[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013065706A1 - Sealed rotary compressor and refrigeration cycle device - Google Patents

Sealed rotary compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2013065706A1
WO2013065706A1 PCT/JP2012/078100 JP2012078100W WO2013065706A1 WO 2013065706 A1 WO2013065706 A1 WO 2013065706A1 JP 2012078100 W JP2012078100 W JP 2012078100W WO 2013065706 A1 WO2013065706 A1 WO 2013065706A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
cylinder
muffler
sealed case
rotary compressor
Prior art date
Application number
PCT/JP2012/078100
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 久尊
明 森嶋
健 富永
大志 長畑
平山 卓也
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to CN201280052229.9A priority Critical patent/CN103906928B/en
Priority to JP2013541798A priority patent/JP5786030B2/en
Publication of WO2013065706A1 publication Critical patent/WO2013065706A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/065Noise dampening volumes, e.g. muffler chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/106Stators; Members defining the outer boundaries of the working chamber with a radial surface, e.g. cam rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Definitions

  • Embodiments of the present invention relate to a hermetic rotary compressor having one or two cylinders, and a refrigeration cycle apparatus that includes this hermetic rotary compressor and constitutes a refrigeration cycle.
  • a hermetic rotary compressor having one or two cylinders accommodates a compression mechanism part in the lower part of the hermetic case, and accommodates an electric motor part connected to the compression mechanism part via a rotating shaft at the upper part of the compression mechanism part. Do it.
  • the gas refrigerant is compressed in the cylinder chamber to increase the pressure.
  • the high-pressure gas refrigerant is discharged to the first muffler via the first discharge valve mechanism provided in the main bearing and then discharged into the sealed case.
  • the high-pressure gas refrigerant is temporarily discharged from the cylinder chamber to the second muffler via a second discharge valve mechanism provided in the sub bearing.
  • the second muffler communicates with the first muffler via a communication path provided in the sub-bearing, the cylinder and the main bearing, the gas refrigerant is mixed in the first muffler and then placed in the sealed case. Released.
  • the opening area of the discharge part in the hermetic case which is the opening in the first muffler, is made as small as possible to obtain a silencing effect.
  • the total cross-sectional area of the communication path is formed as large as possible so that the gas refrigerant can be guided smoothly.
  • the gas refrigerant discharged from the discharge part in the sealed case of the first muffler provided in the main bearing is discharged into the sealed case without increasing the noise and without increasing the passage resistance.
  • a hermetic rotary compressor in which a compression mechanism portion is housed in a lower portion in a hermetically sealed case, an electric motor portion is housed in an upper portion, and the motor portion is connected to the compression mechanism portion via a rotating shaft.
  • the compression mechanism section includes one cylinder or two cylinders having an inner diameter portion as a cylinder chamber, a main bearing and a sub-bearing that pivotally support the rotating shaft, and a main bearing and a sub-bearing, respectively.
  • a first discharge valve mechanism and a second discharge valve mechanism that are provided and discharge and guide the high-pressure gas compressed in the cylinder chamber, and cover the first discharge valve mechanism and receive the high-pressure gas once compressed in the cylinder chamber Then, the first muffler discharged into the sealed case through the discharge part in the sealed case and the second discharge valve mechanism are covered, and the gas refrigerant once compressed in the cylinder chamber is received and silenced.
  • Do 2 mufflers and a communication passage provided from the sub bearing to the main bearing for guiding the gas refrigerant in the second muffler and joining the gas refrigerant in the first muffler.
  • the electric motor part Comprises a stator that is inserted into a sealed case, and a rotor that is fitted to a rotating shaft and has an outer peripheral wall provided with a narrow gap from the inner peripheral wall of the stator.
