[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013081015A1 - Method for minimizing fatigue damage in welded structure, tool for forming strike mark, and welded structure - Google Patents

Method for minimizing fatigue damage in welded structure, tool for forming strike mark, and welded structure Download PDF

Info

Publication number
WO2013081015A1
WO2013081015A1 PCT/JP2012/080768 JP2012080768W WO2013081015A1 WO 2013081015 A1 WO2013081015 A1 WO 2013081015A1 JP 2012080768 W JP2012080768 W JP 2012080768W WO 2013081015 A1 WO2013081015 A1 WO 2013081015A1
Authority
WO
WIPO (PCT)
Prior art keywords
hitting
mark
weld bead
tool
fatigue damage
Prior art date
Application number
PCT/JP2012/080768
Other languages
French (fr)
Japanese (ja)
Inventor
森影 康
聡 伊木
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to IN3558CHN2014 priority Critical patent/IN2014CN03558A/en
Priority to KR1020147010738A priority patent/KR101577261B1/en
Priority to CN201280058280.0A priority patent/CN103958116B/en
Publication of WO2013081015A1 publication Critical patent/WO2013081015A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a method for suppressing fatigue damage of a welded structure that suppresses occurrence of fatigue damage in a welded portion of a welded structure (also referred to as steel structure). It relates to preventing damage, tools for forming impact areas, and welded structures.
  • the toe of the weld bead means a boundary where the surface of the weld metal forming the weld bead intersects the surface of the metal member as the base material.
  • Patent Documents 1 to 3 and Non-Patent Document 1 describe the fatigue strength (fatigue) of a welded portion by introducing compressive residual stress in the vicinity of the toe of the weld bead. A method for improving strength) is described.
  • Patent Document 1 discloses that a specific dimension is obtained by using a processing equipment that performs plastic deformation by striking the vicinity of the toe end of the weld bead while being subjected to ultrasonic oscillation. Describes a method for improving the fatigue strength by processing the groove under predetermined hitting conditions.
  • Patent Document 2 a pulsed laser beam from a laser source is used to instantaneously vaporize a surface coating that forms a thin layer of plasma or plasma. And a method of generating a compressive force locally on a part of the surface by the explosion power.
  • Patent Document 3 the surface of a steel material is formed so that a groove having a specific dimension is formed by an impact area near the toe of the weld bead using an impact pin having a specific dimension at the tip.
  • a method is described in which compressive residual stress is introduced into the weld by compression.
  • Non-Patent Document 1 examined a new hammer peening method that reduces stress concentration and residual stress in the vicinity of the toe of the weld bead because hammer peening may reduce fatigue strength. Results are listed.
  • a tip is a vibration terminal (transducer), chipper (chipper), striking pin, or It is also expensive and available compared to the conventional device that drives the tip with air pressure because it uses a device that processes a groove of a specific size near the toe end of the weld bead by ultrasonically vibrating the impact terminal) Have difficulty.
  • Patent Document 2 The method described in Patent Document 2 is a method in which compressive residual stress is introduced into the vicinity of the toe of the weld bead by laser shock peening. Therefore, pretreatment of the material is necessary, and the apparatus is expensive and large. It is difficult to apply to large welded structures such as steel bridges.
  • Patent Document 3 is a method of introducing a compressive residual stress by pressing a striking pin having a curvature radius of 2 to 10 mm on the surface of the base metal so as not to touch the weld metal. Therefore, it is difficult to introduce compressive residual stress.
  • Non-Patent Document 1 describes the results of studying a new hammer peening method for reducing stress concentration and residual stress in the vicinity of the toe of the weld bead.
  • an operator typically welds a peening tool (also referred to as a tip or chipper) to a tool tip (also referred to as a tipper (nib)). It is carried out by hitting the vicinity of the bead obliquely from above. Therefore, according to the method described in Non-Patent Document 1, as shown in FIG.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for suppressing fatigue damage in a welded structure, which can suppress the occurrence of fatigue damage in a welded portion of the welded structure, and for forming impact marks. It is to provide a tool and a welded structure.
  • a method for suppressing fatigue damage of a welded structure according to the present invention is a method for suppressing fatigue damage of a welded structure that suppresses occurrence of fatigue damage in a welded portion of the welded structure, and is substantially straight among the welded portions.
  • a curved surface is formed in a circular arc shape along a direction perpendicular to the weld bead and is parallel to each other along the weld bead.
  • the surface of the base material adjacent to the substantially linear and curved weld beads has a flat impact mark forming surface formed in a round shape or an elliptical shape at the tip. 2 is used to form an impact mark by hammer peening or ultrasonic impact peening, and a compressive residual stress is applied in the vicinity of the toe of the weld bead by the first and second impact mark forming tools. It introduces and suppresses the fatigue damage of the said welding part.
  • the striking trace forming surface of the second striking trace forming tool has a length in the direction along the weld bead of 3.0 mm or more and 6.0 mm in a region of 5 mm from the toe of the weld bead to the base metal side. You may form continuously the impact trace which has the following dimensions and whose maximum depth is 0.03 mm or more and less than 0.50 mm with the said 2nd impact trace formation tool along the said weld bead.
  • a hitting mark forming tool having a hitting mark forming surface formed at a tip having a flatness and a radius having a radius of 1.5 mm or more and 3.0 mm or less. It may be used.
  • a hitting mark forming tool having a chamfer that is curved in an arc shape with a radius of curvature of 0.15 mm to 0.60 mm around the hitting mark forming surface is used. May be.
  • a striking mark having a maximum depth of 0.1 mm or more and 0.5 mm may be formed in a region from a position 0.5 mm away from the toe of the weld bead to the base material side to 3 mm.
  • a width along the direction perpendicular to the weld bead is 1.5 mm or more and 3.0 mm or less
  • a length along the weld bead is 3.0 mm or more and 6.0 mm or less
  • a hitting trace forming tool having a chamfered portion curved in an arc shape with a radius of curvature of 0.15 mm or more and 0.60 mm or less around the hitting mark forming surface may be used. .
  • a hitting trace forming tool formed in a truncated cone shape having a side surface inclined in a direction perpendicular to the hitting trace forming surface may be used.
  • the striking trace forming surface of the first striking trace forming tool is curved in an arc shape with a curvature radius of 1 mm or more and 5 mm or less along a direction perpendicular to the weld bead, and the first striking trace forming tool Striking marks having a maximum depth of 0.2 mm or more may be continuously formed along the weld bead.
  • a hitting mark forming tool having a length of the hitting mark forming surface along the weld bead of 1 mm or more and 10 mm or less may be used.
  • a striking trace forming tool having two side surfaces perpendicular to the end face, and the shape of the side face is tapered with respect to the striking trace forming surface. It may be used.
  • a striking trace forming tool having an arc surface curved in an arc shape with a radius of curvature of 0.15 mm or more and 0.30 mm or less at a boundary portion between the striking trace forming surface and the side surface. May be used.
  • the hitting scar forming tool according to the present invention is used in the method for suppressing fatigue damage of a welded structure according to the present invention.
  • the welded structure according to the present invention is one in which fatigue damage is suppressed by the method for suppressing fatigue damage of a welded structure according to the present invention.
  • FIG. 1 is a perspective view (diagrammatic perspective view) showing an example of a tool for forming an impact mark used when the fatigue damage suppressing method for a welded structure according to the first embodiment of the present invention is performed.
  • FIG. 2A is a cross-section view of the tool for forming a hitting mark of FIG. 1 and cut along the XZ plane in FIG.
  • FIG. 2B is a cross-sectional view taken along the YZ plane in FIG.
  • FIG. 2C is a bottom view of the tool for forming an impact mark shown in FIG.
  • FIG. 3A is a cross-sectional view taken along the XZ plane in FIG. 1, showing a modification of the hitting trace forming tool in FIG. 1.
  • FIG. 1 is a perspective view (diagrammatic perspective view) showing an example of a tool for forming an impact mark used when the fatigue damage suppressing method for a welded structure according to the first embodiment of the present invention is performed.
  • FIG. 2A is a cross-section view of the tool for
  • FIG. 3B is a cross-sectional view taken along the YZ plane in FIG. 1, showing a modification of the hitting trace forming tool in FIG. 1.
  • FIG. 3C is a bottom view of a modified example of the hitting trace forming tool shown in FIG. 1.
  • FIG. 4A is a perspective view showing a modified example of the tool for forming a hitting mark used when the fatigue damage suppressing method for a welded structure according to the first embodiment of the present invention is carried out.
  • FIG. 4B is a cross-sectional view taken along the XZ plane in FIG. 4A, showing the hitting trace forming tool of FIG. 4A.
  • FIG. 4C is a cross-sectional view taken along the YZ plane in FIG. FIG.
  • FIG. 4D is a bottom view of the hitting trace forming tool shown in FIG. 4A.
  • FIG. 5 is a view showing a hitting mark formed on the surface of the base material by the hitting mark forming tool shown in FIG.
  • FIG. 6A is a plan view showing a welded portion welded with ribs standing upright on the surface of the steel plate.
  • FIG. 6B is a side view showing the welded portion welded with the ribs standing upright on the surface of the steel plate.
  • FIG. 7A is a cross-sectional view taken along the XZ plane in FIG. 1, showing a hitting tool for forming a hitting ball having a circular spherical hitting mark forming surface formed at the tip.
  • FIG. 5 is a view showing a hitting mark formed on the surface of the base material by the hitting mark forming tool shown in FIG.
  • FIG. 6A is a plan view showing a welded portion welded with ribs standing upright on the surface of the steel plate.
  • FIG. 6B is a side
  • FIG. 7B is a bottom view of the tool for forming a hitting mark in which a spherical hitting mark forming surface having a circular shape is formed at the tip.
  • FIG. 8A is a cross-sectional view taken along the XZ plane in FIG. 1, showing a hitting trace forming tool having a square hitting trace forming surface forming a square at the tip.
  • FIG. 8B is a cross-sectional view showing a hitting trace forming tool in which a flat hitting trace forming surface forming a square is formed at the tip.
  • FIG. 9A is a photograph showing an end line of the hitting trace and a line of the weld toe when the hitting trace is formed on the surface of the base material using a hitting trace forming tool having a circular hitting trace forming surface.
  • FIG. 10A is a perspective view showing an example of a tool for forming an impact mark used when the fatigue damage suppressing method for a welded structure according to the second embodiment of the present invention is carried out.
  • FIG. 10B is a cross-sectional view taken along the XZ plane in FIG. 10A, showing the hitting trace forming tool of FIG. 10A.
  • FIG. 10C is a cross-sectional view taken along the YZ plane in FIG. 10A, showing the hitting trace forming tool of FIG. 10A.
  • a striking scar forming tool 6 used when carrying out the fatigue damage suppressing method for a welded structure according to the first embodiment of the present invention is a high-strength steel having a tensile strength of 600 MPa or more. It is formed from (SM570 class or higher) and, as shown in FIGS. 1 and 2A to 2C, is provided with a striking mark forming surface 7 at the tip.
  • the hitting mark forming surface 7 is for forming the hitting marks 5 on the surface of the base material 1 adjacent to the substantially linear and curved weld beads 3 (see FIG. 5). As shown in FIGS.
  • the hitting mark forming surface 7 is flat and has a radius of 1.5 mm to 3.0 mm, that is, a diameter D of 3.0 mm to 6.0 mm.
  • the ratio of the major axis to minor axis is in the range of 1 to 1.1. If it is inside, it can be used as a substantially circular shape.
  • the direction of the major axis is not particularly defined with respect to the weld line.
  • the reason for flattening the hitting mark forming surface 7 formed at the tip of the hitting mark forming tool 6 is that the hitting mark 5 formed on the base material 1 side varies in depth and width if it is not flat. This is because (variability) occurs.
  • the width of the hitting trace 5 means a length B in a direction orthogonal to the direction orthogonal to the paper surface in FIG. 5, which is the moving direction of the hitting trace forming tool 7.
  • the reason why the hitting mark forming surface 7 is circular with a radius of 1.5 mm or more and 3.0 mm or less is that when the radius is less than 1.0 mm, the depth and width of the formed hitting mark 5 vary. This is because the shape is not obtained stably.
  • the radius is larger than 3.0 mm, the area of the hitting mark forming surface 7 becomes large, so that the hitting mark 5 having a sufficient depth cannot be formed with respect to the base material 1, and the weld bead 3. This is because the effect of improving the fatigue strength due to the introduction of compressive residual stress to the toe 4 is reduced.
  • the hitting trace forming tool 6 is formed in a circular truncated cone shape having a side surface that is inclined in a direction perpendicular to the hitting trace forming surface 7.
  • the hitting trace forming tool 6 is not limited to the shape shown in FIGS. 2A and 2B, and is formed in a truncated cone shape having a side surface that is inclined in a direction perpendicular to the hitting trace forming surface 7.
  • a chamfered portion 8 that is curved in an arc shape with a curvature radius r 0 of 0.15 mm or more and 0.60 mm or less may be used around the hitting trace forming surface 7.
  • the reason why the radius of curvature r 0 of the chamfered portion 8 is 0.15 mm or more and 0.60 mm or less is as follows. That is, when the radius of curvature r 0 of the chamfered portion 8 is less than 0.15 mm, stress tends to concentrate on the bottom end portion of the hitting mark 5. Further, if the radius of curvature r 0 of the chamfered portion 8 exceeds 0.60 mm, the contact area of the striking trace forming surface 7 that contacts the surface of the base material 1 becomes large. This is because it is not possible to form the striking trace 5 having a sufficient depth, and the effect of improving the fatigue strength by introducing the compressive residual stress to the toe 4 of the weld bead 3 is reduced. More preferably, they are 0.15 mm or more and 0.50 mm or less. More preferably, it is 0.15 mm or more and 0.30 mm or less.
  • Striking trace formed surface 7 the weld bead 3 in a direction crossing at a right angle width R X along the (X direction shown in FIG. 4A) is 1.5mm or more 3.0mm or less, the length along the weld bead 3 R Y ( Figure 4A The length along the Y-direction) is 3.0 mm or more and 6.0 mm or less, and is formed in a flat shape at the tip of the hitting trace forming tool 6, and the entire shape may be formed in an elliptical shape. Also in this case, the hitting trace forming tool 6 may be formed in a truncated cone shape, or a chamfered portion 8 may be formed around the hitting trace forming surface 7.
  • the ratio of the length of the major axis to the minor axis is in the range of 1.1 to 3.0. It is preferable. It is more preferable to use the hitting trace forming tool 6 so that the major axis is substantially parallel to the weld line because the number of hitting points can be reduced.
  • the reason for the width R X striking trace formed surface 7 and 1.5mm or 3.0mm or less is as follows. That is, in the width of less than R X striking trace formed surface 7 is 1.5 mm, variations occur in the width of the striking marks 5, hit mark 5 of stable shape from it is difficult to form on the surface of the base 1 It is. Also, the width R X striking trace formed surface 7 becomes too large the area of the hitting marks 5 exceeds 3.0 mm, the maximum depth to form a striking mark 5 above 0.2mm on the surface of the base 1 This is because it becomes difficult.
  • the reason why the length RY of the hitting mark forming surface 7 is set to 3.0 mm or more and 6.0 mm or less is as follows. That is, when the length RY of the hitting mark forming surface 7 is less than 3.0 mm, the width of the hitting mark 5 becomes too narrow, and stress concentration occurs at the toe 4 of the weld bead 3 when a load is applied. This is because it tends to occur in the case of fatigue cracks. If the length RY of the hitting mark forming surface 7 exceeds 6.0 mm, the area of the hitting mark forming surface 7 becomes too large, and the hitting mark 5 having a maximum depth of 0.2 mm or more is formed on the surface of the base material 1. This is because it becomes difficult to form.
  • the reason why the ratio of the length of the major axis to the minor axis (major axis / minor axis) exceeds 1.1 and is 3.0 or less is as follows.
  • the ratio of the length of the major axis to the minor axis exceeds 3.0 the width B of the impact mark becomes small even in the same area, and the introduction range of the compressive residual stress in the width direction of the impact mark becomes narrow, which is disadvantageous for fatigue characteristics. Because it becomes.
  • the fatigue damage suppressing method for a welded structure according to the first embodiment of the present invention is carried out using such an impact mark forming tool 6, the base material 1 adjacent to the weld bead 3 in FIG.
  • the striking trace forming tool 6 is vertically pressed against the surface of the striking surface to perform striking, and the striking trace forming tool 6 is relatively moved in the welding line direction. Is repeated, and hammer peening or ultrasonic impact treatment for forming a hitting mark 5 on the surface of the base material 1 is performed.
  • the weld line direction indicates a direction orthogonal to the paper surface in FIG. 4 and an arrow Y direction in FIG.
  • the striking trace formation of the striking trace forming tool 6 is performed.
  • the surface 7 is struck perpendicularly to the surface of the base material 1 and is struck.
  • a hitting mark 5 of 03 mm or more and less than 0.50 mm is formed.
  • the striking trace forming tool 6 is moved a predetermined distance in the welding line direction of the substantially linear and curved welding beads 3. Just move. Then, the striking trace forming surface 7 of the striking trace forming tool 6 is again pressed against the surface of the base material 1 for impact, and the striking trace 5 is formed on the surface of the base material 1. A plurality of striking traces 5 are continuously formed along the substantially linear and curved weld beads 3 by repeating the striking and the movement of the striking trace forming tool 6.
