[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013085010A1 - 眼鏡レンズの玉型加工システム、眼鏡レンズの製造方法、および玉型加工機 - Google Patents

眼鏡レンズの玉型加工システム、眼鏡レンズの製造方法、および玉型加工機 Download PDF

Info

Publication number
WO2013085010A1
WO2013085010A1 PCT/JP2012/081703 JP2012081703W WO2013085010A1 WO 2013085010 A1 WO2013085010 A1 WO 2013085010A1 JP 2012081703 W JP2012081703 W JP 2012081703W WO 2013085010 A1 WO2013085010 A1 WO 2013085010A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
processing
calculation
data
unit
Prior art date
Application number
PCT/JP2012/081703
Other languages
English (en)
French (fr)
Inventor
寒川 正彦
大丸 孝司
佐藤 良介
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to US14/363,985 priority Critical patent/US9205526B2/en
Priority to EP12854915.1A priority patent/EP2789424B1/en
Priority to BR112014013687-4A priority patent/BR112014013687B1/pt
Priority to KR1020147018821A priority patent/KR101868668B1/ko
Priority to CN201280059979.9A priority patent/CN103974803B/zh
Priority to JP2013548302A priority patent/JP6002151B2/ja
Priority to AU2012349282A priority patent/AU2012349282B2/en
Publication of WO2013085010A1 publication Critical patent/WO2013085010A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • B24B9/148Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms electrically, e.g. numerically, controlled
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path