  • A is the dimension from the upper end surface to the one end surface of the sealed case and B is the distance from the lower end surface of the stator core to the end surface of the member that fixes the compression mechanism to the sealed case. It is set to satisfy the formula. 0.5 ⁇ B / A ⁇ 1 (1)
  • the refrigeration cycle apparatus of the present embodiment configures a refrigeration cycle by communicating the hermetic rotary compressor, the condenser, the expansion device, and the evaporator via a refrigerant pipe.
  • FIG. 1 is a longitudinal sectional view and a refrigeration cycle configuration diagram of a two-cylinder hermetic rotary compressor according to a first embodiment.
  • FIG. 2 is a longitudinal sectional view and a refrigeration cycle configuration diagram of the one-cylinder hermetic rotary compressor according to the embodiment.
  • FIG. 3 is a plan view of the main bearing according to the embodiment.
  • FIG. 4 is a plan view of the cylinder according to the embodiment.
  • FIG. 5 is a diagram illustrating the magnitude of noise under different conditions according to the embodiment.
  • FIG. 6 is a change diagram of the pressure loss when the ratio of the excluded volume V2 of the cylinder chamber and the total area S2 of the discharge part in the sealed case in the first muffler is changed according to the embodiment.
  • FIG. 1 is a longitudinal sectional view and a refrigeration cycle configuration diagram of a two-cylinder hermetic rotary compressor according to a first embodiment.
  • FIG. 2 is a longitudinal sectional view and a refrigeration cycle configuration diagram of the one-cylinder hermetic
  • FIG. 7A is a plan view of a cylinder showing a discharge notch according to the second embodiment.
  • FIG. 7B is a longitudinal sectional view of a cylinder showing a discharge notch according to the embodiment.
  • FIG. 8 is a partial perspective view of a cylinder showing a discharge notch according to the embodiment.
  • FIG. 9 is a longitudinal sectional view of a cylinder showing a discharge notch according to the third embodiment.
  • FIG. 10 is a partial perspective view of a cylinder showing a discharge notch according to the embodiment.
  • FIG. 11 is a plan view showing the first muffler according to the first embodiment.
  • FIG. 12 is a plan view showing a first muffler according to the fourth embodiment.
  • FIG. 13 is a plan view showing a first muffler according to the fifth embodiment.
  • FIG. 1 is a longitudinal sectional view and a refrigeration cycle configuration diagram of a hermetic rotary compressor 1 and an accumulator 5 used in the refrigeration cycle apparatus R.
  • the hermetic rotary compressor 1 is hereinafter referred to as a compressor 1.
  • a refrigerant pipe P is connected to the upper end portion of the compressor 1.
  • a condenser 2 In the refrigerant pipe P, a condenser 2, an expansion valve (expansion device) 3, an evaporator 4 and an accumulator 5 are sequentially provided.
  • the refrigerant pipe P branches from the accumulator 5 into two refrigerant pipes Pa and Pb, and is connected to the side portion of the compressor 1.
  • These constitute a refrigeration cycle apparatus R such as an air conditioner.
  • the compressor 1 includes a sealed case 10.
  • the electric motor part 11 is accommodated in the upper part inside the sealed case 10 and the compression mechanism part 12 is accommodated in the lower part.
  • the electric motor unit 11 and the compression mechanism unit 12 are integrally connected via a rotating shaft 13.
  • An oil reservoir 14 for collecting lubricating oil is formed at the inner bottom of the sealed case 10. Almost most of the compression mechanism 12 disposed on the lower side is immersed in the lubricating oil.
  • the electric motor unit 11 includes a rotor (rotor) 15 fitted and fixed to the rotary shaft 13 and a stator (stator) 16.
  • the stator 16 is opposed to the inner peripheral wall of the outer peripheral wall of the rotor 15 with a narrow gap, and the outer peripheral wall is fitted and fixed to the inner peripheral wall of the sealed case 10.
  • the compression mechanism section 12 is of a two-cylinder type.
  • the first cylinder 17A has an inner diameter portion along the central axis.
