WO2013073457A1 - Intercooler diagnosis system - Google Patents
Intercooler diagnosis system Download PDFInfo
- Publication number
- WO2013073457A1 WO2013073457A1 PCT/JP2012/079072 JP2012079072W WO2013073457A1 WO 2013073457 A1 WO2013073457 A1 WO 2013073457A1 JP 2012079072 W JP2012079072 W JP 2012079072W WO 2013073457 A1 WO2013073457 A1 WO 2013073457A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- intercooler
- intake
- cooling efficiency
- temperature sensor
- pressure sensor
- Prior art date
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 11
- 238000001816 cooling Methods 0.000 claims abstract description 33
- 238000002485 combustion reaction Methods 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 4
- 239000000567 combustion gas Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/0406—Layout of the intake air cooling or coolant circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/05—High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
- F02M26/25—Layout, e.g. schematics with coolers having bypasses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/33—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage controlling the temperature of the recirculated gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D21/00—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
- F02D21/06—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
- F02D21/08—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
- F02D2021/083—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine controlling exhaust gas recirculation electronically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0406—Intake manifold pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0414—Air temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/70—Input parameters for engine control said parameters being related to the vehicle exterior
- F02D2200/703—Atmospheric pressure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to an intercooler diagnostic system, and more particularly to an intercooler diagnostic system that can diagnose the cooling efficiency of the intercooler at low cost.
- the intercooler is required not only to increase the output of the diesel engine described above, but also to have high cooling efficiency not only from legal requirements that stipulate that energy saving should be promoted by using an appropriate heat exchanger. It has been. Therefore, it is important to diagnose the cooling efficiency of the intercooler.
- diagnosis of the cooling efficiency of the intercooler has been carried out by installing temperature sensors at the entrance and exit of the intercooler and comparing the difference between the measured values with the temperature rise in the turbocharger.
- temperature sensors since it is necessary to newly add a plurality of temperature sensors, there is a problem in that the manufacturing cost is increased.
- An object of the present invention is to provide an intercooler diagnostic system that can diagnose the cooling efficiency of an intercooler at low cost.
- An intercooler diagnostic system of the present invention that achieves the above object is an intercooler diagnostic system for diagnosing the cooling efficiency of a diesel engine intercooler, and includes a cylinder intake pressure sensor and an intake manifold temperature sensor installed in an intake manifold of the diesel engine.
- An intake air temperature sensor installed in the vicinity of the intake port of the intake pipe connected to the intake manifold, an atmospheric pressure sensor for measuring the atmospheric pressure, and an EGR valve for processing the measured values of these sensors and opening and closing the EGR passage
- processing means for controlling, after the EGR valve is closed, the processing means measures the measured value P2 of the cylinder intake pressure sensor, the measured value T4 of the intake manifold temperature sensor, the measured value T1 of the intake temperature sensor, and the atmospheric pressure sensor.
- the cooling efficiency ⁇ c of the intercooler is calculated by the following formulas (1) to (3), and it is diagnosed that the cooling efficiency of the intercooler is deteriorated when the cooling efficiency ⁇ c is less than a predetermined value. Is.
- T3 Intercooler outlet temperature calculation value
- ⁇ specific heat ratio
- ⁇ compressor efficiency
- the processing means includes notification means for notifying the diagnosis result of the cooling efficiency of the intercooler, the deterioration of the cooling efficiency of the intercooler can be transmitted to the driver of the vehicle at an early stage and with certainty.
- the intercooler diagnostic system of the present invention is suitably used for general internal combustion engines.
- the intercooler diagnostic system of the present invention it is only necessary to use a conventional sensor without newly installing a temperature sensor at the entrance / exit of the intercooler, so that the cooling efficiency of the intercooler can be diagnosed at low cost.
- FIG. 1 is a configuration diagram of an intercooler diagnostic system according to an embodiment of the present invention.
- FIG. 2 is a flowchart showing the processing contents of the processing means.
- FIG. 3 is a configuration diagram of an intercooler diagnostic system according to another embodiment of the present invention.
- FIG. 1 shows an intercooler diagnostic system according to an embodiment of the present invention.
- the air drawn into the intake pipe 3 from the inlet 2 is compressed by the turbocharger 5 after passing through the air cleaner 4 and cooled by the intercooler 6. It is supplied to each of the four cylinders 8 via the intake manifold 7. Then, the combustion gas from each cylinder 8 is exhausted to the exhaust pipe 9, but a part of the combustion gas is diverted as EGR gas to the EGR passage 10 connected to the intake pipe 3 on the downstream side of the intercooler 6.
- a water-cooled EGR cooler 11 and an EGR valve 12 that adjusts the flow rate of EGR gas are arranged in this order from the exhaust pipe 9 side.
- an exhaust return passage 13 that connects the outlet of the EGR cooler 11 and the upstream exhaust pipe 9 is provided. Exhaust gas that has not been diverted to the EGR passage 10 is discharged to the outside from the discharge port 14 after the turbocharger 5 is rotationally driven.