Definitions

  • the present invention relates to an eyeglass lens processing system, an eyeglass lens manufacturing method, and an eyelet processing machine for processing an eyeglass lens into an eyeglass frame.
  • a spectacle lens desired by the spectacle orderer out of a group of spectacle lens products that conforms to prescription information of the spectacle orderer (customer) is used to frame the spectacle frame selected by the spectacle orderer.
  • Mold processing is performed.
  • the spectacle lens is processed according to the frame shape data of the spectacle frame obtained by the measurement by the tracer, the type, material, and bevel shape of the spectacle frame.
  • a bead processing machine is used to shape the eyeglass lens.
  • the target lens processing machine calculates processing shape data using a predetermined calculation program, and applies the calculated processing shape data to perform target lens processing for the spectacle lens.
  • the processed shape data is data for specifying in what shape the spectacle lens that is the target of target lens processing is processed.
  • the processing shape data is calculated using data including spectacle frame information, spectacle lens information, layout information, prescription information (hereinafter also referred to as “order data”).
  • order data data including spectacle frame information, spectacle lens information, layout information, prescription information (hereinafter also referred to as “order data”).
  • order data prescription information
  • centralized processing system that aims to improve efficiency by consolidating processing resources such as target processing machines
  • multiple target processing machines are installed at the processing center, where eyeglass lenses are processed centrally.
  • a tracer is installed at each spectacle store, and the frame shape data of the spectacle frame measured by the tracer is provided (transmitted) to the target processing machine, along with the spectacle frame information. Perform edging.
  • the spectacle frame does not exist at the processing center side, so the spectacle lens processed by the target lens processing machine is properly framed in the spectacle frame specified by the ordering side (spectacle store). There was a problem that it was not possible to confirm whether it was possible at the order receiving side (processing center).
  • a lens processing system (hereinafter referred to as a “just fit processing system”) that is a lens processing system different from the above-described central processing system and can contribute to an improvement in the fitting rate at the time of frame insertion. It has been proposed and put to practical use (see Patent Document 4).
  • a processing control terminal and a plurality of bead processing machines are installed in a processing center, and frame shape data of an eyeglass frame measured by an eyeglass store tracer is processed along with eyeglass frame information. Provide (transmit) to the processing control terminal of the center.
  • the processing control terminal uses the lens design data of the spectacle lens necessary for optimizing the frame, and uses the processing shape data applied to the target lens processing and the spectacle lens theoretical cycle. The length is calculated.
  • the target lens shape processing machine the spectacle lens is processed into a target lens shape based on the processing shape data calculated by the processing control terminal. Also, by measuring the circumference of the spectacle lens that has been processed into a lens shape with a three-dimensional circumference measuring machine, and comparing the actual circumference obtained by this measurement with the theoretical circumference calculated by the machining control terminal It is confirmed (inspected) whether the spectacle lens can be properly framed in the spectacle frame.
  • the operation program for that purpose is prepared for each manufacturer of the target processing machine. For this reason, even when the same order data is used, the machining shape data is calculated using a different calculation program for each maker of the edging machine. Therefore, using the same order data, even if the same spectacle lens is processed by the target lens processing machine manufactured by company A and the target model processing machine manufactured by company B, the finished shape of the spectacle lens can be obtained respectively. A subtle difference occurs. The reason is as follows.
  • the shape (finished) is determined by each manufacturer according to the standard (ideal) ) Is different. Also, what kind of lens shape is ideal by the lens manufacturer or processing machine manufacturer for the frame shape data of a spectacle frame, and what calculation program is used to obtain the ideal shape? It is managed as know-how of each manufacturer. For this reason, for example, as described in Patent Document 3, the measurement error unique to the tracer and the machining error unique to the target lens shaper are stored in the memory, and the frame shape data of the spectacle frame measured by the tracer is stored.
  • Patent Document 3 discloses spectacle lenses in which a plurality of spectacle stores are provided with respective tracers, and a target lens processing machine is disposed in one processing center, and these are connected to a computer via a public communication line network to perform target lens processing. Although a processing system is disclosed, it does not disclose differences in the processing shape data by the target lens processing machine or the finished shape of the spectacle lens.
  • the above-mentioned just-fit processing system is built and operated in its own processing center by a lens manufacturer that owns lens design data.
  • a lens manufacturer that operates the above-described just-fit processing system replaces the in-house manufactured lens processing machine with another company's manufactured lens processing machine.
  • an oval processing machine provided (manufactured) by a processing machine maker other than the lens maker has a mechanism for calculating machining shape data using a calculation program that conforms to a standard uniquely defined by the processing machine maker.
  • the main object of the present invention is to develop a technique capable of processing a spectacle lens into a desired finished shape when processing the spectacle lens, regardless of the manufacturer of the target lens processing machine used for the processing. It is to provide.
  • the first aspect of the present invention is: An eyeglass lens processing system for processing an eyeglass lens to frame the spectacle frame,
  • a lens processing machine comprising: a lens processing unit that performs the target lens processing; and a first arithmetic unit that obtains processing shape data to be applied to target lens processing of the lens processing unit using a first arithmetic program;
  • a machining control terminal having a second computation unit for obtaining machining shape data to be applied to the target lens shape machining of the lens machining unit by a second computation program different from the first computation program;
  • Configured with The lens processing machine performs at least the calculation of machining shape data to be applied to the lens processing among the various calculation items related to the lens processing, or the second calculation unit.
  • the second aspect of the present invention is: The lens processing unit performs the target lens shape processing by roughing and finishing, and the first calculation unit receives processing shape data to be applied to the roughing and finishing as lenses of the spectacle lens. It calculates without using design data, The second calculation unit is configured to calculate processing shape data to be applied to at least the finishing processing among the roughing processing and the finishing processing using lens design data of the spectacle lens. It is the eyeglass processing system of the spectacle lens described in the first aspect.
  • the third aspect of the present invention is:
  • the target lens processing machine includes an edge shape measuring unit that measures the edge shape of the spectacle lens, and outputs edge shape measurement data obtained by measurement of the edge shape measuring unit to the processing control terminal,
  • the second calculation unit of the processing control terminal calculates the processing shape data using the edge shape measurement data output from the target lens shape processing machine. It is an eyeglass processing system of the spectacle lens described.
  • the fourth aspect of the present invention is: The bead processing machine outputs processing machine information that is one of calculation information used for calculation of the processing shape data to the processing control terminal,
  • the processing control terminal includes a calculation information acquisition unit that acquires the processing machine information output from the target lens processing machine as one of the calculation information.
  • the second computing unit of the machining control terminal is a spectacle lens that is an object of target lens processing when the computation switching unit is set to perform computation of the machining shape data in the second computing unit.
  • Calculate shape data for edge shape measurement using the lens design data of In the target lens shape processing machine when the calculation switching unit is set to perform calculation of the machining shape data in the second calculation unit, the edge shape measurement is performed by the second calculation unit.
  • the shape data is acquired by the data acquisition unit, and the edge shape is measured by the edge shape measurement unit using the acquired shape data for edge shape measurement.
  • This is a lens lens processing system.
  • the sixth aspect of the present invention is: A blocker for attaching the lens holder to the spectacle lens in order to hold the spectacle lens with the lens holder;
  • the target lens processing machine outputs center height data indicating a center height when the spectacle lens is held by the lens holder, together with the edge shape measurement data, to the processing control terminal.
  • the eyeglass processing system for spectacle lenses according to the third aspect.
  • the seventh aspect of the present invention is The bead processing machine has an operation panel that allows an operator to select whether to perform the calculation of the machining shape data in the first calculation unit or the second calculation unit,
  • the calculation switching unit is configured to set whether the calculation of the machining shape data is performed by the first calculation unit or the second calculation unit based on a result selected by the operator using the operation panel.
  • the eyeglass processing system for spectacle lenses according to any one of the first to sixth aspects, characterized in that: (Eighth aspect)
  • the eighth aspect of the present invention is The calculation switching unit uses the first calculation unit to calculate the processing shape data by using at least one of the spectacle lens information, the spectacle frame information, and the prescription information included in the lens shape processing order data.
  • the eyeglass processing system for spectacle lenses according to any one of the first to sixth aspects, wherein the setting of whether to perform the setting or the setting by the second calculation unit is switched.
  • the ninth aspect of the present invention provides The machining control terminal outputs an instruction signal indicating whether to perform the calculation of the machining shape data by the first calculation unit or the second calculation unit to the target lens processing machine, The calculation switching unit of the target lens shape machine performs the calculation of the machining shape data by the first calculation unit or the second calculation unit in accordance with the instruction signal output from the processing control terminal.
  • the eyeglass processing system for spectacle lenses according to any one of the first to sixth aspects, wherein the setting is switched.
  • the tenth aspect of the present invention provides The processing control terminal outputs an instruction signal to the effect that calculation of the processing shape data is performed by the first calculation unit when it is not possible to acquire lens design data of a spectacle lens that is a target of target lens processing.
  • an instruction signal indicating that the processing shape data is calculated by the second calculation unit is output.
  • the spectacle lens according to the ninth aspect This is a lens processing system.
  • the eleventh aspect of the present invention is The processing control terminal, when the shape of the surface of the spectacle lens that is the target of the target lens shape processing is a spherical surface, outputs an instruction signal for performing the calculation of the processing shape data in the first calculation unit, When the shape of the surface of the spectacle lens is other than a spherical surface, an instruction signal indicating that the processing shape data is calculated by the second calculation unit is output.
  • the spectacles according to the ninth aspect This is a lens lens processing system.
  • the twelfth aspect of the present invention provides The machining control terminal outputs an instruction signal indicating that the machining unit data is to be computed by the first computing unit when the tilt angle of the eyeglass frame to be framed is less than a predetermined angle.
  • an instruction signal is output to the effect that the processing shape data is calculated by the second calculation unit. It is an eyeglass processing system of the spectacle lens described.
  • the thirteenth aspect of the present invention provides A lens processing unit that performs eyeglass processing of an eyeglass lens to frame the spectacle frame, a first arithmetic unit that obtains processing shape data to be applied to target lens processing of the lens processing unit by a first arithmetic program, A bead processing machine having A machining control terminal having a second computation unit for obtaining machining shape data to be applied to the target lens shape machining of the lens machining unit by a second computation program different from the first computation program; A method of manufacturing a spectacle lens using Among the various calculation items related to the target lens processing in the target lens processing machine, at least the processing shape data to be applied to the target lens processing is calculated by the first arithmetic unit or the second arithmetic unit.
  • a setting switching step for switching the setting of whether to perform A machining calculation step of calculating the machining shape data in the second calculation unit when setting the calculation of the machining shape data in the second calculation unit in the setting switching step;
  • a method for manufacturing a spectacle lens comprising: (14th aspect)
  • the fourteenth aspect of the present invention provides A ball that is communicatively connected to a machining control terminal having a second calculation unit that obtains machining shape data to be applied to the lens shape processing by a second calculation program, and that shapes an eyeglass lens to be framed in an eyeglass frame Mold processing machine, A lens processing portion for performing the target lens processing;
  • Of the various calculation items related to the target lens shape processing at least the setting
  • a calculation switching unit A data acquisition unit for acquiring machining shape data calculated by the second calculation unit when the machining shape data is calculated by the second calculation unit;
  • the lens machining unit applies the machining shape data acquired by the machining shape data to the ball processing unit.
  • a processing machine control unit that controls to perform mold processing; It is an oval processing machine characterized by comprising.
  • the eyeglass lens when an eyeglass lens is processed into a target lens shape, the eyeglass lens can be processed into a desired finished shape regardless of the manufacturer of the target lens processing machine used for the target lens processing.
  • FIG. (1) which shows the processing flow which concerns on the lens shape process of a spectacle lens.
  • FIG. (2) which shows the process flow which concerns on the lens shape processing of a spectacle lens.
  • FIG. (3) which shows the tilt angle of a spectacles frame.
  • FIG. (2) which shows the relationship between a finishing position and an edge shape measurement position.
  • FIG. 1 is a block diagram illustrating a configuration example of an eyeglass lens ordering system.
  • a spectacle store 1 which is an eyeglass lens ordering side and a lens manufacturer processing center 2 which is an eyeglass lens ordering side are connected via a communication network 3 such as the Internet.
  • a plurality of spectacle stores 1 are connected to one processing center 2 via a communication network 3, but only one spectacle store 1 is shown here in a simplified manner.
  • the ordering side is not limited to the spectacle store 1, but, for example, when an external processing factory or another lens manufacturer entrusts the processing of the spectacle lens to the processing center 2, the processing factory or the lens manufacturer is the ordering side. .
  • an ordering terminal 11 is arranged.
  • the ordering terminal 11 is configured using hardware such as a CPU (Central Processing Unit), ROM (Read-Only Memory), RAM (Random Access Memory), HDD (Hard Disk Drive), and the like.
  • the ordering terminal 11 includes a computer unit 11a, an operation unit 11b, and a display unit 11c.
  • the computer unit 11a has an arithmetic processing function as a computer.
  • the computer unit 11 a is configured to be connected to the communication network 3 via a router (not shown) and the like, and to exchange data with other devices through the communication network 3.
  • the operation unit 11b includes, for example, a keyboard, a mouse, a touch panel, and the like, and inputs information to the computer unit 11a.
  • the display unit 11c includes, for example, a liquid crystal display, and displays an image according to an instruction from the computer unit 11a.
  • a tracer 12 is connected to the ordering terminal 11.
  • the tracer 12 measures the frame shape of the spectacle frame in three dimensions.
  • the measurement result of the tracer 12 is input to the computer unit 11a as frame shape data of the spectacle frame.
  • a well-known tracer 12 can be used.
  • an order receiving terminal 21 is arranged.
  • the order receiving terminal 21 is configured using well-known hardware as a component of the computer, like the ordering terminal 11 described above.
  • the order receiving terminal 21 is connected to the communication network 3 via a router or the like (not shown).
  • various data including at least ordering data for spectacle lenses can be exchanged between the ordering terminal 11 and the order receiving terminal 21.
  • the ordering terminal 11 Upon delivery of ordering data using the communication network 3, the ordering terminal 11 transmits ordering data to the ordering terminal 21, and the ordering terminal 21 receives the ordering data transmitted from the ordering terminal 11 as ordering data.
  • the data exchanged between the ordering terminal 11 and the tracer 12 includes various information (data) used for eyeglass processing of the spectacle lens.
  • the order data includes information such as spectacle frame information, spectacle lens information, layout information, and prescription information.
  • the information belonging to the spectacle frame information includes, for example, spectacle frame material, frame shape data, frame size, tilt angle, frame color, frame manufacturer, model name, and the like.
  • information belonging to the spectacle lens information for example, the type of spectacle lens (single focus lens, bifocal lens, progressive power lens, etc.), material, lens curve, lens color, functional film (light control film, polarizing film, Presence or absence of a hard coat film).
  • Examples of the information belonging to the layout information include interpupillary distance (distance between pupils for distance, distance between pupils for near distance), pupil height, fitting point (eyepoint), and the like.
  • information belonging to the prescription information include surface power, astigmatism power, astigmatism axis, addition power, and prism prescription.
  • the processing center 2 has a spectacle lens processing system 4 built therein.
  • the target lens processing system 4 corresponds to the just-fit processing system described above.
  • the processing shape data to be applied to the target lens processing is calculated by the processing control terminal 23 using the lens design data of the spectacle lens that is the target of target lens processing, and the calculation result is calculated as the target lens processing machine 22. It is a mechanism to provide eyeglass lens processing. For this reason, it is not necessary to provide both the processing control terminal 23 and the target lens shaper 22 with a function for calculating the processing shape data if the target lens shape processing is simply performed.
  • both the processing control terminal 23 and the target lens processing machine 22 have a calculation function of processing shape data.
  • the reason for adopting such a configuration will be described together with the “effects of the embodiment” in the latter part.
  • the target lens processing system 4 includes an target lens processing machine 22, a processing control terminal 23, a data server 24, a circumference measuring machine 25, a lens meter 26, and a blocker 27. In addition, these are connected to each other via a communication line 28 such as a LAN (Local Area Network).
  • a communication line 28 such as a LAN (Local Area Network).
  • the number of devices and terminals constituting the target lens processing system 4 is not limited to one, but may be a plurality.
  • the connection relationship between the target lens shape machine 22 and the processing control terminal 23 via the communication line 28 may be a one-to-one relationship or an m-to-one relationship (m is an integer of 2 or more). Many just-fit processing systems have an m-to-1 relationship.
  • the order receiving terminal 21 registers the order data received via the communication network 3 in the data server 24 as order data.
  • the order data is registered in the data server 24 in units of a pair of left and right eyeglass lenses, for example.
  • Each order data is registered with job identification information that can be generated by reading a barcode or the like, for example, in order to manage one order data as one job.
  • the job identification information is information used for associating information (data) necessary for eyeglass lens processing. With regard to the job identification information, for example, every time the order receiving terminal 21 receives the order receiving data, the order receiving terminal 21 or the processing control terminal 23 may be assigned for each order receiving data.
  • a barcode corresponding to the job identification information may be output on a sheet by printing or the like, and job identification information may be generated and used using this barcode.
  • the order receiving terminal 21 is connected to the communication line 28 via the data server 24. However, the order receiving terminal 21 may be directly connected to the communication line 28.
  • the target lens processing machine 22 is a processing machine that processes a spectacle lens into a target lens shape so as to frame the spectacle frame.
  • the eyeglass lens that is the target of lens processing (hereinafter also referred to as “the lens to be processed”) is designed and manufactured by a lens manufacturer and is not yet processed according to the frame shape of the eyeglass frame. It is a lens. In general, an uncut lens having a round outer shape is handled as a lens to be processed.
  • the target lens shape processing by the target lens shape processing machine 22 is generally performed through two processing steps such as rough processing and finishing processing. Roughing is a processing step for processing a spectacle lens into a shape that is slightly larger than the final finished shape of the lens.
  • the finishing process is to process the spectacle lens in accordance with the final finished shape of the lens, and is a processing step including a beveling process.
  • the beveling process is a process of forming a bevel (for example, a beveled bevel, a V-groove bevel (grooving), a flat bevel, etc.) on the outer peripheral surface of the spectacle lens.
  • Roughing and finishing may be performed by changing a processing tool for each process, or may be performed using the same processing tool.
  • the processing method may be changed for each process, for example, roughing is performed by cutting and finishing is performed by grinding, or the same processing method may be applied.
  • Mirror finish is a process that gives a gloss by polishing the edge of the lens with a fine tool.
  • the machining control terminal 23 calculates the machining shape data to be applied to the target lens shape processing by the target lens processing machine 22, and registers the calculated machining shape data in the data server 24. For the machining shape data, in the target lens processing machine 22, under what conditions the various tools included in the target lens processing machine are selected, and various stages, rotating shafts, and motors included in the target lens processing machine. It is also the reference data for determining under what conditions the cylinder or the like is moved or driven to process the spectacle lens.
  • the data server 24 stores and accumulates various information necessary for processing the lens of the spectacle lens.
  • the information stored in the data server 24 includes the above-described order data, lens design data for eyeglass lenses, and the like.
  • Lens design data includes lens physical property data (refractive power, Abbe number, specific gravity, etc.), radial data, convex surface (optical surface) surface shape data, concave surface (optical surface) surface shape data, lens thickness data, outer diameter Data etc. are included.
  • lens design data of various spectacle lenses owned by the lens manufacturer is registered in advance.
  • the circumference measuring machine 25 measures the circumference of a spectacle lens (hereinafter also referred to as “finished lens”) that has been finished with the lens shape processing by the lens shape processing machine 22.
  • the circumference measuring machine 25 measures the peripheral shape of the finished lens as three-dimensional shape data, and calculates the circumference of the finished lens based on the three-dimensional lens peripheral shape data. Calculate by calculation. Therefore, the peripheral length of the finished lens varies depending on the depth of the bevel curve even when the outer diameter of the lens when the finished lens is viewed from the optical axis direction is the same. Specifically, the deeper the bevel curve, the longer the circumference.
  • the items that can be measured by the circumference measuring machine 25 are not limited to the circumference described here, and it is also possible to measure, for example, the height dimension and width dimension of the finished lens.
  • the lens meter 26 measures the optical center of the spectacle lens, the astigmatism axis, and the like, and attaches a mark to the position on the optical surface that becomes the optical center of the spectacle lens, for example, based on the measurement result.
  • the blocker 27 attaches the lens holder to the spectacle lens with the mark point given by the lens meter 26 as a reference (center) in order to hold the spectacle lens with the lens holder.
  • FIG. 2 is a block diagram illustrating a functional configuration example of the target lens shape processing machine and the processing control terminal.
  • the configuration of the target lens processing machine 22 and the configuration of the processing control terminal 23 will be described in order.
  • the lens processing machine 22 includes a lens processing unit 22a, an operation panel 22b, an edge shape measurement unit 22c, a first calculation unit 22d, a processing machine information storage unit 22e, a data acquisition unit 22f, and a calculation switching unit. 22g and a processing machine control unit 22h.
  • the lens processing unit 22a performs target lens processing (rough processing, finishing processing) of the spectacle lens 30. Therefore, the lens processing unit 22a includes various processing tools, a stage, a rotating shaft, a motor, a cylinder, and the like that are necessary for processing the target lens shape.
  • the operation panel 22b is used by the operator of the bead processing machine 22 to perform various operations.
  • the spectacle lens 30 supplied to the lens processing section 22a is supplied to the blocker 27, where it is held by the lens holder 40 as shown in FIGS. 3 (a) and 3 (b).
  • the lens holder 40 holds the spectacle lens 30 by being in close contact with one optical surface (convex surface) 31 of the spectacle lens 30 via the seal pad 41.
  • Which position of the eyeglass lens 30 the blocker 27 sets as the block position differs depending on the type of eyeglass lens and the lens shape. In general, an eye point block or a frame center block is performed.
  • the vertex (segment top) of a small ball may be used as a block position.
  • the block position is specified by the optical center for a single focus lens, the segment top for a bifocal lens, and the shift amount from the prism measurement point for a progressive lens by XY coordinate values. Is not limited to this.
  • the center of the block position of the spectacle lens 30 by the blocker 27 is the rotation center position when the spectacle lens 30 is rotated during processing of the target lens shape. For this reason, information for designating a block position (hereinafter referred to as “block position information”) is one piece of information necessary for calculating machining shape data applied to the target lens shape machining.
  • the block position may be obtained by, for example, the processing control terminal 23 by calculation, and the blocker 27 may hold the specified position of the spectacle lens by the lens holder according to the calculation result.
  • the processing control terminal 23 registers the block position designation data (block position information) obtained by the calculation in the data server 24 in association with the job identification information.
  • the blocker 27 reads a barcode attached to a tray or the like that stores the spectacle lens before the block with a barcode reader attached to the blocker 27, and uses the job identification information generated thereby from the data server 24. Read specified data.
  • the blocker 27 associates the block position information with the job identification information and registers it in the data server 24, which is registered in the target lens processing machine 22 or the processing control terminal. 23 may be read out.
  • the edge shape measuring unit 22c measures the edge shape of the spectacle lens 30.
  • the edge shape measurement unit 22 c measures the edge shape by bringing a pair of measuring elements 51 and 52 into contact with the optical surfaces 31 and 32 of the eyeglass lens 30 held by the lens holder 40.
  • the spectacle lens 30 is rotated integrally with the lens holder 40, and the pair of measuring elements 51 and 52 is appropriately displaced in the radial direction M of the spectacle lens 30, while the spectacle lens 30. Measure the edge shape.
  • the pair of measuring elements 51 and 52 is synchronized with the rotation of the spectacle lens 30 in the radial direction M of the spectacle lens 30 so as to trace the locus S based on the shape data for edge shape measurement given in advance. Displace. Thereby, the positional information and edge thickness information of the optical surface of the spectacle lens 30 in the locus S are obtained.
  • the measurement of the edge shape is not limited to the method described here, and other known methods may be used.
  • the first calculation unit 22d performs various calculations related to eyeglass processing of the spectacle lens.
  • the first calculation unit 22d includes at least a machining shape calculation program 22i for calculating machining shape data applied to the target lens shape processing of the lens processing unit 22a, and a machining locus calculation program 22j for calculating machining locus data. Have. Other arithmetic programs are not shown.
  • the machining shape calculation program 22i corresponds to a “first calculation program”.
  • the processed shape data 61 is data for specifying in what shape the spectacle lens that is the target of target lens processing should be processed. That is, the processed shape data 61 is data for specifying the shape of the spectacle lens obtained by the target lens shape processing.
