[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013072030A1 - Procede de diagnostic d'une tete de detection magnetique a reluctance variable et circuit de detection - Google Patents

Procede de diagnostic d'une tete de detection magnetique a reluctance variable et circuit de detection Download PDF

Info

Publication number
WO2013072030A1
WO2013072030A1 PCT/EP2012/004671 EP2012004671W WO2013072030A1 WO 2013072030 A1 WO2013072030 A1 WO 2013072030A1 EP 2012004671 W EP2012004671 W EP 2012004671W WO 2013072030 A1 WO2013072030 A1 WO 2013072030A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold
state
diagnostic
head
reference level
Prior art date
Application number
PCT/EP2012/004671
Other languages
English (en)
Inventor
Jean-Pierre Delcol
Aurore DESGEORGE
Original Assignee
Continental Automotive France
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive France, Continental Automotive Gmbh filed Critical Continental Automotive France
Priority to CN201280055783.2A priority Critical patent/CN104040151B/zh
Priority to IN3309DEN2014 priority patent/IN2014DN03309A/en
Priority to US14/357,675 priority patent/US9217786B2/en
Publication of WO2013072030A1 publication Critical patent/WO2013072030A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24457Failure detection
    • G01D5/24466Comparison of the error value to a threshold
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1207Testing individual magnetic storage devices, e.g. records carriers or digital storage elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2829Testing of circuits in sensor or actuator systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for diagnosing a variable reluctance magnetic sensing head, in particular of the type used on an internal combustion engine for measuring the position and rotational speed of a main body of the engine. It also relates to a circuit implementing the method.
  • Engines in particular combustion engines with internal combustion, frequently include a system for knowing the rotational speed of a main member of said internal combustion engine, such as the crankshaft, and the angular position of this member. This information is used to supervise the operation of the internal combustion engine, in particular the moment of fuel injection or initiation of combustion of the fuel / oxidant mixture via a spark plug.
  • a system typically comprises a ring gear, fixed to the main member, and a variable reluctance magnetic sensing head connected to a detection circuit.
  • the ring gear has several tens of evenly spaced teeth, except at a place where the gap between two successive teeth is different from the current pitch (for example twice the current pitch) and where the width of the tooth (or the hollow between two teeth) occupies the space of two normal successive teeth in the example chosen. This location serves as an angular position marker to determine the origin of the scale.
  • the detection head delivers an electrical signal that is processed by the detection circuit to output a binary signal.
  • the detection circuit typically comprises a Schmitt trigger, that is to say a circuit that switches an output from a first state to a second state when the voltage of the input signal exceeds a first threshold, and the second state. to the first state when the voltage of the input signal falls below a second threshold below the first threshold.
  • the difference between the first threshold and the second threshold constitutes a hysteresis.
  • the signal on the output is a square signal that oscillates between the two states, a high state and a low state.
  • the aim of the invention is to provide a diagnostic method for a variable reluctance magnetic sensing head, in order to more surely detect a break failure of a lead wire between the sensing head and a sensing circuit.
  • the subject of the invention is a diagnostic method for a variable reluctance magnetic detection head delivering an electrical signal, according to which a rising edge is compared with a first threshold to go from a first state to a first one. second state, and comparing a falling edge with a second threshold lower than the first threshold to change from the second state to the first state, the method being remarkable in that, in a diagnostic step, the first or second threshold is modified for approaching one another and diagnosing a defective magnetic detection head if the duty cycle of the second state is changed during the diagnostic step by a value greater than a predetermined diagnostic threshold with respect to a reference level .
  • the reference level is the duty cycle of the second state during a period preceding the diagnostic phase.
  • the diagnostic step is thus implemented just after a period which serves as a reference, thus leaving very little time between the reference and the diagnosis, and therefore very few possibilities for the conditions to evolve between these times.
  • the reference level is an average of the second state duty cycle for at least two periods preceding the second phase. diagnostic. Thus we are free from random variations or disturbances of the measure that can be felt over a particular period.
  • the diagnostic threshold is for example between 0.2 and 0.3. It can be seen that a variation of the duty ratio of this magnitude is sufficient to characterize the connection failure of a wire under all conditions.
  • the choice of the value of the diagnostic threshold is a compromise between a low value, which would indicate as default a variation of the duty cycle due to other causes, and a high value, which would not allow to signal a proven defect.
  • the detection phase is controlled once per period of at least one tower. This frequency is sufficient to handle the failures that would occur.
  • the invention also relates to a detection circuit to which a variable reluctance magnetic detection head is intended to be connected to deliver an electrical signal, the circuit comparing a rising edge of the electrical signal to a first threshold to pass from a first state to a second state, and a falling edge at a second threshold lower than the first threshold to transition from the second state to the first state, the detection circuit being remarkable in that it is configured to implement a diagnostic step in modifying the first or second threshold to bring them closer to one another and diagnosing a magnetic sensing head if the duty cycle of the second state is changed during the diagnostic step by a value greater than a diagnostic threshold predetermined with respect to a reference level.