- the intercooler diagnostic system of the present invention includes a cylinder intake pressure sensor 15 and an intake manifold temperature sensor 16 installed in the intake manifold 7, and an intake air temperature sensor 17 installed in the intake pipe 3 between the air cleaner 4 and the turbocharger 5. And an atmospheric pressure sensor 18 for measuring the atmospheric pressure, and processing means 21 connected to the four sensors 15 to 18, the EGR valve 12 and the ECU (Engine Control Unit) 19 through signal lines 20a to 20f, respectively. Has been.
- the cylinder intake pressure sensor 15 and the intake manifold temperature sensor 16 measure the pressure and temperature of the air in the intake manifold 7, respectively.
- the intake air temperature sensor 17 measures the temperature of the air that is drawn from the intake port 2 and supplied to the turbocharger 5.
- the atmospheric pressure sensor 18 is installed in the vicinity of the diesel engine 1 and measures the atmospheric pressure around the diesel engine 1. These four sensors 15 to 18 are conventionally installed in order to provide the ECU 19 with measured values indicating the operating state of the diesel engine 1.
- the processing means 21 is composed of a CPU (Central Processing Unit) equipped with a storage unit, acquires measurement values from the four sensors 15 to 18 through the signal lines 20a to 20d, and opens the EGR valve 12 through the signal line 20e. Control the degree.
- the processing unit 21 and the ECU 19 are separated from each other, but the processing unit 21 may be integrated by providing the ECU 19 with the function of the processing unit 21.
- the processing means 21 closes the EGR valve 12 and turns off the function of the EGR cooler 11 (S20). Then, the measured value P2 of the cylinder intake pressure sensor 15, the measured value T4 of the intake manifold temperature sensor 16, the measured value T1 of the intake air temperature sensor 17, and the measured value P1 of the atmospheric pressure sensor 18 are acquired (S30).
- T3 Intercooler outlet temperature calculation value
- ⁇ specific heat ratio
- ⁇ compressor efficiency
- the cooling efficiency ⁇ c of the intercooler 6 is compared with a predetermined value (S60). If the cooling efficiency ⁇ c is less than the predetermined value, the cooling of the intercooler 6 is performed. It is diagnosed that the efficiency is deteriorated (S70), and conversely, if it is equal to or greater than the predetermined value, it is diagnosed that the cooling efficiency of the intercooler 6 is normal (S80). In addition, as a case where diagnostic conditions are materialized, the case where the vehicle speed of the vehicle carrying the diesel engine 1 is 20 km / h or more is illustrated.
- the cooling efficiency ⁇ c of the intercooler 6 can be diagnosed at low cost. Further, since the conventional sensors 15 to 18 are used as they are, it is easy to attach the intercooler diagnostic system to the existing diesel engine 1.
- the predetermined value used for diagnosing the cooling efficiency ⁇ c of the intercooler 6 varies depending on the size and performance of the diesel engine 1, but in the case of a general large vehicle, a value in the range of about 60 to 70% is used. It is desirable.
- FIG. 3 shows an intercooler diagnostic system according to an embodiment of the present invention.
- the notification means 22 for notifying the diagnosis result of the cooling efficiency ⁇ c of the intercooler 6 is connected to the processing means 21 through a signal line 20g.
- Examples of the notification means 22 include a monitor and an alarm device installed in a driver's seat of a vehicle on which the diesel engine 1 is mounted.
- the notification means 22 By providing the notification means 22 in this way, the deterioration of the cooling efficiency ⁇ c of the intercooler 6 can be transmitted early and reliably to the driver of the vehicle.
- intercooler diagnostic system of the present invention is not limited to the vehicle diesel engine 1 as described above, but can be applied to other general internal combustion engines.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Abstract
This intercooler diagnosis system, which diagnoses the cooling efficiency of the intercooler (11) of a diesel engine (1), is configured from: an intake manifold temperature sensor (16) and a cylinder intake pressure sensor (15) installed at an intake manifold (7); an intake temperature sensor (17) installed at the vicinity of the intake opening (2) of an intake tube (3); an atmospheric pressure sensor (18) that measures atmospheric pressure; and a processing means (21). After closing the EGR valve (12), the processing means (21) calculates the cooling efficiency (ηc) of the intercooler (11) using a group of formulae that use the values measured by the abovementioned four sensors (15-18) and the like, and diagnoses the cooling efficiency (ηc) of the intercooler (11) by comparing the cooling efficiency (ηc) to a predetermined value.
Description
本発明はインタークーラー診断システムに関し、更に詳しくは、インタークーラーの冷却効率を低コストで診断することができるインタークーラー診断システムに関する。
The present invention relates to an intercooler diagnostic system, and more particularly to an intercooler diagnostic system that can diagnose the cooling efficiency of the intercooler at low cost.