  • a plurality of hitting marks 5 are formed with a maximum depth of 0.03 mm or more and less than 0.50 mm in a region from the toe 4 of the substantially linear and curved weld beads 3 to the base material 1 side up to 5 mm.
  • a welded structure is obtained.
  • the reason why the hitting marks 5 are formed with a maximum depth of 0.03 mm or more and less than 0.50 mm in the region of 5 mm from the toe 4 of the weld bead 3 to the base metal 1 side is as follows. This is because if the maximum depth of the hitting mark 5 is more than 5 mm closer to the base material 1 than the toe 4 of the weld bead 3, the compressive residual stress is not sufficiently introduced in the vicinity of the toe. Further, the maximum depth of the hitting scar 5 is set to 0.03 mm or more and less than 0.50 mm. If the maximum depth of the hitting scar 5 is shallower than 0.03 mm, the compressive residual stress is not sufficiently introduced near the toe. This is because when the thickness is 0.50 mm or more, stress concentrates at the bottom of the impact mark during under tension load, and becomes a starting point of fatigue crack generation.
  • the hitting mark 5 is formed with a maximum depth of 0.1 mm or more and less than 0.50 mm in a region from a position 0.5 mm away from the toe 4 of the weld bead 3 to the base material 1 side to 3 mm. preferable. This is because the compressive residual stress is sufficiently introduced in the vicinity of the toe.
  • Example 1 The inventors have welded the joint shown in FIGS. 6A and 6B under a welding condition of a welding current of 280 A, a welding voltage of 32 V, and a welding speed of 28 cpm. A test piece was prepared, and a compression residual stress introduction test was performed under the conditions shown in Table 1 using the prepared weld joint.
  • the diameter D of the hitting mark forming surface 7 is 3 mm on the hitting mark 5 having a maximum depth of 0.03 mm or more and less than 0.50 mm on the surface of the base material 1 adjacent to the weld bead 3.
  • the case where it forms continuously along the weld bead 3 with the tool 6 for impact mark formation of 4 mm, 5 mm, and 6 mm is shown.
  • the diameter D of the hitting mark forming surface 7 is 3 mm on the hitting mark 5 having a maximum depth of 0.03 mm or more and less than 0.50 mm on the surface of the base material 1 adjacent to the weld bead 3.
  • a round (diameter D: 2 mm, 3 mm, 4 mm) hitting mark forming surface 11 is spherical (curvature radius r: 1) at the tip of the hitting mark forming tool 10 shown in FIGS. 7A and 7B. (5 mm, 2 mm, 4 mm) is used, and the impact mark 5 is formed on the surface of the base material 1 adjacent to the weld bead 3.
  • a strike mark forming surface 13 having a square shape (length L: 3 mm, 5 mm) is formed in a flat shape at the tip of the strike mark forming tool 12 shown in FIGS. 8A and 8B.
  • Ra in Table 1 indicates the maximum depth (mm) of the hitting mark 5, and in Examples 1 to 8 and Comparative Examples 1 to 5, hammer peening using the hitting mark forming tool is performed with an air pressure of about 6 kg / cm 2 and a frequency (frequency). ): 90 Hz, moving speed: 0.25 mm / sec.
  • the residual stress in Table 1 shows the result of measuring the residual stress by irradiating a 1 mm diameter X-ray (X-ray) at a position 1 mm away from the impact mark 5 formed on the surface of the base material 1.
  • the maximum depth is 0.03 mm or more and less than 0.50 mm by this striking trace forming tool 6.
  • the hitting trace forming tool 6 formed in a truncated cone shape toward the hitting trace forming surface 7, the hitting trace having a maximum depth of 0.03 mm or more and less than 0.50 mm. 5 can be formed on the surface of the base material 1 adjacent to the weld bead 3 with a relatively small striking force, whereby a compressive residual stress can be easily introduced in the vicinity of the toe 4 of the weld bead 3. .
  • the hitting trace forming tool 6 having the chamfered portion 8 that is curved in an arc shape with a radius of curvature of 0.15 mm or more and 0.30 mm or less around the hitting trace forming surface 7 as in Examples 5 to 8, It is possible to prevent stress concentration from occurring around the hitting mark 5.
  • Example 2 The inventors of the present invention used hammer peening (pneumatic: air pressure) to a steel plate having a thickness of 12 mm ⁇ 100 mm ⁇ 300 mm, using a tool for forming an impact mark shown in Table 2 (Examples 11 to 18, Comparative Examples 11 to 16).
  • the maximum depth is 0.03 mm or more in the region of 5 mm from the toe 4 of the weld bead 3 to the base metal side on the surface of the base metal 1 adjacent to the weld bead 3.
  • the case is shown in which the hitting marks 5 of less than 50 mm are continuously formed along the weld bead 3 by the hitting mark forming tool 6 having a diameter D of the hitting mark forming surface 7 of 3 mm, 4 mm, 5 mm, and 6 mm.
  • the maximum depth is 0.03 mm or more in the region up to 5 mm from the vicinity of the toe 4 of the weld bead 3 to the surface of the base metal 1 adjacent to the weld bead 3.
  • Stroke marks 5 having a diameter D of 3 mm, 4 mm, 5 mm, and 6 mm and a radius of curvature r 0 of the chamfered portion 8 of 0.15 mm, 0.20 mm, and 0.50 mm are formed. The case where it forms continuously along the weld bead 3 with the tool 6 for a tool is shown.
  • a round (diameter D: 2 mm, 3 mm, 4 mm) hitting mark forming surface 11 is spherical (curvature radius r: 1) at the tip of the hitting mark forming tool 10 shown in FIGS. 7A and 7B.
  • 5 mm, 2 mm, and 4 mm are used to show the impact mark 5 formed on the surface of the base material 1 adjacent to the weld bead 3
  • Comparative Examples 14 and 15 show the impact shown in FIGS. 8A and 8B.
  • the case where it forms in 1 surface is shown.
  • the comparative example 16 shows that the diameter D of the hitting mark forming surface 7 is 6 mm, but the maximum depth of the hitting mark is less than 0.03 mm.
  • Ra in Table 2 indicates the maximum depth of the hitting mark 5.
  • the compressive residual stress introduced in the vicinity of the toe 4 of the weld bead 3 by the hitting marks 5 is in the range of 60 to 270 MPa. It was in.
  • the compressive residual stress introduced in the vicinity of the toe 4 of the weld bead 3 by the hitting marks 5 was in the range of 300 to 330 MPa. Therefore, as in Examples 11 to 18, the hitting trace forming tool 6 is formed as a hitting trace having a hitting trace forming surface 7 which is flat and has a radius of 1.5 mm or more and 3.0 mm or less.
  • the impact depth 5 having a maximum depth of 0.03 mm or more and less than 0.50 mm is substantially reduced by using the impact tool 6.
  • the impact tool 6 By continuously forming along the straight and curved weld beads 3, it becomes possible to introduce compressive residual stress exceeding 300 MPa in the vicinity of the toes 4 of the weld beads 3. It is possible to reliably suppress the occurrence of fatigue damage such as fatigue cracks in the welded portion of the welded structure.
  • the hitting trace forming tool 6 the hitting having the chamfered portion 8 curved in an arc shape with a radius of curvature of 0.15 mm to 0.50 mm around the hitting trace forming surface 7.
  • the trace forming tool 6 it is possible to prevent stress concentration from occurring around the hitting trace 5.
  • Example 3 4A to 4D the impact mark 5 is formed along the weld bead 3 on the surface of the base material 1 adjacent to the weld bead 3 (for example, a steel plate of 12 mm thickness ⁇ 100 mm ⁇ 300 mm) using the impact trace forming tool 6 shown in FIGS.
  • Table 21 shows Examples 21 to 28 together with Comparative Examples 21 to 25 when formed continuously over a length of 100 mm.
  • Ra in Table 3 indicates the maximum depth of the hitting mark.
  • the width R X of the hitting mark forming surface 7 along the direction crossing the weld bead 3 is 2 mm, 2 mm, 2.5 mm, 3 mm, and the length R Y of the hitting mark forming surface 7 along the weld bead 3.
  • the width R X of the hitting mark forming surface 7 along the direction crossing the weld bead 3 is 2 mm, 2 mm, 2.5 mm, 3 mm, and the length R Y of the hitting mark forming surface 7 along the weld bead 3.
  • Is 3 mm, 4 mm, 5 mm, 6 mm, and the radius of curvature r 0 of the chamfered portion 8 is 0.15 mm, 0.20 mm, 0.20 mm, 0.60 mm.
  • the case where the depth Ra of the impact scar 5 of 0.2 mm or more is formed is shown, respectively.
  • a spherical impact mark forming surface 11 (diameter R: 2 mm, 3 mm, 4 mm, curvature radius r: 1.5 mm, 2 mm, at the tip of the impact mark forming tool 10 shown in FIGS. 7A and 7B, 4 mm) is used, and the impact mark 5 having a maximum depth Ra of 0.2 mm or more is formed on the surface of the base material 1.
  • a flat hitting mark forming surface 13 is formed in a square shape (the length L of one side is 3 mm, 5 mm) at the tip of the hitting mark forming tool 12 shown in FIGS. 8A and 8B.
  • a planar hitting mark in which the width along the direction crossing at right angles is 1.5 mm or more and 3.0 mm or less, the length along the weld bead 3 is 3.0 mm or more and 6.0 mm or less, and the overall shape is formed in an elliptical shape.
  • the striking trace forming tool 6 Using a striking trace forming tool 6 having a surface 7 at the tip, the striking trace forming tool 6 continuously strikes a striking trace 5 having a maximum depth of 0.2 mm or more along a substantially linear and curved weld bead 3.
  • the hitting trace 5 having a maximum depth Ra of 0.2 mm or more is relatively It can be formed with a small striking force, whereby a compressive residual stress can be easily introduced in the vicinity of the toe 4 of the weld bead 3.
  • the hitting trace forming tool 6 having the chamfered portion 8 curved in an arc shape with a radius of curvature of 0.15 mm or more and 0.60 mm or less around the hitting trace forming surface 7, It is possible to prevent stress concentration from occurring around the hitting mark 5.
  • the striking trace forming tool 21 used when carrying out the fatigue damage suppressing method for a welded structure according to the second embodiment of the present invention is formed of high strength steel such as SM570.
  • a striking mark forming surface 22 for forming the striking marks 5 on the surface of the base material 1 adjacent to the substantially linear weld bead 3 is formed of high strength steel such as SM570.
  • the hitting mark forming surface 22 is curved in an arc shape with a radius of curvature r of 1 mm or more and 5 mm or less along a direction (X direction shown in FIG.
  • the length L is a dimension of 1 mm or more and 10 mm or less, and is formed at the tip of the hitting trace forming tool 21.
  • the striking trace forming tool 21 has two end faces 23 a and 23 b that are parallel to each other along the weld bead 3.
  • the hitting trace forming surface 22 is formed at the tip of the hitting trace forming tool 21 with the center of curvature C biased to one of the end faces 23a and 23b (for example, the end face 23a side).
  • the hitting trace forming tool 21 has two side surfaces 24a and 24b perpendicular to the end surfaces 23a and 23b.
  • the front ends of the side surfaces 24a and 24b are formed in a taper shape that becomes narrower toward the end surface 23a.
  • the striking trace forming tool 21 has two arc surfaces 25a and 25b that are curved in an arc shape with a radius of curvature of 0.15 mm or more and 0.30 mm or less.
  • the arcuate surfaces 25a and 25b are formed at the boundary between the hitting mark forming surface 22 and the side surfaces 24a and 24b.
  • the striking trace forming tool 21 When the present invention is carried out using the striking trace forming tool 21, after adjusting the position of the striking trace forming tool 21 so that the end face 23 b is adjacent to the toe 4 of the substantially linear weld bead 3, the striking is performed.
  • the trace forming surface 22 is pressed against the surface of the base material 1, and the impact mark 5 having a maximum depth of 0.2 mm or more is applied to the surface of the base material 1 adjacent to the substantially linear weld bead 3 by the hammer impact peening method or ultrasonic waves. It is formed by impact peening.
  • the striking trace forming surface 22 is separated from the surface of the base material 1
  • the striking trace forming tool 21 is moved along the substantially linear weld bead 3 by a predetermined distance.
  • the striking trace forming surface 22 is again pressed against the surface of the base material 1, and the striking trace 5 is continuously formed on the surface of the base material 1 along the substantially linear weld bead 3.
  • the reason why the radius of curvature r of the hitting mark forming surface 22 is 1 mm or more and 5 mm or less is as follows. In other words, if the radius of curvature r of the hitting mark forming surface 22 is less than 1 mm, the width of the hitting mark 5 becomes too narrow, and stress concentration occurs in the hitting mark 5 when a load is applied to the toe 4 of the weld bead 3. It becomes easy to cause fatigue cracks. On the other hand, if the radius of curvature r of the hitting mark forming surface 22 exceeds 5 mm, the area of the hitting mark forming surface 22 becomes too large, and the hitting mark 5 having a maximum depth of 0.2 mm or more is formed on the surface of the base material 1. It becomes difficult. For this reason, the radius of curvature r of the hitting mark forming surface 22 is set to 1 mm or more and 5 mm or less.
  • the reason why the length L of the hitting mark forming surface 22 along the weld bead 3 is 1 mm or more and 10 mm or less is as follows. That is, when the length L of the hitting mark forming surface 22 is less than 1 mm, the length of the hitting mark 5 along the substantially linear weld bead 3 is less than 1 mm, and the hitting mark 5 having a stable shape is formed on the surface of the base material 1. It becomes difficult to form. On the other hand, when the length L of the hitting mark forming surface 22 exceeds 10 mm, the area of the hitting mark forming surface 22 becomes too large, and the hitting mark 5 having a maximum depth of 0.2 mm or more is formed on the surface of the base material 1. It becomes difficult. For this reason, the length L along the weld bead 3 of the hitting trace forming surface 22 is set to 1 mm or more and 10 mm or less.
  • the reason why the radius of curvature of the arc surfaces 25a and 25b is 0.15 mm or more and 0.30 mm or less is as follows. That is, when the radius of curvature of the circular arc surfaces 25a and 25b is less than 0.15 mm, stress concentration is likely to occur at the longitudinal ends of the hitting marks 5. On the other hand, when the radius of curvature of the arc surfaces 25a and 25b exceeds 0.30 mm, the contact area of the hitting mark forming surface 22 that comes into contact with the surface of the base material 1 becomes too large, and the hitting trace having a maximum depth of 0.2 mm or more. It becomes difficult to form 5 on the surface of the base material 1. For this reason, the curvature radius of the circular arc surfaces 25a and 25b is set to 0.15 mm or more and 0.30 mm or less.
  • Example ⁇ 10A to 10D is used to form the striking trace 5 on the surface of the base material 1 adjacent to the weld bead 3 (for example, a steel plate having a thickness of 12 mm thick ⁇ 100 mm ⁇ 300 mm).
  • Table 4 shows Examples 31 to 34 together with Comparative Examples 31 to 35 in the case of being continuously formed over a length of 100 mm along the weld bead 3.
  • Ra in Table 4 indicates the maximum depth of the hitting mark.
  • Example 31 a hitting trace forming tool 21 having a radius of curvature r of the hitting trace forming surface 22 of 1 mm, a length L of the hitting trace forming surface 22 of 4 mm, and an interval B between the end face 23a and the end face 23b of 3 mm was used.
  • the radius of curvature r of the hitting mark forming surface 22 is 3 mm and 5 mm
  • the length L of the hitting mark forming surface 22 is 5 mm and 6 mm
  • the distance B between the end surface 23a and the end surface 23b is 4 mm and 5 mm.
  • a spherical impact mark forming surface 12 (diameter D: 2 mm, 3 mm, 4 mm, curvature radius r: 1.5 mm, 2 mm, at the tip of the impact mark forming tool 11 shown in FIGS. 7A and 7B, 4 mm) is used, and the impact mark 5 having a maximum depth Ra of 0.2 mm or more is formed on the surface of the base material 1.
  • a flat hitting mark forming surface 14 is formed in a square shape (the length L of one side is 3 mm and 5 mm) at the tip of the hitting mark forming tool 13 shown in FIGS. 8A and 8B.
  • the compressive residual stress introduced in the vicinity of the toe 4 of the weld bead 3 by the hitting marks 5 is in the range of 230 to 270 MPa. Met.
  • the compressive residual stress introduced in the vicinity of the toe 4 of the weld bead 3 by the hitting marks 5 was in the range of 330 to 340 MPa. Therefore, as in Examples 31 to 34, the welding bead 3 is formed at a right angle as a tool for forming a hitting mark 5 by hammer peening or ultrasonic impact peening on the surface of the base material 1 adjacent to the weld bead 3.
  • the center of curvature r 0 is biased to one of the two end faces 23 a and 23 b that are curved in a circular arc shape with a radius of curvature r of 1 mm or more and 5 mm or less along the transverse direction, and parallel to each other along the weld bead 3.
  • a striking trace forming tool 21 having a striking trace forming surface 22 at its tip is used, and this striking trace forming tool 21 causes a striking trace 5 having a maximum depth of 0.2 mm or more along a substantially linear weld bead 3.
  • Two side surfaces perpendicular to the end surfaces 23a and 23b are obtained by biasing the center of curvature C of the striking trace forming surface 22 to one end surface side of the two end surfaces 23a and 23b parallel to each other along the weld bead 3. Since the shape of 24a, 24b becomes a taper shape, the impact mark 5 is accurately formed on the surface of the base material 1 adjacent to the weld bead 3 even in a place where the vicinity of the toe 4 of the weld bead 3 is difficult to see or in a narrow space. Can do.
  • the hitting marks having arcuate surfaces 25a and 25b that are curved in an arc shape with a radius of curvature of 0.15 mm or more and 0.30 mm or less at the boundary between the hitting mark forming surface 22 and the side surfaces 24a and 24b.
  • the forming tool 21 it is possible to prevent stress concentration from occurring at the longitudinal end portion of the hitting scar 5.
  • the present invention can be applied to a process for suppressing the occurrence of fatigue damage in a welded portion of a welded structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Quality & Reliability (AREA)
  • Golf Clubs (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

A method for minimizing fatigue damage in a welded structure by minimizing the fatigue damage produced in the welded portion of the welded structure. In this method, a substantially linear weld bead is curved in an arc-shape along a direction that transverses the weld bead at a right angle on the surface of a base material adjacent to the bead in the welded portion, and a strike mark is formed through hammer peening or ultrasonic shock peening using a tool for forming a strike mark having at the tip a strike-mark-forming surface with the center of curvature skewed to one side of two end surfaces mutually parallel along the weld bead; a strike mark is formed on the surface of the base material adjacent to the substantially linear and curved weld bead through hammer peening or ultrasonic shock peening using a tool for forming a strike mark having at the tip a planar strike-mark-forming surface with an overall circular or elliptical shape; and fatigue damage on the welded portion is minimized by introducing compressive residual stress in the vicinity of a weld bead toe with the tool for forming a strike mark.