  • the processing locus data 62 in order to process the spectacle lens into the shape specified by the processing shape data 61, the processing tool 63 used for this processing should be moved in any locus. It is data indicating whether it is good. For this reason, in order to calculate the machining trajectory data 62, machining shape data 61 is required in addition to information such as the tool diameter of the machining tool 63.
  • the feed amount of the machining tool which is one element for determining the machining locus is controlled based on the machining locus data 62.
  • the machining trajectory data 62 is data for determining under what conditions the amount of machining tool feed and the like should be controlled in actual lens processing.
  • the processing shape data 61 is calculated separately for rough processing and finishing processing. That is, when roughing is performed, machining shape data to be applied to roughing is calculated prior to that, and when finishing is performed, machining shape data to be applied to finishing is calculated prior to that.
  • the processing locus data 62 is calculated for each processing tool used for the target lens shape processing. For example, when roughing is performed with one processing tool, one processing locus data is calculated corresponding to this processing tool.
  • machining trajectory data is calculated in a one-to-one relationship with the plurality of machining tools.
  • the machining shape data 61 is represented by two-dimensional data, but is actually three-dimensional data.
  • the machining shape data calculated by the first computing unit 22d includes machining shape data applied to rough machining (hereinafter also referred to as “rough machining shape data”) and machining shape data applied to finishing machining (hereinafter referred to as “finishing”). Also referred to as “processed shape data”.
  • the first calculation unit 22d calculates the machining shape data without using the lens design data of the spectacle lens, when calculating the machining shape data of any machining step. In other words, the machining shape calculation program 22i does not include the lens design data of the spectacle lens in the parameters necessary for the calculation of the machining shape data.
  • the processing machine information storage unit 22e stores processing machine information.
  • the processing machine information is information related to the target lens shape processing machine 22 itself, and corresponds to, for example, information related to whether processing is possible or information related to processing parameters.
  • the information on whether or not processing is possible includes, for example, the maximum / minimum processing diameter that can be processed, the maximum / minimum edge thickness that can be processed, and the lens material that can be processed.
  • the processing parameters include, for example, the tool shape of the processing tool, the tool diameter, and the bevel shape to be processed.
  • the processing machine information stored in the processing machine information storage unit 22e is, for example, at the stage where data communication via the communication line 28 is possible between the target lens processing machine 22 and the processing control terminal 23. Is transmitted from the machine 22 to the machining control terminal 23.
  • the processing machine information transmitted from the target processing machine 22 to the processing control terminal 23 is acquired by the calculation information acquisition unit 23a as one piece of calculation information of the machining shape data.
  • the data acquisition unit 22f acquires various data via the communication line 28.
  • the data acquisition unit 22f acquires machining shape data which is calculated by a second calculation unit 23b described later and output from the machining control terminal 23 to the outside.
  • a data acquisition method by the data acquisition unit 22f various methods can be considered.
  • the data acquisition unit 22f accesses the data server 24 using the job identification information obtained by reading the barcode or the like, and reads the data registered in the data server 24 in association with the job identification information. Can be obtained.
  • a method is conceivable in which the data acquisition unit 22f requests the processing control terminal 23 to provide (transmit) data and receives the request to acquire the data provided by the processing control terminal 23.
  • the present invention is not particularly limited to any acquisition method.
  • the calculation switching unit 22g performs at least the calculation of the machining shape data applied to the target lens processing among the various calculation items related to the target lens processing of the spectacle lens (processed lens) 30 by the first calculation unit 22d.
  • the setting as to whether or not to be performed by the second arithmetic unit 23b is switched.
  • the calculation switching unit 22g has a determination program 22k that determines which of the first calculation unit 22d and the second calculation unit 23b is set as the calculation subject of the machining shape data, and the calculation subject according to the determination program 22k. Change the setting.
  • the switching of the calculation subject may be performed manually or automatically. Details will be described later.
  • the processing machine control unit 22h includes the lens processing unit 22a, the edge shape measurement unit 22c, the first calculation unit 22d, the processing machine information storage unit 22e, and the data acquisition unit 22f described above. , Controls the operation. Specifically, the processing machine control unit 22h controls the driving of the lens processing unit 22a in accordance with processing trajectory data calculated based on processing shape data applied to eyeglass processing of spectacle lenses. Further, the processing machine control unit 22h controls the driving of the edge shape measurement unit 22c according to shape data for edge shape measurement (details will be described later). Further, the processing machine control unit 22h controls the calculation processing by the first calculation unit 22d, the processing machine information update processing in the processing machine information storage unit 22e, the data acquisition processing by the data acquisition unit 22f, and the like. The processing machine control unit 22h communicates with an external device (for example, the processing control terminal 23) as necessary, and exchanges data with the external device.
  • an external device for example, the processing control terminal 23
  • the processing control terminal 23 includes a calculation information acquisition unit 23a, a second calculation unit 23b, a data registration unit 23c, a circumference management unit 23d, a terminal control unit 23e, and a calculation information storage unit 23f. Prepare. These functional units are realized by functions of a computer unit (not shown) included in the processing control terminal 23.
  • the calculation information acquisition unit 23a acquires calculation information used for calculation of machining shape data.
  • the calculation information includes at least spectacle frame information, spectacle lens information, layout information, prescription information, processing machine information, and spectacle lens lens design data.
  • the lens design data is used only when the second calculation unit 23b calculates the machining shape data and the like.
  • the calculation information acquired by the calculation information acquisition unit 23a (for the sake of convenience, only the spectacle frame information 23h, the spectacle lens information 23i, the prescription information 23j, and the lens design data 23k are displayed in FIG. 2) is stored in the calculation information storage unit 23f. Is done.
  • the second calculation unit 23b performs various calculations related to eyeglass processing of the spectacle lens.
  • the 2nd calculating part 23b has the processing shape calculation program 23g for calculating the processing shape data applied to the lens shape processing of the lens processing part 22a of the lens shape processing machine 22 at least. Other arithmetic programs are not shown.
  • the machining shape calculation program 23g corresponds to a “second calculation program”.
  • the machining shape data calculated by the second calculation unit 23b includes rough machining shape data and finishing machining shape data. This point is common to the machining shape data calculated by the first calculation unit 22d of the target lens shape processing machine 22.
  • the data registration unit 23 c registers various data in the data server 24.
  • the data registration unit 23c registers the machining shape data obtained by the calculation by the second calculation unit 23b in the data server 24 in association with the job identification information.
  • the job identification information used at the time of registration is the same as the job identification information added to the order data read from the data server 24 by the calculation information acquisition unit 23a when the machining shape data is calculated by the second calculation unit 23b. Information.
  • the peripheral length management unit 23d checks whether the peripheral length of the spectacle lens (finished lens) that has been processed by the target lens processing machine 22 is within a preset allowable range, and falls within the allowable range. To manage.
  • the circumference management unit 23d manages the circumference based on the measurement result of the circumference measuring machine 25. The management of the circumference is performed, for example, in order to reduce (correct) the dispersion of the circumference generated in the spectacle lens after the finishing process due to the wear of the processing tool on the target lens processing machine 22 or the like.
  • the terminal control unit 23e includes the calculation information acquisition unit 23a, the second calculation unit 23b, the data registration unit 23c, the circumference management unit 23d, and the calculation information storage unit 23f described above. , Controls the operation.
  • the machining shape calculation program 22i included in the first calculation unit 22d has a specification for calculating machining shape data without using lens design data.
  • the machining shape calculation program 23g included in the second calculation unit 23b has a specification for calculating the machining shape data using the lens design data of the eyeglass lens that is the target of the target lens shape processing.
  • the processing shape calculation program 22i included in the first calculation unit 22d does not include the lens design data of the spectacle lens in the parameters necessary for the calculation of the processing shape data.
  • the machining shape calculation program 23g included in 23b includes the lens design data of the spectacle lens in parameters necessary for the calculation of the machining shape data.
  • the processing shape of the spectacle lens specified by the processing shape data calculated by the first calculation unit 22d and the processing shape of the spectacle lens specified by the processing shape data calculated by the second calculation unit 23b are as follows. , Means different.
  • One difference is whether or not the lens design data is used for the calculation of the machining shape data as described above.
  • the other one is a spectacle lens framed in the same spectacle frame, and the finished shape of the spectacle lens that is the reference (ideal) in the processing shape calculation program 22i of the first calculation unit 22d and the second calculation This is because the finished shape of the spectacle lens used as a reference in the machining shape calculation program 23g of the unit 23b is different.
  • the spectacle lens is processed into a target lens shape according to the finished shape assumed by the processing shape calculation program 22i. Further, when the processing shape data is calculated by the second calculation unit 23b, the spectacle lens is processed into a lens shape in accordance with the finished shape assumed by the processing shape calculation program 23g. That is, since the target lens shape machine 22 and the machining control terminal 23 calculate the machining shape data by the machining shape calculation programs 22i and 23g prepared on their own standards, the calculation subject of the machining shape data is the first calculation. A difference occurs in the finished shape of the spectacle lens depending on whether the portion 22d or the second calculating portion 23b is used.
  • the finished shape of the spectacle lens differs depending on whether the processing shape data is calculated by the first calculation unit 22d or the second calculation unit 23b. Further, when a plurality of bead processing machines 22 with different processing machine manufacturers are installed in the processing center 2, if the processing entity data calculation subject is set in the first calculation unit 22d, the manufacturer of the bead processing machine 22 There is a difference in the finished shape of the spectacle lens depending on the model.
  • the target lens processing system 4 according to the present embodiment is intended to realize processing of a spectacle lens into a desired finished shape regardless of the manufacturer and model of the target lens processing machine 22.
  • the processing flow of the ordering system and the method for manufacturing the spectacle lens will be described in order.
  • the eyeglass lens ordering process is performed in the following procedure.
  • a store clerk operating the operation unit 11b of the ordering terminal 11 inputs data such as spectacle frame information, spectacle lens information, layout information, and prescription information.
  • the order data including these pieces of information can be obtained via the communication network 3 by a store clerk operating the operation unit 11b while confirming the order screen displayed on the display unit 11c, and performing an operation of confirming an order based on the order data. It is transmitted to the order receiving terminal 21.
  • the operation for confirming the order includes, for example, an operation in which a store clerk at the spectacle store presses (clicks) the “order confirmation button” in the ordering screen displayed on the display unit 11c.
  • the order receiving data transmitted from the ordering terminal 11 is received by the order receiving terminal 21.
  • the order receiving terminal 21 newly generates job identification information and registers the order receiving data (ordering data) in the data server 24 in association with the job identification information.
  • the timing for registering various types of information in the data server 24 may be any time as long as the information is not used by the first calculation unit 22d or the second calculation unit 23b.
  • the block position information may be registered in the data server 24 when the processing control terminal 23 designates the block position to the blocker 27 or when the block position information is received from the blocker 27.
  • the lens design data may be registered in the data server 24 at an arbitrary timing in association with the lens specifying information that can be uniquely specified.
  • the lens specifying information is information that can be generated using spectacle lens information, prescription information, and the like included in the order data.
  • the calculation information acquisition unit 23a generates lens specifying information using spectacle lens information, prescription information, and the like, and reads lens design data registered in association with the lens specifying information from the data server 24. Since the lens design data is data held by the lens manufacturer, it can be registered in the data server 24 at any time.
  • the machining trajectory data calculated by the first calculation unit 22d is the same data if the machining shape data that is the basis thereof is the same.
  • the reason is that the first calculation unit 22d uses the common (same) machining track calculation program 22j to calculate the machining track data regardless of whether the machining shape data is calculated by itself or the second calculation unit 23b. It is because it calculates.
  • the lens processing unit 22a processes the spectacle lens by moving the processing tool in accordance with the control conditions determined based on the processing trajectory data. For this reason, if the processing locus data calculated by the first calculation unit 22d is the same, the shape of the spectacle lens obtained after processing is also the same. From the above, if the processing shape data used for the calculation of processing trajectory data is the same, the shape of the spectacle lens obtained after processing is also the same.
  • a method for manufacturing a spectacle lens will be described under such preconditions.
  • the operator of the target lens processing machine 22 reads, for example, a barcode attached to a tray or the like that accommodates the spectacle lens before target lens processing with a bar code reader attached to the target lens processing machine 22.
  • the barcode attached to the tray or the like is obtained by coding job identification information. For this reason, when the barcode is read by the barcode reader attached to the target lens shape machine 22, job identification information is generated as a result of the reading, and this job identification information is notified from the target shape processing machine 22 to the processing control terminal 23.
  • the processing control terminal 23 acquires information necessary for eyeglass processing of the spectacle lens by the calculation information acquisition unit 23a.
  • the operator of the target lens processing machine 22 sets the eyeglass lens 30 to which the lens holder 40 is attached by the blocker 27 in advance in the lens processing unit 22a.
  • the block position information when the eyeglass lens 30 is blocked by the blocker 27 is registered in the data server 24 in association with the job identification information.
  • the operator of the target lens shape processing machine 22 gives an instruction to start processing using the operation panel 22b.
  • switch setting S1 is performed. This process is performed by the bead processing machine 22. Specifically, the calculation switching unit 22g switches between setting whether the machining shape data is calculated by the first calculation unit 22d or the second calculation unit 23b. In other words, the computation subject is switched so that the subject that computes the machining shape data is set to one of the first computation unit 22d and the second computation unit 23b.
  • the calculation switching unit 22g is set to perform the calculation of the machining shape data in the first calculation unit 22d in this step, the calculation function of the second calculation unit 23b is disabled at least with respect to the calculation of the machining shape data. .
  • the calculation switching unit 22g sets the calculation of the machining shape data in the second calculation unit 23b in this step, the calculation function of the first calculation unit 22d is in an invalid state at least with respect to the calculation of the machining shape data. become.
  • the calculation subject can be switched manually or automatically.
  • specific examples will be described.
  • Switching is performed using the operation panel 22b.
  • a switch a dip switch or a push button switch
  • a hard switch such as a rotary switch or a switch provided on a touch panel is provided on the operation panel 22b. Then, based on the result selected by the operator using the switch, the calculation switching unit 22g switches between setting whether the machining shape data is calculated by the first calculation unit 22d or the second calculation unit 23b.
  • the first calculation unit 22d is set to calculate the machining shape data. To do.
  • the second calculation unit 23b is set to calculate the machining shape data.
  • the calculation items of the machining shape calculation related to the target lens machining include shape data for measuring the edge shape in addition to the rough machining shape data and the finishing machining shape data. It is assumed that each of the calculation unit 22d and the second calculation unit 23b can be selected.
  • Switching using the soft switch is performed by setting a flag (variable) or the like on the determination program 22i of the calculation switching unit 22g.
  • the processing shape data is calculated by using at least one of the spectacle lens information, the spectacle frame information, and the prescription information included in the order receiving data for the target lens shape processing.
  • the setting of whether to perform in the unit 22d or the second arithmetic unit 23b is switched.
  • the calculation switching unit 22g sets the flag to “0” when the value of the lens curve belonging to the spectacle lens information is less than a predetermined value (for example, 7 curves), and is greater than or equal to the predetermined value. Sets the flag to “1”.
  • the calculation switching unit 22g sets the flag to “0” when the tilt angle belonging to the spectacle frame information is less than a predetermined angle (for example, 10 degrees), and sets the flag when the angle is less than the predetermined angle. Is set to “1”.
  • a predetermined angle for example, 10 degrees
  • the case where the flag is set to “0” means the case where the processing shape data is set to be calculated by the first calculation unit 22d, and the flag is set to “1”.
  • the case means a case where the processing shape data is set to be calculated by the second calculation unit 23.
  • an instruction signal for instructing the processing machine terminal 23 to perform processing of machining shape data by the first computing unit 22d or the second computing unit 23b from the machining control terminal 23 sets a software flag to set whether the machining shape data is calculated by the first calculation unit 22d or the second calculation unit 23b.
  • the machining control terminal 23 performs an instruction signal (hereinafter referred to as “first instruction signal”) indicating that machining shape data is calculated by the first calculation unit 22d, and calculation of machining shape data by the second calculation unit 22d.
  • first instruction signal an instruction signal
  • second instruction signal One of the instruction signals to be performed by the calculation unit 23 b is output to the bead processing machine 22.
  • the calculation switching unit 22g of the target lens processing machine 22 sets the flag to “0” and the second instruction signal from the machining control terminal 23. Is received, the flag is set to “1”.
  • processing control terminal 23 changes the instruction signal to be output to the target lens shaper 22 according to the following conditions, for example, when the processing shape data calculation subject is automatically switched as described above.
  • the calculation switching unit 22g of the target lens shape processing machine 22 sets the flag to “1”, that is, the calculation of the machining shape data is performed by the second calculation unit 23b.
  • confirmation of whether lens design data is registered in the data server 24 and output of an instruction signal to the target lens shaper 22 are performed by the terminal control unit 23e of the processing control terminal 23.
  • the setting of the processing shape data calculation subject is switched depending on whether or not the lens design data of the spectacle lens that is the target of target lens shape processing is registered in the data server 24.
  • the lens design data can be registered in the data server 24, but an eyeglass lens made by another company is processed into an eye shape. In this case, the lens design data cannot be registered in the data server 24. This is because lens design data is managed as confidential information (know-how) by each lens manufacturer. For this reason, in actuality, when processing a spectacle lens made by another company, the first instruction signal is output from the processing control terminal 23 to the target lens processing machine 22, and the spectacle lens manufactured in-house is processed into a target lens shape. In this case, the first instruction signal is output from the processing control terminal 23 to the target lens shape machine 22.
  • the processing control terminal 23 outputs a first instruction signal to the target lens processing machine 22 when the shape of the surface of the spectacle lens that is the target of target processing is a spherical surface. Thereby, in the calculation switching part 22g of the target lens shape machine 22, the flag is set to “0”, that is, the calculation of the machining shape data is performed by the first calculation part 22d. Further, the processing control terminal 23 outputs a second instruction signal to the target lens processing machine 22 when the shape of the surface of the spectacle lens that is the target of target processing is other than spherical. Thereby, in the calculation switching part 22g of the target lens shape machine 22, the flag is set to “1”, that is, the calculation of the machining shape data is performed by the second calculation part 23b.
  • the type of spectacle lens to be processed can be confirmed using spectacle lens information included in the order data registered in the data server 24. Further, the terminal control unit 23e of the processing control terminal 23 performs confirmation of whether the type of the spectacle lens is a spherical lens or an aspherical lens, and output of an instruction signal to the target lens processing machine 22. Thereby, in the lens shape processing machine 22, the setting of the calculation subject of the processing shape data is switched according to the type of the spectacle lens to be processed.
  • the processing control terminal 23 outputs a first instruction signal to the target lens processing machine 22 when the tilt angle of the spectacle frame to be framed is less than a predetermined angle (for example, 10 degrees). Thereby, in the calculation switching part 22g of the target lens shape machine 22, the flag is set to “0”, that is, the calculation of the machining shape data is performed by the first calculation part 22d. Further, the processing control terminal 23 outputs a second instruction signal to the target lens processing machine 22 when the tilt angle of the spectacle frame to be framed is equal to or larger than the predetermined angle. Thereby, in the calculation switching part 22g of the target lens shape machine 22, the flag is set to “1”, that is, the calculation of the machining shape data is performed by the second calculation part 23b.
  • a predetermined angle for example, 10 degrees
  • the terminal control unit 23e of the processing control terminal 23 performs confirmation of how many tilt angles of the eyeglass frame to be framed and the output of the instruction signal to the target lens processing machine 22 are performed. Thereby, in the lens shape processing machine 22, the setting of the calculation subject of the processing shape data is switched according to the tilt angle of the spectacle frame to be framed.
  • the tilt angle of the spectacle frame refers to the inclination angle ⁇ of the rim 71 when the spectacle frame 70 is viewed from above.
  • the tilt angle data of the spectacle frame belongs to the spectacle frame information described above, but is not essential data for processing the lens shape of the spectacle lens. For this reason, there is a possibility that the eyeglass frame information does not include tilt angle data.
  • the frame shape data belonging to the spectacle frame information is not necessarily provided as three-dimensional data, and may be provided as two-dimensional data. Specifically, instead of the spectacle frame, frame shape data obtained when the shape of a flat plate pattern is measured with a tracer becomes two-dimensional data. In such a case, the first instruction signal may be output to the target lens shaper 22 as in the case where the tilt angle is less than the predetermined angle.
  • the reason for changing the instruction signal output to the target lens shaper 22 based on the tilt angle of the spectacle frame will be described.
  • the right and left spectacle lenses correspond to the tilt angle with respect to the line of sight when the spectacle wearer looks in front. Has a slope.
  • a deviation occurs between the optical center distance between the left and right eyeglass lenses and the interpupillary distance of the prescription information.
  • the spectacle lens is placed in a spectacle frame having a large tilt angle (such as a spectacle frame for sports use), the difference between the optical center distance and the interpupillary distance becomes large.
  • machining shape data finishing shape data
  • lens design data is necessary for this calculation. For this reason, when the tilt angle is equal to or larger than the predetermined angle, the second instruction signal is output from the processing control terminal 23 to the target lens shape processing machine 22.
  • the spectacle lens when the spectacle lens is put in a spectacle frame having a small tilt angle, the deviation between the optical center distance and the pupil distance is small. If this deviation is small enough to have little effect on how the eyeglass wearer sees, it is not necessary to calculate the machining shape data by taking the angle into account. For this reason, when the tilt angle is less than the predetermined angle, the first instruction signal is output from the processing control terminal 23 to the target lens shape machine 22.
  • switching setting confirmation S2 is performed.
  • This process is performed by the bead processing machine 22. Specifically, in the target lens shape processing machine 22, it is confirmed which of the first calculation unit 22d and the second calculation unit 23b is set as the calculation subject of the machining shape data. Then, if the calculation subject of the machining shape data is set in the first calculation unit 22d, it is determined as Yes, and if it is set in the second calculation unit 23b, it is determined as No.
  • rough machining shape data is calculated. Specifically, as a result of checking in the switching setting confirmation S2, if the calculation subject of the machining shape data is set in the first calculation unit 22d, the first calculation unit 22d calculates the rough machining shape data. Perform (S3).
  • the calculation information acquired by the calculation information acquisition unit 23a is used.
  • the second calculation unit 23b calculates rough machining shape data (S4, S5).
  • the target shape processing machine 22 requests the machining control terminal 23 to calculate rough machining shape data, and upon receiving this request, the machining control terminal 23 calculates rough machining shape data.
  • the above-described spectacle frame information, spectacle lens information, layout information, prescription information, block position information, processing machine information, and the like are used.
  • the data acquisition unit 22f reads information necessary for this calculation from the data server 24.
  • the processing machine information information stored in the processing machine information storage unit 22e is used.
  • the calculation information acquisition unit 23a reads information necessary for this calculation from the data server 24.
  • the processing machine information information transmitted from the target lens processing machine 22 to the processing control terminal 23 in advance is used.
  • the processing machine information is sent from the target lens processing machine 22 to the processing control terminal 23.
  • the lens design data is used for the calculation of the roughing data by the second calculation unit 23b.
  • the lens design data is acquired by the calculation information acquisition unit 23a as follows. That is, lens specifying information is generated using order data registered in the data server 24, and lens design data registered in association with the lens specifying information is read from the data server 24.
  • the information acquired by the calculation information acquisition unit 23a is stored in the calculation information storage unit 23f, and the second calculation unit 23b calculates rough machining shape data using the stored information.
  • the rough machining shape data calculated by the second calculation unit 23b is registered in the data server 24 by the data registration unit 23c in association with the job identification information.
  • the rough machining shape data is calculated by the second calculation unit 23b, for example, the following merits are obtained.
  • a spectacle lens uncut lens
  • the spectacle lens with the lens holder is supported by applying pressure so as to be sandwiched from both the convex surface and the concave surface.
  • the tilt angle of the spectacle frame to be framed becomes large, the influence cannot be ignored. This will be described in detail below.
