or lower, preferably 135 ° C. or higher and 150 ° C. or lower.
  • the second hot air W2 is preferably set slower than the wind speed of the first hot air W1, and is set to 1 m / sec or more and 10 m / sec or less. If the wind speed of the second hot air W2 is too slow, the amount of heat is insufficient, and the nonwoven fabric strength is insufficient. On the other hand, if the wind speed is too high, the thickness of the first fiber web 13 is reduced by the wind pressure, and when heated in this state, the fibers are fused to each other, so that the touch becomes hard, the thickness is reduced, and the liquid permeability is reduced. It becomes insufficient. Therefore, the wind speed of the 2nd hot air W2 shall be said range, Preferably it shall be 2 m / sec or more and 8 m / sec or less.
  • the spray time of the second hot air W2 is set to 0.03 seconds to 5 seconds, preferably 0.1 seconds to 1 second. If the spraying time is too short, the fibers of the first fiber web 13 cannot be sufficiently fused together, and it becomes difficult to fix the uneven shape. On the other hand, if the spraying time is too long, the fibers of the first fiber web 13 are excessively fused with each other, making it difficult to obtain liquid permeability. As described above, the first fiber layer 11 formed with the first fiber web 13 in the first and second air-through processes is obtained.
  • the first fiber layer 11 shaped in the first and second air-through processes is cooled.
  • This cooling can be performed by natural cooling or forced cooling.
  • the cooling temperature is lower than the melting point of the thermoplastic fiber of the first fiber layer 11, preferably lower than the melting point of the low melting point component of the fibers constituting the first fiber layer 11.
  • the temperature is set to 100 ° C. or lower.
  • the fusion point between the fibers of the first fiber layer 11 is firmly solidified.
  • the intersection part of the fusion of the fibers can be more firmly fixed, and the thickness of the first fiber layer 11 can be maintained.
  • the sheath resin is PE
  • the melting point is 125 ° C. or more and 135 ° C. or less
  • the softening point temperature is 100 ° C. or more and 130 ° C. or less. Therefore, solidification is further ensured by cooling to 100 ° C. or less.
  • the shaped 1st fiber layer 11 is conveyed to the spray position of the 3rd hot air W3 of the 3rd nozzle 113.
  • the second fiber web 14 is supplied from the upper surface side to the cooled first fiber layer 11, and the second fiber web 14 is superimposed on the first fiber layer 11 by the guide roller 121.
  • a 3rd air through process is performed.
  • the third hot air W3 is blown from the second fiber web 14 side, and the fibers of the second fiber web 14 are heat-sealed in a state where the uneven shape of the first fiber layer 11 is maintained.
  • the fibers of the first fiber layer 11 and the second fiber web 14 are bonded by heat fusion.
  • the temperature of the third hot air W3 at this time is not uniquely determined because it varies depending on the type of fiber, the processing speed, the wind speed of the hot air, etc., but the fibers of the second fiber web 14 are made of PET as described above.
  • the temperature is 130 ° C. or higher and 155 ° C. or lower, preferably 130 ° C. or higher and 145 ° C. or lower.
  • the fibers cannot be fused together, and it becomes difficult to join the first fiber layer 11 and the second fiber web 14 together.
  • the temperature of the third hot air W3 is too high, the fibers are too fused with each other, making it difficult to obtain liquid permeability.
  • the third hot air W3 is controlled to a wind speed of 0.4 m / sec or more and 5 m / sec or less, preferably 1 m / sec or more and 3 m / sec or less. If the wind speed is too slow, the amount of heat is insufficient, so that the nonwoven fabric strength of the second fiber layer 12 (second fiber web 14) becomes insufficient. On the other hand, if the wind speed is too high, the thickness of the second fiber web 14 is reduced by the wind pressure, and if heated in that state, the fibers are fused more frequently, so that the touch becomes harder, the thickness becomes thinner, and the liquid permeability becomes lower. It becomes insufficient.
  • the blowing time of the third hot air W3 is controlled to be 1 second to 20 seconds, preferably 2 seconds to 15 seconds. If the spraying time is too short, the fibers of the second fiber web 14 cannot be fused together, and the fibers of the first fiber layer 11 and the second fiber web 14 cannot be sufficiently fused. On the other hand, if the spraying time is too long, the fibers of the second fiber web 14 and the fibers of the first fiber layer 11 and the second fiber web 14 are fused too much, and it becomes difficult to obtain liquid permeability.
  • the uneven shape of the first fiber layer 11 becomes a support when shaping the second fiber web 14, and the second fiber web 14 is removed from the first fiber without impairing the liquid permeability.
  • the fibers of the first fiber layer 11 and the fibers of the second fiber web 14 can be joined together along the irregular shape formed of the fiber layer 11. Further, by adjusting the wind speed of the third hot air W3 at the bottom of the portion that becomes the concave portion of the first fiber layer 11 when viewed from the second fiber web 14 side, the fiber entry of the second fiber web 14 is reduced. it can.
  • a portion 25 having a low fiber density is produced between the convex portion 21A of the first fiber layer 11 and the convex portion 21B of the second fiber layer 12 (second fiber web 14). be able to.
  • the portion 25 having a low fiber density is a portion where the fiber density at the top of the convex portion of the second fiber layer 12 is substantially low.
  • the first fiber layer 11 is shaped into a concavo-convex shape in the preceding air-through process, and the second fiber web that is unfused to the first fiber layer 11 in that state. Since 14 is overlapped and the subsequent air-through process is performed, the bulky low-weight laminated nonwoven fabric 10 can be obtained. Further, in this laminated nonwoven fabric 10, the first fiber layer 11 has a clear concavo-convex shape, and the concavo-convex shape is maintained even by joining the fiber layers by blowing hot air, so that a cushion feeling (KES / WC) under low load A laminated nonwoven fabric having a good value) can be obtained. Furthermore, it is possible to provide a laminated nonwoven fabric with a low basis weight that is less likely to lose fluff due to wear, is bulky at low loads, and has excellent liquid permeability in the recesses.
  • the first hot air W1 blown out from the first nozzle 111 can keep the fibers of the first fiber web 13 in an uneven shape. For this reason, the fibers of the first fiber web 13 that are trapped between the protrusions 110T of the support 110 are difficult to return. In this state, the fibers of the first fiber web 13 are fused together by the second hot air W2 blown from the second nozzle 112, and can be fixed in a state where the uneven shape is maintained. Thus, since the first and second hot air W1 and W2 are blown onto the first fiber web 13, the fibers of the first fiber web 13 are softened by heat, and the surface shape of the protrusion 110T of the support 110 is made. It becomes easier to follow along and the retention of the uneven shape is improved.
  • the 1st, 2nd hot air W1, W2 passes the ventilation hole distribute
  • the first fiber layer 11 which is a shaped nonwoven fabric having a low basis weight (for example, 30 g / cm 2 or less) and high bulk (for example, 4.0 mm or more at a low load) with good shapeability.
  • the second fiber web 14 is superimposed on the first fiber layer 11, and the second fiber web 14 (second fiber layer 12) is bonded to the first fiber layer 11 by fusion-bonding the fibers with the third hot air W3.
  • a portion 25 having a low fiber density can be produced between the first convex portion 21A of the first fiber layer 11 and the second convex portion 21B of the second fiber layer 12 (second fiber web 14). Further, the cushioning property at a low load is further improved.
  • the second fiber layer 12 has a high degree of orientation in the vertical direction, the second fiber layer 12 has a function of suppressing crushing when a load is applied to the laminated nonwoven fabric 10.
  • the laminated nonwoven fabric 10 of the present invention it has a clear concavo-convex shape, has little fluff due to wear, is bulky at low load, has little fluff due to wear, and has excellent liquid permeability in the recess. An absorbent article having a basis weight can be obtained.
  • the laminated nonwoven fabric manufacturing method according to the second embodiment is realized by the laminated nonwoven fabric manufacturing apparatus 102 described above.
  • the first fiber layer 11 is formed and conveyed to the position where the third nozzle 113 blows the third hot air W3. During this period, it is preferable to cool the first fiber layer 11 as in the manufacturing method of the first embodiment.
  • the second fiber web 14 is supplied from the lower surface side to the cooled first fiber layer 11, and the second fiber web 14 is overlaid under the first fiber layer 11. And a 3rd air through process is performed.
  • the third hot air W3 is blown from the first fiber layer 11 side, and the fibers of the second fiber web 14 are heat-sealed with each other while the uneven shape of the first fiber layer 11 is maintained.
  • the fibers of the first fiber layer 11 and the second fiber web 14 are bonded by heat fusion.
  • the temperature of the third hot air W3 at this time is not uniquely determined because it varies depending on the type of fiber, the processing speed, the wind speed of the hot air, etc., but the fibers of the second fiber web 14 are made of PET as described above.
  • the temperature is preferably 130 ° C. or higher and 155 ° C. or lower, more preferably 130 ° C. or higher and 145 ° C. or lower. If the temperature of the third hot air W3 is too low, the fibers cannot be fused together, and it becomes difficult to join the first fiber layer 11 and the second fiber web 14 together. On the other hand, if the temperature of the third hot air W3 is too high, the fibers are too fused with each other, making it difficult to obtain liquid permeability.
  • the third hot air W3 is preferably controlled to a wind speed of 0.4 m / sec or more and 5 m / sec or less, more preferably 1 m / sec or more and 3 m / sec or less. If the wind speed is too slow, the amount of heat is insufficient, so that the nonwoven fabric strength of the second fiber layer 12 (second fiber web 14) becomes insufficient. On the other hand, if the wind speed is too high, the thickness of the second fiber web 14 is reduced by the wind pressure, and if heated in that state, the fibers are fused more frequently, so that the touch becomes harder, the thickness becomes thinner, and the liquid permeability becomes lower. It becomes insufficient.
  • the spraying time of the third hot air W3 is preferably controlled to 1 second to 20 seconds, more preferably 2 seconds to 15 seconds. If the spraying time is too short, the first fiber layer 11 and the second fiber web 14 cannot be sufficiently fused. On the other hand, if the spraying time is too long, the fibers of the first fiber layer 11 and the second fiber web 14 are excessively fused, the thickness is reduced, and it is difficult to obtain cushioning properties and liquid permeability.
  • the second fiber web 14 is shaped so as to follow the uneven shape of the first fiber layer 11. Further, by controlling the wind speed of the third hot air W3, it is possible to create a low fiber density portion 25 between the first fiber layer 11 and the second fiber layer 12 in the convex portion 21 of the laminated nonwoven fabric 10, A space can also be created by reducing the wind speed of the third hot air W3. Due to this space, the top of the convex portion of the first fiber layer 11 is only one layer of the first fiber layer 11, so the elasticity at that portion is weak, and the cushion at a lower load than the manufacturing method of the first embodiment. Can be further improved. In addition, even if it says that elasticity becomes weak, it is not the weakness which cannot be restored
  • the present invention further discloses the following laminated nonwoven fabric and a method for producing the same with respect to the embodiment described above.
  • a first fiber web containing thermoplastic fibers is transported onto a support having an uneven shape and air permeability, and hot air is blown onto the first fiber web so that the first fiber web is During the process of shaping by following the shape and conveying the first fiber web in a state along the surface of the support, hot air is blown onto the first fiber web to form an uneven shape of the support. Laminating the first fiber layer and the second fiber web containing thermoplastic fibers before the first fiber layer is obtained by fusing the fibers of the first fiber web while being shaped.
  • the first hot air in the first air-through process of the preceding air-through process has a temperature of 80 ° C. or more and 155 ° C. or less, a wind speed of 20 m / sec or more and 120 m / sec or less, and a blowing time.
  • the method for producing a laminated nonwoven fabric according to ⁇ 1> wherein is 0.01 seconds or more and 0.5 seconds or less.
  • the second hot air in the second air through step of the preceding air through step is equal to or higher than the melting point of the low melting point component of the fibers of the first fiber web and the high melting point of the fibers of the first fiber web.
  • the second hot air has a temperature of 130 ° C. or more and 155 ° C.
  • ⁇ 6> The method for producing a laminated nonwoven fabric according to ⁇ 5>, wherein a cooling part is arranged in the space, and means for forcibly cooling the first fiber layer in the cooling part is used.
  • the temperature of the third hot air in the third air through process which is the latter air through process, is controlled to 130 ° C. or more and 155 ° C. or less, and the wind speed is controlled to 0.4 m / sec or more and 5 m / sec or less.
  • the second nozzle through which the second hot air is blown in the second air-through process of the preceding air-through process is regularly opened in the width direction and the flow direction.
  • thermoplastic fibers to be the second fiber layer is laminated on the first fiber layer that is formed into a concavo-convex shape and includes thermoplastic fibers, and the laminated first
  • the fibers of the fiber web are thermally fused to form a second fiber layer, and the fibers of the first fiber layer and the second fiber layer A laminated nonwoven fabric in which the fibers of the fiber layer are bonded by heat fusion.
  • It has a convex part and a concave part which protruded to the 1st surface side of the ⁇ 10> sheet laminated nonwoven fabric in plan view, a plurality of the convex parts are arranged so as to surround the concave part, and the convex part And the recesses are alternately and continuously arranged in different directions intersecting in plan view of the laminated nonwoven fabric, and the first fiber layer having an uneven shape by the protrusions and the recesses on the first surface side, A second fiber layer bonded along the second surface side opposite to the first surface side of the first fiber layer, and the fiber density of the concave portion is 0.01 mg / cm 3 or more and 0.08 g. Laminated nonwoven fabric that is / cm 3 or less.
  • the first fiber layer has a continuous wall portion on the lower side of the convex top portion of the convex portion and the upper portion side of the concave portion bottom portion of the concave portion, and the fiber constituting the wall portion is the convex portion.
  • the laminated nonwoven fabric according to ⁇ 9> or ⁇ 10> which has fiber orientation in a direction connecting the top part and the bottom part of the concave part.
  • the convex part of the second fiber layer along the shape on the second surface side of the convex part of the first fiber layer has an upper part on the first fiber layer side and a lower part on the opposite side, and a fiber
  • the density of the protrusions of the first fiber layer is 8 mg / cm 3 or more and 25 mg / cm 3 or less, and the density of the protrusions of the second fiber layer is 2 mg / cm 3 or more and 8 mg / cm 3 or less.
  • the density of the upper part of the convex part of the second fiber layer is preferably 1.5 mg / cm 3 or more and 4 mg / cm 3 or less, and the fiber density of the lower part of the convex part of the second fiber layer is 3.5 mg / cm 3. 3 to 6 mg / cm 3 or less is laminated nonwoven fabric according to ⁇ 9> to any one of ⁇ 15>.
  • ⁇ 17> The laminated nonwoven fabric according to any one of ⁇ 9> to ⁇ 15>, wherein the convexity of the first fiber layer and the convexity of the second fiber layer are different.
  • the fiber orientation degree of the convex part of the second fiber layer is oriented in the direction perpendicular to the surface of the first fiber layer rather than the fiber orientation degree of the convex part of the first fiber layer.
  • ⁇ 9> to ⁇ 17> The laminated nonwoven fabric according to any one of the above.
  • ⁇ 19> The fiber orientation degree of the convex part of the first fiber layer is 10 ° to 30 °, and the fiber orientation degree of the convex part of the second fiber layer is 30 ° to 60 ° from ⁇ 9>.
  • Example 1-4 The laminated nonwoven fabric 10 of Example 1 uses a card web for the first fiber web 13 for producing the first fiber layer 11, and also uses a card web for the second fiber web 14 for producing the second fiber layer 12. It manufactured on condition of the following by the manufacturing method (1st manufacturing method) of 1st Embodiment.
  • a composite fiber having a core-sheath structure in which the core part is polyethylene terephthalate (melting point: 258 ° C.) and the sheath part is polyethylene (melting point: 130 ° C.) is used for the fiber of the first fiber web 13.
  • the mixing ratio was 100%, and the fineness was 2.9 dtex.
  • the 1st fiber web 13 was conveyed by the support body 110, and the 1st hot air W1 and the 2nd hot air W2 were sprayed on the surface of the support body 110, and it was formed in the uneven
  • the first hot air W1 had a temperature of 130 ° C., a wind speed of 40 m / sec, and a blowing time of 0.06 seconds.
  • the second hot air W2 had a temperature of 150 ° C., a wind speed of 4.0 m / sec, and a blowing time of 0.7 seconds.
  • the third hot air W3 had a temperature of 139 ° C., a wind speed of 1.5 m / sec, and a blowing time of 13 seconds.
  • Example 2 was the same as Example 1 except that the lamination and fusing conditions were the manufacturing method of the second embodiment (second manufacturing method).
  • Example 3 was the same as Example 1 except that the temperature of the lamination fusion condition was high and the wind speed was high. In this case, the temperature of the third hot air W3 was set to 147 ° C., the wind speed was set to 2 m / sec, and the blowing time was set to 13 seconds.
  • Example 4 was the same as Example 1 except that the heating time for the lamination fusion condition was shortened. The heating time in this case was set to 4 seconds.
  • Comparative Example 1 was the same as Example 1 except that the first fiber layer was not shaped and was in an unfused web when joined to the second fiber layer.
  • Comparative Example 2 was the same as Comparative Example 1 except that the first fiber layer and the second fiber layer were air-through nonwoven fabrics. In this case, the hot air processed into the air-through nonwoven fabric had a temperature of 139 °, a wind speed of 1.5 m / sec, and a blowing time of 13 seconds.
  • Comparative Example 3 was the same as Comparative Example 2 except that the bonding condition between the first fiber layer and the second fiber layer was embossing by heating and pressing. In this case, the heating temperature was set to 125 ° C., and the pressure linear pressure was set to 60 kg / cm.
  • the temperature of the first hot air W1 is measured by an anemone master (trade name) manufactured by Nippon Kanomax Co., Ltd., just below the outlet of the first nozzle 111, and the wind speed is the total pressure immediately below the outlet of the first nozzle 11 by a Pitot tube.
  • the static pressure was pulled from the dynamic pressure, and the flow rate was calculated from a Pitot tube.
  • the temperature and wind speed of the second hot air W2 were determined by measuring directly under the outlet of the second nozzle 112 by the anemo master.
  • the temperature and wind speed of the third hot air W3 were determined by the anemo master.
  • the method for measuring the thickness of the nonwoven fabric was measured using a thickness measuring instrument in a state where a load of 49 Pa was applied to the nonwoven fabric and a load of 4.9 kPa was applied.
  • a thickness meter (for example, trade name: ABSOLUTE) manufactured by MITUTOYO was used as the thickness measuring instrument. The thickness was measured at 10 points, and the average value was calculated as the thickness.
  • the fiber density (g / cm 3 ) of the first fiber layer 11, the second fiber layer 12, and the recesses was determined by the formula [weight per unit area (g / m 2 )] / [thickness (mm)] ⁇ 1000. 1000 is a coefficient for matching the units of the left side and the right side.
  • the thickness (TL1) of the first fiber layer 11 and the thickness (TL2) of the second fiber layer 12 was obtained by the following method.
  • the laminated nonwoven fabric 10 was cut in the thickness of the laminated nonwoven fabric 10 with the apex of the convex portion 21 in the CD direction.
  • the cut laminated nonwoven fabric 10 is placed on a black table, and a cross section in the CD direction is photographed with a microscope VHX-900 (manufactured by Keyence Corporation) with a load of 49 Pa, and is magnified 30 to 100 times. I got a photo.
  • Each of the 1st fiber layer 11 and the 2nd fiber layer 12 which intersects the perpendicular which passes the width direction center of the convex part 21 of the 1st fiber layer 11 of this enlarged photograph in the thickness direction, and the perpendicular line which passes the width direction center of the recessed part 22 It was determined by measuring the distance of the intersection of the top and bottom fibers of the layer.
  • the thickness of the recess 22 is defined as the distance between the intersection of the upper fiber and the perpendicular of the first fiber layer 11 and the intersection of the lower fiber and the perpendicular of the second fiber layer 12 at the bottom of the recess 22.
  • the fiber density of the convex part 21 upper part side and the convex part 21 lower part side of the 2nd fiber layer 12 was calculated
  • the laminated nonwoven fabric 10 is cut in the CD direction with the apex of the projection 21 in the CD direction, the laminated nonwoven fabric 10 is cut, the laminated nonwoven fabric 10 is placed on a black base, and a cross section in the CD direction is applied with a load of 49 Pa applied to the microscope VHX-900.
  • An enlarged photograph of 30 to 100 times was obtained using (manufactured by Keyence Corporation).
  • the thickness TL2 of the second fiber layer 12 is equally divided (convex portion upper side and convexity using image analysis software (Nexus New Nexus Qube (trade name)).
  • the binarization process is performed for the range surrounded by the CD length of 0.3 mm or more and 0.6 mm or less, and the area ratio of the fiber to the space is obtained for the upper part of the convex part and the lower part of the convex part. It was.
  • the fiber orientation degree of the convex part 21 was calculated
  • the predetermined position is a position at which the degree of orientation is to be examined, and is, for example, a central portion in the thickness direction at the center of the convex portions of the first fiber layer 11 and the second fiber layer 12.
  • the predetermined range A is, for example, a circle having a diameter of 0.5 mm.
  • a line parallel to the sheet surface of the laminated nonwoven fabric 10 in the cross section was defined as a reference line 17.
  • the measurement line 16 and the reference line 17 did not intersect, the measurement line 16 was extended in a straight line to a position where it intersected with the reference line 17.
  • Each angle at the intersection of the 20 measurement lines 16 and the reference line 17 was measured, and the average value was calculated as the orientation degree.
  • a schematic diagram is shown instead of a photograph.
  • Evaluation examined the performance of the nonwoven fabric as sheet performance.
  • Sheet performance evaluated the "cushioning property", “liquid passage time”, etc. of the laminated nonwoven fabric.
  • the “cushion property” was evaluated by the linearity (LC value) of the compression characteristics with a texture measuring device (KES).
  • LC value linearity
  • KAS texture measuring device
  • “Liquid passage time” was operated according to the liquid strike through time method according to EDANA-150.5-02 (European Disposables And Nonwovens Association).
  • the strike-through value used in the present invention is the time (unit: seconds) for 10 g of the test solution to pass through the nonwoven fabric that is a test specimen for measurement, and the smaller the strike-through value, the faster the test solution passes through the nonwoven fabric. Means.
  • a measuring machine LISTER manufactured by Lenzingtechnik Co., Ltd. was used, and the measuring unit of this testing machine was placed on a non-woven fabric, and EDANA-150.5-02 liquid defined by this testing machine. The testing machine was operated according to the strike through time method.
  • Table 1 shows the results of the physical properties (overall weight, low load thickness, high load thickness, concave fiber density, convex fiber orientation) and performance (cushion properties, liquid passage time) of the laminated nonwoven fabric 10.
  • each of Examples 1 to 4 obtained good results (evaluation of “A”) in any evaluation item.
  • the cushioning property was 0.93 or more and 1.14 or less in WC value, and the liquid passage time was as fast as 3.24 seconds or more and 5.32 seconds or less.
  • Comparative Examples 1 to 3 had a WC value of 0.53 to 0.78, and the cushioning properties were evaluated as “B” and “C”.
  • the liquid passage time was 6.37 seconds or more and 9.37 seconds or less and was evaluated as “C”.
  • the second fiber web 14 is superimposed on the first fiber layer 11 shaped in an uneven shape to form the second fiber layer 12, and the first fiber layer 11 is joined to form a two-layer structure. Therefore, a portion 25 having a low fiber density is formed between the first fiber layer 11 and the second fiber layer 12 of the convex portion 21. As a result, an excellent effect is obtained in that a good cushioning property can be obtained even with a three-dimensional low pressure load.
  • the laminated nonwoven fabric 10 of the present embodiment exhibits a three-dimensional cushioning property that is well supported by a point on both sides following a three-dimensional movement.
  • streak-like projections and single-side projections inevitably exhibit elasticity as lines or surfaces, and lack three-dimensional followability.
  • joining in the recessed part 22 is a fiber by 3rd hot air W3. Since it is joining by fusion
  • the fiber orientation degree of the 2nd fiber layer 12 is larger than the fiber orientation degree of the 1st fiber layer 11, the moderate cushioning property in which a fiber is not crushed by the 2nd fiber layer 12 is implement

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

Provided is a method for producing a laminated nonwoven fabric, said method comprising: a step for conveying a first fiber web, which contains a thermoplastic fiber, on a support, said support having a peak-and-valley pattern and being air-permeable, blowing hot air to the first fiber web so as to allow the first fiber web to follow the peak-and-valley pattern and thereby shaping the same; a former air-through step for, during conveying the first fiber web that is in contact with the surface of the support, blowing hot air to the first fiber web so as to fuse together the fibers in the first fiber web, said first fiber web being shaped in the peak-and-valley pattern of the support, and thus giving a first fiber layer; and a latter air-through step for laminating the first fiber layer on a second fiber web which contains a thermoplastic fiber, blowing hot air thereto so as to thermally fuse together the fibers in the second fiber web, said second fiber web being allowed to follow the peak-and-valley pattern of the first fiber layer, thus giving a second fiber layer, and, at the same time, bonding the fibers of the first fiber layer to the fibers of the second fiber web through heat fusion.