Description

溶接構造物の疲労損傷抑制方法、打撃痕形成用工具、および溶接構造物Fatigue damage suppressing method for welded structure, tool for forming impact mark, and welded structure
 本発明は、溶接構造物(welded structures)(鋼構造物(steel structures)とも言う)の溶接部に疲労損傷(fatigue damage)が発生することを抑制する溶接構造物の疲労損傷抑制方法(Method for preventing fatigue damage)、打撃痕形成用工具(tool for forming impact area)、および溶接構造物に関する。 The present invention relates to a method for suppressing fatigue damage of a welded structure that suppresses occurrence of fatigue damage in a welded portion of a welded structure (also referred to as steel structure). It relates to preventing damage, tools for forming impact areas, and welded structures.
 近年、鋼橋(steel bridge)の老朽化に伴い腐食や疲労による鋼橋の損傷事例の報告が増加している。鋼橋の損傷を抑制するためには、まず検査体制(inspection system)を確立することが必要である。しかしながら、特に疲労損傷の場合は、通過車両(passing vehicle)などの作用外力(working external force)を軽減したり、設計製作の面から溶接品質(weld quality)を向上させたりすることが重要である。鋼橋などの溶接構造物では、割れなどの欠陥が溶接部(weld zone)に生じたり、溶接ビード(weld bead)の形状が不適なために応力集中(stress concentration)が溶接ビードの止端(weld toe)に発生したりすると、繰り返し応力(cyclic stress)による影響と溶接残留応力(weld residual stress)の影響とが重畳することによって疲労き裂(fatigue crack)(疲労ノッチ(fatigue notch)とも称す)が溶接部に発生しやすくなり、疲労損傷をもたらす場合がある。溶接ビードの止端とは、溶接ビードを形成する溶接金属の表面が母材としての金属製部材の表面と交わる境界のことを意味する。 In recent years, reports of damage to steel bridges due to corrosion and fatigue have increased with the aging of steel bridges. In order to suppress damage to steel bridges, it is first necessary to establish an inspection system. However, especially in the case of fatigue damage, it is important to reduce the working external force such as passing vehicle and to improve the weld quality from the viewpoint of design and production. . In welded structures such as steel bridges, defects such as cracks occur in the weld zone or the weld bead shape is inadequate, so stress concentration is caused by the weld bead toe ( When it occurs in a weld toe, the effect of cyclic stress and the effect of weld residual stress are superimposed, also called fatigue crack (fatigue notch). ) Is likely to occur in the weld and may cause fatigue damage. The toe of the weld bead means a boundary where the surface of the weld metal forming the weld bead intersects the surface of the metal member as the base material.
 このような疲労損傷を抑制するため、特許文献1乃至3および非特許文献1には、溶接ビードの止端近傍に圧縮残留応力(compressive residual stress)を導入することによって溶接部の疲労強度(fatigue strength)を向上させる方法が記載されている。 In order to suppress such fatigue damage, Patent Documents 1 to 3 and Non-Patent Document 1 describe the fatigue strength (fatigue) of a welded portion by introducing compressive residual stress in the vicinity of the toe of the weld bead. A method for improving strength) is described.
 具体的には、特許文献1には、溶接ビードの止端近傍を超音波振動(ultrasonic oscillation)させながら打撃して塑性変形(plastic deformation)させる加工装置(processing equipment)を利用して、特定寸法の溝を所定の打撃条件で加工することによって、疲労強度を向上させる方法が記載されている。 Specifically, Patent Document 1 discloses that a specific dimension is obtained by using a processing equipment that performs plastic deformation by striking the vicinity of the toe end of the weld bead while being subjected to ultrasonic oscillation. Describes a method for improving the fatigue strength by processing the groove under predetermined hitting conditions.
 特許文献2には、レーザ光源(laser source)からのパルスレーザビーム(pulsed laser beam)を使用して表面の薄層又はプラズマ(plasma)を形成する表面のコーティング(coating)を瞬間的に気化させ、その爆発力(explosion power)により表面の一部に局所的に圧縮力(compressive force)を発生させる方法が記載されている。 In Patent Document 2, a pulsed laser beam from a laser source is used to instantaneously vaporize a surface coating that forms a thin layer of plasma or plasma. And a method of generating a compressive force locally on a part of the surface by the explosion power.
 特許文献3には、先端が特定寸法の打撃ピン(impact pin)を用いて溶接ビードの止端近傍に打撃痕(impact area)による特定寸法の溝部(groove)が形成されるように鋼材表面を圧縮することによって、溶接部に圧縮残留応力を導入する方法が記載されている。 In Patent Document 3, the surface of a steel material is formed so that a groove having a specific dimension is formed by an impact area near the toe of the weld bead using an impact pin having a specific dimension at the tip. A method is described in which compressive residual stress is introduced into the weld by compression.
 非特許文献1には、ハンマーピーニング(hammer peening)を施すと疲労強度が低下する場合があるため、溶接ビード部の止端近傍の応力集中や残留応力を低減させる新たなハンマーピーニング法について検討した結果が記載されている。 Non-Patent Document 1 examined a new hammer peening method that reduces stress concentration and residual stress in the vicinity of the toe of the weld bead because hammer peening may reduce fatigue strength. Results are listed.
特開2006-175512号公報JP 2006-175512 A 特開2006-159290号公報JP 2006-159290 A 特開2010-29897号公報JP 2010-29897 A
 しかしながら、特許文献1に記載の方法は、溶接ビードの止端近傍に圧縮残留応力を導入する手段として、チップ(tip)(チップは、振動端子(transducer)、チッパー(chipper)、打撃ピン、あるいは打撃端子とも言う)を超音波振動させて溶接ビードの止端近傍に特定寸法の溝を加工する装置を用いるため、従来の空気圧(air pressure)でチップを駆動する装置と比較すると高価で入手も困難である。 However, in the method described in Patent Document 1, as a means for introducing compressive residual stress in the vicinity of the toe of the weld bead, a tip (tip is a vibration terminal (transducer), chipper (chipper), striking pin, or It is also expensive and available compared to the conventional device that drives the tip with air pressure because it uses a device that processes a groove of a specific size near the toe end of the weld bead by ultrasonically vibrating the impact terminal) Have difficulty.
 特許文献2に記載の方法は、溶接ビードの止端近傍に圧縮残留応力をレーザ衝撃ピーニング(laser shock peening)により導入する方法であるため、素材の前処理が必要で、かつ装置が高価で大きく、鋼橋などの大形溶接構造物(large welded structure)に適用することが難しい。 The method described in Patent Document 2 is a method in which compressive residual stress is introduced into the vicinity of the toe of the weld bead by laser shock peening. Therefore, pretreatment of the material is necessary, and the apparatus is expensive and large. It is difficult to apply to large welded structures such as steel bridges.
 特許文献3に記載の方法は、先端の曲率半径(curvature radius)が2乃至10mmの打撃ピンを母材表面に溶接金属(weld metal)に触れないように押し当てて圧縮残留応力を導入する方法であるため、圧縮残留応力を導入することが難しい。 The method described in Patent Document 3 is a method of introducing a compressive residual stress by pressing a striking pin having a curvature radius of 2 to 10 mm on the surface of the base metal so as not to touch the weld metal. Therefore, it is difficult to introduce compressive residual stress.
 非特許文献1には、溶接ビードの止端近傍の応力集中や残留応力を低減させる新たなハンマーピーニング法について検討した結果が記載されている。しかしながら、ハンマーピーニングは、通常、作業者がピーニング工具(peening tool) (チップ(tip)あるいは、チッパー(chipper)とも称す)を工具先端(tip of tool) (チッパー先端(nib)とも称す)が溶接ビードの近傍に斜め上方から当たるように持って行われる。このため、非特許文献1記載の方法によれば、図5に示すように、母材1の表面上にリブ(rib)2を直立させた面外ガセット継手(out-of-plane gusset weld joint)にハンマーピーニングを施した場合、溶接ビード3の止端4に応力集中となる深い溝が形成され、溶接ビード3の止端4から疲労き裂が発生するおそれがある。 Non-Patent Document 1 describes the results of studying a new hammer peening method for reducing stress concentration and residual stress in the vicinity of the toe of the weld bead. However, in hammer peening, an operator typically welds a peening tool (also referred to as a tip or chipper) to a tool tip (also referred to as a tipper (nib)). It is carried out by hitting the vicinity of the bead obliquely from above. Therefore, according to the method described in Non-Patent Document 1, as shown in FIG. 5, an out-of-plane gusset weld joint with ribs 2 standing upright on the surface of the base material 1 ) Is subjected to hammer peening, deep grooves that cause stress concentration are formed at the toe 4 of the weld bead 3, and a fatigue crack may occur from the toe 4 of the weld bead 3.
 本発明は、上述した問題点に鑑みてなされたものであり、その目的は、溶接構造物の溶接部に疲労損傷が発生することを抑制できる溶接構造物の疲労損傷抑制方法、打撃痕形成用工具、および溶接構造物を提供することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for suppressing fatigue damage in a welded structure, which can suppress the occurrence of fatigue damage in a welded portion of the welded structure, and for forming impact marks. It is to provide a tool and a welded structure.
 本発明に係る溶接構造物の疲労損傷抑制方法は、溶接構造物の溶接部に疲労損傷が発生することを抑制する溶接構造物の疲労損傷抑制方法であって、前記溶接部のうち、ほぼ直線状の溶接ビードと隣接する母材表面には、前記溶接ビードを直角に横切る方向に沿って円弧状に湾曲し、かつ前記溶接ビードに沿って互いに平行な2つの端面のうち一方の端面側に曲率中心を偏らせた打撃痕形成面(side for forming impact area)を先端に有する第1の打撃痕形成用工具を用いて、ハンマーピーニング又は超音波衝撃ピーニング(ultrasonic impact peening)によって打撃痕を形成し、ほぼ直線状および曲線状の溶接ビードと隣接する母材表面には、全体形状が円形(round shape)又は楕円形状(elliptical shape)に形成された平面状の打撃痕形成面を先端に有する第2の打撃痕形成用工具を用いて、ハンマーピーニング又は超音波衝撃ピーニングによって打撃痕を形成し、該第1および第2の打撃痕形成用工具により前記溶接ビードの止端近傍に圧縮残留応力を導入して前記溶接部の疲労損傷を抑制する。 A method for suppressing fatigue damage of a welded structure according to the present invention is a method for suppressing fatigue damage of a welded structure that suppresses occurrence of fatigue damage in a welded portion of the welded structure, and is substantially straight among the welded portions. On the surface of the base material adjacent to the weld bead, a curved surface is formed in a circular arc shape along a direction perpendicular to the weld bead and is parallel to each other along the weld bead. Using the first impact scar forming tool with a tip for side impact forming area with a biased center of curvature, the impact scar is formed by hammer peening or ultrasonic impact peening. In addition, the surface of the base material adjacent to the substantially linear and curved weld beads has a flat impact mark forming surface formed in a round shape or an elliptical shape at the tip. 2 is used to form an impact mark by hammer peening or ultrasonic impact peening, and a compressive residual stress is applied in the vicinity of the toe of the weld bead by the first and second impact mark forming tools. It introduces and suppresses the fatigue damage of the said welding part.
 前記第2の打撃痕形成用工具の打撃痕形成面は、前記溶接ビードの止端より前記母材側に5mmまでの領域において、溶接ビードに沿う方向の長さが3.0mm以上6.0mm以下の寸法を有し、前記第2の打撃痕形成用工具により最大深さが0.03mm以上0.50mm未満の打撃痕を前記溶接ビードに沿って連続的に形成してもよい。 The striking trace forming surface of the second striking trace forming tool has a length in the direction along the weld bead of 3.0 mm or more and 6.0 mm in a region of 5 mm from the toe of the weld bead to the base metal side. You may form continuously the impact trace which has the following dimensions and whose maximum depth is 0.03 mm or more and less than 0.50 mm with the said 2nd impact trace formation tool along the said weld bead.
 前記第2の打撃痕形成用工具として、平坦(flatness)でかつ半径(radius)が1.5mm以上3.0mm以下の円形で形成された打撃痕形成面を先端に有する打撃痕形成用工具を用いてもよい。 As the second hitting mark forming tool, a hitting mark forming tool having a hitting mark forming surface formed at a tip having a flatness and a radius having a radius of 1.5 mm or more and 3.0 mm or less. It may be used.
 前記第2の打撃痕形成用工具として、前記打撃痕形成面の周囲に0.15mm以上0.60mm以下の曲率半径で円弧状に湾曲する面取り部(chamfer)を有する打撃痕形成用工具を用いてもよい。 As the second hitting mark forming tool, a hitting mark forming tool having a chamfer that is curved in an arc shape with a radius of curvature of 0.15 mm to 0.60 mm around the hitting mark forming surface is used. May be.
 前記溶接ビードの止端より前記母材側に0.5mm離れた位置から3mmまでの領域に最大深さが0.1mm以上0.5mmの打撃痕を形成してもよい。 A striking mark having a maximum depth of 0.1 mm or more and 0.5 mm may be formed in a region from a position 0.5 mm away from the toe of the weld bead to the base material side to 3 mm.
 前記第2の打撃痕形成用工具として、前記溶接ビードを直角に横切る方向に沿う幅が1.5mm以上3.0mm以下、前記溶接ビードに沿う長さが3.0mm以上6.0mm以下、かつ全体形状が楕円形状に形成された平面状の打撃痕形成面を先端に有する打撃痕形成用工具を用いてもよい。 As the second impact scar forming tool, a width along the direction perpendicular to the weld bead is 1.5 mm or more and 3.0 mm or less, a length along the weld bead is 3.0 mm or more and 6.0 mm or less, and You may use the striking trace formation tool which has the planar striking trace formation surface in which the whole shape was formed in the ellipse shape in the front-end | tip.
 前記第2の打撃痕形成用工具として、前記打撃痕形成面の周囲に0.15mm以上0.60mm以下の曲率半径で円弧状に湾曲する面取り部を有する打撃痕形成用工具を用いてもよい。 As the second hitting trace forming tool, a hitting trace forming tool having a chamfered portion curved in an arc shape with a radius of curvature of 0.15 mm or more and 0.60 mm or less around the hitting mark forming surface may be used. .
 前記第2の打撃痕形成用工具として、前記打撃痕形成面に対する垂直方向において傾斜する側面を有する円錐台形状に形成された打撃痕形成用工具を用いてもよい。 As the second hitting trace forming tool, a hitting trace forming tool formed in a truncated cone shape having a side surface inclined in a direction perpendicular to the hitting trace forming surface may be used.
 前記第1の打撃痕形成用工具の打撃痕形成面は、溶接ビードを直角に横切る方向に沿って1mm以上5mm以下の曲率半径で円弧状に湾曲し、前記第1の打撃痕形成用工具により最大深さが0.2mm以上の打撃痕を前記溶接ビードに沿って連続的に形成してもよい。 The striking trace forming surface of the first striking trace forming tool is curved in an arc shape with a curvature radius of 1 mm or more and 5 mm or less along a direction perpendicular to the weld bead, and the first striking trace forming tool Striking marks having a maximum depth of 0.2 mm or more may be continuously formed along the weld bead.
 前記第1の打撃痕形成用工具として、前記溶接ビードに沿う前記打撃痕形成面の長さが1mm以上10mm以下の打撃痕形成用工具を用いてもよい。 As the first hitting mark forming tool, a hitting mark forming tool having a length of the hitting mark forming surface along the weld bead of 1 mm or more and 10 mm or less may be used.
 前記第1の打撃痕形成用工具として、前記端面に対して直角な2つの側面を有し、該側面の形状が前記打撃痕形成面に対してテーパ形状に形成された打撃痕形成用工具を用いてもよい。 As the first striking trace forming tool, there is provided a striking trace forming tool having two side surfaces perpendicular to the end face, and the shape of the side face is tapered with respect to the striking trace forming surface. It may be used.
 前記第1の打撃痕形成用工具として、前記打撃痕形成面と前記側面との境界部に0.15mm以上0.30mm以下の曲率半径で円弧状に湾曲する円弧面を有する打撃痕形成用工具を用いてもよい。 As the first striking trace forming tool, a striking trace forming tool having an arc surface curved in an arc shape with a radius of curvature of 0.15 mm or more and 0.30 mm or less at a boundary portion between the striking trace forming surface and the side surface. May be used.
 本発明に係る打撃痕形成用工具は、本発明に係る溶接構造物の疲労損傷抑制方法において用いられるものである。 The hitting scar forming tool according to the present invention is used in the method for suppressing fatigue damage of a welded structure according to the present invention.
 本発明に係る溶接構造物は、本発明に係る溶接構造物の疲労損傷抑制方法によって疲労損傷が抑制されたものである。 The welded structure according to the present invention is one in which fatigue damage is suppressed by the method for suppressing fatigue damage of a welded structure according to the present invention.
 本発明によれば、溶接構造物の溶接部に疲労損傷が発生することを抑制できる。 According to the present invention, it is possible to suppress the occurrence of fatigue damage in the welded portion of the welded structure.
図1は、本発明の第1の実施形態である溶接構造物の疲労損傷抑制方法を実施するときに用いられる打撃痕形成用工具の一例を示す斜視図(diagrammatic perspective view)である。FIG. 1 is a perspective view (diagrammatic perspective view) showing an example of a tool for forming an impact mark used when the fatigue damage suppressing method for a welded structure according to the first embodiment of the present invention is performed. 図2Aは、図1の打撃痕形成用工具を示し、図1におけるXZ平面に沿って切断した断面図(cross-section view)である。FIG. 2A is a cross-section view of the tool for forming a hitting mark of FIG. 1 and cut along the XZ plane in FIG. 図2Bは、図1の打撃痕形成用工具を示し、図1におけるYZ平面に沿って切断した断面図である。FIG. 2B is a cross-sectional view taken along the YZ plane in FIG. 図2Cは、図1に示す打撃痕形成用工具の底面図(bottom view)である。FIG. 2C is a bottom view of the tool for forming an impact mark shown in FIG. 図3Aは、図1の打撃痕形成用工具の変形例を示し、図1におけるXZ平面に沿って切断した断面図である。FIG. 3A is a cross-sectional view taken along the XZ plane in FIG. 1, showing a modification of the hitting trace forming tool in FIG. 1. 図3Bは、図1の打撃痕形成用工具の変形例を示し、図1におけるYZ平面に沿って切断した断面図である。FIG. 3B is a cross-sectional view taken along the YZ plane in FIG. 1, showing a modification of the hitting trace forming tool in FIG. 1. 図3Cは、図1に示す打撃痕形成用工具の変形例の底面図である。FIG. 3C is a bottom view of a modified example of the hitting trace forming tool shown in FIG. 1. 図4Aは、本発明の第1の実施形態である溶接構造物の疲労損傷抑制方法を実施するときに用いられる打撃痕形成用工具の変形例を示す斜視図である。FIG. 4A is a perspective view showing a modified example of the tool for forming a hitting mark used when the fatigue damage suppressing method for a welded structure according to the first embodiment of the present invention is carried out. 図4Bは、図4Aの打撃痕形成用工具を示し、図4AにおけるXZ平面に沿って切断した断面図である。FIG. 4B is a cross-sectional view taken along the XZ plane in FIG. 4A, showing the hitting trace forming tool of FIG. 4A. 図4Cは、図4Aの打撃痕形成用工具を示し、図4AにおけるYZ平面に沿って切断した断面図である。FIG. 4C is a cross-sectional view taken along the YZ plane in FIG. 図4Dは、図4Aに示す打撃痕形成用工具の底面図である。FIG. 4D is a bottom view of the hitting trace forming tool shown in FIG. 4A. 図5は、図1に示す打撃痕形成用工具により母材の表面に形成された打撃痕を示す図である。FIG. 5 is a view showing a hitting mark formed on the surface of the base material by the hitting mark forming tool shown in FIG. 図6Aは、鋼板の表面上にリブが直立した状態で溶接された溶接部を示す平面図である。FIG. 6A is a plan view showing a welded portion welded with ribs standing upright on the surface of the steel plate. 図6Bは、鋼板の表面上にリブが直立した状態で溶接された溶接部を示す側面図である。FIG. 6B is a side view showing the welded portion welded with the ribs standing upright on the surface of the steel plate. 図7Aは、円形をなす球面状の打撃痕形成面が先端に形成された打撃痕形成用工具を示し、図1におけるXZ平面に沿って切断した断面図である。FIG. 7A is a cross-sectional view taken along the XZ plane in FIG. 1, showing a hitting tool for forming a hitting ball having a circular spherical hitting mark forming surface formed at the tip. 図7Bは、円形をなす球面状の打撃痕形成面が先端に形成された打撃痕形成用工具の底面図である。FIG. 7B is a bottom view of the tool for forming a hitting mark in which a spherical hitting mark forming surface having a circular shape is formed at the tip. 図8Aは、正方形をなす平面状の打撃痕形成面が先端に形成された打撃痕形成用工具を示し、図1におけるXZ平面に沿って切断した断面図である。FIG. 8A is a cross-sectional view taken along the XZ plane in FIG. 1, showing a hitting trace forming tool having a square hitting trace forming surface forming a square at the tip. 図8Bは、正方形をなす平面状の打撃痕形成面が先端に形成された打撃痕形成用工具を示す断面図である。FIG. 8B is a cross-sectional view showing a hitting trace forming tool in which a flat hitting trace forming surface forming a square is formed at the tip. 図9Aは、打撃痕形成面の形状が円形の打撃痕形成用工具を用いて母材表面に打撃痕を形成した場合の打撃痕の端線と溶接止端の線とを示す写真である。FIG. 9A is a photograph showing an end line of the hitting trace and a line of the weld toe when the hitting trace is formed on the surface of the base material using a hitting trace forming tool having a circular hitting trace forming surface. 図9Bは、打撃痕形成面の形状が矩形の打撃痕形成用工具を用いて母材表面に打撃痕を形成した場合の打撃痕の端線と溶接止端の線とを示す写真である。FIG. 9B is a photograph showing an end line of the hitting trace and a line of the weld toe when the hitting trace is formed on the surface of the base material using the hitting trace forming tool having a rectangular shape of the hitting trace forming surface. 図10Aは、本発明の第2の実施形態である溶接構造物の疲労損傷抑制方法を実施するときに用いられる打撃痕形成用工具の一例を示す斜視図である。FIG. 10A is a perspective view showing an example of a tool for forming an impact mark used when the fatigue damage suppressing method for a welded structure according to the second embodiment of the present invention is carried out. 図10Bは、図10Aの打撃痕形成用工具を示し、図10AにおけるXZ平面に沿って切断した断面図である。FIG. 10B is a cross-sectional view taken along the XZ plane in FIG. 10A, showing the hitting trace forming tool of FIG. 10A. 図10Cは、図10Aの打撃痕形成用工具を示し、図10AにおけるYZ平面に沿って切断した断面図である。FIG. 10C is a cross-sectional view taken along the YZ plane in FIG. 10A, showing the hitting trace forming tool of FIG. 10A.