  • the first cylinder 17 ⁇ / b> A has an outer peripheral wall inserted into the inner peripheral wall of the sealed case 10, and is attached and fixed by means such as partial welding.
  • the main bearing 18 is placed on the upper surface portion of the first cylinder 17A. The main bearing 18 closes the upper surface side of the inner diameter portion of the first cylinder 17A.
  • the first muffler 19 is mounted on the main bearing 18.
  • the main bearing 18 and the first muffler 19 are attached and fixed to the first cylinder 17A via an attachment.
  • an intermediate partition plate 20, a second cylinder 17B, a sub bearing 21 and a second muffler 22 are attached and fixed to the first cylinder 17A via attachments. .
  • the intermediate partition plate 20 closes the lower surface side of the inner diameter portion of the first cylinder 17A.
  • the inner diameter portion of the first cylinder 17A closed by the intermediate partition plate 20 and the main bearing 18 is referred to as a first cylinder chamber D1.
  • the second cylinder 17B has an inner diameter part having the same size and shape as the inner diameter part of the first cylinder 17A, and the upper surface side of the inner diameter part is closed by the intermediate partition plate 20.
  • the sub bearing 21 closes the lower surface side of the inner diameter portion of the second cylinder 17B.
  • the inner diameter portion of the second cylinder 17B closed by the intermediate partition plate 20 and the auxiliary bearing 21 is referred to as a second cylinder chamber D2.
  • the rotating shaft 13 protrudes downward from the lower end surface of the rotor 15 constituting the electric motor unit 11.
  • the rotary shaft 13 passes through the main bearing 18, the first cylinder chamber D 1, the intermediate partition plate 20, the second cylinder chamber D 2, and the auxiliary bearing 21 that constitute the compression mechanism portion 12.
  • the upper part of the rotating shaft 13 protruding from the first cylinder chamber D1 is pivotally supported by the main bearing 18, and the lower part of the rotating shaft 13 protruding from the second cylinder chamber D2 rotates to the auxiliary bearing 21. It is supported freely.
  • the rotating shaft 13 is integrally provided with a first eccentric portion 13a and a second eccentric portion 13b formed with a phase difference of about 180 ° in the first cylinder chamber D1 and the second cylinder chamber D2. Yes.
  • the eccentric parts 13a and 13b have the same diameter, and their central axes are eccentric by a predetermined amount.
  • the first roller 23a is fitted to the circumferential surface of the first eccentric portion 13a
  • the second roller 23b is fitted to the circumferential surface of the second eccentric portion 13b.
  • the first blade back chamber communicates with the first cylinder chamber D1 of the first cylinder 17A through the blade groove.
  • the blade groove is not shown here. same as below.
  • a first blade is movably accommodated in the blade groove.
  • a second blade back chamber communicates with the second cylinder chamber D2 of the second cylinder 17B via a blade groove.
  • a second blade is movably accommodated in the blade groove.
  • the tip portions of the first and second blades are formed in a substantially arc shape in plan view and can protrude into the opposing cylinder chambers D1 and D2. In this state, the tip of the blade makes line contact with the peripheral walls of the first and second rollers 23a and 23b that are circular in plan view regardless of the rotation angle.
  • a spring member for applying an elastic force acting as a back pressure on the first blade is accommodated between the rear end portion of the first blade and the peripheral wall of the first blade back chamber.
  • a spring member for applying an elastic force acting as a back pressure on the second blade is accommodated between the second blade rear end portion and the second blade back chamber peripheral wall.
  • a first discharge notch described later is provided in the vicinity of one side of the blade groove.
  • the first discharge notch will be described with reference to FIGS.
  • the 1st suction hole is provided in the site
  • the first suction hole is provided so as to penetrate from the part of the outer peripheral surface of the first cylinder 17 ⁇ / b> A to the first cylinder chamber D ⁇ b> 1 and protrudes from the lower end surface of the accumulator 5. Is connected through the sealed case 10.