  • FIG. 1 is a schematic view of a system comprising a detection circuit according to the invention
  • FIG. 2 is a timing diagram showing signals generated by a variable reluctance magnetic sensing head before and after a Schmitt trigger, in the case of a connected and disconnected sensing head;
  • FIG. 3 is also a timing diagram similar to Figure 2, when implementing a first embodiment of the invention.
  • FIG. 4 is a timing diagram similar to Figure 3, when implementing a second embodiment of the invention.
  • a system comprising a gear wheel 1 of an internal combustion engine, a magnetic sensor head 2 to variable reluctance and a detection circuit 3 to which the magnetic detection head 2 is connected.
  • the detection circuit 3 comprises an interface device 31 and a Schmitt flip-flop 32 which delivers an output signal OUT.
  • the detection circuit 3 also comprises a diagnostic circuit 33 which is connected as an input to the output signal OUT of the Schmitt trigger 32 and which delivers an error signal E.
  • the toothed wheel 1 conventionally comprises a series of teeth 10 regularly distributed around the periphery of the wheel 1.
  • the magnetic detection head 2 is opposite the periphery of the toothed wheel 1 and comprises two connection wires 21, 22 for
  • the interface device 31 also has two output terminals 313, 314 which are connected to two inputs IN-, IN + of the Schmitt trigger 32
  • the Schmitt trigger 32 also receives a command 330 from the diagnostic circuit 33, in order to control the high Th and low Tb thresholds of the Schmitt trigger 32, also called respectively the first threshold and the second threshold thereafter.
  • FIG. 1 shows a switch 4 on one of the connection wires 21 of the magnetic detection head 2 to the interface device 31.
  • This switch 4 symbolizes a fault on the connection wire 21 which results in a breaking the connection.
  • a capacitor 5 has also been shown to symbolize a parasitic capacitance which couples the magnetic detection head 2 and the input IN- of the Schmitt trigger 32.
  • the passage of the teeth 10 in front of the magnetic detection head 2 generates, in known manner, a periodic electrical signal Uin between the output terminals 313, 314 of the interface circuit 31 of substantially square shape.
  • the start of the period that is to say the moment at which the electrical signal Uin exceeds the average voltage Um, is taken as the time reference.
  • the Schmitt trigger 32 compares the electrical signal Uin at the first threshold Th in a rising direction and the second threshold Tb in a downward direction.
  • the Schmitt trigger 32 thus takes two states (see the signal OUT), and it goes from a first state B0 to a second state B1 when the electrical signal Uin exceeds a first threshold Th at time t1, and the second state B1 at the first state B0 when the electrical signal Uin passes below a second threshold Tb lower than the first threshold Th at time t2.
  • the signal OUT ' is simply shifted by the value t1' - t1, which is not detectable.
  • the duty ratio of the second state B1, defined by the duration of the second state B1 of the flip-flop divided by the duration of the period, is substantially 0.5, since the flip-flop is substantially as long in the first state B0 as in the second state. B1.
  • the diagnostic circuit 33 drives the second threshold Tb to bring it closer to the first threshold Th, as shown in FIG. Figure 3.
  • the difference between the two thresholds Th-Tb is for example reduced to 10% of the normal value which is observed outside the diagnostic phase.
  • the signal Uin has a substantially square shape, as shown on the left side of the diagram.
  • the duty cycle of the second state B1 is substantially 0.5 as previously indicated and serves as a reference level.
  • the diagnostic step n it is found that the first threshold Th is crossed at time t3, identical to t1, and the second threshold Tb is crossed at time t4, slightly earlier than time t2. .
  • the duty cycle of the second state B1 is slightly decreased to 0.4. This decrease of 0, 1 relative to the reference level is below a diagnostic threshold S equal to 0.2. The diagnosis concludes that there is no fault and the error signal E remains in the first state B0.
  • the electrical signal Uin ' has a shape substantially different from the square shape, with rising and falling. progressive descents of the signal, as shown on the right-hand part of the diagram of FIG. 3.
  • the duty cycle of the second state B1 is substantially 0.5 as previously stated and serves as a reference level.
  • the diagnostic step n on the right side of the diagram, it is found that the first Th threshold is crossed at time t3 ', later than the time t1', and that the second threshold Tb is crossed at the instant t4 ', earlier than the instant t2'.
  • the duty cycle of the second state B1 is greatly reduced to 0, 1. This decrease of 0.4 with respect to the reference level is greater than the diagnostic threshold S.
  • the diagnosis concludes that a fault exists and the signal of error E goes into the second state B1 to signal the fault.
  • it is the first threshold Th that is modified during the diagnostic step by the diagnostic circuit 33, so that the difference between the thresholds Th, Tb is reduced to 10% of the previous value.
  • the duty ratio of the second state B1 during the diagnostic step increases from 0.5 to 0.6, which is a variation from the reference level of 0.1. , below the diagnostic threshold S, when the switch 4 is closed, while it goes to 0.9 when the switch 4 is open, a variation of 0.4, greater than the diagnostic threshold S. In this case, embodiment, the diagnosis is also performed correctly.
  • the diagnostic step is implemented cyclically, for example once per revolution of the toothed wheel 1, or once every n turns, where n is an integer greater than or equal to two.
  • the reference level could be established in another way, for example by a standard value or an average over several previous measurements. If the diagnostic threshold S is selected at 0.3, the diagnosis is made in the same way. This diagnostic threshold could be modified more or less without departing from the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