  • the position where the lens holder is attached to the lens to be processed is set to the frame center position of the frame shape when viewed in two dimensions. At this time, it is necessary to lay out the optical center of the lens to be processed with respect to the center position of the lens holder so that the optical center of the lens to be processed is on the line of sight of the spectacle wearer.
  • the calculation according to the above calculation formula is performed.
  • the calculation formula is the same as described above. That is, when the tilt angle ⁇ is small, the influence can be ignored, but when the tilt angle ⁇ is large, the influence cannot be ignored. Since the block position cannot be corrected after the lens to be processed is attached to the target lens shape machine 22, the correction of the layout based on the tilt angle ⁇ can only be performed by deforming the target lens shape in the X direction. Therefore, in the case of a spectacle frame shape with a large tilt angle ⁇ , the influence cannot be ignored.
  • the target lens shape machine 22 After the rough machining shape data calculated by the first calculation unit 22d or the second calculation unit 23b is acquired by the data acquisition unit 22f (S6), the rough processing shape data is obtained. Using this, rough processing of the spectacle lens is performed (S7).
  • the first calculation unit 22d calculates the rough machining shape data
  • the first calculation unit 22d calculates the machining trajectory data for rough machining using the rough machining shape data, and based on the machining trajectory data.
  • the processing machine control unit 22h controls driving of the lens processing unit 22a. Thereby, in the lens processing unit 22a, the rough processing of the spectacle lens is performed by applying the rough processing shape data calculated by the first calculation unit 22d.
  • the target shape processing machine 22 acquires the roughing shape data from the data server 24. Specifically, the data acquisition unit 22f of the target lens shape machine 22 accesses the data server 24 using the job identification information generated by reading the barcode. At this time, the data acquisition unit 22f reads the rough machining shape data registered in the data server 24 in association with the job identification information, and passes this to the first calculation unit 22d. Then, the first computing unit 22d computes roughing processing trajectory data using the roughing shape data received from the data acquisition unit 22f, and the processing machine control unit 22h performs the lens processing unit based on the processing trajectory data. The drive of 22a is controlled. Thereby, in the lens processing unit 22a, the rough processing of the spectacle lens is performed by applying the rough processing shape data calculated by the second calculation unit 23b.
  • the switching setting of the calculation subject of the machining shape data is confirmed (S8).
  • the first calculation unit 22d calculates the shape data for measuring the edge shape (S9).
  • the second calculation unit 23b calculates shape data for measuring the edge shape.
  • the information acquisition unit 12a acquires the information
  • the second calculation unit 23b calculates shape data for edge shape measurement using the acquired information (S10, S11).
  • the second calculation unit 23b calculates shape data for measuring the edge shape using the lens design data of the spectacle lens that is the target of the target lens shape processing.
  • the data registration unit 23c registers the shape data for edge shape measurement calculated by the second calculation unit 23b in the data server 24 in association with the job identification information.
  • the shape data for measuring the edge shape is data for designating a measurement position when measuring the edge shape of the spectacle lens 3 by the edge shape measuring unit 22c. More specifically, as shown in FIG.
  • the pair of measuring elements 51 and 52 is data specifying the shape (position) of the locus S to be traced.
  • the shape data for measuring the edge shape is calculated by the second calculation unit 23b, for example, the following advantages can be obtained when a bifocal lens is handled.
  • the bifocal lens has a portion (near portion) called a small ball.
  • the small ball portion protrudes structurally in order to obtain a refractive index suitable for near vision, and there is a step at the upper edge of the protruding portion. For this reason, there is a possibility of being caught when the tracing stylus 51, 52 traces the portion of the small ball.
  • lens design data the position of the small lens portion of the spectacle lens can be accurately specified based on this.
  • shape data for edge shape measurement is calculated by the second calculation unit 23b
  • shape data for edge shape measurement is used so that the probe 51, 52 traces the lens optical surface while avoiding the small ball portion. Can be calculated. Therefore, it is possible to avoid a situation in which the probe is caught on the step of the small ball portion.
  • the data acquisition unit 22f acquires shape data for edge shape measurement calculated by the second calculation unit 23b from the data server 24 (S12).
  • the edge shape measuring unit 22c measures the edge shape using the shape data for measuring the edge shape (S13). Specifically, the edge shape is measured according to the locus S (see FIG. 5) designated by the edge shape measurement shape data.
  • the outer shape of the spectacle lens 30 is drawn in a circle.
  • the lens shape at the time of measurement is a final finish. A shape that is slightly larger than the shape.
  • the setting for switching the processing subject of the processing shape data is confirmed (S14).
  • the first calculation is performed using the edge shape measurement data obtained by measuring the edge shape.
  • the part 22d calculates the finishing shape data (S15).
  • the edge shape measurement data obtained by measuring the edge shape is used as the machining control terminal 23. (S16).
  • the processing control terminal 23 acquires (receives) the edge shape measurement data output from the target lens processing machine 22 by the calculation information acquisition unit 23a (S17), and then uses the edge shape measurement data to perform the second processing.
  • the calculation unit 23b calculates the finish machining shape data (S18).
  • the above-described spectacle frame information, spectacle lens information, layout information, prescription information, block position information, processing machine information, and lens design data are used for the calculation of the finish processing shape data.
  • the finishing shape data calculated by the second calculation unit 23b in this step is registered in the data server 24 by the data registration unit 23c in association with the job identification information.
  • the second calculation unit 23b calculates the theoretical circumference together with the finished machining shape data, and the data registration unit 23c associates this theoretical circumference with the job identification information together with the finished machining shape data.
  • the theoretical circumference is numerical data calculated according to a circumference calculation program (not shown) included in the second calculation unit 23b.
  • This theoretical perimeter is calculated as the perimeter of the spectacle lens that is preferable from the viewpoint of improving the fitting rate when the spectacle lens that has been finished with the target lens shape processing is put into the spectacle frame. Therefore, the optimum processing state is when the peripheral length of the spectacle lens after processing the target lens shape matches this theoretical peripheral length.
  • the finishing process (including the beveling process) of the spectacle lens is performed using the finishing shape data calculated by the first calculation unit 22d or the second calculation unit 23b (S20).
  • the first calculation unit 22d calculates the finishing machining data
  • the first calculation unit 22d calculates the machining locus data for finishing using the finishing machining data
  • the processing machine is based on the machining locus data.
  • the control unit 22h controls driving of the lens processing unit 22a. Thereby, in the lens processing unit 22a, the finishing processing of the spectacle lens is performed by applying the finishing processing shape data calculated by the first calculation unit 22d.
  • the finish processing shape data is acquired from the data server 24 by the data acquisition unit 22f of the target lens processing machine 22 prior to the execution of the finish processing ( S19).
  • the data acquisition unit 22f of the target lens shape machine 22 accesses the data server 24 using the job identification information generated by reading the barcode.
  • the data acquisition unit 22f reads the finishing shape data registered in the data server 24 in association with the job identification information, and passes this to the first calculation unit 22d.
  • the first calculation unit 22d calculates the finishing locus data for finishing using the finishing shape data received from the data acquisition unit 22f, and the processing machine control unit 22h performs lens processing based on the processing locus data.
  • the drive of the part 22a is controlled.
  • the finishing processing of the spectacle lens is performed by applying the finishing processing shape data calculated by the second calculation unit 23b.
  • the circumference of the spectacle lens that has been finished with the target lens shape machine 22 is measured with the circumference measuring machine 25 (S21).
  • the circumference of the spectacle lens measured by the circumference measuring device 25 (hereinafter also referred to as “measured circumference”) is registered in the data server 24 in association with the job identification information.
  • a process related to the correction of the machining conditions is performed (S23). That is, when the measured circumference is registered in the data server 24 as described above, the circumference management unit 23d reads the measured circumference from the data server 24 in response to an instruction from the terminal control unit 23e. Next, the circumference management unit 23d needs to correct the processing conditions for the target lens shape processing based on the theoretical circumference calculated by the second calculation unit 23b and the actually measured circumference read from the data server 24. Determine whether or not.
  • the circumference management unit 23d obtains, for example, a difference between the theoretical circumference and the actually measured circumference, and determines that correction is unnecessary if the circumference difference is within a predetermined range set in advance. If it exceeds, Judge that correction is necessary.
  • the predetermined range is set in a range narrower than the permissible range so that the perimeter of the spectacle lens that has been processed into a lens shape falls within the permissible range.
  • the circumference management unit 23d determines that correction is necessary, the circumference management unit 23d obtains a circumference correction value to be applied to the correction of the machining conditions.
  • the circumference correction value may be reflected in the processing conditions of the target lens shape processing so that the actually measured circumference approaches the theoretical circumference.
  • the circumference correction value may be reflected as one of the calculation parameters applied when the machining shape data is calculated by the second calculation unit 23b.
  • the edge shape measurement is performed after rough machining, but the edge shape measurement may be performed before rough machining. In that case, the calculation of rough machining shape data and the calculation of finishing machining shape data may be performed together before rough machining.
  • the edge shape is measured with the same trajectory between the lens before roughing and the lens after roughing, there may be a difference in edge shape measurement data due to deformation of the lens before and after roughing. For this reason, in order to reduce the processing error caused by the deformation of the lens before and after the roughing, it is preferable to measure the edge shape when the roughing is finished.
  • the target shape processing machine 22 is provided with the data acquisition unit 22f and the calculation switching unit 22g, and the calculation switching unit 22g is set to perform the calculation of the machining shape data with the second calculation unit 23b.
  • the processing shape data calculated by the second calculation unit 23b is acquired by the data acquisition unit 22f, and the lens processing unit 22a performs the target lens processing by applying the acquired processing shape data. ing.
  • the processing shape data can be calculated using the processing calculation function of the second calculation unit 23b, and the lens shape processing machine 22 can be made to process the eyeglass lens by applying this processing shape data.
  • each target lens processing machine 22 can perform target lens processing. Therefore, it is possible to process a spectacle lens into a desired finished shape regardless of the manufacturer and model of the lens shape processing machine 22.
  • the fitting rate is the probability that a spectacle lens after processing the target lens can be properly framed when it is framed in the spectacle frame. For example, if the size of the spectacle lens (mainly circumference) is too small or too large compared to the frame size of the spectacle frame, or if the bevel position is inappropriate and so on.
  • the lens design data for the calculation processing of the processing shape data applied to the target lens shape processing.
  • the reason is as follows. First, when the edge shape is measured by the edge shape measuring unit 22c, the pair of measuring elements 51 and 52 are brought into contact with the optical surfaces 31 and 32 of the spectacle lens 30 and traced as shown in FIG. At this time, the optical surfaces 31 and 32 of the spectacle lens 30 are scratched along the locus S traced by the measuring elements 51 and 52. If this scratch remains in the spectacle lens 30 after finishing, it becomes a defect in quality. For this reason, the position which makes a pair of measuring elements 51 and 52 contact at the time of edge shape measurement is set to the position removed by subsequent finishing. Specifically, as shown in FIG.
  • finishing position a position outside the lens outer edge position (hereinafter referred to as “finishing position”) P1 that defines the final finishing shape (hereinafter referred to as “edge shape measurement position”). ) P2 is set.
  • finishing position a position outside the lens outer edge position
  • edge shape measurement position a position outside the lens outer edge position
  • P1 that defines the final finishing shape
  • edge shape measurement position a position outside the lens outer edge position
  • P2 is set.
  • the edge shape measurement position P2 From the finishing position P1 to the finishing position P1, the optical surfaces 31 and 32 of the spectacle lens 30 continuously change with a specific curvature. For this reason, if there is no lens design data, the edge shape (including edge thickness and the like) at the finishing position P1 cannot be estimated accurately, and an error occurs in the estimation result. If an error occurs in the edge shape estimation result, the finished shape data is calculated in a manner that includes the error. For this reason, the final finish shape and the bevel position of the spectacle lens are distorted, and the fitting rate is lowered.
  • the edge shape at the finishing position P1 can be accurately estimated using the surface shape data of the optical surfaces 31 and 32 included in the lens design data. For this reason, the above error hardly occurs. Therefore, when the lens design data is used, the fitting rate can be increased as compared with the case where the lens design data is not used.
  • lens design data for the calculation of machining shape data is beneficial in providing optimal glasses to customers. Specifically, for example, when it is desired to make the eyeglass lens thinner (lighter), when it is desired to reduce the mass difference between the left and right eyeglass lenses, or when it is desired to align the lens curves of the left and right eyeglass lenses.
  • optimization of the lens thickness, lens right / left curve / weight by calculation using the lens design data as well as the spectacle frame information, spectacle lens information, layout information, and prescription information included in the order data.
  • the lens curve is selected in consideration of the frame curve, and then the machining shape data is obtained by calculating the deformation of the frame shape of the spectacle frame, the bevel curve, the circumference, and the like.
  • Such calculation for optimization is performed for a so-called custom lens, but the processing shape data calculation using the lens design data can be applied not only to the custom lens but also to a stock lens.
  • the target shape processing machine calculates the processing shape data according to the calculation program incorporated in itself, and performs this processing by applying the processing shape data.
  • a difference occurs in the final finished shape of the spectacle lens.
  • the machining shape calculation program incorporated in the edging machine differs depending on the maker or model of the edging machine.
  • the machining shape calculation program is developed for each machine manufacturer. Therefore, when processing a spectacle lens to be framed into a spectacle frame, the finished shape of the spectacle lens ideal for frame framing, in particular, where on the edge of the spectacle lens, what curve is used There is a standard for each manufacturer regarding whether or not to form. For this reason, it is impractical to share the machining shape calculation program incorporated in the target lens shape machine between the lens manufacturer and the machine manufacturer, or between a plurality of machine manufacturers.
  • the specification of the machining shape calculation program is a specification that uses lens design data for the reasons described above.
  • the machining shape calculation program incorporated in the target lens shape machine of the processing machine manufacturer (excluding the lens manufacturer). Is not such a specification.
  • the reason is that the lens design data is data that the lens manufacturer has as know-how, and it is practically impossible for a processing machine manufacturer that is not a lens manufacturer to develop a machining shape calculation program with specifications using the lens design data. Because. Therefore, in the current situation, when processing a spectacle lens into a finished shape desired by the lens manufacturer, the lens manufacturer has to construct a target lens processing system using the target lens processing machine manufactured by the lens manufacturer. It has become.
  • a processing machine maker commissioned by the lens manufacturer manufactures a bead processing machine that incorporates a machining shape calculation program that conforms to the specifications of the lens manufacturer. Even if it can be installed at the machining center, there are the following problems. That is, when the processing machine manufacturer develops the machining shape calculation program in accordance with the specifications of the lens manufacturer, the lens design data managed as know-how by the lens manufacturer may leak to the processing machine manufacturer. In addition, if a processing machine manufacturer develops and manufactures a bead processing machine according to the specifications of the lens manufacturer, the price of the bead processing machine will increase. For this reason, the merit which a lens maker introduces a bead processing machine made by other companies decreases.
  • the maker or model of the bead processing machine It is necessary to manage the version of the arithmetic program every time. For this reason, the management in the processing center becomes complicated.
  • the parts that are normally equipped by the processing machine manufacturer's target lens processing machine 22 are provided.
  • the above-described target lens processing system 4 can be realized.
  • the lens manufacturer processes the spectacle lens with a finished shape equivalent to that of the lens processing machine manufactured in-house. be able to.
  • the version management of the computation program may be performed on the machining control terminal 23, not on each of the target lens shape machines 22. For this reason, management in the processing center 2 can be simplified when the calculation of the processing shape data used by the plurality of target lens processing machines 22 is performed at the end of one processing control terminal 23.
  • the lens design data registered in the data server 24 in order to prevent the lens manufacturer's know-how leakage.
  • a mechanism for restricting access may be employed so that the target lens shape machine 22 cannot access.
  • the processing shape data (especially finishing processing shape data) acquired by the data acquisition unit 22f of the target lens processing machine 22 is compulsorily (automatically) processed when finishing processing by the lens processing unit 22a is completed.
  • a configuration of deleting from the memory or the like of the mold processing machine 22 may be adopted.
  • a system configuration that provides machining shape data and the like calculated by the machining control terminal 23 may be adopted only for the target bead processing machine 22.
  • the calculation items related to the target lens shape include not only the processing shape data directly applied to the target lens shape processing but also various calculation items such as the shape data for measuring the edge shape described above.
  • the calculation switching unit 22g of the target lens processing machine 22 is set by the calculation switching unit 22g of the target lens processing machine 22 so that the first calculation unit 22d or the second calculation unit 23b is set.
  • the configuration is such that the calculation subject of data other than the machining shape data can be switched between the first calculation unit 22d and the second calculation unit 23b.
  • the setting of whether to use the first calculation unit 22d for calculation of the shape data for measuring the edge shape described above is switched.
  • the part 22g can be switched.
  • the first calculation unit 22d is used for calculation of data other than the machining shape data as an option for setting the calculation subject of the machining shape data to the second calculation unit 23b. Add a choice of whether or not. In that case, switching by hard switches using the operation panel 22b can be handled by increasing the number of hard switches from two to three, and switching by soft switches from two to three flag patterns. It can be handled by increasing it.
  • the calculation subject of the machining shape data is set to the first calculation unit 22d
  • the calculation subject of the machining shape data is set to the second calculation unit 23b.
  • the setting is made such that the first calculation unit 22d is not used for calculation of data other than the machining shape data
  • the calculation subject of the machining shape data is set to the second calculation unit 23b and other than the machining shape data. It is possible to switch to any one of the settings for using the first calculation unit 22d for the calculation of the data.
  • the processing subject data calculation subject is set to the first calculation unit 22d and the second calculation unit 23b is not used for the calculation of data other than the processing shape data.
  • the calculation subject of the machining shape data is set to the first calculation unit 22d and the second calculation unit 23b is used to calculate data other than the machining shape data.
  • the processing flow is the same as when the target lens processing machine 22 is used alone.
  • the first calculation unit 22d performs the processing calculation related to the lens shape processing of the spectacle lens including the processing shape data and other data.
  • the calculation switching unit 22g (2) the calculation subject of the machining shape data is set to the second calculation unit 23b, and the first calculation unit 22d is not used for calculation of data other than the machining shape data.
  • the above processing flow (see FIG. 7 and FIG. 8), in S1 ⁇ S2 ⁇ S4 ⁇ S5 ⁇ S6 ⁇ S7 ⁇ S8 ⁇ S10 ⁇ S11 ⁇ S12 ⁇ S13 ⁇ S14 ⁇ S16 ⁇ S17 ⁇ S18 ⁇ S19 Processing is performed in the order of S20 ⁇ S21 ⁇ S22 ⁇ S23.
  • the calculation switching unit 22g (3) the calculation subject of the machining shape data is set to the second calculation unit 23b, and the first calculation unit 22d is used to calculate data other than the machining shape data. If so, the processing flow is as follows. Here, as an example, a case where data other than the machining shape data is shape data for measuring the edge shape will be described.
  • the second calculation unit 23b calculates rough machining shape data.
  • the calculation of the roughing shape data is performed without using processing machine information (information such as the shape of the tool provided in the target lens processing machine 22) related to the target lens processing machine 22 among the various information described above.
  • the second calculation unit 23b is configured to provide information on the shape and diameter of a tool that is generally used in an edging machine, or a tool that can be used universally in an edging machine of a different model (hereinafter referred to as “general purpose”).
  • Roughing shape data is calculated using “processing machine information”).
  • general-purpose machine tool information for example, general-purpose machine tool information may be registered in advance in the data server 24, and the calculation information acquisition unit 23a may read and acquire the information from the data server 24.
  • the rough machining shape data calculated by the second calculation unit 23b in this step is registered in the data server 24 in association with the job identification information by the data registration unit 23c.
  • the data acquisition unit 22 f is stored in the data server 24 using, for example, job identification information generated by reading a barcode. to access.
  • the data acquisition unit 22f reads the rough machining shape data registered in the data server 24 in association with the job identification information, and passes this to the first calculation unit 22d.
  • the first calculation unit 22d calculates roughing processing locus data using the roughing shape data received from the data acquisition unit 22f, and based on this processing locus data, the processing machine control unit 22h performs the lens processing unit 22a. Control the drive.
  • the lens processing unit 22a the rough processing of the spectacle lens is performed by applying the rough processing shape data calculated by the second calculation unit 23b.
  • the first calculation unit 22d calculates shape data for measuring the edge shape using the rough machining shape data received from the data acquisition unit 22f. This calculation may be performed before the rough processing of the spectacle lens by the lens processing unit 22a, may be performed during the rough processing, or may be performed after the rough processing. Thereby, the first calculation unit 22d is used for calculation of data other than the machining shape data.
  • the processing machine control unit 22h drives the edge shape measuring unit 22c. Thereby, the edge shape measuring unit 22c measures the edge shape of the spectacle lens.
  • the edge shape measurement unit 22c uses the shape data for edge shape measurement calculated in advance by the first calculation unit 22d, and calculates the edge shape according to the locus S (see FIG. 5) specified by the data. taking measurement. Edge shape measurement data obtained by this measurement is output (provided) from the lens shape processing machine 22 to the machining control terminal 23 together with the shape data for edge shape measurement.
  • edge shape measurement data and edge shape measurement shape data output from the target lens shape machine 22 to the processing control terminal 23 indicate the height at which the eyeglass lens 30 is held in the edge shape measurement unit 22c.
  • Data is attached. Specifically, for example, data indicating the center height H (see FIG. 3B) when the spectacle lens 30 is held by the lens holder 40 of the target lens shape machine 22 (hereinafter, “center height data”). ) Is attached. Then, edge shape measurement data and edge shape measurement shape data together with the center height data are output from the lens shape processing machine 22 to the machining control terminal 23.
  • the center height data is stored in the processing machine information storage unit 22e as one of the processing machine information, and the edge shape measurement unit 22c or the processing machine control unit 22h reads out from the processing machine information storage unit 22e and processes the processing control terminal. 23 may be provided.
  • the center height H when measuring the edge shape of the spectacle lens differs depending on the manufacturer of the lens shape processing machine 22. For this reason, if the edge shape measurement data, the edge shape measurement shape data, and the center height data are provided to the machining control terminal 23 as a set, any lens is provided on the machining control terminal 23 that has received this provision.
  • the edge shape measuring unit 22c measures the edge shape of the spectacle lens using the holder 40, the edge shape (based on the position of the apex of the lens surface (convex surface) of the eyeglass lens specified by the center height data ( It is possible to accurately grasp the edge thickness. As a result, it is possible to correct an error within the non-defective product standard that occurs in the production of the spectacle lens, an inclination of the spectacle lens in a state where the spectacle lens is set on the lens processing machine, and the like. In addition, it is applicable also in said process S16 that the target lens shape processing machine 22 outputs center height data to the process control terminal 23 with edge shape measurement data.
  • the edge shape measurement data, the edge shape measurement shape data, and the center height data output from the target shape processing machine 22 are acquired (received) by the calculation information acquisition unit 23a. Thereafter, the second calculation unit 23b uses these data to calculate the finishing shape data.
  • the target lens shape machine 22 stands by until finishing shape data is acquired from the processing control terminal 23. Since the subsequent steps are the same as those in the above embodiment, the description thereof is omitted.
  • the machining shape data to be applied to the lens shape machining is calculated by the second calculation unit 23b of the machining control terminal 23, and the edge shape measurement shape data corresponding to the data other than the machining shape data is the target lens shape.
  • Calculation is performed by the first calculation unit 22 d of the processing machine 22.
  • the data only needs to be calculated once by the second calculator 23b. Further, the calculation of the shape data for measuring the edge shape can be calculated by the first calculation unit 22d included in each of the target lens shape processing machines 22. For this reason, the time required for the machining operation becomes very short. In addition, even when the roughing of the spectacle lens is performed by applying the roughing shape data calculated using the general-purpose processing machine information, the finishing processing after that is performed using the lens design data. It will be done by applying. For this reason, the processing time can be shortened without lowering the processing accuracy.
  • the calculation switching unit 22g of the target lens processing machine 22 is configured to have the following three functions as a calculation subject switching setting function. Also good. (1) A function for switching the setting of whether to perform rough machining shape data belonging to the machining shape data by the first calculation unit 22d or the second calculation unit 23b. (2) A function for switching the setting of whether the finishing machining shape data belonging to the machining shape data is to be calculated by the first calculation unit 22d or the second calculation unit 23b. (3) A function for switching the setting of whether data other than the machining shape data is performed by the first calculation unit 22d or the second calculation unit 23b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Eyeglasses (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

