WO2013073512A1 - Fuel injection method for internal combustion engine and internal combustion engine - Google Patents
Fuel injection method for internal combustion engine and internal combustion engine Download PDFInfo
- Publication number
- WO2013073512A1 WO2013073512A1 PCT/JP2012/079331 JP2012079331W WO2013073512A1 WO 2013073512 A1 WO2013073512 A1 WO 2013073512A1 JP 2012079331 W JP2012079331 W JP 2012079331W WO 2013073512 A1 WO2013073512 A1 WO 2013073512A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel injection
- current
- injection time
- injection amount
- correction value
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/146—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
- F02D41/221—Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2464—Characteristics of actuators
- F02D41/2467—Characteristics of actuators for injectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
- F02D2041/224—Diagnosis of the fuel system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/06—Fuel or fuel supply system parameters
- F02D2200/0602—Fuel pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/18—Circuit arrangements for generating control signals by measuring intake air flow
Definitions
- the present invention uses the oxygen concentration of a NOx sensor provided downstream of the exhaust gas purification device, and corrects the fuel injection of the internal combustion engine that can be corrected so as to eliminate the difference between the actual fuel injection amount and the commanded fuel injection amount.
- the present invention relates to a method and an internal combustion engine.
- an ECU controls an injector (fuel injection valve) to adjust the fuel injection amount from the injector to an appropriate amount.
- the command fuel injection amount adjusted to an appropriate amount is determined so as to improve fuel consumption, reduce harmful components of exhaust gas, and reduce noise.
- an excess air ratio sensor or an excess air ratio sensor (such as an oxygen sensor also called a lambda sensor or an A / F sensor called an A / F sensor) that can measure the excess air ratio or the air / fuel ratio is used to measure the exhaust gas from the target air / fuel ratio.
- An apparatus that corrects the deviation amount of the air-fuel ratio for example, see Patent Document 1
- an apparatus that compares and corrects the excess air ratio in the exhaust gas, the command injection quantity, and the excess air ratio calculated from the fresh air quantity Yes see, for example, Patent Document 2.
- These devices detect an excess air ratio in the exhaust gas or an air-fuel ratio of the exhaust gas by an excess air ratio sensor provided upstream of the exhaust gas treatment device or upstream and downstream of the exhaust gas treatment device.
- the detected excess air ratio or air / fuel ratio depends on the actual fuel injection amount. By correcting the deviation between this and the target value obtained from the indicated fuel injection amount, or comparing the deviations, abnormal fuel injection is detected. By detecting this, the injector is monitored and controlled so that the actual fuel injection amount and the command fuel injection amount do not deviate.
- the air excess rate sensor provided in the above apparatus is, for example, ZrO 2 (zirconia) or TiO 2 (titania) which is provided upstream of the exhaust gas processing apparatus and has electrodes with Pt (platinum) coating on the inner and outer surfaces. It is formed with a solid electrolyte tube formed by, for example.
- This excess air ratio sensor is that oxygen ions flow from the atmosphere side where the oxygen partial pressure is high toward the exhaust gas side where the oxygen partial pressure is low, thereby generating an electromotive force proportional to the logarithm of the oxygen partial pressure ratio between the electrodes.
- the oxygen concentration in the exhaust gas is detected from the electromotive force.
- This NOx sensor is, for example, a sensor that is provided downstream of an exhaust gas treatment device and is made of a ceramic solid electrolyte (oxygen ion conductor) that is excellent in durability and heat resistance, and has at least two compartments.
- the exhaust gas is exhausted by the first oxygen pump by using a first oxygen pump that removes oxygen other than NOx in one compartment and a second oxygen pump that decomposes NOx and removes the generated oxygen in the other compartment.
- the oxygen concentration in the exhaust gas is detected, and the NOx concentration in the exhaust gas is detected by the second oxygen pump.
- the NOx sensor uses oxygen ion conductors (SnO 2 , ITO, YBCO, WO 3 , TiO 2 , ZrO 2 , Zn 2 SnO 4, etc.), and Pt, Rh on the surface thereof. Since it is processed by applying (rhodium) or the like, the sensor is expensive.
- oxygen ion conductors SnO 2 , ITO, YBCO, WO 3 , TiO 2 , ZrO 2 , Zn 2 SnO 4, etc.
- this NOx sensor is a method for directly detecting the NOx occlusion state of the NOx occlusion reduction catalyst in the exhaust gas purification device and giving an optimum timing for reducing agent charging control, or a method for diagnosing deterioration of the catalyst on the vehicle. It is a sensor that is indispensable for providing an exhaust gas purifying device in an engine.
- the present invention has been made in view of the above-described problems, and an object of the present invention is to use a NOx sensor provided downstream of the exhaust gas purification device without adding an expensive excess air ratio sensor, and to deteriorate the injector.
- the fuel injection method for an internal combustion engine according to the present invention for solving the above-described object is a fuel injection method for an internal combustion engine in which an exhaust gas purification device is provided in an exhaust passage, and a NOx sensor provided downstream of the exhaust gas purification device.
- a deviation value between the actual excess air ratio ⁇ 1 calculated from the oxygen concentration value and the target excess air ratio ⁇ 2 calculated from the fresh air amount detected by the intake air amount sensor provided in the intake passage and the current commanded fuel injection amount is calculated.
- the deviation value is zero for the current injection time correction value stored in the injection time correction value map based on the common rail pressure and the commanded fuel injection amount and corresponding to the current common rail pressure and the current commanded fuel injection amount.
- the injection time correction value is calculated, and when the fuel is injected from the fuel injection valve, it is stored in the injection time map based on the common rail pressure and the indicated fuel injection amount, and the current common level is calculated.
- the fuel injection is performed by correcting the current injection time corresponding to the fuel pressure and the current commanded fuel injection amount with the injection time correction value.
- the fuel injection time of the injector is changed to the actual fuel injection amount. Therefore, the difference between the actual fuel injection amount and the command fuel injection amount can be eliminated. As a result, the deviation between the actual fuel injection amount and the commanded fuel injection amount due to the deterioration of the injector or the like can be made zero without adding an excess air ratio sensor that was conventionally necessary for correcting the fuel injection amount. As a result, the number of parts can be reduced, and the manufacturing cost can be reduced.
- the fuel injection time based on the commanded fuel injection amount and the rail pressure (fuel injection pressure) of the common rail is corrected with the injection time correction value, and the pulse width of the injection time of the injector is corrected.
- the amount can be directed to the injector.
- the injection time correction value is expressed by the following equation (1) using the actual excess air ratio ⁇ 1, the target excess air ratio ⁇ 2, and the current injection time correction value.
- the injection time is obtained by the following equation (2) using the current injection time and the injection time correction value.
- L (i, j) current injection time correction value
- L (I, J) injection time correction value
- W_cor weighting factor
- T (i, j) current injection time
- T_corr injection time.
- the pulse width of the injection time of the injector is corrected.
- the next commanded fuel injection amount can be corrected based on the fuel injection amount.
- An internal combustion engine for solving the above problem is an internal combustion engine having an exhaust gas purification device provided in an exhaust passage, and an actual excess air ratio ⁇ 1 calculated from an oxygen concentration value of a NOx sensor provided downstream of the exhaust gas purification device. And means for calculating a deviation value between the fresh air amount detected by the intake air amount sensor provided in the intake passage and the target excess air ratio ⁇ 2 calculated from the current indicated fuel injection amount, and the common rail pressure and the indicated fuel injection amount.
- the injection time correction is performed by correcting the current injection time correction value stored in the base injection time correction value map and corresponding to the current common rail pressure and the current commanded fuel injection amount so that the deviation value becomes zero.
- the means for calculating the value and the fuel injection from the fuel injection valve are stored in an injection time region map based on the common rail pressure and the indicated fuel injection amount, and the current common rail pressure and the current indicator are stored.
- a control device is provided that includes means for correcting the current injection time corresponding to the indicated fuel injection amount with the injection time correction value and performing fuel injection.
- the control device uses the actual air excess rate ⁇ 1, the target air excess rate ⁇ 2, and the current injection time correction value as the injection time correction value using the following equation (3): ) And means for obtaining the injection time by the following equation (4) using the current injection time and the injection time correction value.
- L (i, j) current injection time correction value
- L (I, J) injection time correction value
- W_cor weighting factor
- T (i, j) current injection time
- T_corr injection time.
- the actual excess air ratio ⁇ 1 can be calculated from the output of the NOx sensor, and the next fuel injection time can be corrected from the actual fuel injection amount using the actual excess air ratio ⁇ 1. .
- the present invention it is possible to use the NOx sensor provided downstream of the exhaust gas purification device without adding an expensive excess air ratio sensor and to indicate the actual fuel injection amount generated due to the deterioration of the injector and the designated fuel.
- the next fuel injection time can be corrected so that the deviation from the injection amount becomes zero.
- FIG. 1 is a diagram showing an intake and exhaust system of an internal combustion engine according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram showing the control of the internal combustion engine according to the embodiment of the present invention.
- FIG. 3 is a learning region map used in the fuel injection method for an internal combustion engine according to the embodiment of the present invention.
- FIG. 4 is an injection time region map used in the internal combustion engine fuel injection method according to the embodiment of the present invention.
- FIG. 5 is a flowchart showing a fuel injection method for an internal combustion engine according to the embodiment of the present invention.
- an internal combustion engine fuel injection method and an internal combustion engine according to an embodiment of the present invention will be described with reference to the drawings.
- an in-line four-cylinder diesel engine will be described as an example.
- the present invention is not limited to this and may be applied to any internal combustion engine provided with a NOx sensor.
- an engine (internal combustion engine) 1 includes a fuel supply system 4 including an injector (fuel injection valve) 3 for injecting fuel into each cylinder 2, an intake system 6 including an intake passage 5, and an exhaust passage.
- An exhaust system 8 including 7 is provided.
- Fuel supply system 4 is a system that injects high-pressure fuel from injectors 3 connected to a common rail 9 that stores pressurized fuel, and includes a fuel tank and a supply pump (not shown).
- the intake system 6 includes an intake filter 10, an intercooler 11, and an intake throttle 12, and the exhaust system 8 is an exhaust gas purification system including a DPF (diesel particulate collection filter) 13 and an SCR device (selective catalytic reduction device) 14.
- a device 15 is provided.
- the intake system 6 and the exhaust system 8 can send the compressed air into the engine by rotating the turbine at high speed using the energy of the exhaust gas and driving the centrifugal compressor with the rotational force.