Une tête de détection magnétique à réluctance variable délivre un signal électrique (Uin) et on compare un front montant du signal électrique à un premier seuil (Th) pour passer d'un premier état (BO) à un deuxième état (B1), et on compare un front descendant à un deuxième seuil (Tb) inférieur au premier seuil (Th) pour passer du deuxième état (B1) au premier état (B0). Dans une étape de diagnostic, on modifie le premier (Th) ou le deuxième seuil (Tb) pour les rapprocher l'un de l'autre et on diagnostique une tête de détection magnétique défectueuse si le rapport cyclique du deuxième état (B1) est modifié pendant l'étape de diagnostic d'une valeur supérieure à un seuil de diagnostic prédéterminé par rapport à un niveau de référence. Circuit mettant en œuvre le procédé.

Description

Procédé de diagnostic d'une tête de détection magnétique à réluctance variable et circuit de détection
L'invention concerne un procédé de diagnostic d'une tête de détection magnétique à réluctance variable, en particulier du type utilisé sur un moteur à combustion interne pour mesurer la position et la vitesse de rotation d'un organe principal du moteur. Elle a aussi pour objet un circuit mettant en œuvre le procédé.
Les moteurs, en particulier les moteurs thermiques à combustion interne, comportent fréquemment un système permettant de connaître la vitesse de rotation d'un organe principal dudit moteur à combustion interne, tel que le vilebrequin, et la position angulaire de cet organe. Ces informations sont utilisées pour superviser le fonctionnement du moteur à combustion interne, en particulier l'instant de l'injection de carburant ou d'initiation de la combustion du mélange carburant / comburant par l'intermédiaire d'une bougie d'allumage. Un tel système comporte typiquement une couronne dentée, fixée à l'organe principal, et une tête de détection magnétique à réluctance variable connectée à un circuit de détection. La couronne dentée comporte plusieurs dizaines de dents régulièrement espacées, sauf à un endroit où l'écart entre deux dents successives est différent du pas courant (par exemple le double du pas courant) et où la largeur de la dent (ou du creux entre deux dents) occupe l'espace de deux dents successives normales dans l'exemple choisi. Cet endroit sert de repère de position angulaire afin de déterminer l'origine de l'échelle.
La tête de détection délivre un signal électrique qui est traité par le circuit de détection pour délivrer un signal binaire. Le circuit de détection comporte typiquement une bascule de Schmitt, c'est-à-dire un circuit qui commute une sortie d'un premier état vers un deuxième état lorsque la tension du signal d'entrée dépasse un premier seuil, et du deuxième état vers le premier état lorsque la tension du signal d'entrée passe au-dessous d'un deuxième seuil inférieur au premier seuil. La différence entre le premier seuil et le deuxième seuil constitue une hystérésis. En fonctionnement, le signal sur la sortie est un signal carré qui oscille entre les deux états, un état haut et un état bas.
L'objectif de fiabilisation des moteurs à combustion interne a amené à prévoir une surveillance des capteurs afin de diagnostiquer d'éventuelles pannes de ces derniers. L'une des pannes possibles sur le système de détection est la rupture de l'un des fils de connexion entre la tête de détection et le circuit de détection. Cette panne est difficile à diagnostiquer. En effet, comme illustré sur la figure 2, la rupture d'un fil ne se traduit pas par la perte du signal électrique Uin', mais par un affaiblissement et une déformation de celui-ci par rapport au signal correct Uin. Son affaiblissement est particulièrement sensible à basse vitesse, auquel cas le premier seuil n'est plus franchi par le signal, de telle sorte que le signal de sortie reste dans le premier état. Les effets de la panne se font sentir et il est alors possible de diagnostiquer l'absence du signal de sortie.
Mais, avec des vitesses plus importantes, on obtient un signal plus important du fait des capacités parasites sur le circuit. Le premier seuil est alors franchi et la sortie délivre un signal carré, similaire au signal normal, hormis un décalage temporel. Ce décalage est cependant indétectable par le système. Le diagnostic n'est alors plus possible, malgré la présence de la panne.