Description

積層不織布およびその製造方法Laminated nonwoven fabric and method for producing the same
 本発明は積層不織布およびその製造方法に関する。 The present invention relates to a laminated nonwoven fabric and a method for producing the same.
 生理用ナプキン、パンティーライナーおよび使い捨ておむつ等の吸収性物品では、その機能に応じて、2層のシートを部分的に多数の接合部により接合した2層シート構造のもの、シート材の片面に筋状に隆起した部分を配したものなどが開発されている。
 特許文献1には、上層シートおよび下層シートを有し、加熱および加圧によって、これら両シートが部分的に接合されて多数の接合部が形成されていて、上層シートが複数の接合部に囲まれた領域において肌当接面側に突出して多数の凸部が形成されているものが開示されている。これにより、凸部の形態が安定に維持され、表面への液戻り防止性に優れるとされる。
Absorbent articles such as sanitary napkins, panty liners, and disposable diapers have a two-layer sheet structure in which two-layer sheets are partially joined by a large number of joints according to their functions. The thing which arranged the part which raised in the shape is developed.
Patent Document 1 has an upper layer sheet and a lower layer sheet, and these two sheets are partially joined by heating and pressurization to form a large number of joined portions, and the upper layer sheet is surrounded by a plurality of joined portions. In such a region, a plurality of convex portions are formed so as to protrude toward the skin contact surface side. Thereby, the form of a convex part is maintained stably and it is supposed that it is excellent in the liquid return prevention property to the surface.
 また特許文献2には、所定の方向に沿って連続的に形成された不織布の一方の面側に、不織布の厚さ方向に窪む複数の溝部と、複数の溝部に沿って連続的に形成され、複数の溝部のそれぞれに隣接し、不織布の一方の面側に突出する複数の凸状部とを有する不織布が開示されている。この不織布における溝部は、不織布において最も目付が低く、かつ横配向繊維の含有率が高く、縦配向繊維の含有率が低くなるように形成されている。そして、凸状部の側部は、不織布において最も目付が高く、かつ縦配向繊維の含有率が高くなっている。これにより、排泄物等の所定の液体を透過させやすくなるとされる。 Further, in Patent Document 2, a plurality of groove portions recessed in the thickness direction of the nonwoven fabric and a plurality of groove portions continuously formed on one surface side of the nonwoven fabric continuously formed along a predetermined direction are formed. A non-woven fabric having a plurality of convex portions adjacent to each of the plurality of groove portions and protruding to one surface side of the non-woven fabric is disclosed. The groove part in this nonwoven fabric is formed so that the basis weight is the lowest in the nonwoven fabric, the content of the horizontally oriented fibers is high, and the content of the vertically oriented fibers is low. And the side part of a convex-shaped part has the highest fabric weight in a nonwoven fabric, and the content rate of a longitudinally-oriented fiber is high. Thereby, it becomes easy to permeate | transmit predetermined liquids, such as excrement.
特開2009―118920号公報JP 2009-118920 A 特開2008―025081号公報JP 2008-025081 A
 本発明は、凹凸形状を有し、かつ通気性を有する支持体上に熱可塑性繊維を含有する第1繊維ウエブを搬送し、該第1繊維ウエブに熱風を吹き付け、該第1繊維ウエブを前記凹凸形状に追随させて賦形する工程と、前記第1繊維ウエブを前記支持体表面に沿わせた状態で搬送する間に、前記第1繊維ウエブに熱風を吹き付けて、前記支持体の凹凸形状に賦形したまま前記第1繊維ウエブの繊維同士を融着させて第1繊維層を得る前段のエアースルー工程と、前記第1繊維層と熱可塑性繊維を含有する第2繊維ウエブとを積層し、熱風を吹き付け、第1繊維層の賦形形状に沿わせながら該第2繊維ウエブの繊維同士を熱融着して第2繊維層を得るとともに前記第1繊維層と該第2繊維ウエブの繊維同士を熱融着させて接合する後段のエアースルー工程とを備える積層不織布の製造方法を提供する。 In the present invention, a first fiber web containing thermoplastic fibers is conveyed on a support having an uneven shape and air permeability, and hot air is blown onto the first fiber web. During the process of forming by following the uneven shape, and while conveying the first fiber web along the surface of the support, hot air is blown onto the first fiber web to form the uneven shape of the support. The first fiber web is fused with the fibers of the first fiber web to form a first fiber layer, and the second fiber web containing the first fiber layer and the thermoplastic fiber is laminated. Then, hot air is blown so that the fibers of the second fiber web are heat-fused with each other while conforming to the shaped shape of the first fiber layer to obtain a second fiber layer and the first fiber layer and the second fiber web The latter airs that are bonded by heat-sealing To provide a method of manufacturing a laminated nonwoven fabric and a chromatography step.
 本発明は、熱可塑性繊維を含み凹凸形状に賦形されており熱融着した第1繊維層に第2繊維層となる熱可塑性繊維を含む未融着の繊維ウエブが積層され、前記積層した第1繊維層および第2繊維層を熱風により加熱することによって、前記繊維ウエブの繊維同士が熱融着して第2繊維層を成しているとともに、前記第1繊維層の繊維と前記第2繊維層の繊維が接合されている積層不織布を提供する。 In the present invention, an unfused fiber web containing thermoplastic fibers to be the second fiber layer is laminated on the first fiber layer which is formed into a concavo-convex shape including thermoplastic fibers and is heat-sealed. By heating the first fiber layer and the second fiber layer with hot air, the fibers of the fiber web are thermally fused to form a second fiber layer, and the fibers of the first fiber layer and the first fiber layer A laminated nonwoven fabric in which fibers of two fiber layers are joined is provided.
 本発明は、シートの積層不織布を平面視した側の第1面側に突出した凸部と凹んだ凹部とを有し、前記凹部を囲むように複数の前記凸部が配され、かつ前記凸部と前記凹部は、該積層不織布の平面視交差する異なる方向のそれぞれに交互に連続して配され、前記第1面側に前記凸部と前記凹部による凹凸形状を有する第1繊維層と、該第1繊維層の前記第1面側とは反対側の第2面側に沿って接合された第2繊維層とを有し、前記凹部の繊維密度が0.01g/cm以上0.08g/cm以下である積層不織布を提供する。 The present invention has a convex portion projecting on the first surface side of the laminated nonwoven fabric of the sheet in plan view and a concave concave portion, a plurality of the convex portions are arranged so as to surround the concave portion, and the convex The first and second fiber layers that are alternately and continuously arranged in each of different directions intersecting in plan view of the laminated nonwoven fabric, and having a concavo-convex shape due to the convex part and the concave part on the first surface side, A second fiber layer bonded along the second surface side opposite to the first surface side of the first fiber layer, and the fiber density of the concave portion is 0.01 g / cm 3 or more and 0.0. Provided is a laminated nonwoven fabric having a weight of 08 g / cm 3 or less.
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。 The above and other features and advantages of the present invention will become more apparent from the following description with reference to the accompanying drawings as appropriate.
本発明に係る積層不織布の好ましい一実施形態を模式的に示した部分断面斜視図である。1 is a partial cross-sectional perspective view schematically showing a preferred embodiment of a laminated nonwoven fabric according to the present invention. 図1に示した部分断面斜視図と対応した断面を撮像した図面代用写真である。3 is a drawing-substituting photograph in which a cross-section corresponding to the partial cross-sectional perspective view shown in FIG. 1 is imaged. 本発明の積層不織布を作製するのに好適な積層不織布の製造装置の一例を模式的に示した概略構成図である。It is the schematic block diagram which showed typically an example of the manufacturing apparatus of the laminated nonwoven fabric suitable for producing the laminated nonwoven fabric of this invention. 本発明の積層不織布を作製するのに好適な別の積層不織布の製造装置の一例を模式的に示した概略構成図である。It is the schematic block diagram which showed typically an example of the manufacturing apparatus of another laminated nonwoven fabric suitable for producing the laminated nonwoven fabric of this invention. 繊維配向度の測定方法を説明する模式的断面図およびその部分拡大図である。It is typical sectional drawing explaining the measuring method of fiber orientation degree, and its partial enlarged view.
 本発明は、クッション感が良く、厚みの大きい、液通過速度の速い積層不織布およびその製造方法に関する。 The present invention relates to a laminated nonwoven fabric having a good cushion feeling, a large thickness and a high liquid passage speed, and a method for producing the same.
 本発明に係る積層不織布の好ましい一実施形態について、図1および図2を参照しながら、以下に説明する。
 本発明の積層不織布10は例えば生理用ナプキンや使い捨ておむつなどの吸収性物品の表面シートに適用することが好ましく、第1面側Z1を着用者の肌面側に向けて用い、第2面側Z2を物品内部の吸収体(図示せず)側に配置して用いることが好ましい。以下、図面に示した積層不織布10の第1面側Z1を着用者の肌面に向けて用いる実施態様を考慮して説明するが、本発明がこれにより限定して解釈されるものではない。
A preferred embodiment of the laminated nonwoven fabric according to the present invention will be described below with reference to FIGS. 1 and 2.
The laminated nonwoven fabric 10 of the present invention is preferably applied to a surface sheet of an absorbent article such as a sanitary napkin or a disposable diaper. The first surface side Z1 is used with the skin surface side of the wearer, and the second surface side. It is preferable to use Z2 on the absorber (not shown) side inside the article. Hereinafter, although it demonstrates considering the embodiment which uses the 1st surface side Z1 of the laminated nonwoven fabric 10 shown in drawing toward a wearer's skin surface, this invention is limited to this and is not interpreted.
 図1および図2に示すように、本発明の積層不織布10は、熱可塑性繊維を含み凹凸形状に賦形した第1繊維層11に、熱可塑性繊維を含む未融着の繊維ウエブ(図示せず)を積層して、熱風による加熱により、第1繊維層11の繊維と繊維ウエブから得られる第2繊維層12の繊維とを熱融着させて接合したものである。
 上記凹凸形状は以下のように構成される。シートの積層不織布10を平面視した側の第1面側Z1に突出した凸部21と凹んだ凹部22とを有し、凹部22を囲むように複数の凸部21が配され、かつ凸部21と凹部22は、該積層不織布10の平面視交差する異なる方向のそれぞれに交互に連続して配されている。したがって、第1繊維層11も積層不織布10と同様に、第1面側Z1に突出した第1凸部21Aと凹んだ第1凹部22Aとを有し、第1凹部22Aを囲むように複数の第1凸部21Aが配され、かつ第1凸部21Aと第1凹部22Aは、該第1繊維層11の平面視交差する異なる方向のそれぞれに交互に連続して配されている。具体的には、平面視交差するX方向およびY方向のそれぞれに交互に連続して配されている。
 また、積層不織布10の第1繊維層11の第1面側Z1(以下、上面側ともいう。)とは反対側の第2面側Z2(以下、下面側ともいう。)には、第1繊維層11の下面側に沿って接合された第2繊維層12を有している。したがって、第2繊維層12の第2凸部21B、第2凹部22Bは、前記第1凸部21A、第1凹部22Aが配されている位置に対応して配される。
As shown in FIGS. 1 and 2, a laminated nonwoven fabric 10 of the present invention includes an unfused fiber web (not shown) that includes thermoplastic fibers in a first fiber layer 11 that includes thermoplastic fibers and is formed into an uneven shape. And the fibers of the first fiber layer 11 and the fibers of the second fiber layer 12 obtained from the fiber web are bonded by heating with hot air.
The uneven shape is configured as follows. The sheet has a convex portion 21 projecting on the first surface side Z1 on the side of the laminated nonwoven fabric 10 in plan view and a concave portion 22, and a plurality of convex portions 21 are arranged so as to surround the concave portion 22, and the convex portion 21 and the recessed part 22 are alternately and continuously arranged in each of the different directions where the laminated nonwoven fabric 10 intersects in plan view. Therefore, similarly to the laminated nonwoven fabric 10, the first fiber layer 11 also has a first convex portion 21A protruding to the first surface side Z1 and a concave first concave portion 22A, and a plurality of the first fibrous layer 11 so as to surround the first concave portion 22A. 21 A of 1st convex parts are distribute | arranged, and 21 A of 1st convex parts and 22 A of 1st recessed parts are alternately and continuously distribute | arranged to each of the different direction which crosses planar view of this 1st fiber layer 11. As shown in FIG. Specifically, they are alternately and continuously arranged in the X direction and the Y direction that intersect in plan view.
Further, the first surface side Z1 (hereinafter also referred to as the upper surface side) of the first fiber layer 11 of the laminated nonwoven fabric 10 is opposite to the second surface side Z2 (hereinafter also referred to as the lower surface side). It has the 2nd fiber layer 12 joined along the lower surface side of fiber layer 11. Therefore, the 2nd convex part 21B and the 2nd crevice 22B of the 2nd fiber layer 12 are arranged corresponding to the position where the 1st convex part 21A and the 1st crevice 22A are arranged.
 さらに凹部の繊維密度が0.01g/cm以上0.08g/cm以下となっている。ここでいう凹部の繊維密度とは、凹部22の底部での第1繊維層11と第2繊維層12を合わせた部分の繊維密度をいう。凹部の繊維密度が低すぎる場合には、第1繊維層11の賦形が不十分になり、明瞭な凹凸形状を得ることが困難になり、凹部の繊維密度が高すぎる場合には液通過時間(液通過速度)が遅くなる。 Furthermore, the fiber density of the recesses is 0.01 g / cm 3 or more and 0.08 g / cm 3 or less. The fiber density of the concave portion here refers to the fiber density of the portion of the bottom portion of the concave portion 22 where the first fiber layer 11 and the second fiber layer 12 are combined. If the fiber density of the recess is too low, the shaping of the first fiber layer 11 becomes insufficient, making it difficult to obtain a clear uneven shape. If the fiber density of the recess is too high, the liquid passage time (Liquid passage speed) becomes slow.
 本実施形態において凸部21は頂部に丸みをもった円錐台形状もしくは半球状にされている。なお、凸部21は上記形状に限定されず、どのような突出形態でもよく、例えば、様々な錐体形状(本明細書において錐体形状とは、円錐、円錐台、角錐、角錐台、斜円錐等を広く含む意味である。)であることが実際的である。本実施形態において凸部21はその外径と相似する頂部に丸みのある円錐台形状もしくは半球状の内部空間を保持している。この内部空間壁に沿うように上記第2繊維層12が配されている。 In the present embodiment, the convex portion 21 has a truncated cone shape or a hemispherical shape with a rounded top. Note that the convex portion 21 is not limited to the above shape, and may have any protruding shape. For example, various cone shapes (in this specification, the cone shape means a cone, a truncated cone, a pyramid, a truncated pyramid, an oblique shape, etc. It is practical to include a cone or the like.) In the present embodiment, the convex portion 21 holds a frustoconical or hemispherical inner space having a rounded top portion similar to the outer diameter thereof. The second fiber layer 12 is disposed along the inner space wall.
 凹凸に賦形されている第1繊維層11は、その第1凸部21Aにおいて頂部(以下、凸部頂部ともいう。)の下部側に壁部23を有する。この壁部23は、凸部21において環状構造を成している。また第1凹部22Aにおいて底部(以下、凹部底部ともいう。)の上部側に壁部24を有する。この壁部24は、凹部22において環状構造を成している。そして、この壁部23と壁部24は連続している。ここでいう「環状」とは、平面視において無端の一連の形状をなしていれば特に限定されず、平面視において円、楕円、矩形、多角形など、どのような形状であってもよい。シートの連続状態を好適に維持する上では円または楕円が好ましい。さらに、「環状」を立体としていえば、円柱、斜円柱、楕円柱、切頭円錐、切頭斜円錐、切頭楕円錐、切頭四角錐、切頭斜四角錐など任意の環構造が挙げられ、連続したシート状態を実現する上では、円柱、楕円柱、切頭円錐、切頭楕円錐が好ましい。 The first fiber layer 11 shaped into irregularities has a wall portion 23 on the lower side of the top portion (hereinafter also referred to as a convex portion top portion) in the first convex portion 21A. The wall portion 23 forms an annular structure at the convex portion 21. The first recess 22A has a wall 24 on the upper side of the bottom (hereinafter also referred to as a recess bottom). The wall portion 24 forms an annular structure in the recess 22. The wall portion 23 and the wall portion 24 are continuous. The “annular” herein is not particularly limited as long as it has a series of endless shapes in plan view, and may be any shape such as a circle, an ellipse, a rectangle, or a polygon in plan view. In order to maintain the continuous state of the sheet suitably, a circle or an ellipse is preferable. Furthermore, speaking of “circular” as a solid, any ring structure such as a cylinder, a slanted cylinder, an elliptical column, a truncated cone, a truncated cone, a truncated elliptical cone, a truncated quadrangular pyramid, a truncated oblique pyramid can be mentioned. In order to realize a continuous sheet state, a cylinder, an elliptical column, a truncated cone, and a truncated elliptical cone are preferable.
 上述の積層不織布10は、屈曲部を有さず、全体が連続した曲面で構成されている。
 このように上記積層不織布10は、面方向に連続した構造を有していることが好ましい。この「連続」とは、断続した部分や小孔がないことを意味する。ただし、繊維間の隙間のような微細孔は上記小孔に含めない。上記小孔とは、例えば、その孔径が円相当の直径で1.0mm以上のものと定義することができる。
The above-described laminated nonwoven fabric 10 does not have a bent portion, and is configured by a curved surface that is continuous throughout.
Thus, the laminated nonwoven fabric 10 preferably has a continuous structure in the surface direction. This “continuous” means that there are no intermittent portions or small holes. However, fine holes such as gaps between fibers are not included in the small holes. The small hole can be defined, for example, as a hole having a diameter equivalent to a circle of 1.0 mm or more.
 本発明の積層不織布10に用いることができる繊維材料は特に限定されない。具体的には、下記の繊維などが挙げられる。ポリエチレン(PE)繊維、ポリプロピレン(PP)繊維等のポリオレフィン繊維が挙げられ、ポリエチレンテレフタレート(PET)、ポリアミド等の熱可塑性樹脂を単独で用いてなる繊維が挙げられる。また、芯鞘型、サイドバイサイド型等の構造の複合繊維、例えば鞘成分がポリエチレン又は低融点ポリプロピレンである芯鞘構造の繊維が好ましく挙げられ、該芯/鞘構造の繊維の代表例としては、PET(芯)とPE(鞘)、PP(芯)とPE(鞘)、PP(芯)と低融点PP(鞘)等の芯鞘構造の繊維が挙げられる。更に具体的には、上記構成繊維は、ポリエチレン繊維、ポリプロピレン繊維等のポリオレフィン系繊維、ポリエチレン複合繊維、ポリプロピレン複合繊維を含むのが好ましい。ここで、該ポリエチレン複合繊維の複合組成は、ポリエチレンテレフタレートとポリエチレンであり、該ポリプロピレン複合繊維の複合組成が、ポリエチレンテレフタレートと低融点ポリプロピレンであるのが好ましく、より具体的には、PET(芯)とPE(鞘)、PET(芯)と低融点PP(鞘)が挙げられる。また、これらの繊維は、単独で用いて不織布を構成してもよいが、2種以上を組み合わせて用いることもできる。 The fiber material that can be used for the laminated nonwoven fabric 10 of the present invention is not particularly limited. Specific examples include the following fibers. Examples thereof include polyolefin fibers such as polyethylene (PE) fibers and polypropylene (PP) fibers, and fibers formed by using a thermoplastic resin such as polyethylene terephthalate (PET) and polyamide alone. In addition, a composite fiber having a structure such as a core-sheath type or a side-by-side type, for example, a fiber having a core-sheath structure in which the sheath component is polyethylene or low-melting-point polypropylene is preferably exemplified. (Core) and PE (sheath), PP (core) and PE (sheath), PP (core), and fibers having a core-sheath structure such as low melting point PP (sheath). More specifically, the constituent fibers preferably include polyolefin fibers such as polyethylene fibers and polypropylene fibers, polyethylene composite fibers, and polypropylene composite fibers. Here, the composite composition of the polyethylene composite fiber is polyethylene terephthalate and polyethylene, and the composite composition of the polypropylene composite fiber is preferably polyethylene terephthalate and low-melting polypropylene, and more specifically, PET (core). And PE (sheath), PET (core), and low melting point PP (sheath). These fibers may be used alone to form a nonwoven fabric, but may be used in combination of two or more.