- the turbocharger 16, the EGR cooler 17, and the EGR valve 18 are provided with an EGR device (exhaust gas recirculation device) 19 that takes out a part of the exhaust gas after combustion, guides it to the intake side, and sucks it again.
- the configuration of the engine 1 is a well-known configuration, and each device can use a well-known technique.
- the exhaust gas purification device 15 including at least the SCR device 14 is provided in the exhaust system 8, other configurations are not limited to the above configuration.
- an ECU (control device) 20 that controls the above-described device and system, a NOx sensor 21, a MAF sensor (fresh air amount sensor) 22, and a pressure sensor 23 connected to the ECU 20 are provided.
- the engine 1 is provided with a sensor (not shown). However, in this embodiment, at least the sensors 21 to 23 are sufficient.
- the ECU 20 is a control device called an engine control unit, and is a microcontroller that comprehensively performs electrical control in charge of control of the engine 1 by an electric circuit. As shown in FIG. Then, the fuel injection amount of the injector 3 is controlled.
- the ECU 20 includes an actual excess air ratio calculating means 24, a target excess air ratio calculating means 25, a learned value calculating means 26, and an injection time calculating means 27, and a learning region map (injection time correction value map) M1, energization A time map (injection time map) M2 and the current command fuel injection amount Q_fin are stored. Each of these means 24 to 27 is stored as a program in the ECU 20 and sequentially executed when correcting the fuel injection time.
- the NOx sensor 21 provided downstream of the SCR device 14 is a sensor that measures the concentration value of NOx (nitrogen oxide) in the exhaust gas, and is a sensor that can measure the oxygen concentration value O2_exh in the exhaust gas. is there.
- the NOx sensor 21 is used in a method for directly detecting the NOx occlusion state of the NOx occlusion reduction catalyst in the SCR device 14 to give an optimum timing for reducing agent charging control, and a method for diagnosing deterioration of the catalyst on the vehicle. This sensor is necessary when the exhaust system 8 includes the SCR device 14.
- the NOx sensor 21 is excellent in durability and heat resistance, and a known NOx sensor can be used as long as it can measure the NOx concentration in the exhaust gas and can measure the oxygen concentration value O2_exh in the exhaust gas.
- the MAF sensor 22 and the pressure sensor 23 may be well-known sensors if the MAF sensor 22 detects the fresh air amount m_air and the pressure sensor 23 can detect the common rail pressure (common rail pressure) P. it can.
- the operation of the engine 1 will be described with reference to FIG. 2, FIG. 3, and FIG.
- the engine 1 performs this operation every time a predetermined crank angle (for example, every 360 °) is reached.
- a predetermined crank angle for example, every 360 °
- the actual excess air ratio calculating means 24 provided in the ECU 20 calculates the actual excess air ratio ⁇ 1 from the following equation (5). calculate.
- the oxygen concentration in the atmosphere is O2_air.
- the actual excess air ratio calculating means 24 can calculate the actual excess air ratio ⁇ 1 derived from the actual fuel injection amount from the oxygen concentration value O2_exh detected by the NOx sensor 21. Thereby, in order to calculate the actual excess air ratio ⁇ 1, by using the NOx sensor 21 that needs to be provided in the engine 1 including the SCR device 14, it is not necessary to separately add an excess air ratio sensor. Therefore, the number of parts can be reduced, and the manufacturing cost can be reduced.
- the target excess air ratio calculating means 25 calculates the following equation (6 ) To calculate the target excess air ratio ⁇ 2.
- the ideal air-fuel ratio AFR takes various values depending on the properties of the fuel. For example, when the fuel is light oil, the value is about 14.5.
- the learning region map M1 is a map based on the common rail pressure P_area and the fuel flow rate (indicated fuel injection amount) Q_area stored in advance in the ECU 20.
- the learning value (injection time correction value) L (i, j) stored in the learning area map M1 is a correction value for the injection time of the injector 3.
- the numerical value described in the learning area map M1 shown in FIG. 3 is a numerical value for explanation, and the actual numerical value is not limited to this. Further, the number of cells is not limited, and actually, a numerical value may be set finely to increase the number of cells.
- the actual learning value (current injection time correction value) L (i, j) stored in the learning region map M1 is set to the actual excess air ratio ⁇ 1 and the target excess air ratio ⁇ 2.
- the learning value calculation means 26 uses the deviation value ⁇ and the weighting coefficient w_cor, the learning value calculation means 26 corrects the value from the following equation (7) to calculate the learning value (injection time correction value) L (I, J). .
- the learning value L (I, J) corrected so that the deviation value ⁇ between the actual excess air ratio ⁇ 1 and the target excess air ratio ⁇ 2 becomes zero by the learned value calculating means 26 is learned as a new learned value.
- the learning value L (I, J) corrected so that the deviation value ⁇ between the actual excess air ratio ⁇ 1 and the target excess air ratio ⁇ 2 becomes zero by the learned value calculating means 26 is learned as a new learned value.
- the current injection time T (i, j) is corrected using the learning value L (I, J) calculated above.
- the energization time map M2 will be described. As shown in FIG. 4, the energization time map M2 is a map based on the common rail pressure P_area and the fuel flow rate (indicated fuel injection amount) Q_area stored in advance in the ECU 20, and the energization time of the injector 3 stored therein. The unit of is ( ⁇ s).
- the current injection time T (i, j) stored in the energization time map M2 is the pulse width of the injection time during which the injector 3 injects fuel.
- the numerical value described in the energization time map M2 shown in FIG. 4 is a numerical value for description, and an actual numerical value is not limited to this. Further, the number of cells is not limited, and actually, a numerical value may be set finely to increase the number of cells.
- the injection time calculation means 27 calculates the next injection time T_corr from the following equation (8).
- the ECU 20 controls the injector 3 to inject at the calculated injection time T_corr.
- the current learning value L (i, j) stored in the learning area map M1 is corrected so that the deviation value ⁇ between the actual excess air ratio ⁇ 1 and the target excess air ratio ⁇ 2 is zero.
- the learned value L (I, J) By updating the learned value L (I, J), the deviation between the actual fuel injection amount and the commanded fuel injection amount due to deterioration of the fuel supply system 4 including the injector 3 can be corrected. Thereby, the deviation between the actual fuel injection amount and the command fuel injection amount can always be updated.
- the engine 1 can calculate the actual excess air ratio ⁇ 1 using the oxygen concentration value O2_exh of the NOx sensor 21 provided downstream of the SCR device 14 when the injector 3 injects fuel. Since the next fuel injection time T_corr can be corrected so that the deviation value ⁇ between the excess air ratio ⁇ 1 and the target excess air ratio ⁇ 2 is zero, the deterioration of the injector 3 without adding an excess air ratio sensor. The deviation between the indicated fuel injection amount and the actual fuel injection amount can be corrected.
- the current injection time T (i, j) of the indicated fuel stored in the energization time map M2 is used, so that the current common rail pressure P is set when the fuel is actually injected. Since the fuel is injected at the injection time T_corr based on it, it is possible to always make the indicated fuel injection amount accurate.
- This fuel injection method is performed for each predetermined crank angle of the engine 1 and is corrected so that the injection time T_corr is based on the actual fuel injection amount of the injector 3.
- step S11 for calculating the actual excess air ratio ⁇ 1 in the exhaust gas is performed using the oxygen concentration value O2_exh of the NOx sensor 21 provided downstream of the SCR device 14.
- the actual excess air ratio ⁇ 1 is calculated using the above equation (5), but it is only necessary to be able to determine the excess air ratio based on the actual fuel injection amount, and is not limited to the above method.
- Step S12 for calculating the target excess air ratio ⁇ 2 is performed using the MAF sensor 22 and the current command fuel injection amount Q_fin.
- the target excess air ratio ⁇ 2 is calculated using the above formula (6), but it is sufficient if the target excess air ratio ⁇ 2 obtained from the current command fuel injection amount Q_fin can be calculated. Not limited.
- step S14 for calling the current learning value L (i, j) from the learning region map M1 is performed.
- the current learning value L (i, j) corresponding to the current common rail pressure P detected by the pressure sensor 23 and the current commanded fuel injection amount Q_fin is called.
- the learning value L (i, j) is a learning value used when the current command fuel injection amount Q_fin is corrected.
- step S15 the learning value L (I, J) is calculated using the above mathematical formula (7).
- step S16 of writing the learning value L (I, J) to the learning area map M1 is performed. At this time, the location of the cell written in the learning area map M1 is specified by the current common rail pressure P and the current commanded fuel injection amount Q_fin.
- Step S18 for calling the current injection time T (i, j) from the energization time map M2 is performed.
- the current injection time T (i, j) corresponding to the current common rail pressure P detected by the pressure sensor 23 and the current command fuel injection amount Q_fin is called.
- step S19 for calculating the next fuel injection time T_corr using the learned value L (I, J) and the current injection time T (i, j) is performed.
- the injection time T_corr is calculated using the above equation (8).
- step S17 is performed in which the current learning value L (i, j) is set as the learning value L (I, J), and the process proceeds to steps S18 and S19.
- the fuel injection time T_corr is calculated, and the process returns to the start.
- the command fuel injection time T_corr can be corrected using the oxygen concentration value O2_exh of the NOx sensor 21 in order to eliminate the difference between the actual fuel injection amount and the command fuel injection amount. Therefore, the difference between the actual fuel injection amount and the command fuel injection amount can be eliminated.
- the fuel consumption deteriorates, the smoke emission increases, and the exhaust gas that occurs when the deviation between the actual fuel injection amount and the commanded fuel injection amount becomes large due to deterioration of the injector or the like. Thermal damage to the exhaust passage 7 and the turbocharger 16 due to the high temperature of the gas can be prevented.
- the fuel current injection time T (i, j) based on the current command fuel injection amount Q_fin and the current common rail pressure P of the common rail 9 is corrected by the learning value L (I, J), and the injection time pulse of the injector 3 is corrected.
- the width By correcting the width, a more accurate fuel injection time T_corr can be instructed to the injector, so that the difference between the actual fuel injection amount and the indicated fuel injection amount can be eliminated.
- an in-line four-cylinder diesel engine has been described as an example.
- an ideal air-fuel ratio or the like to a value suitable for gasoline, it can also be applied to a gasoline engine equipped with an exhaust gas processing device. .