ディーゼルエンジンの出力増加を目的として、ターボチャージャーにより吸入空気量を増加させるとともに、そのターボチャージャーで圧縮された吸入空気をインタークーラーで冷却して吸入空気密度を高める機構が広く実用化されている(例えば、日本出願の特開2011-1877号公報を参照)。
For the purpose of increasing the output of a diesel engine, a mechanism for increasing the intake air density by increasing the intake air amount by a turbocharger and cooling the intake air compressed by the turbocharger by an intercooler has been widely put into practical use (for example, And Japanese Patent Application Laid-Open No. 2011-1877).
この機構においてインタークーラーは、上述したディーゼルエンジンの出力増加のためだけでなく、適切な熱交換器の使用により省エネルギー化を進めることを規定した法律上の要請からも、高い冷却効率を有することが求められている。そのため、インタークーラーの冷却効率を診断することが重要になっている。
In this mechanism, the intercooler is required not only to increase the output of the diesel engine described above, but also to have high cooling efficiency not only from legal requirements that stipulate that energy saving should be promoted by using an appropriate heat exchanger. It has been. Therefore, it is important to diagnose the cooling efficiency of the intercooler.
従来より、インタークーラーの冷却効率の診断は、インタークーラーの出入口にそれぞれ温度センサを設置して、それらの測定値の差とターボチャージャーにおける温度上昇分とを比較することにより実施されている。しかし、このような方法では、新たに複数台の温度センサを追加することが必要となるため、製造コストの増加を招くという問題があった。
Conventionally, diagnosis of the cooling efficiency of the intercooler has been carried out by installing temperature sensors at the entrance and exit of the intercooler and comparing the difference between the measured values with the temperature rise in the turbocharger. However, in such a method, since it is necessary to newly add a plurality of temperature sensors, there is a problem in that the manufacturing cost is increased.
本発明の目的は、インタークーラーの冷却効率を低コストで診断することができるインタークーラー診断システムを提供することにある。
An object of the present invention is to provide an intercooler diagnostic system that can diagnose the cooling efficiency of an intercooler at low cost.
上記の目的を達成する本発明のインタークーラー診断システムは、ディーゼルエンジンのインタークーラーの冷却効率を診断するインタークーラー診断システムであって、ディーゼルエンジンのインテークマニホールドに設置されたシリンダー吸気圧力センサ及びインテークマニホールド温度センサと、そのインテークマニホールドに接続する吸気管の吸入口近傍に設置された吸気温度センサと、大気圧を測定する大気圧センサと、それらのセンサの測定値を処理しかつEGR通路を開閉するEGR弁を制御する処理手段とを備え、前記処理手段は、前記EGR弁を閉止した後に、シリンダー吸気圧力センサの測定値P2、インテークマニホールド温度センサの測定値T4、吸気温度センサの測定値T1及び大気圧センサの測定値P1を用いて以下の(1)~(3)式によりインタークーラーの冷却効率ηcを算出し、前記冷却効率ηcが所定値未満であるときに前記インタークーラーの冷却効率が劣化していると診断することを特徴とするものである。
An intercooler diagnostic system of the present invention that achieves the above object is an intercooler diagnostic system for diagnosing the cooling efficiency of a diesel engine intercooler, and includes a cylinder intake pressure sensor and an intake manifold temperature sensor installed in an intake manifold of the diesel engine. An intake air temperature sensor installed in the vicinity of the intake port of the intake pipe connected to the intake manifold, an atmospheric pressure sensor for measuring the atmospheric pressure, and an EGR valve for processing the measured values of these sensors and opening and closing the EGR passage And processing means for controlling, after the EGR valve is closed, the processing means measures the measured value P2 of the cylinder intake pressure sensor, the measured value T4 of the intake manifold temperature sensor, the measured value T1 of the intake temperature sensor, and the atmospheric pressure sensor. Using the measured value P1 The cooling efficiency ηc of the intercooler is calculated by the following formulas (1) to (3), and it is diagnosed that the cooling efficiency of the intercooler is deteriorated when the cooling efficiency ηc is less than a predetermined value. Is.
An intercooler diagnostic system of the present invention that achieves the above object is an intercooler diagnostic system for diagnosing the cooling efficiency of a diesel engine intercooler, and includes a cylinder intake pressure sensor and an intake manifold temperature sensor installed in an intake manifold of the diesel engine. An intake air temperature sensor installed in the vicinity of the intake port of the intake pipe connected to the intake manifold, an atmospheric pressure sensor for measuring the atmospheric pressure, and an EGR valve for processing the measured values of these sensors and opening and closing the EGR passage And processing means for controlling, after the EGR valve is closed, the processing means measures the measured value P2 of the cylinder intake pressure sensor, the measured value T4 of the intake manifold temperature sensor, the measured value T1 of the intake temperature sensor, and the atmospheric pressure sensor. Using the measured value P1 The cooling efficiency ηc of the intercooler is calculated by the following formulas (1) to (3), and it is diagnosed that the cooling efficiency of the intercooler is deteriorated when the cooling efficiency ηc is less than a predetermined value. Is.