 玉型加工機22と加工制御端末23とを用いた玉型加工システムにおいて、玉型加工機22は、加工形状データの演算を第1の演算部22dで行うか第2の演算部23bで行うかの設定を切り替える演算切替部22gと、第2の演算部23bが演算した加工形状データを加工制御端末23から取得するデータ取得部22fと、を備える。そして、演算切替部22gが加工形状データの演算を第2の演算部23bで行うと設定している場合に、第2の演算部23bが演算した加工形状データをデータ取得部22fで取得し、この取得した加工形状データを適用した玉型加工をレンズ加工部22aが行う構成とした。

Description

眼鏡レンズの玉型加工システム、眼鏡レンズの製造方法、および玉型加工機
 本発明は、眼鏡フレームに枠入れするために眼鏡レンズを玉型加工する眼鏡レンズの玉型加工システム、眼鏡レンズの製造方法、および玉型加工機に関する。
 眼鏡店などでは、眼鏡注文者(顧客)の処方情報に適合する眼鏡レンズの商品群の中から眼鏡注文者が希望する眼鏡レンズを、眼鏡注文者が選んだ眼鏡フレームに枠入れするために玉型加工を行っている。玉型加工では、トレーサによる測定で得られる眼鏡フレームの枠形状データや、眼鏡フレームの種類,材質,ヤゲン形状などにあわせて眼鏡レンズを加工している。
 眼鏡レンズの玉型加工には玉型加工機が用いられる。玉型加工機は、所定の演算プログラムで加工形状データを演算し、この演算した加工形状データを適用して眼鏡レンズの玉型加工を行う。加工形状データとは、玉型加工の対象となる眼鏡レンズをどのような形状に加工するかを特定するデータである。
 眼鏡レンズの玉型加工に際しては、眼鏡フレーム情報、眼鏡レンズ情報、レイアウト情報、処方情報などを含むデータ(以下、まとめて「受注データ」ともいう)を用いて加工形状データを演算している。眼鏡レンズの玉型加工やこれに用いられる玉型加工機に関しては、たとえば、特許文献1、2に記載の技術が知られている。
 また、玉型加工機などの加工資源を集約して効率化を図る、いわゆる集中加工システムにおいては、加工センタに複数の玉型加工機を設置し、そこで眼鏡レンズを集中的に加工している(特許文献3を参照)。この集中加工システムでは、各眼鏡店にトレーサを設置し、このトレーサで測定した眼鏡フレームの枠形状データを、眼鏡フレーム情報などと一緒に、加工センタの玉型加工機に提供(送信)して玉型加工を行う。
 しかし、集中加工システムにおいては、加工センタ側の手元に眼鏡フレームが存在しないため、玉型加工機で玉型加工した眼鏡レンズが、発注側(眼鏡店)で指定した眼鏡フレームに正常に枠入れ可能であるかどうかを受注側(加工センタ)で確認できないという問題があった。
 そこで本出願人は、上述した集中加工システムとは異なるレンズ加工システムであって、枠入れ時のフィッティング率の向上に寄与し得るレンズ加工システム(以下、「ジャストフィット加工システム」という。)をすでに提案し実用化している(特許文献4を参照)。このジャストフィット加工システムにおいては、加工制御端末と複数の玉型加工機とを加工センタに設置し、眼鏡店のトレーサで測定した眼鏡フレームの枠形状データを、眼鏡フレーム情報などと一緒に、加工センタの加工制御端末に提供(送信)する。そして、加工制御端末では、発注側から受け取ったデータの他に、枠入れの最適化に必要な眼鏡レンズのレンズ設計データを用いて、玉型加工に適用する加工形状データや眼鏡レンズの理論周長などを演算している。これに対して、玉型加工機では、加工制御端末が演算した加工形状データを基に眼鏡レンズを玉型加工している。また、玉型加工された眼鏡レンズの周長を3次元の周長測定機で測定し、この測定によって得られた実測周長と、加工制御端末が演算した理論周長とを比較することにより、眼鏡レンズが眼鏡フレームに正常に枠入れ可能であるかどうかを確認(検査)している。
特許第4151774号公報 特開2003-231001号公報 特開平4-13539号公報 特許第3075870号公報
 ところで、上述した加工形状データの演算機能を有する玉型加工機において、そのための演算プログラムは、玉型加工機のメーカごとに用意されている。このため、同じ受注データを使用する場合でも、玉型加工機のメーカごとに異なる演算プログラムを使用して加工形状データを演算することになる。したがって、仮に同じ受注データを用いて、A社製の玉型加工機とB社製の玉型加工機で、同じ眼鏡レンズを玉型加工しても、それぞれに得られる眼鏡レンズの仕上がり形状に微妙な差が生じる。その理由は、次のような事情による。
 すなわち、トレーサによって測定された眼鏡フレームの枠形状データが仮に同じデータであったとしても、その枠形状データに対してどのような形状に眼鏡レンズを仕上げるかは、メーカごとに、その基準(理想)とする形状が異なる。また、ある眼鏡フレームの枠形状データに対して、レンズメーカや加工機メーカがどのようなレンズ形状を理想としているか、さらにはその理想形状を得るためにどのような演算プログラムを使用しているかは、各メーカのノウハウとして管理されている。このため、たとえば特許文献3に記載されているように、トレーサ固有の測定誤差や、玉型加工機固有の加工誤差をメモリに記憶しておき、トレーサが測定した眼鏡フレームの枠形状データを、メモリから読み出した誤差量を用いて補正した場合でも、各メーカが基準としているレンズ形状が異なれば、眼鏡レンズの仕上がり形状も異なる。また、特許文献3には、複数の眼鏡店にそれぞれトレーサを設置し玉型加工機を1つの加工センタに配置して、これらをコンピュータと公衆通信回線網で接続して玉型加工する眼鏡レンズ加工システムが開示されているが、玉型加工機による加工形状データや眼鏡レンズの仕上がり形状の差異については開示されていない。
 一方、上記ジャストフィット加工システムは、レンズ設計データを保有するレンズメーカが自社の加工センタに構築し運用している。しかしながら近年においては、製造拠点のグローバル化が進み、その国で調達可能な玉型加工機を導入し運用することが、人的にみても資金的にみても効率的になっている。そこで、上記のジャストフィット加工システムを運用するレンズメーカが、自社製の玉型加工機を他社製の玉型加工機に置き換えることが考えられる。ただし、レンズメーカ以外の加工機メーカが提供(製造)する玉型加工機は、その加工機メーカが独自に定めた基準に適合する演算プログラムによって加工形状データを演算する仕組みになっている。このため、ジャストフィット加工システムを運用するレンズメーカが自社製の玉型加工機を他社製の玉型加工機に置き換えると、玉型加工機のメーカなどの違いにより、眼鏡レンズの仕上がり形状に差が生じてしまう。
 本発明の主な目的は、眼鏡レンズを玉型加工する場合に、これに使用する玉型加工機のメーカなどの違いによらず、眼鏡レンズを所望の仕上がり形状に加工することができる技術を提供することにある。
 (第1の態様)
 本発明の第1の態様は、
 眼鏡フレームに枠入れするために眼鏡レンズを玉型加工する眼鏡レンズの玉型加工システムであって、
 前記玉型加工を行うレンズ加工部と、前記レンズ加工部の玉型加工に適用する加工形状データを第1の演算プログラムによって求める第1の演算部と、を有する玉型加工機と、
 前記レンズ加工部の玉型加工に適用する加工形状データを、前記第1の演算プログラムとは異なる第2の演算プログラムによって求める第2の演算部を有する加工制御端末と、
 を用いて構成され、
 前記玉型加工機は、前記玉型加工に関連する各種の演算項目のうち、少なくとも前記玉型加工に適用する加工形状データの演算を前記第1の演算部で行うか前記第2の演算部で行うかの設定を切り替える演算切替部と、前記加工形状データを前記第2の演算部で演算する場合に、前記第2の演算部が演算した加工形状データを前記加工制御端末から取得するデータ取得部と、を備え、
 前記演算切替部が前記加工形状データの演算を前記第2の演算部で行うと設定している場合に、前記第2の演算部が演算した加工形状データを前記データ取得部で取得し、この取得した加工形状データを適用した玉型加工を前記レンズ加工部が行うことにより、前記玉型加工機のメーカ、機種を問わず、所望の仕上がり形状に前記眼鏡レンズを加工する
 ことを特徴とする眼鏡レンズの玉型加工システムである。
 (第2の態様)
 本発明の第2の態様は、
 前記レンズ加工部は、前記玉型加工を荒加工と仕上げ加工とによって行うものであり、 前記第1の演算部は、前記荒加工および前記仕上げ加工に適用する加工形状データを前記眼鏡レンズのレンズ設計データを使用せずに演算するものであり、
 前記第2の演算部は、前記荒加工および前記仕上げ加工のうち少なくとも前記仕上げ加工に適用する加工形状データを前記眼鏡レンズのレンズ設計データを使用して演算するものである
 ことを特徴とする上記第1の態様に記載の眼鏡レンズの玉型加工システムである。
 (第3の態様)
 本発明の第3の態様は、
 前記玉型加工機は、前記眼鏡レンズのコバ形状を測定するコバ形状測定部を備え、前記コバ形状測定部の測定によって得られたコバ形状測定データを前記加工制御端末に出力するものであり、
 前記加工制御端末の前記第2の演算部は、前記玉型加工機が出力した前記コバ形状測定データを用いて前記加工形状データを演算する
 ことを特徴とする上記第1または第2の態様に記載の眼鏡レンズの玉型加工システムである。
 (第4の態様)
 本発明の第4の態様は、
 前記玉型加工機は、前記加工形状データの演算に用いる演算用情報の一つとなる加工機情報を前記加工制御端末に出力し、
 前記加工制御端末は、前記玉型加工機が出力した前記加工機情報を前記演算用情報の一つとして取得する演算用情報取得部を有する
 ことを特徴とする上記第1~第3の態様のいずれかに記載の眼鏡レンズの玉型加工システムである。
 (第5の態様)
 本発明の第5の態様は、
 前記加工制御端末の前記第2の演算部は、前記演算切替部が前記加工形状データの演算を前記第2の演算部で行うと設定している場合に、玉型加工の対象となる眼鏡レンズのレンズ設計データを用いてコバ形状測定用の形状データを演算し、
 前記玉型加工機は、前記演算切替部が前記加工形状データの演算を前記第2の演算部で行うと設定している場合に、前記第2の演算部が演算した前記コバ形状測定用の形状データを前記データ取得部で取得し、この取得したコバ形状測定用の形状データを用いて前記コバ形状測定部でコバ形状の測定を行う
 ことを特徴とする上記第3の態様に記載の眼鏡レンズの玉型加工システムである。
 (第6の態様)
 本発明の第6の態様は、
 前記眼鏡レンズをレンズホルダで保持すべく、前記眼鏡レンズに前記レンズホルダを装着するブロッカーを備え、
 前記玉型加工機は、前記眼鏡レンズを前記レンズホルダで保持したときの中心高さを示す中心高さデータを、前記コバ形状測定データと一緒に前記加工制御端末に出力する
 ことを特徴とする上記第3の態様に記載の眼鏡レンズの玉型加工システムである。
 (第7の態様)
 本発明の第7の態様は、
 前記玉型加工機は、前記加工形状データの演算を前記第1の演算部で行うか前記第2の演算部で行うかを操作者に選択させる操作パネルを有し、
 前記演算切替部は、前記操作者が前記操作パネルを用いて選択した結果に基づいて、前記加工形状データの演算を前記第1の演算部で行うか前記第2の演算部で行うかの設定を切り替える
 ことを特徴とする上記第1~第6の態様のいずれかに記載の眼鏡レンズの玉型加工システムである。
 (第8の態様)
 本発明の第8の態様は、
 前記演算切替部は、玉型加工の受注データに含まれる眼鏡レンズ情報、眼鏡フレーム情報、処方情報のうち、少なくとも一つの情報を用いて、前記加工形状データの演算を前記第1の演算部で行うか前記第2の演算部で行うかの設定を切り替える
 ことを特徴とする上記第1~第6の態様のいずれかに記載の眼鏡レンズの玉型加工システムである。
 (第9の態様)
 本発明の第9の態様は、
 前記加工制御端末は、前記加工形状データの演算を前記第1の演算部で行うか前記第2の演算部で行うかを指示する指示信号を前記玉型加工機に出力し、
 前記玉型加工機の前記演算切替部は、前記加工制御端末から出力された前記指示信号にしたがって、前記加工形状データの演算を前記第1の演算部で行うか前記第2の演算部で行うかの設定を切り替える
 ことを特徴とする上記第1~第6の態様のいずれかに記載の眼鏡レンズの玉型加工システムである。
 (第10の態様)
 本発明の第10の態様は、
 前記加工制御端末は、玉型加工の対象となる眼鏡レンズのレンズ設計データを取得不可能である場合は、前記加工形状データの演算を前記第1の演算部で行う旨の指示信号を出力し、前記レンズ設計データを取得可能である場合は、前記加工形状データの演算を前記第2の演算部で行う旨の指示信号を出力する
 ことを特徴とする上記第9の態様に記載の眼鏡レンズの玉型加工システムである。
 (第11の態様)
 本発明の第11の態様は、
 前記加工制御端末は、玉型加工の対象となる眼鏡レンズの面の形状が球面である場合は、前記加工形状データの演算を前記第1の演算部で行う旨の指示信号を出力し、前記眼鏡レンズの面の形状が球面以外である場合は、前記加工形状データの演算を前記第2の演算部で行う旨の指示信号を出力する
 ことを特徴とする上記第9の態様に記載の眼鏡レンズの玉型加工システムである。
 (第12の態様)
 本発明の第12の態様は、
 前記加工制御端末は、前記枠入れの対象となる眼鏡フレームのあおり角が所定の角度未満である場合は、前記加工形状データの演算を前記第1の演算部で行う旨の指示信号を出力し、眼鏡フレームのあおり角が前記所定の角度以上である場合は、前記加工形状データの演算を前記第2の演算部で行う旨の指示信号を出力する
 ことを特徴とする上記第9の態様に記載の眼鏡レンズの玉型加工システムである。
 (第13の態様)
 本発明の第13の態様は、
 眼鏡フレームに枠入れするために眼鏡レンズの玉型加工を行うレンズ加工部と、前記レンズ加工部の玉型加工に適用する加工形状データを第1の演算プログラムによって求める第1の演算部と、を有する玉型加工機と、
 前記レンズ加工部の玉型加工に適用する加工形状データを、前記第1の演算プログラムとは異なる第2の演算プログラムによって求める第2の演算部を有する加工制御端末と、
 を用いた眼鏡レンズの製造方法であって、
 前記玉型加工機において前記玉型加工に関連する各種の演算項目のうち、少なくとも前記玉型加工に適用する加工形状データの演算を前記第1の演算部で行うか前記第2の演算部で行うかの設定を切り替える設定切替工程と、
 前記設定切替工程で前記加工形状データの演算を前記第2の演算部で行うと設定した場合に、前記第2の演算部で前記加工形状データを演算する加工演算工程と、
 前記加工演算工程で前記第2の演算部が演算した前記加工形状データを適用して前記玉型加工機のレンズ加工部が前記眼鏡レンズを玉型加工する加工工程と、
 を有することを特徴とする眼鏡レンズの製造方法である。
 (第14の態様)
 本発明の第14の態様は、
 玉型加工に適用する加工形状データを第2の演算プログラムによって求める第2の演算部を有する加工制御端末と通信可能に接続され、眼鏡フレームに枠入れするために眼鏡レンズを玉型加工する玉型加工機であって、
 前記玉型加工を行うレンズ加工部と、
 前記レンズ加工部の玉型加工に適用する加工形状データを、前記第2の演算プログラムとは異なる第1の演算プログラムによって求める第1の演算部と、
 前記玉型加工に関連する各種の演算項目のうち、少なくとも前記玉型加工に適用する加工形状データの演算を前記第1の演算部で行うか前記第2の演算部で行うかの設定を切り替える演算切替部と、
 前記加工形状データを前記第2の演算部で演算する場合に、前記第2の演算部が演算した加工形状データを取得するデータ取得部と、
 前記演算切替部が前記加工形状データの演算を前記第2の演算部で行うと設定している場合に、前記加工形状データが取得した前記加工形状データを適用して前記レンズ加工部が前記玉型加工を行うように制御する加工機制御部と、
 を備えることを特徴とする玉型加工機である。
 本発明によれば、眼鏡レンズを玉型加工する場合に、これに使用する玉型加工機のメーカなどの違いによらず、眼鏡レンズを所望の仕上がり形状に加工することが可能になる。
眼鏡レンズの受発注システムの構成例を示すブロック図である。 玉型加工機および加工制御端末の機能的な構成例を示すブロック図である。 ブロッカーの機能を説明する図である。 コバ形状測定部の構成例を示す図である。 コバ形状測定方法を説明する図である。 加工形状データと加工軌跡データの違いを説明する図である。 眼鏡レンズの玉型加工に係る処理フローを示す図(その1)である。 眼鏡レンズの玉型加工に係る処理フローを示す図(その2)である。 眼鏡フレームのあおり角を説明する図である。 仕上げ位置とコバ形状測定位置の関係を示す図である。
 以下、本発明の実施の形態について図面を参照しつつ詳細に説明する。
 本発明の実施の形態においては、次の順序で説明を行う。
 1.眼鏡レンズの受発注システムの構成
 2.玉型加工システムの構成
 3.玉型加工機の構成
 4.加工制御端末の構成
 5.加工形状演算プログラムについて
 6.受発注システムの処理フロー
 7.眼鏡レンズの製造方法
 8.実施の形態の効果
 9.他の実施の形態
<1.眼鏡レンズの受発注システムの構成>
 図1は眼鏡レンズの受発注システムの構成例を示すブロック図である。図示した受発注システムにおいては、眼鏡レンズの発注側である眼鏡店1と、眼鏡レンズの受注側であるレンズメーカの加工センタ2とが、インターネット等の通信網3を介して接続されている。実際のシステムでは、一つの加工センタ2に通信網3を介して複数の眼鏡店1が接続されるが、ここでは図示を簡略化して一つの眼鏡店1のみ表記している。また、加工センタ2は地理的に分散して複数存在する場合もあるが、ここでは図示を簡略化して一つの加工センタ2のみ表記している。なお、発注側は眼鏡店1に限らず、たとえば、加工センタ2に対して外部の加工工場や他のレンズメーカが眼鏡レンズの加工を委託する場合は、加工工場やレンズメーカが発注側となる。
 眼鏡店1には、発注端末11が配置されている。発注端末11は、CPU(Central Processing Unit)、ROM(Read-Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)等のハードウェアを用いて構成される。発注端末11は、コンピュータ部11aと操作部11bと表示部11cを備えている。コンピュータ部11aは、コンピュータとしての演算処理機能を有する。また、コンピュータ部11aは、図示せぬルータ等を介して通信網3と接続し、その通信網3を通じて他の装置とデータの受け渡しを行えるように構成されている。操作部11bは、たとえばキーボード、マウス、タッチパネル等からなり、コンピュータ部11aへの情報入力を行う。表示部11cは、たとえば液晶ディスプレイからなり、コンピュータ部11aからの指示に従って画像表示を行う。
 また、眼鏡店1において、発注端末11には、トレーサ12が接続されている。トレーサ12は、眼鏡フレームの枠形状を三次元で測定する。トレーサ12の測定結果は、眼鏡フレームの枠形状データとしてコンピュータ部11aに入力される。トレーサ12としては周知のものが使用可能である。
 加工センタ2には、受注端末21が配置されている。受注端末21は、上述した発注端末11と同様に、コンピュータの構成要素として周知のハードウェアを用いて構成される。受注端末21は、図示せぬルータ等を介して通信網3に接続されている。これにより、発注端末11と受注端末21との間で、少なくとも眼鏡レンズの受発注データを含む種々のデータの受け渡しを行えるようになっている。通信網3を用いた受発注データの受け渡しに際して、発注端末11は受注端末21に向けて発注データを送信し、受注端末21は発注端末11から送信された発注データを受注データとして受信する。このように発注端末11とトレーサ12の間でやり取りされるデータ(以下まとめて「受発注データ」ともいう)には、眼鏡レンズの玉型加工に用いられる種々の情報(データ)が含まれる。ここでは一例として、受注データ(発注データ)に、眼鏡フレーム情報、眼鏡レンズ情報、レイアウト情報、処方情報などの情報が含まれるものとする。
 眼鏡フレーム情報に属する情報としては、たとえば、眼鏡フレームの材質、枠形状データ、フレームサイズ、あおり角、フレームカラー、フレームメーカ、モデル名などがある。眼鏡レンズ情報に属する情報としては、たとえば、眼鏡レンズの種類(単焦点レンズ、二重焦点レンズ、累進屈折力レンズなど)、材質、レンズカーブ、レンズカラー、機能膜(調光膜,偏光膜,ハードコート膜)の有無などがある。レイアウト情報に属する情報としては、たとえば、瞳孔間距離(遠用瞳孔間距離、近用瞳孔間距離)、瞳孔高さ、フィッティングポイント(アイポイント)などがある。処方情報に属する情報としては、たとえば、面度数、乱視度数、乱視軸、加入度、プリズム処方などがある。
<2.玉型加工システムの構成>
 加工センタ2には、眼鏡レンズの玉型加工システム4が構築されている。
 本実施の形態に係る玉型加工システム4は、上述したジャストフィット加工システムに相当する。ジャストフィット加工システムでは、玉型加工の対象となる眼鏡レンズのレンズ設計データを用いて、玉型加工に適用する加工形状データを加工制御端末23で演算し、この演算結果を玉型加工機22に提供して眼鏡レンズの玉型加工を実施する仕組みになっている。このため、単に眼鏡レンズの玉型加工を実施するだけであれば、加工形状データの演算機能を加工制御端末23および玉型加工機22の両方に持たせる必要はない。ただし、本実施の形態に係る玉型加工システム4では、加工制御端末23および玉型加工機22の両方とも加工形状データの演算機能を持っている。そのような構成を採用する理由については、後段の「実施の形態の効果」とあわせて記述する。
 玉型加工システム4は、上述した受注端末21の他に、玉型加工機22と、加工制御端末23と、データサーバ24と、周長測定機25と、レンズメータ26と、ブロッカー27とを含み、これらをLAN(Local Area Network)等の通信回線28を介して相互に接続した構成となっている。玉型加工システム4を構成する機器や端末の台数は、それぞれ一台に限らず、複数台であってもよい。また、通信回線28を介した玉型加工機22と加工制御端末23の接続関係は、1対1の関係でもよいしm対1の関係(mは2以上の整数)でもよい。ジャストフィット加工システムの多くはm対1の関係になっている。
 受注端末21は、通信網3を介して受信した発注データを、受注データとしてデータサーバ24に登録する。受注データは、たとえば、左右一対の眼鏡レンズを一つの組とした単位でデータサーバ24に登録される。また、各々の受注データは、一つの受注データを一つのジョブとして管理するために、たとえばバーコード等の読み取りによって生成可能なジョブ識別情報を付加して登録される。ジョブ識別情報は、眼鏡レンズの玉型加工に必要な情報(データ)の紐付けに用いられる情報である。ジョブ識別情報に関しては、たとえば、受注端末21が受注データを受信するたびに、受注端末21または加工制御端末23が当該受注データごとに割り当てるものとすればよい。そして、その後の処理では、ジョブ識別情報に対応するバーコードを印刷等でシートに出力し、このバーコードを用いてジョブ識別情報を生成し利用するものとすればよい。なお、図1においては、データサーバ24を介して受注端末21を通信回線28に接続しているが、これに限らず、受注端末21を直接、通信回線28に接続してもよい。
 玉型加工機22は、眼鏡フレームに枠入れするために眼鏡レンズを玉型加工する加工機である。玉型加工の対象となる眼鏡レンズ(以下、「被加工レンズ」ともいう)は、レンズメーカが設計および製造して提供するもので、眼鏡フレームの枠形状にあわせて未だ加工されていない状態のレンズである。一般的には外形が丸型のアンカットレンズなどが被加工レンズとして取り扱われる。玉型加工機22による玉型加工は、大きくは、荒加工と仕上げ加工といった2つの加工ステップを経て行われる。荒加工は、最終的なレンズの仕上げ形状よりも一回り大きい形状に眼鏡レンズを加工する加工ステップである。仕上げ加工は、最終的なレンズの仕上げ形状にあわせて眼鏡レンズを加工するもので、ヤゲン加工を含む加工ステップである。ヤゲン加工とは、眼鏡レンズの外周面にヤゲン(たとえば、山形状のヤゲン、V溝状のヤゲン(溝掘り)、平ヤゲンなど)を形成する加工をいう。荒加工と仕上げ加工は、工程ごとに加工ツールを変えて行ってもよいし、同じ加工ツールを用いて行ってもよい。また、荒加工と仕上げ加工は、たとえば、荒加工を切削加工、仕上げ加工を研削加工で行うなど、工程ごとに加工方式を変えてもよいし、同じ加工方式を適用してもよい。また、仕上げ加工には、必要に応じて、鏡面加工を含めてもよい。鏡面加工とは、レンズのコバ面を目の細かいツールで研磨して光沢を出す加工をいう。
 加工制御端末23は、玉型加工機22での玉型加工に適用する加工形状データを演算するとともに、演算した加工形状データをデータサーバ24に登録する。加工形状データは、玉型加工機22において、当該玉型加工機が具備する各種のツールをどのような条件で選択するか、さらには玉型加工機が具備する各種のステージ、回転軸、モータ、シリンダー等をどのような条件で移動または駆動して眼鏡レンズを加工するかを決定するための基準データにもなる。
 データサーバ24は、眼鏡レンズを玉型加工するにあたって必要となる種々の情報を記憶し蓄積する。データサーバ24に記憶される情報には、上述した受注データや、眼鏡レンズのレンズ設計データなどが含まれる。レンズ設計データには、レンズ物性データ(屈折力、アッベ数、比重等)、動径データ、凸面(光学面)の面形状データ、凹面(光学面)の面形状データ、レンズ厚データ、外径データなどが含まれる。データサーバ24には、レンズメーカが保有する種々の眼鏡レンズのレンズ設計データが事前に登録される。
 周長測定機25は、玉型加工機22で玉型加工の仕上げ加工を終えた眼鏡レンズ(以下、「仕上げ加工済レンズ」ともいう)の周長を測定するものである。この周長測定に際して、周長測定機25は、仕上げ加工済レンズの周縁形状を三次元の形状データとして測定し、当該三次元のレンズ周縁形状データに基づいて、仕上げ加工済レンズの周長を計算によって求める。このため、仕上げ加工済レンズの周長は、仮に仕上げ加工済レンズを光軸方向から見たときのレンズ外周径が同じ場合でも、ヤゲンカーブの深さによって変わる。具体的には、ヤゲンカーブが深いほど周長が長くなる。なお、周長測定機25で測定可能な項目は、ここで記述する周長に限らず、たとえば、仕上げ加工済レンズの高さ寸法や幅寸法などを測定することも可能である。
 レンズメータ26は、眼鏡レンズの光学中心、乱視軸等を測定し、この測定結果に基づいて、たとえば眼鏡レンズの光学中心となる光学面上の位置に印点を付すものである。ブロッカー27は、眼鏡レンズをレンズホルダで保持すべく、レンズメータ26によって付された印点を基準(中心)にして眼鏡レンズにレンズホルダを装着するものである。
 図2は玉型加工機および加工制御端末の機能的な構成例を示すブロック図である。
 以下、玉型加工機22の構成と加工制御端末23の構成について順に説明する。
<3.玉型加工機の構成>
 玉型加工機22は、レンズ加工部22aと、操作パネル22bと、コバ形状測定部22cと、第1の演算部22dと、加工機情報記憶部22eと、データ取得部22fと、演算切替部22gと、加工機制御部22hと、を備える。
 レンズ加工部22aは、眼鏡レンズ30の玉型加工(荒加工、仕上げ加工)を行うものである。このため、レンズ加工部22aは、玉型加工に必要となる各種の加工ツール、ステージ、回転軸、モータ、シリンダー等を備える。
 操作パネル22bは、玉型加工機22の操作者が各種の操作を行うためのものである。
 レンズ加工部22aに被加工レンズとして供給される眼鏡レンズ30は、それに先立って、ブロッカー27に供給され、そこで図3(a),(b)に示すように、レンズホルダ40によって保持される。レンズホルダ40は、シールパッド41を介して眼鏡レンズ30の一方の光学面(凸面)31に密着することにより、眼鏡レンズ30を保持する。眼鏡レンズ30の保持方法としては、眼鏡レンズ30をレンズホルダ40に吸着で取り付けるサクションカップと呼ばれるものもある。ブロッカー27が眼鏡レンズ30のどの位置をブロック位置とするかは、眼鏡レンズの種類や玉型形状によって異なる。一般的にはアイポイントブロックやフレームセンターブロックが行われるが、二重焦点レンズであれば小玉の頂点(セグメントトップ)をブロック位置とする場合もある。一般的にブロック位置の指定は単焦点レンズであれば光学中心、二重焦点レンズであればセグメントトップ、累進レンズであればプリズム測定点からのずれ量をXY座標値で指定するが、指定方法はこれに限られるものではない。ブロッカー27による眼鏡レンズ30のブロック位置の中心は、玉型加工に際して眼鏡レンズ30を回転させるときの回転中心位置となる。このため、ブロック位置を指定する情報(以下、「ブロック位置情報」という)は、玉型加工に適用される加工形状データを演算する際に必要な情報の一つとなる。ブロック位置は、たとえば、加工制御端末23が演算によって求め、この演算結果にしたがってブロッカー27が眼鏡レンズの指定の位置をレンズホルダで保持するものとすればよい。その場合は、加工制御端末23は、演算によって求めたブロック位置の指定データ(ブロック位置情報)を、ジョブ識別情報と対応付けてデータサーバ24に登録する。また、ブロッカー27は、ブロック前の眼鏡レンズを収容するトレイ等に付されたバーコードを、ブロッカー27に付属のバーコードリーダで読み取り、これによって生成されたジョブ識別情報を用いてデータサーバ24から指定データを読み出す。また、これ以外にも、ブロッカー27でブロック位置を決定した場合は、ブロッカー27がブロック位置情報をジョブ識別情報と対応付けてデータサーバ24に登録し、これを玉型加工機22または加工制御端末23が読み出すようにすればよい。
 コバ形状測定部22cは、眼鏡レンズ30のコバ形状を測定するものである。コバ形状測定部22cは、図4に示すように、上記のレンズホルダ40で保持した眼鏡レンズ30の光学面31,32に一対の測定子51,52を接触させてコバ形状の測定を行う。具体的には、図5に示すように、眼鏡レンズ30をレンズホルダ40と一体に回転させるとともに、一対の測定子51,52を眼鏡レンズ30の径方向Mに適宜変位させながら、眼鏡レンズ30のコバ形状を測定する。このとき、一対の測定子51,52は、予め与えられたコバ形状測定用の形状データに基づく軌跡Sをトレースするように、眼鏡レンズ30の回転に同期して眼鏡レンズ30の径方向Mに変位する。これにより、上記軌跡Sにおける眼鏡レンズ30の光学面の位置情報とコバ厚の情報が得られる。コバ形状の測定は、ここで述べた方法に限らず、他の公知の方法を用いてもよい。
 第1の演算部22dは、眼鏡レンズの玉型加工に関する種々の演算を行うものである。第1の演算部22dは、少なくとも、レンズ加工部22aの玉型加工に適用する加工形状データを演算するための加工形状演算プログラム22iと、加工軌跡データを演算するための加工軌跡演算プログラム22jと、を有する。他の演算プログラムは図示を省略している。加工形状演算プログラム22iは「第1の演算プログラム」に相当する。
 ここで、加工形状データと加工軌跡データの違いについて図6を用いて説明する。
 加工形状データ61は、玉型加工の対象となる眼鏡レンズをどのような形状に加工すべきかを特定するデータである。つまり、加工形状データ61は、玉型加工によって得られる眼鏡レンズの形状を特定するデータとなる。
 これに対して、加工軌跡データ62は、加工形状データ61で特定される形状に眼鏡レンズを加工するために、この加工に使用する加工ツール63をどのような軌跡で相対的に移動させればよいかを示すデータである。このため、加工軌跡データ62の演算には、加工ツール63のツール径等の情報に加えて、加工形状データ61が必要になる。また、加工軌跡を決定する一要素となる加工ツールの送り込み量は、加工軌跡データ62に基づいて制御される。つまり、加工軌跡データ62は、実際の玉型加工において、加工ツールの送り込み量等をどのような条件で制御すべきかを決定するデータとなる。