- the internal combustion engine of the present invention can correct the deviation between the actual fuel injection amount and the commanded fuel injection amount by using a NOx sensor provided downstream of the exhaust gas processing device, so that it is particularly necessary to process the exhaust gas. It can be used for vehicles equipped with a diesel engine.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
In the present invention, the deviation value is calculated between an actual air excess ratio, which is calculated from the oxygen concentration value of an NOx sensor provided downstream of an exhaust gas purification device provided to an exhaust pathway, and a target air excess ratio, which is calculated from an actual designated fuel injection amount and a new air amount detected by an MAF sensor provided to an air intake pathway; the result is recorded to a learning region map having the common rail pressure and the designated fuel injection amount as a base; the current learning value corresponding to the current common rail pressure and the current designated fuel injection amount is corrected in a manner so that the deviation value becomes zero and a new learning value is calculated and, at the time of fuel injection from an injector, recorded to an electrification time map having the designated fuel injection amount and common rail pressure as a base; the current injection time, which corresponds to the current designated fuel injection amount and the current common rail pressure, is corrected by the new learning value; and fuel injection is performed; by which means, using an NOx sensor, the deviation between the designated fuel injection amount and the actual fuel injection amount resulting from injector degradation and the like is corrected.
Description
本発明は、排気ガス浄化装置の下流に設けたNOxセンサの酸素濃度を利用して、実際の燃料噴射量と指示燃料噴射量との乖離をなくすように補正することができる内燃機関の燃料噴射方法と内燃機関に関する。
The present invention uses the oxygen concentration of a NOx sensor provided downstream of the exhaust gas purification device, and corrects the fuel injection of the internal combustion engine that can be corrected so as to eliminate the difference between the actual fuel injection amount and the commanded fuel injection amount. The present invention relates to a method and an internal combustion engine.
従来、エンジン(内燃機関)では、ECU(制御装置)がインジェクタ(燃料噴射弁)を制御して、インジェクタからの燃料噴射量を適正な量になるように調整している。この適正な量に調節された指示燃料噴射量は、燃費を向上し、排出ガスの有害成分を減少し、及び騒音を減少するように定められている。
Conventionally, in an engine (internal combustion engine), an ECU (control device) controls an injector (fuel injection valve) to adjust the fuel injection amount from the injector to an appropriate amount. The command fuel injection amount adjusted to an appropriate amount is determined so as to improve fuel consumption, reduce harmful components of exhaust gas, and reduce noise.
しかし、インジェクタを含む燃料供給システムの劣化、及び故障により指示燃料噴射量と実際にインジェクタが噴射する量とが乖離すると、様々な問題が発生する。例えば、実際の噴射量が指示燃料噴射量よりも少ない場合は、必要とするトルクが得られずに走行に支障を来し、一方、実際の噴射量が指示燃料噴射量よりも多い場合は、燃圧が上がってエンジンが故障する、燃費が悪化する、及び排気ガスの有害成分の濃度が増加するなどの問題が発生する。
However, various problems occur when the fuel injection system including the injector is deteriorated or malfunctioned and the indicated fuel injection amount deviates from the amount actually injected by the injector. For example, when the actual injection amount is smaller than the commanded fuel injection amount, the required torque is not obtained and the travel is hindered. On the other hand, when the actual injection amount is larger than the commanded fuel injection amount, Problems such as an increase in fuel pressure, engine failure, fuel consumption deterioration, and an increase in the concentration of harmful components in exhaust gas occur.
そこで、空気過剰率、又は空燃比を測定することができる空気過剰率センサ(ラムダセンサとも呼ばれる酸素センサ、又はA/Fセンサとも呼ばれる空燃比センサなど)を用いて、目標空燃比から排気ガスの空燃比のずれ量を補正する装置(例えば、特許文献1参照)や、排気ガス中の空気過剰率と指示噴射量と新気空気量より計算される空気過剰率を比較し補正を行う装置がある(例えば、特許文献2参照)。
Therefore, an excess air ratio sensor or an excess air ratio sensor (such as an oxygen sensor also called a lambda sensor or an A / F sensor called an A / F sensor) that can measure the excess air ratio or the air / fuel ratio is used to measure the exhaust gas from the target air / fuel ratio. An apparatus that corrects the deviation amount of the air-fuel ratio (for example, see Patent Document 1) and an apparatus that compares and corrects the excess air ratio in the exhaust gas, the command injection quantity, and the excess air ratio calculated from the fresh air quantity Yes (see, for example, Patent Document 2).
これらの装置は、排気ガス処理装置の上流、又は排気ガス処理装置の上流と下流に設けた空気過剰率センサで、排気ガス中の空気過剰率、又は排気ガスの空燃比を検出している。検出した空気過剰率、又は空燃比は実際の燃料噴射量によるものであり、これと指示燃料噴射量から求められる目標値との偏差を補正することで、又は偏差を比較して燃料噴射の異常を検知することで、実際の燃料噴射量と指示燃料噴射量とが乖離しないようにインジェクタを監視、及び制御している。
These devices detect an excess air ratio in the exhaust gas or an air-fuel ratio of the exhaust gas by an excess air ratio sensor provided upstream of the exhaust gas treatment device or upstream and downstream of the exhaust gas treatment device. The detected excess air ratio or air / fuel ratio depends on the actual fuel injection amount. By correcting the deviation between this and the target value obtained from the indicated fuel injection amount, or comparing the deviations, abnormal fuel injection is detected. By detecting this, the injector is monitored and controlled so that the actual fuel injection amount and the command fuel injection amount do not deviate.
上記の装置に設けられている空気過剰率センサは、例えば、排気ガス処理装置の上流に設けられて、内外面にPt(白金)コーティングによる電極を持つZrO2(ジルコニア)又はTiO2(チタニア)などで形成した固体電解質の管で形成される。
The air excess rate sensor provided in the above apparatus is, for example, ZrO 2 (zirconia) or TiO 2 (titania) which is provided upstream of the exhaust gas processing apparatus and has electrodes with Pt (platinum) coating on the inner and outer surfaces. It is formed with a solid electrolyte tube formed by, for example.
この空気過剰率センサの原理は、酸素分圧の高い大気側から酸素分圧の低い排気ガス側に向かって酸素イオンが流れることで電極間の酸素分圧比の対数に比例する起電力が発生し、その起電力から、排気ガス中の酸素濃度を検出するというものである。
The principle of this excess air ratio sensor is that oxygen ions flow from the atmosphere side where the oxygen partial pressure is high toward the exhaust gas side where the oxygen partial pressure is low, thereby generating an electromotive force proportional to the logarithm of the oxygen partial pressure ratio between the electrodes. The oxygen concentration in the exhaust gas is detected from the electromotive force.
この空気過剰率センサを搭載した上記の装置を用いることで、実際の燃料噴射量と指示燃料噴射量との偏差を補正することが、又は偏差を比較して燃料噴射の異常を検知することができるが、空気過剰率センサは、PtやZrO2を用いるため、センサとしては高価なものになっている。そのため、製造コストが増加するため、空気過剰率センサを搭載しているエンジンはごく一部である。
By using the above-described device equipped with this excess air ratio sensor, it is possible to correct the deviation between the actual fuel injection amount and the commanded fuel injection amount, or to detect an abnormality in fuel injection by comparing the deviations. However, since the excess air ratio sensor uses Pt or ZrO 2 , the sensor is expensive. Therefore, since the manufacturing cost increases, only a few engines are equipped with an excess air ratio sensor.
一方、近年のエンジンには、排気ガスのクリーン化のために、排気ガス浄化装置を搭載したものが多い。このエンジンは、排気ガス浄化装置の下流に排気ガス中のNOx(窒素酸化物)の含有量を計測するNOxセンサを設けている。
On the other hand, many recent engines are equipped with an exhaust gas purification device to clean exhaust gas. This engine is provided with a NOx sensor for measuring the content of NOx (nitrogen oxide) in the exhaust gas downstream of the exhaust gas purification device.
このNOxセンサは、例えば、排気ガス処理装置の下流に設けられ、耐久性と耐熱性に優れたセラミックスの固体電解質(酸素イオン伝導体)で、少なくとも2つの区画を形成してなるセンサである。一方の区画で、NOx以外の酸素を除去する第1酸素ポンプとし、他方の区画でNOxを分解して、生成した酸素を除去する第2酸素ポンプとすることで、第1酸素ポンプで排気ガス中の酸素濃度を検出し、第2酸素ポンプで排気ガス中のNOx濃度を検出している。
This NOx sensor is, for example, a sensor that is provided downstream of an exhaust gas treatment device and is made of a ceramic solid electrolyte (oxygen ion conductor) that is excellent in durability and heat resistance, and has at least two compartments. The exhaust gas is exhausted by the first oxygen pump by using a first oxygen pump that removes oxygen other than NOx in one compartment and a second oxygen pump that decomposes NOx and removes the generated oxygen in the other compartment. The oxygen concentration in the exhaust gas is detected, and the NOx concentration in the exhaust gas is detected by the second oxygen pump.
前述の空気過剰率センサと同様、NOxセンサも酸素イオン導電体(SnO2、ITO、YBCO、WO3、TiO2、ZrO2、Zn2SnO4など)が用いられ、それらの表面にPt、Rh(ロジウム)などを塗布して、加工されているため、センサとしては高価なものである。
Similar to the above-described excess air ratio sensor, the NOx sensor uses oxygen ion conductors (SnO 2 , ITO, YBCO, WO 3 , TiO 2 , ZrO 2 , Zn 2 SnO 4, etc.), and Pt, Rh on the surface thereof. Since it is processed by applying (rhodium) or the like, the sensor is expensive.
しかしながら、このNOxセンサは、排気ガス浄化装置内のNOx吸蔵還元触媒のNOx吸蔵状態を直接検知し、還元剤投入制御の最適タイミングを与える方法や、同触媒の劣化を車上で診断する方法に用いられており、排気ガス浄化装置をエンジンに設ける上で必要不可欠なセンサである。
However, this NOx sensor is a method for directly detecting the NOx occlusion state of the NOx occlusion reduction catalyst in the exhaust gas purification device and giving an optimum timing for reducing agent charging control, or a method for diagnosing deterioration of the catalyst on the vehicle. It is a sensor that is indispensable for providing an exhaust gas purifying device in an engine.
本発明は、上記の問題を鑑みてなされたものであり、その目的は、高価な空気過剰率センサを追加することなく、排気ガス浄化装置の下流に設けたNOxセンサを用いて、インジェクタの劣化などにより発生する実際の燃料噴射量と指示された燃料噴射量との偏差をゼロにするように次回の燃料の噴射時間を補正することができる内燃機関の燃料噴射方法と内燃機関を提供することである。
The present invention has been made in view of the above-described problems, and an object of the present invention is to use a NOx sensor provided downstream of the exhaust gas purification device without adding an expensive excess air ratio sensor, and to deteriorate the injector. To provide a fuel injection method for an internal combustion engine and an internal combustion engine capable of correcting the next fuel injection time so that the deviation between the actual fuel injection amount generated due to the fuel injection and the instructed fuel injection amount becomes zero It is.