但し、T3:インタークーラー出口温度計算値、κ:比熱比、η:コンプレッサ効率をそれぞれ示す。
However, T3: Intercooler outlet temperature calculation value, κ: specific heat ratio, η: compressor efficiency, respectively.
インタークーラーの冷却効率を診断するための所定値としては60~70%の範囲の値を用いることが望ましい。
It is desirable to use a value in the range of 60 to 70% as the predetermined value for diagnosing the cooling efficiency of the intercooler.
また、処理手段がインタークーラーの冷却効率の診断結果を通知する通知手段を備えることで、車両の運転者などにインタークーラーの冷却効率の劣化を早期かつ確実に伝達することができる。
In addition, since the processing means includes notification means for notifying the diagnosis result of the cooling efficiency of the intercooler, the deterioration of the cooling efficiency of the intercooler can be transmitted to the driver of the vehicle at an early stage and with certainty.
本発明のインタークーラー診断システムは、一般の内燃機関に好適に用いられる。
The intercooler diagnostic system of the present invention is suitably used for general internal combustion engines.
本発明のインタークーラー診断システムによれば、インタークーラーの出入口に新たに温度センサを設置することなく、従来のセンサを用いるだけでよいため、インタークーラーの冷却効率を低コストで診断することができる。
According to the intercooler diagnostic system of the present invention, it is only necessary to use a conventional sensor without newly installing a temperature sensor at the entrance / exit of the intercooler, so that the cooling efficiency of the intercooler can be diagnosed at low cost.
以下に、本発明の実施の形態について、図面を参照して説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、本発明の実施形態からなるインタークーラー診断システムを示す。
FIG. 1 shows an intercooler diagnostic system according to an embodiment of the present invention.
このインタークーラー診断システムが装備されるディーゼルエンジン1では、吸入口2から吸気管3内へ吸入された空気は、エアクリーナー4を通過してからターボチャージャー5により圧縮され、インタークーラー6で冷却された後にインテークマニホールド7を経て4つの気筒8のそれぞれに供給される。そして、各気筒8から燃焼ガスとなって排気管9へ排気されるが、その一部はインタークーラー6の下流側の吸気管3に接続するEGR通路10にEGRガスとなって分流する。EGR通路10には、水冷式のEGRクーラー11と、EGRガスの流量を調整するEGR弁12とが、排気管9側から順に配置されている。また、EGRクーラー11によるEGRガスの過冷却を防止するために、EGRクーラー11の出口と上流側の排気管9とを接続する排気戻し通路13が設けられている。EGR通路10に分流しなかった排気ガスは、ターボチャージャー5を回転駆動させた後に、排出口14から外部へ放出される。
In the diesel engine 1 equipped with this intercooler diagnostic system, the air drawn into the intake pipe 3 from the inlet 2 is compressed by the turbocharger 5 after passing through the air cleaner 4 and cooled by the intercooler 6. It is supplied to each of the four cylinders 8 via the intake manifold 7. Then, the combustion gas from each cylinder 8 is exhausted to the exhaust pipe 9, but a part of the combustion gas is diverted as EGR gas to the EGR passage 10 connected to the intake pipe 3 on the downstream side of the intercooler 6. In the EGR passage 10, a water-cooled EGR cooler 11 and an EGR valve 12 that adjusts the flow rate of EGR gas are arranged in this order from the exhaust pipe 9 side. In addition, in order to prevent the EGR gas from being overcooled by the EGR cooler 11, an exhaust return passage 13 that connects the outlet of the EGR cooler 11 and the upstream exhaust pipe 9 is provided. Exhaust gas that has not been diverted to the EGR passage 10 is discharged to the outside from the discharge port 14 after the turbocharger 5 is rotationally driven.
本発明のインタークーラー診断システムは、インテークマニホールド7に設置されたシリンダー吸気圧力センサ15及びインテークマニホールド温度センサ16と、エアクリーナー4とターボチャージャー5との間の吸気管3に設置された吸気温度センサ17と、大気圧を測定する大気圧センサ18と、それら4台のセンサ15~18、EGR弁12及びECU(Engine Control Unit)19に、それぞれ信号線20a~20fを通じて接続する処理手段21とから構成されている。
The intercooler diagnostic system of the present invention includes a cylinder intake pressure sensor 15 and an intake manifold temperature sensor 16 installed in the intake manifold 7, and an intake air temperature sensor 17 installed in the intake pipe 3 between the air cleaner 4 and the turbocharger 5. And an atmospheric pressure sensor 18 for measuring the atmospheric pressure, and processing means 21 connected to the four sensors 15 to 18, the EGR valve 12 and the ECU (Engine Control Unit) 19 through signal lines 20a to 20f, respectively. Has been.