 壁部23を構成する繊維は、凸部21の凸部頂部と凹部22の凹部底部とを結ぶ方向に繊維配向性を有する。したがって、第1繊維層11を平面視すると、凸部頂部、凹部底部から外側に向かうような放射状の繊維配向性を有している。そして、第1繊維層11の第1凸部21Aの繊維配向度と第2繊維層12の第2凸部21Bの繊維配向度とは異なり、第2凸部21Bの繊維配向度のほうが第1凸部21Aの繊維配向度よりも第1繊維層11表面に対する垂直方向(厚み方向)に向いている。繊維が垂直方向に向いていると、高荷重時に第1凸部21Aの圧縮変形を受け止め、潰れを防ぎ、厚みを維持する効果が大きい。繊維配向が水平方向になると高荷重時の潰れを防ぐ効果が減り、厚みが小さくなる。第1凸部21Aの繊維配向度は10°以上30°以下、第2凸部21Bの繊維配向度は30°以上60°以下であることが好ましい。 The fibers constituting the wall portion 23 have fiber orientation in the direction connecting the convex top portion of the convex portion 21 and the concave bottom portion of the concave portion 22. Therefore, when the 1st fiber layer 11 is planarly viewed, it has the radial fiber orientation which goes outside from a convex part top part and a recessed part bottom part. Unlike the fiber orientation degree of the first convex portion 21A of the first fiber layer 11 and the fiber orientation degree of the second convex portion 21B of the second fiber layer 12, the fiber orientation degree of the second convex portion 21B is first. It faces in the direction perpendicular to the surface of the first fiber layer 11 (thickness direction) rather than the fiber orientation degree of the convex portion 21A. When the fiber is oriented in the vertical direction, the effect of receiving the compressive deformation of the first convex portion 21A at high load, preventing crushing, and maintaining the thickness is great. When the fiber orientation is in the horizontal direction, the effect of preventing crushing at high loads is reduced and the thickness is reduced. The fiber orientation degree of the first convex portion 21A is preferably 10 ° to 30 °, and the fiber orientation degree of the second convex portion 21B is preferably 30 ° to 60 °.
 上記積層不織布10は、上記第1凸部21Aと上記第2凸部21Bとの間に上記第1繊維層11および第2繊維層12よりも繊維密度が低い部分25を有する。この繊維密度が低い部分25が存在することによって、低荷重であっても、第1繊維層11の第1凸部21Aが凹みやすくなるので、積層不織布10のクッション性が高められる。
 さらに、クッション性の観点から、第1凸部21Aの密度と第2凸部21Bの上部の密度と第2凸部21Bの下部の密度との間には、以下のような関係を有することが好ましい。
 第1凸部21Aの密度>第2凸部21Bの下部の密度>第2凸部21Bの上部の密度なる関係を有することが好ましい。
 また第1凸部21Aの密度は、8mg/cm以上25mg/cm以下であることが好ましく、第2凸部21Bの密度は、2mg/cm以上8mg/cm以下であることが好ましい。また第2凸部21Bの上部の密度は1.5mg/cm以上4mg/cm以下が好ましく、第2凸部21Bの下部の繊維密度は3.5mg/cm以上6mg/cm以下であることが好ましい。ここで第2凸部21Bの上部とは、第2繊維層12を厚さ方向に1/2に区切ったときの第1繊維層11側をいう。第2凸部21Bの上部を除く第2凸部21Bの部分を下部という。
The laminated nonwoven fabric 10 has a portion 25 having a fiber density lower than that of the first fiber layer 11 and the second fiber layer 12 between the first convex portion 21A and the second convex portion 21B. The presence of the portion 25 having a low fiber density makes it easy for the first convex portion 21A of the first fiber layer 11 to be depressed even at a low load, so that the cushioning property of the laminated nonwoven fabric 10 is enhanced.
Furthermore, from the viewpoint of cushioning properties, the density of the first convex portion 21A, the density of the upper portion of the second convex portion 21B, and the density of the lower portion of the second convex portion 21B may have the following relationship. preferable.
It is preferable to have a relationship that the density of the first convex portion 21A> the density of the lower portion of the second convex portion 21B> the density of the upper portion of the second convex portion 21B.
The density of the first protrusions 21A is preferably 8 mg / cm 3 to 25 mg / cm 3 , and the density of the second protrusions 21B is preferably 2 mg / cm 3 to 8 mg / cm 3. . The density of the upper part of the second convex part 21B is preferably 1.5 mg / cm 3 or more and 4 mg / cm 3 or less, and the fiber density of the lower part of the second convex part 21B is 3.5 mg / cm 3 or more and 6 mg / cm 3 or less. Preferably there is. Here, the upper part of the 2nd convex part 21B means the 1st fiber layer 11 side when the 2nd fiber layer 12 is divided into 1/2 in the thickness direction. The portion of the second convex portion 21B excluding the upper portion of the second convex portion 21B is referred to as the lower portion.
 次に、本実施形態の積層不織布10における寸法諸元について以下に説明する。
 シートの厚さについては、積層不織布10の側面視としてみたときの全体の厚さをシート厚みTSとし、その凹凸に湾曲したシートの局部的な厚さを層厚みTLとする。シート厚みTSは、用途によって適宜調節すればよいが、おむつや生理用品等の表面シートとして用いる場合、1mm以上7mm以下が好ましく、1.5mm以上5mm以下がより好ましい。その範囲とすることにより、使用時の体液吸収速度が速く、吸収体からの液戻りを抑え、さらには、適度なクッション性を実現することができる。層厚みTLは、シート内の各部位において異なっていてよく、用途によって適宜調節すればよい。おむつや生理用品等の表面シートとして用いる場合、第1繊維層11と第2繊維層12を含めた凸部頂部21Tの層厚みTLは、1.3mm以上7mm以下であり、好ましくは1.5mm以上5mm以下である。第1繊維層11の凸部頂部21TAの層厚みTL1は、0.3mm以上2.5mm以下であり、好ましくは0.6mm以上1.5mm以下である。第2繊維層12の凸部頂部21TBの層厚みTL2は、1mm以上5mm以下であり、好ましくは1.5mm以上4mm以下である。
 上記凸部21同士の間隔は、用途によって適宜調節すればよく、おむつや生理用品等の表面シートとして用いる場合、2mm以上10mm以下であり、好ましくは3mm以上7mm以下である。また上記積層不織布10の坪量は特に限定されないが、シート全体の平均値で15g/m以上70g/m以下であり、好ましくは20g/m以上40g/m以下である。
Next, the dimension specification in the laminated nonwoven fabric 10 of this embodiment is demonstrated below.
Regarding the thickness of the sheet, the total thickness when viewed from the side of the laminated nonwoven fabric 10 is the sheet thickness TS, and the local thickness of the sheet curved in the unevenness is the layer thickness TL. The sheet thickness TS may be appropriately adjusted depending on the application, but when used as a surface sheet for diapers, sanitary products, etc., it is preferably 1 mm or more and 7 mm or less, and more preferably 1.5 mm or more and 5 mm or less. By setting it as the range, the body fluid absorption speed at the time of use is high, the liquid return from an absorber is suppressed, and also moderate cushioning property is realizable. The layer thickness TL may be different in each part in the sheet, and may be appropriately adjusted depending on the application. When used as a top sheet of diapers, sanitary products, etc., the layer thickness TL of the convex top 21T including the first fiber layer 11 and the second fiber layer 12 is 1.3 mm or more and 7 mm or less, preferably 1.5 mm. It is 5 mm or less. The layer thickness TL1 of the convex portion top portion 21TA of the first fiber layer 11 is not less than 0.3 mm and not more than 2.5 mm, preferably not less than 0.6 mm and not more than 1.5 mm. The layer thickness TL2 of the convex top portion 21TB of the second fiber layer 12 is 1 mm or more and 5 mm or less, preferably 1.5 mm or more and 4 mm or less.
The interval between the convex portions 21 may be appropriately adjusted depending on the application, and when used as a surface sheet of a diaper or sanitary product, it is 2 mm or more and 10 mm or less, preferably 3 mm or more and 7 mm or less. The basis weight of the laminated nonwoven fabric 10 is not particularly limited, but the 15 g / m 2 or more 70 g / m 2 or less the average value of the entire sheet, preferably not 20 g / m 2 or more 40 g / m 2 or less.
 本発明の積層不織布10によれば、第1繊維層11と第2繊維層12との接合が、熱風の吹き付けによる第1繊維層11の繊維と第2繊維層12の繊維とが接触している繊維同士の熱融着によることから、繊維層同士を加圧することがないので、従来の加熱および加圧によるシートの部分的接合と比較して繊維層間の接合部分の繊維間に隙間ができる。このため、接合部となる凹部22であっても液通過時間(液通過速度)が速くなる。また、嵩高な低目付にできる。さらに、第1繊維層11が凹凸形状を有し、熱風の吹き付けによる繊維層同士の接合によってもその凹凸形状が維持されているので、低荷重でのクッション感(KES・WC値)が良い。 According to the laminated nonwoven fabric 10 of the present invention, the first fiber layer 11 and the second fiber layer 12 are joined by the contact of the fibers of the first fiber layer 11 and the fibers of the second fiber layer 12 by blowing hot air. Since the fiber layers are not heat-bonded to each other, there is no pressure between the fiber layers, so that there is a gap between the fibers at the joint between the fiber layers as compared to the conventional partial joining of the sheet by heating and pressurization. . For this reason, even if it is the recessed part 22 used as a junction part, a liquid passage time (liquid passage speed) becomes quick. Moreover, a bulky low basis weight can be achieved. Furthermore, since the first fiber layer 11 has a concavo-convex shape and the concavo-convex shape is maintained by joining the fiber layers by blowing hot air, the cushion feeling (KES / WC value) under a low load is good.
 具体的には、上記実施形態で説明した積層不織布10は、以下のような効果を奏する。
 上記積層不織布10は、凹部22においても優れた液透過性を有する。
 本実施形態の積層不織布10は、凹部22の繊維密度が0.01g/cm以上0.08g/cm以下となっているため、第1繊維層11は明瞭な凹凸形状に賦形された状態を維持し、凹部22の繊維密度が高すぎないため、その部分の液通過時間(液通過速度)は速くなる。したがって、液透過性に優れた積層不織布10を得ることができる。
Specifically, the laminated nonwoven fabric 10 described in the above embodiment has the following effects.
The laminated nonwoven fabric 10 has excellent liquid permeability even in the recess 22.
In the laminated nonwoven fabric 10 of the present embodiment, the fiber density of the recesses 22 is 0.01 g / cm 3 or more and 0.08 g / cm 3 or less, so the first fiber layer 11 is shaped into a clear uneven shape. Since the state is maintained and the fiber density of the concave portion 22 is not too high, the liquid passage time (liquid passage speed) of the portion is increased. Therefore, the laminated nonwoven fabric 10 excellent in liquid permeability can be obtained.
 上記積層不織布10は、低荷重における優れたクッション性を有する。
 本実施形態の積層不織布10は表裏の片面だけではなく、両面(両繊維層)において突出した部分を有するため、その構造に特有のクッション性を発現する。例えば筋状の突起や片面の突起ではどうしても線ないし面としての弾力性を発現することとなるが、本実施形態によれば三次元的な動きに対してもよく追従して両面において点で支持された立体的なクッション性を奏する。また、第1繊維層11の凹凸に賦形された形状にそって、第2繊維層12が配されていて、凸部21(凹部22)が積層不織布10の厚み方向に潰れてしまうことのない適度のクッション性を有する。さらに、押圧力を受けて積層不織布10が潰されても、第2繊維層12により、その形状復元力が大きく、梱包状態や着用が継続されても初期のクッション力が維持されやすい。すなわち、凸部21、凹部22は、潰れ難く、変形が起こっても回復し易い。
 しかも上記積層不織布10は、繊維密度が低い部分25が存在することによって、低荷重であっても、第1繊維層11の第1凸部21Aが凹みやすくなるので、積層不織布10のクッション性が低荷重時においても得ることができるとうい優れた効果を奏する。
The laminated nonwoven fabric 10 has excellent cushioning properties at low loads.
Since the laminated nonwoven fabric 10 of this embodiment has the part which protruded not only on the single side | surface of a front and back, but both surfaces (both fiber layers), the cushioning characteristic peculiar to the structure is expressed. For example, streak-like projections or single-sided projections will inevitably exhibit elasticity as lines or surfaces. However, according to this embodiment, the two-dimensional movement is well followed and supported by points on both sides. Has a three-dimensional cushioning. In addition, the second fiber layer 12 is disposed along the shape of the irregularities of the first fiber layer 11, and the convex portion 21 (concave portion 22) is crushed in the thickness direction of the laminated nonwoven fabric 10. Has no moderate cushioning. Furthermore, even if the laminated nonwoven fabric 10 is crushed by receiving a pressing force, the second fiber layer 12 has a large shape restoring force, and the initial cushioning force is easily maintained even if the packing state and wearing are continued. That is, the convex portion 21 and the concave portion 22 are not easily crushed, and are easily recovered even when deformation occurs.
In addition, since the laminated nonwoven fabric 10 includes the portion 25 having a low fiber density, the first convex portion 21A of the first fiber layer 11 is easily recessed even at a low load. If it can be obtained even at low loads, it has an excellent effect.
 上記積層不織布10は、凹凸形状に賦形した第1繊維層11に繊維ウエブを積層し、熱風による加熱により、繊維ウエブの繊維同士を熱融着させて第2繊維層12を得るとともに、第1繊維層11の繊維と第2繊維層12の繊維を熱融着させて接合したものであるから、明瞭な凹凸形状を持ち、低目付(30g/m以下)で、厚みが4.0mm以上の嵩高な不織布とすることができる。 The laminated nonwoven fabric 10 is obtained by laminating a fiber web on the first fiber layer 11 shaped into a concavo-convex shape, and heat-sealing the fibers of the fiber web to obtain a second fiber layer 12. Since the fiber of the 1st fiber layer 11 and the fiber of the 2nd fiber layer 12 are heat-sealed and joined, it has a clear concavo-convex shape, a low basis weight (30 g / m 2 or less), and a thickness of 4.0 mm. It can be set as the above bulky nonwoven fabric.
 次に、本発明の積層不織布10を製造するのに好適な積層不織布の製造装置の一例について、図3を参照して以下に説明する。なお、積層不織布の製造装置は以下の構成に限定されるものではなく、本発明の積層不織布10を製造できるものであれば如何なる構成の製造装置であってもよい。 Next, an example of a laminated nonwoven fabric production apparatus suitable for producing the laminated nonwoven fabric 10 of the present invention will be described below with reference to FIG. In addition, the manufacturing apparatus of a laminated nonwoven fabric is not limited to the following structures, The manufacturing apparatus of what kind of structure may be sufficient as long as the laminated nonwoven fabric 10 of this invention can be manufactured.
 図3に示すように、積層不織布の製造装置101は、第1繊維層11を作製する熱可塑性繊維を含有する第1繊維ウエブ13を搬送する支持体110を有する。上記第1繊維ウエブ13は支持体110の表面に供給され、支持体110の表面に載った状態でエアースルー方式により凹凸形状を付与する賦形処理が行われ、所定の方向に送り出される。 As shown in FIG. 3, the laminated nonwoven fabric manufacturing apparatus 101 has a support 110 that transports a first fiber web 13 containing thermoplastic fibers that produce the first fiber layer 11. The first fiber web 13 is supplied to the surface of the support 110, and is subjected to a shaping process for imparting a concavo-convex shape by an air-through method while being placed on the surface of the support 110, and is sent out in a predetermined direction.
 上記支持体110は、コンベアで構成され、コンベアベルト110Bが上側両端と下側両端の4か所に配された回転支持ローラ110R(110Ra、110Rb、110Rc、110Rd)に支持されて回転するように構成されている。この回転支持ローラ110Rは、4か所に限定されず、コンベアベルト110Bが円滑に回転するように配されていればよい。コンベアベルト110Bは、その表面に複数の突起部110Tで構成される凹凸形状を有し、さらに複数の通気部(図示せず)を有する。例えば、突起部110Tと通気部とは交互にコンベアベルト110Bの面内縦横に配されている。このコンベアベルト110Bは無端ベルトになっている。 The support 110 is constituted by a conveyor, and the conveyor belt 110B is supported and rotated by rotation support rollers 110R (110Ra, 110Rb, 110Rc, 110Rd) disposed at four positions on the upper and lower ends. It is configured. The rotation support rollers 110R are not limited to four places, and may be arranged so that the conveyor belt 110B rotates smoothly. The conveyor belt 110 </ b> B has an uneven shape constituted by a plurality of protrusions 110 </ b> T on its surface, and further has a plurality of ventilation portions (not shown). For example, the protrusions 110T and the ventilation portions are alternately arranged in the longitudinal and lateral directions of the conveyor belt 110B. The conveyor belt 110B is an endless belt.
 突起部110Tは、先端に向かうにしたがって先細りになる形状を有し、その先端部は丸みが形成されている、例えば紡錘体の一端の形状を成す。その高さは不織布の用途、規格等により変わり、特に制限するものではないが、通常、好ましくは、2mm以上10mm以下に形成され、突起ピッチはMD方向に6mm以上10mm以下であり、CD方向に4mm以上6mm以下である。上記MDは機械方向であり不織布の製造時における第1繊維ウエブ13の流れ方向である。上記CDは第1繊維ウエブ13の幅方向であり機械方向と直交する方向である。この突起部110Tは、その高さが低すぎると第1繊維ウエブ13に十分な凹凸を賦形することができず、高すぎると熱風を吹き付けたときに突起部110Tが第1繊維ウエブ13を突き抜ける可能性がある。よって、突起部110Tは、上記範囲の高さで適宜設定される。そしてより好ましくは、3mm以上8mm以下の高さに形成され、MD方向に6mm以上10mm以下に配され、CD方向に4mm以上6mm以下に配されている。 The protrusion 110T has a shape that tapers toward the tip, and the tip has a rounded shape, for example, one end of a spindle. The height varies depending on the use, standard, etc. of the nonwoven fabric, and is not particularly limited. Usually, it is preferably formed to 2 mm to 10 mm, and the protrusion pitch is 6 mm to 10 mm in the MD direction, and in the CD direction. 4 mm or more and 6 mm or less. The MD is the machine direction and the flow direction of the first fiber web 13 during the production of the nonwoven fabric. The CD is the width direction of the first fiber web 13 and the direction perpendicular to the machine direction. If the height of the projection 110T is too low, the projections 110T cannot form sufficient irregularities on the first fiber web 13, and if the height is too high, the projection 110T causes the first fiber web 13 when the hot air is blown. There is a possibility to penetrate. Therefore, the protrusion 110T is appropriately set within the above range. More preferably, it is formed at a height of 3 mm or more and 8 mm or less, is arranged in the MD direction at 6 mm or more and 10 mm or less, and is arranged in the CD direction at 4 mm or more and 6 mm or less.
 また通気部(図示せず)は、支持体110に配された複数の開口部からなり、その開口率が支持体110の表面積に対して好ましくは20%以上45%以下に設定されている。開口率が低すぎると第1繊維ウエブ13に十分な凹凸形状を賦形することが難しくなり、開口率が高すぎると熱風を吹き付けた際に第1繊維ウエブ13が支持体110の下に移行して支持体110から剥離しにくくなり、賦形形状の悪化や毛羽が形成されやすくなる可能性がある。よって、上記開口率に設定される。また、上記開口率は、より好ましくは25%以上40%以下であり、特に好ましくは30%以上35%以下である。 Further, the ventilation portion (not shown) includes a plurality of openings disposed on the support 110, and the opening ratio is preferably set to 20% or more and 45% or less with respect to the surface area of the support 110. If the aperture ratio is too low, it will be difficult to form a sufficient uneven shape on the first fiber web 13. If the aperture ratio is too high, the first fiber web 13 will move below the support 110 when hot air is blown. Then, it becomes difficult to peel from the support 110, and there is a possibility that the shaped shape is deteriorated and fluff is likely to be formed. Therefore, the aperture ratio is set. The aperture ratio is more preferably 25% or more and 40% or less, and particularly preferably 30% or more and 35% or less.
 支持体110は、コンベアベルト110Bが回転支持ローラ110Rに支持されて回転することにより、突起部110Tを有する面側で、突起部110Tで第1繊維ウエブ13を掛け止めるようにして第1繊維ウエブ13を搬送する。支持体110の突起部110Tが配されている上方には、第1繊維ウエブ13の供給方向にそって順に、第1の熱風W1を吹き付けて第1エアースルー工程を行う第1ノズル111と、第2の熱風W2を吹き付けて第2エアースルー工程を行う第2ノズル112と、第3の熱風W3を吹き付けて第3エアースルー工程を行う第3ノズル113とが配され、第2ノズル112と第3ノズル113との間には第1繊維ウエブ13を冷却する冷却部(図示せず)が配されていてもよい。上記第1、第2ノズル111,112で前段のエアースルーが行われ、上記第3ノズル113で後段のエアースルーが行われる。 The support 110 is configured so that the first fiber web 13 is hooked by the protrusion 110T on the surface side having the protrusion 110T by rotating the conveyor belt 110B supported by the rotation support roller 110R. 13 is conveyed. Above the protrusion 110T of the support 110, the first nozzle 111 that performs the first air-through process by blowing the first hot air W1 in order along the supply direction of the first fiber web 13, A second nozzle 112 that blows the second hot air W2 to perform the second air-through process and a third nozzle 113 that blows the third hot air W3 to perform the third air-through process are arranged. A cooling unit (not shown) for cooling the first fiber web 13 may be disposed between the third nozzle 113 and the third nozzle 113. The first and second nozzles 111 and 112 perform upstream air-through, and the third nozzle 113 performs downstream air-through.
 第1ノズル111は、第1ヒータ(図示せず)を備え、第1ヒータで加熱された第1の熱風W1を、支持体110により搬送される第1繊維ウエブ13の表面に対して、例えばほぼ垂直に吹き付ける。第1ノズル111の吹き出し孔は、好ましくは、MD方向における長さが1mm以上20mm以下であり、CD方向における長さはウエブ幅以上であり、または賦形加工を行う幅である。吹き出し孔は、一列または多列のスリット、一列または多列に丸孔、長孔もしくは角孔が千鳥や並列に配置された形態を有している。より好ましくは2mm以上20mm以下の一列のスリットを有している。このように、第1ノズル111の吹き出し孔が配されていることから、第1の熱風W1が第1繊維ウエブ13の表面の幅方向に均一な風速で吹き付けられる。この第1の熱風W1には、上記第1ヒータによって所定温度に加熱された空気、窒素または水蒸気を用いることができる。好ましくは、コストが低い空気を用いる。 The first nozzle 111 includes a first heater (not shown), and the first hot air W1 heated by the first heater is applied to the surface of the first fiber web 13 conveyed by the support 110, for example. Spray almost vertically. The blowout hole of the first nozzle 111 preferably has a length in the MD direction of 1 mm or more and 20 mm or less, and a length in the CD direction is a web width or more, or a width for performing a shaping process. The blowout holes have a form in which one or more rows of slits, and one or more rows of round holes, long holes, or square holes are arranged in a staggered manner or in parallel. More preferably, it has a row of slits of 2 mm or more and 20 mm or less. Thus, since the blowing holes of the first nozzle 111 are arranged, the first hot air W1 is blown at a uniform wind speed in the width direction of the surface of the first fiber web 13. As the first hot air W1, air, nitrogen or water vapor heated to a predetermined temperature by the first heater can be used. Preferably, air with low cost is used.