上記の目的を解決するための本発明の内燃機関の燃料噴射方法は、排気通路に排気ガス浄化装置を設けた内燃機関の燃料噴射方法において、前記排気ガス浄化装置の下流に設けたNOxセンサの酸素濃度値から算出した実空気過剰率λ1と、吸気通路に設けた吸気量センサで検出された新気空気量と現指示燃料噴射量から算出した目標空気過剰率λ2との偏差値を算出し、コモンレール圧と指示燃料噴射量をベースとする噴射時間補正値マップに記憶され、且つ、現コモンレール圧と前記現指示燃料噴射量に対応する現噴射時間補正値を、前記偏差値がゼロになるように補正して、噴射時間補正値を算出し、燃料噴射弁からの燃料噴射に際しては、コモンレール圧と指示燃料噴射量をベースとする噴射時間マップに記憶され、前記現コモンレール圧と前記現指示燃料噴射量に対応する現噴射時間を前記噴射時間補正値で補正して、燃料噴射を行うことを特徴とする方法である。
The fuel injection method for an internal combustion engine according to the present invention for solving the above-described object is a fuel injection method for an internal combustion engine in which an exhaust gas purification device is provided in an exhaust passage, and a NOx sensor provided downstream of the exhaust gas purification device. A deviation value between the actual excess air ratio λ1 calculated from the oxygen concentration value and the target excess air ratio λ2 calculated from the fresh air amount detected by the intake air amount sensor provided in the intake passage and the current commanded fuel injection amount is calculated. The deviation value is zero for the current injection time correction value stored in the injection time correction value map based on the common rail pressure and the commanded fuel injection amount and corresponding to the current common rail pressure and the current commanded fuel injection amount. Thus, the injection time correction value is calculated, and when the fuel is injected from the fuel injection valve, it is stored in the injection time map based on the common rail pressure and the indicated fuel injection amount, and the current common level is calculated. The fuel injection is performed by correcting the current injection time corresponding to the fuel pressure and the current commanded fuel injection amount with the injection time correction value.
この方法によれば、SCR装置(選択的触媒還元装置)を含む排気ガス浄化装置の下流に設けたNOxセンサを用いて、インジェクタ(燃料噴射弁)の燃料の噴射時間を、実際の燃料噴射量に基づいて補正することができ、実際の燃料噴射量と指示燃料噴射量との乖離を無くすことができる。これにより、燃料噴射量の補正に従来では必要であった空気過剰率センサを追加することなく、インジェクタの劣化などによる実燃料噴射量と指示燃料噴射量との偏差をゼロにすることができので、その分の部品点数が減り、また、製造コストを低減することができる。
According to this method, by using the NOx sensor provided downstream of the exhaust gas purification device including the SCR device (selective catalytic reduction device), the fuel injection time of the injector (fuel injection valve) is changed to the actual fuel injection amount. Therefore, the difference between the actual fuel injection amount and the command fuel injection amount can be eliminated. As a result, the deviation between the actual fuel injection amount and the commanded fuel injection amount due to the deterioration of the injector or the like can be made zero without adding an excess air ratio sensor that was conventionally necessary for correcting the fuel injection amount. As a result, the number of parts can be reduced, and the manufacturing cost can be reduced.
加えて、指示燃料噴射量とコモンレールのレール圧(燃料噴射圧)に基づく燃料の噴射時間を噴射時間補正値で補正し、インジェクタの噴射時間のパルス幅を補正することで、より正確な燃料噴射量をインジェクタに指示することができる。
In addition, the fuel injection time based on the commanded fuel injection amount and the rail pressure (fuel injection pressure) of the common rail is corrected with the injection time correction value, and the pulse width of the injection time of the injector is corrected. The amount can be directed to the injector.
また、上記の内燃機関の燃料噴射方法において、前記噴射時間補正値を、前記実空気過剰率λ1と前記目標空気過剰率λ2と前記現噴射時間補正値を用いて、下記に示す式(1)により求め、前記噴射時間を、前記現噴射時間と、前記噴射時間補正値とを用いて、下記に示す式(2)により求める。
但し、L(i,j):現噴射時間補正値、L(I,J):噴射時間補正値、W_cor:重み係数、T(i,j):現噴射時間、T_corr:噴射時間とする。
In the fuel injection method for the internal combustion engine, the injection time correction value is expressed by the following equation (1) using the actual excess air ratio λ1, the target excess air ratio λ2, and the current injection time correction value. The injection time is obtained by the following equation (2) using the current injection time and the injection time correction value.
However, L (i, j): current injection time correction value, L (I, J): injection time correction value, W_cor: weighting factor, T (i, j): current injection time, T_corr: injection time.
この方法によれば、実空気過剰率λ1と目標空気過剰率λ2の偏差を0にするように補正した噴射時間補正値を用いて、インジェクタの噴射時間のパルス幅を補正することで、実際の燃料噴射量に基づいて、次回の指示燃料噴射量を補正することができる。これにより、空気過剰率センサを追加することなく、インジェクタの劣化などにより、実際の燃料噴射量と指示燃料噴射量との偏差が大きくなる場合に発生する燃費の悪化、スモーク排出の増加、及び排気ガスの高温化による排気管やターボチャージャーなどの熱破損を防止することができる。
According to this method, by using the injection time correction value corrected so that the deviation between the actual excess air ratio λ1 and the target excess air ratio λ2 is 0, the pulse width of the injection time of the injector is corrected. The next commanded fuel injection amount can be corrected based on the fuel injection amount. As a result, without adding an excess air sensor, the fuel consumption deteriorates, the smoke emission increases, and the exhaust gas that occurs when the deviation between the actual fuel injection amount and the commanded fuel injection amount becomes large due to deterioration of the injector or the like. Heat damage such as exhaust pipes and turbochargers due to high gas temperatures can be prevented.
上記の問題を解決するための内燃機関は、排気通路に排気ガス浄化装置を設けた内燃機関において、前記排気ガス浄化装置の下流に設けたNOxセンサの酸素濃度値から算出した実空気過剰率λ1と、吸気通路に設けた吸気量センサで検出された新気空気量と現指示燃料噴射量から算出した目標空気過剰率λ2との偏差値を算出する手段と、コモンレール圧と指示燃料噴射量をベースとする噴射時間補正値マップに記憶され、且つ、現コモンレール圧と前記現指示燃料噴射量に対応する現噴射時間補正値を、前記偏差値がゼロになるように補正して、噴射時間補正値を算出する手段と、燃料噴射弁からの燃料噴射に際しては、コモンレール圧と指示燃料噴射量をベースとする噴射時間領域マップに記憶され、前記現コモンレール圧と前記現指示燃料噴射量に対応する現噴射時間を前記噴射時間補正値で補正して、燃料噴射を行う手段とを備える制御装置を設けて構成される。
An internal combustion engine for solving the above problem is an internal combustion engine having an exhaust gas purification device provided in an exhaust passage, and an actual excess air ratio λ1 calculated from an oxygen concentration value of a NOx sensor provided downstream of the exhaust gas purification device. And means for calculating a deviation value between the fresh air amount detected by the intake air amount sensor provided in the intake passage and the target excess air ratio λ2 calculated from the current indicated fuel injection amount, and the common rail pressure and the indicated fuel injection amount. The injection time correction is performed by correcting the current injection time correction value stored in the base injection time correction value map and corresponding to the current common rail pressure and the current commanded fuel injection amount so that the deviation value becomes zero. The means for calculating the value and the fuel injection from the fuel injection valve are stored in an injection time region map based on the common rail pressure and the indicated fuel injection amount, and the current common rail pressure and the current indicator are stored. A control device is provided that includes means for correcting the current injection time corresponding to the indicated fuel injection amount with the injection time correction value and performing fuel injection.
また、上記の内燃機関において、前記制御装置が、前記噴射時間補正値を、前記実空気過剰率λ1と前記目標空気過剰率λ2と前記現噴射時間補正値を用いて、下記に示す式(3)により求める手段と、前記噴射時間を、前記現噴射時間と、前記噴射時間補正値とを用いて、下記に示す式(4)により求める手段とを備える。
但し、L(i,j):現噴射時間補正値、L(I,J):噴射時間補正値、W_cor:重み係数、T(i,j):現噴射時間、T_corr:噴射時間とする。
Further, in the above internal combustion engine, the control device uses the actual air excess rate λ1, the target air excess rate λ2, and the current injection time correction value as the injection time correction value using the following equation (3): ) And means for obtaining the injection time by the following equation (4) using the current injection time and the injection time correction value.
However, L (i, j): current injection time correction value, L (I, J): injection time correction value, W_cor: weighting factor, T (i, j): current injection time, T_corr: injection time.
この構成によれば、NOxセンサの出力から実空気過剰率λ1を算出することができ、その実空気過剰率λ1を用いて、実際の燃料噴射量から次回の燃料の噴射時間を補正することができる。これにより、従来では実際の燃料噴射量と指示燃料噴射量との乖離を無くすために必要であった空気過剰率センサを追加することがないため、コストを低減することができる。
According to this configuration, the actual excess air ratio λ1 can be calculated from the output of the NOx sensor, and the next fuel injection time can be corrected from the actual fuel injection amount using the actual excess air ratio λ1. . As a result, it is not necessary to add an excess air ratio sensor that is conventionally required to eliminate the difference between the actual fuel injection amount and the command fuel injection amount, and thus the cost can be reduced.
本発明によれば、高価な空気過剰率センサを追加することなく、排気ガス浄化装置の下流に設けたNOxセンサを用いて、インジェクタの劣化などにより発生する実際の燃料噴射量と指示された燃料噴射量との偏差をゼロにするように次回の燃料の噴射時間を補正することができる。
According to the present invention, it is possible to use the NOx sensor provided downstream of the exhaust gas purification device without adding an expensive excess air ratio sensor and to indicate the actual fuel injection amount generated due to the deterioration of the injector and the designated fuel. The next fuel injection time can be corrected so that the deviation from the injection amount becomes zero.
以下、本発明に係る実施の形態の内燃機関の燃料噴射方法と内燃機関について、図面を参照しながら説明する。なお、この実施の形態では、直列4気筒のディーゼルエンジンを例に説明するが、これに限定せずにNOxセンサを設ける内燃機関であれば、本発明を適用することができる。
Hereinafter, an internal combustion engine fuel injection method and an internal combustion engine according to an embodiment of the present invention will be described with reference to the drawings. In this embodiment, an in-line four-cylinder diesel engine will be described as an example. However, the present invention is not limited to this and may be applied to any internal combustion engine provided with a NOx sensor.