シリンダー吸気圧力センサ15及びインテークマニホールド温度センサ16は、インテークマニホールド7内の空気の圧力及び温度をそれぞれ測定するものである。吸気温度センサ17は、吸入口2から吸入されてターボチャージャー5に供給される空気の温度を測定する。また、大気圧センサ18は、ディーゼルエンジン1の近傍に設置され、ディーゼルエンジン1の周囲の大気圧を測定する。これら4台のセンサ15~18は、ディーゼルエンジン1の運転状態を示す測定値をECU19に提供するために、従来から設置されているものである。
The cylinder intake pressure sensor 15 and the intake manifold temperature sensor 16 measure the pressure and temperature of the air in the intake manifold 7, respectively. The intake air temperature sensor 17 measures the temperature of the air that is drawn from the intake port 2 and supplied to the turbocharger 5. The atmospheric pressure sensor 18 is installed in the vicinity of the diesel engine 1 and measures the atmospheric pressure around the diesel engine 1. These four sensors 15 to 18 are conventionally installed in order to provide the ECU 19 with measured values indicating the operating state of the diesel engine 1.
処理手段21は、記憶部を備えたCPU(Central Processing Unit)から構成され、信号線20a~20dを通じて4台のセンサ15~18から測定値を取得するとともに、信号線20eを通じてEGR弁12の開度を制御する。なお、図1の例では、処理手段21とECU19とを別体にしているが、処理手段21の機能をECU19に持たせることで一体化するようにしてもよい。
The processing means 21 is composed of a CPU (Central Processing Unit) equipped with a storage unit, acquires measurement values from the four sensors 15 to 18 through the signal lines 20a to 20d, and opens the EGR valve 12 through the signal line 20e. Control the degree. In the example of FIG. 1, the processing unit 21 and the ECU 19 are separated from each other, but the processing unit 21 may be integrated by providing the ECU 19 with the function of the processing unit 21.
このような構成を有するインタークーラー診断システムの機能を、図2に示すフロー図を基に以下に説明する。
The function of the intercooler diagnostic system having such a configuration will be described below based on the flowchart shown in FIG.
処理手段21は、対象となる運転サイクルにおいてインタークーラー6の冷却効率の診断が終了していない場合(S10)には、EGR弁12を閉止してEGRクーラー11の機能をオフにする(S20)。そして、シリンダー吸気圧力センサ15の測定値P2、インテークマニホールド温度センサ16の測定値T4、吸気温度センサ17の測定値T1及び大気圧センサ18の測定値P1を取得する(S30)。
When the diagnosis of the cooling efficiency of the intercooler 6 is not completed in the target operation cycle (S10), the processing means 21 closes the EGR valve 12 and turns off the function of the EGR cooler 11 (S20). Then, the measured value P2 of the cylinder intake pressure sensor 15, the measured value T4 of the intake manifold temperature sensor 16, the measured value T1 of the intake air temperature sensor 17, and the measured value P1 of the atmospheric pressure sensor 18 are acquired (S30).
次に、それら取得した測定値P2、T4、T1及びP1を用いて、以下に示す(1)~(3)式によりインタークーラーの冷却効率ηcを算出する(S40)。
Next, using the obtained measured values P2, T4, T1, and P1, the cooling efficiency ηc of the intercooler is calculated by the following equations (1) to (3) (S40).
Next, using the obtained measured values P2, T4, T1, and P1, the cooling efficiency ηc of the intercooler is calculated by the following equations (1) to (3) (S40).
但し、T3:インタークーラー出口温度計算値、κ:比熱比、η:コンプレッサ効率をそれぞれ示す。なお、コンプレッサ効率ηはターボチャージャー5の特性を示すマップデータから得ることができる。
However, T3: Intercooler outlet temperature calculation value, κ: specific heat ratio, η: compressor efficiency, respectively. The compressor efficiency η can be obtained from map data indicating the characteristics of the turbocharger 5.
そして、診断条件が成立している場合(S50)には、インタークーラー6の冷却効率ηcと所定値とを比較して(S60)、冷却効率ηcが所定値未満の場合には、インタークーラー6の冷却効率が劣化していると診断し(S70)、反対に所定値以上の場合には、インタークーラー6の冷却効率が正常であると診断する(S80)。なお、診断条件が成立する場合としては、ディーゼルエンジン1を搭載した車両の車速が20km/h以上である場合などが例示される。
If the diagnosis condition is satisfied (S50), the cooling efficiency ηc of the intercooler 6 is compared with a predetermined value (S60). If the cooling efficiency ηc is less than the predetermined value, the cooling of the intercooler 6 is performed. It is diagnosed that the efficiency is deteriorated (S70), and conversely, if it is equal to or greater than the predetermined value, it is diagnosed that the cooling efficiency of the intercooler 6 is normal (S80). In addition, as a case where diagnostic conditions are materialized, the case where the vehicle speed of the vehicle carrying the diesel engine 1 is 20 km / h or more is illustrated.
