[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013073787A1 - 다중 요소 반송파 시스템에서 상향링크 전송전력의 제어장치 및 방법 - Google Patents

다중 요소 반송파 시스템에서 상향링크 전송전력의 제어장치 및 방법 Download PDF

Info

Publication number
WO2013073787A1
WO2013073787A1 PCT/KR2012/009177 KR2012009177W WO2013073787A1 WO 2013073787 A1 WO2013073787 A1 WO 2013073787A1 KR 2012009177 W KR2012009177 W KR 2012009177W WO 2013073787 A1 WO2013073787 A1 WO 2013073787A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
uplink
transmission power
prach
serving cell
Prior art date
Application number
PCT/KR2012/009177
Other languages
English (en)
French (fr)
Inventor
권기범
안재현
정명철
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48429813&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013073787(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP12850075.8A priority Critical patent/EP2782405B1/en
Priority to US14/357,557 priority patent/US9313743B2/en
Priority to CN201280056210.1A priority patent/CN103931243B/zh
Priority to JP2014540937A priority patent/JP5763845B2/ja
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Publication of WO2013073787A1 publication Critical patent/WO2013073787A1/ko
Priority to US15/077,466 priority patent/US9713095B2/en
Priority to US15/653,355 priority patent/US10045304B2/en
Priority to US16/028,609 priority patent/US20180324706A1/en
Priority to US16/293,321 priority patent/US10609650B2/en
Priority to US16/826,054 priority patent/US10945217B2/en
Priority to US17/195,593 priority patent/US11606757B2/en
Priority to US18/120,121 priority patent/US11924773B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to wireless communication, and more particularly, to an apparatus and method for controlling uplink transmission power in a multi-element carrier system.
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) and Institute of Electrical and Electronics Engineers (IEEE) 802.16m are being developed as candidates for the next generation wireless communication system.
  • the 802.16m specification implies two aspects: past continuity, a modification to the existing 802.16e specification, and future continuity, a specification for the next generation of IMT-Advanced systems. Accordingly, the 802.16m standard requires all the advanced requirements for the IMT-Advanced system to be maintained while maintaining compatibility with the Mobile WiMAX system based on the 802.16e standard.
  • Wireless communication systems generally use one bandwidth for data transmission.
  • the second generation wireless communication system uses a bandwidth of 200KHz ⁇ 1.25MHz
  • the third generation wireless communication system uses a bandwidth of 5MHz ⁇ 10MHz.
  • recent 3GPP LTE or 802.16m continues to expand its bandwidth to 20 MHz or more.
  • it is necessary to increase the bandwidth it is necessary to increase the bandwidth.
  • supporting a large bandwidth can cause a large power consumption.
  • a multiple component carrier system which defines a carrier having one bandwidth and a center frequency and enables transmission and / or reception of data over a wide band through a plurality of carriers.
  • one or more carriers By using one or more carriers, both narrow and wide bandwidths are supported simultaneously. For example, if one carrier corresponds to a bandwidth of 5 MHz, four carriers are used to support a maximum bandwidth of 20 MHz.
  • the terminal may determine the uplink transmission power according to scheduling information such as a transmission power control (TPC), a modulation and coding scheme (MCS), and a bandwidth allocated by the base station.
  • TPC transmission power control
  • MCS modulation and coding scheme
  • the uplink transmission power of the component carrier must be taken into consideration comprehensively, so that power control of the terminal becomes more complicated. This complexity may cause problems in terms of maximum transmission power of the terminal.
  • the terminal should be operated by a power lower than the maximum transmission power that is the transmission power of the allowable range. If the base station schedules the transmission power more than the maximum transmission power, it may cause a problem that the actual uplink transmission power exceeds the maximum transmission power. This is because power control of a multi-element carrier is not clearly defined, or information on uplink transmission power is not sufficiently shared between the terminal and the base station.
  • An object of the present invention is to provide an apparatus and method for controlling uplink transmission power in a multi-component carrier system.
  • Another object of the present invention is to provide an apparatus and method for allocating transmission power to a physical uplink channel in a plurality of serving cells according to a priority.
  • Another technical problem of the present invention is to provide an apparatus and method for determining a priority for allocating transmission power in a physical uplink channel in a plurality of serving cells.
  • a method of controlling uplink transmission power by a terminal in a multi-component carrier system may include generating an uplink signal to be transmitted on a first serving cell and receiving random access initiation information from the base station instructing the initiation of a random access procedure for the second serving cell. Estimating surplus from a first transmission power scheduled for transmission of the uplink signal and a second transmission power scheduled for transmission of a physical random access channel (PRACH) to which a random access preamble is mapped. Calculating an estimated power headroom, and adjusting the first transmission power or the second transmission power based on a power allocation priority when the estimated surplus power is less than a threshold power.
  • PRACH physical random access channel
  • the uplink transmission power can be efficiently distributed.
  • power allocation is based on simple and clear rules, which can improve performance while reducing system complexity.
  • FIG. 1 shows an example of a wireless communication system to which the present invention is applied.
  • FIG. 2 shows intra-band contiguous carrier aggregation
  • FIG. 3 shows the same non-contiguous carrier aggregation
  • FIG. 4 shows the same inter-band carrier aggregation.
  • FIG 5 shows a connection configuration between a downlink component carrier and an uplink component carrier in a multi-carrier system.
  • FIG. 6 is an example of a graph showing surplus power on the time-frequency axis to which the present invention is applied.
  • FIG. 7 is a flowchart illustrating a method of controlling uplink transmission power by a terminal according to an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a method of controlling uplink transmission power by a terminal according to another embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating a method of controlling uplink transmission power according to an embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating a terminal and a base station for controlling uplink transmission power according to an embodiment of the present invention.
  • the present specification describes a wireless communication network
  • the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that manages the wireless communication network, Work may be done at a terminal coupled to the wireless network.
  • FIG. 1 shows an example of a wireless communication system to which the present invention is applied.
  • the wireless communication system 10 is widely deployed to provide various communication services such as voice and packet data.
  • the wireless communication system 10 includes at least one base station (BS) 11.
  • Each base station 11 provides a communication service for a specific geographic area (generally called a cell) 15a, 15b, 15c.
  • the cell can in turn be divided into a number of regions (called sectors).
  • a user equipment (UE) 12 may be fixed or mobile, and may include a user equipment (UE), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms.
  • UE user equipment
  • MT mobile terminal
  • UT user terminal
  • SS subscriber station
  • PDA personal digital assistant
  • wireless modem wireless modem
  • handheld device handheld device
  • the base station 11 generally refers to a station communicating with the terminal 12, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), and an access point.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • the cell should be interpreted in a comprehensive sense of a part of the area covered by the base station 11 and encompasses various coverage areas such as megacells, macrocells, microcells, picocells and femtocells.
  • downlink means communication from the base station 11 to the terminal 12
  • uplink means communication from the terminal 12 to the base station 11.
  • the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12.
  • the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-FDMA
  • OFDM-FDMA OFDM-TDMA
  • various multiple access schemes such as OFDM-CDMA may be used.
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
  • TDD time division duplex
  • FDD frequency division duplex
  • Layers of the radio interface protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) model, which is well known in communication systems. (Second layer) and L3 (third layer).
  • OSI Open System Interconnection
  • the Physical Layer which is the first layer, is connected to the upper Media Access Control (MAC) layer through a transport channel, and the transport layer between the MAC and the physical layer through this transport channel.
  • the data moves.
  • data is moved between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
  • a physical downlink control channel (PDCCH) for transmitting physical control information is a HARQ (hybrid automatic repeat) associated with a resource allocation of a paging channel (PCH) and a downlink shared channel (DL-SCH) and DL-SCH to a UE. request) Provides information.
  • the PDCCH may carry an uplink grant informing the UE of resource allocation of uplink transmission.
  • the PCFICH physical control format indicator channel
  • PHICH physical Hybrid ARQ Indicator Channel
  • the physical uplink control channel (PUCCH) carries uplink control information such as HARQ ACK / NAK, scheduling request and channel quality information (CQI) for downlink transmission.
  • the physical uplink shared channel (PUSCH) carries an uplink shared channel (UL-SCH).
  • the situation in which the UE transmits a PUCCH or a PUSCH is as follows.
  • the UE configures a PUCCH for at least one or more of information on a Precoding Matrix Index (PMI) or a Rank Indicator (RI) selected based on the CQI or the measured spatial channel information, and periodically transmits the PUCCH to the base station.
  • the terminal transmits information on ACK / NACK (Acknowledgement / non-Acknowledgement) for the downlink data received from the base station to the base station after a predetermined number of subframes after receiving the downlink data. For example, when downlink data is received in the nth subframe, the PUCCH configured with ACK / NACK information for the downlink data is transmitted in the n + 4 subframe.
  • the terminal may send the ACK / NACK information to the PUSCH. .
  • the second data layer is composed of a MAC layer, an RLC layer, and a PDCP layer.
  • the MAC layer is a layer responsible for mapping between logical channels and transport channels.
  • the MAC layer selects an appropriate transport channel for transmitting data transmitted from the RLC layer, and supplies necessary control information to a header of a MAC protocol data unit (PDU).
  • PDU MAC protocol data unit
  • Add to The RLC layer is located on top of the MAC to support reliable transmission of data.
  • the RLC layer segments and concatenates RLC Service Data Units (SDUs) delivered from a higher layer to configure data of an appropriate size for a wireless section.
  • the RLC layer of the receiver supports a reassemble function of data to recover the original RLC SDU from the received RLC PDUs.
  • the PDCP layer is used only in the packet switched area, and may compress and transmit the header of the IP packet to increase the transmission efficiency of packet data in the wireless channel.
  • a radio resource control (RRC) layer which is a third layer, serves to control a lower layer and exchanges radio resource control information between the terminal and the network.
  • RRC states such as an idle mode and an RRC connected mode are defined according to the communication state of the UE, and transition between RRC states is possible as needed.
  • the RRC layer defines various procedures related to radio resource management such as system information broadcasting, RRC connection management procedure, multi-element carrier setup procedure, radio bearer control procedure, security procedure, measurement procedure, mobility management procedure (handover), etc. do.
  • Carrier aggregation supports a plurality of component carriers, also referred to as spectrum aggregation or bandwidth aggregation (bandwidth aggregation). Individual unit carriers bound by carrier aggregation are called component carriers (CC). Each CC is defined by a bandwidth and a center frequency. Carrier aggregation is introduced to support increased throughput, to prevent cost increase due to the introduction of wideband radio frequency (RF) devices, and to ensure compatibility with existing systems. For example, if five CCs are allocated as granularity in a carrier unit having a 5 MHz bandwidth, a bandwidth of up to 25 MHz may be supported.
  • RF radio frequency
  • Carrier aggregation includes intra-band contiguous carrier aggregation as shown in FIG. 2, intra-band non-contiguous carrier aggregation as shown in FIG. 3, and inter-band carrier as shown in FIG. Can be divided into aggregates.
  • in-band adjacent carrier aggregation is performed between consecutive CCs in the same band.
  • the aggregated CCs CC # 1, CC # 2, CC # 3, ..., CC #N are all adjacent.
  • in-band non-adjacent carrier aggregation is achieved between discrete CCs.
  • the aggregated CCs CC # 1 and CC # 2 are spaced apart from each other by a specific frequency.
  • CC # 1 which are aggregated CCs, exist in band # 1
  • CC # 2 exists in band # 2.
  • the number of CCs aggregated between the downlink and the uplink may be set differently.
  • the case where the number of downlink CCs and the number of uplink CCs are the same is called symmetric aggregation, and when the number is different, it is called asymmetric aggregation.
  • the size (ie bandwidth) of the CCs may be different. For example, assuming that 5 CCs are used for a 70 MHz band configuration, 5 MHz CC (carrier # 0) + 20 MHz CC (carrier # 1) + 20 MHz CC (carrier # 2) + 20 MHz CC (carrier # 3) It may be configured as + 5MHz CC (carrier # 4).
  • the multiple component carrier system refers to a system supporting carrier aggregation.
  • adjacent carrier aggregation or non-adjacent carrier aggregation may be used, and either symmetric aggregation or asymmetric aggregation may be used.
  • FIG. 5 shows linkage between a downlink component carrier and an uplink component carrier in a multi-component carrier system.
  • DL CCs downlink component carriers
  • UL CCs uplink component carriers
  • Di is an index of DL CC
  • At least one DL CC is a PCC and the rest is an SCC. Each index does not coincide with the order of the component carriers or the position of the frequency band of the component carriers.
  • At least one UL CC is a PCC, and the rest is an SCC.
  • D1 and U1 are PCCs
  • D2, U2, D3, and U3 are SCCs.
  • the index of the major carrier may be set to 0, and one of the other natural numbers may be the index of the subcarrier.
  • the index of the downlink / uplink component carrier may be set to be the same as the index of the component carrier (or serving cell) including the corresponding downlink / uplink component carrier.
  • only the component carrier index or the subcarrier index may be set, and the uplink / uplink component carrier index included in the component carrier may not exist.
  • the DL CC and the UL CC may be configured to be connected 1: 1.
  • D1 is connected to U1
  • D2 is U2
  • D3 is U1 1: 1.
  • the UE establishes a connection between the DL CCs and the UL CCs through system information transmitted by the logical channel BCCH or UE-specific RRC message transmitted by the DCCH.
  • This connection is called a system information block 1 (SIB1) connection or a system information block 2 (SIB2) connection.
  • SIB1 system information block 1
  • SIB2 system information block 2
  • the terminal may be set cell specific (cell specific), or may be set UE specific.
  • the major carrier may be cell-specific and the sub-carrier may be terminal-specific.
  • the downlink component carrier and the uplink component carrier, as well as 1: 1 connection configuration and can also establish a connection configuration of 1: n or n: 1.
  • the downlink component carrier corresponding to the primary serving cell PSC is referred to as a downlink component carrier (DL PCC), and the uplink component carrier corresponding to the main serving cell is referred to as an uplink component carrier (UL PCC).
  • DL PCC downlink component carrier
  • UPC uplink component carrier
  • DL SCC downlink sub-component carrier
  • UL SCC uplink secondary
  • Only one downlink component carrier (DL CC) may correspond to one serving cell, and the downlink component carrier and uplink component carrier (UL CC) may correspond together.
  • the main serving cell and the secondary serving cell have the following characteristics.
  • the primary serving cell is used for transmission of the PUCCH.
  • the main serving cell is always activated, while the secondary serving cell is a carrier that is activated / deactivated according to a specific condition.
  • the main serving cell may be changed by a security key change or a handover procedure accompanying a RACH (Random Access CHannel) procedure.
  • RACH Random Access CHannel
  • NAS non-access stratum
  • the main serving cell is always composed of a pair of DL PCC and UL PCC.
  • a different CC may be set as a primary serving cell for each terminal.
  • RRC layer may be used to transmit system information of a dedicated secondary serving cell.
  • a plurality of serving cells may be configured in the terminal.
  • a terminal serving cell and one secondary serving cell may be configured in the terminal, or the primary serving cell and a plurality of secondary serving cells may be configured.
  • the uplink channel may be transmitted simultaneously or in parallel on a plurality of serving cells configured in the terminal.
  • the uplink channel includes a physical uplink control channel (PUCCH), a physical uplink common channel (PUSCH), and a physical random access channel (PRACH).
  • a random access channel (RACH) is mapped to the PRACH.
  • An example in which a plurality of uplink channels are transmitted in parallel on a plurality of serving cells is as follows.
  • the PUCCH may be transmitted on the primary serving cell and the PRACH may be transmitted on the secondary serving cell in parallel.
  • a PUSCH on a primary serving cell and a PRACH on a secondary serving cell may be transmitted in parallel.
  • the terminal In order for a terminal to transmit a plurality of uplink channels on a plurality of serving cells, power for transmitting a plurality of uplink channels is required.
  • the maximum transmission power configured in the terminal is limited, and may be insufficient to transmit all uplink channels. For example, suppose that the maximum transmission power configured in the terminal is 10W, 7W and 5W are required to transmit the PRACH on the primary serving cell and the PUSCH on the secondary serving cell, respectively. Since the transmission power of PUSCH and PRACH is 12W in total, the maximum transmission power is insufficient by 2W. Accordingly, at least one of the PUSCH and the PRACH may be allocated less power than that required for the transmission. In order to solve this problem, the terminal may allocate a given uplink transmission power to each channel based on the priority. This priority is referred to as power allocation priority.
  • the UE first allocates power of 10W to either PUSCH or PRACH, and allocates the rest to transmission of another channel. For example, if the PUSCH has a high priority, the UE may assign 7W to the PUSCH and allocate only the remaining 3W to the transmission of the PRACH. In this case, all the power required for the transmission of the PUSCH is allocated, and the power required for the transmission of the PRACH is allocated as little as 2W. On the contrary, when the PRACH has a high priority, the UE may assign 5W to the PRACH and allocate only the remaining 5W to the PUSCH transmission. In this case, the power required for the transmission of the PUSCH is allocated as little as 2W, and the power required for the transmission of the PRACH is allocated.
  • power allocation priority has been described using only PUSCH and PRACH as an example, power allocation priority may be assigned between all physical uplink channels such as PUCCH, PUSCH, PRACH, and SRS.
  • One factor in determining power allocation priority is the reliability of the channel. Channels for which higher reliability should be guaranteed have a higher power allocation priority. The higher the signal transmitted, the higher the reliability of reception.
  • the base station can detect a discontinuous transmission (DTX) for the PUSCH, so even if the reliability of the PUSCH is low, there is no significant effect on the system performance.
  • the base station may not immediately respond to the uplink resource request of the terminal may cause system performance degradation. That is, the PRACH is required to have higher reliability than the PUSCH, and the PRACH may have a higher power allocation priority between the PUSCH and the PRACH.
  • the PUSCH has a higher power allocation priority than the PRACH.
  • PUCCH carries important control information such as ACK / NACK signal, channel status information, rank indicator, and so on, and reliability of PUCCH is higher than PRACH. This is because, when the base station fails to receive the ACK / NACK signal for the downlink data, the downlink transmission or retransmission may be cumulatively delayed and cause system performance degradation. Therefore, the PUCCH has a high power allocation priority between the PUCCH and the PRACH.
  • the sounding reference signal has the lowest power allocation priority when compared to any physical uplink channel.
  • the sounding reference signal is a reference signal used for uplink scheduling.
  • the terminal sends a sounding reference signal through the uplink channel, and the base station determines the uplink channel state from the sounding reference signal and performs scheduling for uplink transmission.
  • the surplus power means extra power that can be additionally used in addition to the power currently used by the UE for uplink transmission. For example, suppose a terminal having a maximum transmit power of 10W, which is an allowable transmit power. And suppose that the current terminal uses a power of 9W in the frequency band of 10Mhz. Since the terminal can additionally use 1W, surplus power becomes 1W.
  • PHR Power Headroom Report
  • the surplus power (PPH) is defined as the difference between the maximum transmit power P cmax configured in the terminal and the estimated power P estimated for uplink transmission as expressed by Equation 1, and is expressed in dB.
  • the surplus power is the P PH value except for the above P estimated which is the sum of the transmit powers used in each serving cell in the maximum transmit power of the terminal set by the base station.
  • the maximum transmit power may be defined individually for each serving cell, for example, the maximum transmit power in the serving cell c is expressed as P cmax, c .
  • Equation 2 is a case where only the PUSCH is transmitted on the uplink of the serving cell c, which is called Type 1.
  • Surplus power according to type 1 is referred to as type 1 surplus power (P PH, c-type1 ).
  • P estimated, c is estimated power P PUSCH, c for PUSCH transmission in serving cell c and estimated power P PUCCH, c for physical uplink control channel (PUCCH) transmission. Is equal to the sum of Therefore, in this case, the surplus power can be obtained by the equation (3). Equation 3 is a case where the PUSCH and the PUCCH are simultaneously transmitted in the uplink of the serving cell c. Surplus power according to type 2 is referred to as type 2 surplus power (P PH, c-type2 ).
  • the serving cell c includes a main serving cell.
  • the surplus power according to Equation 3 is represented as a graph in the time-frequency axis as shown in FIG. This shows the surplus power for one serving cell c.
  • the set maximum transmit power P cmax of the terminal is composed of P PH 605, P PUSCH 610, and P PUCCH 615.
  • P PUSCH the P PUSCH
  • P PUCCH the P cmax power
  • P PH the P PH
  • Each power is calculated in units of a transmission time interval (TTI).
  • the primary serving cell is the only serving cell having a UL PCC capable of transmitting PUCCH.
  • the operation and parameters for the method of reporting surplus power determined by Equation 3 may be defined. If the terminal receives the uplink grant from the base station to transmit the PUSCH in the main serving cell and simultaneously transmits the PUCCH in the same subframe according to a predetermined rule, the terminal at the time when the surplus power report is triggered And all surplus power according to Equation 3 are transmitted to the base station.
  • the situation in which the power allocation priority is a problem is caused when the UE transmits a PRACH on a second serving cell in parallel when the UE transmits a PUCCH or a PUSCH or an SRS or a PUCCH and a PUSCH on a first serving cell. Is less than 0 dB.
  • surplus power is calculated by Equation 2.
  • the maximum transmit power P cmax is reduced by the transmit power of the PRACH. This is because the power coordination value, which is a parameter for reducing the magnitude of the maximum transmit power P cmax , becomes large due to the PRACH.
  • Equation 2 decreases P cmax , the amount of surplus power becomes smaller than 0 dB.
  • the UE selectively transmits only one of the PUSCH and the PRACH according to the power allocation priority, or transmits both the PUSCH and the PRACH but reduces the transmission power of any one.
  • FIG. 7 is a flowchart illustrating a method of controlling uplink transmission power by a terminal according to an embodiment of the present invention.
  • the terminal generates an uplink signal scheduled to be transmitted on the first serving cell of the first subframe (S700).
  • the uplink signal includes, for example, a physical uplink channel or SRS.
  • the physical uplink channel includes at least one of a PUCCH and a PUSCH.
  • Two or more serving cells are configured in the terminal, and the first serving cell includes the main serving cell.
  • the terminal receives random access start information (RA initiate information) from the base station for instructing the start of the random access procedure on the second serving cell of the first subframe (S705).
  • the random access start information is for the second serving cell.
  • the random access start information is defined in the form of downlink control information (DCI).
  • DCI downlink control information
  • the DCI is mapped to the PDCCH and transmitted from the base station to the terminal. This may be called a PDCCH order.
  • the DCI may be DCI format 1A and may be defined as shown in the following table.
  • the random access procedure according to the command of the base station may be contention-based or non- contention-based, depending on the value of the preamble index.
  • a contention based random access procedure is performed.
  • the UE selects an arbitrary preamble, sets the PRACH mask index value to '0' and then transmits the PRACH.
  • the PRACH mask index is usable time / frequency resource information.
  • the usable time / frequency resource information varies according to a frequency division duplex (FDD) system and a time division duplex (TDD) system.
  • the second serving cell includes a secondary serving cell. This is because the UE cannot spontaneously start a random access procedure in the secondary serving cell, and must start by receiving a random access start indicator from the base station.
  • the cell indicator field (CIF) in Table 1 indicates a second serving cell to start the random access procedure.
  • the order of steps S700 and S705 may be reversed or may be performed simultaneously.
  • the UE calculates an estimated surplus power (E-PH) estimated in the first subframe (S710).
  • Estimated surplus power includes type 1 surplus power and type 2 surplus power.
  • Type 1 surplus power is calculated by Equation 1
  • type 2 surplus power is calculated by Equation 2.
  • the terminal determines whether the estimated surplus power is smaller than the threshold power P th (S715).
  • the threshold power may be 0 dB. For example, if the UE intends to transmit only the PUSCH, the UE determines whether the Type 1 surplus power is less than 0 dB. If the UE intends to transmit the PUSCH and the PUCCH together, the UE determines whether the Type 0 surplus power is less than 0 dB.
  • the determination of whether the estimated surplus power is smaller than 0 dB is a concept corresponding to determining whether there is a serving cell in which the estimated surplus power in the first subframe that transmits the PRACH is set smaller than 0 dB.
  • the terminal triggers a surplus power report (PHR) (S720).
  • PHR surplus power report
  • Surplus power reporting includes: i) when the estimated surplus power is less than the threshold power, ii) when the periodic timer expires, iii) when the Path Loss (PL) estimate changes above a certain threshold, iv ) Triggered when any one of the cases of receiving the random access procedure indicator for the secondary serving cell is satisfied. Since surplus power changes from time to time, a periodic surplus power reporting method may be used. According to the periodic surplus power reporting method, if the periodic timer expires, the terminal triggers the surplus power report. When the surplus power is reported, the terminal restarts the periodic timer.
  • the surplus power report may be triggered when the path loss estimate measured by the terminal changes to a predetermined reference value or more.
  • the path loss estimate is measured by the terminal based on a reference symbol received power (RSRP).
  • RSRP reference symbol received power
  • step S720 may be omitted in some cases. In this case, if the estimated surplus power is smaller than the threshold power, the step S725 is immediately performed. Alternatively, the order of steps S720 and S725 may be reversed or performed simultaneously.
  • the serving cells included in the surplus power report may be limited to serving cells activated or activated in a subframe in which the surplus power report is measured, and may be limited to serving cells having an active uplink time alignment value.
  • the terminal selectively transmits only the priority in accordance with the power allocation priority among the uplink signal and the PRACH to the base station in the first subframe (S725). For example, if the uplink signal has a higher power allocation priority than the PRACH, the terminal transmits the uplink signal on the first serving cell of the first subframe. On the other hand, if the PRACH has a higher power allocation priority than the uplink signal, the terminal transmits the PRACH on the second serving cell of the first subframe. At this time, the one with low power allocation priority is not transmitted.
  • step S715 if the estimated surplus power is greater than or equal to the threshold power, the UE transmits the uplink signal on the first serving cell in the first subframe and transmits the PRACH on the second serving cell (S730).
  • the uplink transmission power can be efficiently distributed.
  • power allocation is based on simple and clear rules, which can improve performance while reducing system complexity.
  • FIG. 8 is a flowchart illustrating a method of controlling uplink transmission power by a terminal according to another embodiment of the present invention.
  • the terminal generates an uplink signal scheduled to be transmitted on the first serving cell of the first subframe (S800).
  • the uplink signal includes, for example, a physical uplink channel or an SRS.
  • the physical uplink channel includes at least one of a PUCCH and a PUSCH.
  • Two or more serving cells are configured in the terminal, and the first serving cell includes the main serving cell.
  • the terminal receives random access initiation information from the base station instructing the start of the random access procedure on the second serving cell of the first subframe (S805).
  • the random access start information is for the second serving cell.
  • the random access start information is defined in a format such as DCI.
  • the DCI is mapped to the PDCCH and transmitted from the base station to the terminal. This may be called a PDCCH command.
  • the DCI may be DCI format 1A and may be defined as shown in Table 1 above.
  • the second serving cell includes a secondary serving cell. The procedures of steps S800 and S805 may be reversed or may be performed simultaneously.
  • the UE calculates an estimated surplus power (E-PH) estimated in the first subframe (S810).
  • Estimated surplus power includes type 1 surplus power and type 2 surplus power.
  • Type 1 surplus power is calculated by Equation 1
  • type 2 surplus power is calculated by Equation 2.
  • the terminal determines whether the estimated surplus power is smaller than the threshold power P th (S815).
  • the threshold power may be 0 dB. For example, if the terminal intends to transmit only the PUSCH, the terminal determines whether the type 1 surplus power is less than 0 dB, and if the terminal intends to transmit the PUSCH and the PUCCH together, the terminal determines whether the type 0 surplus power is less than 0 dB.
  • the determination of whether the estimated surplus power is smaller than 0 dB is a concept corresponding to determining whether there is a serving cell in which the estimated surplus power in the first subframe that transmits the PRACH is set smaller than 0 dB.
  • step S820 If the estimated surplus power is less than the threshold power, the terminal triggers the surplus power report (S820). That is, if the estimated surplus power is smaller than the threshold power, it is included in the triggering requirement of the surplus power report. According to an embodiment of the present invention, step S820 may be omitted in some cases. In this case, if the estimated surplus power is smaller than the threshold power, the step S825 is immediately performed. Alternatively, the order of steps S820 and S825 may be reversed or performed simultaneously.
  • the terminal adjusts transmission power to be allocated to the uplink signal and the PRACH, respectively, according to the power allocation priority (S825). For example, if the uplink signal has a lower priority than the PRACH, the terminal adjusts the transmission power of the uplink signal. More specifically, based on Table 2, the transmission power of the lower power allocation priority is adjusted.
  • the power allocation priority has a PRACH higher than the PUSCH as described above, but the PUSCH has a higher power allocation priority than the PRACH when the SCH / NACK signal is included in the PUSCH.
  • the PUSCH may have a higher power allocation priority than the PRACH.
  • PUCCH has higher power allocation priority than PRACH
  • PRACH has higher power allocation priority than SRS.
  • the power allocation priority is defined between two channels in two serving cells, but this is only an example and the power allocation priority may be equally applied among three or more channels in three or more serving cells. to be.
  • a PUCCH, a PUSCH, and a PRACH are simultaneously transmitted through a first serving cell, a second serving cell, and a third serving cell, respectively.
  • the PUCCH and the PUSCH are simultaneously transmitted in the first serving cell and the PRACH should be transmitted through the second serving cell, the PUCCH always has a higher priority than the PUSCH.
  • the transmission power of the uplink signal is adjusted such that the estimated surplus power becomes a specific value P ' PH, c-type1 or P' PH, c-type2 .
  • P'PH, c-tyoe1 may be 0 dB.
  • Adjusting the transmit power of the lower power allocation priority includes reducing the transmit power of the lower power allocation priority.
  • Equation 2 is changed to Equation 4, and Equation 3 is changed to Equation 5, respectively. This is a case where the uplink signal has a lower power allocation priority than the PRACH.
  • the terminal reduces the transmission power of the uplink signal having a lower priority to P ' PUSCH, c or P' PUCCH, c , so that the estimated surplus power is P ' PH, c-type1 or P' PH, c-type2 .
  • Equation 2 is changed to Equation 6, and Equation 3 is changed to Equation 7, respectively.
  • the terminal reduces the transmission power of the low priority PRACH so that the maximum transmission power is P ' cmax, c , so that the estimated surplus power is P' PH, c-type1 or P ' PH, c-type2 .
  • the relationship between the decrease in the transmit power of the PRACH and the decrease in the maximum transmit power can be determined by the following equation.
  • the maximum transmission power P cmax, c is the minimum value P cmax_L, c to the maximum value P cmax_H, I have a range of c, the minimum value P cmax_L, as a parameter to determine the c (Power management Maximum Power Reduction) PMPR.
  • P cmax_L, c is defined as follows.
  • PMPRc is a power backoff value (P-MPR) in the serving cell c.
  • MIN [a, b] means the smaller of a and b
  • P Emax, c is the maximum power determined by the RRC signaling of the base station in the serving cell c.
  • ⁇ T C, c is the amount of power applied when there is uplink transmission at the edge of the band, which is 1.5 dB or 0 dB depending on the bandwidth.
  • P powerclass is a power value according to several power classes defined to support specifications of various terminals in a multi-element carrier system. In general, LTE system supports power class 3, P powerclass by power class 3 is 23dBm.
  • MPRc is the maximum power reduction amount in the serving cell c
  • AMPRc Additional MPR
  • the maximum transmission power P cmax, c in each serving cell is changed by PMPRc.
  • the surplus power also changes as a result.
  • the equation for determining the PMPR of the serving cell is shown in the following equation.
  • PMPRc is the PMPR of the serving cell c
  • ⁇ P cmax_etc is the total of the current transmit power of the wireless communication system other than LTE
  • P PRACH is the transmit power value to be allocated to the PRACH that can be transmitted in the random access procedure
  • EMPRc is It is an additional maximum transmit power reduction value (E-MPR) for reducing the inherent emission effect by the LTE frequency band of the serving cell c.
  • N is the number of serving cells including the UL CC configured to the terminal receiving the random access initiation information in any activated serving cell
  • M is not obtained a valid timing alignment (TA) value or validity expired
  • TA timing alignment
  • NM is the number of serving cells included in TAGs that have a valid TA value among serving cells including a UL CC configured for a UE that receives a PDCCH command in any activated serving cell.
  • the random access procedure, the transmission power value to be allocated to the PRACH, which may be transmitted in (P PRACH) can be determined based on the preamble receive power target value (target received preamble power).
  • the downlink path loss estimation value of the terminal is considered and may be determined as in the following equation so as not to be greater than the P cmax, c value.
  • P cmax, c (i) is the transmission power of the terminal set for the subframe i of the serving cell
  • PLc is a downlink path loss estimate value for the serving cell of the terminal
  • PRTP is a preamble received target power value.
  • the terminal may reduce P PRACH which is a transmission power of a low priority PRACH based on the power allocation priority, and accordingly, PMPR may be reduced, thereby reducing P cmax , c .
  • the P PRACH value may be defined as a value directly affecting the P cmax , c value without being reflected in the PMPR value. That is , it may be defined in a manner of lowering P PRACH / (NM) directly from P cmax, c for the serving cells that are activated and have an uplink time alignment value.
  • the terminal transmits the uplink signal to the base station on the first serving cell of the first subframe based on the adjusted transmission power and transmits a PRACH on the second serving cell of the first subframe (S830). Although the power allocation priority is low, an uplink signal or PRACH may be transmitted with reduced transmission power.
  • step S815 if the estimated surplus power is greater than or equal to the threshold power, the UE transmits the uplink signal on the first serving cell of the first subframe without adjusting the transmit power, and the second serving of the first subframe.
  • the PRACH is transmitted to the base station on the cell (S830).
  • FIG. 9 is a flowchart illustrating a method of controlling uplink transmission power according to an embodiment of the present invention.
  • the base station transmits random access start information for instructing the start of the random access procedure to the terminal on the second serving cell of the first subframe (S900).
  • the terminal is configured with a first serving cell SCell 1 and a second serving cell SCell 2, and the random access start information is transmitted on the first serving cell as an example.
  • the random access start information may be transmitted on the second serving cell.
  • the random access start information includes DCI format 1A shown in Table 1, and the cell index field indicates the second serving cell.
  • the first serving cell may be a main serving cell
  • the second serving cell may be a secondary serving cell.
  • the terminal calculates an estimated surplus power (E-PH) (S905).
  • Estimated surplus power includes type 1 surplus power and type 2 surplus power.
  • Type 1 surplus power is calculated by Equation 1
  • type 2 surplus power is calculated by Equation 2.
  • the estimated surplus power is smaller than a specific value (for example, 0 dB).
  • the UE Since the estimated surplus power is smaller than a specific value, the UE triggers surplus power report (PHR) (S910).
  • PHR surplus power report
  • the UE determines a power allocation priority between the PUSCH and the PRACH to be transmitted on the second serving cell. For example, if the PUSCH does not include any of ACK / NACK signal, CQI, RI, the UE determines that the PUSCH has a lower priority than the PRACH, and the transmit power of the PUSCH is expressed by Equation 4 below. While reducing the estimated surplus power to 0 dB.
  • the terminal transmits the PUSCH to the base station through the first serving cell of the first subframe with the reduced transmission power, and transmits the PRACH to the base station through the second serving cell of the first subframe with the originally scheduled transmission power. It transmits (S915).
  • the terminal transmits the surplus power report to the base station (S920). This is to inform the base station that the surplus power is less than 0 dB, and to allow the base station to perform random access initiation or uplink scheduling again.
  • FIG. 10 is a block diagram illustrating a terminal and a base station for controlling uplink transmission power according to an embodiment of the present invention.
  • the terminal 1000 includes a receiver 1005, a terminal processor 1010, and a transmitter 1020.
  • the terminal processor 1010 further includes a power adjuster 1011 and a signal generator 1012.
  • the receiver 1005 receives random access start information from the base station 1050.
  • the random access start information is for a second serving cell configured in the terminal 1000.
  • the random access start information includes downlink control information (DCI).
  • DCI downlink control information
  • the DCI is mapped to the PDCCH and transmitted from the base station to the terminal. This may be called a PDCCH command.
  • the DCI may be DCI format 1A and may be defined as shown in Table 1 above.
  • the power adjuster 1011 calculates an estimated surplus power (E-PH) estimated in the first subframe.
  • the first subframe means a time interval in which a physical uplink channel or signal is transmitted on the first serving cell and the second serving cell configured in the terminal 1000.
  • Estimated surplus power includes type 1 surplus power and type 2 surplus power.
  • Type 1 surplus power is calculated by Equation 1
  • type 2 surplus power is calculated by Equation 2.
  • the power adjusting unit 1011 determines whether the estimated surplus power is smaller than the threshold power P th .
  • the threshold power may be 0 dB.
  • the power regulator 1011 determines whether the type 1 surplus power is less than 0 dB, and if the terminal 1000 is to transmit the PUSCH and the PUCCH together, the terminal is type 0 surplus. Determine if the power is less than 0 dB. Determining whether the estimated surplus power is smaller than 0 dB by the power adjuster 1011 corresponds to determining whether there is a serving cell in which the estimated surplus power in the first subframe that transmits the PRACH is set smaller than 0 dB.
  • the signal generator 1012 triggers the surplus power report. That is, if the estimated surplus power is smaller than the threshold power, it is included in the triggering requirement of the surplus power report.
  • the signal generator 1012 generates an uplink signal and a PRACH.
  • the uplink signal includes at least one of a PUSCH, a PUCCH, and an SRS.
  • the uplink signal is scheduled to be transmitted on the first serving cell and the PRACH on the second serving cell.
  • the power adjusting unit 1011 adjusts transmission powers to be allocated to the uplink signal and the PRACH, respectively, according to the power allocation priority. For example, if the uplink signal has a lower power allocation priority than the PRACH, the power adjusting unit 1011 adjusts the transmission power of the uplink signal. More specifically, the power adjusting unit 1011 adjusts the transmission power of the low power allocation priority based on Table 2 above.
  • the power adjuster 1011 controls the transmitter 1020 to transmit the uplink signal with the adjusted transmission power.
  • the power adjusting unit 1011 selects only one transmission power of the uplink signal and the PRACH according to the power allocation priority and allocates the transmission power according to the original scheduling, and does not allocate the transmission power to the other. That is, the power adjuster 1011 drops the other transmission. To this end, the power adjuster 1011 controls the transmitter 1020 to transmit only one selected signal.
  • the transmitter 1020 transmits the uplink signal and the PRACH at the adjusted transmission power under the control of the power adjuster 1011, and transmits the uplink signal on the first serving cell of the first subframe.
  • the PRACH is transmitted on the second serving cell of the first subframe.
  • the transmitter 1020 transmits only one selected from the uplink signal and the PRACH under the control of the power adjuster 1011. For example, when the uplink signal is selected, the transmitter 1020 transmits the uplink signal on the first serving cell of the first subframe. On the other hand, when the PRACH is selected, the transmitter 1020 transmits the PRACH on the second serving cell of the first subframe.
  • the power adjuster 1011 allocates and distributes the transmission power originally scheduled in the first subframe for transmission of the uplink signal and the PRACH, and the transmitter 1020 transmits the signal.
  • the uplink signal and the PRACH generated by the generator 1012 are transmitted to the base station 1050.
  • the base station 1050 includes a transmitter 1055, a receiver 1060, and a base station processor 1070.
  • the base station processor 1070 again includes a DCI generator 1071 and a scheduling unit 1072.
  • the transmitter 1055 transmits random access start information to the terminal 1000.
  • the receiver 1060 receives at least one of an uplink signal and a PRACH from the terminal 1000. At this time, the receiving unit 1060 receives the uplink signal on the first serving cell and the PRACH on the second serving cell. Alternatively, the receiver 1060 may operate in a discontinuous RX (DRX) mode to determine whether the signal of the terminal 1000 is discontinuous from time to time.
  • DRX discontinuous RX
  • the DCI generation unit 1071 generates random access initiation information and sends it to the transmission unit 1055.
  • the scheduling unit 1072 schedules transmission of an uplink signal of the terminal 1000.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Quality & Reliability (AREA)