まず、本発明に係る実施の形態の内燃機関の構成について、図1と図2を参照しながら説明する。図1に示すように、エンジン(内燃機関)1は、各気筒2に燃料を噴射するインジェクタ(燃料噴射弁)3を含む燃料供給システム4と、吸気通路5を含む吸気システム6と、排気通路7を含む排気システム8を備える。
First, the configuration of an internal combustion engine according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. As shown in FIG. 1, an engine (internal combustion engine) 1 includes a fuel supply system 4 including an injector (fuel injection valve) 3 for injecting fuel into each cylinder 2, an intake system 6 including an intake passage 5, and an exhaust passage. An exhaust system 8 including 7 is provided.
燃料供給システム4は、加圧された燃料を貯えたコモンレール9に接続されたインジェクタ3から高圧の燃料を噴射するシステムであり、他に図示しない燃料タンク、サプライポンプを備える。吸気システム6は、吸気フィルタ10、インタークーラー11、及び吸気スロットル12を備え、排気システム8は、DPF(ディーゼル微粒子捕集フィルタ)13とSCR装置(選択的触媒還元装置)14とからなる排気ガス浄化装置15を備える。
Fuel supply system 4 is a system that injects high-pressure fuel from injectors 3 connected to a common rail 9 that stores pressurized fuel, and includes a fuel tank and a supply pump (not shown). The intake system 6 includes an intake filter 10, an intercooler 11, and an intake throttle 12, and the exhaust system 8 is an exhaust gas purification system including a DPF (diesel particulate collection filter) 13 and an SCR device (selective catalytic reduction device) 14. A device 15 is provided.
また、吸気システム6と排気システム8には、排気ガスのエネルギーを利用してタービンを高速回転させ、その回転力で遠心式圧縮機を駆動することにより圧縮した空気をエンジン内に送り込むことができるターボチャージャー16と、EGRクーラー17とEGR弁18とからなり、燃焼後の排気ガスの一部を取出し、吸気側へ導き再度吸気させるEGR装置(排気再循環装置)19を備える。
Further, the intake system 6 and the exhaust system 8 can send the compressed air into the engine by rotating the turbine at high speed using the energy of the exhaust gas and driving the centrifugal compressor with the rotational force. The turbocharger 16, the EGR cooler 17, and the EGR valve 18 are provided with an EGR device (exhaust gas recirculation device) 19 that takes out a part of the exhaust gas after combustion, guides it to the intake side, and sucks it again.
上記のエンジン1の構成は、周知の構成であり、各装置も周知の技術を用いることができる。この実施の形態においては、少なくともSCR装置14を含む排気ガス浄化装置15を排気システム8に設けていれば、他の構成は上記の構成に限定しない。
The configuration of the engine 1 is a well-known configuration, and each device can use a well-known technique. In this embodiment, as long as the exhaust gas purification device 15 including at least the SCR device 14 is provided in the exhaust system 8, other configurations are not limited to the above configuration.
加えて、上記の装置及びシステムを制御するECU(制御装置)20と、そのECU20と接続されるNOxセンサ21、MAFセンサ(新気空気量センサ)22、及び圧力センサ23を備える。その他にも、エンジン1には図示しないセンサを設けるが、この実施の形態においては、少なくとも上記のセンサ21~23があればよい。
In addition, an ECU (control device) 20 that controls the above-described device and system, a NOx sensor 21, a MAF sensor (fresh air amount sensor) 22, and a pressure sensor 23 connected to the ECU 20 are provided. In addition, the engine 1 is provided with a sensor (not shown). However, in this embodiment, at least the sensors 21 to 23 are sufficient.
ECU20は、エンジンコントロールユニットと呼ばれる制御装置であり、電気回路によってエンジン1の制御を担当している電気的な制御を総合的に行うマイクロコントローラであり、図2に示すように、この実施の形態ではインジェクタ3の燃料噴射量を制御している。このECU20は、実空気過剰率算出手段24、目標空気過剰率算出手段25、学習値算出手段26、及び噴射時間算出手段27を備え、また、学習領域マップ(噴射時間補正値マップ)M1、通電時間マップ(噴射時間マップ)M2、及び現指示燃料噴射量Q_finを記憶している。これの各手段24~27をプログラムとして、ECU20に記憶し、燃料の噴射時間を補正する際に順次実行する。
The ECU 20 is a control device called an engine control unit, and is a microcontroller that comprehensively performs electrical control in charge of control of the engine 1 by an electric circuit. As shown in FIG. Then, the fuel injection amount of the injector 3 is controlled. The ECU 20 includes an actual excess air ratio calculating means 24, a target excess air ratio calculating means 25, a learned value calculating means 26, and an injection time calculating means 27, and a learning region map (injection time correction value map) M1, energization A time map (injection time map) M2 and the current command fuel injection amount Q_fin are stored. Each of these means 24 to 27 is stored as a program in the ECU 20 and sequentially executed when correcting the fuel injection time.
SCR装置14の下流に設けられるNOxセンサ21は、排気ガス中のNOx(窒素酸化物)の濃度値を測定するセンサであり、且つ排気ガス中の酸素濃度値O2_exhを測定することができるセンサである。このNOxセンサ21は、SCR装置14内のNOx吸蔵還元触媒のNOx吸蔵状態を直接検知し、還元剤投入制御の最適タイミングを与える方法や、同触媒の劣化を車上で診断する方法に用いられており、排気システム8に、SCR装置14を備えた場合には必要なセンサである。
The NOx sensor 21 provided downstream of the SCR device 14 is a sensor that measures the concentration value of NOx (nitrogen oxide) in the exhaust gas, and is a sensor that can measure the oxygen concentration value O2_exh in the exhaust gas. is there. The NOx sensor 21 is used in a method for directly detecting the NOx occlusion state of the NOx occlusion reduction catalyst in the SCR device 14 to give an optimum timing for reducing agent charging control, and a method for diagnosing deterioration of the catalyst on the vehicle. This sensor is necessary when the exhaust system 8 includes the SCR device 14.
このNOxセンサ21は、耐久性及び耐熱性に優れ、排気ガス中のNOx濃度を測定すると共に、排気ガス中の酸素濃度値O2_exhを測定することができれば、周知のNOxセンサを用いることができる。また、MAFセンサ22と圧力センサ23も、MAFセンサ22が新気空気量m_airを検出し、圧力センサ23がコモンレールの圧力(コモンレール圧)Pを検出することができれば、周知のセンサを用いることができる。
The NOx sensor 21 is excellent in durability and heat resistance, and a known NOx sensor can be used as long as it can measure the NOx concentration in the exhaust gas and can measure the oxygen concentration value O2_exh in the exhaust gas. In addition, the MAF sensor 22 and the pressure sensor 23 may be well-known sensors if the MAF sensor 22 detects the fresh air amount m_air and the pressure sensor 23 can detect the common rail pressure (common rail pressure) P. it can.
次に、エンジン1の動作について、図2、図3、及び図4を参照しながら説明する。エンジン1は、この動作を所定のクランク角(例えば、360°毎)に達する度に行う。先ず、図2に示すように、NOxセンサ21が検出した酸素濃度値O2_exhを用いて、ECU20に備えた実空気過剰率算出手段24が、以下の数式(5)より、実空気過剰率λ1を算出する。なお、ここで大気中の酸素濃度をO2_airとする。
Next, the operation of the engine 1 will be described with reference to FIG. 2, FIG. 3, and FIG. The engine 1 performs this operation every time a predetermined crank angle (for example, every 360 °) is reached. First, as shown in FIG. 2, using the oxygen concentration value O2_exh detected by the NOx sensor 21, the actual excess air ratio calculating means 24 provided in the ECU 20 calculates the actual excess air ratio λ1 from the following equation (5). calculate. Here, the oxygen concentration in the atmosphere is O2_air.
この実空気過剰率算出手段24により、NOxセンサ21の検出する酸素濃度値O2_exhから、実際の燃料噴射量から導かれる実空気過剰率λ1を算出することができる。これにより、実空気過剰率λ1を算出するために、SCR装置14を備えるエンジン1には設ける必要があるNOxセンサ21を用いることで、空気過剰率センサを別途追加する必要がない。そのため、部品点数を減らすことでき、また、製造コストも低減することができる。
The actual excess air ratio calculating means 24 can calculate the actual excess air ratio λ1 derived from the actual fuel injection amount from the oxygen concentration value O2_exh detected by the NOx sensor 21. Thereby, in order to calculate the actual excess air ratio λ1, by using the NOx sensor 21 that needs to be provided in the engine 1 including the SCR device 14, it is not necessary to separately add an excess air ratio sensor. Therefore, the number of parts can be reduced, and the manufacturing cost can be reduced.
次に、ECU20に記憶された現指示燃料噴射量Q_finと、MAFセンサ22で検出した新気空気量m_airと理想空燃比AFRを用いて、目標空気過剰率算出手段25が、以下の数式(6)より、目標空気過剰率λ2を算出する。
Next, using the current commanded fuel injection amount Q_fin stored in the ECU 20, the fresh air amount m_air detected by the MAF sensor 22, and the ideal air-fuel ratio AFR, the target excess air ratio calculating means 25 calculates the following equation (6 ) To calculate the target excess air ratio λ2.
ここで、理想空燃比AFRは、燃料の性状により種々の値を取るが、例えば燃料が軽油の場合にその値は、約14.5前後である。
Here, the ideal air-fuel ratio AFR takes various values depending on the properties of the fuel. For example, when the fuel is light oil, the value is about 14.5.
次に、学習領域マップM1に記憶された現学習値(現噴射時間補正値)L(i,j)を補正するが、ここでその学習領域マップM1について説明する。図3に示すように、学習領域マップM1は、ECU20に予め記憶されたコモンレール圧P_areaと燃料流量(指示燃料噴射量)Q_areaをベースとするマップである。
Next, the current learning value (current injection time correction value) L (i, j) stored in the learning area map M1 is corrected. Here, the learning area map M1 will be described. As shown in FIG. 3, the learning region map M1 is a map based on the common rail pressure P_area and the fuel flow rate (indicated fuel injection amount) Q_area stored in advance in the ECU 20.