 第1ノズル11から吹き出される第1の熱風W1は、第1繊維ウエブ13の繊維同士を凹凸形状が保持される状態に融着させる温度に第1ヒータによって制御されている。例えば、第1繊維ウエブ13の繊維が、芯部がポリエチレンテレフタレート(PET)であり鞘部がポリエチレン(PE)の芯鞘構造の複合繊維である場合、第1の熱風W1の温度は、好ましくは80℃以上155℃以下に制御される。また第1の熱風W1は、好ましくは20m/sec以上120m/sec以下の風速に制御されている。さらに第1の熱風W1の吹き付け時間は、好ましくは0.01秒以上0.5秒以下に制御されている。 The first hot air W1 blown out from the first nozzle 11 is controlled by the first heater to a temperature at which the fibers of the first fiber web 13 are fused to maintain a concavo-convex shape. For example, when the fibers of the first fiber web 13 are composite fibers having a core-sheath structure in which the core part is polyethylene terephthalate (PET) and the sheath part is polyethylene (PE), the temperature of the first hot air W1 is preferably It is controlled to 80 ° C. or more and 155 ° C. or less. The first hot air W1 is preferably controlled to a wind speed of 20 m / sec or more and 120 m / sec or less. Furthermore, the spraying time of the first hot air W1 is preferably controlled to be 0.01 seconds or more and 0.5 seconds or less.
 第2ノズル112は、第2ヒータ(図示せず)で加熱された第2の熱風W2を、コンベアベルト110Bで搬送される第1繊維ウエブ13の表面に対して、例えばほぼ垂直に吹き付ける。第2ノズル112の吹き出し孔には、幅方向、流れ方向に規則的に開孔しているパンチングメタルを使用することが望ましい。開孔率は、好ましくは10%以上40%以下とし、パンチングメタルを多段で組み合わせても良い。このように、第2ノズル112の吹き出し孔が形成されていることから、第2の熱風W2が第1繊維ウエブ13の表面の幅方向に均一な温度と風速で吹き付けられる。この第2の熱風W2には、上記第2ヒータによって加熱された空気、窒素または水蒸気を用いることができる。好ましくは、コストが低い空気を用いる。 The second nozzle 112 blows the second hot air W2 heated by a second heater (not shown) onto the surface of the first fiber web 13 conveyed by the conveyor belt 110B, for example, substantially perpendicularly. It is desirable to use a punching metal that is regularly opened in the width direction and the flow direction for the blowing holes of the second nozzle 112. The hole area ratio is preferably 10% or more and 40% or less, and punching metals may be combined in multiple stages. Thus, since the blowing hole of the second nozzle 112 is formed, the second hot air W2 is blown at a uniform temperature and wind speed in the width direction of the surface of the first fiber web 13. As the second hot air W2, air, nitrogen or water vapor heated by the second heater can be used. Preferably, air with low cost is used.
 第2ノズル112から吹き出される第2の熱風W2は、第2ヒータ(図示せず)によって、賦形された第1繊維ウエブ13の凹凸形状を保持した状態で第1繊維ウエブ13の繊維同士を融着させる温度に制御されている。例えば、第1繊維ウエブ13の繊維が低融点成分とこの低融点成分より融点の高い高融点成分を有する複合繊維の場合、第2の熱風W1は、その低融点成分の融点以上、第1繊維ウエブ13の繊維の高融点成分の融点未満の温度に制御されている。例えば、第1繊維ウエブ13の繊維が上述のような芯部がPETであり鞘部がPEの芯鞘構造の複合繊維である場合、第2の熱風W1は、130℃以上155℃以下の温度の熱風に制御されている。また第2の熱風W2は、1m/sec以上10m/sec以下の風速に制御されている。さらに第2の熱風W2の吹き付け時間は、0.03秒以上5秒以下に制御されている。
 このようにして、第1繊維ウエブ13を賦形処理および融着処理して第1繊維層11を得る。
The second hot air W2 blown out from the second nozzle 112 is formed between the fibers of the first fiber web 13 while maintaining the irregular shape of the first fiber web 13 shaped by a second heater (not shown). The temperature is controlled so as to fuse. For example, when the fiber of the first fiber web 13 is a composite fiber having a low melting point component and a high melting point component having a higher melting point than the low melting point component, the second hot air W1 is equal to or higher than the melting point of the low melting point component. The temperature is controlled below the melting point of the high melting point component of the fibers of the web 13. For example, when the fiber of the first fiber web 13 is a composite fiber having a core-sheath structure in which the core part is PET and the sheath part is PE as described above, the second hot air W1 is a temperature of 130 ° C. or higher and 155 ° C. or lower. It is controlled by hot air. The second hot air W2 is controlled to a wind speed of 1 m / sec or more and 10 m / sec or less. Further, the blowing time of the second hot air W2 is controlled to be 0.03 seconds or more and 5 seconds or less.
In this way, the first fiber web 13 is shaped and fused to obtain the first fiber layer 11.
 上記冷却部(図示せず)は、第2エアースルー工程を行う第2ノズル112と第3エアースルー工程を行う第3ノズル113との間に配された空間である。この空間を配することにより、言い換えれば、第2エアースルー工程と第3エアースルー工程とを連続して行わないようにすることにより、第2エアースルー工程後に第1繊維層11の繊維の融点よりも低い温度に自然冷却する。または、冷却部には、第1繊維層11を強制冷却させる手段を用いることもできる。 The cooling section (not shown) is a space arranged between the second nozzle 112 that performs the second air-through process and the third nozzle 113 that performs the third air-through process. By arranging this space, in other words, by not performing the second air-through process and the third air-through process continuously, the melting point of the fibers of the first fiber layer 11 after the second air-through process. Cool naturally to a lower temperature. Alternatively, means for forcibly cooling the first fiber layer 11 can be used for the cooling unit.
 第1繊維層11に対して、上面側から第2繊維ウエブ14を供給して、案内ローラ121によって第1繊維層11上に第2繊維ウエブ14を重ね合わせるようになっている。第3ノズル113は、第3ヒータ(図示せず)で加熱された第3の熱風W3を上記第1繊維層11上に第2繊維ウエブ14を重ね合わせた状態で、コンベアベルト(図示せず)に搬送された状態で、例えば重ね合わせた繊維ウエブに対してほぼ垂直に吹き出す。第3ノズル113の吹き出し孔は、幅方向、流れ方向に規則的に開孔しているパンチングメタルを使用することが望ましい。開孔率は、好ましくは10%以上40%以下とし、多段のパンチングメタルを組み合わせても良い。このように、第3ノズル113の吹き出し孔が配されていることから、第3の熱風W3が第2繊維ウエブ14の表面の幅方向に均一な温度で吹き付けられる。また、この第3の熱風W3には、上記第3ヒータによって加熱された空気、窒素または水蒸気を用いることができる。好ましくは、コストが低い空気を用いる。なお、重ね合わせた第1繊維層11と第2繊維ウエブ14とを支持する通気性を有する上記コンベアベルトが第3の熱風W3の下流側に配されている。 The second fiber web 14 is supplied from the upper surface side to the first fiber layer 11, and the second fiber web 14 is superimposed on the first fiber layer 11 by the guide roller 121. The third nozzle 113 is a conveyor belt (not shown) in a state in which the third hot air W3 heated by a third heater (not shown) is overlapped with the second fiber web 14 on the first fiber layer 11. ), For example, is blown out substantially perpendicular to the overlapped fiber web. It is desirable to use a punching metal that is regularly opened in the width direction and the flow direction for the blowing holes of the third nozzle 113. The hole area ratio is preferably 10% or more and 40% or less, and a multi-stage punching metal may be combined. Thus, since the blowing holes of the third nozzle 113 are arranged, the third hot air W3 is blown at a uniform temperature in the width direction of the surface of the second fiber web 14. The third hot air W3 can be air, nitrogen, or water vapor heated by the third heater. Preferably, air with low cost is used. In addition, the said conveyor belt which has the air permeability which supports the 1st fiber layer 11 and the 2nd fiber web 14 which were piled up is distribute | arranged to the downstream of the 3rd hot air W3.
 第3ノズル113から吹き出される第3の熱風W3は、第3ヒータ(図示せず)によって、上記第1繊維層11上に第2繊維ウエブ14を重ね合わせた状態でかつ第1繊維層11の凹凸形状を保持した状態で第1繊維層11と第2繊維ウエブ14同士を融着させる温度に制御されている。例えば、第2繊維ウエブ14の繊維が上述のような芯部がPETであり鞘部がPEの芯鞘構造の複合繊維である場合、第3の熱風W3は、130℃以上155℃以下の温度の熱風に制御されている。また第3の熱風W3は、0.4m/sec以上5m/sec以下の風速に制御されている。さらに第3の熱風W3の吹き付け時間は、2秒以上20秒以下に制御されている。 The third hot air W3 blown out from the third nozzle 113 is in a state where the second fiber web 14 is superposed on the first fiber layer 11 by a third heater (not shown) and the first fiber layer 11. The first fiber layer 11 and the second fiber web 14 are controlled to a temperature at which the first and second fiber webs 14 are fused in a state where the uneven shape is maintained. For example, when the fiber of the second fiber web 14 is a composite fiber having a core-sheath structure in which the core portion is PET and the sheath portion is PE as described above, the third hot air W3 has a temperature of 130 ° C. or higher and 155 ° C. or lower. It is controlled by hot air. The third hot air W3 is controlled to a wind speed of 0.4 m / sec or more and 5 m / sec or less. Further, the blowing time of the third hot air W3 is controlled to be not shorter than 2 seconds and not longer than 20 seconds.
 上記第1ノズル111の吹き出し方向には、第1ノズル111から吹き出され、第1繊維ウエブ13、支持体10を通ってきた第1の熱風W1を排気するダクト115が配されている。このダクト115には、吸引された第1の熱風W1を排出する排気装置(図示せず)が接続されていてもよい。また第2ノズル112の吹き出し方向には、第2ノズル112から吹き出され、第1繊維ウエブ13、支持体110を通ってきた第2の熱風W2を排気するダクト116が配されている。このダクト116には、吸引された第2の熱風W2を排出する排気装置(図示せず)が接続されていてもよい。さらに第3ノズル113の吹き出し方向には、第3ノズル113から吹き出され、第2繊維ウエブ14、第1繊維層11を通ってきた第3の熱風W3を排気するダクト17が配されている。このダクト17には、吸引された第3の熱風W3を排出する排気装置(図示せず)が接続されていてもよい。上記それぞれの排気装置は一つの排気装置として、それぞれのダクト115、116、117に接続されたものでもよい。 In the blowing direction of the first nozzle 111, a duct 115 is arranged to exhaust the first hot air W1 blown out from the first nozzle 111 and passed through the first fiber web 13 and the support body 10. The duct 115 may be connected to an exhaust device (not shown) that discharges the sucked first hot air W1. Further, in the blowing direction of the second nozzle 112, a duct 116 is arranged for exhausting the second hot air W2 blown from the second nozzle 112 and passed through the first fiber web 13 and the support 110. The duct 116 may be connected to an exhaust device (not shown) that discharges the sucked second hot air W2. Further, in the blowing direction of the third nozzle 113, a duct 17 is arranged for exhausting the third hot air W <b> 3 blown out from the third nozzle 113 and passed through the second fiber web 14 and the first fiber layer 11. An exhaust device (not shown) that discharges the sucked third hot air W3 may be connected to the duct 17. Each of the exhaust devices may be connected to the ducts 115, 116, 117 as one exhaust device.
 次に、本発明に係る積層不織布10を製造するのに好適な別の積層不織布の製造装置について、図4を参照しながら、以下に説明する。
 図4に示すように、この積層不織布の製造装置102は、前述の積層不織布の製造装置101において、第1繊維層11の下面側から第2繊維ウエブ14を供給して、案内ロール122によって第1繊維層11下に第2繊維ウエブ14を重ね合わせるようになっている。そして第3エアースルー工程を第3の熱風W3が第1繊維層11側から吹き付けるようにしたものである。したがって、上記第2繊維ウエブ14の供給部分を除き、前記積層不織布の製造装置101と同様なる構成部品による同様なる構成を有する。
Next, another apparatus for producing a laminated nonwoven fabric suitable for producing the laminated nonwoven fabric 10 according to the present invention will be described below with reference to FIG.
As shown in FIG. 4, the laminated nonwoven fabric manufacturing apparatus 102 supplies the second fiber web 14 from the lower surface side of the first fiber layer 11 in the above-described laminated nonwoven fabric manufacturing apparatus 101, and is guided by the guide roll 122. The second fiber web 14 is superposed under the one fiber layer 11. In the third air-through process, the third hot air W3 is blown from the first fiber layer 11 side. Therefore, except the supply part of the said 2nd fiber web 14, it has the same structure by the component similar to the manufacturing apparatus 101 of the said laminated nonwoven fabric.
 次に、本発明に係る積層不織布の製造方法の一実施形態(第1実施形態)について、前述の図3を参照しながら、以下に説明する。この積層不織布の製造方法は、一例として前述の積層不織布の製造装置101または102によって実現される。以下、積層不織布の製造装置101による製造方法を説明する。 Next, an embodiment (first embodiment) of a method for producing a laminated nonwoven fabric according to the present invention will be described below with reference to FIG. This laminated nonwoven fabric manufacturing method is realized, for example, by the laminated nonwoven fabric manufacturing apparatus 101 or 102 described above. Hereinafter, the manufacturing method by the manufacturing apparatus 101 of a laminated nonwoven fabric is demonstrated.
 前述の図3に示すように、カード機(図示せず)により所定の厚さに作られた第1繊維ウエブ13を支持体110の突起部110Tが配された上面側に供給する。
 第1繊維ウエブ13の繊維に用いることができる繊維材料は特に限定されない。具体的には、下記の繊維などが挙げられる。ポリエチレン(PE)繊維、ポリプロピレン(PP)繊維等のポリオレフィン繊維;ポリエチレンテレフタレート(PET)、ポリアミド等の熱可塑性樹脂を単独で用いてなる繊維がある。また、芯鞘型、サイドバイサイド型等の構造の複合繊維がある。本発明では複合繊維を用いるのが好ましい。ここでいう複合繊維とは、高融点成分が芯部分で低融点成分が鞘部分とする芯鞘繊維、また高融点成分と低融点成分とが並列するサイドバイサイド繊維が挙げられる。その好ましい例として、鞘成分がポリエチレンまたは低融点ポリプロピレンである芯鞘構造の繊維が挙げられ、該芯/鞘構造の繊維の代表例としては、PET(芯)/PE(鞘)、PP(芯)/PE(鞘)、PP(芯)/低融点PP(鞘)等の繊維が挙げられる。さらに具体的には、上記構成繊維は、ポリエチレン繊維、ポリプロピレン繊維等のポリオレフィン系繊維、ポリエチレン複合繊維、ポリプロピレン複合繊維を含むのが好ましい。ここで、該ポリエチレン複合繊維の複合組成は、ポリエチレンテレフタレート/ポリエチレンであり、該ポリプロピレン複合繊維の複合組成が、ポリエチレンテレフタレート/低融点ポリプロピレンであるのが好ましく、より具体的には、PET(芯)/PE(鞘)、PET(芯)/低融点PP(鞘)が挙げられる。また、これらの繊維は、単独で用いて不織布を構成してもよいが、2種以上を組み合わせた混繊として用いることもできる。
As shown in FIG. 3 described above, the first fiber web 13 made to a predetermined thickness by a card machine (not shown) is supplied to the upper surface side where the protrusion 110T of the support 110 is disposed.
The fiber material that can be used for the fibers of the first fiber web 13 is not particularly limited. Specific examples include the following fibers. There are polyolefin fibers such as polyethylene (PE) fibers and polypropylene (PP) fibers; fibers using a thermoplastic resin such as polyethylene terephthalate (PET) and polyamide alone. In addition, there are composite fibers having a structure such as a core-sheath type and a side-by-side type. In the present invention, it is preferable to use a composite fiber. Examples of the composite fiber include a core-sheath fiber having a high melting point component as a core portion and a low melting point component as a sheath portion, and a side-by-side fiber in which a high melting point component and a low melting point component are arranged in parallel. Preferable examples thereof include core-sheath fibers in which the sheath component is polyethylene or low-melting polypropylene. Typical examples of the core / sheath fibers are PET (core) / PE (sheath), PP (core ) / PE (sheath), PP (core) / low melting point PP (sheath) and the like. More specifically, the constituent fibers preferably include polyolefin fibers such as polyethylene fibers and polypropylene fibers, polyethylene composite fibers, and polypropylene composite fibers. Here, the composite composition of the polyethylene composite fiber is polyethylene terephthalate / polyethylene, and the composite composition of the polypropylene composite fiber is preferably polyethylene terephthalate / low melting point polypropylene, and more specifically, PET (core). / PE (sheath), PET (core) / low melting point PP (sheath). These fibers may be used alone to form a nonwoven fabric, but can also be used as a mixed fiber in which two or more kinds are combined.
 そして、上記第1繊維ウエブ13に熱風を吹き付けて通気性の支持体110の凹凸形状に追随させる前段のエアースルー工程として、支持体110表面に送給された第1繊維ウエブ13に第1ノズル111より第1の熱風W1を吹き付ける第1エアースルー工程を行う。このとき、第1の熱風W1は、支持体110に載っている第1繊維ウエブ13の表面に対して垂直方向から吹き付ける。また第1ノズル111の吹き出し数は第1繊維ウエブ13の搬送方向にそって複数個所としてもよい。この第1の熱風W1によって、支持体110の突起部110Tの形状に沿った凹凸形状に第1繊維ウエブ13が賦形される。第1繊維ウエブ13の繊維同士の融着は、その凹凸形状が維持できる程度でよい。このとき、第1の熱風W1の温度は、繊維の種類、加工速度、熱風の風速などによって変わるので一義的に定まるものではないが、第1繊維ウエブ13の繊維が、芯部がポリエチレンテレフタレート(PET)であり鞘部がポリエチレン(PE)の芯鞘構造の複合繊維である場合、好ましくは80℃以上155℃以下とし、より好ましくは130℃以上135℃以下とする。
 なお、第1の熱風W1の温度が低すぎる場合、繊維の戻りが生じ賦形性が低下する。一方、温度が高すぎる場合、繊維同士が一気に融着し、自由度の低下により賦形性が損なわれることとなる。
Then, a first nozzle is applied to the first fiber web 13 fed to the surface of the support 110 as a previous air-through process in which hot air is blown onto the first fiber web 13 to follow the uneven shape of the breathable support 110. The 1st air through process which blows the 1st hot air W1 from 111 is performed. At this time, the first hot air W1 is blown from the vertical direction on the surface of the first fiber web 13 mounted on the support 110. Further, the number of blowouts of the first nozzle 111 may be a plurality of locations along the conveying direction of the first fiber web 13. By the first hot air W1, the first fiber web 13 is shaped into a concavo-convex shape along the shape of the protrusion 110T of the support 110. The fusion of the fibers of the first fiber web 13 may be such that the uneven shape can be maintained. At this time, the temperature of the first hot air W1 varies depending on the type of fiber, the processing speed, the wind speed of the hot air, and the like, but is not uniquely determined. However, the fiber of the first fiber web 13 has a polyethylene terephthalate (core portion). PET) and the sheath part is a composite fiber having a core-sheath structure of polyethylene (PE), preferably 80 ° C. or higher and 155 ° C. or lower, more preferably 130 ° C. or higher and 135 ° C. or lower.
In addition, when the temperature of the 1st hot air W1 is too low, the return of a fiber will arise and a shaping property will fall. On the other hand, when the temperature is too high, the fibers are fused at a stretch, and the formability is impaired due to a decrease in the degree of freedom.
 また第1の熱風W1は、好ましくは20m/sec以上120m/sec以下の風速とする。第1の熱風W1の風速が遅すぎると十分な賦形ができず、賦形性が損なわれることがある。一方、風速が速すぎると、第1繊維ウエブ13の繊維が突起部110Tにより選り分けられ、賦形され過ぎた状態になる。よって、第1の熱風W1の風速は上記の範囲とし、より好ましくは、40m/sec以上80m/sec以下とする。 The first hot air W1 is preferably set to a wind speed of 20 m / sec or more and 120 m / sec or less. When the wind speed of the 1st hot air W1 is too slow, sufficient shaping cannot be performed and shaping property may be impaired. On the other hand, if the wind speed is too high, the fibers of the first fiber web 13 are selected by the protrusions 110T and become too shaped. Therefore, the wind speed of the 1st hot air W1 shall be said range, More preferably, you may be 40 m / sec or more and 80 m / sec or less.
 さらに第1の熱風W1の吹き付け時間は、好ましくは0.01秒以上0.5秒以下とし、より好ましくは、0.04秒以上0.08秒以下とする。吹き付け時間が短すぎると第1繊維ウエブ13の繊維同士の融着が不十分になり凹凸形状に十分に賦形ができなくなる。一方、吹き付け時間が長すぎると第1繊維ウエブ13の繊維同士の融着が進み過ぎ、自由度の低下により賦形性が損なわれることとなる。
 そして第1繊維ウエブ13を通過した第1の熱風W1は、支持体110の通気部を通ってダクト115から外部に排出される。
Furthermore, the blowing time of the first hot air W1 is preferably 0.01 seconds to 0.5 seconds, and more preferably 0.04 seconds to 0.08 seconds. If the spraying time is too short, the fibers of the first fiber web 13 are not sufficiently fused with each other, and the uneven shape cannot be sufficiently shaped. On the other hand, if the spraying time is too long, the fusion of the fibers of the first fiber web 13 proceeds too much, and the formability is impaired due to a decrease in the degree of freedom.