  • a second discharge notch is provided near one side of the blade groove.
  • the 2nd suction hole is provided in the site
  • the second suction hole is provided so as to penetrate from the part of the outer peripheral surface of the second cylinder 17B to the second cylinder chamber D2, and the other refrigerant pipe Pb protruding from the lower end surface of the accumulator 5 is provided. Is connected through the sealed case 10.
  • a first discharge hole 25a is provided in a portion of the main bearing 18 facing the first discharge notch.
  • the first discharge hole 25a is opened and closed by a first discharge valve mechanism 26a attached to the main bearing 18. That is, the first discharge valve mechanism 26a is only in the first discharge hole 25a only when a pressure equal to or higher than a predetermined pressure is applied to the first discharge valve mechanism 26a from the first discharge notch and the first discharge hole 25a. Is opened and the others are closed.
  • the first discharge valve mechanism 26 a is covered with a first muffler 19 attached to the main bearing 18.
  • the first muffler 19 includes a sealed case discharge portion 28 that opens into the sealed case 10.
  • FIG. 11 is a plan view showing the first muffler 19. As shown in FIG. 11, the in-sealed case discharge portion 28 may be opened at a part of the peripheral surface of the first muffler 19.
  • the planar shape of the discharge part 28 in the sealed case is a round hole as an example.
  • a second discharge hole 25b is provided at a portion facing the second discharge notch.
  • the second discharge hole 25b is opened and closed by a second discharge valve mechanism 26b provided in the auxiliary bearing 21.
  • the second discharge valve mechanism 26b is connected to the second discharge hole 25b only when a pressure equal to or higher than a predetermined pressure is applied to the second discharge valve mechanism 26b from the second discharge notch and the second discharge hole 25b. Is opened and the others are closed.
  • the second discharge valve mechanism 26 b is covered with the second muffler 22 attached to the sub bearing 21.
  • the second muffler 22 does not include the discharge part 28 in the sealed case that opens into the sealed case 10 like the first muffler 19 and has a sealed structure. However, the second muffler 22 opens with respect to the communication path 30 described later.
  • the communication passage 30 has a large width for easy viewing.
  • the communication passage 30 has a hole shape provided from the flange portion of the auxiliary bearing 21 to the second cylinder 17B, the intermediate partition plate 20, the flange portions of the first cylinder 17A and the main bearing 18.
  • the one end part of the communication path 30 opens in the flange part of the sub bearing 21, so that the communication path 30 communicates with the inside of the second muffler 22. Further, the other end portion of the communication passage 30 opens in the flange portion of the main bearing 18, so that the communication passage 30 communicates with the inside of the first muffler 19.
  • the first and second blades receive the back pressure of the spring member, and the tip portions protrude into the cylinder chambers D1 and D2 and retract and immerse.
  • the leading edges of the first and second blades are always in contact with the outer peripheral surfaces of the first and second rollers 23a and 23b, so that each blade has a suction chamber and a first and second cylinder chambers D1 and D2, respectively. It is divided into two chambers, the compression chamber.
  • each roller 23a, 23b is driven with a phase difference of 180 °, the volume of the suction chamber gradually increases, while the volume of the compression chamber gradually decreases, and the gas refrigerant in the compression chamber is compressed. As a result, the gas refrigerant becomes a predetermined high pressure state and becomes high temperature.
  • the high-temperature and high-pressure gas refrigerant is opened by applying a predetermined pressure to the first and second discharge valve mechanisms 26a and 26b through the discharge notches and the first and second discharge holes 25a and 25b.
  • the gas refrigerant in the first cylinder chamber D1 is discharged into the first muffler 19 and is temporarily stored inside. After that, it is discharged into the sealed case 10 through the discharge part 28 in the sealed case provided in the first muffler 19 and fills here.