この学習領域マップM1に記憶された学習値(噴射時間補正値)L(i,j)は、インジェクタ3の噴射時間の補正値である。なお、図3に示す学習領域マップM1に記載されている数値は説明のための数値であり、実際の数値はこれに限定しない。また、セル数も限定せず、実際には数値を細かく設定し、セル数を増やしても構わない。
The learning value (injection time correction value) L (i, j) stored in the learning area map M1 is a correction value for the injection time of the injector 3. In addition, the numerical value described in the learning area map M1 shown in FIG. 3 is a numerical value for explanation, and the actual numerical value is not limited to this. Further, the number of cells is not limited, and actually, a numerical value may be set finely to increase the number of cells.
次に、図2に示すように、上記の学習領域マップM1に記憶された現学習値(現噴射時間補正値)L(i,j)を、実空気過剰率λ1と目標空気過剰率λ2との偏差値Δλと、重み係数w_corとを用いて、学習値算出手段26が、以下の数式(7)より、補正して、学習値(噴射時間補正値)L(I,J)を算出する。
Next, as shown in FIG. 2, the actual learning value (current injection time correction value) L (i, j) stored in the learning region map M1 is set to the actual excess air ratio λ1 and the target excess air ratio λ2. Using the deviation value Δλ and the weighting coefficient w_cor, the learning value calculation means 26 corrects the value from the following equation (7) to calculate the learning value (injection time correction value) L (I, J). .
そして、この学習値算出手段26で実空気過剰率λ1と目標空気過剰率λ2との偏差値Δλをゼロになるように補正された学習値L(I,J)を、新たな学習値として学習領域マップM1に記憶する。
Then, the learning value L (I, J) corrected so that the deviation value Δλ between the actual excess air ratio λ1 and the target excess air ratio λ2 becomes zero by the learned value calculating means 26 is learned as a new learned value. Store in the area map M1.
次に、上記で算出された学習値L(I,J)を用いて、現噴射時間T(i,j)を補正するが、ここで、通電時間マップM2について説明する。図4に示すように、通電時間マップM2は、ECU20に予め記憶されたコモンレール圧P_areaと燃料流量(指示燃料噴射量)Q_areaをベースとするマップであり、そこに記憶されたインジェクタ3の通電時間の単位は(μs)とする。
Next, the current injection time T (i, j) is corrected using the learning value L (I, J) calculated above. Here, the energization time map M2 will be described. As shown in FIG. 4, the energization time map M2 is a map based on the common rail pressure P_area and the fuel flow rate (indicated fuel injection amount) Q_area stored in advance in the ECU 20, and the energization time of the injector 3 stored therein. The unit of is (μs).
この通電時間マップM2に記憶された現噴射時間T(i,j)は、インジェクタ3が燃料を噴射する噴射時間のパルス幅である。なお、図4に示す通電時間マップM2に記載されている数値は説明のための数値であり、実際の数値はこれに限定しない。また、セル数も限定せず、実際には数値を細かく設定し、セル数を増やしても構わない。
The current injection time T (i, j) stored in the energization time map M2 is the pulse width of the injection time during which the injector 3 injects fuel. In addition, the numerical value described in the energization time map M2 shown in FIG. 4 is a numerical value for description, and an actual numerical value is not limited to this. Further, the number of cells is not limited, and actually, a numerical value may be set finely to increase the number of cells.
次に、現噴射時間T(i,j)と学習値L(I,J)とを用いて、噴射時間算出手段27が、以下の数式(8)より、次回の噴射時間T_corrを算出する。
Next, using the current injection time T (i, j) and the learned value L (I, J), the injection time calculation means 27 calculates the next injection time T_corr from the following equation (8).
そして、ECU20は、算出した噴射時間T_corrで噴射するようにインジェクタ3を制御する。
Then, the ECU 20 controls the injector 3 to inject at the calculated injection time T_corr.
上記の動作によれば、学習領域マップM1に記憶されている現学習値L(i,j)を、実空気過剰率λ1と目標空気過剰率λ2との偏差値Δλをゼロにするように補正した学習値L(I,J)で更新することで、インジェクタ3を含む燃料供給システム4の劣化などによる実際の燃料噴射量と指示燃料噴射量とのずれを補正することができる。これにより、常に実際の燃料噴射量と指示燃料噴射量との乖離を更新することができる。
According to the above operation, the current learning value L (i, j) stored in the learning area map M1 is corrected so that the deviation value Δλ between the actual excess air ratio λ1 and the target excess air ratio λ2 is zero. By updating the learned value L (I, J), the deviation between the actual fuel injection amount and the commanded fuel injection amount due to deterioration of the fuel supply system 4 including the injector 3 can be corrected. Thereby, the deviation between the actual fuel injection amount and the command fuel injection amount can always be updated.
また、エンジン1はインジェクタ3が燃料を噴射する際に、SCR装置14の下流に設けたNOxセンサ21の酸素濃度値O2_exhを用いて、実空気過剰率λ1を算出することができ、算出した実空気過剰率λ1と目標空気過剰率λ2の偏差値Δλをゼロにするように、次回の燃料の噴射時間T_corrを補正することができるので、空気過剰率センサを追加することなく、インジェクタ3の劣化などによる指示燃料噴射量と実際の燃料噴射量との偏差を補正することができる。
Further, the engine 1 can calculate the actual excess air ratio λ1 using the oxygen concentration value O2_exh of the NOx sensor 21 provided downstream of the SCR device 14 when the injector 3 injects fuel. Since the next fuel injection time T_corr can be corrected so that the deviation value Δλ between the excess air ratio λ1 and the target excess air ratio λ2 is zero, the deterioration of the injector 3 without adding an excess air ratio sensor. The deviation between the indicated fuel injection amount and the actual fuel injection amount can be corrected.
加えて、ECU20がインジェクタ3を制御する際に、通電時間マップM2に記憶された指示燃料の現噴射時間T(i,j)を用いるため、実際に燃料を噴射する際に現コモンレール圧Pに基づいた噴射時間T_corrで燃料が噴射されるので、常に正確な指示燃料噴射量にすることができる。
In addition, when the ECU 20 controls the injector 3, the current injection time T (i, j) of the indicated fuel stored in the energization time map M2 is used, so that the current common rail pressure P is set when the fuel is actually injected. Since the fuel is injected at the injection time T_corr based on it, it is possible to always make the indicated fuel injection amount accurate.
次に、エンジン1の燃料噴射方法について、図5のフローチャートを参照しながら、説明する。この燃料噴射方法を、エンジン1の所定のクランク角毎に行い、インジェクタ3の実際の燃料の噴射量に基づいた噴射時間T_corrになるように補正していく。
Next, the fuel injection method of the engine 1 will be described with reference to the flowchart of FIG. This fuel injection method is performed for each predetermined crank angle of the engine 1 and is corrected so that the injection time T_corr is based on the actual fuel injection amount of the injector 3.
まず、SCR装置14の下流に設けたNOxセンサ21の酸素濃度値O2_exhを用いて、排気ガス中の実空気過剰率λ1を算出するステップS11を行う。このステップS11は、上記の数式(5)を用いて、実空気過剰率λ1を算出するが、実際の燃料噴射量に基づく空気過剰率を求めることができればよく、上記の方法に限定しない。
First, step S11 for calculating the actual excess air ratio λ1 in the exhaust gas is performed using the oxygen concentration value O2_exh of the NOx sensor 21 provided downstream of the SCR device 14. In this step S11, the actual excess air ratio λ1 is calculated using the above equation (5), but it is only necessary to be able to determine the excess air ratio based on the actual fuel injection amount, and is not limited to the above method.
次に、MAFセンサ22と現指示燃料噴射量Q_finを用いて、目標空気過剰率λ2を算出するステップS12を行う。このステップS12は、上記の数式(6)を用いて、目標空気過剰率λ2を算出するが、現指示燃料噴射量Q_finから求まる目標空気過剰率λ2を算出することができればよく、上記の方法に限定しない。
Next, Step S12 for calculating the target excess air ratio λ2 is performed using the MAF sensor 22 and the current command fuel injection amount Q_fin. In this step S12, the target excess air ratio λ2 is calculated using the above formula (6), but it is sufficient if the target excess air ratio λ2 obtained from the current command fuel injection amount Q_fin can be calculated. Not limited.
次に、算出した実空気過剰率λ1と目標空気過剰率λ2とを比較するステップS13を行う。このステップS13でλ1=λ2であれば、実燃料噴射量と現指示燃料噴射量Q_finは一致しているので、補正せずにステップS17へと進む。一方、ステップS13でλ1≠λ2であれば、現指示燃料噴射量Q_finに対して実燃料噴射量がずれていることになるので、ステップS14へと進み補正をおこなう。
Next, step S13 for comparing the calculated actual excess air ratio λ1 with the target excess air ratio λ2 is performed. If λ1 = λ2 in step S13, the actual fuel injection amount and the current command fuel injection amount Q_fin coincide with each other, and the process proceeds to step S17 without correction. On the other hand, if λ1 ≠ λ2 in step S13, the actual fuel injection amount is deviated from the current commanded fuel injection amount Q_fin, so the process proceeds to step S14 and correction is performed.
ステップS13でλ1≠λ2と判断されると、次に、学習領域マップM1から現学習値L(i,j)を呼び出すステップS14を行う。このステップS14では、圧力センサ23が検出した現コモンレール圧Pと現指示燃料噴射量Q_finとに対応する現学習値L(i,j)を呼び出す。この学習値L(i,j)は、現指示燃料噴射量Q_finを補正した際に用いた学習値である。
If it is determined in step S13 that λ1 ≠ λ2, then step S14 for calling the current learning value L (i, j) from the learning region map M1 is performed. In step S14, the current learning value L (i, j) corresponding to the current common rail pressure P detected by the pressure sensor 23 and the current commanded fuel injection amount Q_fin is called. The learning value L (i, j) is a learning value used when the current command fuel injection amount Q_fin is corrected.
次に、実空気過剰率λ1と目標空気過剰率λ2との偏差値Δλを用いて、現学習値L(i,j)を補正して、学習値L(I,J)を算出するステップS15を行う。このステップS15では、上記の数式(7)を用いて、学習値L(I,J)を算出する。次に、学習領域マップM1に学習値L(I,J)を書き込むステップS16を行う。このとき、学習領域マップM1に書き込まれるセルの場所を、現コモンレール圧Pと現指示燃料噴射量Q_finで指定する。
Next, using the deviation value Δλ between the actual excess air ratio λ1 and the target excess air ratio λ2, the current learning value L (i, j) is corrected to calculate the learning value L (I, J). I do. In this step S15, the learning value L (I, J) is calculated using the above mathematical formula (7). Next, step S16 of writing the learning value L (I, J) to the learning area map M1 is performed. At this time, the location of the cell written in the learning area map M1 is specified by the current common rail pressure P and the current commanded fuel injection amount Q_fin.