Abstract

본 발명은 다중 요소 반송파 시스템에서 상향링크 전송전력의 제어장치 및 방법에 관한 것이다. 이러한 본 명세서는 제1 서빙셀상에서 전송될 상향링크 신호를 생성하는 단계, 제2 서빙셀에 대한 랜덤 액세스 절차의 개시를 명령하는 랜덤 액세스 개시 정보를 기지국으로부터 수신하는 단계, 상기 상향링크 신호의 전송을 위해 스케줄링된 제1 전송전력과, 랜덤 액세스 프리앰블이 맵핑되는 PRACH의 전송을 위해 스케줄링된 제2 전송전력으로부터 추정 잉여전력을 계산하는 단계, 및 상기 추정 잉여전력이 임계전력보다 작은 경우, 전력할당 우선순위에 기반하여 상기 제1 전송전력 또는 상기 제2 전송전력을 조정하는 단계를 포함하는 다중 요소 반송파 시스템에서 단말에 의한 상향링크 전송전력의 제어방법을 개시한다. 본 명세서에 따르면, 전력할당 우선순위에 따라 선택적으로 상향링크 신호를 전송함으로서 상향링크 전송전력이 효율적으로 배분될 수 있고, 전력할당이 단순하고 명확한 규칙에 의해 이루어지므로 시스템의 복잡도를 줄이면서 성능이 향상될 수 있다.