 また、加工形状データ61は、眼鏡レンズの玉型加工を荒加工と仕上げ加工に分けて行う場合は、荒加工用と仕上げ加工用に分けて演算される。すなわち、荒加工を行う場合は、それに先立って荒加工に適用する加工形状データが演算され、仕上げ加工を行う場合は、それに先立って仕上げ加工に適用する加工形状データが演算される。
 これに対して、加工軌跡データ62は、玉型加工に使用する加工ツールごとに演算される。たとえば、荒加工を一つの加工ツールで行う場合は、この加工ツールに対応して一つの加工軌跡データが演算される。また、仕上げ加工を、ツール径、ツール形状等が異なる複数の加工ツールを順に用いて行う場合は、複数の加工ツールと1対1の関係で複数の加工軌跡データが演算される。
 なお、図6においては、加工形状データ61を二次元のデータで表しているが、実際には三次元のデータとなる。
 第1の演算部22dが演算する加工形状データには、荒加工に適用する加工形状データ(以下、「荒加工形状データ」ともいう)と、仕上げ加工に適用する加工形状データ(以下、「仕上げ加工形状データ」ともいう)とがある。第1の演算部22dは、いずれの加工ステップの加工形状データを演算する場合でも、眼鏡レンズのレンズ設計データを使用せずに加工形状データを演算する。換言すると、加工形状演算プログラム22iには、加工形状データの演算に必要となるパラメータの中に眼鏡レンズのレンズ設計データが含まれていない。
 加工機情報記憶部22eは、加工機情報を記憶するものである。加工機情報は、玉型加工機22自身に関する情報であって、たとえば、加工可否に関する情報や、加工パラメータに関する情報などが該当する。加工可否に関する情報には、たとえば、加工可能な最大/最小の加工径、加工可能な最大/最小のコバ厚、加工可能なレンズ材料などが含まれる。加工パラメータには、たとえば、加工ツールのツール形状、ツール径、加工対象となるヤゲン形状などが含まれる。
 加工機情報記憶部22eに記憶された加工機情報は、たとえば、玉型加工機22と加工制御端末23との間で通信回線28を介したデータ通信が可能になった段階で、玉型加工機22から加工制御端末23に送信される。こうして玉型加工機22から加工制御端末23に送信される加工機情報は、加工形状データの演算用情報の一つとして演算用情報取得部23aが取得する。
 データ取得部22fは、通信回線28を介して種々のデータを取得するものである。たとえば、データ取得部22fは、後述する第2の演算部23bが演算しかつ加工制御端末23が外部出力する加工形状データを取得する。データ取得部22fによるデータの取得方式としては、種々の方式が考えられる。たとえば、上述したバーコード等の読み取りによって得られたジョブ識別情報を用いてデータ取得部22fがデータサーバ24にアクセスし、当該ジョブ識別情報に対応付けてデータサーバ24に登録されているデータを読み出して取得する方式が考えられる。また、これ以外にも、データ取得部22fが加工制御端末23にデータの提供(送信)を要求し、この要求を受けて加工制御端末23が提供したデータを取得する方式が考えられる。本発明は特にいずれかの取得方式に限定されるものではない。
 演算切替部22gは、眼鏡レンズ(被加工レンズ)30の玉型加工に関連する各種の演算項目のうち、少なくとも玉型加工に適用する加工形状データの演算を第1の演算部22dで行うか第2の演算部23bで行うかの設定を切り替えるものである。演算切替部22gは、加工形状データの演算主体を第1の演算部22dおよび第2の演算部23bのどちらに設定するかを判断する判断プログラム22kを有し、この判断プログラム22kにしたがって演算主体の設定を切り替える。演算主体の切り替えは、手動で行うものでも、自動で行うものでもよい。詳細は後述する。
 加工機制御部22hは、上述したレンズ加工部22a、コバ形状測定部22c、第1の演算部22d、加工機情報記憶部22e、データ取得部22fを含めて、玉型加工機22全体の処理,動作を制御するものである。具体的には、加工機制御部22hは、眼鏡レンズの玉型加工に適用される加工形状データを基に演算された加工軌跡データにしたがってレンズ加工部22aの駆動を制御する。また、加工機制御部22hは、コバ形状測定用の形状データ(詳細は後述)にしたがってコバ形状測定部22cの駆動を制御する。さらに、加工機制御部22hは、第1の演算部22dによる演算処理、加工機情報記憶部22eにおける加工機情報の更新処理、データ取得部22fによるデータ取得処理などを制御する。加工機制御部22hは、必要に応じて、外部の装置(たとえば、加工制御端末23)と通信し、当該外部の装置との間でデータの受け渡しを行う。
<4.加工制御端末の構成>
 加工制御端末23は、演算用情報取得部23aと、第2の演算部23bと、データ登録部23cと、周長管理部23dと、端末制御部23eと、演算用情報記憶部23fと、を備える。これらの機能部は、加工制御端末23が備えるコンピュータ部(不図示)の機能によって実現されるものである。
 演算用情報取得部23aは、加工形状データの演算に用いる演算用情報を取得するものである。演算用情報には、少なくとも、眼鏡フレーム情報、眼鏡レンズ情報、レイアウト情報、処方情報の他に、加工機情報、眼鏡レンズのレンズ設計データが含まれる。このうち、レンズ設計データは、第2の演算部23bが加工形状データ等を演算する場合にのみ用いられる。演算用情報取得部23aが取得した演算用情報(図2では便宜上、眼鏡フレーム情報23h、眼鏡レンズ情報23i、処方情報23j、レンズ設計データ23kのみを表示)は、演算用情報記憶部23fに記憶される。
 第2の演算部23bは、眼鏡レンズの玉型加工に関する種々の演算を行うものである。第2の演算部23bは、少なくとも、玉型加工機22のレンズ加工部22aの玉型加工に適用する加工形状データを演算するための加工形状演算プログラム23gを有する。他の演算プログラムは図示を省略している。加工形状演算プログラム23gは、「第2の演算プログラム」に相当する。第2の演算部23bが演算する加工形状データには荒加工形状データと仕上げ加工形状データとがある。この点は、玉型加工機22の第1の演算部22dが演算する加工形状データと共通である。
 データ登録部23cは、データサーバ24に各種のデータを登録するものである。たとえば、データ登録部23cは、第2の演算部23bが演算によって求めた加工形状データを、上記ジョブ識別情報と対応付けてデータサーバ24に登録する。この登録時に使用するジョブ識別情報は、第2の演算部23bで加工形状データを演算するにあたって、演算用情報取得部23aがデータサーバ24から読み出す受注データに付加されているジョブ識別情報と同一の情報である。
 周長管理部23dは、玉型加工機22で玉型加工された眼鏡レンズ(仕上げ加工済レンズ)の周長が予め設定された許容範囲内におさまっているか確認するとともに、許容範囲内におさまるように管理するものである。周長管理部23dにおいては、周長測定機25の測定結果に基づいて周長の管理を行う。周長の管理は、たとえば、玉型加工機22での加工ツールの摩耗等により、玉形加工における仕上げ加工後の眼鏡レンズに生じる周長のばらつきを低減(補正)するために行われる。
 端末制御部23eは、上述した演算用情報取得部23a、第2の演算部23b、データ登録部23c、周長管理部23d、演算用情報記憶部23fを含めて、加工制御端末23全体の処理,動作を制御するものである。
<5.加工形状演算プログラムについて>
 ここで、第1の演算部22dが有する加工形状演算プログラム22iと、第2の演算部23bが有する加工形状演算プログラム23gの違いについて説明する。
 まず、第1の演算部22dが有する加工形状演算プログラム22iは、レンズ設計データを使用せずに加工形状データを演算する仕様になっている。これに対して、第2の演算部23bが有する加工形状演算プログラム23gは、玉型加工の対象となる眼鏡レンズのレンズ設計データを使用して加工形状データを演算する仕様になっている。
 換言すると、第1の演算部22dが有する加工形状演算プログラム22iには、加工形状データの演算に必要となるパラメータの中に眼鏡レンズのレンズ設計データが含まれていないが、第2の演算部23bが有する加工形状演算プログラム23gには、加工形状データの演算に必要となるパラメータの中に眼鏡レンズのレンズ設計データが含まれている。
 このため、同じ受注データを用いて加工形状データを演算する場合に、第1の演算部22dの演算結果として得られる加工形状データと、第2の演算部23bの演算結果として得られる加工形状データとは、データ形式は共通するものの、内容的には異なるデータとなる。このことは、第1の演算部22dが演算した加工形状データで特定される眼鏡レンズの加工形状と、第2の演算部23bが演算した加工形状データで特定される眼鏡レンズの加工形状とが、異なることを意味する。
 このように加工形状データの演算結果に違いが生じる理由は、主に2つある。一つは、既述したとおり加工形状データの演算にレンズ設計データを使用するか否かの違いである。もう一つは、同じ眼鏡フレームに枠入れする眼鏡レンズであっても、第1の演算部22dが有する加工形状演算プログラム22iで基準(理想)としている眼鏡レンズの仕上がり形状と、第2の演算部23bが有する加工形状演算プログラム23gで基準としている眼鏡レンズの仕上がり形状とが、異なるためである。
 したがって、加工形状データの演算を第1の演算部22dで行った場合は、加工形状演算プログラム22iで想定している仕上がり形状にあわせて眼鏡レンズが玉型加工される。また、加工形状データの演算を第2の演算部23bで行った場合は、加工形状演算プログラム23gで想定している仕上がり形状にあわせて眼鏡レンズが玉型加工される。つまり、玉型加工機22と加工制御端末23とが、それぞれ独自の基準で用意された加工形状演算プログラム22i,23gによって加工形状データを演算するため、加工形状データの演算主体を第1の演算部22dとするか第2の演算部23bとするかによって眼鏡レンズの仕上がり形状に差が生じる。このため、たとえば、レンズメーカが製造した加工制御端末23と、それ以外の加工機メーカが製造した玉型加工機22とを用いて、加工センタ2内に玉型加工システム4を構築した場合に、加工形状データの演算主体を第1の演算部22dとするか第2の演算部23bとするかにより、眼鏡レンズの仕上がり形状に差が生じる。また、加工センタ2内に加工機メーカが異なる複数の玉型加工機22を設置した場合に、加工形状データの演算主体を第1の演算部22dに設定すると、玉型加工機22のメーカや機種によって眼鏡レンズの仕上がり形状に差が生じる。
 本実施の形態に係る玉型加工システム4は、玉型加工機22のメーカ、機種を問わず、所望の仕上がり形状に眼鏡レンズを加工することを実現しようとするものである。
 以下、受発注システムの処理フローと眼鏡レンズの製造方法について順に説明する。
<6.受発注システムの処理フロー>
 上記構成からなる眼鏡レンズの受発注システムでは、次のような手順で眼鏡レンズの受発注処理が行われる。
 まず、眼鏡店1においては、発注端末11の操作部11bを操作する店員が、眼鏡フレーム情報、眼鏡レンズ情報、レイアウト情報、処方情報などのデータを入力する。これら情報を含む発注データは、表示部11cに表示された発注画面を見ながら操作部11bを操作する店員が、当該発注データに基づく発注を確定する操作を行うことにより、通信網3を介して受注端末21へと送信される。発注を確定する操作としては、たとえば眼鏡店の店員が、表示部11cに表示された発注画面中の「注文確定ボタン」をマウスで押下(クリック)する操作などがある。
 一方、加工センタ2においては、発注端末11から送信された発注データを受注端末21で受信する。受注端末21は、発注データを受信すると、その都度、新規にジョブ識別情報を生成し、このジョブ識別情報と対応付けてデータサーバ24に受注データ(発注データ)を登録する。
<7.眼鏡レンズの製造方法>
 続いて、上記の玉型加工システムを用いた眼鏡レンズの製造方法について説明する。
 まず、眼鏡レンズの製造方法の説明に先立って、幾つか前提条件を記述する。
 (前提条件1)
 データサーバ24に各種情報を登録するタイミングは、その情報を第1の演算部22dまたは第2の演算部23bが演算に用いる前であれば、いつでもかまわない。たとえば、ブロック位置情報については、加工制御端末23がブロッカー27にブロック位置を指定するとき、あるいはブロッカー27からブロック位置の通知を受けたときに、データサーバ24に登録すればよい。また、レンズ設計データについては、当該レンズ設計データを一義的に特定可能なレンズ特定情報と対応付けて、任意のタイミングでデータサーバ24に登録すればよい。レンズ特定情報は、受注データに含まれる眼鏡レンズ情報や処方情報などを用いて生成可能な情報である。このため、演算用情報取得部23aは、眼鏡レンズ情報や処方情報などを用いてレンズ特定情報を生成し、このレンズ特定情報に対応付けて登録されているレンズ設計データをデータサーバ24から読み出す。レンズ設計データは、レンズメーカが保有するデータであるため、いつでもデータサーバ24に登録可能である。
 (前提条件2)
 第1の演算部22dが演算する加工軌跡データは、その基になる加工形状データが同じであれば、同じデータとなる。その理由は、第1の演算部22dは、加工形状データを自身で演算するか、第2の演算部23bで演算するかにかかわらず、共通(同一)の加工軌跡演算プログラム22jによって加工軌跡データを演算するからである。また、レンズ加工部22aは、加工軌跡データを基に決定した制御条件にしたがって加工ツールを移動させることにより、眼鏡レンズを加工する。このため、第1の演算部22dが演算した加工軌跡データが同じであれば、加工後に得られる眼鏡レンズの形状も同じになる。
 以上のことから、加工軌跡データの演算に用いる加工形状データが同じであれば、加工後に得られる眼鏡レンズの形状も同じになる。
 このような前提条件のもとで眼鏡レンズの製造方法を説明する。
 まず、玉型加工機22の操作者は、たとえば、玉型加工前の眼鏡レンズを収容するトレイ等に付されたバーコードを、玉型加工機22に付属のバーコードリーダで読み取る。トレイ等に付されたバーコードは、ジョブ識別情報をコード化したものである。このため、玉型加工機22に付属のバーコードリーダでバーコードを読み取ると、その読み取り結果としてジョブ識別情報が生成され、このジョブ識別情報が玉型加工機22から加工制御端末23に通知される。そうすると、加工制御端末23では、眼鏡レンズの玉型加工に必要な情報を演算用情報取得部23aで取得する。一方、玉型加工機22の操作者は、事前にブロッカー27でレンズホルダ40を装着した眼鏡レンズ30をレンズ加工部22aにセットする。この段階では、ブロッカー27で眼鏡レンズ30をブロッキングしたときのブロック位置情報が、ジョブ識別情報と対応付けてデータサーバ24に登録済みとなっている。その後、玉型加工機22の操作者は、操作パネル22bを用いて加工開始を指示する。これにより、図7および図8に示す処理フローにしたがって、眼鏡レンズの玉型加工に係る処理が実施される。以下、処理フローについて詳しく説明する。
 まず、切り替え設定S1を行う。この工程は玉型加工機22で行う。具体的には、加工形状データの演算を第1の演算部22dで行うか第2の演算部23bで行うかの設定を演算切替部22gで切り替える。つまり、加工形状データの演算を行う主体を、第1の演算部22dおよび第2の演算部23bのいずれか一方に設定するように、演算主体を切り替える。この工程で演算切替部22gが加工形状データの演算を第1の演算部22dで行うと設定した場合は、少なくとも加工形状データの演算に関して、第2の演算部23bの演算機能が無効状態になる。また、この工程で演算切替部22gが加工形状データの演算を第2の演算部23bで行うと設定した場合は、少なくとも加工形状データの演算に関して、第1の演算部22dの演算機能が無効状態になる。
 演算主体の切り替えは、手動で行う場合と自動で行う場合が考えられる。以下、具体例について説明する。
 (手動で切り替える場合の具体例)
 操作パネル22bを用いて切り替える。操作パネル22bを用いた切り替えでは、たとえば、加工形状データの演算を第1の演算部22dで行うか第2の演算部23bで行うかを操作者に選択させるスイッチ(ディップスイッチ、押しボタン式スイッチ、回転式スイッチなどのハードスイッチ、もしくはタッチパネルに設けられたスイッチなど)を操作パネル22bに設けておく。そして、操作者がスイッチを用いて選択した結果に基づいて、演算切替部22gが加工形状データの演算を第1の演算部22dで行うか第2の演算部23bで行うかの設定を切り替える。具体的には、玉型加工機22の操作者が、第1の演算部22dを選択する旨のスイッチ操作をした場合は、加工形状データの演算を第1の演算部22dで行うように設定する。また、玉型加工機22の操作者が、第2の演算部23bを選択する旨のスイッチ操作をした場合は、加工形状データの演算を第2の演算部23bで行うように設定する。なお、広義に捉えると、玉型加工に係る加工形状演算の演算項目には、荒加工形状データと仕上げ加工形状データの他に、コバ形状測定用の形状データがあるが、この演算を第1の演算部22dで行うか第2の演算部23bで行うかは各々選択できるものとする。
 (自動で切り替える場合の具体例)
 ソフトスイッチを用いて切り替える。ソフトスイッチを用いた切り替えは、演算切替部22gが有する判断プログラム22i上において、内部的な設定切り替えをフラグ(変数)の設定などにより行う。ソフトスイッチを用いた切り替えでは、たとえば、玉型加工の受注データに含まれる眼鏡レンズ情報、眼鏡フレーム情報、処方情報のうち、少なくとも一つの情報を用いて、加工形状データの演算を第1の演算部22dで行うか第2の演算部23bで行うかの設定を切り替える。具体的には、演算切替部22gは、眼鏡レンズ情報に属するレンズカーブの値が所定値(たとえば、7カーブ)未満である場合は、フラグを“0”に設定し、所定値以上である場合は、フラグを“1”に設定する。また、演算切替部22gは、眼鏡フレーム情報に属するあおり角が所定の角度(たとえば、10度)未満である場合は、フラグを“0”に設定し、所定の角度未満である場合は、フラグを“1”に設定する。玉型加工機22において、フラグを“0”に設定する場合とは、加工形状データの演算を第1の演算部22dで行うように設定する場合を意味し、フラグを“1”に設定する場合とは、加工形状データの演算を第2の演算部23で行うように設定する場合を意味する。
 また、これ以外にも、たとえば、加工制御端末23から玉型加工機22に、加工形状データの演算を第1の演算部22dで行うか第2の演算部23bで行うかを指示する指示信号を出力し、この指示信号にしたがって演算切替部22gが加工形状データの演算を第1の演算部22dで行うか第2の演算部23bで行うかの設定を、ソフト的にフラグを立てることで行う。具体的には、加工制御端末23は、加工形状データの演算を第1の演算部22dで行う旨の指示信号(以下「第1指示信号」という)と、加工形状データの演算を第2の演算部23bで行う旨の指示信号(以下「第2指示信号」という)のうち、いずれか一方の指示信号を玉型加工機22に出力する。これに対して、玉型加工機22の演算切替部22gは、加工制御端末23から第1指示信号を受信した場合は、フラグを“0”に設定し、加工制御端末23から第2指示信号を受信した場合は、フラグを“1”に設定する。
 また、加工制御端末23は、上述のように加工形状データの演算主体を自動で切り替える場合に、たとえば、以下のような条件にしたがって玉型加工機22に出力する指示信号を変更する。
 (第1の条件)
 加工制御端末23は、玉型加工の対象となる眼鏡レンズのレンズ設計データが取得不可能である場合、つまりデータサーバ24に加工対象レンズのレンズ設計データが登録されていない場合は、玉型加工機22に第1指示信号を出力する。これにより、玉型加工機22の演算切替部22gは、フラグを“0”、つまり加工形状データの演算を第1の演算部22dで行うように設定する。また、加工制御端末23は、玉型加工の対象となる眼鏡レンズのレンズ設計データが取得可能である場合、つまりデータサーバ24に加工対象レンズのレンズ設計データが登録されている場合は、玉型加工機22に第2指示信号を出力する。これにより、玉型加工機22の演算切替部22gは、フラグを“1”、つまり加工形状データの演算を第2の演算部23bで行うように設定する。
 この場合、データサーバ24にレンズ設計データが登録されているかどうかの確認や、玉型加工機22に対する指示信号の出力は、加工制御端末23の端末制御部23eで行う。これにより、玉型加工機22においては、玉型加工の対象となる眼鏡レンズのレンズ設計データがデータサーバ24に登録されているか否かにより、加工形状データの演算主体の設定が切り替わる。
 ちなみに、加工センタ2を所有するレンズメーカが自社製の眼鏡レンズを玉型加工する場合は、そのレンズ設計データをデータサーバ24に登録することができるが、他社製の眼鏡レンズを玉型加工する場合は、そのレンズ設計データをデータサーバ24に登録することができない。なぜなら、レンズ設計データは、各々のレンズメーカで秘密情報(ノウハウ)として管理されるからである。このため、実質的には、他社製の眼鏡レンズを玉型加工する場合は、加工制御端末23から玉型加工機22に第1指示信号を出力し、自社製の眼鏡レンズを玉型加工する場合は、加工制御端末23から玉型加工機22に第1指示信号を出力することになる。
 (第2の条件)
 加工制御端末23は、玉型加工の対象となる眼鏡レンズの面の形状が球面である場合は、玉型加工機22に第1指示信号を出力する。これにより、玉型加工機22の演算切替部22gでは、フラグを“0”、つまり加工形状データの演算を第1の演算部22dで行うように設定する。また、加工制御端末23は、玉型加工の対象となる眼鏡レンズの面の形状が球面以外である場合は、玉型加工機22に第2指示信号を出力する。これにより、玉型加工機22の演算切替部22gでは、フラグを“1”、つまり加工形状データの演算を第2の演算部23bで行うように設定する。
 この場合、玉型加工の対象となる眼鏡レンズの種類は、データサーバ24に登録されている受注データに含まれる眼鏡レンズ情報を用いて確認することができる。また、眼鏡レンズの種類が球面レンズであるか非球面レンズであるかの確認や、玉型加工機22に対する指示信号の出力は、加工制御端末23の端末制御部23eで行う。これにより、玉型加工機22においては、玉型加工の対象となる眼鏡レンズの種類に応じて、加工形状データの演算主体の設定が切り替わる。
 (第3の条件)
 加工制御端末23は、枠入れの対象となる眼鏡フレームのあおり角が所定の角度(たとえば、10度)未満である場合は、玉型加工機22に第1指示信号を出力する。これにより、玉型加工機22の演算切替部22gでは、フラグを“0”、つまり加工形状データの演算を第1の演算部22dで行うように設定する。また、加工制御端末23は、枠入れの対象となる眼鏡フレームのあおり角が上記所定の角度以上である場合は、玉型加工機22に第2指示信号を出力する。これにより、玉型加工機22の演算切替部22gでは、フラグを“1”、つまり加工形状データの演算を第2の演算部23bで行うように設定する。
 この場合、枠入れの対象となる眼鏡フレームのあおり角が何度であるかの確認や、玉型加工機22に対する指示信号の出力は、加工制御端末23の端末制御部23eで行う。これにより、玉型加工機22においては、枠入れの対象となる眼鏡フレームのあおり角に応じて、加工形状データの演算主体の設定が切り替わる。
 眼鏡フレームのあおり角とは、図9に示すように、眼鏡フレーム70を上方向から見たときのリム71の傾き角度θをいう。
 眼鏡フレームのあおり角のデータは、上述した眼鏡フレーム情報に属するものであるが、眼鏡レンズの玉型加工に必須のデータではない。このため、眼鏡フレーム情報にあおり角のデータが含まれていない場合がありうる。また、眼鏡フレーム情報に属する枠形状データは、必ずしも三次元データで提供されるとは限らず、2次元データで提供される場合がある。具体的には、眼鏡フレームの代わりに、平板のパターンの形状をトレーサで測定した場合に得られる枠形状データが二次元データとなる。
 このような場合は、あおり角が所定の角度未満である場合と同様に、玉型加工機22に第1指示信号を出力すればよい。
 ここで、眼鏡フレームのあおり角の大小に基づいて、玉型加工機22に出力する指示信号を変更する理由について説明する。
 まず、眼鏡フレームの枠形状にあわせて玉型加工した眼鏡レンズを眼鏡フレームに枠入れした場合、左右の眼鏡レンズは、眼鏡装用者が正面視したときの視線に対して、あおり角に応じた傾きをもつ。そうすると、この傾きに起因して、左右の眼鏡レンズの光学的中心間距離と処方情報の瞳孔間距離との間にズレが生じる。その際、あおり角が大きい眼鏡フレーム(スポーツ用途の眼鏡フレームなど)に眼鏡レンズを枠入れすると、上記の光学的中心間距離と瞳孔間距離とのズレが大きくなってしまう。
 このようなズレを補正するには、眼鏡フレームのあおり角を考慮して加工形状データ(仕上げ形状データ)を演算する必要があり、この演算にレンズ設計データが必要となる。このため、あおり角が所定の角度以上である場合は、加工制御端末23から玉型加工機22に第2指示信号を出力することとしている。
 一方、あおり角が小さい眼鏡フレームに眼鏡レンズを枠入れする場合は、上記の光学的中心間距離と瞳孔間距離とのズレが小さくなる。このズレが眼鏡装用者の見え方にほとんど影響を及ぼさない程度に小さければ、わざわざあおり角を考慮して加工形状データを演算する必要はない。このため、あおり角が所定の角度未満である場合は、加工制御端末23から玉型加工機22に第1指示信号を出力することとしている。
 次に、切り替え設定確認S2を行う。この工程は玉型加工機22で行う。具体的には、玉型加工機22において、加工形状データの演算主体が第1の演算部22dおよび第2の演算部23bのどちらに設定されているかを確認する。そして、加工形状データの演算主体が第1の演算部22dに設定されていればYesと判断し、第2の演算部23bに設定されていればNoと判断する。
 次に、荒加工形状データの演算を行う。具体的には、上記切り替え設定確認S2で確認した結果、加工形状データの演算主体が第1の演算部22dに設定されていた場合は、第1の演算部22dが荒加工形状データの演算を行う(S3)。
 また、上記切り替え設定確認S2で確認した結果、加工形状データの演算主体が第2の演算部23bに設定されていた場合は、演算用情報取得部23aが取得した演算用情報を用いて、第2の演算部23bが荒加工形状データの演算を行う(S4,S5)。その際、玉型加工機22は加工制御端末23に荒加工形状データの演算を依頼し、この依頼を受けると加工制御端末23が荒加工形状データを演算する。
 荒加工形状データの演算には、上述した眼鏡フレーム情報、眼鏡レンズ情報、レイアウト情報、処方情報、ブロック位置情報、加工機情報などが用いられる。第1の演算部22dによる荒加工形状データの演算では、この演算に必要な情報をデータ取得部22fがデータサーバ24から読み出す。ただし、加工機情報については、加工機情報記憶部22eに記憶された情報を用いる。
 一方、第2の演算部23bによる荒加工形状データの演算では、この演算に必要な情報を演算用情報取得部23aがデータサーバ24から読み出す。ただし、加工機情報については、事前に玉型加工機22から加工制御端末23に送信された情報を用いる。具体的には、玉型加工機22と加工制御端末23との間で通信回線28を介したデータ通信が可能になった段階で、玉型加工機22から加工制御端末23に加工機情報を送信すればよい。また、第2の演算部23bによる荒加工データの演算にはレンズ設計データが用いられる。レンズ設計データについては、演算用情報取得部23aが次のように取得する。すなわち、データサーバ24に登録されている受注データを用いてレンズ特定情報を生成し、このレンズ特定情報と対応付けて登録されているレンズ設計データをデータサーバ24から読み出す。演算用情報取得部23aが取得した情報は演算用情報記憶部23fに記憶され、その記憶された情報を用いて第2の演算部23bが荒加工形状データを演算する。また、第2の演算部23bが演算した荒加工形状データは、データ登録部23cがジョブ識別情報と対応付けてデータサーバ24に登録する。
 荒加工形状データを第2の演算部23bで演算する場合は、たとえば、以下のようなメリットが得られる。
 眼鏡レンズ(アンカットレンズ)を玉型加工機22にセットして玉型加工する場合は、レンズホルダを装着した眼鏡レンズを、凸面と凹面の双方から挟み込むように圧力を加えて支持する。このとき枠入れの対象となる眼鏡フレームのあおり角が大きくなると、その影響が無視できなくなる。以下、詳しく説明する。
 通常、被加工レンズにレンズホルダを装着する位置は、2次元で見たときの枠形状の枠中心位置に設定される。このとき、被加工レンズの光学中心が、眼鏡装用者の視線上にくるように、レンズホルダの中心位置に対して、被加工レンズの光学中心をレイアウトする必要がある。実際にレイアウトする場合に、被加工レンズとレンズホルダのX方向(水平方向)の偏心量(DX)は、眼鏡フレームの玉型幅(Asize)および鼻幅(DBL)と、眼鏡装用者の両眼瞳孔間距離(PD)とから、次の式で求めることができる。
 DX=(PD÷2)-(DBL÷2)-(Asize÷2)
 しかしながら、上記計算式は、眼鏡のあおり角θ(図9参照)をθ=0度、眼鏡レンズの凸面を平面として単純モデル化した場合である。あおり角θやレンズカーブ等の演算パラメータを持たない、玉型加工機22による演算では、上記の計算式による演算が行われる。
 これに対して、あおり角θやレンズカーブが数値として与えられたときの、より正確な演算式では、レンズ凸面の飛び出し量をFとすると、次の式で偏心量(DX)を求めることができる。
DX=(PD÷2)-(DBL÷2)-(Asize÷2)×COSθ+F×SINθ
 ここで、あおり角θ=0度とすれば、前述した計算式と同じになる。つまり、あおり角θが小さいときにはその影響を無視できるが、あおり角θが大きいときにはその影響を無視できなくなる。被加工レンズが玉型加工機22に取り付けられた後には、ブロック位置の修正ができないため、このあおり角θによるレイアウトの修正は、玉型形状のX方向への変形によって行うしかない。したがって、あおり角θの大きい眼鏡フレーム形状の場合は、その影響が無視できなくなる。
 次に、玉型加工機22においては、第1の演算部22dまたは第2の演算部23bが演算した荒加工形状データをデータ取得部22fで取得した後(S6)、その荒加工形状データを用いて眼鏡レンズの荒加工を行う(S7)。荒加工形状データを第1の演算部22dが演算した場合は、この荒加工形状データを用いて第1の演算部22dが荒加工用の加工軌跡データを演算し、この加工軌跡データに基づいて加工機制御部22hがレンズ加工部22aの駆動を制御する。これにより、レンズ加工部22aにおいては、第1の演算部22dが演算した荒加工形状データを適用して、眼鏡レンズの荒加工が行われる。また、荒加工形状データを第2の演算部23bが演算した場合は、この荒加工形状データを玉型加工機22がデータサーバ24から取得する。具体的には、玉型加工機22のデータ取得部22fが、上記バーコードの読み取りによって生成したジョブ識別情報を用いてデータサーバ24にアクセスする。このとき、データ取得部22fは、ジョブ識別情報に対応付けてデータサーバ24に登録されている荒加工形状データを読み出し、これを第1の演算部22dに渡す。そうすると、第1の演算部22dはデータ取得部22fから受け取った荒加工形状データを用いて荒加工用の加工軌跡データを演算し、この加工軌跡データに基づいて加工機制御部22hがレンズ加工部22aの駆動を制御する。これにより、レンズ加工部22aにおいては、第2の演算部23bが演算した荒加工形状データを適用して、眼鏡レンズの荒加工が行われる。