And the 1st hot air W1 which passed the 1st fiber web 13 is discharged | emitted outside from the duct 115 through the ventilation part of the support body 110. FIG.
 次に、第1繊維ウエブ13を支持体110のコンベアベルト110Bの回転とともに第2ノズル112の第2の熱風W2の吹き付け位置まで搬送する。さらに前段のエアースルー工程として、第2ノズル112によって第2の熱風W2を第1繊維ウエブ13に吹き付け、第1繊維ウエブ13の凹凸形状を維持した状態で繊維同士を融着させて凹凸形状を固定する第2エアースルー工程を行う。このとき、第2の熱風W2は、第1繊維ウエブ13の表面に対して垂直方向から吹き付ける。また第2ノズル112の吹き出し数は第1繊維ウエブ13の搬送方向にそって複数個所とすることが好ましい。 Next, the first fiber web 13 is conveyed to the position where the second hot air W2 is blown from the second nozzle 112 along with the rotation of the conveyor belt 110B of the support 110. Further, as a previous air-through process, the second hot air W2 is blown to the first fiber web 13 by the second nozzle 112, and the fibers are fused while maintaining the uneven shape of the first fiber web 13, thereby forming the uneven shape. A second air-through step for fixing is performed. At this time, the second hot air W <b> 2 is blown from the direction perpendicular to the surface of the first fiber web 13. The number of blowouts of the second nozzle 112 is preferably set at a plurality of locations along the conveying direction of the first fiber web 13.
 第2の熱風W2の温度は、繊維の種類、加工速度、熱風の風速などによって変わるので一義的に定まるものではないが、第1繊維ウエブ13の繊維が上述のようなPETとPEとの芯鞘構造の複合繊維である場合、第1繊維ウエブ13の繊維の低融点成分の融点以上、第1繊維ウエブ13の繊維の高融点成分の融点未満とする。130℃以上155℃以下とし、好ましくは135℃以上150℃以下とする。
 なお、第2の熱風W2の温度が第1繊維ウエブ13の繊維の低融点成分の融点より低くなると、凹凸形状の保持性が低下し、第1繊維ウエブ13の繊維の高融点成分の融点以上になると、風合いが悪くなり、また嵩がでにくくなる。
The temperature of the second hot air W2 varies depending on the type of fiber, the processing speed, the wind speed of the hot air, etc., but is not uniquely determined. However, the fibers of the first fiber web 13 are the core of PET and PE as described above. In the case of a composite fiber having a sheath structure, it is set to be equal to or higher than the melting point of the low melting point component of the fiber of the first fiber web 13 and lower than the melting point of the high melting point component of the fiber of the first fiber web 13. It is set to 130 ° C. or higher and 155 ° C. or lower, preferably 135 ° C. or higher and 150 ° C. or lower.
Note that when the temperature of the second hot air W2 is lower than the melting point of the low melting point component of the fibers of the first fiber web 13, the retention of the uneven shape is lowered, and the melting point of the high melting point component of the fibers of the first fiber web 13 is exceeded. When it becomes, a texture will worsen and it will become difficult to become bulky.
 また第2の熱風W2は、好ましくは第1の熱風W1の風速よりも遅く設定し、1m/sec以上10m/sec以下とする。第2の熱風W2の風速が遅すぎると熱量が不足するため、不織布強度が不十分になる。一方、風速が速すぎると第1繊維ウエブ13が風圧で厚みが小さくなり、その状態で加熱されると繊維同士の融着が多くなるため、感触は硬くなり、厚みが薄くなり液透過性が不十分になる。よって、第2の熱風W2の風速は上記の範囲とし、好ましくは、2m/sec以上8m/sec以下とする。 Further, the second hot air W2 is preferably set slower than the wind speed of the first hot air W1, and is set to 1 m / sec or more and 10 m / sec or less. If the wind speed of the second hot air W2 is too slow, the amount of heat is insufficient, and the nonwoven fabric strength is insufficient. On the other hand, if the wind speed is too high, the thickness of the first fiber web 13 is reduced by the wind pressure, and when heated in this state, the fibers are fused to each other, so that the touch becomes hard, the thickness is reduced, and the liquid permeability is reduced. It becomes insufficient. Therefore, the wind speed of the 2nd hot air W2 shall be said range, Preferably it shall be 2 m / sec or more and 8 m / sec or less.
 さらに第2の熱風W2の吹き付け時間は、0.03秒以上5秒以下とし、好ましくは0.1秒以上1秒以下とする。吹き付け時間が短すぎると第1繊維ウエブ13の繊維同士の融着が十分にできず凹凸形状を固定することが難しくなる。一方、吹き付け時間が長すぎると第1繊維ウエブ13の繊維同士が融着され過ぎて、液透過性が得られ難くなる。
 上記のようにして、第1、第2エアースルー工程で第1繊維ウエブ13を賦形した第1繊維層11が得られる。
Furthermore, the spray time of the second hot air W2 is set to 0.03 seconds to 5 seconds, preferably 0.1 seconds to 1 second. If the spraying time is too short, the fibers of the first fiber web 13 cannot be sufficiently fused together, and it becomes difficult to fix the uneven shape. On the other hand, if the spraying time is too long, the fibers of the first fiber web 13 are excessively fused with each other, making it difficult to obtain liquid permeability.
As described above, the first fiber layer 11 formed with the first fiber web 13 in the first and second air-through processes is obtained.
 次に、上記第1、第2エアースルー工程で賦形された第1繊維層11を冷却する。この冷却は、自然冷却または強制冷却で行うことができる。その冷却温度は、第1繊維層11の熱可塑性繊維の融点よりも低い温度、好ましくは第1繊維層11を構成する繊維の低融点成分の融点よりも低い温度とする。好ましくは100℃以下にする。
 この冷却によって、第1繊維層11の繊維同士の融着点が強固に固化される。特に第1繊維層11を100℃以下に冷却することにより、繊維同士の融着の交点部分をより強固に固定することができ、第1繊維層11の厚みを維持できるようになる。鞘樹脂がPEの場合、融点は125℃以上135℃以下であるが軟化点温度は100℃以上130℃以下であるため、100℃以下に冷却することで固化がいっそう確実になる。
Next, the first fiber layer 11 shaped in the first and second air-through processes is cooled. This cooling can be performed by natural cooling or forced cooling. The cooling temperature is lower than the melting point of the thermoplastic fiber of the first fiber layer 11, preferably lower than the melting point of the low melting point component of the fibers constituting the first fiber layer 11. Preferably, the temperature is set to 100 ° C. or lower.
By this cooling, the fusion point between the fibers of the first fiber layer 11 is firmly solidified. In particular, by cooling the first fiber layer 11 to 100 ° C. or lower, the intersection part of the fusion of the fibers can be more firmly fixed, and the thickness of the first fiber layer 11 can be maintained. When the sheath resin is PE, the melting point is 125 ° C. or more and 135 ° C. or less, but the softening point temperature is 100 ° C. or more and 130 ° C. or less. Therefore, solidification is further ensured by cooling to 100 ° C. or less.
 そして賦形された第1繊維層11を第3ノズル113の第3の熱風W3の吹き付け位置に搬送する。その間に、さらに冷却後の第1繊維層11に対して、上面側から第2繊維ウエブ14を供給して、案内ローラ121により第1繊維層11上に第2繊維ウエブ14を重ね合わせる。そして第3エアースルー工程を行う。この第3エアースルー工程では、第2繊維ウエブ14側から第3の熱風W3を吹き付け、第1繊維層11の凹凸形状を保持した状態で、第2繊維ウエブ14の繊維同士を熱融着して第2繊維層12を得ると同時に第1繊維層11と第2繊維ウエブ14の繊維同士を熱融着させて接合する。このときの第3の熱風W3の温度は、繊維の種類、加工速度、熱風の風速などによって変わるので一義的に定まるものではないが、第2繊維ウエブ14の繊維が、上述のようなPETとPEとの芯鞘構造の複合繊維である場合、130℃以上155℃以下とし、好ましくは130℃以上145℃以下とする。
 なお、第3の熱風W3の温度が低すぎると繊維同士の融着ができず第1繊維層11と第2繊維ウエブ14とを接合することが困難になる。一方、第3の熱風W3の温度が高すぎると、繊維同士が融着されすぎて、液透過性が得られ難くなる。
And the shaped 1st fiber layer 11 is conveyed to the spray position of the 3rd hot air W3 of the 3rd nozzle 113. FIG. In the meantime, the second fiber web 14 is supplied from the upper surface side to the cooled first fiber layer 11, and the second fiber web 14 is superimposed on the first fiber layer 11 by the guide roller 121. And a 3rd air through process is performed. In this third air-through process, the third hot air W3 is blown from the second fiber web 14 side, and the fibers of the second fiber web 14 are heat-sealed in a state where the uneven shape of the first fiber layer 11 is maintained. Thus, at the same time as obtaining the second fiber layer 12, the fibers of the first fiber layer 11 and the second fiber web 14 are bonded by heat fusion. The temperature of the third hot air W3 at this time is not uniquely determined because it varies depending on the type of fiber, the processing speed, the wind speed of the hot air, etc., but the fibers of the second fiber web 14 are made of PET as described above. In the case of a composite fiber having a core-sheath structure with PE, the temperature is 130 ° C. or higher and 155 ° C. or lower, preferably 130 ° C. or higher and 145 ° C. or lower.
If the temperature of the third hot air W3 is too low, the fibers cannot be fused together, and it becomes difficult to join the first fiber layer 11 and the second fiber web 14 together. On the other hand, if the temperature of the third hot air W3 is too high, the fibers are too fused with each other, making it difficult to obtain liquid permeability.
 また第3の熱風W3は、0.4m/sec以上5m/sec以下、好ましくは1m/sec以上3m/sec以下の風速に制御する。風速が遅すぎると熱量が不足するため、第2繊維層12(第2繊維ウエブ14)の不織布強度が不十分になる。一方、風速が速すぎると第2繊維ウエブ14が風圧で厚みが小さくなり、その状態で加熱されると繊維同士の融着が多くなるため、感触は硬くなり、厚みが薄くなり液透過性が不十分になる。 The third hot air W3 is controlled to a wind speed of 0.4 m / sec or more and 5 m / sec or less, preferably 1 m / sec or more and 3 m / sec or less. If the wind speed is too slow, the amount of heat is insufficient, so that the nonwoven fabric strength of the second fiber layer 12 (second fiber web 14) becomes insufficient. On the other hand, if the wind speed is too high, the thickness of the second fiber web 14 is reduced by the wind pressure, and if heated in that state, the fibers are fused more frequently, so that the touch becomes harder, the thickness becomes thinner, and the liquid permeability becomes lower. It becomes insufficient.
 また、第3の熱風W3の吹き付け時間は、1秒以上20秒以下、好ましくは2秒以上15秒以下に制御する。吹き付け時間が短すぎると第2繊維ウエブ14の繊維同士の融着、第1繊維層11と第2繊維ウエブ14の繊維同士の融着が十分にできなくなる。一方、吹き付け時間が長すぎると第2繊維ウエブ14の繊維同士、第1繊維層11と第2繊維ウエブ14の繊維同士が融着され過ぎて、液透過性が得られ難くなる。 Further, the blowing time of the third hot air W3 is controlled to be 1 second to 20 seconds, preferably 2 seconds to 15 seconds. If the spraying time is too short, the fibers of the second fiber web 14 cannot be fused together, and the fibers of the first fiber layer 11 and the second fiber web 14 cannot be sufficiently fused. On the other hand, if the spraying time is too long, the fibers of the second fiber web 14 and the fibers of the first fiber layer 11 and the second fiber web 14 are fused too much, and it becomes difficult to obtain liquid permeability.
 よって、上記第3エアースルー工程では、第1繊維層11の凹凸形状が第2繊維ウエブ14を賦形する際の支持体となり、液透過性を損なうことなく、第2繊維ウエブ14を第1繊維層11の賦形された凹凸形状に沿わせて第1繊維層11の繊維と第2繊維ウエブ14の繊維同士を接合させることができる。また、第2繊維ウエブ14側から見て第1繊維層11の凹部となる部分の底部には、第3の熱風W3の風速を調整することによって、第2繊維ウエブ14の繊維の入り込みを少なくできる。これによって、積層不織布10にした状態で、第1繊維層11の凸部21Aと第2繊維層12(第2繊維ウエブ14)の凸部21Bとの間に繊維密度が低い部分25を作製することができる。この繊維密度が低い部分25は、実質的には第2繊維層12の凸部頂部の繊維密度が低くなっている部分である。 Therefore, in the third air-through step, the uneven shape of the first fiber layer 11 becomes a support when shaping the second fiber web 14, and the second fiber web 14 is removed from the first fiber without impairing the liquid permeability. The fibers of the first fiber layer 11 and the fibers of the second fiber web 14 can be joined together along the irregular shape formed of the fiber layer 11. Further, by adjusting the wind speed of the third hot air W3 at the bottom of the portion that becomes the concave portion of the first fiber layer 11 when viewed from the second fiber web 14 side, the fiber entry of the second fiber web 14 is reduced. it can. Thus, in the state of the laminated nonwoven fabric 10, a portion 25 having a low fiber density is produced between the convex portion 21A of the first fiber layer 11 and the convex portion 21B of the second fiber layer 12 (second fiber web 14). be able to. The portion 25 having a low fiber density is a portion where the fiber density at the top of the convex portion of the second fiber layer 12 is substantially low.
 上述の第1実施形態の積層不織布の製造方法では、前段のエアースルー工程で第1繊維層11を凹凸形状に賦形し、その状態で第1繊維層11に未融着の第2繊維ウエブ14を重ね合わせ、後段のエアースルー工程を行うことから、嵩高な低目付の積層不織布10を得ることができる。さらにこの積層不織布10は、第1繊維層11が明瞭な凹凸形状を有し、熱風の吹き付けによる繊維層の接合によってもその凹凸形状が維持されるので、低荷重でのクッション感(KES・WC値)が良い積層不織布が得ることができる。さらに摩耗による毛羽抜けが少なく、低荷重時に嵩高があり、凹部での液透過性に優れた低目付の積層不織布を提供できる。 In the method for manufacturing a laminated nonwoven fabric according to the first embodiment described above, the first fiber layer 11 is shaped into a concavo-convex shape in the preceding air-through process, and the second fiber web that is unfused to the first fiber layer 11 in that state. Since 14 is overlapped and the subsequent air-through process is performed, the bulky low-weight laminated nonwoven fabric 10 can be obtained. Further, in this laminated nonwoven fabric 10, the first fiber layer 11 has a clear concavo-convex shape, and the concavo-convex shape is maintained even by joining the fiber layers by blowing hot air, so that a cushion feeling (KES / WC) under low load A laminated nonwoven fabric having a good value) can be obtained. Furthermore, it is possible to provide a laminated nonwoven fabric with a low basis weight that is less likely to lose fluff due to wear, is bulky at low loads, and has excellent liquid permeability in the recesses.
 すなわち、第1ノズル111から吹き出された第1の熱風W1により第1繊維ウエブ13の繊維同士を凹凸形状が保持される状態にできる。このため、支持体110の突起部110T間にもぐりこんだ第1繊維ウエブ13の繊維が戻りにくくなる。この状態で、第2ノズル112から吹き出された第2の熱風W2により、第1繊維ウエブ13の繊維同士が融着され、凹凸形状を維持した状態で固定することができる。このように、第1繊維ウエブ13に第1,第2の熱風W1,W2を吹き付けることから、熱により第1繊維ウエブ13の繊維が柔軟化されて、支持体110の突起部110Tの表面形状に沿いやすくなり、凹凸形状の保持性がよくなる。その際、第1,第2の熱風W1,W2は、支持体110に配された通気孔を通過することから、第1繊維ウエブ13を突起部110Tの表面により沿わせ易くなる。その結果、賦形性のよい低目付(例えば、30g/cm以下)で嵩高(例えば、低荷重時で4.0mm以上)な賦形不織布である第1繊維層11が得られる。
 また、第1繊維層11に第2繊維ウエブ14を重ね合わせて、第3の熱風W3による繊維同士の融着接合により、第1繊維層11に第2繊維ウエブ14(第2繊維層12)を接合しているので、積層不織布10の凹部22であっても、繊維密度が高くならず、液通過時間が短い(液通過速度が速い)液透過性に優れたものとなる。さらに、第2繊維ウエブ14側から第3の熱風W3を吹き付けるため、凹凸形状に賦形された第1繊維層11側が第3の熱風W3の下流側になるので、第1繊維層11の凹凸形状が確実に維持されるとともに、第2繊維ウエブ14の繊維が第1繊維層11の繊維と接触しやすくなるので、第2繊維ウエブ14と第1繊維層11との融着接合が確実にできる。さらにまた、第1繊維層11の第1凸部21Aと第2繊維層12(第2繊維ウエブ14)の第2凸部21Bとの間に繊維密度が低い部分25を作製することができるので、低荷重時でのクッション性がさらに良くなる。
 また、第2繊維層12は垂直方向の配向度が高いため、積層不織布10に荷重がかけられたときに潰れるのを抑制する働きを有する。
 本発明の積層不織布10を用いることで、明瞭な凹凸形状を有し、摩耗による毛羽抜けが少なく、低荷重時に嵩高があり、摩耗による毛羽抜けが少なく、凹部での液透過性に優れた低目付の吸収性物品を得ることができる。
That is, the first hot air W1 blown out from the first nozzle 111 can keep the fibers of the first fiber web 13 in an uneven shape. For this reason, the fibers of the first fiber web 13 that are trapped between the protrusions 110T of the support 110 are difficult to return. In this state, the fibers of the first fiber web 13 are fused together by the second hot air W2 blown from the second nozzle 112, and can be fixed in a state where the uneven shape is maintained. Thus, since the first and second hot air W1 and W2 are blown onto the first fiber web 13, the fibers of the first fiber web 13 are softened by heat, and the surface shape of the protrusion 110T of the support 110 is made. It becomes easier to follow along and the retention of the uneven shape is improved. In that case, since the 1st, 2nd hot air W1, W2 passes the ventilation hole distribute | arranged to the support body 110, it becomes easy to make the 1st fiber web 13 follow the surface of the projection part 110T. As a result, it is possible to obtain the first fiber layer 11 which is a shaped nonwoven fabric having a low basis weight (for example, 30 g / cm 2 or less) and high bulk (for example, 4.0 mm or more at a low load) with good shapeability.
Further, the second fiber web 14 is superimposed on the first fiber layer 11, and the second fiber web 14 (second fiber layer 12) is bonded to the first fiber layer 11 by fusion-bonding the fibers with the third hot air W3. Therefore, even if it is the recessed part 22 of the laminated nonwoven fabric 10, a fiber density does not become high and it becomes the thing excellent in liquid permeability with a short liquid passage time (liquid passage speed is quick). Furthermore, since the 3rd hot air W3 is blown from the 2nd fiber web 14 side, since the 1st fiber layer 11 side shaped in the uneven | corrugated shape becomes a downstream of the 3rd hot air W3, the unevenness | corrugation of the 1st fiber layer 11 The shape is reliably maintained, and the fibers of the second fiber web 14 can easily come into contact with the fibers of the first fiber layer 11, so that the fusion bonding between the second fiber web 14 and the first fiber layer 11 is ensured. it can. Furthermore, a portion 25 having a low fiber density can be produced between the first convex portion 21A of the first fiber layer 11 and the second convex portion 21B of the second fiber layer 12 (second fiber web 14). Further, the cushioning property at a low load is further improved.
In addition, since the second fiber layer 12 has a high degree of orientation in the vertical direction, the second fiber layer 12 has a function of suppressing crushing when a load is applied to the laminated nonwoven fabric 10.
By using the laminated nonwoven fabric 10 of the present invention, it has a clear concavo-convex shape, has little fluff due to wear, is bulky at low load, has little fluff due to wear, and has excellent liquid permeability in the recess. An absorbent article having a basis weight can be obtained.
 次に、本発明に係る積層不織布の製造方法の好ましい別の実施形態(第2実施形態)について、前記図4を参照しながら、以下に説明する。
 前記図4に示すように、第2実施形態の積層不織布の製造方法は、前述の積層不織布の製造装置102によって実現される。
Next, another preferred embodiment (second embodiment) of the method for producing a laminated nonwoven fabric according to the present invention will be described below with reference to FIG.
As shown in FIG. 4, the laminated nonwoven fabric manufacturing method according to the second embodiment is realized by the laminated nonwoven fabric manufacturing apparatus 102 described above.
 第1実施形態の製造方法と同様にして、第1繊維層11を作り、第3ノズル113の第3の熱風W3の吹き付け位置に搬送する。この間に、第1実施形態の製造方法と同様に第1繊維層11を冷却することが好ましい。 In the same manner as in the manufacturing method of the first embodiment, the first fiber layer 11 is formed and conveyed to the position where the third nozzle 113 blows the third hot air W3. During this period, it is preferable to cool the first fiber layer 11 as in the manufacturing method of the first embodiment.
 冷却後の第1繊維層11に対して、下面側から第2繊維ウエブ14を供給して、第1繊維層11下に第2繊維ウエブ14を重ね合わせる。そして第3エアースルー工程を行う。この第3エアースルー工程で、第1繊維層11側から第3の熱風W3を吹き付け、第1繊維層11の凹凸形状を保持した状態で、第2繊維ウエブ14の繊維同士を熱融着して第2繊維層12を得ると同時に第1繊維層11と第2繊維ウエブ14の繊維同士を熱融着させて接合する。このときの第3の熱風W3の温度は、繊維の種類、加工速度、熱風の風速などによって変わるので一義的に定まるものではないが、第2繊維ウエブ14の繊維が、上述のようなPETとPEとの芯鞘構造の複合繊維である場合、好ましくは130℃以上155℃以下とし、より好ましくは130℃以上145℃以下とする。
 なお、第3の熱風W3の温度が低すぎると繊維同士の融着ができず第1繊維層11と第2繊維ウエブ14とを接合することが困難になる。一方、第3の熱風W3の温度が高すぎると、繊維同士が融着されすぎて、液透過性が得られ難くなる。