Description

다중 요소 반송파 시스템에서 상향링크 전송전력의 제어장치 및 방법
본 발명은 무선통신에 관한 것으로서, 보다 상세하게는 다중 요소 반송파 시스템에서 상향링크 전송전력의 제어장치 및 방법에 관한 것이다.
차세대 무선통신 시스템의 후보로 3GPP(3rd Generation Partnership Project) LTE(long term evolution)와 IEEE(Institute of Electrical and Electronics Engineers) 802.16m이 개발되고 있다. 802.16m 규격은 기존 802.16e 규격의 수정이라는 과거의 연속성과 차세대 IMT-Advanced 시스템을 위한 규격이라는 미래의 연속성인 두가지 측면을 내포하고 있다. 따라서, 802.16m 규격은 802.16e 규격에 기반한 Mobile WiMAX 시스템과의 호환성(compatibility)을 유지하면서 IMT-Advanced 시스템을 위한 진보된 요구사항을 모두 만족시킬 것을 요구하고 있다.
무선통신 시스템은 일반적으로 데이터 송신을 위해 하나의 대역폭을 이용한다. 예를 들어, 2세대 무선통신 시스템은 200KHz ~ 1.25MHz의 대역폭을 사용하고, 3세대 무선통신 시스템은 5MHz ~ 10 MHz의 대역폭을 사용한다. 증가하는 송신 용량을 지원하기 위해, 최근의 3GPP LTE 또는 802.16m은 20MHz 또는 그 이상까지 계속 그 대역폭을 확장하고 있다. 송신 용량을 높이기 위해서 대역폭을 늘리는 것은 필수적이라 할 수 있지만, 요구되는 서비스의 수준이 낮은 경우에도 큰 대역폭을 지원하는 것은 커다란 전력 소모를 야기할 수 있다.
따라서, 하나의 대역폭과 중심 주파수를 갖는 반송파를 정의하고, 복수의 반송파를 통해 광대역으로 데이터를 송신 및/또는 수신할 수 있도록 하는 다중 요소반송파(Multiple Component Carrier) 시스템이 등장하고 있다. 하나 또는 그 이상의 반송파를 사용함으로써 협대역과 광대역을 동시에 지원하는 것이다. 예를 들어, 하나의 반송파가 5MHz의 대역폭에 대응된다면, 4개의 반송파를 사용함으로써 최대 20MHz의 대역폭을 지원하는 것이다.
기지국이 단말의 자원을 효율적으로 활용하기 위한 한가지 방법은 단말의 전력정보를 이용하는 것이다. 전력제어 기술은 무선통신에서 자원의 효율적 배분을 위해 간섭요소를 최소화하고 단말의 배터리 소모를 줄이기 위한 필수 핵심기술이다. 단말은 기지국이 할당해주는 전송전력제어(Transmit Power Control; TPC), 변조 및 코딩 수준(Modulation and Coding Scheme; MCS), 대역폭등의 스케줄링 정보에 따라 상향링크 전송전력을 결정할 수 있다.
그런데, 다중 요소 반송파 시스템이 도입됨에 따라 요소 반송파의 상향링크 전송전력이 종합적으로 고려되어야 하므로, 단말의 전력제어는 더욱 복잡해진다. 이러한 복잡성은 단말의 최대송신전력(Maximum Transmission Power)의 측면에서 문제를 야기할 수 있다. 일반적으로 단말은 허용가능한 범위의 송신전력인 최대송신전력보다 낮은 전력에 의해 동작해야 한다. 만약 기지국이 상기 최대송신전력 이상의 송신전력을 요구하는 스케줄링을 할 경우, 실제 상향링크 전송전력이 상기 최대송신전력을 초과하는 문제를 일으킬 수 있다. 이는 다중 요소 반송파의 전력제어가 명확히 정의되지 않거나, 또는 단말과 기지국간에 상향링크 전송전력에 관한 정보가 충분히 공유되지 않기 때문이다.
본 발명의 기술적 과제는 다중 요소 반송파 시스템에서 상향링크 전송전력의 제어장치 및 방법을 제공함에 있다.
본 발명의 다른 기술적 과제는 우선순위에 따라 다수의 서빙셀에서의 물리 상향링크 채널에 전송전력을 할당하는 장치 및 방법을 제공함에 있다.
본 발명의 또 다른 기술적 과제는 다수의 서빙셀에서의 물리 상향링크 채널에서 전송전력을 할당하는 우선순위를 결정하는 장치 및 방법을 제공함에 있다.
본 발명의 일 양태에 따르면, 다중 요소 반송파 시스템에서 단말에 의한 상향링크 전송전력의 제어방법을 제공한다. 상기 상향링크 전송전력의 제어방법은 제1 서빙셀(serving cell)상에서 전송될 상향링크 신호를 생성하는 단계, 제2 서빙셀에 대한 랜덤 액세스 절차의 개시를 명령하는 랜덤 액세스 개시 정보를 기지국으로부터 수신하는 단계, 상기 상향링크 신호의 전송을 위해 스케줄링된 제1 전송전력과, 랜덤 액세스 프리앰블이 맵핑되는 물리 랜덤 액세스 채널(physical random access channel: PRACH)의 전송을 위해 스케줄링된 제2 전송전력으로부터 추정 잉여전력(estimated power headroom)을 계산하는 단계, 및 상기 추정 잉여전력이 임계전력보다 작은 경우, 전력할당 우선순위에 기반하여 상기 제1 전송전력 또는 상기 제2 전송전력을 조정하는 단계를 포함한다.
다중 요소 반송파 시스템에서 상향링크 신호를 전송할 때, 전력할당 우선순위에 따라 선택적으로 상향링크 신호를 전송하면 상향링크 전송전력이 효율적으로 배분될 수 있다. 또한 전력할당이 단순하고 명확한 규칙에 의해 이루어지므로 시스템의 복잡도를 줄이면서 성능이 향상될 수 있다.
도 1은 본 발명이 적용되는 무선통신 시스템의 일 예를 나타낸다.
도 2는 밴드내(intra-band) 인접(contiguous) 반송파 집성, 도 3은 같은 밴드내 비인접(non-contiguous) 반송파 집성, 그리고 도 4는 같은 밴드간(inter-band) 반송파 집성을 나타낸다.
도 5는 다중 반송파 시스템에서 하향링크 요소 반송파와 상향링크 요소 반송파간의 연결설정을 나타낸다.
도 6은 본 발명이 적용되는 잉여전력을 시간-주파수축에서 나타낸 그래프의 일 예이다.
도 7은 본 발명의 일 예에 따른 단말에 의한 상향링크 전송전력의 제어방법을 설명하는 순서도이다.
도 8은 본 발명의 다른 예에 따른 단말에 의한 상향링크 전송전력의 제어방법을 설명하는 순서도이다.
도 9는 본 발명의 일 예에 따른 상향링크 전송전력의 제어방법을 설명하는 흐름도이다.
도 10은 본 발명의 일 예에 따른 상향링크 전송전력을 제어하는 단말과 기지국을 도시한 블록도이다.
이하, 본 명세서에서는 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 명세서의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한 본 명세서는 무선 통신 네트워크를 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 작업은 해당 무선 통신 네트워크를 관할하는 시스템(예를 들어, 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 작업이 이루어질 수 있다.
도 1은 본 발명이 적용되는 무선통신 시스템의 일 예를 나타낸다.
도 1을 참조하면, 무선통신 시스템(10)은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다.
무선통신 시스템(10)는 적어도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국(11)은 특정한 지리적 영역(일반적으로 셀(cell)이라고 함)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다.
단말(12; user equipment, UE)은 고정되거나 이동성을 가질 수 있으며, UE(user equipment), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다.
기지국(11)은 일반적으로 단말(12)과 통신하는 지점(station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다. 셀은 기지국(11)이 커버하는 일부 영역을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.
이하에서, 하향링크(downlink)는 기지국(11)에서 단말(12)로의 통신을 의미하며, 상향링크(uplink)는 단말(12)에서 기지국(11)으로의 통신을 의미한다. 하향링크에서 송신기는 기지국(11)의 일부분일 수 있고, 수신기는 단말(12)의 일부분일 수 있다.
상향링크에서 송신기는 단말(12)의 일부분일 수 있고, 수신기는 기지국(11)의 일부분일 수 있다.
무선통신 시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier-FDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.
단말과 네트워크 사이의 무선 인터페이스 프로토콜(radio interface protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 모델의 하위 3개 계층을 바탕으로 L1(제1 계층), L2(제2 계층), L3(제3 계층)로 구분될 수 있다.
제1 계층인 물리계층(Physical Layer)은 상위에 있는 매체연결제어(Medium Access Control; MAC) 계층과는 전송채널(transport channel)을 통해 연결되어 있으며, 이 전송채널을 통해 MAC과 물리계층 사이의 데이터가 이동한다. 그리고 서로 다른 물리계층 사이, 즉 송신 측과 수신 측의 물리계층 사이는 물리채널(Physical Channel)을 통해 데이터가 이동한다. 물리계층에서 사용되는 몇몇 물리 제어채널들이 있다.
물리 제어정보를 전송하는 물리 하향링크 제어채널(physical downlink control channel; PDCCH)은 단말에게 PCH(paging channel)와 DL-SCH(downlink shared channel)의 자원 할당 및 DL-SCH와 관련된 HARQ(hybrid automatic repeat request) 정보를 알려준다. PDCCH는 단말에게 상향링크 전송의 자원 할당을 알려주는 상향링크 그랜트(uplink grant)를 나를 수 있다. PCFICH(physical control format indicator channel)는 단말에게 PDCCH들에 사용되는 OFDM 심벌의 수를 알려주고, 매 서브프레임(subframe)마다 전송된다. PHICH(physical Hybrid ARQ Indicator Channel)는 상향링크 전송의 응답으로 HARQ ACK/NAK 신호를 나른다.
물리 상향링크 제어채널(Physical uplink control channel: PUCCH)은 하향링크 전송에 대한 HARQ ACK/NAK, 스케줄링 요청 및 CQI(Channel Quality Information)와 같은 상향링크 제어 정보를 나른다. 물리 상향링크 공용채널(Physical uplink shared channel: PUSCH)은 UL-SCH(uplink shared channel)을 나른다.
단말이 PUCCH 또는 PUSCH를 전송하는 상황은 다음과 같다.
단말은 CQI 또는 측정된 공간채널정보를 기반으로 선택한 PMI(Precoding Matrix Index), 또는 RI(Rank Indicator)에 대한 정보들 중 적어도 하나 이상의 정보에 대하여 PUCCH를 구성하고 이를 기지국으로 주기적으로 전송한다. 또한, 단말은 기지국으로부터 수신한 하향링크 데이터에 대한 ACK/NACK(Acknowledgement/non-Acknowledgement)에 대한 정보를 상기 하향링크 데이터를 수신한 후 일정한 개수의 서브프레임 이후에 기지국으로 전송한다. 일 예로 n번째 서브프레임에서 하향링크 데이터를 수신한 경우 n+4 서브프레임에서 상기 하향링크 데이터에 대한 ACK/NACK 정보로 구성된 PUCCH를 전송한다. 만일 단말이 기지국으로부터 할당받은 PUCCH상으로 ACK/NACK 정보를 모두 전송할 수 없는 경우 또는 ACK/NACK를 전송할 수 있는 PUCCH를 기지국으로부터 할당받지 못한 경우, 단말은 ACK/NACK 정보를 PUSCH에 실어 보낼 수 있다.
제2 계층인 무선 데이터링크 계층은 MAC 계층, RLC 계층, PDCP 계층으로 구성된다. MAC 계층은 논리채널과 전송채널 사이의 매핑을 담당하는 계층으로서, RLC 계층에서 전달된 데이터를 전송하기 위하여 적절한 전송채널을 선택하고, 필요한 제어 정보를 MAC PDU(Protocol Data Unit)의 헤더(header)에 추가한다. RLC 계층은 MAC의 상위에 위치하여 데이터의 신뢰성있는 전송을 지원한다. 또한 RLC 계층은 무선 구간에 맞는 적절한 크기의 데이터를 구성하기 위하여 상위 계층으로부터 전달된 RLC SDU(Service Data Unit)들을 분할(Segmentation)하고 연결(Concatenation)한다. 수신기의 RLC 계층은 수신한 RLC PDU들로부터 원래의 RLC SDU를 복구하기 위해 데이터의 재결합(Reassemble)기능을 지원한다. PDCP 계층은 패킷교환 영역에서만 사용되며, 무선채널에서 패킷 데이터의 전송효율을 높일 수 있도록 IP 패킷의 헤더를 압축하여 전송할 수 있다.
제3 계층인 RRC(Radio Resource Control) 계층은 하위 계층을 제어하는 역할과 함께, 단말과 네트워크 사이에서 무선자원 제어정보를 교환한다. 단말의 통신 상태에 따라 휴지 모드(Idle Mode), RRC 연결 모드(Connected Mode)등 다양한 RRC 상태가 정의되며, 필요에 따라 RRC 상태간 전이가 가능하다. RRC 계층에서는 시스템 정보방송, RRC 접속 관리 절차, 다중 요소 반송파 설정절차, 무선 베어러(Radio Bearer) 제어절차, 보안절차, 측정절차, 이동성 관리 절차(핸드오버)등 무선자원관리와 관련된 다양한 절차들이 정의된다.
반송파 집성(carrier aggregation : CA)은 복수의 요소 반송파를 지원하는 것으로서, 스펙트럼 집성 또는 대역폭 집성(bandwidth aggregation)이라고도 한다. 반송파 집성에 의해 묶이는 개별적인 단위 반송파를 요소 반송파(component carrier; 이하 CC)라고 한다. 각 CC는 대역폭과 중심 주파수에 의해 정의된다. 반송파 집성은 증가되는 수율(throughput)을 지원하고, 광대역 RF(radio frequency) 소자의 도입으로 인한 비용 증가를 방지하고, 기존 시스템과의 호환성을 보장하기 위해 도입되는 것이다. 예를 들어, 5MHz 대역폭을 갖는 반송파 단위의 그래뉼래리티(granularity)로서 5개의 CC가 할당된다면, 최대 25Mhz의 대역폭을 지원할 수 있다.
반송파 집성은 도 2와 같은 밴드내(intra-band) 인접(contiguous) 반송파 집성, 도 3과 같은 밴드내 비인접(non-contiguous) 반송파 집성, 그리고 도 4와 같은 밴드간(inter-band) 반송파 집성으로 나뉠 수 있다.
우선, 도 2를 참조하면, 밴드내 인접 반송파 집성은 동일 밴드내에서 연속적인 CC들 사이에서 이루어진다. 예를 들어, 집성되는 CC들인 CC#1, CC#2, CC#3, ... , CC #N이 모두 인접하다.
도 3을 참조하면, 밴드내 비인접 반송파 집성은 불연속적인 CC들 사이에 이루어진다. 예를 들어, 집성되는 CC들인 CC#1, CC#2는 서로 특정 주파수만큼 이격되어 존재한다.
도 4를 참조하면, 밴드간 반송파 집성은 다수의 CC들이 존재할 때, 그 중 하나 이상의 CC가 다른 주파수 대역상에서 집성되는 형태이다. 예를 들어, 집성되는 CC들인 CC #1은 밴드(band) #1에 존재하고, CC #2는 밴드 #2에 존재한다.
하향링크와 상향링크 간에 집성되는 CC 수는 다르게 설정될 수 있다. 하향링크 CC 수와 상향링크 CC 수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다.
또한, CC들의 크기(즉 대역폭)는 서로 다를 수 있다. 예를 들어, 70MHz 대역의 구성을 위해 5개의 CC들이 사용된다고 할 때, 5MHz CC(carrier #0) + 20MHz CC(carrier #1) + 20MHz CC(carrier #2) + 20MHz CC(carrier #3) + 5MHz CC(carrier #4)과 같이 구성될 수도 있다.
다중 요소 반송파(multiple component carrier) 시스템이라 함은 반송파 집성을 지원하는 시스템을 말한다. 다중 요소 반송파 시스템에서 인접 반송파 집성 또는 비인접 반송파 집성이 사용될 수 있으며, 또한 대칭적 집성 또는 비대칭적 집성 어느 것이나 사용될 수 있다.
도 5는 다중 요소 반송파 시스템에서 하향링크 요소 반송파와 상향링크 요소 반송파간의 연결설정(linkage)을 나타낸다.
도 5를 참조하면, 일 예로, 하향링크 요소 반송파(이하 DL CC) D1, D2, D3이 집성되어(aggregated) 있고, 상향링크 요소 반송파(이하 UL CC) U1, U2, U3이 집성되어 있다. 여기서 Di는 DL CC의 인덱스이고, Ui는 UL CC의 인덱스이다(i=1, 2, 3). 적어도 하나의 DL CC는 PCC이고, 나머지는 SCC이다. 상기 각 인덱스는 요소 반송파의 순서 또는 해당 요소 반송파의 주파수 대역의 위치에 일치하는 것은 아니다.
한편, 적어도 하나의 UL CC는 PCC이고, 나머지는 SCC이다. 예를 들어, D1, U1이 PCC이고, D2, U2, D3, U3은 SCC이다.
여기서 주요소 반송파의 인덱스는 0으로 설정될 수 있으며 그 이외의 자연수 중 하나가 부요소 반송파의 인덱스일 수 있다. 또한 상기 하향링크/상향링크 요소 반송파의 인덱스는 해당 하향링크/상향링크 요소 반송파가 포함된 요소 반송파 (또는 서빙셀)의 인덱스와 동일하게 설정될 수 있다. 또 다른 예로써 상기 요소 반송파 인덱스 또는 부요소 반송파 인덱스만이 설정되고 해당 요소 반송파에 포함된 상향링크/상향링크 요소 반송파 인덱스는 존재하지 않을 수 있다.
FDD 시스템에서 DL CC와 UL CC는 1:1로 연결 설정될 수 있다. 예를 들어, D1은 U1과, D2는 U2와, D3은 U3과 각각 1:1로 연결 설정된다. 논리채널 BCCH가 전송하는 시스템 정보 또는 DCCH가 전송하는 단말 전용 RRC 메시지를 통해, 단말은 상기 DL CC들과 UL CC들간의 연결설정을 한다. 이러한 연결을 SIB1(system information block 1) 연결 또는 SIB2(system information block 2) 연결이라고 한다. 단말은 각 연결설정을 셀 특정하게(cell specific) 설정할 수도 있으며, 단말 특정하게(UE specific) 설정할 수도 있다. 일 예로, 주요소 반송파는 셀 특정하게 설정되며 부요소 반송파는 단말 특정하게 설정될 수 있다. 여기서, 상기 하향링크 요소 반송파와 상향링크 요소 반송파는, 1:1 연결설정은 물론이거니와, 1:n 또는 n:1의 연결설정도 성립할 수 있다.
주서빙셀(Primary Serving cell PSC)에 대응하는 하향링크 요소 반송파를 하향링크 주요소 반송파(DL PCC)라 하고, 주서빙셀에 대응하는 상향링크 요소 반송파를 상향링크 주요소 반송파(UL PCC)라 한다. 또한, 하향링크에서, 부서빙셀(Secondary Serving Cell: SSC)에 대응하는 요소 반송파를 하향링크 부요소 반송파(DL SCC)라 하고, 상향링크에서, 부서빙셀에 대응하는 요소 반송파를 상향링크 부요소 반송파(UL SCC)라 한다. 하나의 서빙셀에는 하향링크 요소 반송파(DL CC)만이 대응할 수도 있고, 하향링크 요소 반송파와 상향링크 요소 반송파(UL CC)가 함께 대응할 수도 있다.