L'invention vise à fournir un procédé de diagnostic pour une tête de détection magnétique à réluctance variable, afin de détecter plus sûrement une panne de rupture d'un fil de connexion entre la tête de détection et un circuit de détection.
Avec ces objectifs en vue, l'invention a pour objet un procédé de diagnostic pour une tête de détection magnétique à réluctance variable délivrant un signal électrique, selon lequel on compare un front montant à un premier seuil pour passer d'un premier état à un deuxième état, et on compare un front descendant à un deuxième seuil inférieur au premier seuil pour passer du deuxième état au premier état, le procédé étant remarquable en ce que, dans une étape de diagnostic, on modifie le premier ou le deuxième seuil pour les rapprocher l'un de l'autre et on diagnostique une tête de détection magnétique défectueuse si le rapport cyclique du deuxième état est modifié pendant l'étape de diagnostic d'une valeur supérieure à un seuil de diagnostic prédéterminé par rapport à un niveau de référence.
On constate que la modification de l'hystérésis a une conséquence sensible sur le rapport cyclique du signal de sortie lorsque l'un des fils de connexion entre la tête de détection et le circuit est déconnecté, tandis que cette modification n'a presque aucun effet lorsqu'aucun fil n'est déconnecté. On dispose ainsi d'un moyen efficace de détecter une déconnexion, et donc de détecter ce type de panne au plus tôt, avant même qu'elle n'ait eu des conséquences sur le fonctionnement du moteur à combustion interne. On détermine d'abord un rapport cyclique de référence, comme détaillé ci-après, et on ajoute ou on retranche le seuil de diagnostic prédéterminé à ce rapport de référence. On vérifie si le rapport cyclique mesuré est au-delà ou en deçà de cette valeur calculée.
Selon un choix particulier, le niveau de référence est le rapport cyclique du deuxième état pendant une période précédant la phase de diagnostic. L'étape de diagnostic est ainsi mise en œuvre juste après une période qui sert de référence, laissant ainsi très peu de temps s'écouler entre la référence et le diagnostic, et donc très peu de possibilités pour que les conditions évoluent entre ces instants.
Selon un autre choix, le niveau de référence est une moyenne du rapport cyclique du deuxième état pendant au moins deux périodes précédant la phase de diagnostic. Ainsi on s'affranchit de variations aléatoires ou de perturbations de la mesure qui peuvent se faire sentir sur une période particulière.
Le seuil de diagnostic est par exemple compris entre 0,2 et 0,3. On constate qu'une variation du rapport cyclique de cette ampleur est suffisante pour caractériser le défaut de connexion d'un fil dans toutes les conditions. Le choix de la valeur du seuil de diagnostic est un compromis entre une valeur faible, qui signalerait comme défaut une variation du rapport cyclique due à d'autres causes, et une valeur haute, qui ne permettrait pas de signaler un défaut avéré.
Dans le cas d'une tête de détection magnétique d'un système pour un moteur à combustion interne équipé d'une roue dentée en regard de laquelle la tête est placée, la phase de détection est pilotée une fois par période d'au moins un tour. Cette fréquence est suffisante pour gérer les pannes qui surviendraient.
L'invention a aussi pour objet un circuit de détection auquel une tête de détection magnétique à réluctance variable est destinée à être connectée pour lui délivrer un signal électrique, le circuit comparant un front montant du signal électrique à un premier seuil pour passer d'un premier état à un deuxième état, et un front descendant à un deuxième seuil inférieur au premier seuil pour passer du deuxième état au premier état, le circuit de détection étant remarquable en ce qu'il est configuré pour mettre en œuvre une étape de diagnostic en modifiant le premier ou le deuxième seuil pour les rapprocher l'un de l'autre et en diagnostiquant une tête de détection magnétique si le rapport cyclique du deuxième état est modifié pendant l'étape de diagnostic d'une valeur supérieure à un seuil de diagnostic prédéterminé par rapport à un niveau de référence.