  • the gas refrigerant is discharged into the second muffler 22 in the second cylinder chamber D2, and is temporarily stored inside. After that, the gas refrigerant is guided to the communication passage 30 provided in the flange portion of the sub-bearing 21 and passes through the second cylinder 17B, the intermediate partition plate 20, the first cylinder 17A and the flange portion of the main bearing 18. Then, it is guided into the first muffler 19.
  • the high-temperature and high-pressure gas refrigerant discharged from the first cylinder chamber D1 into the first muffler 19 is already linked to the high-temperature and high-pressure gas refrigerant discharged from the second cylinder chamber D2 into the second muffler 22. It is guided through the passage 30 and joins in the first muffler 19.
  • the merged gas refrigerant is discharged into the sealed case 10 from a sealed case discharge portion 28 provided in the first muffler 19.
  • the high-temperature and high-pressure gas refrigerant that fills the sealed case 10 is guided to the upper part of the sealed case 10 via a gas guide path provided along the axial direction of the electric motor unit 11, and is further discharged to the refrigerant pipe P.
  • the gas refrigerant is guided to the condenser 2 to exchange heat with the outside air or water, and is condensed and liquefied to be converted into a liquid refrigerant.
  • the liquid refrigerant is adiabatically expanded by the expansion valve 3 and is evaporated by exchanging heat with the surrounding air by the evaporator 4.
  • the refrigerant evaporated in the evaporator 4 is guided to the accumulator 5 and separated into gas and liquid. Then, the refrigerant is sucked into the first cylinder chamber D1 and the second cylinder chamber D2 of the compressor 1, and is compressed again to be converted into a high-temperature and high-pressure gas refrigerant, and the above-described refrigeration cycle is repeated.
  • FIG. 2 is a longitudinal sectional view of a single cylinder type hermetic rotary compressor 1A and a refrigeration cycle configuration diagram of the refrigeration cycle apparatus R. The same components of the two-cylinder sealed rotary compressor 1 and the refrigeration cycle apparatus R shown in FIG.
  • the difference from the two-cylinder type hermetic rotary compressor 1 is that the cylinder 17 is single, the inner bearing is closed from the upper surface by the main bearing 18, and the auxiliary bearing 21 is closed from the lower surface. This is the point where D is formed. A discharge notch is provided at the same position on the upper and lower surfaces of the cylinder chamber D.
  • a discharge notch is provided in the upper part of the cylinder chamber D, the first discharge hole 25a provided in the main bearing 18 faces the discharge notch, and the first discharge hole 25a is used as the first discharge hole.
  • the valve mechanism 26a opens and closes.
  • a discharge notch is provided in the lower part of the cylinder chamber D, a second discharge hole 25b provided in the sub-bearing 21 is opposed to the discharge notch, and the second discharge hole 25b is used as a second discharge valve mechanism. 26b opens and closes.
  • the first muffler 19 is provided with a discharge part 28 in a sealed case.
  • the second muffler 22 is closed and communicates with the communication path 30.
  • the communication path 30 is provided across the auxiliary bearing 21, the cylinder 17, and the main bearing 18, and opens into the first muffler 19.
  • the gas refrigerant compressed in the cylinder chamber D opens the first discharge valve mechanism 26a by applying a high pressure to the first discharge valve mechanism 26a through the discharge notch and the first discharge hole 25a. After the gas refrigerant is discharged into the first muffler 19, the gas refrigerant is guided into the sealed case 10 from a discharge part 28 in the sealed case provided in the first muffler 19, and fills the sealed case 10.
  • the gas refrigerant compressed in the cylinder chamber D applies a high pressure to the second discharge valve mechanism 26b through the discharge notch and the second discharge hole 25b to open the second discharge valve mechanism 26b.
  • the gas refrigerant is guided to the communication path 30, and is guided to the first muffler 19 through the auxiliary bearing 21, the cylinder 17, and the main bearing 18.