주서빙셀과 부서빙셀은 다음과 같은 특징을 가진다.
첫째, 주서빙셀은 PUCCH의 전송을 위해 사용된다.
둘째, 주서빙셀은 항상 활성화되어 있는 반면, 부서빙셀은 특정 조건에 따라 활성화/비활성화되는 반송파이다.
셋째, 주서빙셀이 무선링크실패(Radio Link Failure; 이하 RLF)를 경험할 때, RRC 재연결이 트리거링(triggering)되나, 부서빙셀이 RLF를 경험할 때는 RRC 재연결이 트리거링되지 않는다.
넷째, 주서빙셀은 보안키(security key) 변경이나 RACH(Random Access CHannel) 절차와 동반하는 핸드오버 절차에 의해서 변경될 수 있다. 단, MSG4 (contention resolution)의 경우, MSG4를 지시하는 PDCCH만 주서빙셀를 통하여 전송되어야 하고 MSG4 정보는 주서빙셀 또는 부서빙셀을 통하여 전송될 수 있다.
다섯째, NAS(non-access stratum) 정보는 주서빙셀을 통해서 수신한다.
여섯째, 언제나 주서빙셀은 DL PCC와 UL PCC가 페어(pair)로 구성된다.
일곱째, 각 단말마다 다른 CC를 주서빙셀로 설정할 수 있다.
여덟째, 부서빙셀의 재설정(reconfiguration), 추가(adding) 및 제거(removal)와 같은 절차는 RRC 계층에 의해 수행될 수 있다. 신규 부서빙셀의 추가에 있어서, 전용(dedicated) 부서빙셀의 시스템 정보를 전송하는데 RRC 시그널링이 사용될 수 있다.
주서빙셀과 부서빙셀의 특징에 관한 본 발명의 기술적 사상은 반드시 상기의 설명에 한정되는 것은 아니며, 이는 예시일 뿐이고 더 많은 예를 포함할 수 있다.
단말에는 다수의 서빙셀이 구성될 수 있다. 예를 들어, 단말에는 주서빙셀와 하나의 부서빙셀이 구성될 수도 있고, 주서빙셀과 다수의 부서빙셀들이 구성될 수도 있다. 그리고 단말에 구성된 다수의 서빙셀상에서 동시에, 또는 병렬적으로 상향링크 채널이 전송될 수 있다. 여기서, 상향링크 채널은 물리 상향링크 제어채널(PUCCH), 물리 상향링크 공용채널(PUSCH), 물리 랜덤 액세스 채널(physical random access channel: PRACH)을 포함한다. PRACH에는 랜덤 액세스 채널(random access channel: RACH)이 맵핑된다. 다수의 서빙셀상으로 다수의 상향링크 채널이 병렬적으로 전송되는 예는 다음과 같다. 일 예로서, 주서빙셀상으로 PUCCH가, 부서빙셀상으로 PRACH가 병렬적으로 전송될 수 있다. 다른 예로서, 주서빙셀상으로 PUSCH, 부서빙셀상으로 PRACH가 병렬적으로 전송될 수 있다.
단말이 다수의 상향링크 채널을 다수의 서빙셀상으로 전송하기 위해서는 다수의 상향링크 채널을 전송할 수 있는 전력이 필요하다. 그런데, 단말에 구성된 최대송신전력(maximum transmission power)은 한정되어 있으며, 모든 상향링크 채널을 전송하기에 부족할 수 있다. 예를 들어, 단말에 구성된 최대송신전력이 10W인데, 주서빙셀상으로 PUSCH, 부서빙셀상으로 PRACH를 전송하는데 각각 7W와 5W가 필요하다고 하자. PUSCH와 PRACH의 전송전력은 총 12W이므로 최대송신전력이 2W만큼 부족하다. 따라서 PUSCH와 PRACH 중 적어도 하나는 그 전송에 필요한 전력보다 적은 전력이 할당될 수 밖에 없다. 이러한 문제를 해결하기 위해 단말은 주어진 상향링크 전송전력을 우선순위에 기반하여 각 채널에 할당할 수 있다. 상기 우선순위를 전력할당 우선순위(power allocation priority)라 한다.
일 예로서, 단말은 10W의 전력을 PUSCH와 PRACH 중 어느 하나에 우선 할당하고, 나머지를 다른 채널의 전송에 할당한다. 예를 들어, PUSCH가 우선순위가 높을 경우, 단말은 PUSCH에 7W를 우선할당하고, 남은 3W만을 PRACH의 전송에 할당할 수 있다. 이 경우, PUSCH의 전송에 요구되는 전력은 모두 할당되고, PRACH의 전송에 요구되는 전력은 2W만큼 덜 할당된다. 반대로, PRACH가 우선순위가 높을 경우, 단말은 PRACH에 5W를 우선할당하고, 남은 5W만을 PUSCH의 전송에 할당할 수도 있다. 이 경우, PUSCH의 전송에 요구되는 전력은 2W만큼 덜 할당되고, PRACH의 전송에 요구되는 전력은 모두 할당된다.
전력할당 우선순위를 PUSCH와 PRACH만을 예로 들어 설명하였으나, PUCCH, PUSCH, PRACH 및 SRS 등 모든 물리 상향링크 채널간에 전력할당 우선순위가 매겨질 수 있다.
전력할당 우선순위를 결정하는 일 요소는 채널의 신뢰도이다. 더 높은 신뢰도가 보장되어야 하는 채널이 더 높은 전력할당 우선순위를 가진다. 더 큰 전력으로 전송되는 신호일수록 수신의 신뢰도는 높아진다.
첫 번째로, PUSCH와 PRACH간의 신뢰도에 있어서, 기지국은 PUSCH에 대해 불연속전송(discontinuous transmission: DTX)을 검출할 수 있으므로 PUSCH의 신뢰도가 낮더라도 시스템 성능에 큰 영향은 없다. 반면 기지국이 PRACH를 검출하지 못하면 단말의 상향링크 자원요청 등에 즉각적으로 반응할 수 없으므로 시스템 성능 열화를 야기할 수 있다. 즉, PRACH가 PUSCH보다 높은 신뢰도가 요구되며, PUSCH와 PRACH간에는 PRACH가 전력할당 우선순위가 높을 수 있다. 다만, ACK/NACK 신호, 채널품질정보(channel quality information: CQI) 및 랭크 지시자 중 적어도 하나가 PUSCH를 통해서도 전송되는 경우에는 예외적으로 PUSCH가 PRACH보다 전력할당 우선순위가 높다.
두 번째로, PUCCH와 PRACH간의 신뢰도에 있어서, PUCCH는 ACK/NACK 신호, 채널상태정보, 랭크 지시자(rank indicator)등 주요한 제어정보를 나르므로 PUCCH의 신뢰도가 PRACH보다 높다. 왜냐하면 기지국이 하향링크 데이터에 대한 ACK/NACK 신호의 수신에 실패하는 경우, 하향링크 전송 또는 재전송이 누적적으로 지연되어 시스템 성능 열화를 야기할 수 있기 때문이다. 따라서 PUCCH와 PRACH간에는 PUCCH가 전력할당 우선순위가 높다.
세 번째로, 사운딩 기준신호(sounding reference signal: SRS)는 어떠한 물리 상향링크 채널과 비교할 때 전력할당 우선순위가 가장 낮다. 사운딩 기준신호는 상향링크 스케줄링에 사용되는 기준신호이다. 단말은 상향링크 채널로 사운딩 기준신호를 보내고, 기지국은 사운딩 기준신호로부터 상향링크 채널 상태를 파악한 후 상향링크 전송을 위한 스케줄링을 수행한다.
이하에서, 잉여전력(power headroom: PH)에 관하여 상세히 개시된다. 잉여전력은 현재 단말이 상향링크 전송에 사용하는 전력 이외에 추가적으로 사용할 수 있는 여분의 전력을 의미한다. 예를 들어, 허용 가능한 범위의 송신전력인 최대송신전력이 10W인 단말을 가정해 보자. 그리고 현재 단말이 10Mhz의 주파수 대역에서 9W의 전력을 사용한다고 가정하자. 단말은 1W를 추가적으로 사용할 수 있으므로, 잉여전력은 1W가 된다.
여기서, 기지국이 단말에게 20Mhz의 주파수 대역을 할당한다면, 9W×2=18W의 전력이 필요하다. 그러나 상기 단말의 최대송신전력이 10W이므로, 상기 단말은 상기 20Mhz 주파수 대역을 모두 사용할 수 없거나, 혹은 전력이 부족하여 기지국이 상기 단말의 신호를 제대로 수신할 수 없을 것이다. 이러한 문제를 해결하기 위해, 단말이 잉여전력이 1W임을 기지국으로 보고하면, 기지국이 잉여전력 범위 내에서 추가적인 스케줄링을 할 수 있다. 상기 보고를 잉여전력 보고(Power Headroom Report; PHR)라 한다.
잉여전력(PPH)은 수학식 1과 같이 단말에 설정된(configured) 최대송신전력 Pcmax와 상향링크 전송에 관해 추정된 전력 Pestimated간의 차이로 정의되며, dB로 표현된다.
수학식 1
즉, 잉여전력은 기지국에 의해 설정된 단말의 최대송신전력에서 각 서빙셀에서 사용하고 있는 송신 전력의 합인 상기 Pestimated를 제외한 나머지 값이 PPH값이 된다. 한편, 최대송신전력은 서빙셀마다 개별적으로 정의될 수 있는데, 예를 들어 서빙셀 c에서의 최대송신전력은 Pcmax,c와 같이 표시된다.
일 예로서, Pestimated,c는 서빙셀 c에서 물리 상향링크 공용채널(Physical Uplink Shared CHannel; 이하 PUSCH)의 전송에 관해 추정된 전력 PPUSCH,c와 같다. 따라서, 이 경우 잉여전력은 수학식 2에 의해 구할 수 있다. 수학식 2는 서빙셀 c의 상향링크로 PUSCH만이 전송되는 경우이며, 이를 타입 1이라 한다. 타입 1에 따른 잉여전력을 타입 1 잉여전력(PPH,c-type1)이라 한다.
수학식 2
Figure PCTKR2012009177-appb-M000002
다른 예로서, Pestimated,c는 서빙셀 c에서의 PUSCH 전송에 관해 추정된 전력 PPUSCH,c 및 물리 상향링크 제어채널(Physical Uplink Control CHannel; 이하 PUCCH) 전송에 관해 추정된 전력 PPUCCH,c의 합과 같다. 따라서, 이 경우 잉여전력은 수학식 3에 의해 구할 수 있다. 수학식 3은 서빙셀 c의 상향링크로 PUSCH와 PUCCH가 동시에 전송되는 경우이며, 이를 타입 2라 한다. 타입 2에 따른 잉여전력을 타입 2 잉여전력(PPH,c-type2)이라 한다. 여기서, 서빙셀 c는 주서빙셀을 포함한다.
수학식 3
Figure PCTKR2012009177-appb-M000003
수학식 3에 따른 잉여전력을 시간-주파수축에서 그래프로 표현하면 도 6과 같다. 이는 하나의 서빙셀 c에 대한 잉여전력을 나타낸 것이다.
도 6을 참조하면, 단말의 설정된 최대송신전력 Pcmax는 PPH(605), PPUSCH(610) 및 PPUCCH(615)로 구성된다. 즉, Pcmax에서 PPUSCH(610)및 PPUCCH(615)를 제외한 나머지가 전력이 PPH(605)로 정의된다. 각 전력은 매 전송시간구간 (transmission time interval, TTI)단위로 계산된다.
주서빙셀은 PUCCH를 전송할 수 있는 UL PCC를 보유하는 유일한 서빙셀이다.
부서빙셀에서는 PUCCH를 전송할 수 없으므로 잉여전력은 수학식 2와 같이 정해지며, 수학식 3에 의해 정해지는 잉여전력의 보고방법에 대한 파라미터 및 동작은 정의되지 않는다. 반면, 주서빙셀에서는 수학식 3에 의해 정해지는 잉여전력의 보고방법에 대한 동작과 파라미터들이 정의될 수 있다. 만일, 단말이 기지국으로부터 상향링크 그랜트를 수신하여 주서빙셀에서 PUSCH를 전송하여야 하고 정해진 규칙에 의해 동일한 서브프레임에 PUCCH를 동시에 전송하는 경우, 단말은 잉여전력보고가 트리거링되는 시점에 상기 수학식 2 및 수학식 3에 따른 잉여전력을 모두 계산하여 기지국으로 전송한다.
최대송신전력이 충분히 커서 수학식 2 또는 3에 따른 잉여전력이 0dB보다 크면 다수의 물리 상향링크 채널 또는 SRS를 동시에 다수의 서빙셀상으로 전송하더라도 문제가 없다. 이 경우에는 전력할당 우선순위가 적용될 필요가 없다.
전력할당 우선순위가 문제되는 상황은 단말이 제1 서빙셀상에서 PUCCH의 전송 또는 PUSCH의 전송 또는 SRS의 전송 또는 PUCCH와 PUSCH의 전송시, 제2 서빙셀상에서 PRACH를 병렬적으로 전송함으로 인해 잉여전력이 0dB보다 작아지게 되는 경우이다. 예를 들어, 단말이 제1 서빙셀상으로 PUSCH를 전송한다고 할 때, 잉여전력은 수학식 2에 의해 계산된다. 그런데 단말이 제2 서빙셀상으로 PRACH를 함께 전송해야 하는 경우, PRACH의 전송전력만큼 최대송신전력 Pcmax가 감소한다. 이는 최대송신전력 Pcmax의 크기를 감소시키는 파라미터인 전력조정(power coordination)값이 PRACH로 인해 커지기 때문이다. 수학식 2에서 Pcmax가 감소하면 잉여전력의 크기가 0dB보다 작아지게 된다.
이때는 단말은 전력할당 우선순위에 따라 PUSCH와 PRACH 중 어느 하나만을 선택적으로 전송하든지, 아니면 PUSCH와 PRACH를 모두 전송하되 어느 하나의 전송전력을 감소시켜야 한다.
도 7은 본 발명의 일 예에 따른 단말에 의한 상향링크 전송전력의 제어방법을 설명하는 순서도이다.
도 7을 참조하면, 단말은 제1 서브프레임의 제1 서빙셀상에서 전송되도록 스케줄링된 상향링크 신호를 생성한다(S700). 상향링크 신호는 예를 들어 물리 상향링크 채널 또는 SRS를 포함한다. 물리 상향링크 채널은 PUCCH, PUSCH 중 적어도 하나를 포함한다. 단말에는 2개 이상의 서빙셀이 구성된 상태이며, 제1 서빙셀은 주서빙셀을 포함한다.
단말은 상기 제1 서브프레임의 제2 서빙셀상에서 랜덤 액세스 절차의 개시를 명령하는 랜덤 액세스 개시 정보(RA initiate information)를 기지국으로부터 수신한다(S705). 랜덤 액세스 개시 정보는 제2 서빙셀에 대한 것이다. 랜덤 액세스 개시 정보는 하향링크 제어정보(downlink control information: DCI)와 같은 형식으로 정의된다. 상기 DCI는 PDCCH에 맵핑되어 기지국으로부터 단말로 전송된다. 이는 PDCCH 명령(order)이라 불릴 수 있다. 상기 DCI는 DCI 포맷 1A 일 수 있으며, 다음의 표와 같이 정의될 수 있다.
표 1
- 캐리어 지시자 필드(Carrier indicator field: CIF) - 0 or 3 bits.
- 포맷 0/1A 식별을 위한 플래그 - 1 bit (0인 경우 포맷 0을, 1인 경우 포맷 1A를 지시함)
포맷 1A CRC가 C-RNTI에 의해 스크램블되고, 남은 필드들이 아래와 같이 설정되는 경우, 포맷 1A는 PDCCH 명령(order)에 의해 개시되는 랜덤 액세스 절차를 위해 사용된다.
-아래-
- 국지적/분산적(Localized/Distributed) VRB 할당 플래그 - 1 bit. 0으로 설정됨
- 자원블록할당 -
Figure PCTKR2012009177-appb-I000001
bits. 모든 비트들이 1로 설정됨
- 프리앰블 인덱스(Preamble Index) - 6 bits
- PRACH 마스크 인덱스(Mask Index) - 4 bits
- 하나의 PDSCH 부호어의 간이 스케줄링 할당을 위한 포맷 1A의 모든 남은 비트들이 0으로 설정됨
표 1을 참조하면, 프리앰블 인덱스의 값에 따라 기지국의 명령에 의한 랜덤 액세스 절차가 경합 기반이 될 수도 있고, 비경합 기반이 될 수도 있다. 일 예로서, 프리앰블 인덱스 정보 6비트가 모두 '0'으로 설정되면 경합 기반 랜덤 액세스 절차가 진행된다. 예를 들어, 프리앰블 인덱스='000000'이면, 단말은 임의의 프리앰블을 선택하고, PRACH 마스크 인덱스 값도 '0'으로 설정한 후 PRACH를 전송한다. PRACH 마스크 인덱스는 사용 가능한 시간/주파수 자원 정보이다. 사용 가능한 시간/주파수 자원 정보는 주파수 분할 듀플렉스(frequency division duplex: FDD) 시스템과 시간 분할 듀플렉스(time division duplex: TDD) 시스템에 따라, 지시하는 자원이 달라진다.
상기 제2 서빙셀은 부서빙셀을 포함한다. 왜냐하면, 단말은 부서빙셀에서의 랜덤 액세스 절차를 자발적으로 시작할 수 없고, 기지국으로부터 랜덤 액세스 개시 지시자를 수신해야 시작할 수 있기 때문이다. 이때 표 1에서의 셀 지시자 필드(cell indicator field: CIF)는 랜덤 액세스 절차가 개시될 제2 서빙셀을 지시한다. 단계 S700과 S705 절차는 그 순서가 바뀔 수도 있고, 동시에 수행될 수도 있다.
단말은 상기 제1 서브프레임에서 추정되는 추정 잉여전력(estimated-PH: E-PH)을 계산한다(S710). 추정 잉여전력은 타입 1 잉여전력과 타입 2 잉여전력을 포함한다. 타입 1 잉여전력은 상기 수학식 1에 의해, 타입 2 잉여전력은 상기 수학식 2에 의해 계산된다.
단말은 상기 추정 잉여전력이 임계전력(Pth)보다 작은지 판단한다(S715). 임계전력은 0dB일 수 있다. 예를 들어 단말이 PUSCH만을 전송할 예정이면 단말은 타입 1 잉여전력이 0dB보다 작은지 판단하고, 단말이 PUSCH와 PUCCH를 함께 전송할 예정이면, 단말은 타입 0 잉여전력이 0dB보다 작은지 판단한다. 단말이 추정 잉여전력이 0dB보다 작은지를 판단하는 것은, PRACH를 전송하는 제1 서브프레임에서의 추정 잉여전력이 0dB보다 작게 설정되는 서빙셀이 존재하는지를 판단하는 것과 대응한 개념이다.
만약, 추정 잉여전력이 임계전력보다 작으면, 단말은 잉여전력보고(PHR)를 트리거링(triggering)한다(S720). 잉여전력보고는 i) 추정 잉여전력이 임계전력보다 작은 경우, ii) 주기적 타이머(Periodic timer)가 만료되는 경우, iii) 경로손실(Path Loss; PL) 추정치가 일정 기준값 이상으로 변화하는 경우, iv) 부서빙셀에 대한 랜덤 액세스 절차 지시자를 수신한 경우 중 어느 하나를 만족할 경우, 트리거링된다. 잉여전력은 수시로 변하기 때문에, 주기적(Periodic) 잉여전력 보고 방식이 사용될 수 있다. 주기적 잉여전력 보고 방식에 따를 때, 주기적 타이머가 만료되면, 단말은 잉여전력 보고를 트리거링한다. 그리고, 잉여전력이 보고되면, 단말은 주기적 타이머를 재구동한다. 또한, 단말이 측정한 경로손실 추정치가 일정 기준 값 이상으로 변화했을 때도 잉여전력 보고는 트리거링될 수 있다. 경로손실 추정치는 RSRP(reference symbol received power)에 기반하여 단말에 의해 측정된다. 본 발명의 일 실시예에 따르면, 단계 S720은 경우에 따라서 생략될 수도 있다. 이 경우, 추정 잉여전력이 임계전력보다 작으면 바로 단계 S725의 단계가 수행된다. 또는 단계 S720과 S725는 그 순서가 뒤바뀔 수도 있고, 동시에 수행될 수도 있음은 물론이다. 여기서 상기 잉여전력보고에 포함되는 서빙셀들은 잉여전력보고가 측정되는 서브프레임에서 활성화되어 있는 서빙셀들로 한정하거나 활성화되어 있으며 유효한 상향링크 시간정렬값을 확보한 서빙셀들로 제한될 수 있다.
단말은 상기 상향링크 신호와, PRACH 중에서 전력할당 우선순위에 따라 우선하는 것만을 선택적으로 제1 서브프레임에서 기지국으로 전송한다(S725). 예를 들어, 상기 상향링크 신호가 PRACH보다 전력할당 우선순위가 높으면, 단말은 제1 서브프레임의 제1 서빙셀상으로 상기 상향링크 신호를 전송한다. 반면, 상기 PRACH가 상기 상향링크 신호보다 전력할당 우선순위가 높으면, 단말은 제1 서브프레임의 제2 서빙셀상으로 상기 PRACH를 전송한다. 이때, 전력할당 우선순위가 낮은 것은 전송되지 않는다.
다시 단계 S715에서, 만약 추정 잉여전력이 임계전력보다 크거나 같으면, 단말은 제1 서브프레임에서 상기 상향링크 신호를 제1 서빙셀상에서 전송하고, PRACH를 제2 서빙셀상에서 전송한다(S730).