以上のように、インタークーラー6の出入口に新たに温度センサを設置することなく、従来のセンサ15~18を用いて診断を行うので、インタークーラー6の冷却効率ηcを低コストで診断することができる。また、従来のセンサ15~18をそのまま利用するため、既存のディーゼルエンジン1へのインタークーラー診断システムの取り付けが容易である。
As described above, since the diagnosis is performed using the conventional sensors 15 to 18 without newly installing a temperature sensor at the entrance / exit of the intercooler 6, the cooling efficiency ηc of the intercooler 6 can be diagnosed at low cost. Further, since the conventional sensors 15 to 18 are used as they are, it is easy to attach the intercooler diagnostic system to the existing diesel engine 1.
インタークーラー6の冷却効率ηcの診断に用いる所定値は、ディーゼルエンジン1のサイズや性能により変化するが、一般的な大型車両を対象にした場合には、約60~70%の範囲の値を用いることが望ましい。
The predetermined value used for diagnosing the cooling efficiency ηc of the intercooler 6 varies depending on the size and performance of the diesel engine 1, but in the case of a general large vehicle, a value in the range of about 60 to 70% is used. It is desirable.
図3は、本発明の実施形態からなるインタークーラー診断システムを示す。
FIG. 3 shows an intercooler diagnostic system according to an embodiment of the present invention.
このインタークーラー診断システムは、インタークーラー6の冷却効率ηcの診断結果を通知する通知手段22を、信号線20gを通じて処理手段21に接続したものである。通知手段22としては、ディーゼルエンジン1を搭載する車両の運転席などに設置されたモニタや警報器などが例示される。
In this intercooler diagnostic system, the notification means 22 for notifying the diagnosis result of the cooling efficiency ηc of the intercooler 6 is connected to the processing means 21 through a signal line 20g. Examples of the notification means 22 include a monitor and an alarm device installed in a driver's seat of a vehicle on which the diesel engine 1 is mounted.
このように通知手段22を設けることにより、インタークーラー6の冷却効率ηcの劣化を、車両の運転者などに早期かつ確実に伝達することができる。
By providing the notification means 22 in this way, the deterioration of the cooling efficiency ηc of the intercooler 6 can be transmitted early and reliably to the driver of the vehicle.
本発明のインタークーラー診断システムの用途は、上述したような車両のディーゼルエンジン1に限るものではなく、その他一般の内燃機関にも適用することができる。
The use of the intercooler diagnostic system of the present invention is not limited to the vehicle diesel engine 1 as described above, but can be applied to other general internal combustion engines.
1 ディーゼルエンジン
2 吸入口
3 吸気管
4 エアクリーナー
5 ターボチャージャー
6 インタークーラー
7 インテークマニホールド
8 気筒
9 排気管
10 EGR通路
11 インタークーラー
12 EGR弁
13 排気戻し通路
14 排出口
15 シリンダ吸気圧力センサ
16 インテークマニホールド温度センサ
17 吸気温度センサ
18 大気圧センサ
19 ECU
20a~20g 信号線
21 処理手段
22 通知手段 DESCRIPTION OFSYMBOLS 1 Diesel engine 2 Intake port 3 Intake pipe 4 Air cleaner 5 Turbocharger 6 Intercooler 7 Intake manifold 8 Cylinder 9 Exhaust pipe 10 EGR passage 11 Intercooler 12 EGR valve 13 Exhaust return passage 14 Outlet 15 Cylinder intake pressure sensor 16 Intake manifold temperature sensor 17 Intake air temperature sensor 18 Atmospheric pressure sensor 19 ECU
20a to20g Signal line 21 Processing means 22 Notification means
2 吸入口
3 吸気管
4 エアクリーナー
5 ターボチャージャー
6 インタークーラー
7 インテークマニホールド
8 気筒
9 排気管
10 EGR通路
11 インタークーラー
12 EGR弁
13 排気戻し通路
14 排出口
15 シリンダ吸気圧力センサ
16 インテークマニホールド温度センサ
17 吸気温度センサ
18 大気圧センサ
19 ECU
20a~20g 信号線
21 処理手段
22 通知手段 DESCRIPTION OF
20a to
Claims (4)
- ディーゼルエンジンのインタークーラーの冷却効率を診断するインタークーラー診断システムであって、
前記ディーゼルエンジンのインテークマニホールドに設置されたシリンダー吸気圧力センサ及びインテークマニホールド温度センサと、そのインテークマニホールドに接続する吸気管の吸入口近傍に設置された吸気温度センサと、大気圧を測定する大気圧センサと、 それらのセンサの測定値を処理しかつEGR通路を開閉するEGR弁を制御する処理手段とを備え、
前記処理手段は、前記EGR弁を閉止した後に、前記シリンダー吸気圧力センサの測定値P2、インテークマニホールド温度センサの測定値T4、吸気温度センサの測定値T1及び大気圧センサの測定値P1を用いて以下の(1)~(3)式によりインタークーラーの冷却効率ηcを算出し、
前記冷却効率ηcが所定値未満であるときに前記インタークーラーの冷却効率が劣化していると診断することを特徴とするインタークーラー診断システム。
但し、T3:インタークーラー出口温度計算値、κ:比熱比、η:コンプレッサ効率をそれぞれ示す。 An intercooler diagnostic system for diagnosing the cooling efficiency of a diesel engine intercooler,
Cylinder intake pressure sensor and intake manifold temperature sensor installed in the intake manifold of the diesel engine, an intake temperature sensor installed in the vicinity of the intake port of the intake pipe connected to the intake manifold, and an atmospheric pressure sensor for measuring atmospheric pressure And processing means for processing the measured values of those sensors and controlling the EGR valve that opens and closes the EGR passage,
The processing means uses the measured value P2 of the cylinder intake pressure sensor, the measured value T4 of the intake manifold temperature sensor, the measured value T1 of the intake air temperature sensor, and the measured value P1 of the atmospheric pressure sensor after closing the EGR valve. Calculate the cooling efficiency ηc of the intercooler by the following formulas (1) to (3),
An intercooler diagnosis system that diagnoses that the cooling efficiency of the intercooler is deteriorated when the cooling efficiency ηc is less than a predetermined value.