 以下、図面を参照して、本発明の第1および第2の実施形態である溶接構造物の疲労損傷抑制方法について説明する。 Hereinafter, a fatigue damage suppressing method for a welded structure according to the first and second embodiments of the present invention will be described with reference to the drawings.
〔第1の実施形態〕
 本発明の第1の実施形態である溶接構造物の疲労損傷抑制方法を実施するときに用いられる打撃痕形成用工具6は、最低でも引張強さ600MPa以上の高強度鋼(high-strength steel)(SM570クラス以上)から形成されているとともに、図1及び図2A乃至2Cに示すように、先端に打撃痕形成面7を備えている。打撃痕形成面7は、略直線状および曲線状の溶接ビード3(図5参照)と隣接する母材1の表面に打撃痕5を形成するためのものである。打撃痕形成面7は、図2A乃至2Cに示すように、平坦でかつ半径が1.5mm以上3.0mm以下、即ち直径Dが3.0mm以上6.0mm以下の円形で形成されている。円形に形成された打撃痕形成面7の“円形”の定義として、長径(major axis)と短径(minor axis)との長さの比(長径/短径)が1乃至1.1の範囲内にあれば略円形として使用できる。長径の向きは溶接線に対して特に規定されない。
[First Embodiment]
A striking scar forming tool 6 used when carrying out the fatigue damage suppressing method for a welded structure according to the first embodiment of the present invention is a high-strength steel having a tensile strength of 600 MPa or more. It is formed from (SM570 class or higher) and, as shown in FIGS. 1 and 2A to 2C, is provided with a striking mark forming surface 7 at the tip. The hitting mark forming surface 7 is for forming the hitting marks 5 on the surface of the base material 1 adjacent to the substantially linear and curved weld beads 3 (see FIG. 5). As shown in FIGS. 2A to 2C, the hitting mark forming surface 7 is flat and has a radius of 1.5 mm to 3.0 mm, that is, a diameter D of 3.0 mm to 6.0 mm. As the definition of “circular” of the impact mark forming surface 7 formed in a circle, the ratio of the major axis to minor axis (major axis / minor axis) is in the range of 1 to 1.1. If it is inside, it can be used as a substantially circular shape. The direction of the major axis is not particularly defined with respect to the weld line.
 このように、打撃痕形成用工具6の先端に形成された打撃痕形成面7を平坦とした理由は、平坦でないと、母材1側に形成された打撃痕5の深さ及び幅にばらつき(variability)を生じるからである。打撃痕5の幅とは、打撃痕形成用工具7の移動方向である図5において紙面に対して直交する方向に直交する方向の長さBを意味する。また、打撃痕形成面7を半径が1.5mm以上3.0mm以下の円形とした理由は、半径が1.0mm未満の場合には、形成された打撃痕5の深さ及び幅にばらつきが生じ、形状が安定して得られないからである。一方、半径が3.0mmより大きい場合には、打撃痕形成面7の面積が大きくなるため、母材1に対して十分な深さの打撃痕5を形成することができなくなり、溶接ビード3の止端4への圧縮残留応力導入による疲労強度向上効果が小さくなるからである。 As described above, the reason for flattening the hitting mark forming surface 7 formed at the tip of the hitting mark forming tool 6 is that the hitting mark 5 formed on the base material 1 side varies in depth and width if it is not flat. This is because (variability) occurs. The width of the hitting trace 5 means a length B in a direction orthogonal to the direction orthogonal to the paper surface in FIG. 5, which is the moving direction of the hitting trace forming tool 7. Moreover, the reason why the hitting mark forming surface 7 is circular with a radius of 1.5 mm or more and 3.0 mm or less is that when the radius is less than 1.0 mm, the depth and width of the formed hitting mark 5 vary. This is because the shape is not obtained stably. On the other hand, when the radius is larger than 3.0 mm, the area of the hitting mark forming surface 7 becomes large, so that the hitting mark 5 having a sufficient depth cannot be formed with respect to the base material 1, and the weld bead 3. This is because the effect of improving the fatigue strength due to the introduction of compressive residual stress to the toe 4 is reduced.
 打撃痕形成用工具6は、図2A,2Bに示すように、打撃痕形成面7に対する垂直方向において傾斜する側面を有する円錐台形状(circular truncated cone shape)に形成されている。このように、打撃痕形成用工具6を円錐台形状とすることにより、度重なる打撃によっても工具の形状を保ちやすいという効果を奏する。打撃痕形成用工具6としては、図2A,2Bに示す形状に限らず、図3A乃至3Cに示すように、打撃痕形成面7に対する垂直方向において傾斜する側面を有する円錐台形状に形成されるとともに、打撃痕形成面7の周囲に0.15mm以上0.60mm以下の曲率半径rで円弧状に湾曲する面取り部8を形成したものを用いてもよい。 As shown in FIGS. 2A and 2B, the hitting trace forming tool 6 is formed in a circular truncated cone shape having a side surface that is inclined in a direction perpendicular to the hitting trace forming surface 7. In this way, by forming the hitting trace forming tool 6 in the shape of a truncated cone, there is an effect that it is easy to maintain the shape of the tool even by repeated hitting. As shown in FIGS. 3A to 3C, the hitting trace forming tool 6 is not limited to the shape shown in FIGS. 2A and 2B, and is formed in a truncated cone shape having a side surface that is inclined in a direction perpendicular to the hitting trace forming surface 7. In addition, a chamfered portion 8 that is curved in an arc shape with a curvature radius r 0 of 0.15 mm or more and 0.60 mm or less may be used around the hitting trace forming surface 7.
 面取り部8の曲率半径rを0.15mm以上0.60mm以下とした理由は以下の通りである。すなわち、面取り部8の曲率半径rが0.15mm未満では、打撃痕5の底の端部に応力が集中しやすい状態になるからである。また、面取り部8の曲率半径rが0.60mmを超えると、母材1の表面に接触する打撃痕形成面7の接触面積(contact area)が大きくなるため、母材1に対して十分な深さの打撃痕5を形成することができなくなり、溶接ビード3の止端4への圧縮残留応力導入による疲労強度向上効果が小さくなるからである。さらに好ましくは、0.15mm以上0.50mm以下である。より好ましくは、0.15mm以上0.30mm以下である。 The reason why the radius of curvature r 0 of the chamfered portion 8 is 0.15 mm or more and 0.60 mm or less is as follows. That is, when the radius of curvature r 0 of the chamfered portion 8 is less than 0.15 mm, stress tends to concentrate on the bottom end portion of the hitting mark 5. Further, if the radius of curvature r 0 of the chamfered portion 8 exceeds 0.60 mm, the contact area of the striking trace forming surface 7 that contacts the surface of the base material 1 becomes large. This is because it is not possible to form the striking trace 5 having a sufficient depth, and the effect of improving the fatigue strength by introducing the compressive residual stress to the toe 4 of the weld bead 3 is reduced. More preferably, they are 0.15 mm or more and 0.50 mm or less. More preferably, it is 0.15 mm or more and 0.30 mm or less.
 打撃痕形成面7は、溶接ビード3を直角に横切る方向(図4Aに示すX方向)に沿う幅Rが1.5mm以上3.0mm以下、溶接ビード3に沿う長さR(図4Aに示すY方向に沿う長さ)が3.0mm以上6.0mm以下の寸法で打撃痕形成用工具6の先端に平面状に形成され、かつ全体形状が楕円形状に形成されていてもよい。この場合においても、打撃痕形成用工具6は円錐台形状に形成されていてもよいし、打撃痕形成面7の周囲に面取り部8を形成してもよい。楕円形状に形成された打撃痕形成面7の“楕円形”の定義として、長径と短径との長さの比(長径/短径)が1.1超え3.0以下の範囲内にあることが好ましい。長径が溶接線に対して略平行になるように打撃痕形成用工具6を使用すると、打点数を減らすことができるので、より好ましい。 Striking trace formed surface 7, the weld bead 3 in a direction crossing at a right angle width R X along the (X direction shown in FIG. 4A) is 1.5mm or more 3.0mm or less, the length along the weld bead 3 R Y (Figure 4A The length along the Y-direction) is 3.0 mm or more and 6.0 mm or less, and is formed in a flat shape at the tip of the hitting trace forming tool 6, and the entire shape may be formed in an elliptical shape. Also in this case, the hitting trace forming tool 6 may be formed in a truncated cone shape, or a chamfered portion 8 may be formed around the hitting trace forming surface 7. As the definition of the “elliptical shape” of the impact mark forming surface 7 formed in an elliptical shape, the ratio of the length of the major axis to the minor axis (major axis / minor axis) is in the range of 1.1 to 3.0. It is preferable. It is more preferable to use the hitting trace forming tool 6 so that the major axis is substantially parallel to the weld line because the number of hitting points can be reduced.
 打撃痕形成面7の幅Rを1.5mm以上3.0mm以下とした理由は以下の通りである。すなわち、打撃痕形成面7の幅Rが1.5mm未満では、打撃痕5の幅にばらつきが生じ、安定した形状の打撃痕5を母材1の表面に形成することが困難となるからである。また、打撃痕形成面7の幅Rが3.0mmを超えると打撃痕5の面積が大きくなり過ぎ、最大深さが0.2mm以上の打撃痕5を母材1の表面に形成することが困難となるからである。 The reason for the width R X striking trace formed surface 7 and 1.5mm or 3.0mm or less is as follows. That is, in the width of less than R X striking trace formed surface 7 is 1.5 mm, variations occur in the width of the striking marks 5, hit mark 5 of stable shape from it is difficult to form on the surface of the base 1 It is. Also, the width R X striking trace formed surface 7 becomes too large the area of the hitting marks 5 exceeds 3.0 mm, the maximum depth to form a striking mark 5 above 0.2mm on the surface of the base 1 This is because it becomes difficult.
 打撃痕形成面7の長さRを3.0mm以上6.0mm以下とした理由は以下の通りである。すなわち、打撃痕形成面7の長さRが3.0mm未満では、打撃痕5の幅が狭くなり過ぎ、荷重が負荷されたときに溶接ビード3の止端4に応力集中が打撃痕5に発生しやすくなって疲労き裂の発生原因となるからである。また、打撃痕形成面7の長さRが6.0mmを超えると打撃痕形成面7の面積が大きくなり過ぎ、最大深さが0.2mm以上の打撃痕5を母材1の表面に形成することが困難となるからである。 The reason why the length RY of the hitting mark forming surface 7 is set to 3.0 mm or more and 6.0 mm or less is as follows. That is, when the length RY of the hitting mark forming surface 7 is less than 3.0 mm, the width of the hitting mark 5 becomes too narrow, and stress concentration occurs at the toe 4 of the weld bead 3 when a load is applied. This is because it tends to occur in the case of fatigue cracks. If the length RY of the hitting mark forming surface 7 exceeds 6.0 mm, the area of the hitting mark forming surface 7 becomes too large, and the hitting mark 5 having a maximum depth of 0.2 mm or more is formed on the surface of the base material 1. This is because it becomes difficult to form.
 長径と短径との長さの比(長径/短径)が1.1超え3.0以下にした理由は以下の通りである。長径と短径との長さの比が3.0を越えると、同じ面積でも打撃痕の幅Bが小さくなり、打撃痕の幅方向に対する圧縮残留応力の導入範囲が狭くなり、疲労特性に不利になるからである。 The reason why the ratio of the length of the major axis to the minor axis (major axis / minor axis) exceeds 1.1 and is 3.0 or less is as follows. When the ratio of the length of the major axis to the minor axis exceeds 3.0, the width B of the impact mark becomes small even in the same area, and the introduction range of the compressive residual stress in the width direction of the impact mark becomes narrow, which is disadvantageous for fatigue characteristics. Because it becomes.
 このような打撃痕形成用工具6を用いて本発明の第1の実施形態である溶接構造物の疲労損傷抑制方法を実施する際には、図5において、溶接ビード3と隣接する母材1の表面に打撃痕形成用工具6を垂直に押し当てて打撃し、打撃痕形成用工具6を溶接線方向に相対的に移動させ、打撃痕形成用工具6による打撃と打撃痕形成用工具6の移動を繰り返して母材1の表面に打撃痕5を形成するハンマーピーニング又は超音波衝撃処理を施す。溶接線方向とは、図4における紙面に対して直交する方向および図1における矢印Y方向を示す。つまり、打撃痕形成面7が略直線状および曲線状の溶接ビード3の止端4と隣接するように打撃痕形成用工具6の位置を調整した後、打撃痕形成用工具6の打撃痕形成面7を母材1の表面に垂直に押し当てて打撃し、略直線状および曲線状の溶接ビード3の止端近傍4より母材1側に5mmまでの領域において、最大深さが0.03mm以上0.50mm未満の打撃痕5を形成する。 When the fatigue damage suppressing method for a welded structure according to the first embodiment of the present invention is carried out using such an impact mark forming tool 6, the base material 1 adjacent to the weld bead 3 in FIG. The striking trace forming tool 6 is vertically pressed against the surface of the striking surface to perform striking, and the striking trace forming tool 6 is relatively moved in the welding line direction. Is repeated, and hammer peening or ultrasonic impact treatment for forming a hitting mark 5 on the surface of the base material 1 is performed. The weld line direction indicates a direction orthogonal to the paper surface in FIG. 4 and an arrow Y direction in FIG. That is, after adjusting the position of the striking trace forming tool 6 so that the striking trace forming surface 7 is adjacent to the toe 4 of the substantially linear and curved welding beads 3, the striking trace formation of the striking trace forming tool 6 is performed. The surface 7 is struck perpendicularly to the surface of the base material 1 and is struck. A hitting mark 5 of 03 mm or more and less than 0.50 mm is formed.
 次に、打撃痕形成用工具6の打撃痕形成面7を母材1の表面から引き離した後、打撃痕形成用工具6を略直線状および曲線状の溶接ビード3の溶接線方向に所定距離だけ移動させる。そして、再び打撃痕形成用工具6の打撃痕形成面7を母材1の表面に垂直に押し当てて打撃し、母材1の表面に打撃痕5を形成し、この打撃痕形成用工具6による打撃と打撃痕形成用工具6の移動とを繰り返して、複数の打撃痕5を略直線状および曲線状の溶接ビード3に沿って連続的に形成する。これにより、複数の打撃痕5が、略直線状および曲線状の溶接ビード3の止端4より母材1側に5mmまでの領域において、最大深さが0.03mm以上0.50mm未満で形成された溶接構造物が得られる。 Next, after the striking trace forming surface 7 of the striking trace forming tool 6 is separated from the surface of the base material 1, the striking trace forming tool 6 is moved a predetermined distance in the welding line direction of the substantially linear and curved welding beads 3. Just move. Then, the striking trace forming surface 7 of the striking trace forming tool 6 is again pressed against the surface of the base material 1 for impact, and the striking trace 5 is formed on the surface of the base material 1. A plurality of striking traces 5 are continuously formed along the substantially linear and curved weld beads 3 by repeating the striking and the movement of the striking trace forming tool 6. Thereby, a plurality of hitting marks 5 are formed with a maximum depth of 0.03 mm or more and less than 0.50 mm in a region from the toe 4 of the substantially linear and curved weld beads 3 to the base material 1 side up to 5 mm. A welded structure is obtained.
 打撃痕5が、溶接ビード3の止端4より母材1側に5mmまでの領域において、最大深さが0.03mm以上0.50mm未満で形成することとしたのは、次の理由による。打撃痕5の最大深さが溶接ビード3の止端4より母材1側に5mmを超えて形成されると、止端近傍に圧縮残留応力が十分に導入されないからである。また、打撃痕5の最大深さが0.03mm以上0.50mm未満としたのは、打撃痕5の最大深さが0.03mmよりも浅いと止端近傍に圧縮残留応力が十分に導入されないからであり、0.50mm以上であると、引張負荷時(under tension load)に打撃痕底部に応力が集中し、疲労き裂発生の起点となるからである。 The reason why the hitting marks 5 are formed with a maximum depth of 0.03 mm or more and less than 0.50 mm in the region of 5 mm from the toe 4 of the weld bead 3 to the base metal 1 side is as follows. This is because if the maximum depth of the hitting mark 5 is more than 5 mm closer to the base material 1 than the toe 4 of the weld bead 3, the compressive residual stress is not sufficiently introduced in the vicinity of the toe. Further, the maximum depth of the hitting scar 5 is set to 0.03 mm or more and less than 0.50 mm. If the maximum depth of the hitting scar 5 is shallower than 0.03 mm, the compressive residual stress is not sufficiently introduced near the toe. This is because when the thickness is 0.50 mm or more, stress concentrates at the bottom of the impact mark during under tension load, and becomes a starting point of fatigue crack generation.
 打撃痕5が、溶接ビード3の止端4より母材1側に0.5mm離れた位置から3mmまでの領域において、最大深さが0.1mm以上0.50mm未満で形成されていると一層好ましい。この理由は、止端近傍への圧縮残留応力の導入が十分になされるからである。 When the hitting mark 5 is formed with a maximum depth of 0.1 mm or more and less than 0.50 mm in a region from a position 0.5 mm away from the toe 4 of the weld bead 3 to the base material 1 side to 3 mm. preferable. This is because the compressive residual stress is sufficiently introduced in the vicinity of the toe.
〔実施例1〕
 本発明者らは、図6A,6Bに示す溶接継手を溶接電流(welding current):280A、溶接電圧(welding voltage):32V、溶接速度(welding speed):28cpmの溶接条件(welding condition)にて試験片として作製し、作製した溶接継手(weld joint)を用いて圧縮残留応力の導入試験を表1に示す条件で行った。
[Example 1]