이와 같이 다중 요소 반송파 시스템에서 상향링크 신호를 전송할 때, 전력할당 우선순위에 따라 선택적으로 상향링크 신호를 전송하면 상향링크 전송전력이 효율적으로 배분될 수 있다. 또한 전력할당이 단순하고 명확한 규칙에 의해 이루어지므로 시스템의 복잡도를 줄이면서 성능이 향상될 수 있다.
도 8은 본 발명의 다른 예에 따른 단말에 의한 상향링크 전송전력의 제어방법을 설명하는 순서도이다.
도 8을 참조하면, 단말은 제1 서브프레임의 제1 서빙셀상에서 전송되도록 스케줄링된 상향링크 신호를 생성한다(S800). 상기 상향링크 신호는 예를 들어 물리 상향링크 채널 또는 SRS를 포함한다. 물리 상향링크 채널은 PUCCH, PUSCH 중 적어도 하나를 포함한다. 단말에는 2개 이상의 서빙셀이 구성된 상태이며, 제1 서빙셀은 주서빙셀을 포함한다.
단말은 상기 제1 서브프레임의 제2 서빙셀상에서 랜덤 액세스 절차의 개시를 명령하는 랜덤 액세스 개시 정보를 기지국으로부터 수신한다(S805). 랜덤 액세스 개시 정보는 제2 서빙셀에 대한 것이다. 랜덤 액세스 개시 정보는 DCI와 같은 형식으로 정의된다. 상기 DCI는 PDCCH에 맵핑되어 기지국으로부터 단말로 전송된다. 이는 PDCCH 명령이라 불릴 수 있다. 상기 DCI는 DCI 포맷 1A 일 수 있으며, 상기 표 1과 같이 정의될 수 있다. 상기 제2 서빙셀은 부서빙셀을 포함한다. 단계 S800과 S805 절차는 그 순서가 바뀔 수도 있고, 동시에 수행될 수도 있다.
단말은 상기 제1 서브프레임에서 추정되는 추정 잉여전력(estimated-PH: E-PH)을 계산한다(S810). 추정 잉여전력은 타입 1 잉여전력과 타입 2 잉여전력을 포함한다. 타입 1 잉여전력은 상기 수학식 1에 의해, 타입 2 잉여전력은 상기 수학식 2에 의해 계산된다.
단말은 상기 추정 잉여전력이 임계전력(Pth)보다 작은지 판단한다(S815). 임계전력은 0dB일 수 있다. 예를 들어 단말이 PUSCH만을 전송할 예정이면 단말은 타입 1 잉여전력이 0dB보다 작은지 판단하고, 단말이 PUSCH와 PUCCH를 함께 전송할 예정이면, 단말은 타입 0 잉여전력이 0dB보다 작은지 판단한다. 단말이 추정 잉여전력이 0dB보다 작은지를 판단하는 것은, PRACH를 전송하는 제1 서브프레임에서의 추정 잉여전력이 0dB보다 작게 설정되는 서빙셀이 존재하는지를 판단하는 것과 대응한 개념이다.
만약 추정 잉여전력이 임계전력보다 작으면, 단말은 잉여전력보고를 트리거링한다(S820). 즉, 추정 잉여전력이 임계전력보다 작은 경우는 잉여전력보고의 트리거링 요건에 포함된다. 본 발명의 일 실시예에 따르면, 단계 S820은 경우에 따라서 생략될 수도 있다. 이 경우, 추정 잉여전력이 임계전력보다 작으면 바로 단계 S825의 단계가 수행된다. 또는 단계 S820과 S825는 그 순서가 뒤바뀔 수도 있고, 동시에 수행될 수도 있음은 물론이다.
단말은 전력할당 우선순위에 따라 상기 상향링크 신호와 PRACH에 각각 할당될 전송전력을 조정한다(S825). 예를 들어, 상기 상향링크 신호가 PRACH 보다 우선순위가 낮으면, 단말은 상기 상향링크 신호의 전송전력을 조정한다. 보다 구체적으로는, 표 2에 기반하여 전력할당 우선순위가 낮은 것의 전송전력이 조정된다.
표 2
제1 서빙셀 제2 서빙셀 전력할당 우선순위
PUSCH PRACH PRACH > PUSCH
PUSCH(ACK/NACK 신호, CQI 또는 RI 포함) PUSCH > PRACH
PUCCH PUCCH > PRACH
SRS PRACH > SRS
표 2를 참조하면, 전력할당 우선순위는 전술된 바와 같이 PRACH가 PUSCH보다는 높되, PUSCH에 ACK/NACK 신호가 포함되어 있는 경우 PUSCH가 PRACH보다 전력할당 우선순위가 높다. 또한 PUSCH에 CQI 또는 RI가 포함되면 PUSCH가 PRACH보다 전력할당 우선순위가 높을 수 있다. 그리고 PUCCH가 PRACH보다 전력할당 우선순위가 높고, PRACH가 SRS보다 전력할당 우선순위가 높다. 표 2에서는 2개의 서빙셀에서의 2개의 채널간에 전력할당 우선순위를 정의하였으나, 이는 예시일 뿐이고 3개 이상의 서빙셀에서의 3개 이상의 채널들간에도 전력할당 우선순위는 동일하게 적용될 수 있음은 물론이다.
만일 서로 다른 3개 이상의 채널들이 서로 다른 서빙셀을 통해 전송이 지시되는 경우, 즉 PUCCH, PUSCH 및 PRACH가 각각 제 1 서빙셀, 제 2서빙셀, 제 3서빙셀을 통해 동시에 전송되는 경우가 발생하는 경우, 또한 제1서빙셀에서 PUCCH 및 PUSCH가 동시에 전송되며 제2서빙셀을 통해 PRACH가 전송되어야 하는 경우가 발생하는 경우, PUCCH는 언제나 PUSCH보다 높은 우선순위를 갖는다.
상기 상향링크 신호의 전송전력은, 상기 추정 잉여전력이 특정한 값 P'PH,c-type1 또는 P'PH,c-type2가 되도록 조정된다. 예를 들어 P'PH,c-tyoe1=0dB일 수 있다. 전력할당 우선순위가 낮은 것의 전송전력을 조정함은, 전력할당 우선순위가 낮은 것의 전송전력을 감소시키는 것을 포함한다. 일 예로서, 상기 수학식 2는 수학식 4로 변경되고, 상기 수학식 3은 수학식 5로 각각 변경된다. 이는 상기 상향링크 신호가 상기 PRACH보다 전력할당 우선순위가 낮은 경우이다.
수학식 4
Figure PCTKR2012009177-appb-M000004
수학식 5
Figure PCTKR2012009177-appb-M000005
즉, 단말은 우선순위가 낮은 상향링크 신호의 전송전력을 P'PUSCH,c 또는 P'PUCCH,c로 감소시켜, 추정 잉여전력이 P'PH,c-type1 또는 P'PH,c-type2가 되도록 조정한다. 여기서, c는 서빙셀의 인덱스로서, 상향링크 신호가 제1 서빙셀상으로 전송되므로 c=1이다. 또는 주서빙셀인 경우 서빙셀 인덱스 값의 정의에 따라 c=0이 될 수 있다.
다른 예로서, 상기 수학식 2는 수학식 6으로 변경되고, 상기 수학식 3은 수학식 7로 각각 변경된다. 이는 상기 PRACH가 상기 상향링크 신호보다 전력할당 우선순위가 낮은 경우이다. 여기서, c는 서빙셀의 인덱스로서, 상향링크 신호가 제1 서빙셀상으로 전송되므로 c=1이다. 또는 주서빙셀인 경우 서빙셀 인덱스 값의 정의에 따라 c=0이 될 수 있다.
수학식 6
Figure PCTKR2012009177-appb-M000006
수학식 7
Figure PCTKR2012009177-appb-M000007
즉, 단말은 우선순위가 낮은 PRACH의 전송전력을 감소시켜 최대송신전력을 P'cmax,c가 되도록 하고, 이로써 추정 잉여전력이 P'PH,c-type1 또는 P'PH,c-type2가 되도록 조정한다.
PRACH의 전송전력의 감소와 최대송신전력의 감소간의 관계는 다음의 수학식에 의해 결정될 수 있다.
최대송신전력 Pcmax,c는 최소값 Pcmax_L,c과 최대값 Pcmax_H,c의 범위를 가지는데, 최소값 Pcmax_L,c을 결정하는 파라미터로서 PMPR(Power management Maximum Power Reduction)이 있다. Pcmax_L,c은 다음의 수학식과 같이 정의된다.
수학식 8
Figure PCTKR2012009177-appb-M000008
수학식 8을 참조하면, PMPRc는 서빙셀 c에서 전력 백오프 값(P-MPR)이다. MIN[a,b]는 a와 b중 작은 값을 의미하고, PEmax,c는 서빙셀 c에서 기지국의 RRC 시그널링에 의해 결정되는 최대전력이다. △TC,c는 대역의 가장자리(edge)에서 상향링크 전송이 있는 경우 적용되는 전력량으로서, 대역폭에 따라 1.5dB 또는 0dB이다. Ppowerclass는 다중 요소 반송파 시스템에서 다양한 단말의 사양을 지원하기 위해 정의한 수개의 전력클래스(power class)에 따른 전력값이다. 일반적으로 LTE 시스템은 전력클래스 3을 지원하며, 전력클래스 3에 의한 Ppowerclass는 23dBm이다. MPRc은 서빙셀 c에서 최대전력감소량이고, AMPRc(Additional MPR)은 서빙셀 c에서 기지국에 의해 시그널링되는 추가적인 최대전력감소량이다.
이와 같이 PMPRc에 의해 각 서빙셀에서의 최대송신전력 Pcmax,c가 변경된다. 각 서빙셀에서의 최대송신전력 Pcmax,c가 변경되면, 결과적으로 잉여전력도 변경된다.
일 예로서, 서빙셀의 PMPR을 결정하는 식은 다음 수학식과 같다.
수학식 9
Figure PCTKR2012009177-appb-M000009
여기서, PMPRc은 서빙셀 c의 PMPR이고, ΣPcmax_etc는 LTE 이외의 무선 통신 시스템의 현재 송신전력의 총합이고, PPRACH는 랜덤 액세스 절차에서 전송될 수 있는 PRACH에 할당할 송신전력 값이고, EMPRc은 해당 서빙셀 c의 LTE 주파수 대역에 의한 고유의 방출 효과를 줄이기 위한 추가적인 최대송신전력 감소값(E-MPR)이다. N은 임의의 활성화된 서빙셀에서 랜덤 액세스 개시 정보를 수신한 단말에게 구성된 UL CC를 포함한 서빙셀들의 개수이고, M은 유효한 시간정렬(timing alignment: TA)값을 확보하지 못하였거나 유효성이 만료된 시간정렬값을 확보한 시간정렬그룹(TAG)내의 서빙셀들의 개수이다. 즉, "N-M"은 임의의 활성화된 서빙셀에서 PDCCH 명령을 수신한 단말에게 구성된 UL CC를 포함한 서빙셀들 중에서 유효한 TA 값을 확보한 TAG들에 포함된 서빙셀들의 개수이다.
다른 예로서, 랜덤 액세스 절차에서 전송될 수 있는 PRACH에 할당할 송신전력 값(PPRACH)은 프리앰블 수신 목표 전력값(preamble received target power)을 기초로 결정될 수 있다. 단, 단말의 하향링크 경로손실 추정값을 고려하며, Pcmax,c 값보다는 크지 않도록 다음 수학식과 같이 결정될 수 있다.
수학식 10
Figure PCTKR2012009177-appb-M000010
여기서 Pcmax,c(i)는 서빙셀의 서브프레임 i에 대해 설정된 단말의 송신전력이고, PLc은 단말의 서빙셀에 대한 하향링크 경로손실 추정값이다. PRTP는 프리앰블 수신 목표 전력값(preamble received target power)이다.
단말은 전력할당 우선순위에 기반하여 우선순위가 낮은 PRACH의 전송전력인 PPRACH를 감소시킬 수 있고, 그에 따라 PMPR이 감소되어 결과적으로 Pcmax,c를 감소시킬 수 있다.
또는, 상기 PPRACH값이 PMPR에 값에 반영되지 않고 바로 Pcmax,c값에 영향을 주는 값으로 정의될 수 있다. 즉 활성화되어 있으며 상향링크 시간정렬값을 확보한 서빙셀들에 대하여 Pcmax,c에서 직접적으로 PPRACH/(N-M) 만큼 낮추는 방식으로 정의될 수 있다. 단말은 조정된 전송전력에 기반하여 제1 서브프레임의 제1 서빙셀상에서 상기 상향링크 신호를 기지국으로 전송하고, 제1 서브프레임의 제2 서빙셀상에서 PRACH를 전송한다(S830). 비록 전력할당 우선순위가 낮더라도, 감소된 전송전력으로 상향링크 신호 또는 PRACH가 전송될 수 있다.
다시 단계 S815에서, 만약 추정 잉여전력이 임계전력보다 크거나 같으면, 단말은 전송전력의 조정없이 제1 서브프레임의 제1 서빙셀상에서 상기 상향링크 신호를 전송하고, 제1 서브프레임의 제2 서빙셀상에서 PRACH를 기지국으로 전송한다(S830).
이와 같이 다중 요소 반송파 시스템에서 상향링크 신호를 전송할 때, 전력할당 우선순위에 따라 각 물리 상향링크 채널 또는 신호의 전송전력을 조정하면, 특정 신호의 전송이 포기(drop)됨이 없이 모두 전송될 수 있다.
도 9는 본 발명의 일 예에 따른 상향링크 전송전력의 제어방법을 설명하는 흐름도이다.
도 9를 참조하면, 기지국은 제1 서브프레임의 제2 서빙셀상에서 랜덤 액세스 절차의 개시를 명령하는 랜덤 액세스 개시 정보를 단말로 전송한다(S900). 단말에는 제1 서빙셀(SCell 1)과 제2 서빙셀(SCell 2)가 구성된 상태이며, 랜덤 액세스 개시 정보는 예시적으로 제1 서빙셀상으로 전송된다. 상기 랜덤 액세스 개시 정보가 제 2 서빙셀상으로 전송될 수도 있음은 물론이다. 랜덤 액세스 개시 정보는 표 1과 같은 DCI 포맷 1A를 포함하고, 셀 인덱스 필드는 제2 서빙셀을 지시한다. 여기서, 제1 서빙셀은 주서빙셀이고, 제2 서빙셀은 부서빙셀일 수 있다.
단말은 추정 잉여전력(E-PH)를 계산한다(S905). 추정 잉여전력은 타입 1 잉여전력과 타입 2 잉여전력을 포함한다. 타입 1 잉여전력은 상기 수학식 1에 의해, 타입 2 잉여전력은 상기 수학식 2에 의해 계산된다. 여기서, 추정 잉여전력은 특정한 값(예를 들어 0dB)보다 작은 것으로 의제한다.
추정 잉여전력이 특정한 값보다 작으므로, 단말은 잉여전력보고(PHR)를 트리거링한다(S910).
단말은 제1 서브프레임의 제1 서빙셀상으로 전송될 PUSCH가 존재하면, 상기 PUSCH와 제2 서빙셀상으로 전송될 PRACH간에 전력할당 우선순위를 판단한다. 예를 들어, 상기 PUSCH가 ACK/NACK 신호, CQI, RI 중 어느 하나도 포함하지 않은 경우, 단말은 상기 PUSCH가 상기 PRACH보다 우선순위가 낮은 것으로 판단하고, 상기 PUSCH의 전송전력을 수학식 4와 같이 감소시키되, 상기 추정 잉여전력이 0dB가 되도록 감소시킨다. 그리고, 단말은 감소된 전송전력으로 상기 PUSCH를 제1 서브프레임의 제1 서빙셀을 통해 기지국으로 전송하고, 원래 스케줄된 전송전력으로 상기 PRACH를 제1 서브프레임의 제2 서빙셀을 통해 기지국으로 전송한다(S915).
이후, 단말은 잉여전력보고를 기지국으로 전송한다(S920). 이는 잉여전력이 0dB보다 작음을 기지국에 알려주고, 기지국이 랜덤 액세스 개시나 상향링크 스케줄링을 재수행하도록 하기 위함이다.
도 10은 본 발명의 일 예에 따른 상향링크 전송전력을 제어하는 단말과 기지국을 도시한 블록도이다.
도 10을 참조하면, 단말(1000)은 수신부(1005), 단말 프로세서(1010) 및 전송부(1020)를 포함한다. 단말 프로세서(1010)는 다시 전력조정부(1011) 및 신호 생성부(1012)를 포함한다.
수신부(1005)는 랜덤 액세스 개시 정보를 기지국(1050)으로부터 수신한다. 랜덤 액세스 개시 정보는 단말(1000)에 구성된 제2 서빙셀에 대한 것이다. 랜덤 액세스 개시 정보는 하향링크 제어정보(downlink control information: DCI)를 포함한다. 상기 DCI는 PDCCH에 맵핑되어 기지국으로부터 단말로 전송된다. 이는 PDCCH 명령이라 불릴 수 있다. 상기 DCI는 DCI 포맷 1A 일 수 있으며, 상기 표 1과 같이 정의될 수 있다.
전력조정부(1011)는 제1 서브프레임에서 추정되는 추정 잉여전력(estimated-PH: E-PH)을 계산한다. 여기서, 제1 서브프레임은 단말(1000)에 구성된 제1 서빙셀과 제2 서빙셀상으로 물리 상향링크 채널 또는 신호가 전송되는 시간구간을 의미한다. 추정 잉여전력은 타입 1 잉여전력과 타입 2 잉여전력을 포함한다. 타입 1 잉여전력은 상기 수학식 1에 의해, 타입 2 잉여전력은 상기 수학식 2에 의해 계산된다.
전력조정부(1011)는 상기 추정 잉여전력이 임계전력(Pth)보다 작은지 판단한다. 임계전력은 0dB일 수 있다. 예를 들어 단말(1000)이 PUSCH만을 전송할 예정이면 전력조정부(1011)는 타입 1 잉여전력이 0dB보다 작은지 판단하고, 단말(1000)이 PUSCH와 PUCCH를 함께 전송할 예정이면, 단말은 타입 0 잉여전력이 0dB보다 작은지 판단한다. 전력조정부(1011)가 추정 잉여전력이 0dB보다 작은지를 판단하는 것은, PRACH를 전송하는 제1 서브프레임에서의 추정 잉여전력이 0dB보다 작게 설정되는 서빙셀이 존재하는지를 판단하는 것과 대응한 개념이다.
만약 추정 잉여전력이 임계전력보다 작으면, 신호 생성부(1012)는 잉여전력보고를 트리거링한다. 즉, 추정 잉여전력이 임계전력보다 작은 경우는 잉여전력보고의 트리거링 요건에 포함된다.
신호 생성부(1012)는 상향링크 신호와 PRACH를 생성한다. 상향링크 신호는 PUSCH, PUCCH 및 SRS 중 적어도 하나를 포함한다. 상향링크 신호는 제1 서빙셀상으로, PRACH는 제2 서빙셀상으로 전송되도록 스케줄링된 상태이다.
전력조정부(1011)는 전력할당 우선순위에 따라 상기 상향링크 신호와 PRACH에 각각 할당될 전송전력을 조정한다. 예를 들어 상기 상향링크 신호가 PRACH 보다 전력할당 우선순위가 낮으면, 전력조정부(1011)는 상기 상향링크 신호의 전송전력을 조정한다. 보다 구체적으로는, 전력조정부(1011)는 상기 표 2에 기반하여 전력할당 우선순위가 낮은 것의 전송전력을 조정한다. 그리고, 전력조정부(1011)는 상기 상향링크 신호가 상기 조정된 전송전력으로 전송되도록 전송부(1020)를 제어한다.
또는, 전력조정부(1011)는 전력할당 우선순위에 따라 상기 상향링크 신호와 상기 PRACH 중 어느 하나의 전송전력만을 선택하여 원래 스케줄링대로 할당하고, 다른 하나에는 전송전력을 할당하지 않는다. 즉, 전력조정부(1011)는 상기 다른 하나의 전송을 드롭(drop)한다. 이를 위해 전력조정부(1011)는 선택된 하나의 신호만이 전송되도록 전송부(1020)를 제어한다.
전송부(1020)는 전력조정부(1011)의 제어에 따라 상기 상향링크 신호와 상기 PRACH를 각각 조정된 전송전력으로 전송하되, 상기 상향링크 신호를 제1 서브프레임의 제1 서빙셀상으로 전송하고, 상기 PRACH를 제1 서브프레임의 제2 서빙셀상으로 전송한다. 또는, 전송부(1020)는 전력조정부(1011)의 제어에 따라 상기 상향링크 신호와 상기 PRACH 중 선택된 어느 하나만을 전송한다. 예를 들어, 상기 상향링크 신호가 선택된 경우, 전송부(1020)는 제1 서브프레임의 제1 서빙셀상으로 상기 상향링크 신호를 전송한다. 반면, 상기 PRACH가 선택된 경우, 전송부(1020)는 제1 서브프레임의 제2 서빙셀상으로 상기 PRACH를 전송한다.
만약 추정 잉여전력이 임계전력보다 크거나 같으면, 전력 조정부(1011)는 제1 서브프레임에서 원래 스케줄된 전송전력을 상향링크 신호와 PRACH의 전송을 위해 할당 및 분배하고, 전송부(1020)는 신호 생성부(1012)에 의해 생성된 상향링크 신호와 PRACH를 기지국(1050)으로 전송한다.
기지국(1050)은 전송부(1055), 수신부(1060) 및 기지국 프로세서(1070)를 포함한다. 기지국 프로세서(1070)는 다시 DCI 생성부(1071) 및 스케줄링부(1072)를 포함한다.
전송부(1055)는 랜덤 액세스 개시 정보를 단말(1000)로 전송한다.
수신부(1060)는 상향링크 신호와 PRACH 중 적어도 하나를 단말(1000)로부터 수신한다. 이때, 수신부(1060)는 상기 상향링크 신호를 제1 서빙셀상에서 수신하고, 상기 PRACH를 제2 서빙셀상에서 수신한다. 또는, 수신부(1060)는 때에 따라 단말(1000)의 신호가 불연속적인지를 판단하기 위한 불연속수신(discontinuous RX: DRX)모드로 동작할 수 있다.
DCI 생성부(1071)는 랜덤 액세스 개시 정보를 생성하여 전송부(1055)로 보낸다.
스케줄링부(1072)는 단말(1000)의 상향링크 신호의 전송을 스케줄링한다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (18)