次に、通電時間マップM2から、現噴射時間T(i,j)を呼び出すステップS18を行う。このステップS18では、圧力センサ23が検出した現コモンレール圧Pと現指示燃料噴射量Q_finとに対応する現噴射時間T(i,j)を呼び出す。
Next, Step S18 for calling the current injection time T (i, j) from the energization time map M2 is performed. In this step S18, the current injection time T (i, j) corresponding to the current common rail pressure P detected by the pressure sensor 23 and the current command fuel injection amount Q_fin is called.
次に、学習値L(I,J)と現噴射時間T(i,j)を用いて次回の燃料の噴射時間T_corrを算出するステップS19を行う。このステップS19では、上記の数式(8)を用いて、噴射時間T_corrを算出する。次回の燃料の噴射時間T_corrが算出されると、スタートへと戻り、エンジン1が停止するまでくり返し上記のステップを行う。エンジン1が停止すると、この燃料噴射方法は完了する。
Next, step S19 for calculating the next fuel injection time T_corr using the learned value L (I, J) and the current injection time T (i, j) is performed. In this step S19, the injection time T_corr is calculated using the above equation (8). When the next fuel injection time T_corr is calculated, the process returns to the start, and the above steps are repeated until the engine 1 stops. When the engine 1 is stopped, this fuel injection method is completed.
ステップS13でλ1=λ2と判断された場合は、現学習値L(i,j)を学習値L(I,J)とするステップS17を行って、ステップS18、及びS19へ進み、次回の指示燃料の噴射時間T_corrを算出して、スタートへと戻る。
If it is determined in step S13 that λ1 = λ2, step S17 is performed in which the current learning value L (i, j) is set as the learning value L (I, J), and the process proceeds to steps S18 and S19. The fuel injection time T_corr is calculated, and the process returns to the start.
上記の燃料噴射方法によれば、NOxセンサ21の酸素濃度値O2_exhを用いて、実際の燃料噴射量と指示燃料噴射量との乖離を無くすために指示燃料の噴射時間T_corrを補正することができるので、実際の燃料噴射量と指示燃料噴射量との乖離を無くすことができる。これにより、空気過剰率センサを追加することなく、インジェクタの劣化などにより、実際の燃料噴射量と指示燃料噴射量との偏差が大きくなる場合に発生する燃費の悪化、スモーク排出の増加、及び排気ガスの高温化による排気通路7やターボチャージャー16などの熱破損を防止することができる。
According to the fuel injection method described above, the command fuel injection time T_corr can be corrected using the oxygen concentration value O2_exh of the NOx sensor 21 in order to eliminate the difference between the actual fuel injection amount and the command fuel injection amount. Therefore, the difference between the actual fuel injection amount and the command fuel injection amount can be eliminated. As a result, without adding an excess air sensor, the fuel consumption deteriorates, the smoke emission increases, and the exhaust gas that occurs when the deviation between the actual fuel injection amount and the commanded fuel injection amount becomes large due to deterioration of the injector or the like. Thermal damage to the exhaust passage 7 and the turbocharger 16 due to the high temperature of the gas can be prevented.
また、学習領域マップM1の現学習値L(i,j)を、実空気過剰率λ1と目標空気過剰率λ2との偏差値Δλをゼロになるように補正した学習値L(I,J)で更新することによって、常に実際の燃料噴射量と指示燃料噴射量との乖離を無くすことができる。これによれば、仮にインジェクタ3の劣化により、指示された現噴射時間T(i,j)に対して、実際に燃料の噴射時間が増減している場合でも、その増減分を補正した噴射時間T_corrで噴射することができる。そのため、実際の燃料噴射量と指示燃料噴射量との偏差が大きい場合に発生する問題を防ぐことができる。
Further, the learning value L (I, J) obtained by correcting the current learning value L (i, j) of the learning region map M1 so that the deviation value Δλ between the actual excess air ratio λ1 and the target excess air ratio λ2 becomes zero. By updating with the above, it is always possible to eliminate the difference between the actual fuel injection amount and the command fuel injection amount. According to this, even if the fuel injection time actually increases or decreases with respect to the instructed current injection time T (i, j) due to the deterioration of the injector 3, the injection time in which the increase / decrease is corrected It can be injected at T_corr. Therefore, it is possible to prevent a problem that occurs when the deviation between the actual fuel injection amount and the command fuel injection amount is large.
加えて、現指示燃料噴射量Q_finとコモンレール9の現コモンレール圧Pに基づく燃料の現噴射時間T(i,j)を学習値L(I,J)で補正し、インジェクタ3の噴射時間のパルス幅を補正することで、より正確な燃料の噴射時間T_corrをインジェクタに指示することができるので、より実際の燃料噴射量と指示燃料噴射量との乖離を無くすことができる。
In addition, the fuel current injection time T (i, j) based on the current command fuel injection amount Q_fin and the current common rail pressure P of the common rail 9 is corrected by the learning value L (I, J), and the injection time pulse of the injector 3 is corrected. By correcting the width, a more accurate fuel injection time T_corr can be instructed to the injector, so that the difference between the actual fuel injection amount and the indicated fuel injection amount can be eliminated.
この実施の形態では、直列4気筒のディーゼルエンジンを例に説明したが、理想空燃比などをガソリンに適した値にすることで、排気ガス処理装置を備えたガソリンエンジンにも適用することができる。
In this embodiment, an in-line four-cylinder diesel engine has been described as an example. However, by setting an ideal air-fuel ratio or the like to a value suitable for gasoline, it can also be applied to a gasoline engine equipped with an exhaust gas processing device. .
本発明の内燃機関は、排気ガス処理装置の下流に設けたNOxセンサを用いて、実際の燃料噴射量と指示燃料噴射量とのずれを補正することができるので、特に排気ガスを処理する必要があるディーゼルエンジンを搭載した車両に利用することができる。
The internal combustion engine of the present invention can correct the deviation between the actual fuel injection amount and the commanded fuel injection amount by using a NOx sensor provided downstream of the exhaust gas processing device, so that it is particularly necessary to process the exhaust gas. It can be used for vehicles equipped with a diesel engine.
1 エンジン(内燃機関)
2 シリンダブロック
3 気筒
4 インジェクタ(燃料噴射弁)
5 吸気管(吸気通路)
6 吸気システム
7 排気管(排気通路)
8 排気システム
9 コモンレール
10 吸気フィルタ
11 インタークーラー
12 吸気スロットル
13 DPF(ディーゼル微粒子捕集フィルタ)
14 SCR装置(選択的触媒還元装置)
15 排気ガス処理装置
16 ターボチャージャー
17 EGR装置(排気再循環装置)
18 EGRクーラー
19 EGR弁
20 ECU(制御装置)
21 NOxセンサ
22 MAFセンサ(新気空気量センサ)
23 圧力センサ
λ1 実空気過剰率
λ2 目標空気過剰率
M1 学習領域マップ(噴射時間補正値マップ)
M2 通電時間マップ(噴射時間マップ)
L(i,j) 現学習値(現噴射時間補正値)
L(I,J) 学習値(噴射時間補正値)
T(i,j) 現噴射時間
Q_fin 現指示燃料噴射量
T_corr 噴射時間
O2_exh 酸素濃度
O2_air 大気の酸素濃度
m_air 新気吸気量
AFR 理想空燃比 1 engine (internal combustion engine)
2Cylinder block 3 Cylinder 4 Injector (fuel injection valve)
5 Intake pipe (intake passage)
6Intake system 7 Exhaust pipe (exhaust passage)
8Exhaust System 9 Common Rail 10 Intake Filter 11 Intercooler 12 Intake Throttle 13 DPF (Diesel Particulate Filter)
14 SCR device (selective catalytic reduction device)
15 Exhaustgas treatment device 16 Turbocharger 17 EGR device (exhaust gas recirculation device)
18 EGR cooler 19EGR valve 20 ECU (control device)
21NOx sensor 22 MAF sensor (fresh air sensor)
23 pressure sensor λ1 actual excess air ratio λ2 target excess air ratio M1 learning region map (injection time correction value map)
M2 Energizing time map (Injection time map)
L (i, j) Current learning value (current injection time correction value)
L (I, J) Learning value (injection time correction value)
T (i, j) Current injection time Q_fin Current command fuel injection amount T_corr Injection time O2_exh Oxygen concentration O2_air Atmospheric oxygen concentration m_air Fresh air intake amount AFR Ideal air-fuel ratio
2 シリンダブロック
3 気筒
4 インジェクタ(燃料噴射弁)
5 吸気管(吸気通路)
6 吸気システム
7 排気管(排気通路)
8 排気システム
9 コモンレール
10 吸気フィルタ
11 インタークーラー
12 吸気スロットル
13 DPF(ディーゼル微粒子捕集フィルタ)
14 SCR装置(選択的触媒還元装置)
15 排気ガス処理装置
16 ターボチャージャー
17 EGR装置(排気再循環装置)
18 EGRクーラー
19 EGR弁
20 ECU(制御装置)
21 NOxセンサ
22 MAFセンサ(新気空気量センサ)
23 圧力センサ
λ1 実空気過剰率
λ2 目標空気過剰率
M1 学習領域マップ(噴射時間補正値マップ)
M2 通電時間マップ(噴射時間マップ)
L(i,j) 現学習値(現噴射時間補正値)
L(I,J) 学習値(噴射時間補正値)
T(i,j) 現噴射時間
Q_fin 現指示燃料噴射量
T_corr 噴射時間
O2_exh 酸素濃度
O2_air 大気の酸素濃度
m_air 新気吸気量
AFR 理想空燃比 1 engine (internal combustion engine)
2
5 Intake pipe (intake passage)
6
8
14 SCR device (selective catalytic reduction device)
15 Exhaust
18 EGR cooler 19
21
23 pressure sensor λ1 actual excess air ratio λ2 target excess air ratio M1 learning region map (injection time correction value map)
M2 Energizing time map (Injection time map)
L (i, j) Current learning value (current injection time correction value)
L (I, J) Learning value (injection time correction value)
T (i, j) Current injection time Q_fin Current command fuel injection amount T_corr Injection time O2_exh Oxygen concentration O2_air Atmospheric oxygen concentration m_air Fresh air intake amount AFR Ideal air-fuel ratio
Claims (4)
- 排気通路に排気ガス浄化装置を設けた内燃機関の燃料噴射方法において、
前記排気ガス浄化装置の下流に設けたNOxセンサの酸素濃度値から算出した実空気過剰率λ1と、吸気通路に設けた吸気量センサで検出された新気空気量と現指示燃料噴射量から算出した目標空気過剰率λ2との偏差値を算出し、
コモンレール圧と指示燃料噴射量をベースとする噴射時間補正値マップに記憶され、且つ、現コモンレール圧と前記現指示燃料噴射量に対応する現噴射時間補正値を、前記偏差値がゼロになるように補正して、噴射時間補正値を算出し、
燃料噴射弁からの燃料噴射に際しては、コモンレール圧と指示燃料噴射量をベースとする噴射時間マップに記憶され、前記現コモンレール圧と前記現指示燃料噴射量に対応する現噴射時間を前記噴射時間補正値で補正して、燃料噴射を行うことを特徴とする内燃機関の燃料噴射方法。 In a fuel injection method for an internal combustion engine provided with an exhaust gas purification device in an exhaust passage,
Calculated from the actual excess air ratio λ1 calculated from the oxygen concentration value of the NOx sensor provided downstream of the exhaust gas purifying device, the fresh air amount detected by the intake air amount sensor provided in the intake passage, and the current commanded fuel injection amount The deviation value from the target excess air ratio λ2 is calculated,
The current injection time correction value stored in the injection time correction value map based on the common rail pressure and the commanded fuel injection amount and corresponding to the current common rail pressure and the current commanded fuel injection amount is set so that the deviation value becomes zero. To calculate the injection time correction value,
When fuel is injected from the fuel injection valve, the injection time map is stored based on the common rail pressure and the commanded fuel injection amount, and the current injection time corresponding to the current common rail pressure and the current commanded fuel injection amount is corrected to the injection time. A fuel injection method for an internal combustion engine, wherein the fuel injection is performed with correction by a value. - 前記噴射時間補正値を、前記実空気過剰率λ1と前記目標空気過剰率λ2と前記現噴射時間補正値を用いて、下記に示す式(1)により求め、
前記噴射時間を、前記現噴射時間と、前記噴射時間補正値とを用いて、下記に示す式(2)により求めることを特徴とする請求項1に記載の内燃機関の燃料噴射方法。
但し、
L(i,j):現噴射時間補正値
L(I,J):噴射時間補正値
W_cor:重み係数
T(i,j):現噴射時間
T_corr:噴射時間 The injection time correction value is obtained by the following equation (1) using the actual excess air ratio λ1, the target excess air ratio λ2, and the current injection time correction value.