However, T3: Intercooler outlet temperature calculation value, κ: specific heat ratio, η: compressor efficiency, respectively. - 前記所定値が60~70%である請求項1に記載のインタークーラー診断システム。 The intercooler diagnostic system according to claim 1, wherein the predetermined value is 60 to 70%.
- 前記処理手段が前記インタークーラーの冷却効率の診断結果を通知する通知手段を備える請求項1又は2に記載のインタークーラー診断システム。 The intercooler diagnosis system according to claim 1 or 2, wherein the processing means includes notification means for notifying a result of diagnosis of cooling efficiency of the intercooler.
- 請求項1~3のいずれかに記載のインタークーラーの診断システムを搭載したことを特徴とする内燃機関。 An internal combustion engine equipped with the intercooler diagnostic system according to any one of claims 1 to 3.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-253233 | 2011-11-18 | ||
JP2011253233A JP5857666B2 (en) | 2011-11-18 | 2011-11-18 | Intercooler diagnostic system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013073457A1 true WO2013073457A1 (en) | 2013-05-23 |
Family
ID=48429517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/079072 WO2013073457A1 (en) | 2011-11-18 | 2012-11-09 | Intercooler diagnosis system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5857666B2 (en) |
WO (1) | WO2013073457A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3011276A1 (en) * | 2013-10-01 | 2015-04-03 | Renault Sa | METHOD FOR DETECTING THE FAILURE OF A SUPERCHARGED AIR COOLER AND ASSOCIATED MOTORIZATION DEVICE |
WO2016195558A1 (en) * | 2015-06-03 | 2016-12-08 | Volvo Construction Equipment Ab | Method for monitoring clogging of a charge air cooler |
US10547070B2 (en) | 2018-03-09 | 2020-01-28 | Toyota Motor Engineering & Manufacturing North America, Inc. | STL actuation-path planning |
US10590942B2 (en) | 2017-12-08 | 2020-03-17 | Toyota Motor Engineering & Manufacturing North America, Inc. | Interpolation of homotopic operating states |
US10665875B2 (en) | 2017-12-08 | 2020-05-26 | Toyota Motor Engineering & Manufacturing North America, Inc. | Path control concept |
US10714767B2 (en) | 2017-12-07 | 2020-07-14 | Toyota Motor Engineering & Manufacturing North America, Inc. | Fuel cell air system safe operating region |
US10871519B2 (en) | 2017-11-07 | 2020-12-22 | Toyota Motor Engineering & Manufacturing North America, Inc. | Fuel cell stack prediction utilizing IHOS |
US10971748B2 (en) | 2017-12-08 | 2021-04-06 | Toyota Motor Engineering & Manufacturing North America, Inc. | Implementation of feedforward and feedback control in state mediator |
US10985391B2 (en) | 2018-03-06 | 2021-04-20 | Toyota Motor Engineering & Manufacturing North America, Inc. | Real time iterative solution using recursive calculation |
US11482719B2 (en) | 2017-12-08 | 2022-10-25 | Toyota Jidosha Kabushiki Kaisha | Equation based state estimate for air system controller |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101664549B1 (en) * | 2014-06-17 | 2016-10-11 | 현대자동차주식회사 | Test device of intercooler pipe |
US9670830B2 (en) * | 2014-10-29 | 2017-06-06 | GM Global Technology Operations LLC | Method and apparatus for monitoring a coolant system for an exhaust gas recirculation system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002180889A (en) * | 2000-12-11 | 2002-06-26 | Toyota Motor Corp | Method of detecting intake air temperature after supercharging in supercharged internal combustion engine system, operation control device of supercharged internal combustion engine system, and device for detecting abnormal cooling of intercooler in supercharged internal combustion engine system |
JP2003293821A (en) * | 2002-03-29 | 2003-10-15 | Honda Motor Co Ltd | Controller for internal combustion engine |
JP2007146712A (en) * | 2005-11-25 | 2007-06-14 | Honda Motor Co Ltd | Device for judging abnormality of intercooler |
-
2011
- 2011-11-18 JP JP2011253233A patent/JP5857666B2/en not_active Expired - Fee Related
-
2012
- 2012-11-09 WO PCT/JP2012/079072 patent/WO2013073457A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002180889A (en) * | 2000-12-11 | 2002-06-26 | Toyota Motor Corp | Method of detecting intake air temperature after supercharging in supercharged internal combustion engine system, operation control device of supercharged internal combustion engine system, and device for detecting abnormal cooling of intercooler in supercharged internal combustion engine system |