  1. 다중 요소 반송파 시스템에서 단말에 의한 상향링크 전송전력의 제어방법에 있어서,
    제1 서빙셀(serving cell)상에서 전송될 상향링크 신호를 생성하는 단계;
    제2 서빙셀에 대한 랜덤 액세스 절차의 개시를 명령하는 랜덤 액세스 개시 정보를 기지국으로부터 수신하는 단계;
    상기 상향링크 신호의 전송을 위해 스케줄링된 제1 전송전력과, 랜덤 액세스 프리앰블이 맵핑되는 물리 랜덤 액세스 채널(physical random access channel: PRACH)의 전송을 위해 스케줄링된 제2 전송전력을 기반으로, 추정 잉여전력(estimated power headroom)을 계산하는 단계; 및
    상기 추정 잉여전력이 임계전력보다 작은 경우, 전력할당 우선순위를 기반으로 상기 제1 전송전력 또는 상기 제2 전송전력을 조정하여 상기 상향링크 신호 및 상기 PRACH를 동시에 전송하거나, 상기 전력할당 우선순위를 기반으로 상기 상향링크 신호 또는 상기 PRACH 중 어느 하나를 선택적으로 전송하는 단계를 포함함을 특징으로 하는, 상향링크 전송전력의 제어방법.
  2. 제 1 항에 있어서, 상기 제1 전송전력 또는 상기 제2 전송전력의 조정은,
    상기 PRACH가 상기 상향링크 신호보다 우선순위가 높은 경우, 상기 제1 전송전력을 감소시키는 것을 포함함을 특징으로 하는, 상향링크 전송전력의 제어방법.
  3. 제 2 항에 있어서,
    상기 상향링크 신호는 사운딩 기준신호(sounding reference signal: SRS)인 것을 특징으로 하는, 상향링크 전송전력의 제어방법.
  4. 제 2 항에 있어서,
    상기 상향링크 신호는 물리 상향링크 공용채널(physical uplink shared channel: PUSCH)인 것을 특징으로 하는, 상향링크 전송전력의 제어방법.
  5. 제 1 항에 있어서, 상기 제1 전송전력 또는 상기 제2 전송전력의 조정은,
    상기 상향링크 신호가 상기 PRACH 보다 우선순위가 높은 경우, 상기 제2 전송전력을 감소시키는 것을 포함함을 특징으로 하는, 상향링크 전송전력의 제어방법.
  6. 제 5 항에 있어서,
    상기 상향링크 신호는 물리 상향링크 제어채널(physical uplink control channel: PUCCH)인 것을 특징으로 하는, 상향링크 전송전력의 제어방법.
  7. 제 5 항에 있어서,
    상기 상향링크 신호는 ACK/NACK 신호, 채널품질정보(channel quality information: CQI) 및 랭크 지시자(rank indicator) 중 적어도 하나를 포함하는 PUSCH인 것을 특징으로 하는, 상향링크 전송전력의 제어방법.
  8. 제 1 항에 있어서,
    상기 임계전력은 0dB인 것을 특징으로 하는, 상향링크 전송전력의 제어방법.
  9. 제 1 항에 있어서,
    상기 추정 잉여전력이 상기 임계전력보다 작은 경우, 상기 추정 잉여전력의 보고를 트리거링(triggering)하는 단계를 더 포함함을 특징으로 하는, 상향링크 전송전력의 제어방법.
  10. 다중 요소 반송파 시스템에서 상향링크 전송전력을 제어하는 단말에 있어서,
    제1 서빙셀(serving cell)상에서 전송될 상향링크 신호를 생성하는 신호 생성부;
    제2 서빙셀에 대한 랜덤 액세스 절차의 개시를 명령하는 랜덤 액세스 개시 정보를 기지국으로부터 수신하는 수신부;
    상기 상향링크 신호의 전송을 위해 스케줄링된 제1 전송전력과, 랜덤 액세스 프리앰블이 맵핑되는 물리 랜덤 액세스 채널(physical random access channel: PRACH)의 전송을 위해 스케줄링된 제2 전송전력을 기반으로, 추정 잉여전력(estimated power headroom)을 계산하고, 상기 추정 잉여전력과 임계전력을 비교하며, 전력할당 우선순위를 기반으로 상기 제1 전송전력과 상기 제2 전송전력을 조정하는 전력 조정부; 및
    상기 추정 잉여전력이 상기 임계전력보다 작은 경우, 상기 조정된 제1 전송전력과 상기 조정된 제2 전송전력에 따라 상기 상향링크 신호 및 상기 PRACH를 동시에 전송하거나, 상기 전력할당 우선순위를 기반으로 상기 상향링크 신호 또는 상기 PRACH 중 어느 하나를 선택적으로 전송하는 전송부를 포함함을 특징으로 하는, 단말
  11. 제 10 항에 있어서, 상기 전력 조정부는,
    상기 PRACH가 상기 상향링크 신호보다 우선순위가 높은 경우, 상기 제1 전송전력을 감소시키는 것을 포함함을 특징으로 하는, 단말.
  12. 제 11 항에 있어서, 상기 신호 생성부는,
    사운딩 기준신호(sounding reference signal: SRS)를 상기 상향링크 신호로 생성하는 것을 특징으로 하는, 단말.
  13. 제 11 항에 있어서, 상기 신호 생성부는,
    물리 상향링크 공용채널(physical uplink shared channel: PUSCH)을 상기 상향링크 신호로 생성하는 것을 특징으로 하는, 단말.
  14. 제 10 항에 있어서, 상기 전력 조정부는,
    상기 상향링크 신호가 상기 PRACH 보다 우선순위가 높은 경우, 상기 제2 전송전력을 감소시키는 것을 포함함을 특징으로 하는, 단말.
  15. 제 14 항에 있어서, 상기 신호 생성부는,
    물리 상향링크 제어채널(physical uplink control channel: PUCCH)을 상기 상향링크 신호로 생성하는 것을 특징으로 하는, 단말.
  16. 제 14 항에 있어서, 상기 신호 생성부는,
    ACK/NACK 신호, 채널품질정보(channel quality information: CQI) 및 랭크 지시자(rank indicator) 중 적어도 하나를 포함하는 PUSCH를 상기 상향링크 신호로 생성하는 것을 특징으로 하는, 단말.
  17. 제 10 항에 있어서, 상기 전력 조정부는,
    상기 임계전력을 0dB로 설정하는 것을 특징으로 하는, 단말.
  18. 제 10 항에 있어서, 상기 추정 잉여전력이 상기 임계전력보다 작은 경우,
    상기 신호 생성부는 상기 추정 잉여전력의 보고를 트리거링(triggering)하는 것을 더 포함함을 특징으로 하는, 단말.
PCT/KR2012/009177 2011-11-15 2012-11-02 다중 요소 반송파 시스템에서 상향링크 전송전력의 제어장치 및 방법 WO2013073787A1 (ko)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP12850075.8A EP2782405B1 (en) 2011-11-15 2012-11-02 Apparatus and method for controlling uplink transmission power in a multiple element carrier wave system
US14/357,557 US9313743B2 (en) 2011-11-15 2012-11-02 Apparatus and method for controlling uplink transmission power in a multiple element carrier wave system
CN201280056210.1A CN103931243B (zh) 2011-11-15 2012-11-02 用于在多分量载波系统中控制上行传输功率的装置和方法
JP2014540937A JP5763845B2 (ja) 2011-11-15 2012-11-02 多重コンポーネントキャリアシステムにおけるアップリンク伝送電力の制御装置及び方法
US15/077,466 US9713095B2 (en) 2011-11-15 2016-03-22 Apparatus and method for controlling uplink transmission power in a multiple element carrier wave system
US15/653,355 US10045304B2 (en) 2011-11-15 2017-07-18 Apparatus and method for controlling uplink transmission power in a multiple element carrier wave system
US16/028,609 US20180324706A1 (en) 2011-11-15 2018-07-06 Apparatus and method for controlling uplink transmission power in a multiple element carrier wave system
US16/293,321 US10609650B2 (en) 2011-11-15 2019-03-05 Apparatus and method for controlling uplink transmission power in a multiple element carrier wave system
US16/826,054 US10945217B2 (en) 2011-11-15 2020-03-20 Apparatus and method for controlling uplink transmission power in a multiple element carrier wave system
US17/195,593 US11606757B2 (en) 2011-11-15 2021-03-08 Apparatus and method for controlling uplink transmission power in a multiple element carrier wave system
US18/120,121 US11924773B2 (en) 2011-11-15 2023-03-10 Apparatus and method for controlling uplink transmission power in a multiple element carrier wave system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0119154 2011-11-15
KR1020110119154A KR101867314B1 (ko) 2011-11-15 2011-11-15 다중 요소 반송파 시스템에서 상향링크 전송전력의 제어장치 및 방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/357,557 A-371-Of-International US9313743B2 (en) 2011-11-15 2012-11-02 Apparatus and method for controlling uplink transmission power in a multiple element carrier wave system
US15/077,466 Continuation US9713095B2 (en) 2011-11-15 2016-03-22 Apparatus and method for controlling uplink transmission power in a multiple element carrier wave system