L'invention sera mieux comprise et d'autres particularités et avantages apparaîtront à la lecture de la description qui va suivre, la description faisant référence aux dessins annexés parmi lesquels :
- la figure 1 est une vue schématique d'un système comportant un circuit de détection conforme à l'invention ;
- la figure 2 est un diagramme temporel montrant des signaux générés par une tête de détection magnétique à réluctance variable avant et après une bascule de Schmitt, dans les cas d'une tête de détection connectée et déconnectée ;
- la figure 3 est également un diagramme temporel similaire à la figure 2, lors de la mise en œuvre d'un premier mode de réalisation de l'invention ;
- la figure 4 est un diagramme temporel similaire à la figure 3, lors de la mise en œuvre d'un deuxième mode de réalisation de l'invention.
En se référant à la figure 1 , on a représenté un système comportant une roue dentée 1 d'un moteur à combustion interne, une tête de détection magnétique 2 à réluctance variable et un circuit de détection 3 auquel la tête de détection magnétique 2 est connectée. Le circuit de détection 3 comporte un dispositif d'interface 31 et une bascule de Schmitt 32 qui délivre un signal de sortie OUT. Le circuit de détection 3 comporte également un circuit de diagnostic 33 qui est connecté en entrée au signal de sortie OUT de la bascule de Schmitt 32 et qui délivre un signal d'erreur E.
La roue dentée 1 comporte de manière classique une série de dents 10 régulièrement réparties à la périphérie de la roue 1. La tête de détection magnétique 2 est en regard de la périphérie de la roue dentée 1 et comporte deux fils de connexion 21 , 22 pour être connectée au dispositif d'interface 31 à deux bornes d'entrée 31 1 , 312. Le dispositif d'interface 31 comporte également deux bornes de sorties 313, 314 qui sont reliées à deux entrées IN-, IN+ de la bascule de Schmitt 32. La bascule de Schmitt 32 reçoit également une commande 330 du circuit de diagnostic 33, afin de piloter des seuils haut Th et bas Tb de la bascule de Schmitt 32, appelés également respectivement premier seuil et deuxième seuil par la suite.
On a représenté sur la figure 1 un interrupteur 4 sur l'un des fils de connexion 21 de la tête de détection magnétique 2 au dispositif d'interface 31. Cet interrupteur 4 symbolise un défaut sur le fil de connexion 21 qui se traduit par une rupture de la connexion. Un condensateur 5 a également été représenté pour symboliser une capacité parasite qui réalise un couplage entre la tête de détection magnétique 2 et l'entrée IN- de la bascule de Schmitt 32.
En se référant à la figure 2, le fonctionnement courant du système de la figure 1 , c'est-à-dire avec l'interrupteur 4 fermé, est décrit. Le passage des dents 10 devant la tête de détection magnétique 2 génère, de manière connue, un signal électrique Uin périodique entre les bornes de sortie 313, 314 du circuit d'interface 31 de forme sensiblement carrée. On prend comme référence de temps le début de la période, c'est-à-dire l'instant auquel le signal électrique Uin dépasse la tension moyenne Um. La bascule de Schmitt 32 compare le signal électrique Uin au premier seuil Th dans un sens montant et au deuxième seuil Tb dans un sens descendant. La bascule de Schmitt 32 prend donc deux états (cf. le signal OUT), et elle passe d'un premier état B0 à un deuxième état B1 lorsque le signal électrique Uin dépasse un premier seuil Th à l'instant t1 , et du deuxième état B1 au premier état B0 lorsque le signal électrique Uin passe au-dessous d'un deuxième seuil Tb inférieur au premier seuil Th à l'instant t2.