JP2003293821A (en) * | 2002-03-29 | 2003-10-15 | Honda Motor Co Ltd | Controller for internal combustion engine |
JP2007146712A (en) * | 2005-11-25 | 2007-06-14 | Honda Motor Co Ltd | Device for judging abnormality of intercooler |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3011276A1 (en) * | 2013-10-01 | 2015-04-03 | Renault Sa | METHOD FOR DETECTING THE FAILURE OF A SUPERCHARGED AIR COOLER AND ASSOCIATED MOTORIZATION DEVICE |
WO2015049451A1 (en) * | 2013-10-01 | 2015-04-09 | Renault S.A.S. | Method for detecting the failure of a charge air cooler and associated power plant |
WO2016195558A1 (en) * | 2015-06-03 | 2016-12-08 | Volvo Construction Equipment Ab | Method for monitoring clogging of a charge air cooler |
US10871519B2 (en) | 2017-11-07 | 2020-12-22 | Toyota Motor Engineering & Manufacturing North America, Inc. | Fuel cell stack prediction utilizing IHOS |
US10714767B2 (en) | 2017-12-07 | 2020-07-14 | Toyota Motor Engineering & Manufacturing North America, Inc. | Fuel cell air system safe operating region |
US10590942B2 (en) | 2017-12-08 | 2020-03-17 | Toyota Motor Engineering & Manufacturing North America, Inc. | Interpolation of homotopic operating states |
US10665875B2 (en) | 2017-12-08 | 2020-05-26 | Toyota Motor Engineering & Manufacturing North America, Inc. | Path control concept |
US10971748B2 (en) | 2017-12-08 | 2021-04-06 | Toyota Motor Engineering & Manufacturing North America, Inc. | Implementation of feedforward and feedback control in state mediator |
US11482719B2 (en) | 2017-12-08 | 2022-10-25 | Toyota Jidosha Kabushiki Kaisha | Equation based state estimate for air system controller |
US10985391B2 (en) | 2018-03-06 | 2021-04-20 | Toyota Motor Engineering & Manufacturing North America, Inc. | Real time iterative solution using recursive calculation |
US10547070B2 (en) | 2018-03-09 | 2020-01-28 | Toyota Motor Engineering & Manufacturing North America, Inc. | STL actuation-path planning |
Also Published As
Publication number | Publication date |
---|---|
JP2013108415A (en) | 2013-06-06 |
JP5857666B2 (en) | 2016-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013073457A1 (en) | Intercooler diagnosis system | |
US8769931B2 (en) | Low pressure EGR system and examining method for efficiency of low EGR cooler | |
JP5897403B2 (en) | Anomaly detection method | |
JP6107677B2 (en) | Abnormality diagnosis device and abnormality diagnosis method for variable valve mechanism | |
WO2010073566A1 (en) | Apparatus for detecting abnormality of sensor | |
US9879598B2 (en) | Diagnosis device | |
JP5883289B2 (en) | Anomaly detection method | |
CN107687381B (en) | Apparatus and method for diagnosing failure of sensor | |
US20160169168A1 (en) | Exhaust system state detection device | |
JP2013108416A (en) | Intercooler diagnosis system | |
WO2013073456A1 (en) | Egr cooler diagnosis system | |
CN112901378A (en) | EGR effective flow diagnosis method | |
WO2011132289A1 (en) | Abnormality detection device and abnormality detection method for egr system | |
JP2019183674A (en) | Internal combustion engine diagnostic system | |
JP5857665B2 (en) | EGR cooler diagnostic system | |
JP4919056B2 (en) | Control device for internal combustion engine | |
JP7159993B2 (en) | Estimation device, estimation method, and vehicle | |
JP2020122464A (en) | Diagnostic device for egr cooler | |
JP7373380B2 (en) | Humidity sensor diagnostic device and humidity sensor diagnostic method | |
JP7159994B2 (en) | Estimation device, estimation method, and vehicle | |
US11913400B2 (en) | Abnormality diagnostic method for internal combustion engine and abnormality diagnostic device for internal combustion engine | |
JP4910844B2 (en) | Exhaust gas purification device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12850248 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12850248 Country of ref document: EP Kind code of ref document: A1 |