Publications (1)

Publication Number Publication Date
WO2013073787A1 true WO2013073787A1 (ko) 2013-05-23

Family

ID=48429813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009177 WO2013073787A1 (ko) 2011-11-15 2012-11-02 다중 요소 반송파 시스템에서 상향링크 전송전력의 제어장치 및 방법

Country Status (6)

Country Link
US (8) US9313743B2 (ko)
EP (1) EP2782405B1 (ko)
JP (1) JP5763845B2 (ko)
KR (1) KR101867314B1 (ko)
CN (1) CN103931243B (ko)
WO (1) WO2013073787A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103875219A (zh) * 2013-12-13 2014-06-18 华为技术有限公司 干扰协调方法、装置和系统
WO2015111964A1 (ko) * 2014-01-23 2015-07-30 (주)휴맥스 홀딩스 Lte 이중 연결에서의 베어러 재조립 시스템
WO2015111965A1 (ko) * 2014-01-23 2015-07-30 (주)휴맥스 홀딩스 Lte 복수 기지국의 우선순위 데이터 전송 시스템 및 방법
WO2016006345A1 (ja) * 2014-07-11 2016-01-14 株式会社Nttドコモ ユーザ端末および無線通信方法
EP3101967A4 (en) * 2014-01-30 2017-02-15 NTT DoCoMo, Inc. User device and transmission control method
JP2017518707A (ja) * 2014-06-20 2017-07-06 クゥアルコム・インコーポレイテッドQualcomm Incorporated デュアル接続性においてsrsを処理するための方法および装置
CN111642001A (zh) * 2019-03-01 2020-09-08 中兴通讯股份有限公司 信道或信号的发送方法及装置、存储介质