The inventors have welded the joint shown in FIGS. 6A and 6B under a welding condition of a welding current of 280 A, a welding voltage of 32 V, and a welding speed of 28 cpm. A test piece was prepared, and a compression residual stress introduction test was performed under the conditions shown in Table 1 using the prepared weld joint.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の実施例1乃至4は、溶接ビード3と隣接する母材1の表面に最大深さが0.03mm以上0.50mm未満の打撃痕5を打撃痕形成面7の直径Dが3mm、4mm、5mm、6mmの打撃痕形成用工具6により溶接ビード3に沿って連続的に形成した場合を示している。表1の実施例5乃至8は、溶接ビード3と隣接する母材1の表面に最大深さが0.03mm以上0.50mm未満の打撃痕5を打撃痕形成面7の直径Dが3mm、4mm、5mm、6mm、面取り部8の曲率半径rが0.15mm、0.20mm、0.30mmの打撃痕形成用工具6により溶接ビード3に沿って連続的に形成した場合を示している。 In Examples 1 to 4 in Table 1, the diameter D of the hitting mark forming surface 7 is 3 mm on the hitting mark 5 having a maximum depth of 0.03 mm or more and less than 0.50 mm on the surface of the base material 1 adjacent to the weld bead 3. The case where it forms continuously along the weld bead 3 with the tool 6 for impact mark formation of 4 mm, 5 mm, and 6 mm is shown. In Examples 5 to 8 of Table 1, the diameter D of the hitting mark forming surface 7 is 3 mm on the hitting mark 5 having a maximum depth of 0.03 mm or more and less than 0.50 mm on the surface of the base material 1 adjacent to the weld bead 3. It shows a case in which it is continuously formed along the weld bead 3 with the tool 6 for forming impact marks having a curvature radius r 0 of 4 mm, 5 mm, 6 mm and chamfered portion 8 of 0.15 mm, 0.20 mm, 0.30 mm. .
 表1の比較例1乃至3は図7A,7Bに示す打撃痕形成用工具10の先端に円形(直径D:2mm、3mm、4mm)の打撃痕形成面11が球面状(曲率半径r:1.5mm、2mm、4mm)に形成されたものを用いて打撃痕5を溶接ビード3と隣接する母材1の表面に形成した場合を示す。表1の比較例4,5は、図8A,8Bに示す打撃痕形成用工具12の先端に正方形(1辺の長さL:3mm、5mm)の打撃痕形成面13が平面状に形成されたものを用いて打撃痕5を溶接ビード3と隣接する母材1の表面に形成した場合を示している。表1のRaは打撃痕5の最大深さ(mm)を示し、実施例1乃至8及び比較例1乃至5では打撃痕形成用工具によるハンマーピーニングを空気圧:約6kg/cm、周波数(frequency):90Hz、移動速度(moving speed):0.25mm/秒の条件で行った。表1の残留応力は母材1の表面に形成された打撃痕5から1mm離れた位置に直径1mmのX線(X-ray)を照射して残留応力を測定した結果を示している。 In Comparative Examples 1 to 3 of Table 1, a round (diameter D: 2 mm, 3 mm, 4 mm) hitting mark forming surface 11 is spherical (curvature radius r: 1) at the tip of the hitting mark forming tool 10 shown in FIGS. 7A and 7B. (5 mm, 2 mm, 4 mm) is used, and the impact mark 5 is formed on the surface of the base material 1 adjacent to the weld bead 3. In Comparative Examples 4 and 5 in Table 1, a strike mark forming surface 13 having a square shape (length L: 3 mm, 5 mm) is formed in a flat shape at the tip of the strike mark forming tool 12 shown in FIGS. 8A and 8B. The case where the hitting marks 5 are formed on the surface of the base material 1 adjacent to the weld bead 3 is shown. Ra in Table 1 indicates the maximum depth (mm) of the hitting mark 5, and in Examples 1 to 8 and Comparative Examples 1 to 5, hammer peening using the hitting mark forming tool is performed with an air pressure of about 6 kg / cm 2 and a frequency (frequency). ): 90 Hz, moving speed: 0.25 mm / sec. The residual stress in Table 1 shows the result of measuring the residual stress by irradiating a 1 mm diameter X-ray (X-ray) at a position 1 mm away from the impact mark 5 formed on the surface of the base material 1.
 実施例1乃至8と比較例1乃至5とを比較すると、比較例1乃至5では、打撃痕5により溶接ビード3の止端4の近傍に導入される圧縮残留応力は230乃至270MPaの範囲内であった。これに対して、実施例1乃至8では、打撃痕5により溶接ビード3の止端4の近傍に導入される圧縮残留応力は300乃至330MPaの範囲内であった。したがって、実施例1乃至8のように、溶接ビード3と隣接する母材表面に打撃痕5をハンマーピーニング又は超音波衝撃ピーニングによって形成する打撃痕形成用工具として、平坦でかつ半径が1.5mm以上3.0mm以下の円形で形成された打撃痕形成面7を先端に有する打撃痕形成用工具6を用い、この打撃痕形成用工具6により最大深さが0.03mm以上0.50mm未満の打撃痕5を略直線状および曲線状の溶接ビード3に沿って連続的に形成することで、溶接ビード3の止端4の近傍に300MPaを超える圧縮残留応力を導入することが可能となるので、鋼橋などの溶接構造物の溶接部に疲労き裂などの疲労損傷が発生することを確実に抑制できる。 Comparing Examples 1 to 8 and Comparative Examples 1 to 5, in Comparative Examples 1 to 5, the compressive residual stress introduced in the vicinity of the toe 4 of the weld bead 3 by the hitting marks 5 is in the range of 230 to 270 MPa. Met. On the other hand, in Examples 1 to 8, the compressive residual stress introduced in the vicinity of the toe 4 of the weld bead 3 by the hitting marks 5 was in the range of 300 to 330 MPa. Therefore, as in Examples 1 to 8, as a tool for forming a hitting mark that forms the hitting mark 5 on the surface of the base material adjacent to the weld bead 3 by hammer peening or ultrasonic impact peening, the tool is flat and has a radius of 1.5 mm. Using a striking trace forming tool 6 having a striking trace forming surface 7 formed in a circular shape of 3.0 mm or less at the tip, the maximum depth is 0.03 mm or more and less than 0.50 mm by this striking trace forming tool 6. By continuously forming the hitting marks 5 along the substantially linear and curved weld beads 3, it becomes possible to introduce a compressive residual stress exceeding 300 MPa in the vicinity of the toes 4 of the weld beads 3. Further, it is possible to reliably suppress the occurrence of fatigue damage such as fatigue cracks in the welded portion of a welded structure such as a steel bridge.
 実施例1乃至8のように、打撃痕形成面7に向けて円錐台形状に形成された打撃痕形成用工具6を用いることで、最大深さが0.03mm以上0.50mm未満の打撃痕5を溶接ビード3と隣接する母材1の表面に比較的小さな打撃力で形成することができ、これにより、溶接ビード3の止端4の近傍に圧縮残留応力を容易に導入することができる。実施例5乃至8のように、打撃痕形成面7の周囲に0.15mm以上0.30mm以下の曲率半径で円弧状に湾曲する面取り部8を有する打撃痕形成用工具6を用いることで、打撃痕5の周囲に応力集中が発生することを防止することができる。 As in Examples 1 to 8, by using the hitting trace forming tool 6 formed in a truncated cone shape toward the hitting trace forming surface 7, the hitting trace having a maximum depth of 0.03 mm or more and less than 0.50 mm. 5 can be formed on the surface of the base material 1 adjacent to the weld bead 3 with a relatively small striking force, whereby a compressive residual stress can be easily introduced in the vicinity of the toe 4 of the weld bead 3. . By using the hitting trace forming tool 6 having the chamfered portion 8 that is curved in an arc shape with a radius of curvature of 0.15 mm or more and 0.30 mm or less around the hitting trace forming surface 7 as in Examples 5 to 8, It is possible to prevent stress concentration from occurring around the hitting mark 5.
 打撃痕形成面の形状が矩形(3×4mm)の打撃痕形成用工具を用いて母材表面に打撃痕を形成した場合は、図9Bに示すように、溶接止端の線と打撃痕の端線との間に最大1.8mmの隙間(space)が発生し、止端近傍に300MPa以上の残留応力を残すことができなかった。これに対し、打撃痕形成面の形状が円形(直径:3.0mm)で平面状の打撃痕形成用工具を用いて母材表面に打撃痕を形成した場合は、図9Aに示すように、溶接止端の線と打撃痕の端線との間の隙間は最大0.2mmであり、溶接止端の線と打撃痕の端線との間にほとんど隙間を発生させることなく打撃痕を形成できた。 When a striking trace is formed on the surface of the base material using a striking trace forming tool having a rectangular (3 × 4 mm) striking trace forming surface, as shown in FIG. A space of maximum 1.8 mm was generated between the end line and a residual stress of 300 MPa or more could not be left in the vicinity of the toe. On the other hand, when the impact mark forming surface is circular (diameter: 3.0 mm) and the impact mark is formed on the surface of the base material using a planar impact trace forming tool, as shown in FIG. The gap between the weld toe line and the end line of the hitting mark is 0.2 mm at the maximum, and the hitting mark is formed with almost no gap between the weld toe line and the end line of the hitting mark. did it.
〔実施例2〕
 本発明者らは、表2(実施例11乃至18、比較例11乃至16)に示す先端形状を有する打撃痕形成用工具を用いて、12mm厚×100mm×300mmの鋼板にハンマーピーニング(空気圧:約0.588MPa(約6kg/cm)、周波数:90Hz、移動速度:0.25mm/秒による)で溶接線に沿って100mmの長さにわたって溶接ビードの止端より母材側に5mmまでの領域において打撃痕の最大深さが0.02乃至0.50mmとなるように打撃痕形成用工具を垂直に繰り返し打撃した後、打撃痕5の端(止端4側の端)から1mm離れた位置の残留応力をX線により測定した。X線を用いた残留応力測定(measurement of residual stress)は、ビーム径(beam diameter)1mmφで行った。試験結果を表2に示す。
[Example 2]
The inventors of the present invention used hammer peening (pneumatic: air pressure) to a steel plate having a thickness of 12 mm × 100 mm × 300 mm, using a tool for forming an impact mark shown in Table 2 (Examples 11 to 18, Comparative Examples 11 to 16). About 0.588 MPa (about 6 kg / cm 2 ), frequency: 90 Hz, moving speed: according to 0.25 mm / second) over a length of 100 mm along the weld line up to 5 mm from the toe of the weld bead to the base metal side After repeatedly hitting the tool for forming a hitting mark vertically so that the maximum depth of the hitting mark becomes 0.02 to 0.50 mm in the region, it is 1 mm away from the end of the hitting mark 5 (end on the toe 4 side). The residual stress at the position was measured by X-ray. Measurement of residual stress using X-ray was performed at a beam diameter of 1 mmφ. The test results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の実施例11乃至14は、溶接ビード3と隣接する母材1の表面に、溶接ビード3の止端4より母材側に5mmまでの領域において最大深さが0.03mm以上0.50mm未満の打撃痕5を打撃痕形成面7の直径Dが3mm、4mm、5mm、6mmの打撃痕形成用工具6により溶接ビード3に沿って連続的に形成した場合を示している。表2の実施例15乃至18は、溶接ビード3と隣接する母材1の表面に、溶接ビード3の止端4の近傍より母材側に5mmまでの領域において最大深さが0.03mm以上0.50mm未満の打撃痕5を打撃痕形成面7の直径Dが3mm、4mm、5mm、6mm、面取り部8の曲率半径rが0.15mm、0.20mm、0.50mmの打撃痕形成用工具6により溶接ビード3に沿って連続的に形成した場合を示している。 In Examples 11 to 14 in Table 2, the maximum depth is 0.03 mm or more in the region of 5 mm from the toe 4 of the weld bead 3 to the base metal side on the surface of the base metal 1 adjacent to the weld bead 3. The case is shown in which the hitting marks 5 of less than 50 mm are continuously formed along the weld bead 3 by the hitting mark forming tool 6 having a diameter D of the hitting mark forming surface 7 of 3 mm, 4 mm, 5 mm, and 6 mm. In Examples 15 to 18 in Table 2, the maximum depth is 0.03 mm or more in the region up to 5 mm from the vicinity of the toe 4 of the weld bead 3 to the surface of the base metal 1 adjacent to the weld bead 3. Stroke marks 5 having a diameter D of 3 mm, 4 mm, 5 mm, and 6 mm and a radius of curvature r 0 of the chamfered portion 8 of 0.15 mm, 0.20 mm, and 0.50 mm are formed. The case where it forms continuously along the weld bead 3 with the tool 6 for a tool is shown.
 表2の比較例11乃至13は図7A,7Bに示す打撃痕形成用工具10の先端に円形(直径D:2mm、3mm、4mm)の打撃痕形成面11が球面状(曲率半径r:1.5mm、2mm、4mm)に形成されたものを用いて打撃痕5を溶接ビード3と隣接する母材1の表面に形成した場合を示し、比較例14,15は図8A,8Bに示す打撃痕形成用工具12の先端に正方形(1辺の長さL:3mm、5mm)の打撃痕形成面13が平面状に形成されたものを用いて打撃痕5を溶接ビード3と隣接する母材1の表面に形成した場合を示している。比較例16は、打撃痕形成面7の直径Dが6mmであるものの、打撃痕の最大深さが0.03mm未満のものを示す。表2のRaは打撃痕5の最大深さを示すものである。 In Comparative Examples 11 to 13 of Table 2, a round (diameter D: 2 mm, 3 mm, 4 mm) hitting mark forming surface 11 is spherical (curvature radius r: 1) at the tip of the hitting mark forming tool 10 shown in FIGS. 7A and 7B. 5 mm, 2 mm, and 4 mm) are used to show the impact mark 5 formed on the surface of the base material 1 adjacent to the weld bead 3, and Comparative Examples 14 and 15 show the impact shown in FIGS. 8A and 8B. A base material adjacent to the weld bead 3 by using a tool having a square (one side length L: 3 mm, 5 mm) hitting mark forming surface 13 formed in a flat shape at the tip of the mark forming tool 12. The case where it forms in 1 surface is shown. The comparative example 16 shows that the diameter D of the hitting mark forming surface 7 is 6 mm, but the maximum depth of the hitting mark is less than 0.03 mm. Ra in Table 2 indicates the maximum depth of the hitting mark 5.
 実施例11乃至18と比較例11乃至16とを比較すると、比較例11乃至16では、打撃痕5により溶接ビード3の止端4の近傍に導入される圧縮残留応力は60乃至270MPaの範囲内にあった。これに対して、実施例11乃至18では、打撃痕5により溶接ビード3の止端4の近傍に導入される圧縮残留応力が300乃至330MPaの範囲内にあった。したがって、実施例11乃至18のように、打撃痕形成用工具6として、平坦でかつ半径が1.5mm以上3.0mm以下の円形で形成された打撃痕形成面7を先端に有する打撃痕形成用工具6を用い、打撃痕形成用工具6により溶接ビード3の止端4より母材1側に5mmまでの領域において、最大深さが0.03mm以上0.50mm未満の打撃痕5を略直線状および曲線状の溶接ビード3に沿って連続的に形成することで、溶接ビード3の止端4の近傍に300MPaを超える圧縮残留応力を導入することが可能となるので、鋼橋などの溶接構造物の溶接部に疲労き裂などの疲労損傷が発生することを確実に抑制できる。また、実施例15乃至18のように、打撃痕形成用工具6として、打撃痕形成面7の周囲に0.15mm以上0.50mm以下の曲率半径で円弧状に湾曲する面取り部8を有する打撃痕形成用工具6を用いることで、打撃痕5の周囲に応力集中が発生することを防止できる。 When Examples 11 to 18 are compared with Comparative Examples 11 to 16, in Comparative Examples 11 to 16, the compressive residual stress introduced in the vicinity of the toe 4 of the weld bead 3 by the hitting marks 5 is in the range of 60 to 270 MPa. It was in. On the other hand, in Examples 11 to 18, the compressive residual stress introduced in the vicinity of the toe 4 of the weld bead 3 by the hitting marks 5 was in the range of 300 to 330 MPa. Therefore, as in Examples 11 to 18, the hitting trace forming tool 6 is formed as a hitting trace having a hitting trace forming surface 7 which is flat and has a radius of 1.5 mm or more and 3.0 mm or less. In the region from the toe 4 of the weld bead 3 to 5 mm on the base material 1 side, the impact depth 5 having a maximum depth of 0.03 mm or more and less than 0.50 mm is substantially reduced by using the impact tool 6. By continuously forming along the straight and curved weld beads 3, it becomes possible to introduce compressive residual stress exceeding 300 MPa in the vicinity of the toes 4 of the weld beads 3. It is possible to reliably suppress the occurrence of fatigue damage such as fatigue cracks in the welded portion of the welded structure. Further, as in Examples 15 to 18, as the hitting trace forming tool 6, the hitting having the chamfered portion 8 curved in an arc shape with a radius of curvature of 0.15 mm to 0.50 mm around the hitting trace forming surface 7. By using the trace forming tool 6, it is possible to prevent stress concentration from occurring around the hitting trace 5.
〔実施例3〕
 図4A乃至4Dに示した打撃痕形成用工具6を用いて溶接ビード3と隣接する母材1(例えば、12mm厚×100mm×300mmの鋼板)の表面に打撃痕5を溶接ビード3に沿って100mmの長さにわたり連続的に形成した場合の実施例21乃至28を比較例21乃至25と共に表3に示す。表3のRaは打撃痕の最大深さを示す。
Example 3
4A to 4D, the impact mark 5 is formed along the weld bead 3 on the surface of the base material 1 adjacent to the weld bead 3 (for example, a steel plate of 12 mm thickness × 100 mm × 300 mm) using the impact trace forming tool 6 shown in FIGS. Table 21 shows Examples 21 to 28 together with Comparative Examples 21 to 25 when formed continuously over a length of 100 mm. Ra in Table 3 indicates the maximum depth of the hitting mark.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例21乃至24は、溶接ビード3を横切る方向に沿う打撃痕形成面7の幅Rが2mm、2mm、2.5mm、3mm、溶接ビード3に沿う打撃痕形成面7の長さRが3mm、4mm、5mm、6mmの打撃痕形成用工具6を用いて溶接ビード3と隣接する母材1の表面に最大深さRaが0.2mm以上の打撃痕5を形成した場合を示している。実施例25乃至28は、溶接ビード3を横切る方向に沿う打撃痕形成面7の幅Rが2mm、2mm、2.5mm、3mm、溶接ビード3に沿う打撃痕形成面7の長さRが3mm、4mm、5mm、6mm、面取り部8の曲率半径rが0.15mm、0.20mm、0.20mm、0.60mmの打撃痕形成用工具6を用いて母材1の表面に最大深さRaが0.2mm以上の打撃痕5を形成した場合をそれぞれ示している。 In Examples 21 to 24, the width R X of the hitting mark forming surface 7 along the direction crossing the weld bead 3 is 2 mm, 2 mm, 2.5 mm, 3 mm, and the length R Y of the hitting mark forming surface 7 along the weld bead 3. Shows a case where the impact mark 5 having a maximum depth Ra of 0.2 mm or more is formed on the surface of the base material 1 adjacent to the weld bead 3 using the impact mark forming tool 6 of 3 mm, 4 mm, 5 mm, and 6 mm. Yes. In Examples 25 to 28, the width R X of the hitting mark forming surface 7 along the direction crossing the weld bead 3 is 2 mm, 2 mm, 2.5 mm, 3 mm, and the length R Y of the hitting mark forming surface 7 along the weld bead 3. Is 3 mm, 4 mm, 5 mm, 6 mm, and the radius of curvature r 0 of the chamfered portion 8 is 0.15 mm, 0.20 mm, 0.20 mm, 0.60 mm. The case where the depth Ra of the impact scar 5 of 0.2 mm or more is formed is shown, respectively.
 比較例21乃至23は、図7A,7Bに示す打撃痕形成用工具10の先端に球面状の打撃痕形成面11(直径R:2mm、3mm、4mm、曲率半径r:1.5mm、2mm、4mm)が形成されたものを用いて母材1の表面に最大深さRaが0.2mm以上の打撃痕5を形成した場合をそれぞれ示している。比較例24,25は、図8A,8Bに示す打撃痕形成用工具12の先端に平面状の打撃痕形成面13が正方形状(1辺の長さLが3mm、5mm)で形成されたものを用いて母材1の表面に最大深さRaが0.2mm以上の打撃痕5を形成した場合をそれぞれ示している。表3の残留応力は、母材1の表面に形成された打撃痕5から1mm離れた位置に直径1mmのX線を照射して残留応力を測定した結果を示している。実施例21乃至28及び比較例21乃至25では、打撃痕形成用工具によるハンマーピーニングを空気圧:約6kg/cm、周波数:90Hz、移動速度:0.25mm/秒の条件で行った。 In Comparative Examples 21 to 23, a spherical impact mark forming surface 11 (diameter R: 2 mm, 3 mm, 4 mm, curvature radius r: 1.5 mm, 2 mm, at the tip of the impact mark forming tool 10 shown in FIGS. 7A and 7B, 4 mm) is used, and the impact mark 5 having a maximum depth Ra of 0.2 mm or more is formed on the surface of the base material 1. In Comparative Examples 24 and 25, a flat hitting mark forming surface 13 is formed in a square shape (the length L of one side is 3 mm, 5 mm) at the tip of the hitting mark forming tool 12 shown in FIGS. 8A and 8B. In each of the drawings, the case where the impact mark 5 having the maximum depth Ra of 0.2 mm or more is formed on the surface of the base material 1 is shown. The residual stress in Table 3 shows the result of measuring the residual stress by irradiating the X-ray having a diameter of 1 mm at a position 1 mm away from the impact mark 5 formed on the surface of the base material 1. In Examples 21 to 28 and Comparative Examples 21 to 25, hammer peening with a tool for forming impact marks was performed under conditions of air pressure: about 6 kg / cm 2 , frequency: 90 Hz, and moving speed: 0.25 mm / second.