 次に、玉型加工機22においては、加工形状データの演算主体の切り替え設定を確認する(S8)。確認の結果、加工形状データの演算主体が第1の演算部22dに設定されていた場合(Yesの場合)は、第1の演算部22dがコバ形状測定用の形状データを演算する(S9)。また、確認の結果、加工形状データの演算主体が第2の演算部23bに設定されていた場合(Noの場合)は、コバ形状測定用の形状データを演算するのに必要な情報を演算用情報取得部12aが取得し、この取得した情報を用いて第2の演算部23bがコバ形状測定用の形状データを演算する(S10,S11)。このとき、第2の演算部23bは、玉型加工の対象となる眼鏡レンズのレンズ設計データを用いて、コバ形状測定用の形状データを演算する。また、データ登録部23cは、第2の演算部23bが演算したコバ形状測定用の形状データをジョブ識別情報と対応付けてデータサーバ24に登録する。コバ形状測定用の形状データは、コバ形状測定部22cで眼鏡レンズ3のコバ形状を測定するときの測定位置を指定するデータ、さらに詳しくは上記図5に示したように、コバ形状の測定時に一対の測定子51,52がトレースすべき軌跡Sの形状(位置)を指定するデータとなる。
 コバ形状測定用の形状データを第2の演算部23bで演算する場合は、たとえば、二重焦点レンズを取り扱う場合に、以下のようなメリットが得られる。
 すなわち、二重焦点レンズには小玉と呼ばれる部分(近用部)がある。小玉の部分は、近用視に適した屈折率とするために構造的に突出し、その突出部分の上縁に段差が存在する。このため、小玉の部分を測定子51,52がトレースするときに引っ掛かるおそれがある。これに対して、レンズ設計データがあれば、これを基に眼鏡レンズの小玉部分の位置を正確に特定することができる。このため、コバ形状測定用の形状データを第2の演算部23bで演算すれば、小玉の部分を避けて測定子51,52がレンズ光学面をトレースするように、コバ形状測定用の形状データを演算させることができる。したがって、小玉部分の段差に測定子が引っ掛かる事態を回避することができる。
 次に、玉型加工機22においては、第2の演算部23bが演算したコバ形状測定用の形状データをデータ取得部22fがデータサーバ24から取得する(S12)。ただし、第1の演算部22dがコバ形状測定用の形状データを演算した場合は、データサーバ24からコバ形状測定用の形状データを取得する必要はない。次に、玉型加工機22においては、コバ形状測定用の形状データを用いてコバ形状測定部22cがコバ形状を測定する(S13)。具体的には、コバ形状測定用の形状データで指定された軌跡S(図5参照)にしたがってコバ形状を測定する。なお、図5においては、眼鏡レンズ30の外形を円形で描いているが、コバ形状の測定は、荒加工後の眼鏡レンズ30を対象に行われるため、測定時のレンズ形状は最終的な仕上がり形状より一回り大きい形状になる。
 次に、玉型加工機22において、加工形状データの演算主体の切り替え設定を確認する(S14)。確認の結果、加工形状データの演算主体が第1の演算部22dに設定されていた場合(Yesの場合)は、上記のコバ形状の測定によって得られるコバ形状測定データを用いて第1の演算部22dが仕上げ加工形状データの演算を行う(S15)。また、確認の結果、加工形状データの演算主体が第2の演算部23bに設定されていた場合(Noの場合)は、上記のコバ形状の測定によって得られるコバ形状測定データを加工制御端末23に出力する(S16)。そうすると、加工制御端末23においては、玉型加工機22から出力されたコバ形状測定データを演算用情報取得部23aで取得(受信)した後(S17)、このコバ形状測定データを用いて第2の演算部23bが仕上げ加工形状データの演算を行う(S18)。仕上げ加工形状データの演算には、コバ形状測定データの他に、上述した眼鏡フレーム情報、眼鏡レンズ情報、レイアウト情報、処方情報、ブロック位置情報、加工機情報や、レンズ設計データが用いられる。この工程で第2の演算部23bが演算した仕上げ加工形状データは、データ登録部23cがジョブ識別情報と対応付けてデータサーバ24に登録する。また、第2の演算部23bは、仕上げ加工形状データと一緒に理論周長を演算し、データ登録部23cは、この理論周長を仕上げ加工形状データと一緒に、ジョブ識別情報と対応付けてデータサーバ24に登録する。理論周長は、第2の演算部23bが有する周長演算プログラム(不図示)にしたがって演算される数値データである。この理論周長は、玉型加工の仕上げ加工を終えた眼鏡レンズを眼鏡フレームに枠入れする際に、フィッティング率向上の観点から好ましいとされる眼鏡レンズの周長として算出される。したがって、玉型加工後の眼鏡レンズの周長がこの理論周長に一致するときが最適な加工状態となる。
 次に、玉型加工機22においては、第1の演算部22dまたは第2の演算部23bが演算した仕上げ加工形状データを用いて、眼鏡レンズの仕上げ加工(ヤゲン加工を含む)を行う(S20)。仕上げ加工データを第1の演算部22dが演算した場合は、この仕上げ加工データを用いて第1の演算部22dが仕上げ加工用の加工軌跡データを演算し、この加工軌跡データに基づいて加工機制御部22hがレンズ加工部22aの駆動を制御する。これにより、レンズ加工部22aにおいては、第1の演算部22dが演算した仕上げ加工形状データを適用して、眼鏡レンズの仕上げ加工が行われる。また、仕上げ加工形状データを第2の演算部23bが演算した場合は、仕上げ加工の実施に先立ってこの仕上げ加工形状データを玉型加工機22のデータ取得部22fがデータサーバ24から取得する(S19)。具体的には、玉型加工機22のデータ取得部22fが、上記バーコードの読み取りによって生成したジョブ識別情報を用いてデータサーバ24にアクセスする。このとき、データ取得部22fは、ジョブ識別情報に対応付けてデータサーバ24に登録されている仕上げ加工形状データを読み出し、これを第1の演算部22dに渡す。そうすると、第1の演算部22dは、データ取得部22fから受け取った仕上げ加工形状データを用いて仕上げ加工用の加工軌跡データを演算し、この加工軌跡データに基づいて加工機制御部22hがレンズ加工部22aの駆動を制御する。これにより、レンズ加工部22aにおいては、第2の演算部23bが演算した仕上げ加工形状データを適用して、眼鏡レンズの仕上げ加工が行われる。
 次に、後工程(S21~S23)を行う。この工程は大きく2つに分かれる。最初の工程では、玉型加工機22で仕上げ加工を終えた眼鏡レンズの周長を周長測定機25で測定する(S21)。周長測定機25で測定した眼鏡レンズの周長(以下、「実測周長」ともいう)は、ジョブ識別情報に対応付けてデータサーバ24に登録される。
 次に、上記の工程S18で第2の演算部23bが加工形状データの演算を行っていた場合(S22でYesの場合)に、加工条件の補正に係る処理を行う(S23)。すなわち、上述のように実測周長がデータサーバ24に登録されると、端末制御部23eからの指示を受けて周長管理部23dがデータサーバ24から実測周長を読み出す。次に、周長管理部23dは、第2の演算部23bが演算した理論周長と、データサーバ24から読み出した実測周長とに基づいて、玉型加工の加工条件を補正する必要があるかどうかを判断する。具体的には、周長管理部23dは、たとえば、理論周長と実測周長の差を求め、当該周長差が予め設定された所定範囲内にあれば補正が不要と判断し、所定範囲を超えている場合は補正が必要と判断する。所定範囲は、玉型加工された眼鏡レンズの周長が許容範囲内におさまるように、この許容範囲よりも狭い範囲で設定される。また、周長管理部23dは、補正が必要と判断すると、上記加工条件の補正に適用する周長補正値を求める。周長補正値は、実測周長が理論周長に近づくように玉型加工の加工条件に反映させればよい。具体的には、たとえば、第2の演算部23bで加工形状データを演算するときに適用する演算パラメータの一つとして周長補正値を反映させればよい。
 なお、上記の説明では荒加工後にコバ形状測定を行うとしたが、荒加工前にコバ形状測定を行うようにしてもよい。その場合は、荒加工形状データの演算と仕上げ加工形状データの演算を、荒加工前にまとめて実施してもよい。ただし、荒加工前のレンズと荒加工後のレンズでは、同じ軌跡でコバ形状を測定しても、荒加工前後のレンズの変形等により、コバ形状測定データに差が生じる場合がある。このため、荒加工前後のレンズの変形等に起因した加工誤差を小さくするうえでは、荒加工を終えた段階でコバ形状を測定することが好ましい。
<8.実施の形態の効果>
 本発明の実施の形態によれば、玉型加工機22にデータ取得部22fと演算切替部22gを設け、演算切替部22gが加工形状データの演算を第2の演算部23bで行うと設定している場合に、第2の演算部23bが演算した加工形状データをデータ取得部22fで取得し、この取得した加工形状データを適用してレンズ加工部22aが玉型加工を行う構成を採用している。このため、第1の演算部22dを有する玉型加工機22と第2の演算部23bを有する加工制御端末23とを用いて玉型加工システム4を加工センタ2に構築した場合であっても、第2の演算部23bの加工演算機能を利用して加工形状データを演算し、この加工形状データを適用して玉型加工機22に眼鏡レンズの玉型加工を行わせることができる。
 また仮に、加工センタ2内に異なる加工機メーカの玉型加工機22が混在して設置された場合や、同じ加工機メーカでも機種が異なる玉型加工機22が混在して設置された場合でも、加工制御端末23で演算した加工形状データを適用して、各々の玉型加工機22に眼鏡レンズの玉型加工を行わせることができる。したがって、玉型加工機22のメーカ、機種を問わず、所望の仕上がり形状に眼鏡レンズを加工することが可能となる。
 その結果、たとえば、レンズメーカによって実現される玉型加工システム4に、加工機専用メーカが提供する玉型加工機22を用いた場合でも、高いフィッティング率を実現することが可能となる。この点について、詳しく説明する。
 まず、フィッティング率とは、玉型加工後の眼鏡レンズを眼鏡フレームに枠入れするときに、正常に枠入れできる確率をいう。枠入れ時の異常としては、たとえば、眼鏡レンズのサイズ(主に周長)が眼鏡フレームの枠サイズに比較して小さすぎたり大きすぎたりした場合や、ヤゲンの位置が不適切であった場合などがある。
 フィッティング率を高めるためには、玉型加工に適用する加工形状データの演算処理にレンズ設計データを用いることが有効である。その理由は、次のような事情による。
 まず、コバ形状測定部22cでコバ形状を測定する場合は、上記図4に示したように、一対の測定子51,52を眼鏡レンズ30の光学面31,32に接触させてトレースする。このとき、測定子51,52がトレースする軌跡Sに沿って眼鏡レンズ30の光学面31,32に擦り傷がつく。この擦り傷が仕上げ加工後の眼鏡レンズ30に残ると、品質上の欠陥となる。このため、コバ形状測定時に一対の測定子51,52を接触させる位置は、その後の仕上げ加工で除去される位置に設定されている。具体的には、図10に示すように、最終的な仕上げ加工形状を規定するレンズ外縁の位置(以下、「仕上げ位置」という)P1よりも外側の位置(以下、「コバ形状測定位置」という)P2に設定されている。このため、ヤゲン加工を含む仕上げ加工に適用する仕上げ加工形状データを演算する場合は、コバ形状測定位置P2で測定したコバ形状測定データに基づいて、仕上げ位置P1での実際のコバ形状を推定する必要がある。その理由は、仕上げ位置P1を基準にヤゲンの位置を決めることになるからである。
 しかしながら、たとえば、玉型加工の対象となる眼鏡レンズ30が累進屈折力レンズなどのレンズの表面の一部もしくは全体に渡り曲率が連続的に変化する面を有するレンズの場合、コバ形状測定位置P2から仕上げ位置P1にかけては、眼鏡レンズ30の光学面31,32がそれぞれ固有の曲率をもって連続的に変化している。このため、レンズ設計データがないと、仕上げ位置P1でのコバ形状(コバ厚等を含む)を正確に推定できず、推定結果に誤差が生じる。コバ形状の推定結果に誤差が生じると、その誤差を含むかたちで仕上げ加工形状データの演算が行われる。このため、眼鏡レンズの最終的な仕上げ形状やヤゲン位置に狂いが生じ、フィッティング率の低下を招いてしまう。一方、眼鏡レンズのレンズ設計データがある場合は、このレンズ設計データに含まれる各光学面31,32の面形状データ等を用いて仕上げ位置P1でのコバ形状を正確に推定することができる。このため、上記の誤差がほとんど生じない。よって、レンズ設計データを使用する場合は、これを使用しない場合に比べて、フィッティング率を高めることができる。
 また、加工形状データの演算にレンズ設計データを用いることは、顧客に最適な眼鏡を提供するうえで有益である。具体的には、たとえば、眼鏡レンズをより薄く(軽く)したい場合や、左右の眼鏡レンズの質量差を小さくしたい場合、あるいは左右の眼鏡レンズのレンズカーブを揃えたい場合などである。そのような場合は、受注データに含まれる眼鏡フレーム情報、眼鏡レンズ情報、レイアウト情報、処方情報だけでなく、レンズ設計データを用いた演算により、レンズ肉厚の最適化、レンズの左右カーブ・重量合わせ、フレームカーブを考慮したレンズカーブの選択などを行い、その後、眼鏡フレームの枠形状の変形計算やヤゲンカーブ、周長などを演算して加工形状データを求めることになる。このような最適化のための演算は、いわゆる特注レンズについて行われるものであるが、レンズ設計データを用いた加工形状データの演算は、特注レンズだけでなく、在庫レンズにも適用可能である。
 また、本実施の形態に係る玉型加工システム4において、上記構成の玉型加工機22を導入することは、たとえば、以下のような点で有意義である。
 近年においては、眼鏡レンズの加工コストを抑えるために、人件費の安い新興国に玉型加工機等の加工資源を集約し、そこで世界各国の眼鏡店からの注文データを受け付けて、玉型加工後の眼鏡レンズを注文元に供給する受発注システムが採用されている。このようなグローバルな受発注システムを採用するにあたっては、眼鏡フレームの枠形状にあわせて玉型加工した眼鏡レンズが、その眼鏡フレームに正常に枠入れできることが非常に重要になる。なぜなら、発注側となる眼鏡店と受注側となる加工センタとが、別々の国に存在する場合などでは、枠入れ不良の発生に迅速に対応することが難しいからである。
 また、各眼鏡店に設置されたトレーサのメーカや型式が異なる場合には、それぞれのトレーサの個体差が眼鏡レンズの加工誤差となって現れる。こうした加工誤差の発生を避けるには、たとえば、上記の玉型加工システム4において、メーカや型式が異なるトレーサごとに補正値を用意しておき、各トレーサの測定結果として送られる枠形状データを上記補正値で補正することにより、トレーサの個体差による影響を解消すればよい(たとえば、国際公開第2007/077848号公報を参照)。
 ただし、上記のような補正の仕組みを採用しても、玉型加工機がそれ自身に組み込まれた演算プログラムにしたがって加工形状データを演算し、この加工形状データを適用して玉型加工を行うようでは、同じ受注データを使用したとしても、眼鏡レンズの最終な仕上がり形状に差が生じてしまう。これは、玉型加工機に組み込まれる加工形状演算プログラムが、玉型加工機のメーカや機種などによって異なるためである。さらにいうと、加工形状演算プログラムは、加工機メーカごとに開発される。よって、ある眼鏡フレームに枠入れする予定の眼鏡レンズを玉型加工する場合に、枠入れに理想的な眼鏡レンズの仕上がり形状、特に、眼鏡レンズのコバ面のどこに、どのようなカーブでヤゲンを形成するか、については、メーカごとに独自に定めた基準がある。このため、玉型加工機に組み込まれる加工形状演算プログラムを、レンズメーカと加工機メーカ間、あるいは複数の加工機メーカ間で共通化することは非現実的である。
 したがって、加工機メーカが製造する玉型加工機で玉型加工された眼鏡レンズでは、メーカや機種などの違いにより、均一な仕上がり形状が得られない。また、加工形状演算プログラムの仕様は、前述した理由によりレンズ設計データを用いる仕様になっていることが望ましいが、加工機メーカ(レンズメーカを除く)の玉型加工機に組み込まれる加工形状演算プログラムはそのような仕様になっていない。その理由は、レンズ設計データはレンズメーカがノウハウとして保有するデータであり、レンズメーカではない加工機メーカが、レンズ設計データを用いる仕様で加工形状演算プログラムを開発することは現実的にあり得ないからである。したがって、現状においては、レンズメーカが所望する仕上がり形状に眼鏡レンズを玉型加工する場合は、レンズメーカが自社で製造した玉型加工機を用いて玉型加工システムを構築せざるを得ない状況になっている。
 しかしながら、上記のグローバルな受発注システムにおいて、加工センタに設置する玉型加工機のすべてをレンズメーカが自社で製造し、その後の保守や管理まで行うとなると、レンズメーカの人的、資金的な負担が大きくなる。そこで、レンズメーカが自社で製造して使用していた玉型加工機を、加工機メーカ(レンズメーカを除く)が製造している玉型加工機に置き換えて玉型加工システムを構築することが考えられる。この玉型加工システムにおいては、上述したように玉型加工機22と加工制御端末23の双方が、それぞれ独自の加工演算機能を持つという、これまでにない特異なシステムになる。そして、この特異なシステムを採用しようとした場合に、双方の加工形状演算プログラムの違いによって眼鏡レンズの仕上がり形状に差が生じるという新規な課題が生じる。また仮に、この課題を解決するために、レンズメーカの仕様に適合する加工形状演算プログラムを組み込んだ玉型加工機を、そのレンズメーカから委託を受けた加工機メーカが製造し、これをレンズメーカの加工センタに設置できたとしても、次のような問題がある。すなわち、レンズメーカの仕様にあわせて加工機メーカが加工形状演算プログラムを開発するとなると、レンズメーカがノウハウとして管理しているレンズ設計データが加工機メーカに漏洩するおそれがある。また、加工機メーカがレンズメーカの仕様にあわせて玉型加工機を開発し製造するとなると、玉型加工機の価格が高くなる。このため、レンズメーカが他社製の玉型加工機を導入するメリットが少なくなる。また、加工センタに導入する玉型加工機のメーカを変更する場合、あるいは、メーカや機種が異なる複数の玉型加工機を加工センタに混在して設置する場合、玉型加工機のメーカや機種ごとに演算プログラムのバージョン管理等を行う必要がある。このため、加工センタ内での管理が煩雑になる。
 以上の点に関して、本実施の形態においては、加工機メーカの玉型加工機22が標準的に装備する部分(レンズ加工部22a、操作パネル22b、コバ形状測定部22c、第1の演算部22d、加工機情報記憶部22e)に、データ取得部22fと演算切替部22gを追加することにより、上記の玉型加工システム4を実現することができる。これにより、レンズメーカは、他社(加工機メーカ等)の玉型加工機を用いた場合でも、自社で製造した玉型加工機を用いた場合と同等の仕上がり形状で眼鏡レンズを玉型加工することができる。また、第2の演算部23bに加工形状データを演算させる場合、演算プログラムのバージョン管理等は、玉型加工機22ごとではなく、加工制御端末23を対象に行えば済む。このため、複数台の玉型加工機22で用いる加工形状データの演算を一台の加工制御端末23末で行う場合に、加工センタ2内での管理を簡素化することができる。
 ちなみに、レンズメーカが他社製の玉型加工機を導入して上記の玉型加工システム4を構築する場合は、レンズメーカのノウハウ漏洩を防止するために、データサーバ24に登録されたレンズ設計データに対して、玉型加工機22がアクセスできないように、アクセス制限を行う仕組みを採用してもよい。また、玉型加工機22のデータ取得部22fが取得する加工形状データ(特に、仕上げ加工形状データ)については、レンズ加工部22aでの仕上げ加工を終えた段階で強制的(自動的)に玉型加工機22のメモリ等から削除する構成を採用してもよい。また、加工制御端末23がつながっている通信回線28に、新規に玉型加工機22をつないだ場合に、加工制御端末23と玉型加工機22との間で認証処理を行い、この認証に成功した玉型加工機22に対してのみ、加工制御端末23が演算した加工形状データ等を提供するシステム構成を採用してもよい。
<9.他の実施の形態>
 上記実施の形態においては、加工形状データの演算主体を第2の演算部23bに設定した場合に、加工形状データ以外のデータについても第2の演算部23bで演算するものとしたが、本発明はこれに限らない。すなわち、玉型加工に関連する演算項目の中には、玉型加工に直接的に適用する加工形状データだけでなく、たとえば上述したコバ形状測定用の形状データなど、各種の演算項目が含まれる場合がある。そうした場合、少なくとも玉型加工に適用する加工形状データの演算については、第1の演算部22dおよび第2の演算部23bのどちらで行うかの設定を玉型加工機22の演算切替部22gで切り替えることになるが、それ以外のデータ(加工軌跡データを除く)については必ずしも加工形状データと同じ演算主体で演算させる必要はない。つまり、玉型加工に関連する各種の演算項目のうち、加工形状データとそれ以外のデータを別々の演算部に演算させることも可能である。以下、詳しく説明する。
 まず、玉型加工機22の演算切替部22gにおいては、加工形状データの演算主体を第1の演算部22dおよび第2の演算部23bのどちらに設定するかの切り替えだけでなく、眼鏡レンズの玉型加工における各種工程の内容に応じて、加工形状データ以外のデータの演算主体についても、第1の演算部22dおよび第2の演算部23bのどちらに設定するかを切り替え可能な構成とする。たとえば、加工形状データの演算主体を第2の演算部23bに設定する際に、上述したコバ形状測定用の形状データの演算に第1の演算部22dを使用するか否かの設定を演算切替部22gで切り替え可能な構成とする。具体的には、演算切替部22gにおいて、加工形状データの演算主体を第2の演算部23bに設定する場合の選択肢として、加工形状データ以外のデータの演算に第1の演算部22dを使用するかどうかの選択肢を追加する。その場合、操作パネル22bを用いたハードスイッチによる切り替えでは、ハードスイッチの個数を2つから3つに増やすことで対応可能であり、ソフトスイッチによる切り替えでは、フラグのパターンを2つから3つに増やすことで対応可能である。
 これにより、演算切替部22gにおいては、(1)加工形状データの演算主体を第1の演算部22dに設定する場合と、(2)加工形状データの演算主体を第2の演算部23bに設定し且つ加工形状データ以外のデータの演算に第1の演算部22dを使用しない設定とする場合と、(3)加工形状データの演算主体を第2の演算部23bに設定し且つ加工形状データ以外のデータの演算に第1の演算部22dを使用する設定とする場合のいずれかに切り替え可能となる。ちなみに、(1)の設定に関しては、加工形状データの演算主体を第1の演算部22dに設定し且つ加工形状データ以外のデータの演算に第2の演算部23bを使用しない設定とする場合と、加工形状データの演算主体を第1の演算部22dに設定し且つ加工形状データ以外のデータの演算に第2の演算部23bを使用する設定とする場合が考えられるが、ここでは前者の場合を想定して以降の説明を行う。
 演算切替部22gにおいて、加工形状データの演算主体を第1の演算部22dに設定している場合は、玉型加工機22を単独で使用する場合と同様の処理フローとなる。この場合は、加工形状データとそれ以外のデータを含めて、眼鏡レンズの玉型加工に関する加工演算を第1の演算部22dが行うことになる。
 また、演算切替部22gにおいて、(2)加工形状データの演算主体を第2の演算部23bに設定し且つ加工形状データ以外のデータの演算に第1の演算部22dを使用しない設定になっている場合は、上記の処理フロー(図7および図8を参照)において、S1→S2→S4→S5→S6→S7→S8→S10→S11→S12→S13→S14→S16→S17→S18→S19→S20→S21→S22→S23の順に処理が行われる。
 これに対し、演算切替部22gにおいて、(3)加工形状データの演算主体を第2の演算部23bに設定し且つ加工形状データ以外のデータの演算に第1の演算部22dを使用する設定になっている場合は、以下のような処理フローになる。なお、ここでは一例として、加工形状データ以外のデータが、コバ形状測定用の形状データである場合について記述する。
 まず、切り替え設定確認後において、加工制御端末23では、端末制御部23eからの指示を受けて第2の演算部23bが荒加工形状データの演算を行う。荒加工形状データの演算は、上述した種々の情報のうち、玉型加工機22に関する加工機情報(玉型加工機22が備えるツールの形状などの情報)を使用せずに行う。その場合、第2の演算部23bは、たとえば、一般に玉型加工機に多用されているツールや、機種が異なる玉型加工機でも汎用的に使えるツールの形状,径などの情報(以下「汎用加工機情報」という。)を使用して荒加工形状データを演算する。汎用加工機情報については、たとえば、予めデータサーバ24に汎用加工機情報を登録しておき、これを演算用情報取得部23aがデータサーバ24から読み出して取得する構成とすればよい。この工程で第2の演算部23bが演算した荒加工形状データは、データ登録部23cがジョブ識別情報と対応付けてデータサーバ24に登録する。
 上述のように荒加工形状データがデータサーバ24に登録されると、玉型加工機22においては、たとえばバーコードの読み取りによって生成したジョブ識別情報を用いて、データ取得部22fがデータサーバ24にアクセスする。このとき、データ取得部22fは、ジョブ識別情報に対応付けてデータサーバ24に登録されている荒加工形状データを読み出し、これを第1の演算部22dに渡す。そうすると、第1の演算部22dはデータ取得部22fから受け取った荒加工形状データ用いて荒加工用の加工軌跡データを演算し、この加工軌跡データに基づいて加工機制御部22hがレンズ加工部22aの駆動を制御する。これにより、レンズ加工部22aにおいては、第2の演算部23bが演算した荒加工形状データを適用して、眼鏡レンズの荒加工が行われる。
 また、第1の演算部22dは、データ取得部22fから受け取った荒加工形状データを用いてコバ形状測定用の形状データを演算する。この演算は、レンズ加工部22aによる眼鏡レンズの荒加工前に行ってもよいし、荒加工中に行ってもよいし、荒加工後に行ってもよい。これにより、加工形状データ以外のデータの演算に第1の演算部22dが使用されることになる。次いで、加工機制御部22hは、コバ形状測定部22cを駆動する。これにより、コバ形状測定部22cは眼鏡レンズのコバ形状を測定する。このとき、コバ形状測定部22cは、事前に第1の演算部22dが演算したコバ形状測定用の形状データを用いて、当該データで指定された軌跡S(図5参照)にしたがってコバ形状を測定する。この測定によって得られたコバ形状測定データは、コバ形状測定用の形状データと一緒に、玉型加工機22から加工制御端末23に出力(提供)される。
 また、玉型加工機22から加工制御端末23に出力されるコバ形状測定データおよびコバ形状測定用の形状データには、コバ形状測定部22cにおいて眼鏡レンズ30をどの高さで保持したかを示すデータが付属される。具体的には、たとえば、玉型加工機22のレンズホルダ40で眼鏡レンズ30を保持したときの中心高さH(図3(b)を参照)を示すデータ(以下、「中心高さデータ」)が付属される。そして、この中心高さデータと一緒にコバ形状測定データおよびコバ形状測定用の形状データが、玉型加工機22から加工制御端末23に出力される。中心高さデータについては、加工機情報の一つとして加工機情報記憶部22eに記憶しておき、コバ形状測定部22cまたは加工機制御部22hが加工機情報記憶部22eから読み出して加工制御端末23に提供すればよい。一般に、眼鏡レンズのコバ形状を測定するときの中心高さHは、玉型加工機22のメーカごとに異なる。このため、コバ形状測定データとコバ形状測定用の形状データと中心高さデータを、それぞれセットにして加工制御端末23に提供すれば、この提供を受けた加工制御端末23側では、いずれのレンズホルダ40を使用してコバ形状測定部22cが眼鏡レンズのコバ形状を測定した場合でも、上記中心高さデータで特定される眼鏡レンズのレンズ面(凸面)の頂点の位置を基準にコバ形状(コバ厚等)を正確に把握することが可能となる。これにより、眼鏡レンズの製造上発生する良品規格内での誤差や玉型加工機にセットされた状態での眼鏡レンズの傾きなども補正することが可能になる。
 なお、玉型加工機22がコバ形状測定データと一緒に中心高さデータを加工制御端末23に出力することは、上記の工程S16でも同様に適用可能である。
 次に、加工制御端末23においては、玉型加工機22から出力されたコバ形状測定データ、コバ形状測定用の形状データ、および中心高さデータを演算用情報取得部23aで取得(受信)した後、これらのデータを用いて第2の演算部23bが仕上げ加工形状データの演算を行う。一方、玉型加工機22においては、加工制御端末23から仕上げ加工形状データを取得するまで待機する。以降の工程については、上記実施の形態と同様であるため説明を省略する。
 以上の処理においては、玉型加工に適用する加工形状データを加工制御端末23の第2の演算部23bで演算し、加工形状データ以外のデータに相当するコバ形状測定用の形状データを玉型加工機22の第1の演算部22dで演算している。これにより、加工形状データとコバ形状測定用の形状データの両方を第2の演算部23bで演算する場合に比べて、玉型加工にかかるトータルの処理時間を短縮することができる。特に、玉型加工システム4の構成として、複数台の玉型加工機22につき一台の加工制御端末23が設置されている場合は、複数台の玉型加工機22で使用可能な荒加工形状データを第2の演算部23bで1回演算するだけで済む。さらに、コバ形状測定用の形状データの演算についても、各々の玉型加工機22が備える第1の演算部22dで演算させることができる。このため、加工演算にかかる時間が非常に短くなる。また、上記汎用加工機情報を用いて演算した荒加工形状データを適用して眼鏡レンズの荒加工を行った場合でも、その後の仕上げ加工は、レンズ設計データを用いて演算した仕上げ加工形状データを適用して行うことになる。このため、加工精度を落とすことなく、処理時間の短縮化を図ることができる。
 なお、本実施の形態に係る玉型加工システム4の応用例として、玉型加工機22の演算切替部22gは、演算主体の切り替え設定機能として、以下の3つの機能を有するように構成してもよい。
 (1)加工形状データに属する荒加工形状データの演算を第1の演算部22dで行うか第2の演算部23bで行うかの設定を切り替える機能。
 (2)加工形状データに属する仕上げ加工形状データの演算を第1の演算部22dで行うか第2の演算部23bで行うかの設定を切り替える機能。
 (3)加工形状データ以外のデータを第1の演算部22dで行うか第2の演算部23bで行うかの設定を切り替える機能。
 このような構成を採用した場合は、玉型加工に適用する加工形状データに属する荒加工形状データと仕上げ加工形状データのうち、たとえば、荒加工形状データとコバ形状測定用の形状データを第1の演算部22dで演算し、仕上げ加工形状データを第2の演算部23bで演算するように処理させることが可能となる。
 22…玉型加工機
 22a…レンズ加工部
 22b…操作パネル
 22c…コバ形状測定部
 22d…第1の演算部
 22e…加工機情報記憶部
 22f…データ取得部
 22g…切り替え部
 22h…加工機制御部
 23…加工制御端末
 23a…演算用情報取得部
 23b…第2の演算部