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090077647A (ko) 2008-01-11 2009-07-15 삼성전자주식회사 이동통신 시스템에서 단말의 가용 전력 정보를 전송하는방법 및 장치
KR101867314B1 (ko) 2011-11-15 2018-06-15 주식회사 골드피크이노베이션즈 다중 요소 반송파 시스템에서 상향링크 전송전력의 제어장치 및 방법
KR102254896B1 (ko) 2013-01-03 2021-05-24 엘지전자 주식회사 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치
EP3383101B1 (en) * 2013-04-19 2019-10-30 LG Electronics Inc. Power control method and apparatus in wireless access system
US9872257B2 (en) * 2013-09-04 2018-01-16 Lg Electronics Inc. Method and apparatus for controlling uplink power in wireless communication system
WO2015037835A1 (en) * 2013-09-16 2015-03-19 Lg Electronics Inc. Random access procedures in a wireless network employing tdd scheme
WO2015041409A1 (en) 2013-09-20 2015-03-26 Lg Electronics Inc. Triggering power headroom reporting in tdd system
CN111970702A (zh) 2013-11-01 2020-11-20 三菱电机株式会社 通信系统
KR102298357B1 (ko) 2014-03-21 2021-09-07 삼성전자 주식회사 무선통신 시스템에서 다중 기지국과 랜덤 엑세스 수행 방법 및 장치
EP3136797B1 (en) * 2014-04-20 2019-07-10 LG Electronics Inc. Method for determining transmission power for direct communication between terminals in wireless communication system, and apparatus for same
US9906337B2 (en) * 2015-01-20 2018-02-27 Htc Corporation Network apparatus and communication device for aggregated component carriers
US9913290B2 (en) 2015-01-26 2018-03-06 Asustek Computer Inc. Method and apparatus for handling uplink transmission in a wireless communication system
CN105933984B (zh) * 2015-02-26 2019-07-30 宏达国际电子股份有限公司 处理与网络端的通信运作的装置及方法
WO2016182356A1 (ko) * 2015-05-12 2016-11-17 엘지전자 주식회사 비면허 대역을 지원하는 무선접속시스템에서 서로 다른 타입의 신호를 전송하기 위한 채널 접속 과정을 수행하는 방법 및 장치
CN106304299A (zh) * 2015-05-15 2017-01-04 北京三星通信技术研究有限公司 一种上行功率的分配方法和用户设备
EP3349505B1 (en) * 2015-09-08 2023-05-24 LG Electronics Inc. Method for transmitting data in wireless communication system and apparatus therefor
US20190037608A1 (en) * 2016-02-04 2019-01-31 Ntt Docomo, Inc. User terminal, radio base station, and radio communication method
US10542503B2 (en) * 2016-04-01 2020-01-21 Motorola Mobility Llc Method and apparatus for scheduling uplink transmissions with reduced latency
US10912090B2 (en) * 2016-04-10 2021-02-02 Lg Electronics Inc. Method and device for transmitting uplink reference signal in wireless communication system
US10602461B2 (en) 2016-09-22 2020-03-24 Lg Electronics Inc. Method for power control for supporting reduced TTI in wireless communication system, and device therefor
KR20180103424A (ko) * 2017-03-10 2018-09-19 삼성전자주식회사 무선 충전 시스템에서 충전 전력 전송의 스케줄링을 위한 장치 및 그 제어 방법
US10341961B2 (en) * 2017-05-05 2019-07-02 China Academy Of Telecommunications Technology Power control framework for multi-beam configuration
US11647471B2 (en) * 2017-06-15 2023-05-09 Nec Corporation Methods and devices for physical random access channel power control
CN109391386B (zh) * 2017-08-03 2022-05-06 华为技术有限公司 一种上行控制信息发送方法
US10750509B2 (en) * 2017-08-10 2020-08-18 Qualcomm Incorporated Power reservation and dropping rules for transmission time intervals
CN111526569B (zh) * 2017-08-16 2024-05-03 Oppo广东移动通信有限公司 信号传输的方法和终端设备
US10674518B2 (en) 2017-12-27 2020-06-02 Comcast Cable Communications, Llc Dynamic management of interference and coverage in wireless communications
US10834761B2 (en) 2018-02-17 2020-11-10 Ofinno, Llc Cell uplink selection control
CN112189376B (zh) * 2018-05-18 2024-11-08 株式会社Ntt都科摩 用户装置及基站装置
WO2020159294A1 (ko) * 2019-02-01 2020-08-06 엘지전자 주식회사 무선 통신 시스템에서 랜덤 액세스 절차를 수행하는 방법 및 그 장치
CN111629429B (zh) * 2019-02-27 2021-09-03 华为技术有限公司 一种上行功率的调整方法和相关设备
CN113207178B (zh) * 2019-04-24 2023-12-19 Oppo广东移动通信有限公司 功率分配方法和终端设备以及存储介质
EP3799702B1 (en) * 2019-06-26 2023-11-01 ZTE Corporation Generating a scrambled payload using an initialization scrambling sequence
CN112532363B (zh) * 2020-09-14 2022-04-22 中兴通讯股份有限公司 Srs传输方法、终端及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090176525A1 (en) * 2007-12-07 2009-07-09 Interdigital Patent Holdings, Inc. Method and apparatus of signaling and procedure to support uplink power level determination
US20100238825A1 (en) * 2009-03-17 2010-09-23 Qualcomm, Incorporated Loop power controls for multi-carrier high-speed uplink packet access
EP2326134A1 (en) * 2006-10-27 2011-05-25 Interdigital Technology Corporation Method and apparatus for controlling transmission parameters on a random access channel

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6553016B1 (en) * 1999-12-20 2003-04-22 Telfonaktiebolaget Lm Ericsson (Publ) Downlink power control at soft handover
EP1261147A1 (en) * 2001-05-21 2002-11-27 Motorola, Inc. A method and system for simultaneous bi-directional wireless communication between a user station and first and second base stations
JP4150239B2 (ja) * 2002-10-03 2008-09-17 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、基地局、移動局、及びセル制御方法
US8406179B2 (en) * 2007-08-07 2013-03-26 Samsung Electronics Co., Ltd. Method and apparatus for performing random access procedure in a mobile communication system
CN102612162B (zh) * 2008-01-07 2015-09-09 三星电子株式会社 传输随机接入前导信号的设备和方法
US8228855B2 (en) * 2008-03-24 2012-07-24 Qualcomm Incorporated Uplink power headroom definition for E-DCH in CELL—FACH
US8787310B2 (en) * 2008-04-18 2014-07-22 Kyocera Corporation Mobile station device and transmission power control method
KR101611271B1 (ko) * 2008-10-29 2016-04-26 엘지전자 주식회사 다중 반송파 결합 환경에서의 업링크 임의 접속 방법
EP2244515A1 (en) * 2009-04-23 2010-10-27 Panasonic Corporation Logical channel prioritization procedure for generating multiple uplink transport blocks
US8938247B2 (en) * 2009-04-23 2015-01-20 Qualcomm Incorporated Sounding reference signal for coordinated multi-point operation
CN101883415B (zh) * 2009-05-05 2013-06-05 电信科学技术研究院 探测参考信号发送功率配置方法、网络侧设备及ue
WO2010150552A1 (ja) 2009-06-26 2010-12-29 パナソニック株式会社 無線通信装置及び無線通信方法
KR101677787B1 (ko) * 2009-10-02 2016-11-18 인터디지탈 패튼 홀딩스, 인크 다수의 안테나들을 갖는 디바이스들에 대한 전력 제어
WO2011059517A1 (en) * 2009-11-12 2011-05-19 Qualcomm Incorporated Method and apparatus for power correction in uplink synchronization during a td-scdma handover
CN103220770B (zh) * 2009-12-30 2016-12-07 华为技术有限公司 一种功率控制方法和装置
JP5445152B2 (ja) * 2010-01-14 2014-03-19 富士通株式会社 無線通信装置、リモート局装置、基地局装置
JP2011155335A (ja) * 2010-01-26 2011-08-11 Sharp Corp 通信システム及び移動局装置及び基地局装置及び処理方法
KR101790593B1 (ko) 2010-04-01 2017-10-26 선 페이턴트 트러스트 물리적 랜덤 액세스 채널들에 대한 송신 전력 제어
US8526344B2 (en) * 2010-05-06 2013-09-03 Htc Corporation Method of power information reporting for enhancing uplink power control
US8885528B2 (en) * 2010-06-18 2014-11-11 Institute For Information Industry Wireless apparatus, base station and uplink contention method thereof using mapping rule on uplink signal with preamble sequence and control message
US9526077B2 (en) * 2010-08-10 2016-12-20 Samsung Electronics Co., Ltd. Method and apparatus for reporting power headroom information in mobile communication system supporting carrier aggregation
KR101276853B1 (ko) * 2010-08-17 2013-06-18 엘지전자 주식회사 멀티캐리어를 지원하는 통신 시스템에서 파워 헤드룸 리포트를 전송하는 방법 및 장치
US9173178B2 (en) * 2010-09-21 2015-10-27 Broadcom Corporation Method and system for power headroom reporting in the presence of multiple transmit antennas
KR101776873B1 (ko) * 2011-01-11 2017-09-11 삼성전자 주식회사 이동통신 시스템에서 역방향 전송 출력 결정 방법 및 장치
US8654728B2 (en) * 2011-04-29 2014-02-18 Telefonaktiebolaget L M Ericsson (Publ) Generating uplink signals from user equipment nodes to identify interferers to a network node
WO2012154955A1 (en) * 2011-05-10 2012-11-15 Interdigital Patent Holdings Inc. Method and apparatus for obtaining uplink timing alignment on a secondary cell
KR20120136867A (ko) * 2011-06-10 2012-12-20 주식회사 팬택 다중 요소 반송파 시스템에서 상향링크 동기의 수행장치 및 방법
US20130010659A1 (en) * 2011-07-08 2013-01-10 Qualcomm Incorporated Sounding reference signals in asymmetric carrier aggregation
KR101685546B1 (ko) * 2011-07-29 2016-12-12 후지쯔 가부시끼가이샤 파워 제어 방법 및 단말 장치
US9025476B2 (en) * 2011-08-10 2015-05-05 Blackberry Limited Method and system for random access interference mitigation in heterogeneous cellular networks
KR102052376B1 (ko) * 2011-08-17 2019-12-05 엘지전자 주식회사 기지국 협력 무선 통신 시스템에서 사운딩 참조 신호를 송신하는 방법 및 이를 위한 장치
KR102014792B1 (ko) 2011-09-21 2019-08-27 엘지전자 주식회사 상향링크 신호 전송 전력을 제어하는 단말 장치 및 그 방법
WO2013048143A2 (en) * 2011-09-27 2013-04-04 Samsung Electronics Co., Ltd. A method and appratus for transmission power control for a sounding reference signal
CN108809364B (zh) * 2011-09-30 2022-03-29 交互数字专利控股公司 用于无线通信系统中的多点传输的方法及装置
KR101986865B1 (ko) * 2011-11-04 2019-06-07 인터디지탈 패튼 홀딩스, 인크 다수의 타이밍 어드밴스와 관련된 다수의 컴포넌트 반송파 상의 무선 전송에 대한 전력 제어를 위한 방법 및 장치
KR101867314B1 (ko) * 2011-11-15 2018-06-15 주식회사 골드피크이노베이션즈 다중 요소 반송파 시스템에서 상향링크 전송전력의 제어장치 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2326134A1 (en) * 2006-10-27 2011-05-25 Interdigital Technology Corporation Method and apparatus for controlling transmission parameters on a random access channel
US20090176525A1 (en) * 2007-12-07 2009-07-09 Interdigital Patent Holdings, Inc. Method and apparatus of signaling and procedure to support uplink power level determination
US20100238825A1 (en) * 2009-03-17 2010-09-23 Qualcomm, Incorporated Loop power controls for multi-carrier high-speed uplink packet access

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2782405A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103875219A (zh) * 2013-12-13 2014-06-18 华为技术有限公司 干扰协调方法、装置和系统
US10305649B2 (en) 2013-12-13 2019-05-28 Huawei Technologies Co., Ltd. Interference coordination method, apparatus, and system
WO2015111964A1 (ko) * 2014-01-23 2015-07-30 (주)휴맥스 홀딩스 Lte 이중 연결에서의 베어러 재조립 시스템
WO2015111965A1 (ko) * 2014-01-23 2015-07-30 (주)휴맥스 홀딩스 Lte 복수 기지국의 우선순위 데이터 전송 시스템 및 방법
EP3101967A4 (en) * 2014-01-30 2017-02-15 NTT DoCoMo, Inc. User device and transmission control method
JP2017518707A (ja) * 2014-06-20 2017-07-06 クゥアルコム・インコーポレイテッドQualcomm Incorporated デュアル接続性においてsrsを処理するための方法および装置
JP2020092429A (ja) * 2014-06-20 2020-06-11 クゥアルコム・インコーポレイテッドQualcomm Incorporated デュアル接続性においてsrsを処理するための方法および装置
US10790949B2 (en) 2014-06-20 2020-09-29 Qualcomm Incorporated SRS in dual connectivity
WO2016006345A1 (ja) * 2014-07-11 2016-01-14 株式会社Nttドコモ ユーザ端末および無線通信方法
CN111642001A (zh) * 2019-03-01 2020-09-08 中兴通讯股份有限公司 信道或信号的发送方法及装置、存储介质
CN111642001B (zh) * 2019-03-01 2023-11-21 中兴通讯股份有限公司 信道或信号的发送方法及装置、存储介质

Also Published As

Publication number Publication date
EP2782405A1 (en) 2014-09-24
US20170318544A1 (en) 2017-11-02
US11924773B2 (en) 2024-03-05
CN103931243B (zh) 2018-05-15
US20160205635A1 (en) 2016-07-14
US20200221387A1 (en) 2020-07-09
JP5763845B2 (ja) 2015-08-12
EP2782405A4 (en) 2015-04-29
US10609650B2 (en) 2020-03-31
US9713095B2 (en) 2017-07-18
US20190200301A1 (en) 2019-06-27
US20150319703A1 (en) 2015-11-05
JP2014535236A (ja) 2014-12-25
US9313743B2 (en) 2016-04-12
US20230209471A1 (en) 2023-06-29
US10045304B2 (en) 2018-08-07
US20210204222A1 (en) 2021-07-01
CN103931243A (zh) 2014-07-16
KR20130053635A (ko) 2013-05-24
EP2782405B1 (en) 2018-08-22
KR101867314B1 (ko) 2018-06-15
US10945217B2 (en) 2021-03-09
US11606757B2 (en) 2023-03-14
US20180324706A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
WO2013073787A1 (ko) 다중 요소 반송파 시스템에서 상향링크 전송전력의 제어장치 및 방법
WO2014021612A2 (ko) 무선 통신 시스템에서 상향링크 송신 전력을 설정하는 방법 및 장치
WO2012096520A2 (en) Uplink transmission power configuration method and apparatus for mobile communication system
WO2013112029A1 (ko) 상향링크 전송 파워 제어 방법 및 이를 이용한 무선기기
WO2012111980A2 (en) Power headroom report method and apparatus of ue priority
WO2014014283A1 (ko) 무선 통신 시스템에서 파워헤드룸 보고 장치 및 방법
WO2012060651A2 (en) Uplink scheduling apparatus and method based on uplink report in wireless communication system
WO2012011757A2 (ko) 다수의 컴포넌트 캐리어를 지원하는 무선통신 시스템에서 파워 헤드룸 리포트를 전송하는 단말 장치 및 그 방법
WO2010090477A2 (ko) 다중 반송파를 지원하는 장치 및 방법
WO2012067333A1 (en) Carrier aggregation management and related device and system
WO2012044081A2 (en) Apparatus and method for transmitting information on power headroom in multiple component carrier system
WO2015142125A1 (ko) Tdd-fdd 집성을 고려한 tpc 명령 타이밍 제어 방법 및 그 장치
EP2664199A2 (en) Uplink transmission power configuration method and apparatus for mobile communication system
WO2016126027A1 (en) Method for deactivating scells upon a tat expiry for pucch cell in a carrier aggregation system and a device therefor
WO2012002727A9 (en) Apparatus and method for reporting power headroom in multiple component carrier system
WO2012020994A2 (en) Apparatus and method for transmitting information regarding power coordination in multi-component carrier system
EP2676475A2 (en) Power headroom report method and apparatus of ue priority
WO2013109049A1 (en) Apparatus and method of transmitting uplink signal in wireless communication system
WO2017034156A1 (en) Method for activating or deactivating a cell in a wireless communication system and a device therefor
WO2016171419A1 (en) Method for allocating cell index for wlan network for lte-wlan aggregation system and a device therefor
WO2015147539A1 (ko) 상향링크 전송에 대한 전력 제어를 수행하는 방법 및 사용자 장치
KR20120048390A (ko) 다중 요소 반송파 시스템에서 요소 반송파에 대한 전력정보 전송장치 및 방법
WO2013109091A1 (ko) 다중 요소 반송파 시스템에서 전력 정보 전송 장치 및 방법
WO2016163684A1 (en) Method for reporting data transmission drop in a carrier aggregation with at least one scell operating in an unlicensed spectrum and a device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540937

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14357557

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012850075

Country of ref document: EP