The second fiber web 14 is supplied from the lower surface side to the cooled first fiber layer 11, and the second fiber web 14 is overlaid under the first fiber layer 11. And a 3rd air through process is performed. In this third air-through process, the third hot air W3 is blown from the first fiber layer 11 side, and the fibers of the second fiber web 14 are heat-sealed with each other while the uneven shape of the first fiber layer 11 is maintained. Thus, at the same time as obtaining the second fiber layer 12, the fibers of the first fiber layer 11 and the second fiber web 14 are bonded by heat fusion. The temperature of the third hot air W3 at this time is not uniquely determined because it varies depending on the type of fiber, the processing speed, the wind speed of the hot air, etc., but the fibers of the second fiber web 14 are made of PET as described above. In the case of a composite fiber having a core-sheath structure with PE, the temperature is preferably 130 ° C. or higher and 155 ° C. or lower, more preferably 130 ° C. or higher and 145 ° C. or lower.
If the temperature of the third hot air W3 is too low, the fibers cannot be fused together, and it becomes difficult to join the first fiber layer 11 and the second fiber web 14 together. On the other hand, if the temperature of the third hot air W3 is too high, the fibers are too fused with each other, making it difficult to obtain liquid permeability.
 また第3の熱風W3は、好ましくは0.4m/sec以上5m/sec以下、より好ましくは1m/sec以上3m/sec以下の風速に制御する。風速が遅すぎると熱量が不足するため、第2繊維層12(第2繊維ウエブ14)の不織布強度が不十分になる。一方、風速が速すぎると第2繊維ウエブ14が風圧で厚みが小さくなり、その状態で加熱されると繊維同士の融着が多くなるため、感触は硬くなり、厚みが薄くなり液透過性が不十分になる。 The third hot air W3 is preferably controlled to a wind speed of 0.4 m / sec or more and 5 m / sec or less, more preferably 1 m / sec or more and 3 m / sec or less. If the wind speed is too slow, the amount of heat is insufficient, so that the nonwoven fabric strength of the second fiber layer 12 (second fiber web 14) becomes insufficient. On the other hand, if the wind speed is too high, the thickness of the second fiber web 14 is reduced by the wind pressure, and if heated in that state, the fibers are fused more frequently, so that the touch becomes harder, the thickness becomes thinner, and the liquid permeability becomes lower. It becomes insufficient.
 また、第3の熱風W3の吹き付け時間は、好ましくは1秒以上20秒以下、より好ましくは2秒以上15秒以下に制御する。吹き付け時間が短すぎると第1繊維層11と第2繊維ウエブ14同士の融着が十分にできなくなる。一方、吹き付け時間が長すぎると第1繊維層11と第2繊維ウエブ14の繊維同士が融着され過ぎて、厚みが小さくなり、クッション性と液透過性が得られ難くなる。 Moreover, the spraying time of the third hot air W3 is preferably controlled to 1 second to 20 seconds, more preferably 2 seconds to 15 seconds. If the spraying time is too short, the first fiber layer 11 and the second fiber web 14 cannot be sufficiently fused. On the other hand, if the spraying time is too long, the fibers of the first fiber layer 11 and the second fiber web 14 are excessively fused, the thickness is reduced, and it is difficult to obtain cushioning properties and liquid permeability.
 この第3エアースルー工程では、第2繊維ウエブ14が第1繊維層11の凹凸形状に沿うように賦形される。また、第3の熱風W3の風速を制御することで、積層不織布10の凸部21における第1繊維層11と第2繊維層12との間に繊維密度の低い部分25を作り出すことができ、第3の熱風W3の風速を弱めることで空間を作ることもできる。この空間によって第1繊維層11の凸部頂部は、第1繊維層11の1層だけになるので、その部分での弾性が弱くなり、第1実施形態の製造方法よりも低荷重時のクッション性がさらに向上できる。なお、弾性が弱くなるといっても、凸部21が押し潰されて復元できないような弱さではない。 In the third air-through process, the second fiber web 14 is shaped so as to follow the uneven shape of the first fiber layer 11. Further, by controlling the wind speed of the third hot air W3, it is possible to create a low fiber density portion 25 between the first fiber layer 11 and the second fiber layer 12 in the convex portion 21 of the laminated nonwoven fabric 10, A space can also be created by reducing the wind speed of the third hot air W3. Due to this space, the top of the convex portion of the first fiber layer 11 is only one layer of the first fiber layer 11, so the elasticity at that portion is weak, and the cushion at a lower load than the manufacturing method of the first embodiment. Can be further improved. In addition, even if it says that elasticity becomes weak, it is not the weakness which cannot be restored | restored because the convex part 21 is crushed.
 上述の積層不織布の製造方法の第2実施形態では、前述の積層不織布の製造方法の第1実施形態と同様なる作用が得られ効果が奏される。 In the second embodiment of the method for manufacturing a laminated nonwoven fabric described above, an effect similar to that of the first embodiment of the method for producing a laminated nonwoven fabric described above is obtained and an effect is exhibited.
 上述した実施形態に関し、本発明はさらに以下の積層不織布およびその製造方法を開示する。 The present invention further discloses the following laminated nonwoven fabric and a method for producing the same with respect to the embodiment described above.
<1>凹凸形状を有し、かつ通気性を有する支持体上に熱可塑性繊維を含有する第1繊維ウエブを搬送し、該第1繊維ウエブに熱風を吹き付け、該第1繊維ウエブを前記凹凸形状に追随させて賦形する工程と、前記第1繊維ウエブを前記支持体表面に沿わせた状態で搬送する間に、前記第1繊維ウエブに熱風を吹き付けて、前記支持体の凹凸形状に賦形したまま前記第1繊維ウエブの繊維同士を融着させて第1繊維層を得る前段のエアースルー工程と、前記第1繊維層と熱可塑性繊維を含有する第2繊維ウエブとを積層し、熱風を吹き付け、第1繊維層の賦形形状に沿わせながら第2繊維ウエブの繊維同士を熱融着して第2繊維層を得ると同時に前記第1繊維層と該第2繊維ウエブの繊維同士を熱融着させて接合する後段のエアースルー工程とを備える積層不織布の製造方法。
<2>前記前段のエアースルー工程のうちの第1エアースルー工程における第1の熱風は、温度が80℃以上155℃以下であり、風速が20m/sec以上120m/sec以下であり、吹き付け時間が0.01秒以上0.5秒以下である<1>記載の積層不織布の製造方法。
<3>前記前段のエアースルー工程のうちの第2エアースルー工程における前記第2の熱風は、前記第1繊維ウエブの繊維の低融点成分の融点以上、前記第1繊維ウエブの繊維の高融点成分の融点未満の温度である<1>または<2>に記載の積層不織布の製造方法。
<4>前記第2の熱風は、温度が130℃以上155℃以下であり、風速が1m/sec以上10m/sec以下であり、吹き付け時間が0.03秒以上5秒以下である<3>に記載の積層不織布の製造方法。
<5>前記前段のエアースルー工程のうちの第2エアースルー工程を行う第2ノズルと前記後段のエアースルー工程である第3エアースルー工程を行う第3ノズルとの間に空間が配されている<1>から<4>のいずれか1に記載の積層不織布の製造方法。
<6>前記空間に冷却部が配され、前記冷却部に前記第1繊維層を強制冷却させる手段を用いる<5>に記載の積層不織布の製造方法。
<7>前記後段のエアースルー工程である第3エアースルー工程の第3の熱風は、温度が130℃以上155℃以下に制御され、風速が0.4m/sec以上5m/sec以下に制御され、吹き付け時間が2秒以上20秒以下に制御されている<1>から<6>のいずれか1に記載の積層不織布の製造方法。
<8>前記前段のエアースルー工程のうちの第2エアースルー工程における第2の熱風を吹き付ける第2ノズルの吹き出し孔に、幅方向、流れ方向に規則的に開孔し、開孔率が10%以上40%以下のパンチングメタルを用いる<1>から<7>のいずれか1に記載の積層不織布の製造方法。
<1> A first fiber web containing thermoplastic fibers is transported onto a support having an uneven shape and air permeability, and hot air is blown onto the first fiber web so that the first fiber web is During the process of shaping by following the shape and conveying the first fiber web in a state along the surface of the support, hot air is blown onto the first fiber web to form an uneven shape of the support. Laminating the first fiber layer and the second fiber web containing thermoplastic fibers before the first fiber layer is obtained by fusing the fibers of the first fiber web while being shaped. Then, hot air is blown so that the fibers of the second fiber web are heat-fused with each other while conforming to the shaped shape of the first fiber layer to obtain a second fiber layer, and at the same time, the first fiber layer and the second fiber web Subsequent air-through process where fibers are fused and bonded together Method for manufacturing a laminated nonwoven fabric comprising a.
<2> The first hot air in the first air-through process of the preceding air-through process has a temperature of 80 ° C. or more and 155 ° C. or less, a wind speed of 20 m / sec or more and 120 m / sec or less, and a blowing time. The method for producing a laminated nonwoven fabric according to <1>, wherein is 0.01 seconds or more and 0.5 seconds or less.
<3> The second hot air in the second air through step of the preceding air through step is equal to or higher than the melting point of the low melting point component of the fibers of the first fiber web and the high melting point of the fibers of the first fiber web. The method for producing a laminated nonwoven fabric according to <1> or <2>, wherein the temperature is lower than the melting point of the component.
<4> The second hot air has a temperature of 130 ° C. or more and 155 ° C. or less, a wind speed of 1 m / sec or more and 10 m / sec or less, and a spraying time of 0.03 seconds or more and 5 seconds or less <3> The manufacturing method of the laminated nonwoven fabric as described in any one of.
<5> A space is arranged between the second nozzle that performs the second air-through process of the preceding air-through process and the third nozzle that performs the third air-through process that is the latter-stage air through process. The method for producing a laminated nonwoven fabric according to any one of <1> to <4>.
<6> The method for producing a laminated nonwoven fabric according to <5>, wherein a cooling part is arranged in the space, and means for forcibly cooling the first fiber layer in the cooling part is used.
<7> The temperature of the third hot air in the third air through process, which is the latter air through process, is controlled to 130 ° C. or more and 155 ° C. or less, and the wind speed is controlled to 0.4 m / sec or more and 5 m / sec or less. The method for producing a laminated nonwoven fabric according to any one of <1> to <6>, wherein the spraying time is controlled to 2 seconds or more and 20 seconds or less.
<8> The second nozzle through which the second hot air is blown in the second air-through process of the preceding air-through process is regularly opened in the width direction and the flow direction. The method for producing a laminated nonwoven fabric according to any one of <1> to <7>, wherein a punching metal of not less than 40% and not more than 40% is used.
<9>熱可塑性繊維を含み凹凸形状に賦形されており熱融着した第1繊維層に第2繊維層となる熱可塑性繊維を含む未融着の繊維ウエブが積層され、前記積層した第1繊維層および第2繊維層を熱風により加熱することによって、前記繊維ウエブの繊維同士が熱融着して第2繊維層を成しているとともに、前記第1繊維層の繊維と前記第2繊維層の繊維が熱融着により接合されている積層不織布。
<10>シートの積層不織布を平面視した側の第1面側に突出した凸部と凹んだ凹部とを有し、前記凹部を囲むように複数の前記凸部が配され、かつ前記凸部と前記凹部は、該積層不織布の平面視交差する異なる方向のそれぞれに交互に連続して配され、前記第1面側に前記凸部と前記凹部による凹凸形状を有する第1繊維層と、該第1繊維層の前記第1面側とは反対側の第2面側に沿って接合された第2繊維層とを有し、前記凹部の繊維密度が0.01mg/cm以上0.08g/cm以下である積層不織布。
<11>前記第1繊維層の凸部の凸部頂部の下部側および凹部の凹部底部の上部側に、連続している壁部を有し、前記壁部を構成する繊維は、前記凸部頂部と前記凹部底部とを結ぶ方向に繊維配向性を有する<9>または<10>に記載の積層不織布。
<12>前記壁部を構成する繊維は、前記第1繊維層の凸部頂部および凹部底部から外側に向かう放射状の繊維配向性を有している<11>に記載の積層不織布。
<13>前記第1繊維層の凸部と前記第2繊維層の凸部との間に前記第1繊維層および前記第2繊維層よりも繊維密度が低い部分を有する請求項9から12のいずれか1項に記載の積層不織布。
<14>前記第1繊維層の凸部の第2面側の形状に沿う前記第2繊維層の凸部は、第1繊維層側の上部とこれと反対側の下部とを有し、繊維密度が、第1繊維層の凸部、第2繊維層の凸部の下部、第2繊維層の上部の順に高い<9>から<13>のいずれか1に記載の積層不織布。
<15>前記第1繊維層の凸部の密度は8mg/cm以上25mg/cm以下であり、前記第2繊維層の凸部の密度は2mg/cm以上8mg/cm以下である<9>から<14>のいずれか1に記載の積層不織布。
<16>前記第2繊維層の凸部の上部の密度は1.5mg/cm以上4mg/cm以下が好ましく、前記第2繊維層の凸部の下部の繊維密度は3.5mg/cm以上6mg/cm以下である<9>から<15>のいずれか1に記載の積層不織布。
<17>前記第1繊維層の凸部と前記第2繊維層の凸部の繊維配向度が異なる<9>から<15>のいずれか1に記載の積層不織布。
<18>前記第2繊維層の凸部の繊維配向度のほうが前記第1繊維層の凸部の繊維配向度よりも第1繊維層表面に対する垂直方向に向いている<9>から<17>のいずれか1に記載の積層不織布。
<19>前記第1繊維層の凸部の繊維配向度は10°以上30°以下であり、前記第2繊維層の凸部の繊維配向度は30°以上60°以下である<9>から<18>のいずれか1に記載の積層不織布。
<9> An unfused fiber web containing thermoplastic fibers to be the second fiber layer is laminated on the first fiber layer that is formed into a concavo-convex shape and includes thermoplastic fibers, and the laminated first By heating the first fiber layer and the second fiber layer with hot air, the fibers of the fiber web are thermally fused to form a second fiber layer, and the fibers of the first fiber layer and the second fiber layer A laminated nonwoven fabric in which the fibers of the fiber layer are bonded by heat fusion.
It has a convex part and a concave part which protruded to the 1st surface side of the <10> sheet laminated nonwoven fabric in plan view, a plurality of the convex parts are arranged so as to surround the concave part, and the convex part And the recesses are alternately and continuously arranged in different directions intersecting in plan view of the laminated nonwoven fabric, and the first fiber layer having an uneven shape by the protrusions and the recesses on the first surface side, A second fiber layer bonded along the second surface side opposite to the first surface side of the first fiber layer, and the fiber density of the concave portion is 0.01 mg / cm 3 or more and 0.08 g. Laminated nonwoven fabric that is / cm 3 or less.
<11> The first fiber layer has a continuous wall portion on the lower side of the convex top portion of the convex portion and the upper portion side of the concave portion bottom portion of the concave portion, and the fiber constituting the wall portion is the convex portion. The laminated nonwoven fabric according to <9> or <10>, which has fiber orientation in a direction connecting the top part and the bottom part of the concave part.
<12> The laminated nonwoven fabric according to <11>, wherein the fibers constituting the wall portion have a radial fiber orientation from the top of the convex portion and the bottom of the concave portion of the first fiber layer toward the outside.
<13> The portion according to claim 9, wherein a portion having a fiber density lower than that of the first fiber layer and the second fiber layer is provided between the convex portion of the first fiber layer and the convex portion of the second fiber layer. The laminated nonwoven fabric according to any one of the above.
<14> The convex part of the second fiber layer along the shape on the second surface side of the convex part of the first fiber layer has an upper part on the first fiber layer side and a lower part on the opposite side, and a fiber The laminated nonwoven fabric according to any one of <9> to <13>, wherein the density is higher in the order of the convex portion of the first fiber layer, the lower portion of the convex portion of the second fiber layer, and the upper portion of the second fiber layer.
<15> The density of the protrusions of the first fiber layer is 8 mg / cm 3 or more and 25 mg / cm 3 or less, and the density of the protrusions of the second fiber layer is 2 mg / cm 3 or more and 8 mg / cm 3 or less. The laminated nonwoven fabric according to any one of <9> to <14>.
<16> The density of the upper part of the convex part of the second fiber layer is preferably 1.5 mg / cm 3 or more and 4 mg / cm 3 or less, and the fiber density of the lower part of the convex part of the second fiber layer is 3.5 mg / cm 3. 3 to 6 mg / cm 3 or less is laminated nonwoven fabric according to <9> to any one of <15>.
<17> The laminated nonwoven fabric according to any one of <9> to <15>, wherein the convexity of the first fiber layer and the convexity of the second fiber layer are different.
<18> The fiber orientation degree of the convex part of the second fiber layer is oriented in the direction perpendicular to the surface of the first fiber layer rather than the fiber orientation degree of the convex part of the first fiber layer. <9> to <17> The laminated nonwoven fabric according to any one of the above.
<19> The fiber orientation degree of the convex part of the first fiber layer is 10 ° to 30 °, and the fiber orientation degree of the convex part of the second fiber layer is 30 ° to 60 ° from <9>. The laminated nonwoven fabric according to any one of <18>.
 以下に、上述の第1,第2実施形態の賦形不織布の製造方法により賦形不織布を製造した実施例、および比較例により本発明をさらに詳細に説明する。本発明はこれらの実施例に限定されるものではない。 
[実施例1-4]
 実施例1の積層不織布10は、第1繊維層11を作製する第1繊維ウエブ13にカードウエブを用い、第2繊維層12を作製する第2繊維ウエブ14にもカードウエブを用い、前述の第1実施形態の製造方法(第1製造方法)により以下の条件で製造した。すなわち、第1繊維ウエブ13の繊維に、芯部がポリエチレンテレフタレート(融点が258℃)で、鞘部がポリエチレン(融点が130℃)の芯鞘構造の複合繊維を用いた。混率は100%、繊度は2.9dtexとした。その第1繊維ウエブ13を支持体110により搬送し、支持体110の表面で第1の熱風W1、第2の熱風W2を吹き付けることで凹凸形状に賦形させた。その後、第1繊維ウエブ13を自然冷却し、上面側に第2繊維ウエブ14を重ね合わせた後、第3の熱風W3を吹き付けて、第1繊維層11上に第2繊維ウエブ14の第2繊維層12を接合した積層不織布54の試験体を製造した。第1の熱風W1は、温度を130℃、風速を40m/sec、吹き付け時間を0.06秒とした。また第2の熱風W2は、温度を150℃、風速を4.0m/sec、吹き付け時間を0.7秒とした。さらに第3の熱風W3は、温度を139℃、風速を1.5m/sec、吹き付け時間を13秒とした。
 実施例2は、積層融着条件が第2実施形態の製造方法(第2製造方法)である以外、実施例1と同様とした。
 実施例3は、積層融着条件の温度が高くと風速が速い以外、実施例1と同様とした。この場合、第3の熱風W3の温度を147℃、風速を2m/sec、吹き付け時間を13秒に設定した。
 実施例4は、積層融着条件の加熱時間を短くした以外、実施例1と同様とした。この場合の加熱時間は4秒に設定した。
Hereinafter, the present invention will be described in more detail with reference to examples in which a shaped nonwoven fabric was produced by the method for producing a shaped nonwoven fabric according to the first and second embodiments described above and comparative examples. The present invention is not limited to these examples.
[Example 1-4]
The laminated nonwoven fabric 10 of Example 1 uses a card web for the first fiber web 13 for producing the first fiber layer 11, and also uses a card web for the second fiber web 14 for producing the second fiber layer 12. It manufactured on condition of the following by the manufacturing method (1st manufacturing method) of 1st Embodiment. That is, a composite fiber having a core-sheath structure in which the core part is polyethylene terephthalate (melting point: 258 ° C.) and the sheath part is polyethylene (melting point: 130 ° C.) is used for the fiber of the first fiber web 13. The mixing ratio was 100%, and the fineness was 2.9 dtex. The 1st fiber web 13 was conveyed by the support body 110, and the 1st hot air W1 and the 2nd hot air W2 were sprayed on the surface of the support body 110, and it was formed in the uneven | corrugated shape. Thereafter, the first fiber web 13 is naturally cooled, the second fiber web 14 is superimposed on the upper surface side, and then the third hot air W3 is blown to the second fiber web 14 on the first fiber layer 11. A test body of the laminated nonwoven fabric 54 to which the fiber layer 12 was bonded was manufactured. The first hot air W1 had a temperature of 130 ° C., a wind speed of 40 m / sec, and a blowing time of 0.06 seconds. The second hot air W2 had a temperature of 150 ° C., a wind speed of 4.0 m / sec, and a blowing time of 0.7 seconds. Further, the third hot air W3 had a temperature of 139 ° C., a wind speed of 1.5 m / sec, and a blowing time of 13 seconds.
Example 2 was the same as Example 1 except that the lamination and fusing conditions were the manufacturing method of the second embodiment (second manufacturing method).
Example 3 was the same as Example 1 except that the temperature of the lamination fusion condition was high and the wind speed was high. In this case, the temperature of the third hot air W3 was set to 147 ° C., the wind speed was set to 2 m / sec, and the blowing time was set to 13 seconds.
Example 4 was the same as Example 1 except that the heating time for the lamination fusion condition was shortened. The heating time in this case was set to 4 seconds.
[比較例1-3]
 比較例1は、第1繊維層が賦形しておらず、第2繊維層と接合するときには未融着のウエブの状態である以外、実施例1と同様とした。
 比較例2は、第1繊維層と第2繊維層がエアースルー不織布である以外、比較例1と同様とした。この場合、エアースルー不織布に加工する熱風は、温度を139°、風速を1.5m/sec、吹きつけ時間を13秒とした。