 実施例21乃至28と比較例21乃至25とを比較すると、比較例21乃至25では、打撃痕5により溶接ビード3の止端近傍に導入される圧縮残留応力は230乃至270MPaの範囲内にあった。これに対して、実施例21乃至28では、打撃痕5により溶接ビード3の止端近傍に導入される圧縮残留応力は305MPa乃至335MPaの範囲内にあった。したがって、実施例21乃至28のように、溶接部の溶接ビード3と隣接する母材の表面に打撃痕5をハンマーピーニング又は超音波衝撃ピーニングによって形成する打撃痕形成用工具として、溶接ビード3を直角に横切る方向に沿う幅が1.5mm以上3.0mm以下、溶接ビード3に沿う長さが3.0mm以上6.0mm以下、かつ全体形状が楕円形状に形成された平面状の打撃痕形成面7を先端に有する打撃痕形成用工具6を用い、この打撃痕形成用工具6により最大深さが0.2mm以上の打撃痕5を略直線状および曲線状の溶接ビード3に沿って連続的に形成することで、溶接ビード3の止端4の近傍に300MPaを超える圧縮残留応力を導入することが可能となるので、鋼橋などの溶接構造物の溶接部に疲労き裂などの疲労損傷が発生することを確実に抑制できる。 Comparing Examples 21 to 28 with Comparative Examples 21 to 25, in Comparative Examples 21 to 25, the compressive residual stress introduced in the vicinity of the toe of the weld bead 3 by the hitting marks 5 was within a range of 230 to 270 MPa. It was. On the other hand, in Examples 21 to 28, the compressive residual stress introduced into the vicinity of the toe of the weld bead 3 by the hitting marks 5 was in the range of 305 MPa to 335 MPa. Therefore, as in Examples 21 to 28, the welding bead 3 is used as a tool for forming a hitting mark 5 by hammer peening or ultrasonic impact peening on the surface of the base material adjacent to the weld bead 3 of the welded portion. Formation of a planar hitting mark in which the width along the direction crossing at right angles is 1.5 mm or more and 3.0 mm or less, the length along the weld bead 3 is 3.0 mm or more and 6.0 mm or less, and the overall shape is formed in an elliptical shape. Using a striking trace forming tool 6 having a surface 7 at the tip, the striking trace forming tool 6 continuously strikes a striking trace 5 having a maximum depth of 0.2 mm or more along a substantially linear and curved weld bead 3. Since it is possible to introduce a compressive residual stress exceeding 300 MPa in the vicinity of the toe 4 of the weld bead 3 by forming the weld bead 3, fatigue such as fatigue cracks may occur in a welded portion of a welded structure such as a steel bridge. loss There can be reliably prevented from occurring.
 実施例21乃至28のように、打撃痕形成面7に向けて先細り状に形成された打撃痕形成用工具6を用いることで、最大深さRaが0.2mm以上の打撃痕5を比較的小さな打撃力で形成することができ、これにより、溶接ビード3の止端4の近傍に圧縮残留応力を容易に導入することができる。実施例25乃至28のように、打撃痕形成面7の周囲に0.15mm以上0.60mm以下の曲率半径で円弧状に湾曲する面取り部8を有する打撃痕形成用工具6を用いることで、打撃痕5の周囲に応力集中が発生することを防止できる。 As in Examples 21 to 28, by using the hitting trace forming tool 6 tapered toward the hitting trace forming surface 7, the hitting trace 5 having a maximum depth Ra of 0.2 mm or more is relatively It can be formed with a small striking force, whereby a compressive residual stress can be easily introduced in the vicinity of the toe 4 of the weld bead 3. As in Examples 25 to 28, by using the hitting trace forming tool 6 having the chamfered portion 8 curved in an arc shape with a radius of curvature of 0.15 mm or more and 0.60 mm or less around the hitting trace forming surface 7, It is possible to prevent stress concentration from occurring around the hitting mark 5.
〔第2の実施形態〕
 図10Aに示すように、本発明の第2の実施形態である溶接構造物の疲労損傷抑制方法を実施するときに用いられる打撃痕形成用工具21は、SM570等の高強度鋼から形成されているとともに、略直線状の溶接ビード3(図5参照)と隣接する母材1の表面に打撃痕5を形成するための打撃痕形成面22を有している。打撃痕形成面22は、溶接ビード3を直角に横切る方向(図10Aに示すX方向)に沿って1mm以上5mm以下の曲率半径rで円弧状に湾曲しているとともに、溶接ビード3に沿う長さLが1mm以上10mm以下の寸法で打撃痕形成用工具21の先端に形成されている。
[Second Embodiment]
As shown in FIG. 10A, the striking trace forming tool 21 used when carrying out the fatigue damage suppressing method for a welded structure according to the second embodiment of the present invention is formed of high strength steel such as SM570. And a striking mark forming surface 22 for forming the striking marks 5 on the surface of the base material 1 adjacent to the substantially linear weld bead 3 (see FIG. 5). The hitting mark forming surface 22 is curved in an arc shape with a radius of curvature r of 1 mm or more and 5 mm or less along a direction (X direction shown in FIG. 10A) that crosses the weld bead 3 at a right angle, and a length along the weld bead 3 The length L is a dimension of 1 mm or more and 10 mm or less, and is formed at the tip of the hitting trace forming tool 21.
 打撃痕形成用工具21は溶接ビード3に沿って互いに平行な2つの端面23a,23bを有している。打撃痕形成面22は、端面23a,23bのうちの一方の端面側(例えば端面23a側)に曲率中心Cを偏らせて打撃痕形成用工具21の先端に形成されている。打撃痕形成用工具21は端面23a,23bに対して直角な2つの側面24a,24bを有している。側面24a,24bの先端部は端面23aに向かって細くなるテーパ形状(taper shape)に形成されている。打撃痕形成用工具21は0.15mm以上0.30mm以下の曲率半径で円弧状に湾曲する2つの円弧面25a,25bを有している。円弧面25a,25bは打撃痕形成面22と側面24a,24bとの境界部に形成されている。 The striking trace forming tool 21 has two end faces 23 a and 23 b that are parallel to each other along the weld bead 3. The hitting trace forming surface 22 is formed at the tip of the hitting trace forming tool 21 with the center of curvature C biased to one of the end faces 23a and 23b (for example, the end face 23a side). The hitting trace forming tool 21 has two side surfaces 24a and 24b perpendicular to the end surfaces 23a and 23b. The front ends of the side surfaces 24a and 24b are formed in a taper shape that becomes narrower toward the end surface 23a. The striking trace forming tool 21 has two arc surfaces 25a and 25b that are curved in an arc shape with a radius of curvature of 0.15 mm or more and 0.30 mm or less. The arcuate surfaces 25a and 25b are formed at the boundary between the hitting mark forming surface 22 and the side surfaces 24a and 24b.
 打撃痕形成用工具21を用いて本発明を実施する場合は、端面23bが略直線状の溶接ビード3の止端4と隣接するように打撃痕形成用工具21の位置を調整した後、打撃痕形成面22を母材1の表面に押し当て、略直線状の溶接ビード3と隣接する母材1の表面に最大深さが0.2mm以上の打撃痕5をハンマー衝撃ピーニング法又は超音波衝撃ピーニング法により形成する。次に、打撃痕形成面22を母材1の表面から引き離した後、打撃痕形成用工具21を略直線状の溶接ビード3に沿って所定距離だけ移動させる。そして、再び打撃痕形成面22を母材1の表面に押し当て、母材1の表面に打撃痕5を略直線状の溶接ビード3に沿って連続的に形成する。 When the present invention is carried out using the striking trace forming tool 21, after adjusting the position of the striking trace forming tool 21 so that the end face 23 b is adjacent to the toe 4 of the substantially linear weld bead 3, the striking is performed. The trace forming surface 22 is pressed against the surface of the base material 1, and the impact mark 5 having a maximum depth of 0.2 mm or more is applied to the surface of the base material 1 adjacent to the substantially linear weld bead 3 by the hammer impact peening method or ultrasonic waves. It is formed by impact peening. Next, after the striking trace forming surface 22 is separated from the surface of the base material 1, the striking trace forming tool 21 is moved along the substantially linear weld bead 3 by a predetermined distance. Then, the striking trace forming surface 22 is again pressed against the surface of the base material 1, and the striking trace 5 is continuously formed on the surface of the base material 1 along the substantially linear weld bead 3.
 打撃痕形成面22の曲率半径rを1mm以上5mm以下とした理由は以下の理由からである。すなわち、打撃痕形成面22の曲率半径rが1mm未満では、打撃痕5の幅が狭くなり過ぎ、溶接ビード3の止端4に荷重が負荷されたときに応力集中が打撃痕5に発生しやすくなって疲労き裂の発生原因となる。一方、打撃痕形成面22の曲率半径rが5mmを超えると、打撃痕形成面22の面積が大きくなり過ぎ、最大深さが0.2mm以上の打撃痕5を母材1の表面に形成することが困難となる。このため、打撃痕形成面22の曲率半径rを1mm以上5mm以下とした。 The reason why the radius of curvature r of the hitting mark forming surface 22 is 1 mm or more and 5 mm or less is as follows. In other words, if the radius of curvature r of the hitting mark forming surface 22 is less than 1 mm, the width of the hitting mark 5 becomes too narrow, and stress concentration occurs in the hitting mark 5 when a load is applied to the toe 4 of the weld bead 3. It becomes easy to cause fatigue cracks. On the other hand, if the radius of curvature r of the hitting mark forming surface 22 exceeds 5 mm, the area of the hitting mark forming surface 22 becomes too large, and the hitting mark 5 having a maximum depth of 0.2 mm or more is formed on the surface of the base material 1. It becomes difficult. For this reason, the radius of curvature r of the hitting mark forming surface 22 is set to 1 mm or more and 5 mm or less.
 溶接ビード3に沿う打撃痕形成面22の長さLを1mm以上10mm以下とした理由は以下の理由からである。すなわち、打撃痕形成面22の長さLが1mm未満では、略直線状の溶接ビード3に沿う打撃痕5の長さが1mm未満となり、安定した形状の打撃痕5を母材1の表面に形成することが困難となる。一方、打撃痕形成面22の長さLが10mmを超えると、打撃痕形成面22の面積が大きくなり過ぎ、最大深さが0.2mm以上の打撃痕5を母材1の表面に形成することが困難となる。このため、打撃痕形成面22の溶接ビード3に沿う長さLを1mm以上10mm以下とした。 The reason why the length L of the hitting mark forming surface 22 along the weld bead 3 is 1 mm or more and 10 mm or less is as follows. That is, when the length L of the hitting mark forming surface 22 is less than 1 mm, the length of the hitting mark 5 along the substantially linear weld bead 3 is less than 1 mm, and the hitting mark 5 having a stable shape is formed on the surface of the base material 1. It becomes difficult to form. On the other hand, when the length L of the hitting mark forming surface 22 exceeds 10 mm, the area of the hitting mark forming surface 22 becomes too large, and the hitting mark 5 having a maximum depth of 0.2 mm or more is formed on the surface of the base material 1. It becomes difficult. For this reason, the length L along the weld bead 3 of the hitting trace forming surface 22 is set to 1 mm or more and 10 mm or less.
 円弧面25a,25bの曲率半径を0.15mm以上0.30mm以下とした理由は以下の理由からである。すなわち、円弧面25a,25bの曲率半径が0.15mm未満では、打撃痕5の長手方向端部に応力集中が発生しやすい状態となる。一方、円弧面25a,25bの曲率半径が0.30mmを超えると、母材1の表面に接触する打撃痕形成面22の接触面積が大きくなり過ぎ、最大深さが0.2mm以上の打撃痕5を母材1の表面に形成することが困難となる。このため、円弧面25a,25bの曲率半径を0.15mm以上0.30mm以下とした。 The reason why the radius of curvature of the arc surfaces 25a and 25b is 0.15 mm or more and 0.30 mm or less is as follows. That is, when the radius of curvature of the circular arc surfaces 25a and 25b is less than 0.15 mm, stress concentration is likely to occur at the longitudinal ends of the hitting marks 5. On the other hand, when the radius of curvature of the arc surfaces 25a and 25b exceeds 0.30 mm, the contact area of the hitting mark forming surface 22 that comes into contact with the surface of the base material 1 becomes too large, and the hitting trace having a maximum depth of 0.2 mm or more. It becomes difficult to form 5 on the surface of the base material 1. For this reason, the curvature radius of the circular arc surfaces 25a and 25b is set to 0.15 mm or more and 0.30 mm or less.
〔実施例〕
 図10A乃至10Dに示した打撃痕形成用工具21を用いて溶接ビード3と隣接する母材1(例えば、厚さ:12mm厚×100mm×300mmの鋼板)の表面に打撃痕5を略直線状の溶接ビード3に沿って100mmの長さにわたり連続的に形成した場合の実施例31乃至34を比較例31乃至35と共に表4に示す。表4のRaは打撃痕の最大深さを示す。
〔Example〕
10A to 10D is used to form the striking trace 5 on the surface of the base material 1 adjacent to the weld bead 3 (for example, a steel plate having a thickness of 12 mm thick × 100 mm × 300 mm). Table 4 shows Examples 31 to 34 together with Comparative Examples 31 to 35 in the case of being continuously formed over a length of 100 mm along the weld bead 3. Ra in Table 4 indicates the maximum depth of the hitting mark.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例31は、打撃痕形成面22の曲率半径rが1mm、打撃痕形成面22の長さLが4mm、端面23aと端面23bとの間隔Bが3mmの打撃痕形成用工具21を用いて溶接ビード3と隣接する母材1の表面に最大深さRaが0.2mm以上の打撃痕5を形成した場合を示している。実施例32乃至34は打撃痕形成面22の曲率半径rが3mm、5mm、打撃痕形成面22の長さLが5mm、6mm、端面23aと端面23bとの間隔Bが4mm、5mmの打撃痕形成用工具21を用いて母材1の表面に最大深さRaが0.2mm以上の打撃痕5を形成した場合をそれぞれ示している。実施例31乃至34の打撃痕形成面22と側面24a,24bとの境界部には、曲率半径が0.15mm乃至0.30mmの円弧面を設けた。 In Example 31, a hitting trace forming tool 21 having a radius of curvature r of the hitting trace forming surface 22 of 1 mm, a length L of the hitting trace forming surface 22 of 4 mm, and an interval B between the end face 23a and the end face 23b of 3 mm was used. The case where the impact mark 5 having the maximum depth Ra of 0.2 mm or more is formed on the surface of the base material 1 adjacent to the weld bead 3 is shown. In Examples 32 to 34, the radius of curvature r of the hitting mark forming surface 22 is 3 mm and 5 mm, the length L of the hitting mark forming surface 22 is 5 mm and 6 mm, and the distance B between the end surface 23a and the end surface 23b is 4 mm and 5 mm. The case where the impact mark 5 having the maximum depth Ra of 0.2 mm or more is formed on the surface of the base material 1 by using the forming tool 21 is shown. An arc surface having a radius of curvature of 0.15 mm to 0.30 mm was provided at the boundary between the hitting mark forming surface 22 and the side surfaces 24a and 24b of Examples 31 to 34.
 比較例31乃至33は、図7A,7Bに示す打撃痕形成用工具11の先端に球面状の打撃痕形成面12(直径D:2mm、3mm、4mm、曲率半径r:1.5mm、2mm、4mm)が形成されたものを用いて母材1の表面に最大深さRaが0.2mm以上の打撃痕5を形成した場合をそれぞれ示している。比較例34,35は、図8A,8Bに示す打撃痕形成用工具13の先端に平面状の打撃痕形成面14が正方形状(1辺の長さLが3mm、5mm)に形成されたものを用いて母材1の表面に最大深さRaが0.2mm以上の打撃痕5を形成した場合をそれぞれ示している。表4の残留応力は、母材1の表面に形成された打撃痕5から1mm離れた位置に直径1mmのX線を照射して残留応力を測定した結果を示している。実施例31乃至34及び比較例31乃至35では、打撃痕形成用工具によるハンマーピーニングを空気圧:約6kg/cm、周波数:90Hz、移動速度:0.25mm/秒の条件で行った。 In Comparative Examples 31 to 33, a spherical impact mark forming surface 12 (diameter D: 2 mm, 3 mm, 4 mm, curvature radius r: 1.5 mm, 2 mm, at the tip of the impact mark forming tool 11 shown in FIGS. 7A and 7B, 4 mm) is used, and the impact mark 5 having a maximum depth Ra of 0.2 mm or more is formed on the surface of the base material 1. In Comparative Examples 34 and 35, a flat hitting mark forming surface 14 is formed in a square shape (the length L of one side is 3 mm and 5 mm) at the tip of the hitting mark forming tool 13 shown in FIGS. 8A and 8B. In each of the drawings, the case where the impact mark 5 having the maximum depth Ra of 0.2 mm or more is formed on the surface of the base material 1 is shown. The residual stress in Table 4 shows the result of measuring the residual stress by irradiating a 1 mm diameter X-ray at a position 1 mm away from the impact mark 5 formed on the surface of the base material 1. In Examples 31 to 34 and Comparative Examples 31 to 35, hammer peening with a tool for forming a striking mark was performed under the conditions of air pressure: about 6 kg / cm 2 , frequency: 90 Hz, and moving speed: 0.25 mm / sec.
 実施例31乃至34と比較例31乃至35とを比較すると、比較例31乃至35では、打撃痕5により溶接ビード3の止端4の近傍に導入される圧縮残留応力は230乃至270MPaの範囲内であった。これに対して、実施例31乃至34では、打撃痕5により溶接ビード3の止端4の近傍に導入される圧縮残留応力は330乃至340MPaの範囲内であった。したがって、実施例31乃至34のように、溶接ビード3と隣接する母材1の表面に打撃痕5をハンマーピーニング又は超音波衝撃ピーニングによって形成する打撃痕形成用工具として、溶接ビード3を直角に横切る方向に沿って1mm以上5mm以下の曲率半径rで円弧状に湾曲し、かつ溶接ビード3に沿って互いに平行な2つの端面23a,23bのうち一方の端面側に曲率中心rを偏らせた打撃痕形成面22を先端に有する打撃痕形成用工具21を用い、この打撃痕形成用工具21により最大深さが0.2mm以上の打撃痕5を略直線状の溶接ビード3に沿って連続的に形成することで、溶接ビード3の止端4の近傍に300MPaを超える圧縮残留応力を導入することが可能となるので、鋼橋などの溶接構造物の溶接部に疲労き裂などの疲労損傷が発生することを確実に抑制できる。 Comparing Examples 31 to 34 and Comparative Examples 31 to 35, in Comparative Examples 31 to 35, the compressive residual stress introduced in the vicinity of the toe 4 of the weld bead 3 by the hitting marks 5 is in the range of 230 to 270 MPa. Met. On the other hand, in Examples 31 to 34, the compressive residual stress introduced in the vicinity of the toe 4 of the weld bead 3 by the hitting marks 5 was in the range of 330 to 340 MPa. Therefore, as in Examples 31 to 34, the welding bead 3 is formed at a right angle as a tool for forming a hitting mark 5 by hammer peening or ultrasonic impact peening on the surface of the base material 1 adjacent to the weld bead 3. The center of curvature r 0 is biased to one of the two end faces 23 a and 23 b that are curved in a circular arc shape with a radius of curvature r of 1 mm or more and 5 mm or less along the transverse direction, and parallel to each other along the weld bead 3. A striking trace forming tool 21 having a striking trace forming surface 22 at its tip is used, and this striking trace forming tool 21 causes a striking trace 5 having a maximum depth of 0.2 mm or more along a substantially linear weld bead 3. By continuously forming, it becomes possible to introduce compressive residual stress exceeding 300 MPa in the vicinity of the toe 4 of the weld bead 3, so that a fatigue crack is generated in a welded portion of a welded structure such as a steel bridge. The occurrence of fatigue damage such as can be reliably suppressed.
 溶接ビード3に沿って互いに平行な2つの端面23a,23bのうち一方の端面側に打撃痕形成面22の曲率中心Cを偏らせたことで、端面23a,23bに対して直角な2つの側面24a,24bの形状がテーパ形状となるので、溶接ビード3の止端4の近傍が見えにくい箇所や狭い空間でも溶接ビード3と隣接する母材1の表面に打撃痕5を正確に形成することができる。実施例31乃至34のように、打撃痕形成面22と側面24a,24bとの境界部に0.15mm以上0.30mm以下の曲率半径で円弧状に湾曲する円弧面25a,25bを有する打撃痕形成用工具21を用いることで、打撃痕5の長手方向端部に応力集中が発生することを防止することができる。 Two side surfaces perpendicular to the end surfaces 23a and 23b are obtained by biasing the center of curvature C of the striking trace forming surface 22 to one end surface side of the two end surfaces 23a and 23b parallel to each other along the weld bead 3. Since the shape of 24a, 24b becomes a taper shape, the impact mark 5 is accurately formed on the surface of the base material 1 adjacent to the weld bead 3 even in a place where the vicinity of the toe 4 of the weld bead 3 is difficult to see or in a narrow space. Can do. As in Examples 31 to 34, the hitting marks having arcuate surfaces 25a and 25b that are curved in an arc shape with a radius of curvature of 0.15 mm or more and 0.30 mm or less at the boundary between the hitting mark forming surface 22 and the side surfaces 24a and 24b. By using the forming tool 21, it is possible to prevent stress concentration from occurring at the longitudinal end portion of the hitting scar 5.
 以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述および図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者などによりなされる他の実施の形態、実施例、および運用技術などは全て本発明の範疇に含まれる。 As mentioned above, although the embodiment to which the invention made by the present inventor is applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.
 本発明は、溶接構造物の溶接部に疲労損傷が発生することを抑制する処理に適用することができる。 The present invention can be applied to a process for suppressing the occurrence of fatigue damage in a welded portion of a welded structure.
 1 母材
 2 リブ
 3 溶接ビード
 4 止端
 5 打撃痕
 6,10,12,21 打撃痕形成用工具
 7,11,13,22 打撃痕形成面
 8 面取り部
 23a,23b 端面
 24a,24b 側面
 25a,25b 円弧面
DESCRIPTION OF SYMBOLS 1 Base material 2 Rib 3 Welding bead 4 Toe 5 Impact mark 6, 10, 12, 21 Impact trace formation tool 7, 11, 13, 22 Impact trace formation surface 8 Chamfer 23a, 23b End surface 24a, 24b Side surface 25a, 25b Arc surface