  • the high-temperature and high-pressure gas refrigerant discharged from the cylinder chamber D into the first muffler 19 and the high-temperature and high-pressure gas refrigerant discharged from the cylinder chamber D into the second muffler 22 have already passed through the communication path 30. Join.
  • the joined gas refrigerant is guided into the sealed case 10 from the discharge part 28 in the sealed case provided in the first muffler 19 and circulates through the refrigeration cycle components as described above.
  • FIG. 3 is a plan view of the main bearing 18.
  • FIG. 4 is a plan view of the first cylinder 17A in the two-cylinder type compressor 1.
  • the communication path 30 for guiding the high-temperature and high-pressure gas refrigerant discharged from the auxiliary bearing 21 into the second muffler 22 into the first muffler 19 is composed of two holes here.
  • the number of holes is not limited.
  • the total cross-sectional area of these communication passages 30 is S1 [mm 2 ].
  • the total cross-sectional area is the total cross-sectional area.
  • the discharge case 28 in the sealed case provided for discharging the high-temperature and high-pressure gas refrigerant stored inside into the sealed case 10.
  • the area is S2 [mm 2 ].
  • the area S2 of the discharge part 28 in the sealed case 28 provided in the first muffler 19 is set large, that is, S1 ⁇ S2.
  • the amount of the high-temperature and high-pressure gas refrigerant released from the discharge part 28 in the sealed case 10 provided in the first muffler 19 into the sealed case 10 is changed from the second muffler 22 through the communication path 30 to the first muffler 19.
  • the discharge part 28 in the sealed case can be discharged into the sealed case 10 without increasing the passage resistance of the gas refrigerant, avoiding an overcompressed state in the cylinder chamber 17 and improving efficiency. This is particularly effective when a compact compressor is rotated at a high speed and exhibits high performance.
  • the axial length H of the stator core 16a of the stator 16 in the motor unit 11 is determined.
  • the expression (1) is applied to the two-cylinder type compressor 1, but the same conditions apply to the one-cylinder type compressor 1 ⁇ / b> A that is not described. That is, by setting the area S2 of the discharge part 28 in the sealed case 28 provided in the first muffler 19 as described above to be larger than the total cross-sectional area S1 of the communication passage 30, that is, S1 ⁇ S2. As a result, the passage resistance can be reduced and the efficiency can be improved. However, on the other hand, the noise reduction effect of the gas refrigerant in the first muffler 19 is reduced, and there is a concern about noise deterioration.
  • the sealed case 10 is substantially cylindrical, and the space defined by the inner surface of the sealed case 10 is also substantially cylindrical. And the space prescribed
  • the unit of the noise value is db (decibel).
  • S1 is larger than S2, that is, opposite to the present embodiment, and B / A is 0.4.
  • B / A is 0.4.
  • S2 is made larger than S1, and only B / A is changed by 0.1 in the range of 0.6 to 0.9.
  • the area of the first discharge hole 25a provided in the main bearing 18 is S3 [mm 2 ]
  • the area S2 [mm 2 ] of the discharge part 28 in the sealed case provided in the first muffler 19 is The total cross-sectional area S1 [mm 2 ] of the passage 30 and the area S3 [mm 2 ] of the first discharge hole 25a are not exceeded. That is, S2 ⁇ S1 + S3 is set.
  • the comparative example of 10 is S1 ⁇ S2, and B / A is No.10.
  • the noise measurement value is 0.6 when S2> S1 + S3.
  • No. The comparative example of No. 10 No. 1 prior art and No. 1 2 is larger than that of the present embodiment.
  • FIG. 5 the result of the noise test in several examples of this embodiment and a comparative example is shown.
  • the condition is a two-cylinder type hermetic rotary compressor, and the refrigerant used in the refrigeration cycle is R410A.
  • the total displacement volume of each cylinder is 17.5 cm 3 / rev, which is a relatively small compressor.