 比較例3は、第1繊維層と第2繊維層との接合条件が加熱加圧によるエンボス加工である以外、比較例2と同様とした。この場合の加熱温度は125℃、加圧線圧は60kg/cmに設定した。
[Comparative Example 1-3]
Comparative Example 1 was the same as Example 1 except that the first fiber layer was not shaped and was in an unfused web when joined to the second fiber layer.
Comparative Example 2 was the same as Comparative Example 1 except that the first fiber layer and the second fiber layer were air-through nonwoven fabrics. In this case, the hot air processed into the air-through nonwoven fabric had a temperature of 139 °, a wind speed of 1.5 m / sec, and a blowing time of 13 seconds.
Comparative Example 3 was the same as Comparative Example 2 except that the bonding condition between the first fiber layer and the second fiber layer was embossing by heating and pressing. In this case, the heating temperature was set to 125 ° C., and the pressure linear pressure was set to 60 kg / cm.
 次に測定方法について説明する。
 第1の熱風W1の温度は、日本カノマックス株式会社製アネモマスター(商品名)により第1ノズル111の吹き出し口直下で測定し、風速は、ピトー管により第1ノズル11の吹き出し口直下で総圧から静圧を引き動圧を測定し、ピトー管による流速計算式より求めた。第2の熱風W2の温度と風速は、上記アネモマスターにより第2ノズル112の吹き出し口直下で測定して求めた。第3の熱風W3の温度と風速は、上記アネモマスターにより求めた。
Next, the measurement method will be described.
The temperature of the first hot air W1 is measured by an anemone master (trade name) manufactured by Nippon Kanomax Co., Ltd., just below the outlet of the first nozzle 111, and the wind speed is the total pressure immediately below the outlet of the first nozzle 11 by a Pitot tube. The static pressure was pulled from the dynamic pressure, and the flow rate was calculated from a Pitot tube. The temperature and wind speed of the second hot air W2 were determined by measuring directly under the outlet of the second nozzle 112 by the anemo master. The temperature and wind speed of the third hot air W3 were determined by the anemo master.
 不織布の厚みの測定方法は、不織布に49Paの荷重を加えた状態と、4.9kPaの荷重を加えた状態で、厚み測定器を用いて測定した。厚み測定器には、MITUTOYO社製の厚み計(例えば、商品名:ABSOLUTE)を用いた。厚み測定は、10点測定し、それらの平均値を算出して厚みとした。 The method for measuring the thickness of the nonwoven fabric was measured using a thickness measuring instrument in a state where a load of 49 Pa was applied to the nonwoven fabric and a load of 4.9 kPa was applied. A thickness meter (for example, trade name: ABSOLUTE) manufactured by MITUTOYO was used as the thickness measuring instrument. The thickness was measured at 10 points, and the average value was calculated as the thickness.
 第1繊維層11、第2繊維層12、凹部の繊維密度(g/cm)は、[目付(g/m)]/[厚み(mm)]×1000なる式で求めた。1000は左辺と右辺の単位を合わせるための係数である。
 第1繊維層11の厚み(TL1)と第2繊維層12の厚み(TL2)は、凹部22の厚みは次の方法で求めた。積層不織布10を凸部21の頂点をCD方向に、積層不織布10の厚みをカットした。このカットした積層不織布10を黒色の台に載せて、49Paの荷重をかけた状態でCD方向断面をマイクロスコープVHX-900(株式会社キーエンス製)を用いて撮影し、30倍から100倍の拡大写真を得た。この拡大写真の第1繊維層11の凸部21の幅方向中央を厚み方向に通る垂線、および凹部22の幅方向中央を通る垂線と交わる第1繊維層11および第2繊維層12のそれぞれの層の上端繊維と下端繊維の交点の距離を測定して求めた。そして凹部22の厚みは凹部22の底部での第1繊維層11の上端繊維と垂線の交点と第2繊維層12の下端繊維と垂線の交点の距離を厚みとした。
The fiber density (g / cm 3 ) of the first fiber layer 11, the second fiber layer 12, and the recesses was determined by the formula [weight per unit area (g / m 2 )] / [thickness (mm)] × 1000. 1000 is a coefficient for matching the units of the left side and the right side.
Regarding the thickness (TL1) of the first fiber layer 11 and the thickness (TL2) of the second fiber layer 12, the thickness of the recess 22 was obtained by the following method. The laminated nonwoven fabric 10 was cut in the thickness of the laminated nonwoven fabric 10 with the apex of the convex portion 21 in the CD direction. The cut laminated nonwoven fabric 10 is placed on a black table, and a cross section in the CD direction is photographed with a microscope VHX-900 (manufactured by Keyence Corporation) with a load of 49 Pa, and is magnified 30 to 100 times. I got a photo. Each of the 1st fiber layer 11 and the 2nd fiber layer 12 which intersects the perpendicular which passes the width direction center of the convex part 21 of the 1st fiber layer 11 of this enlarged photograph in the thickness direction, and the perpendicular line which passes the width direction center of the recessed part 22 It was determined by measuring the distance of the intersection of the top and bottom fibers of the layer. The thickness of the recess 22 is defined as the distance between the intersection of the upper fiber and the perpendicular of the first fiber layer 11 and the intersection of the lower fiber and the perpendicular of the second fiber layer 12 at the bottom of the recess 22.
 また第2繊維層12の凸部21上部側と凸部21下部側の繊維密度については次の方法で求めた。
 積層不織布10を凸部21の頂点をCD方向に、積層不織布10をカットし、その積層不織布10を黒色の台に載せて、49Paの荷重をかけた状態でCD方向断面をマイクロスコープVHX-900(株式会社キーエンス製)を用いて、30倍から100倍の拡大写真を得た。この拡大写真のデータ(jpeg)に対して、画像解析ソフト(株式会社ネクサス製 Nexus New Qube(商品名))を用いて、第2繊維層12の厚みTL2を等分(凸部上部側と凸部下部側)し、CD方向長さ0.3mm以上0.6mm以下で囲まれた範囲について二値化処理を行い、凸部上部側と凸部下部側について繊維が空間を占める面積率を求めた。それぞれの面積率を、凸部上部側の繊維量d1、凸部下部側の繊維量d2とし、繊維量比α=d2/d1で算出されるαを第2凸部21Aの上下の繊維量比とした。これを10箇所について行い、平均値を求めた。この繊維量比が1より大きければ凸部上部の繊維量が少なく、凸部下部の繊維量が多いことを示す。このαを用い、下記の計算で凸部上部側と凸部下部側の繊維密度を求めた。
 凸部上部側の繊維密度=第2繊維層目付×α/((α+1)×(TL2/2))
 凸部下部側の繊維密度=第2繊維層目付×1/((α+1)×(TL2/2))
Moreover, the fiber density of the convex part 21 upper part side and the convex part 21 lower part side of the 2nd fiber layer 12 was calculated | required with the following method.
The laminated nonwoven fabric 10 is cut in the CD direction with the apex of the projection 21 in the CD direction, the laminated nonwoven fabric 10 is cut, the laminated nonwoven fabric 10 is placed on a black base, and a cross section in the CD direction is applied with a load of 49 Pa applied to the microscope VHX-900. An enlarged photograph of 30 to 100 times was obtained using (manufactured by Keyence Corporation). For the data (jpeg) of this enlarged photograph, the thickness TL2 of the second fiber layer 12 is equally divided (convex portion upper side and convexity using image analysis software (Nexus New Nexus Qube (trade name)). The binarization process is performed for the range surrounded by the CD length of 0.3 mm or more and 0.6 mm or less, and the area ratio of the fiber to the space is obtained for the upper part of the convex part and the lower part of the convex part. It was. Each area ratio is defined as a fiber amount d1 on the convex portion upper side and a fiber amount d2 on the convex portion lower side, and α calculated by the fiber amount ratio α = d2 / d1 is a fiber amount ratio between the upper and lower portions of the second convex portion 21A. It was. This was performed for 10 places, and an average value was obtained. If this fiber amount ratio is larger than 1, it indicates that the amount of fiber at the top of the convex portion is small and the amount of fiber at the bottom of the convex portion is large. Using this α, the fiber density of the convex upper part side and the convex lower part side was obtained by the following calculation.
Fiber density on the upper side of the convex portion = second fiber layer basis weight × α / ((α + 1) × (TL2 / 2))
Fiber density on the lower side of the convex portion = second fiber layer basis weight × 1 / ((α + 1) × (TL2 / 2))
 凸部21の繊維配向度は以下のようにして求めた。
 図5に示すように、積層不織布10の断面を49Paの荷重をかけた状態で、マイクロスコープVHX-900(株式会社キーエンス製)にて、例えば倍率30倍から100倍で撮影した。その撮影された積層不織布10の断面の所定位置を、所定範囲Aで区画し、その区画した範囲内にある20本の繊維15を選択して、選択した各繊維15のそれぞれについて上記範囲の境界との交点を結ぶ線を測定線16とした。なお、便宜上、図面では6本の繊維15を描いている。上記所定位置は、配向度を調べたい位置であり、例えば、第1繊維層11、第2繊維層12の凸部中央の厚さ方向の中央部とした。上記所定範囲Aとしては、例えば、直径0.5mmの円とした。また上記断面内で積層不織布10のシート面と平行な線を基準線17とした。なお測定線16と基準線17とが交わらない場合には、測定線16を基準線17と交わる位置まで直線で延長した。そして20本の測定線16と、基準線17との交点における各角度を計測し、その平均値を配向度として算出した。なお、図面では、見やすくするために、写真の代わりに模式図で示した。
The fiber orientation degree of the convex part 21 was calculated | required as follows.
As shown in FIG. 5, a cross section of the laminated nonwoven fabric 10 was photographed with a microscope VHX-900 (manufactured by Keyence Corporation) at a magnification of 30 to 100 times with a load of 49 Pa applied. The predetermined position of the cross section of the photographed laminated nonwoven fabric 10 is partitioned by a predetermined range A, 20 fibers 15 within the partitioned range are selected, and the boundary of the above range for each of the selected fibers 15 A line connecting the intersection points with the measurement line 16 was taken as a measurement line 16. For convenience, six fibers 15 are drawn in the drawing. The predetermined position is a position at which the degree of orientation is to be examined, and is, for example, a central portion in the thickness direction at the center of the convex portions of the first fiber layer 11 and the second fiber layer 12. The predetermined range A is, for example, a circle having a diameter of 0.5 mm. In addition, a line parallel to the sheet surface of the laminated nonwoven fabric 10 in the cross section was defined as a reference line 17. When the measurement line 16 and the reference line 17 did not intersect, the measurement line 16 was extended in a straight line to a position where it intersected with the reference line 17. Each angle at the intersection of the 20 measurement lines 16 and the reference line 17 was measured, and the average value was calculated as the orientation degree. In the drawing, for the sake of easy understanding, a schematic diagram is shown instead of a photograph.
 次に、評価方法について説明する。評価は、シート性能として不織布の性能を調べた。
 シート性能は、積層不織布の「クッション性」、「液通過時間」等を評価した。
Next, the evaluation method will be described. Evaluation examined the performance of the nonwoven fabric as sheet performance.
Sheet performance evaluated the "cushioning property", "liquid passage time", etc. of the laminated nonwoven fabric.
 「クッション性」は、風合い測定器(KES)で、圧縮特性の直線性(LC値)で評価結果とした。
 WC値が0.85以上の場合をクッション性が良好であるとして「A」、
 WC値が0.85未満0.7以上の場合をクッション性がやや劣るとして「B」、
 WC値が0.7未満の場合をクッション性が劣るとして「C」で表した。
The “cushion property” was evaluated by the linearity (LC value) of the compression characteristics with a texture measuring device (KES).
When the WC value is 0.85 or more, “A”,
When the WC value is less than 0.85 and 0.7 or more, the cushioning property is slightly inferior, “B”,
When the WC value is less than 0.7, the cushioning property is inferior and is represented by “C”.
 「液通過時間」は、EDANA-150.5-02(European Disposables And Nonwovens Association:ヨーロッパ不織布協会)リキッドストライクスルータイム法に準じて試験機を操作した。この発明において使用するストライクスルー値は、10gの試験溶液が測定用試験片である不織布を通過する時間(単位:秒)であって、ストライクスルー値が小さいほど試験溶液の不織布に対する通過が早いことを意味している。ストライクスルー値の測定には、Lenzing Technik社製の試験機LISTERを使用して、この試験機の測定部を不織布の上に置き、この試験機で定められているEDANA-150.5-02リキッドストライクスルータイム法にしたがって試験機を操作した。不織布の下にはろ紙(HOLLINGSWORTH & VOSE COMPANY LTD製 STRIKE-THROUGH ろ紙 LTD STRIKE―THROUGH(商品名))を20枚置いて吸収体に代えた。試験溶液には、下記の調整を行った溶液を使用した。
 2Lのビーカーにイオン交換水1500gを入れ、マグネティックスターラーで撹拌しながら、カルボキシメチルセルロースナトリウム〔関東化学株式会社製、CMC-Na〕5.3gを入れた(この溶液を「A」とする)。次に、1Lのビーカーにイオン交換水556gを入れ、スターラーで撹拌しながら塩化ナトリウム〔関東化学株式会社製〕27.0g、炭酸水素ナトリウム〔NaHCO、関東化学株式会社製〕12gを入れ、完全に溶解させた(この溶液を「B」とする)。更に、3Lのビーカーにグリセリンを900g量り取り、上記(A)及び(B)を加えて撹拌した。更に、ノニオン系の界面活性剤「エマルゲン935」〔製造販売元
花王株式会社〕の濃度(界面活性剤/水)=1g/Lの水溶液15mlと、食用赤色2号〔発売元:アイゼン株式会社、保土ヶ谷化学工業株式会社、製造元:ダイワ化成株式会社〕0.3gを加え、撹拌した。このようにして得られた溶液を、ガラス濾過器を用いて吸引濾過し、その濾液を擬似血液とした。尚、擬似血液の調整の際には、上述した界面活性剤に代えて、他のノニオン系の界面活性剤を用いることもでき、同様の結果を得ることができる。
 そして、液通過時間は4秒未満の場合を良好として「A」、液通過時間が4秒以上6秒未満の場合を遅いとして「B」、液通過時間が6秒以上の場合を非常に遅いとして「C」で表した。
“Liquid passage time” was operated according to the liquid strike through time method according to EDANA-150.5-02 (European Disposables And Nonwovens Association). The strike-through value used in the present invention is the time (unit: seconds) for 10 g of the test solution to pass through the nonwoven fabric that is a test specimen for measurement, and the smaller the strike-through value, the faster the test solution passes through the nonwoven fabric. Means. For the measurement of the strike-through value, a measuring machine LISTER manufactured by Lenzing Technik Co., Ltd. was used, and the measuring unit of this testing machine was placed on a non-woven fabric, and EDANA-150.5-02 liquid defined by this testing machine. The testing machine was operated according to the strike through time method. Under the nonwoven fabric, 20 sheets of filter paper (STRIKE-THROUGH filter paper LTD STRIKE-THROUGH (trade name) manufactured by HOLLINGSWORTH & VOSE COMPANY LTD) were placed to replace the absorbent. As the test solution, a solution prepared as described below was used.
Into a 2 L beaker, 1500 g of ion-exchanged water was added, and 5.3 g of sodium carboxymethylcellulose (CMC-Na, manufactured by Kanto Chemical Co., Inc.) was added while stirring with a magnetic stirrer (this solution is referred to as “A”). Next, 556 g of ion-exchanged water is put into a 1 L beaker, and 27.0 g of sodium chloride (manufactured by Kanto Chemical Co., Inc.) and 12 g of sodium hydrogen carbonate (NaHCO 3 , manufactured by Kanto Chemical Co., Ltd.) are added while stirring with a stirrer. (This solution is referred to as “B”). Furthermore, 900 g of glycerin was weighed out into a 3 L beaker, and the above (A) and (B) were added and stirred. Furthermore, 15 ml of an aqueous solution of a nonionic surfactant “Emulgen 935” [manufactured and sold by Kao Co., Ltd.] (surfactant / water) = 1 g / L, and food red No. 2 [released by Eisen Co., Ltd., Hodogaya Chemical Co., Ltd., manufacturer: Daiwa Kasei Co., Ltd.] 0.3 g was added and stirred. The solution thus obtained was subjected to suction filtration using a glass filter, and the filtrate was used as simulated blood. In the preparation of simulated blood, other nonionic surfactants can be used in place of the above-described surfactants, and the same results can be obtained.
When the liquid passage time is less than 4 seconds, “A” is good, when the liquid passage time is 4 seconds or more and less than 6 seconds, “B”, and when the liquid passage time is 6 seconds or more, it is very slow. As “C”.
 積層不織布10について、物性(全体目付、低荷重厚み、高荷重厚み、凹部繊維密度、凸部繊維配向度)および性能(クッション性、液通過時間)について、その結果を表1に示す。 Table 1 shows the results of the physical properties (overall weight, low load thickness, high load thickness, concave fiber density, convex fiber orientation) and performance (cushion properties, liquid passage time) of the laminated nonwoven fabric 10.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から明らかなように、各実施例1から実施例4は、いずれの評価項目においても良好な結果(「A」の評価)を得た。クッション性はWC値で0.93以上1.14以下であり、液通過時間は3.24秒以上5.32秒以下と速かった。 As is clear from the results shown in Table 1, each of Examples 1 to 4 obtained good results (evaluation of “A”) in any evaluation item. The cushioning property was 0.93 or more and 1.14 or less in WC value, and the liquid passage time was as fast as 3.24 seconds or more and 5.32 seconds or less.
 比較例1から3は、WC値が0.53以上0.78以下でありクッション性は「B」および「C」の評価となった。また液通過時間は6.37秒以上9.37秒以下と遅く「C」の評価となった。 Comparative Examples 1 to 3 had a WC value of 0.53 to 0.78, and the cushioning properties were evaluated as “B” and “C”. The liquid passage time was 6.37 seconds or more and 9.37 seconds or less and was evaluated as “C”.
 したがって、上述の実施例1から実施例4に記載された本実施形態の積層不織布10は、第1製造方法、第2製造方法によらず、良好な評価結果が得られた。特に、凹凸形状に賦形された第1繊維層11に第2繊維ウエブ14を重ねて賦形して第2繊維層12を作るとともに、第1繊維層11に接合して2層構造としているため、凸部21の第1繊維層11、第2繊維層12間に繊維密度が低い部分25が作られる。これによって、3次元的な低荷重時の押し圧に対しても、良好なクッション性が得られるという優れた効果を奏する。すなわち、本実施形態の積層不織布10は、三次元的な動きに対してもよく追従して両面において点で支持された立体的なクッション性を奏する。一方、筋状の突起や片面の突起ではどうしても線ないし面としての弾力性を発現することとなり、3次元的な追従性に欠ける。また上層シートとなる第1繊維層11と下層シートとなる第2繊維層12との間に繊維密度が低い部分25を有していても、凹部22での接合が第3の熱風W3による繊維同士の融着による接合であるため、繊維間に隙間ができるので液通過時間が短くなり、液透過性に優れるとう効果を奏する。また、第1繊維層11の繊維配向度より第2繊維層12の繊維配向度のほうが大きいため、第2繊維層12により繊維が厚み方向に潰れてしまうことのない適度のクッション性を実現する。押圧力を受けて積層不織布10が潰されても、その形状復元力が大きく、梱包状態や着用が継続されても初期のクッション力を喪失しにくい。 Therefore, good evaluation results were obtained for the laminated nonwoven fabric 10 of the present embodiment described in Examples 1 to 4 described above regardless of the first manufacturing method and the second manufacturing method. In particular, the second fiber web 14 is superimposed on the first fiber layer 11 shaped in an uneven shape to form the second fiber layer 12, and the first fiber layer 11 is joined to form a two-layer structure. Therefore, a portion 25 having a low fiber density is formed between the first fiber layer 11 and the second fiber layer 12 of the convex portion 21. As a result, an excellent effect is obtained in that a good cushioning property can be obtained even with a three-dimensional low pressure load. That is, the laminated nonwoven fabric 10 of the present embodiment exhibits a three-dimensional cushioning property that is well supported by a point on both sides following a three-dimensional movement. On the other hand, streak-like projections and single-side projections inevitably exhibit elasticity as lines or surfaces, and lack three-dimensional followability. Moreover, even if it has the part 25 with a low fiber density between the 1st fiber layer 11 used as an upper layer sheet, and the 2nd fiber layer 12 used as a lower layer sheet, joining in the recessed part 22 is a fiber by 3rd hot air W3. Since it is joining by fusion | melting of each other, since a clearance gap is made between fibers, the liquid passage time is shortened and the liquid permeability is excellent. Moreover, since the fiber orientation degree of the 2nd fiber layer 12 is larger than the fiber orientation degree of the 1st fiber layer 11, the moderate cushioning property in which a fiber is not crushed by the 2nd fiber layer 12 is implement | achieved. . Even if the laminated nonwoven fabric 10 is crushed by receiving a pressing force, its shape restoring force is large, and even if the packing state and wearing are continued, it is difficult to lose the initial cushioning force.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2011年12月14日に日本国で特許出願された特願2011-273734に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2011-273734 for which a patent application was filed in Japan on December 14, 2011, which is incorporated herein by reference. Capture as part.
 10 積層不織布
 11 第1繊維層
 12 第2繊維層
 13 第1繊維ウエブ
 14 第2繊維ウエブ
 15 繊維
 21 凸部
 21A 第1凸部
 21B 第2凸部
 22 凹部
 22A 第1凹部
 22B 第2凹部
 23,24 壁部
 25 繊維密度が低い部分25
 