En cas de défaut de connexion, lorsque l'interrupteur 4 est ouvert, on observe un signal électrique Uin' qui n'a plus la forme carrée, mais qui reste périodique, comme représenté en traits pointillés sur la figure 2. Le basculement de la bascule de Schmitt 32 entre le premier état B0 et le deuxième état B1 a lieu à l'instant t1 ', plus tardif que l'instant t1 , et le basculement de la bascule entre le deuxième état B1 et le premier état BO a lieu à l'instant t2', également plus tardif que l'instant t2. La durée de la période, et les durées t2 - t1 et t2' - tT du passage au deuxième état B1 sont sensiblement identiques dans les deux cas. Le signal OUT' est simplement décalé de la valeur t1 ' - t1 , ce qui n'est pas détectable. Le rapport cyclique du deuxième état B1 , défini par la durée du deuxième état B1 de la bascule divisé par la durée de la période, vaut sensiblement 0,5, puisque la bascule est sensiblement aussi longtemps dans le premier état B0 que dans le deuxième état B1.
Dans une étape de diagnostic selon un premier mode de réalisation, mise en œuvre de manière cyclique en étant précédée d'une étape de référence, le circuit de diagnostic 33 pilote le deuxième seuil Tb pour le rapprocher du premier seuil Th, comme le montre la figure 3. La différence entre les deux seuils Th-Tb est par exemple réduite à 10% de la valeur normale qui est observée en dehors de la phase de diagnostic. Dans le cas où la tête de détection magnétique 2 est en bon état, c'est-à-dire que l'interrupteur 4 est fermé, le signal Uin a une forme sensiblement carrée, comme montré sur la partie gauche du diagramme. Lors de l'étape de référence n-1 , tout à gauche du diagramme de la figure 3, le rapport cyclique du deuxième état B1 est sensiblement de 0,5 comme indiqué précédemment et sert de niveau de référence. Lors de l'étape de diagnostic n, on constate que le premier seuil Th est franchi à l'instant t3, identique à t1 , et que le deuxième seuil Tb est franchi à l'instant t4, légèrement plus précoce que l'instant t2. Le rapport cyclique du deuxième état B1 est légèrement diminué à 0,4. Cette diminution de 0, 1 par rapport au niveau de référence est inférieure à un seuil de diagnostic S valant 0,2. Le diagnostic conclut à une absence de panne et le signal d'erreur E reste dans le premier état B0.
Par contre, dans le cas où la tête de détection magnétique 2 est déconnectée, c'est-à-dire que l'interrupteur 4 est ouvert, le signal électrique Uin' a une forme sensiblement différente de la forme carrée, avec des montées et des descentes du signal progressives, comme montré sur la partie droite du diagramme de la figure 3. Lors de l'étape de référence n-1 , sur la partie gauche du diagramme, le rapport cyclique du deuxième état B1 est sensiblement de 0,5 comme indiqué précédemment et sert de niveau de référence. Lors de l'étape de diagnostic n, sur la partie droite du diagramme, on constate que le premier seuil Th est franchi à l'instant t3', plus tardif que l'instant t1 ', et que le deuxième seuil Tb est franchi à l'instant t4', plus précoce que l'instant t2'. Le rapport cyclique du deuxième état B1 est fortement diminué à 0, 1. Cette diminution de 0,4 par rapport au niveau de référence est supérieure au seuil de diagnostic S. Le diagnostic conclut à la présence d'une panne et le signal d'erreur E passe dans le deuxième état B1 pour signaler le défaut. Dans un deuxième mode de réalisation, montré sur la figure 4, c'est le premier seuil Th qui est modifié pendant l'étape de diagnostic par le circuit de diagnostic 33, pour que l'écart entre les seuils Th, Tb soit réduit à 10% de la valeur précédente. Par un raisonnement similaire à celui du premier mode de réalisation, on constate que le rapport cyclique du deuxième état B1 pendant l'étape de diagnostic passe de 0,5 à 0,6 soit une variation par rapport au niveau de référence de 0, 1 , inférieure au seuil de diagnostic S, lorsque l'interrupteur 4 est fermé, tandis qu'il passe à 0,9 lorsque l'interrupteur 4 est ouvert, soit une variation de 0,4 , supérieure au seuil de diagnostic S. Dans ce mode de réalisation, le diagnostic est également réalisé correctement.
L'étape de diagnostic est mise en œuvre de manière cyclique, par exemple une fois par tour de la roue dentée 1 , ou une fois tous les n tours, n étant un entier supérieur ou égal à deux. Le niveau de référence pourrait être établi d'une autre façon, par exemple par une valeur forfaitaire ou par une moyenne sur plusieurs mesures précédentes. Si on choisit le seuil de diagnostic S à 0,3, le diagnostic est réalisé de la même manière. On pourrait modifier ce seuil de diagnostic en plus ou en moins sans s'écarter de l'invention.