Claims (14)

  1.  溶接構造物の溶接部に疲労損傷が発生することを抑制する溶接構造物の疲労損傷抑制方法であって、
     前記溶接部のうち、ほぼ直線状の溶接ビードと隣接する母材表面には、前記溶接ビードを直角に横切る方向に沿って円弧状に湾曲し、かつ前記溶接ビードに沿って互いに平行な2つの端面のうち一方の端面側に曲率中心を偏らせた打撃痕形成面を先端に有する第1の打撃痕形成用工具を用いて、ハンマーピーニング又は超音波衝撃ピーニングによって打撃痕を形成し、
     ほぼ直線状および曲線状の溶接ビードと隣接する母材表面には、全体形状が円形又は楕円形状に形成された平面状の打撃痕形成面を先端に有する第2の打撃痕形成用工具を用いて、ハンマーピーニング又は超音波衝撃ピーニングによって打撃痕を形成し、
     該第1および第2の打撃痕形成用工具により前記溶接ビードの止端近傍に圧縮残留応力を導入して前記溶接部の疲労損傷を抑制する
     ことを特徴とする溶接構造物の疲労損傷抑制方法。
    A method for suppressing fatigue damage of a welded structure that suppresses occurrence of fatigue damage in a welded portion of the welded structure,
    Among the welds, two surfaces that are curved in an arc along a direction perpendicular to the weld bead and parallel to each other along the weld bead are formed on the surface of the base material adjacent to the substantially straight weld bead. Using the first striking trace forming tool having a striking trace forming surface with the center of curvature biased to one end face side of the end faces, a striking trace is formed by hammer peening or ultrasonic impact peening,
    On the surface of the base material adjacent to the substantially linear or curved weld bead, a second hitting mark forming tool having a flat hitting mark forming surface formed in a circular or elliptical shape at the tip is used. To form a hitting mark by hammer peening or ultrasonic impact peening,
    A method for suppressing fatigue damage of a welded structure, comprising introducing a compressive residual stress in the vicinity of the toe of the weld bead by the first and second tool for forming a hitting mark to suppress fatigue damage of the welded portion. .
  2.  前記第2の打撃痕形成用工具の打撃痕形成面は、前記溶接ビードの止端より前記母材側に5mmまでの領域において、溶接ビードに沿う方向の長さが3.0mm以上6.0mm以下の寸法を有し、前記第2の打撃痕形成用工具により最大深さが0.03mm以上0.50mm未満の打撃痕を前記溶接ビードに沿って連続的に形成することを特徴とする請求項1に記載の溶接構造物の疲労損傷抑制方法。 The striking trace forming surface of the second striking trace forming tool has a length in the direction along the weld bead of 3.0 mm or more and 6.0 mm in a region of 5 mm from the toe of the weld bead to the base metal side. A striking mark having the following dimensions and having a maximum depth of 0.03 mm or more and less than 0.50 mm is continuously formed along the weld bead by the second striking mark forming tool. Item 2. A method for suppressing fatigue damage of a welded structure according to Item 1.
  3.  前記第2の打撃痕形成用工具として、平坦でかつ半径が1.5mm以上3.0mm以下の円形で形成された打撃痕形成面を先端に有する打撃痕形成用工具を用いることを特徴とする請求項2に記載の溶接構造物の疲労損傷抑制方法。 As the second hitting mark forming tool, a hitting mark forming tool having a hitting mark forming surface which is flat and formed in a circle having a radius of 1.5 mm or more and 3.0 mm or less is used. The method for suppressing fatigue damage of a welded structure according to claim 2.
  4.  前記第2の打撃痕形成用工具として、前記打撃痕形成面の周囲に0.15mm以上0.60mm以下の曲率半径で円弧状に湾曲する面取り部を有する打撃痕形成用工具を用いることを特徴とする請求項3に記載の溶接構造物の疲労損傷抑制方法。 As the second hitting mark forming tool, a hitting mark forming tool having a chamfered portion curved in an arc shape with a radius of curvature of 0.15 mm or more and 0.60 mm or less around the hitting mark forming surface is used. The method for suppressing fatigue damage of a welded structure according to claim 3.
  5.  前記溶接ビードの止端より前記母材側に0.5mm離れた位置から3mmまでの領域に最大深さが0.1mm以上0.5mmの打撃痕を形成することを特徴とする請求項3又は請求項4に記載の溶接構造物の疲労損傷抑制方法。 The striking trace having a maximum depth of 0.1 mm or more and 0.5 mm is formed in a region from a position 0.5 mm away from the toe of the weld bead to the base metal side to 3 mm. The method for suppressing fatigue damage of a welded structure according to claim 4.
  6.  前記第2の打撃痕形成用工具として、前記溶接ビードを直角に横切る方向に沿う幅が1.5mm以上3.0mm以下、前記溶接ビードに沿う長さが3.0mm以上6.0mm以下、かつ全体形状が楕円形状に形成された平面状の打撃痕形成面を先端に有する打撃痕形成用工具を用いることを特徴とする請求項2に記載の溶接構造物の疲労損傷抑制方法。 As the second impact scar forming tool, a width along the direction perpendicular to the weld bead is 1.5 mm or more and 3.0 mm or less, a length along the weld bead is 3.0 mm or more and 6.0 mm or less, and 3. The method for suppressing fatigue damage of a welded structure according to claim 2, wherein a tool for forming a hitting mark having a flat hitting mark forming surface formed in an elliptical shape at the tip is used.
  7.  前記第2の打撃痕形成用工具として、前記打撃痕形成面の周囲に0.15mm以上0.60mm以下の曲率半径で円弧状に湾曲する面取り部を有する打撃痕形成用工具を用いることを特徴とする請求項6に記載の溶接構造物の疲労損傷抑制方法。 As the second hitting mark forming tool, a hitting mark forming tool having a chamfered portion curved in an arc shape with a radius of curvature of 0.15 mm or more and 0.60 mm or less around the hitting mark forming surface is used. The method for suppressing fatigue damage of a welded structure according to claim 6.
  8.  前記第2の打撃痕形成用工具として、前記打撃痕形成面に対する垂直方向において傾斜する側面を有する円錐台形状に形成された打撃痕形成用工具を用いることを特徴とする請求項2乃至請求項7のうち、いずれか1項に記載の溶接構造物の疲労損傷抑制方法。 The tool for forming an impact mark formed in a truncated cone shape having a side surface inclined in a direction perpendicular to the impact mark forming surface is used as the second impact mark forming tool. 7. The method for suppressing fatigue damage of a welded structure according to claim 1.
  9.  前記第1の打撃痕形成用工具の打撃痕形成面は、溶接ビードを直角に横切る方向に沿って1mm以上5mm以下の曲率半径で円弧状に湾曲し、前記第1の打撃痕形成用工具により最大深さが0.2mm以上の打撃痕を前記溶接ビードに沿って連続的に形成することを特徴とする請求項1に記載の溶接構造物の疲労損傷抑制方法。 The striking trace forming surface of the first striking trace forming tool is curved in an arc shape with a curvature radius of 1 mm or more and 5 mm or less along a direction perpendicular to the weld bead, and the first striking trace forming tool The method for suppressing fatigue damage of a welded structure according to claim 1, wherein striking traces having a maximum depth of 0.2 mm or more are continuously formed along the weld bead.
  10.  前記第1の打撃痕形成用工具として、前記溶接ビードに沿う前記打撃痕形成面の長さが1mm以上10mm以下の打撃痕形成用工具を用いることを特徴とする請求項9に記載の溶接構造物の疲労損傷抑制方法。 The welding structure according to claim 9, wherein a tool for forming an impact mark having a length of the impact mark forming surface along the weld bead of 1 mm or more and 10 mm or less is used as the first impact mark forming tool. Fatigue damage control method.
  11.  前記第1の打撃痕形成用工具として、前記端面に対して直角な2つの側面を有し、該側面の形状が前記打撃痕形成面に対してテーパ形状に形成された打撃痕形成用工具を用いることを特徴とする請求項9又は請求項10に記載の溶接構造物の疲労損傷抑制方法。 As the first striking trace forming tool, there is provided a striking trace forming tool having two side surfaces perpendicular to the end face, and the shape of the side face is tapered with respect to the striking trace forming surface. The method for suppressing fatigue damage of a welded structure according to claim 9 or 10, wherein the method is used.
  12.  前記第1の打撃痕形成用工具として、前記打撃痕形成面と前記側面との境界部に0.15mm以上0.30mm以下の曲率半径で円弧状に湾曲する円弧面を有する打撃痕形成用工具を用いることを特徴とする請求項11に記載の溶接構造物の疲労損傷抑制方法。 As the first striking trace forming tool, a striking trace forming tool having an arc surface curved in an arc shape with a radius of curvature of 0.15 mm or more and 0.30 mm or less at a boundary portion between the striking trace forming surface and the side surface. The method for suppressing fatigue damage of a welded structure according to claim 11, wherein:
  13.  請求項1乃至請求項12のうち、いずれか1項に記載の溶接構造物の疲労損傷抑制方法において用いられる打撃痕形成用工具。 A tool for forming an impact mark used in the fatigue damage suppression method for a welded structure according to any one of claims 1 to 12.
  14.  請求項1乃至請求項12のうち、いずれか1項に記載の溶接構造物の疲労損傷抑制方法によって疲労損傷が抑制された溶接構造物。 A welded structure in which fatigue damage is suppressed by the method for suppressing fatigue damage of a welded structure according to any one of claims 1 to 12.
PCT/JP2012/080768 2011-11-29 2012-11-28 Method for minimizing fatigue damage in welded structure, tool for forming strike mark, and welded structure WO2013081015A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
IN3558CHN2014 IN2014CN03558A (en) 2011-11-29 2012-11-28
KR1020147010738A KR101577261B1 (en) 2011-11-29 2012-11-28 Method for preventing fatigue damage in welded structures, tool for forming impact area, and welded structure
CN201280058280.0A CN103958116B (en) 2011-11-29 2012-11-28 Fatigue damage suppressing method, the strike trace of welded structure are formed with instrument and welded structure