DESCRIPTION OF SYMBOLS 10 Laminated nonwoven fabric 11 1st fiber layer 12 2nd fiber layer 13 1st fiber web 14 2nd fiber web 15 Fiber 21 Convex part 21A 1st convex part 21B 2nd convex part 22 A recessed part 22A 1st recessed part 22B 2nd recessed part 23, 24 Wall part 25 Low fiber density part 25

Claims (19)

  1.  凹凸形状を有し、かつ通気性を有する支持体上に熱可塑性繊維を含有する第1繊維ウエブを搬送し、該第1繊維ウエブに熱風を吹き付け、該第1繊維ウエブを前記凹凸形状に追随させて賦形する工程と、
     前記第1繊維ウエブを前記支持体表面に沿わせた状態で搬送する間に、前記第1繊維ウエブに熱風を吹き付けて、前記支持体の凹凸形状に賦形したまま前記第1繊維ウエブの繊維同士を融着させて第1繊維層を得る前段のエアースルー工程と、
     前記第1繊維層と熱可塑性繊維を含有する第2繊維ウエブとを積層し、熱風を吹き付け、第1繊維層の賦形形状に沿わせながら第2繊維ウエブの繊維同士を熱融着して第2繊維層を得ると同時に前記第1繊維層と該第2繊維ウエブの繊維同士を熱融着させて接合する後段のエアースルー工程と
     を備える積層不織布の製造方法。
    A first fiber web containing thermoplastic fibers is transported onto a support having an uneven shape and air permeability, and hot air is blown onto the first fiber web to follow the uneven shape. The process of shaping and
    While the first fiber web is conveyed along the surface of the support, hot air is blown onto the first fiber web, and the fibers of the first fiber web are shaped into the irregular shape of the support. A previous air-through process in which the first fiber layer is obtained by fusing together,
    Laminating the first fiber layer and the second fiber web containing thermoplastic fibers, blowing hot air, and heat-bonding the fibers of the second fiber web together with the shape of the first fiber layer. A method for producing a laminated nonwoven fabric, comprising: obtaining a second fiber layer, and simultaneously performing a subsequent air-through process in which the fibers of the first fiber layer and the second fiber web are bonded together by heat fusion.
  2.  前記前段のエアースルー工程のうちの第1エアースルー工程における第1の熱風は、温度が80℃以上155℃以下であり、風速が20m/sec以上120m/sec以下であり、吹き付け時間が0.01秒以上0.5秒以下である
     請求項1記載の積層不織布の製造方法。
    The first hot air in the first air-through process in the preceding air-through process has a temperature of 80 ° C. or more and 155 ° C. or less, a wind speed of 20 m / sec or more and 120 m / sec or less, and a blowing time of 0. 0. It is 01 second or more and 0.5 second or less, The manufacturing method of the laminated nonwoven fabric of Claim 1.
  3.  前記前段のエアースルー工程のうちの第2エアースルー工程における前記第2の熱風は、前記第1繊維ウエブの繊維の低融点成分の融点以上、前記第1繊維ウエブの繊維の高融点成分の融点未満の温度である
     請求項1または2に記載の積層不織布の製造方法。
    The second hot air in the second air through step of the preceding air through step is equal to or higher than the melting point of the low melting point component of the fiber of the first fiber web, and the melting point of the high melting point component of the fiber of the first fiber web. The method for producing a laminated nonwoven fabric according to claim 1 or 2, wherein the temperature is lower than the temperature.
  4.  前記第2の熱風は、温度が130℃以上155℃以下であり、風速が1m/sec以上10m/sec以下であり、吹き付け時間が0.03秒以上5秒以下である
     請求項3に記載の積層不織布の製造方法。
    4. The second hot air has a temperature of 130 ° C. or more and 155 ° C. or less, a wind speed of 1 m / sec or more and 10 m / sec or less, and a spraying time of 0.03 seconds or more and 5 seconds or less. A method for producing a laminated nonwoven fabric.
  5.  前記前段のエアースルー工程のうちの第2エアースルー工程を行う第2ノズルと前記後段のエアースルー工程である第3エアースルー工程を行う第3ノズルとの間に空間が配されている
     請求項1から4のいずれか1項に記載の積層不織布の製造方法。
    The space is arranged between the 2nd nozzle which performs the 2nd air through process of the above-mentioned air through process, and the 3rd nozzle which performs the 3rd air through process which is the above-mentioned latter air through process. The manufacturing method of the laminated nonwoven fabric of any one of 1-4.
  6.  前記空間に冷却部が配され、前記冷却部に前記第1繊維層を強制冷却させる手段を用いる
     請求項5に記載の積層不織布の製造方法。
    The method for producing a laminated nonwoven fabric according to claim 5, wherein a cooling part is arranged in the space, and means for forcibly cooling the first fiber layer is used in the cooling part.
  7.  前記後段のエアースルー工程である第3エアースルー工程の第3の熱風は、温度が130℃以上155℃以下に制御され、風速が0.4m/sec以上5m/sec以下に制御され、吹き付け時間が2秒以上20秒以下に制御されている
     請求項1から6のいずれか1項に記載の積層不織布の製造方法。
    The third hot air in the third air through process, which is the subsequent air through process, has a temperature controlled to 130 ° C. or higher and 155 ° C. or lower, a wind speed controlled to 0.4 m / sec or higher and 5 m / sec or lower, and a blowing time. Is controlled to be 2 seconds or more and 20 seconds or less. The method for producing a laminated nonwoven fabric according to any one of claims 1 to 6.
  8.  前記前段のエアースルー工程のうちの第2エアースルー工程における第2の熱風を吹き付ける第2ノズルの吹き出し孔に、幅方向、流れ方向に規則的に開孔し、開孔率が10%以上40%以下のパンチングメタルを用いる
     請求項1から7のいずれか1項に記載の積層不織布の製造方法。
    Of the preceding air-through process, the second nozzle through which the second hot air is blown in the second air-through process is regularly opened in the width direction and the flow direction. % Or less punching metal is used. The manufacturing method of the laminated nonwoven fabric of any one of Claim 1 to 7.
  9.  熱可塑性繊維を含み凹凸形状に賦形されており熱融着した第1繊維層に第2繊維層となる熱可塑性繊維を含む未融着の繊維ウエブが積層され、前記積層した第1繊維層および第2繊維層を熱風により加熱することによって、前記繊維ウエブの繊維同士が熱融着して第2繊維層を成しているとともに、前記第1繊維層の繊維と前記第2繊維層の繊維が熱融着により接合されている積層不織布。 An unfused fiber web containing thermoplastic fibers serving as the second fiber layer is laminated on the first fiber layer that is shaped into a concavo-convex shape and includes thermoplastic fibers, and the laminated first fiber layer And by heating the second fiber layer with hot air, the fibers of the fiber web are thermally fused to form a second fiber layer, and the fibers of the first fiber layer and the second fiber layer A laminated nonwoven fabric in which fibers are bonded by heat fusion.
  10.  シートの積層不織布を平面視した側の第1面側に突出した凸部と凹んだ凹部とを有し、前記凹部を囲むように複数の前記凸部が配され、かつ前記凸部と前記凹部は、該積層不織布の平面視交差する異なる方向のそれぞれに交互に連続して配され、
     前記第1面側に前記凸部と前記凹部による凹凸形状を有する第1繊維層と、該第1繊維層の前記第1面側とは反対側の第2面側に沿って接合された第2繊維層とを有し、
     前記凹部の繊維密度が0.01g/cm以上0.08g/cm以下である積層不織布。
    The sheet has a convex portion projecting toward the first surface on the side of the laminated nonwoven fabric of the sheet and a concave concave portion, a plurality of the convex portions are arranged so as to surround the concave portion, and the convex portion and the concave portion Are alternately and continuously arranged in different directions intersecting in plan view of the laminated nonwoven fabric,
    A first fiber layer having a concavo-convex shape due to the convex portion and the concave portion on the first surface side, and a first fiber layer joined along a second surface side opposite to the first surface side of the first fiber layer. Two fiber layers,
    Fiber density of the concave portion 0.01 g / cm 3 or more 0.08 g / cm 3 or less is laminated nonwoven fabric.
  11.  前記第1繊維層の凸部の凸部頂部の下部側および凹部の凹部底部の上部側に、連続している壁部を有し、前記壁部を構成する繊維は、前記凸部頂部と前記凹部底部とを結ぶ方向に繊維配向性を有する
     請求項9または10に記載の積層不織布。
    The lower fiber side of the convex part top part of the convex part of the first fiber layer and the upper part side of the concave part bottom part of the concave part have a continuous wall part, and the fibers constituting the wall part include the convex part top part and the The laminated nonwoven fabric according to claim 9 or 10, wherein the laminated nonwoven fabric has fiber orientation in a direction connecting the bottom of the recess.
  12.  前記壁部を構成する繊維は、前記第1繊維層の凸部頂部、および凹部底部から外側に向かう放射状の繊維配向性を有している
     請求項11に記載の積層不織布。
    The laminated nonwoven fabric according to claim 11, wherein the fibers constituting the wall portion have a radial fiber orientation directed outward from the convex top portion and the concave bottom portion of the first fiber layer.
  13.  前記第1繊維層の凸部と前記第2繊維層の凸部との間に前記第1繊維層および前記第2繊維層よりも繊維密度が低い部分を有する
     請求項9から12のいずれか1項に記載の積層不織布。
    Any one of Claim 9 to 12 which has a part whose fiber density is lower than the said 1st fiber layer and the said 2nd fiber layer between the convex part of the said 1st fiber layer, and the convex part of the said 2nd fiber layer. The laminated nonwoven fabric according to item.
  14.  前記第1繊維層の凸部の第2面側の形状に沿う前記第2繊維層の凸部は、第1繊維層側の上部とこれと反対側の下部とを有し、繊維密度が、第1繊維層の凸部、第2繊維層の凸部の下部、第2繊維層の上部の順に高い
     請求項9から13のいずれか1項に記載の積層不織布。
    The convex part of the second fiber layer along the shape of the second surface side of the convex part of the first fiber layer has an upper part on the first fiber layer side and a lower part on the opposite side, and the fiber density is The laminated nonwoven fabric according to any one of claims 9 to 13, wherein the convex portion of the first fiber layer, the lower portion of the convex portion of the second fiber layer, and the upper portion of the second fiber layer are higher in this order.
  15.  前記第1繊維層の凸部の密度は8mg/cm以上25mg/cm以下であり、前記第2繊維層の凸部の密度は2mg/cm以上8mg/cm以下である
     請求項9から14のいずれか1項に記載の積層不織布。
    The density of the convex portions of the first fiber layer is 8 mg / cm 3 to 25 mg / cm 3 , and the density of the convex portions of the second fiber layer is 2 mg / cm 3 to 8 mg / cm 3. The laminated nonwoven fabric according to any one of 1 to 14.
  16.  前記第2繊維層の凸部の上部の密度は1.5mg/cm以上4mg/cm以下が好ましく、前記第2繊維層の凸部の下部の繊維密度は3.5mg/cm以上6mg/cm以下である
     請求項9から15のいずれか1項に記載の積層不織布。
    The density of the upper part of the convex part of the second fiber layer is preferably 1.5 mg / cm 3 or more and 4 mg / cm 3 or less, and the fiber density of the lower part of the convex part of the second fiber layer is 3.5 mg / cm 3 or more and 6 mg. The laminated nonwoven fabric according to any one of claims 9 to 15, which is / cm 3 or less.
  17.  前記第1繊維層の凸部と前記第2繊維層の凸部の繊維配向度が異なる
     請求項9から15のいずれか1項に記載の積層不織布。
    The laminated nonwoven fabric according to any one of claims 9 to 15, wherein the convexity of the first fiber layer and the convexity of the second fiber layer have different fiber orientation degrees.
  18.  前記第2繊維層の凸部の繊維配向度のほうが前記第1繊維層の凸部の繊維配向度よりも前記第1繊維層表面に対する垂直方向(厚み方向)に向いている
     請求項9から17のいずれか1項に記載の積層不織布。
    The fiber orientation degree of the convex part of the said 2nd fiber layer has faced the perpendicular direction (thickness direction) with respect to the said 1st fiber layer surface rather than the fiber orientation degree of the convex part of the said 1st fiber layer. The laminated nonwoven fabric according to any one of the above.
  19.  前記第1繊維層の凸部の繊維配向度は10°以上30°以下であり、前記第2繊維層の凸部の繊維配向度は30°以上60°以下である
     請求項9から18のいずれか1項に記載の積層不織布。
     
    The fiber orientation degree of the convex part of the first fiber layer is 10 ° to 30 °, and the fiber orientation degree of the convex part of the second fiber layer is 30 ° to 60 °. The laminated nonwoven fabric according to claim 1.
PCT/JP2012/080947 2011-12-14 2012-11-29 Laminated nonwoven fabric and method for producing same WO2013088969A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280058824.3A CN103987887B (en) 2011-12-14 2012-11-29 Stacking non-woven fabrics and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-273734 2011-12-14
JP2011273734A JP5498474B2 (en) 2011-12-14 2011-12-14 Method for producing laminated nonwoven fabric

Publications (1)

Publication Number Publication Date
WO2013088969A1 true WO2013088969A1 (en) 2013-06-20

Family

ID=48612424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080947 WO2013088969A1 (en) 2011-12-14 2012-11-29 Laminated nonwoven fabric and method for producing same

Country Status (3)

Country Link
JP (1) JP5498474B2 (en)
CN (1) CN103987887B (en)
WO (1) WO2013088969A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098796A1 (en) * 2014-12-17 2016-06-23 花王株式会社 Liquid film cleavage agent
WO2018020688A1 (en) * 2016-07-29 2018-02-01 ユニ・チャーム株式会社 Laminated nonwoven fabric for liquid-permeable sheet in absorbent article, and use of said laminated nonwoven fabric for liquid-permeable sheet in absorbent article
CN108352154A (en) * 2015-11-05 2018-07-31 株式会社神户制钢所 The manufacturing method of fine porous plate
CN108993028A (en) * 2018-08-17 2018-12-14 北昌君控(北京)科技有限公司 A kind of environmentally friendly filtrate and preparation method thereof filtering coating cloud
WO2019031180A1 (en) * 2017-08-09 2019-02-14 花王株式会社 Wiping sheet and method for manufacturing same
CN111778633A (en) * 2020-06-28 2020-10-16 当涂县科辉商贸有限公司 Efficient non-woven fabric manufacturing equipment

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5925835B2 (en) * 2013-09-24 2016-05-25 花王株式会社 Nonwoven manufacturing method
JP6468803B2 (en) * 2014-10-30 2019-02-13 花王株式会社 Laminated nonwoven fabric
JP6801643B2 (en) * 2015-03-12 2020-12-16 東レ株式会社 Laminated non-woven fabric
KR102477321B1 (en) * 2015-07-24 2022-12-13 주식회사 쿠라레 Fiber laminate
JP6504502B2 (en) * 2015-07-30 2019-04-24 パナソニックIpマネジメント株式会社 Laminated non-woven fabric and air cleaner
JP6566852B2 (en) * 2015-11-30 2019-08-28 花王株式会社 Non-woven
JP6566858B2 (en) * 2015-12-11 2019-08-28 花王株式会社 Laminated nonwoven fabric
JP6646478B2 (en) * 2016-03-07 2020-02-14 Jxtgエネルギー株式会社 Long-fiber nonwoven fabric having wrinkles and method for producing the same
CN111094640B (en) * 2017-08-31 2022-04-26 花王株式会社 Non-woven fabric
JP7157525B2 (en) * 2017-11-29 2022-10-20 花王株式会社 absorbent article
WO2019143130A2 (en) * 2018-01-16 2019-07-25 주식회사 와이지켐 Continuous strand having water washability and separability during curling process and comprising filaments bonded to each other by thermal surface bonding, wet look wig using same, and method for manufacturing same
CN109853133B (en) * 2019-03-06 2021-09-07 荆门千年健医疗保健科技有限公司 Preparation method of mixed fiber cotton pad
CN110804805A (en) * 2019-12-03 2020-02-18 英氏控股集团股份有限公司 Fixed-point consolidation double-layer 3D fabric and manufacturing process thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424263A (en) * 1990-05-17 1992-01-28 Kao Corp Nonwoven fabric, production thereof and absorbing article
JPH06158499A (en) * 1992-11-06 1994-06-07 Chisso Corp Production of nonwoven fabric
JP2004137655A (en) * 2002-09-25 2004-05-13 Kao Corp Method for recovering bulk of non-woven fabric

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2105026C (en) * 1993-04-29 2003-12-16 Henry Louis Griesbach Iii Shaped nonwoven fabric and method for making the same
US7131171B2 (en) * 2002-09-25 2006-11-07 Kao Corporation Method for restoring bulkiness of nonwoven fabric
CN101448990B (en) * 2006-06-23 2011-12-07 尤妮佳股份有限公司 Nonwoven fabric
JP5123497B2 (en) * 2006-06-23 2013-01-23 ユニ・チャーム株式会社 Nonwoven fabric, nonwoven fabric manufacturing method and nonwoven fabric manufacturing apparatus
JP4865635B2 (en) * 2007-05-15 2012-02-01 花王株式会社 Stretchable laminated sheet and manufacturing method thereof
CN102002817A (en) * 2010-11-22 2011-04-06 山东俊富非织造材料有限公司 Punched spunbonded nonwoven material and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424263A (en) * 1990-05-17 1992-01-28 Kao Corp Nonwoven fabric, production thereof and absorbing article
JPH06158499A (en) * 1992-11-06 1994-06-07 Chisso Corp Production of nonwoven fabric
JP2004137655A (en) * 2002-09-25 2004-05-13 Kao Corp Method for recovering bulk of non-woven fabric

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098796A1 (en) * 2014-12-17 2016-06-23 花王株式会社 Liquid film cleavage agent
JP2016117981A (en) * 2014-12-17 2016-06-30 花王株式会社 Liquid film cleavage agent
JP6051333B1 (en) * 2014-12-17 2016-12-27 花王株式会社 Liquid film cleaving agent
CN111364241A (en) * 2014-12-17 2020-07-03 花王株式会社 Liquid film cracking agent
CN108352154B (en) * 2015-11-05 2022-04-08 株式会社神户制钢所 Method for manufacturing fine porous plate
CN108352154A (en) * 2015-11-05 2018-07-31 株式会社神户制钢所 The manufacturing method of fine porous plate
JPWO2018020688A1 (en) * 2016-07-29 2019-05-09 ユニ・チャーム株式会社 Patent application title: Laminated nonwoven fabric for liquid permeable sheet of absorbent article, and use of the laminated nonwoven fabric for liquid permeable sheet of absorbent article
CN109496242A (en) * 2016-07-29 2019-03-19 尤妮佳股份有限公司 Use of the stacking non-woven fabrics and above-mentioned stacking non-woven fabrics of the liquid-permeable sheet of absorbent commodity in the liquid-permeable sheet of absorbent commodity
WO2018020688A1 (en) * 2016-07-29 2018-02-01 ユニ・チャーム株式会社 Laminated nonwoven fabric for liquid-permeable sheet in absorbent article, and use of said laminated nonwoven fabric for liquid-permeable sheet in absorbent article
JP2019030572A (en) * 2017-08-09 2019-02-28 花王株式会社 Wiping sheet and its manufacturing method
WO2019031180A1 (en) * 2017-08-09 2019-02-14 花王株式会社 Wiping sheet and method for manufacturing same
CN108993028A (en) * 2018-08-17 2018-12-14 北昌君控(北京)科技有限公司 A kind of environmentally friendly filtrate and preparation method thereof filtering coating cloud
CN108993028B (en) * 2018-08-17 2024-01-09 北昌君控(北京)科技有限公司 Environment-friendly filter material for filtering paint mist and preparation method thereof
CN111778633A (en) * 2020-06-28 2020-10-16 当涂县科辉商贸有限公司 Efficient non-woven fabric manufacturing equipment
CN111778633B (en) * 2020-06-28 2022-10-28 安徽创源农业开发有限公司 Efficient non-woven fabric manufacturing equipment

Also Published As

Publication number Publication date
CN103987887A (en) 2014-08-13
CN103987887B (en) 2016-11-23
JP2013124428A (en) 2013-06-24
JP5498474B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
WO2013088969A1 (en) Laminated nonwoven fabric and method for producing same
JP5123511B2 (en) Non-woven
JP5328088B2 (en) Non-woven
JP5069891B2 (en) Non-woven
JP5069890B2 (en) Non-woven
JP5123505B2 (en) Non-woven
JP5328089B2 (en) Multilayer nonwoven fabric and method for producing multilayer nonwoven fabric
JP5154048B2 (en) Non-woven
US20120321839A1 (en) Nonwoven-fabric sheet and process for producing same
JP5123512B2 (en) Non-woven
JP5840100B2 (en) Non-woven
US20130017370A1 (en) Non-woven fabric sheet
WO2013161983A1 (en) Composite sheet and method for manufacturing composite sheet
JP2008002034A (en) Nonwoven fabric, method for producing the nonwoven fabric and apparatus for producing the nonwoven fabric
KR102190133B1 (en) Nonwoven fabric and product obtained using same
JP5912907B2 (en) Laminated sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857805

Country of ref document: EP

Kind code of ref document: A1