Claims

REVENDICATIONS
1. Procédé de diagnostic pour une tête de détection magnétique (2) à réluctance variable délivrant un signal électrique (Uin), selon lequel on compare un front montant à un premier seuil (Th) pour passer d'un premier état (B0) à un deuxième état (B1 ), et on compare un front descendant à un deuxième seuil (Tb) inférieur au premier seuil (Th) pour passer du deuxième état (B1 ) au premier état (B0), caractérisé en ce que, dans une étape de diagnostic, on modifie le premier (Th) ou le deuxième seuil (Tb) pour les rapprocher l'un de l'autre et on diagnostique une tête de détection magnétique (2) défectueuse si le rapport cyclique du deuxième état (B1 ) est modifié pendant l'étape de diagnostic d'une valeur supérieure à un seuil de diagnostic (S) prédéterminé par rapport à un niveau de référence.
2. Procédé selon la revendication 1 , selon lequel le niveau de référence est le rapport cyclique du deuxième état (B1 ) pendant une période (n-1 ) précédant la phase de diagnostic (n).
3. Procédé selon la revendication 1 , selon lequel le niveau de référence est une moyenne du rapport cyclique du deuxième état (B1 ) pendant au moins deux périodes précédant la phase de diagnostic (n).
4. Procédé selon la revendication 1 , selon lequel le seuil de diagnostic (S) est compris entre 0,2 et 0,3.
5. Procédé selon la revendication 1 , pour une tête de détection magnétique (2) d'un système pour un moteur à combustion interne équipé d'une roue dentée (1 ) en regard de laquelle la tête est placée, selon lequel la phase de diagnostic (n) est pilotée une fois par période d'au moins un tour.
6. Circuit de détection (3) auquel une tête de détection magnétique (2) à réluctance variable est destinée à être connectée pour générer un signal électrique (Uin), le circuit comparant un front montant du signal électrique (Uin) à un premier seuil (Th) pour passer d'un premier état (B0) à un deuxième état (B1 ), et un front descendant à un deuxième seuil (Tb) inférieur au premier seuil (Th) pour passer du deuxième état (B1 ) au premier état (B0), caractérisé en ce qu'il est configuré pour mettre en œuvre une étape de diagnostic (n) en modifiant le premier ou le deuxième seuil (Th, Tb) pour les rapprocher l'un de l'autre et en diagnostiquant une tête de détection (2) défectueuse si le rapport cyclique du deuxième état (B1 ) est modifié pendant l'étape de diagnostic (n) d'une valeur supérieure à un seuil de diagnostic (S) prédéterminé par rapport à un niveau de référence.
PCT/EP2012/004671 2011-11-14 2012-11-09 Procede de diagnostic d'une tete de detection magnetique a reluctance variable et circuit de detection WO2013072030A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280055783.2A CN104040151B (zh) 2011-11-14 2012-11-09 可变磁阻磁探测头的诊断方法和探测电路
IN3309DEN2014 IN2014DN03309A (fr) 2011-11-14 2012-11-09
US14/357,675 US9217786B2 (en) 2011-11-14 2012-11-09 Method for diagnosing a variable reluctance magnetic detection head, and detection circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1103448A FR2982675B1 (fr) 2011-11-14 2011-11-14 Procede de diagnostic d'une tete de detection magnetique a reluctance variable et circuit de detection
FR1103448 2011-11-14

Publications (1)

Publication Number Publication Date
WO2013072030A1 true WO2013072030A1 (fr) 2013-05-23

Family

ID=47189880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/004671 WO2013072030A1 (fr) 2011-11-14 2012-11-09 Procede de diagnostic d'une tete de detection magnetique a reluctance variable et circuit de detection

Country Status (5)

Country Link
US (1) US9217786B2 (fr)
CN (1) CN104040151B (fr)
FR (1) FR2982675B1 (fr)
IN (1) IN2014DN03309A (fr)
WO (1) WO2013072030A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111551814A (zh) * 2020-06-11 2020-08-18 中国人民解放军军事科学院国防工程研究院工程防护研究所 一种变上升沿宽脉冲电场环境下监控系统电磁环境效应试验方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE539262C2 (en) * 2015-10-16 2017-06-07 Scania Cv Ab Method and system for diagnosing a crankshaft rotational position sensor unit of a crankshaft
CN106382165B (zh) * 2016-11-25 2019-08-30 北京理工大学 一种柴油机的在线故障检测方法和系统
US11031948B1 (en) * 2020-09-28 2021-06-08 Baker Hughes Oilfield Operations Llc Diagnostic system
DE102021202655B3 (de) * 2021-03-18 2022-07-21 Vitesco Technologies GmbH Verfahren und Vorrichtung zur Diagnose einer Brennkraftmaschine eines Antriebsstrangs