Claims (14)

  1.  眼鏡フレームに枠入れするために眼鏡レンズを玉型加工する眼鏡レンズの玉型加工システムであって、
     前記玉型加工を行うレンズ加工部と、前記レンズ加工部の玉型加工に適用する加工形状データを第1の演算プログラムによって求める第1の演算部と、を有する玉型加工機と、
     前記レンズ加工部の玉型加工に適用する加工形状データを、前記第1の演算プログラムとは異なる第2の演算プログラムによって求める第2の演算部を有する加工制御端末と、
     を用いて構成され、
     前記玉型加工機は、前記玉型加工に関連する各種の演算項目のうち、少なくとも前記玉型加工に適用する加工形状データの演算を前記第1の演算部で行うか前記第2の演算部で行うかの設定を切り替える演算切替部と、前記加工形状データを前記第2の演算部で演算する場合に、前記第2の演算部が演算した加工形状データを前記加工制御端末から取得するデータ取得部と、を備え、
     前記演算切替部が前記加工形状データの演算を前記第2の演算部で行うと設定している場合に、前記第2の演算部が演算した加工形状データを前記データ取得部で取得し、この取得した加工形状データを適用した玉型加工を前記レンズ加工部が行うことにより、前記玉型加工機のメーカ、機種を問わず、所望の仕上がり形状に前記眼鏡レンズを加工する
     ことを特徴とする眼鏡レンズの玉型加工システム。
  2.  前記レンズ加工部は、前記玉型加工を荒加工と仕上げ加工とによって行うものであり、 前記第1の演算部は、前記荒加工および前記仕上げ加工に適用する加工形状データを前記眼鏡レンズのレンズ設計データを使用せずに演算するものであり、
     前記第2の演算部は、前記荒加工および前記仕上げ加工のうち少なくとも前記仕上げ加工に適用する加工形状データを前記眼鏡レンズのレンズ設計データを使用して演算するものである
     ことを特徴とする請求項1に記載の眼鏡レンズの玉型加工システム。
  3.  前記玉型加工機は、前記眼鏡レンズのコバ形状を測定するコバ形状測定部を備え、前記コバ形状測定部の測定によって得られたコバ形状測定データを前記加工制御端末に出力するものであり、
     前記加工制御端末の前記第2の演算部は、前記玉型加工機が出力した前記コバ形状測定データを用いて前記加工形状データを演算する
     ことを特徴とする請求項1または2に記載の眼鏡レンズの玉型加工システム。
  4.  前記玉型加工機は、前記加工形状データの演算に用いる演算用情報の一つとなる加工機情報を前記加工制御端末に出力し、
     前記加工制御端末は、前記玉型加工機が出力した前記加工機情報を前記演算用情報の一つとして取得する演算用情報取得部を有する
     ことを特徴とする請求項1~3のいずれかに記載の眼鏡レンズの玉型加工システム。
  5.  前記加工制御端末の前記第2の演算部は、前記演算切替部が前記加工形状データの演算を前記第2の演算部で行うと設定している場合に、玉型加工の対象となる眼鏡レンズのレンズ設計データを用いてコバ形状測定用の形状データを演算し、
     前記玉型加工機は、前記演算切替部が前記加工形状データの演算を前記第2の演算部で行うと設定している場合に、前記第2の演算部が演算した前記コバ形状測定用の形状データを前記データ取得部で取得し、この取得したコバ形状測定用の形状データを用いて前記コバ形状測定部でコバ形状の測定を行う
     ことを特徴とする請求項3に記載の眼鏡レンズの玉型加工システム。
  6.  前記眼鏡レンズをレンズホルダで保持すべく、前記眼鏡レンズに前記レンズホルダを装着するブロッカーを備え、
     前記玉型加工機は、前記眼鏡レンズを前記レンズホルダで保持したときの中心高さを示す中心高さデータを、前記コバ形状測定データと一緒に前記加工制御端末に出力する
     ことを特徴とする請求項3に記載の眼鏡レンズの玉型加工システム。
  7.  前記玉型加工機は、前記加工形状データの演算を前記第1の演算部で行うか前記第2の演算部で行うかを操作者に選択させる操作パネルを有し、
     前記演算切替部は、前記操作者が前記操作パネルを用いて選択した結果に基づいて、前記加工形状データの演算を前記第1の演算部で行うか前記第2の演算部で行うかの設定を切り替える
     ことを特徴とする請求項1~6のいずれかに記載の眼鏡レンズの玉型加工システム。
  8.  前記演算切替部は、玉型加工の受注データに含まれる眼鏡レンズ情報、眼鏡フレーム情報、処方情報のうち、少なくとも一つの情報を用いて、前記加工形状データの演算を前記第1の演算部で行うか前記第2の演算部で行うかの設定を切り替える
     ことを特徴とする請求項1~6のいずれかに記載の眼鏡レンズの玉型加工システム。
  9.  前記加工制御端末は、前記加工形状データの演算を前記第1の演算部で行うか前記第2の演算部で行うかを指示する指示信号を前記玉型加工機に出力し、
     前記玉型加工機の前記演算切替部は、前記加工制御端末から出力された前記指示信号にしたがって、前記加工形状データの演算を前記第1の演算部で行うか前記第2の演算部で行うかの設定を切り替える
     ことを特徴とする請求項1~6のいずれかに記載の眼鏡レンズの玉型加工システム。
  10.  前記加工制御端末は、玉型加工の対象となる眼鏡レンズのレンズ設計データを取得不可能である場合は、前記加工形状データの演算を前記第1の演算部で行う旨の指示信号を出力し、前記レンズ設計データを取得可能である場合は、前記加工形状データの演算を前記第2の演算部で行う旨の指示信号を出力する
     ことを特徴とする請求項9に記載の眼鏡レンズの玉型加工システム。
  11.  前記加工制御端末は、玉型加工の対象となる眼鏡レンズの面の形状が球面である場合は、前記加工形状データの演算を前記第1の演算部で行う旨の指示信号を出力し、前記眼鏡レンズの面の形状が球面以外である場合は、前記加工形状データの演算を前記第2の演算部で行う旨の指示信号を出力する
     ことを特徴とする請求項9に記載の眼鏡レンズの玉型加工システム。
  12.  前記加工制御端末は、前記枠入れの対象となる眼鏡フレームのあおり角が所定の角度未満である場合は、前記加工形状データの演算を前記第1の演算部で行う旨の指示信号を出力し、眼鏡フレームのあおり角が前記所定の角度以上である場合は、前記加工形状データの演算を前記第2の演算部で行う旨の指示信号を出力する
     ことを特徴とする請求項9に記載の眼鏡レンズの玉型加工システム。
  13.  眼鏡フレームに枠入れするために眼鏡レンズの玉型加工を行うレンズ加工部と、前記レンズ加工部の玉型加工に適用する加工形状データを第1の演算プログラムによって求める第1の演算部と、を有する玉型加工機と、
     前記レンズ加工部の玉型加工に適用する加工形状データを、前記第1の演算プログラムとは異なる第2の演算プログラムによって求める第2の演算部を有する加工制御端末と、
     を用いた眼鏡レンズの製造方法であって、
     前記玉型加工機において前記玉型加工に関連する各種の演算項目のうち、少なくとも前記玉型加工に適用する加工形状データの演算を前記第1の演算部で行うか前記第2の演算部で行うかの設定を切り替える設定切替工程と、
     前記設定切替工程で前記加工形状データの演算を前記第2の演算部で行うと設定した場合に、前記第2の演算部で前記加工形状データを演算する加工演算工程と、
     前記加工演算工程で前記第2の演算部が演算した前記加工形状データを適用して前記玉型加工機のレンズ加工部が前記眼鏡レンズを玉型加工する加工工程と、
     を有することを特徴とする眼鏡レンズの製造方法。
  14.  玉型加工に適用する加工形状データを第2の演算プログラムによって求める第2の演算部を有する加工制御端末と通信可能に接続され、眼鏡フレームに枠入れするために眼鏡レンズを玉型加工する玉型加工機であって、
     前記玉型加工を行うレンズ加工部と、
     前記レンズ加工部の玉型加工に適用する加工形状データを、前記第2の演算プログラムとは異なる第1の演算プログラムによって求める第1の演算部と、
     前記玉型加工に関連する各種の演算項目のうち、少なくとも前記玉型加工に適用する加工形状データの演算を前記第1の演算部で行うか前記第2の演算部で行うかの設定を切り替える演算切替部と、
     前記加工形状データを前記第2の演算部で演算する場合に、前記第2の演算部が演算した加工形状データを取得するデータ取得部と、
     前記演算切替部が前記加工形状データの演算を前記第2の演算部で行うと設定している場合に、前記加工形状データが取得した前記加工形状データを適用して前記レンズ加工部が前記玉型加工を行うように制御する加工機制御部と、
     を備えることを特徴とする玉型加工機。
PCT/JP2012/081703 2011-12-08 2012-12-06 眼鏡レンズの玉型加工システム、眼鏡レンズの製造方法、および玉型加工機 WO2013085010A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/363,985 US9205526B2 (en) 2011-12-08 2012-12-06 Edging system of spectacle lens, method for manufacturing spectacle lens, and lens edger
EP12854915.1A EP2789424B1 (en) 2011-12-08 2012-12-06 Lens shape finishing system of eyeglass lens, manufacturing method of eyeglass lenses, and lens shape finishing device
BR112014013687-4A BR112014013687B1 (pt) 2011-12-08 2012-12-06 Sistema de corte de lente, e, método para fabricar uma lente de óculos
KR1020147018821A KR101868668B1 (ko) 2011-12-08 2012-12-06 안경 렌즈의 렌즈형 가공 시스템, 안경 렌즈의 제조 방법, 및 렌즈형 가공기
CN201280059979.9A CN103974803B (zh) 2011-12-08 2012-12-06 眼镜镜片的镜片形状加工系统、眼镜镜片的制造方法及镜片形状加工机
JP2013548302A JP6002151B2 (ja) 2011-12-08 2012-12-06 眼鏡レンズの玉型加工システム、眼鏡レンズの製造方法、および玉型加工機
AU2012349282A AU2012349282B2 (en) 2011-12-08 2012-12-06 Lens shape finishing system of eyeglass lens, manufacturing method of eyeglass lenses, and lens shape finishing device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011269184 2011-12-08
JP2011-269184 2011-12-08
JP2012216302 2012-09-28
JP2012-216302 2012-09-28

Publications (1)

Publication Number Publication Date
WO2013085010A1 true WO2013085010A1 (ja) 2013-06-13

Family

ID=48574365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081703 WO2013085010A1 (ja) 2011-12-08 2012-12-06 眼鏡レンズの玉型加工システム、眼鏡レンズの製造方法、および玉型加工機

Country Status (8)

Country Link
US (1) US9205526B2 (ja)
EP (1) EP2789424B1 (ja)
JP (1) JP6002151B2 (ja)
KR (1) KR101868668B1 (ja)
CN (1) CN103974803B (ja)
AU (1) AU2012349282B2 (ja)
BR (1) BR112014013687B1 (ja)
WO (1) WO2013085010A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017067985A (ja) * 2015-09-30 2017-04-06 株式会社ニデック 端末装置、及び端末制御プログラム
US10627799B2 (en) 2015-09-30 2020-04-21 Nidek Co., Ltd. Terminal device and terminal control program
EP3254805B1 (en) * 2015-02-04 2025-05-14 Nidek Co., Ltd. Eyeglass lens processing system and program

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130072088A1 (en) * 2010-10-04 2013-03-21 Schneider Gmbh & Co. Kg Apparatus and method for working an optical lens and also a transporting containing for optical lenses
EP2789424B1 (en) * 2011-12-08 2017-02-22 Hoya Corporation Lens shape finishing system of eyeglass lens, manufacturing method of eyeglass lenses, and lens shape finishing device
JP6018889B2 (ja) * 2012-11-26 2016-11-02 Hoya株式会社 レンズ加工システム、加工サイズ管理装置、加工サイズ管理方法および眼鏡レンズの製造方法
JP6063248B2 (ja) * 2012-12-25 2017-01-18 Hoya株式会社 レンズ加工システム、発注側端末装置およびレンズ発注方法
WO2014132812A1 (ja) * 2013-02-26 2014-09-04 Hoya株式会社 眼鏡レンズの製造システム、製造装置、製造方法、製造情報管理システム、製造情報管理装置、および製造情報管理方法
WO2014177388A1 (en) * 2013-04-29 2014-11-06 Essilor International (Compagnie Generale D'optique) Blocking calculation module
BR112017013847B1 (pt) * 2014-12-31 2022-09-13 Essilor International Máquina de retificação de bordas de lente oftálmica e método de retificação de bordas de lente oftálmica por cálculo
CN108369716B (zh) * 2015-12-17 2022-03-15 依视路国际公司 分布式光学作业和制造计算系统与方法
EP3470173B1 (en) * 2017-10-13 2022-12-21 Essilor International Method of preparing an operation of surfacing of a lens blank
JP7135288B2 (ja) * 2017-10-20 2022-09-13 株式会社ジェイテクト 研削盤及び研削方法
EP3800591A1 (en) * 2019-10-01 2021-04-07 Essilor International Method and apparatus for load balancing manufacturing execution among optical laboratories

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158829A (en) * 1981-03-27 1982-09-30 Hoya Corp Production of glasses
JPH0413539A (ja) 1990-04-27 1992-01-17 Topcon Corp 眼鏡レンズ加工システム
JPH08290348A (ja) * 1995-04-18 1996-11-05 Hoya Corp 眼鏡レンズ加工システム
JP3075870B2 (ja) 1992-12-11 2000-08-14 ホーヤ株式会社 ヤゲン付き眼鏡レンズの供給方法
JP2003231001A (ja) 2002-02-06 2003-08-19 Seiko Epson Corp 玉型加工方法及び装置
JP2003287724A (ja) * 2003-05-07 2003-10-10 Hoya Corp 眼鏡レンズの供給システム
WO2007077848A1 (ja) 2005-12-26 2007-07-12 Hoya Corporation 眼鏡レンズの供給システム、注文システムおよび製造方法
JP4151774B2 (ja) 1999-08-06 2008-09-17 Hoya株式会社 レンズ加工装置、レンズ加工方法及びレンズ測定方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU576225B2 (en) * 1984-03-02 1988-08-18 Hoya Corporation Spectacle-frame shape data producing method
US5450335A (en) * 1992-08-05 1995-09-12 Hoya Corporation Method of processing spectacle frame shape data
JP3276866B2 (ja) * 1996-12-27 2002-04-22 ホーヤ株式会社 眼鏡加工方法及び眼鏡フレーム
HK1043840B (zh) * 1999-02-12 2005-05-20 Hoya株式会社 眼鏡鏡片的製造方法
WO2001060553A1 (fr) * 2000-02-16 2001-08-23 Seiko Epson Corporation Procede de fabrication de verres de lunettes, et outil de polissage
DE10119662C2 (de) * 2001-04-20 2003-04-10 Loh Optikmaschinen Ag Verfahren zur Randbearbeitung von optischen Linsen
JP4562343B2 (ja) * 2002-04-08 2010-10-13 Hoya株式会社 Ex形多焦点レンズのヤゲン軌跡決定方法及びex形多焦点レンズ加工装置
JP4186766B2 (ja) * 2003-09-12 2008-11-26 セイコーエプソン株式会社 眼鏡レンズの製造システム及び眼鏡レンズの製造方法
US7448938B2 (en) * 2003-11-05 2008-11-11 Hoya Corporation Method for supplying spectacle lens
JP4908226B2 (ja) * 2004-10-25 2012-04-04 Hoya株式会社 眼鏡レンズ測定加工装置、その測定加工方法、眼鏡レンズ製造方法及び眼鏡製造方法
JP4988823B2 (ja) * 2007-03-16 2012-08-01 Hoya株式会社 眼鏡レンズの縁摺り加工方法
JP5139792B2 (ja) * 2007-12-19 2013-02-06 株式会社トプコン 玉型形状測定装置
EP2028530A1 (en) * 2007-12-28 2009-02-25 Essilor International (Compagnie Generale D'optique) A method for modifying spectacle frame shape data
EP2028532B1 (en) * 2007-12-28 2018-11-21 Essilor International A method for determining the shape of the bevel of an ophthalmic lens
EP2789424B1 (en) * 2011-12-08 2017-02-22 Hoya Corporation Lens shape finishing system of eyeglass lens, manufacturing method of eyeglass lenses, and lens shape finishing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158829A (en) * 1981-03-27 1982-09-30 Hoya Corp Production of glasses
JPH0413539A (ja) 1990-04-27 1992-01-17 Topcon Corp 眼鏡レンズ加工システム
JP3075870B2 (ja) 1992-12-11 2000-08-14 ホーヤ株式会社 ヤゲン付き眼鏡レンズの供給方法
JPH08290348A (ja) * 1995-04-18 1996-11-05 Hoya Corp 眼鏡レンズ加工システム
JP4151774B2 (ja) 1999-08-06 2008-09-17 Hoya株式会社 レンズ加工装置、レンズ加工方法及びレンズ測定方法
JP2003231001A (ja) 2002-02-06 2003-08-19 Seiko Epson Corp 玉型加工方法及び装置
JP2003287724A (ja) * 2003-05-07 2003-10-10 Hoya Corp 眼鏡レンズの供給システム
WO2007077848A1 (ja) 2005-12-26 2007-07-12 Hoya Corporation 眼鏡レンズの供給システム、注文システムおよび製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2789424A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3254805B1 (en) * 2015-02-04 2025-05-14 Nidek Co., Ltd. Eyeglass lens processing system and program
JP2017067985A (ja) * 2015-09-30 2017-04-06 株式会社ニデック 端末装置、及び端末制御プログラム
US10627799B2 (en) 2015-09-30 2020-04-21 Nidek Co., Ltd. Terminal device and terminal control program

Also Published As

Publication number Publication date
CN103974803B (zh) 2016-11-16
EP2789424A1 (en) 2014-10-15
AU2012349282B2 (en) 2017-04-06
BR112014013687A2 (pt) 2017-06-13
EP2789424A4 (en) 2015-09-02
US20140302749A1 (en) 2014-10-09
BR112014013687B1 (pt) 2021-12-21
KR20140108261A (ko) 2014-09-05
AU2012349282A1 (en) 2014-07-24
BR112014013687A8 (pt) 2017-06-13
JP6002151B2 (ja) 2016-10-05
KR101868668B1 (ko) 2018-06-18
US9205526B2 (en) 2015-12-08
CN103974803A (zh) 2014-08-06
JPWO2013085010A1 (ja) 2015-04-27
EP2789424B1 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6002151B2 (ja) 眼鏡レンズの玉型加工システム、眼鏡レンズの製造方法、および玉型加工機
JP3276866B2 (ja) 眼鏡加工方法及び眼鏡フレーム
JP2025015732A (ja) 眼鏡レンズ、レンズブランクス
CN103959143B (zh) 用于制备眼镜片的方法
CA3034555C (en) Manufacturing method of spectacle lens, spectacle lens manufacturing system, and spectacle lens
US10500692B2 (en) Lens edging system, order-side terminal device and lens ordering method
JP6018889B2 (ja) レンズ加工システム、加工サイズ管理装置、加工サイズ管理方法および眼鏡レンズの製造方法
JP4537148B2 (ja) 眼鏡レンズへのマーキング方法
JPH0634923A (ja) 眼鏡レンズの供給システム
JP6543464B2 (ja) 眼鏡レンズ
US9636795B2 (en) Method of edging a spectacle lens, spectacle lens edging system and spectacle lens edging program
JP2005313548A (ja) 眼鏡レンズへのマーキング方法及びシステム、並びに眼鏡レンズ
JPH0668214A (ja) 眼鏡レンズの加工仕上がり予想画像表示方法
JPH0668215A (ja) 眼鏡レンズの加工仕上がり予想画像表示方法
JP2003287724A (ja) 眼鏡レンズの供給システム
CN116324595A (zh) 用于对眼科镜片进行磨边的系统和方法
JP2003287723A (ja) 眼鏡レンズの供給システム
JP2000047149A (ja) 眼鏡レンズの供給システム
JP2000047151A (ja) 眼鏡レンズの供給システム
JP2000047152A (ja) 眼鏡レンズの供給システム
JP2000047150A (ja) 眼鏡レンズの供給システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548302

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14363985

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012854915

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012854915

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147018821

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012349282

Country of ref document: AU

Date of ref document: 20121206

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014013687

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014013687

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140605