2. The fuel injection method for an internal combustion engine according to claim 1, wherein the injection time is obtained by the following equation (2) using the current injection time and the injection time correction value.
However,
L (i, j): Current injection time correction value L (I, J): Injection time correction value W_cor: Weight coefficient T (i, j): Current injection time T_corr: Injection time - 排気通路に排気ガス浄化装置を設けた内燃機関において、
前記排気ガス浄化装置の下流に設けたNOxセンサの酸素濃度値から算出した実空気過剰率λ1と、吸気通路に設けた吸気量センサで検出された新気空気量と現指示燃料噴射量から算出した目標空気過剰率λ2との偏差値を算出する手段と、
コモンレール圧と指示燃料噴射量をベースとする噴射時間補正値マップに記憶され、且つ、現コモンレール圧と前記現指示燃料噴射量に対応する現噴射時間補正値を、前記偏差値がゼロになるように補正して、噴射時間補正値を算出する手段と、
燃料噴射弁からの燃料噴射に際しては、コモンレール圧と指示燃料噴射量をベースとする噴射時間マップに記憶され、前記現コモンレール圧と前記現指示燃料噴射量に対応する現噴射時間を前記噴射時間補正値で補正して、燃料噴射を行う手段とを備える制御装置を設けることを特徴とする内燃機関。 In an internal combustion engine provided with an exhaust gas purification device in the exhaust passage,
Calculated from the actual excess air ratio λ1 calculated from the oxygen concentration value of the NOx sensor provided downstream of the exhaust gas purifying device, the fresh air amount detected by the intake air amount sensor provided in the intake passage, and the current commanded fuel injection amount Means for calculating a deviation value from the target excess air ratio λ2;
The current injection time correction value stored in the injection time correction value map based on the common rail pressure and the commanded fuel injection amount and corresponding to the current common rail pressure and the current commanded fuel injection amount is set so that the deviation value becomes zero. Means for calculating the injection time correction value,
When fuel is injected from the fuel injection valve, the injection time map is stored based on the common rail pressure and the commanded fuel injection amount, and the current injection time corresponding to the current common rail pressure and the current commanded fuel injection amount is corrected to the injection time. An internal combustion engine characterized by comprising a control device including means for performing fuel injection by correcting with a value. - 前記制御装置が、前記噴射時間補正値を、前記実空気過剰率λ1と前記目標空気過剰率λ2と前記現噴射時間補正値を用いて、下記に示す式(3)により求める手段と、
前記噴射時間を、前記現噴射時間と、前記噴射時間補正値とを用いて、下記に示す式(4)により求める手段とを備えることを特徴とする請求項3に記載の内燃機関。
但し、
L(i,j):現噴射時間補正値
L(I,J):噴射時間補正値
W_cor:重み係数
T(i,j):現噴射時間
T_corr:噴射時間 Means for obtaining the injection time correction value by the following equation (3) using the actual excess air ratio λ1, the target excess air ratio λ2, and the current injection time correction value;
The internal combustion engine according to claim 3, further comprising means for obtaining the injection time by the following equation (4) using the current injection time and the injection time correction value.
However,
L (i, j): Current injection time correction value L (I, J): Injection time correction value W_cor: Weight coefficient T (i, j): Current injection time T_corr: Injection time
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-253065 | 2011-11-18 | ||
JP2011253065A JP5790436B2 (en) | 2011-11-18 | 2011-11-18 | Combustion injection method for internal combustion engine and internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013073512A1 true WO2013073512A1 (en) | 2013-05-23 |
Family
ID=48429569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/079331 WO2013073512A1 (en) | 2011-11-18 | 2012-11-13 | Fuel injection method for internal combustion engine and internal combustion engine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5790436B2 (en) |
WO (1) | WO2013073512A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103352763A (en) * | 2013-05-24 | 2013-10-16 | 潍柴动力股份有限公司 | MAP curve correction method and device for fuel injector and engine fuel supply system |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160089421A1 (en) | 2013-05-22 | 2016-03-31 | National Center Of Neurology And Psychiarty | Stem cells for transplantation and manufacturing method therefor |
JP7007140B2 (en) | 2016-09-30 | 2022-01-24 | Dowaエレクトロニクス株式会社 | Joining material and joining method using it |
KR102033511B1 (en) | 2018-02-22 | 2019-10-17 | 주식회사 툴켓 | Pipe Joint |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004251188A (en) * | 2003-02-20 | 2004-09-09 | Isuzu Motors Ltd | Exhaust emission control system for internal combustion engine |
JP2005120952A (en) * | 2003-10-17 | 2005-05-12 | Bosch Automotive Systems Corp | Fuel injection control device |
JP2007023959A (en) * | 2005-07-20 | 2007-02-01 | Nissan Motor Co Ltd | Pm accumulation-quantity estimation device |
JP2010106756A (en) * | 2008-10-30 | 2010-05-13 | Honda Motor Co Ltd | Fuel injection device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4055476B2 (en) * | 2002-05-29 | 2008-03-05 | 株式会社デンソー | Abnormality detection device for catalyst downstream oxygen sensor |
-
2011
- 2011-11-18 JP JP2011253065A patent/JP5790436B2/en not_active Expired - Fee Related
-
2012
- 2012-11-13 WO PCT/JP2012/079331 patent/WO2013073512A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004251188A (en) * | 2003-02-20 | 2004-09-09 | Isuzu Motors Ltd | Exhaust emission control system for internal combustion engine |
JP2005120952A (en) * | 2003-10-17 | 2005-05-12 | Bosch Automotive Systems Corp | Fuel injection control device |
JP2007023959A (en) * | 2005-07-20 | 2007-02-01 | Nissan Motor Co Ltd | Pm accumulation-quantity estimation device |
JP2010106756A (en) * | 2008-10-30 | 2010-05-13 | Honda Motor Co Ltd | Fuel injection device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103352763A (en) * | 2013-05-24 | 2013-10-16 | 潍柴动力股份有限公司 | MAP curve correction method and device for fuel injector and engine fuel supply system |
Also Published As
Publication number | Publication date |
---|---|
JP2013108408A (en) | 2013-06-06 |
JP5790436B2 (en) | 2015-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5825068B2 (en) | Abnormality determination method for internal combustion engine fuel injection and internal combustion engine | |
JP4501877B2 (en) | Control device for internal combustion engine | |
US7743759B2 (en) | Gas sensor controller | |
JP4320744B2 (en) | Control device for internal combustion engine | |
JP4877610B2 (en) | Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine | |
US10590873B2 (en) | Control device for internal combustion engine | |
US20120109497A1 (en) | Abnormal inter-cylinder air-fuel ratio imbalance detection apparatus for multi-cylinder internal combustion engine | |
JP5790436B2 (en) | Combustion injection method for internal combustion engine and internal combustion engine | |
JP6584154B2 (en) | Catalyst diagnostic device | |
JP5857662B2 (en) | Abnormality determination method for internal combustion engine fuel injection and internal combustion engine | |
JP2017003298A (en) | OUTPUT CORRECTION DEVICE OF NOx SENSOR | |
US9885307B2 (en) | Control apparatus for internal combustion engine | |
JP5640967B2 (en) | Cylinder air-fuel ratio variation abnormality detection device | |
US20190153967A1 (en) | Method for controlling engine | |
JP5790435B2 (en) | Combustion injection method for internal combustion engine and internal combustion engine | |
JP2014206103A (en) | Control device for internal combustion engine | |
JP6179377B2 (en) | Exhaust purification device | |
US8949000B2 (en) | Control device and control method for internal combustion engine | |
JP6505578B2 (en) | Filter failure detection device, particulate matter detection device | |
JP2013133734A (en) | Internal combustion engine control device | |
JP2014181650A (en) | Abnormality detecting device of multicylinder-type internal combustion engine | |
US10072593B2 (en) | Control device of internal combustion engine | |
JP5695878B2 (en) | Combustion control apparatus and method for internal combustion engine | |
JP2016200111A (en) | Exhaust emission control system | |
JP6424618B2 (en) | Exhaust purification system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12849287 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12849287 Country of ref document: EP Kind code of ref document: A1 |