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2011-260544 2011-11-29
JP2011-260548 2011-11-29
JP2011260545 2011-11-29
JP2011-260545 2011-11-29
JP2011260546 2011-11-29
JP2011-260547 2011-11-29
JP2011260544 2011-11-29
JP2011-260546 2011-11-29
JP2011260548 2011-11-29
JP2011260547 2011-11-29

Publications (1)

Publication Number Publication Date
WO2013081015A1 true WO2013081015A1 (en) 2013-06-06

Family

ID=48535466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080768 WO2013081015A1 (en) 2011-11-29 2012-11-28 Method for minimizing fatigue damage in welded structure, tool for forming strike mark, and welded structure

Country Status (4)

Country Link
KR (1) KR101577261B1 (en)
CN (1) CN103958116B (en)
IN (1) IN2014CN03558A (en)
WO (1) WO2013081015A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108268675B (en) * 2016-12-30 2021-09-07 北京金风科创风电设备有限公司 Fatigue damage determination method and fatigue damage determination device
CN107460299B (en) * 2017-07-04 2021-03-09 北京理工大学 High-energy sound beam regulation and control method for residual stress of high-speed rail wheel pair tread
CN107686882B (en) * 2017-07-04 2021-03-09 北京理工大学 High-speed rail wheel pair tread residual stress high-energy sound beam eliminating device
CN111132793B (en) * 2017-09-27 2021-09-07 杰富意钢铁株式会社 Hammering method for lap fillet welded joint and welded structure
JP6696604B1 (en) * 2019-03-08 2020-05-20 Jfeスチール株式会社 Needle peening method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000802A (en) * 2006-06-23 2008-01-10 Nippon Steel Corp Method for improving fatigue strength of lap welded metal joint
JP2009504397A (en) * 2005-08-19 2009-02-05 ユー.アイ.ティー., エル.エル.シー. Vibration system and tool for ultrasonic shock treatment
JP2010125534A (en) * 2008-11-25 2010-06-10 Nagoya Univ Method for repairing fatigue cracking of steel structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08118012A (en) * 1994-10-31 1996-05-14 Mitsubishi Heavy Ind Ltd Method for preventing generation of fatigue crack
JP4987816B2 (en) * 2008-07-28 2012-07-25 新日本製鐵株式会社 Automatic impact processing method and automatic impact processing apparatus for improving the fatigue characteristics of welded joints

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504397A (en) * 2005-08-19 2009-02-05 ユー.アイ.ティー., エル.エル.シー. Vibration system and tool for ultrasonic shock treatment
JP2008000802A (en) * 2006-06-23 2008-01-10 Nippon Steel Corp Method for improving fatigue strength of lap welded metal joint
JP2010125534A (en) * 2008-11-25 2010-06-10 Nagoya Univ Method for repairing fatigue cracking of steel structure

Also Published As

Publication number Publication date
KR101577261B1 (en) 2015-12-14
CN103958116A (en) 2014-07-30
CN103958116B (en) 2016-03-23
KR20140066250A (en) 2014-05-30
IN2014CN03558A (en) 2015-10-09

Similar Documents

Publication Publication Date Title
WO2013081015A1 (en) Method for minimizing fatigue damage in welded structure, tool for forming strike mark, and welded structure
JP2014014831A (en) Fatigue strength improving method of weld zone and welded joint
TWI396600B (en) Out-of-plane gusset weld joints and manufacturing method therefor
JP2011131260A (en) Method for increasing fatigue strength of weld zone, and weld joint
JPWO2011092831A1 (en) Fatigue property improving impact treatment apparatus for welded joint, fatigue property improving method, and method for manufacturing welded joint with improved fatigue property
JP5251486B2 (en) Machining method using ultrasonic impact treatment
KR102243326B1 (en) Method of peening lap fillet welded joint and welded structures
JP5844551B2 (en) Manufacturing method of welded joint
JP6495569B2 (en) Tool for forming impact marks
JP5898498B2 (en) Method for improving fatigue strength of welded part and welded joint
JP5919986B2 (en) Hammer peening treatment method and welded joint manufacturing method using the same
JP4895407B2 (en) Peening method and welded joint using it
JP2013233590A (en) Welded joint superior in fatigue characteristic
JP5977077B2 (en) Welding peening method
JP5955752B2 (en) Method for suppressing fatigue damage of welded structure and tool for forming hitting marks
JP6051817B2 (en) Method for suppressing fatigue damage of welded structure, tool for forming impact mark used in the method, and welded structure
JP2013136094A (en) Weld structure of steel
JP6017938B2 (en) Method for suppressing fatigue damage of welded structure and tool for forming hitting marks
JP6339760B2 (en) Method for suppressing fatigue damage of welded structure and tool for forming hitting marks
JP5599652B2 (en) Welded joint
WO2012164774A1 (en) Welded joint
JP6747416B2 (en) Tool for forming impact mark and method for producing welded joint
JP2013136092A (en) Method for suppressing fatigue damage of welded structure
JP6696604B1 (en) Needle peening method
JP5776393B2 (en) Method for improving fatigue performance of welded structures

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280058280.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853683

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147010738

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853683

Country of ref document: EP

Kind code of ref document: A1