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19741780A1 (de) * 1997-09-22 1999-03-25 Siemens Ag Verfahren zur Erkennung von Leitungsbrüchen bei einem induktiven Sensor
WO2011078130A1 (fr) * 2009-12-24 2011-06-30 トヨタ自動車 株式会社 Dispositif de détermination d'anomalie pour capteur de rotation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892133A (en) * 1973-09-13 1975-07-01 Us Transport Statistical sound level analyzer
US6909277B2 (en) * 2002-03-13 2005-06-21 Caterpillar Inc Amplification circuit for increasing variable reluctance sensor output
US6674279B2 (en) * 2002-05-09 2004-01-06 Delphi Technologies, Inc. Variable attenuation circuit for a differential variable reluctance sensor with enhanced initial threshold accuracy
CN101158699A (zh) * 2006-10-02 2008-04-09 唐嫦娥 一种机车有源速度传感器信号过滤装置及信号过滤方法
DE102007046942A1 (de) * 2007-09-28 2009-04-16 Continental Automotive Gmbh Impulsgeber für eine Vorrichtung, insbesondere für einen Tachopraphen, und Verfahren zum Betreiben des Impulsgebers
DE102008024177B3 (de) * 2008-05-19 2009-09-03 Continental Automotive Gmbh Verfahren, Vorrichtung und System zur Diagnose eines NOx-Sensors für eine Brennkraftmaschine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19741780A1 (de) * 1997-09-22 1999-03-25 Siemens Ag Verfahren zur Erkennung von Leitungsbrüchen bei einem induktiven Sensor
WO2011078130A1 (fr) * 2009-12-24 2011-06-30 トヨタ自動車 株式会社 Dispositif de détermination d'anomalie pour capteur de rotation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111551814A (zh) * 2020-06-11 2020-08-18 中国人民解放军军事科学院国防工程研究院工程防护研究所 一种变上升沿宽脉冲电场环境下监控系统电磁环境效应试验方法

Also Published As

Publication number Publication date
US9217786B2 (en) 2015-12-22
FR2982675A1 (fr) 2013-05-17
CN104040151A (zh) 2014-09-10
FR2982675B1 (fr) 2014-01-17
CN104040151B (zh) 2017-07-18
IN2014DN03309A (fr) 2015-06-26
US20140320116A1 (en) 2014-10-30

Similar Documents

Publication Publication Date Title
WO2013072030A1 (fr) Procede de diagnostic d'une tete de detection magnetique a reluctance variable et circuit de detection
FR2749428A1 (fr) Procede pour la transmission simultanee de donnees
FR2978833A1 (fr) Procede de calibration automatique d'un capteur d'arbre a cames pour vehicule automobile
FR2961905A1 (fr) Procede et dispositif de gestion d'un capteur de particules
FR2666378A1 (fr) Procede de detection des rates d'un moteur a combustion interne.
FR2975499A1 (fr) Procede et unite de commande pour surveiller les defauts de cable d'une sonde lambda a bande large
EP2507641B1 (fr) Procede de detection de panne d'un capteur frequentiel et circuit pour la mise en oeuvre de ce procede
WO2017088968A1 (fr) Procede de calibration automatique d'un capteur d'arbre a cames pour moteur de vehicule automobile
WO2016082933A1 (fr) Capteur d'arbre a came ou de vilebrequin pour vehicule automobile et procede de diagnostic d'un tel capteur
FR2973883A1 (fr) Procede et systeme de detection d'un court-circuit affectant un capteur
FR3021739A1 (fr) Procede d'adaptation d'un seuil de detection d'un capteur de vilebrequin pour vehicule automobile
FR3041426A1 (fr) Procede de calibration automatique d'un capteur d'arbre a cames pour moteur de vehicule automobile
FR3084154A1 (fr) Determination de la position angulaire d'une cible dentee solidaire en rotation d'un arbre d'un moteur a combustion interne
EP2165094A1 (fr) Capteur de position d'une boîte de vitesses
FR2985034A1 (fr) Procede d'adaptation d'un seuil de detection d'un capteur d'arbre a cames pour un vehicule automobile
US10551275B2 (en) Cam angle sensor fault diagnosis apparatus for straddled vehicle, engine system, and straddled vehicle
FR3072166A1 (fr) Capteur de vilebrequin, de transmission ou d’arbre a cames, systeme et procede de diagnostic mettant en œuvre un tel capteur
EP2230528B1 (fr) Procédé de test intégré d'une ligne.
EP0589799B1 (fr) Capteur incrémental à signalisation de défaillance
WO2019063594A1 (fr) Capteur de vilebrequin, de transmission ou d'arbre à cames, système et procédé de diagnostic mettant en œuvre un tel capteur
FR3010554A1 (fr) Procede de detection et de prevention de panne de composant de vehicule automobile
FR2818737A1 (fr) Procede de detection d'une singularite notamment d'un repere de reference d'un disque phonique associe a l'arbre d'un moteur a combustion interne
FR3002643A1 (fr) Procede de recherche de variation electrique d'un capteur capacitif de vehicule automobile
FR3069636A1 (fr) Procede et dispositif de detection d'une inversion d'un capteur vilebrequin
FR2899643A1 (fr) Procede d'adaptation et dispositif d'adaptation d'un dispositif d'injection d'un moteur a combustion interne

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12787375

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14357675

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12787375

Country of ref document: EP

Kind code of ref document: A1