  • the operating rotational speed is 90 rpm, and the pressure conditions are a discharge pressure of 3.2 MPa and a suction pressure of 0.9 MPa.
  • the total cross-sectional area S1 of the communication path 30 described above is 85 mm 2
  • the area S2 of the discharge part 28 in the sealed case provided in the first muffler 19 is 100 mm 2 .
  • the inner diameter of the sealed case 10 is 110 mm.
  • the black bar graph has B / A of 0.4, which corresponds to the comparative example described above.
  • the white bar graph has a B / A of 0.6 and corresponds to this embodiment.
  • the hatched bar graph has B / A of 1 and 2, and corresponds to the comparative example described above.
  • the first cylinder 17A is applied as a member for fixing the compression mechanism portion 12 to the sealed case 10, and the distance from the upper end surface to the lower end surface of the stator 16 is set, but the present invention is not limited to this.
  • the present invention is not limited to this.
  • the first cylinder is formed to have a required minimum diameter and is much smaller than the inner peripheral wall of the sealed case. That is, in such a compressor, a “main bearing” is applied as a member for fixing the compression mechanism portion to the sealed case.
  • V2 [mm 3 ] / S2 [mm 2 ] when V2 [mm 3 ] / S2 [mm 2 ] is taken on the horizontal axis and the pressure loss is taken on the vertical axis, the change in V2 [mm 3 ] / S2 [mm 2 ] is 100. It was found that pressure loss suddenly increased immediately before [mm]. Therefore, V2 [mm 3 ] / S2 [mm 2 ] is set so as not to exceed 100 [mm]. That is, V2 [mm 3 ] / S2 [mm 2 ] ⁇ 100 [mm] is set.
  • FIG. 7A is a plan view of the first cylinder 17A used in the two-cylinder type compressor 1 according to the second embodiment.
  • FIG. 7B is a longitudinal sectional view taken along the line A1-O-A2 of FIG.
  • FIG. 8 is a partial perspective view of the first cylinder 17A. Since the structure other than the cylinder 17A is the same as that of the first embodiment, the same reference numerals as those of the first embodiment are used and description thereof is omitted.
  • the 2-cylinder type compressor 1 is set as follows.
  • a discharge notch 29 is provided in the first cylinder chamber D1 of the first cylinder 17A.
  • the second cylinder chamber D2 the description is omitted. That is, the blade groove 31 is provided in the first cylinder 17A in which the radius of the first cylinder chamber D1 is R1.
  • a suction hole 32 to which one refrigerant pipe Pa extending from the accumulator 5 is connected is provided on one side of the blade groove 31.
  • a discharge notch 29 is provided at a position opposite to the suction hole 32 via the blade groove 31 and at a predetermined angle ⁇ 1 from the center axis with respect to the blade groove 31.
  • the discharge notch 29 is provided at a depth dimension h, that is, a height dimension h from the end face of the first cylinder in a state inclined by an angle ⁇ with respect to the end face of the first cylinder 17A.
  • the first discharge hole is provided in a portion of the main bearing that faces the discharge notch 29, and the first discharge valve mechanism opens and closes the first discharge hole as described above. It is as follows.
  • the depth dimension h of the discharge notch is formed to be smaller than the total height H of the first cylinder, that is, half of the thickness dimension H, that is, it is formed to be h ⁇ H / 2.
  • the gas on the opposite side of the discharge notch across the blade groove 31 does not flow smoothly to the discharge notch. For this reason, the gas refrigerant in the first cylinder chamber is compressed more than necessary and is in an overcompressed state.
  • the depth dimension h that is, the height dimension h of the discharge notch 29 is expressed by the following expression (3) with respect to the total height H of the first cylinder 17A: H / 2 ⁇ h ⁇ H
  • the gas refrigerant compressed in the first cylinder chamber D1 particularly the gas refrigerant on the opposite side to the discharge notch across the blade groove 31 in the first cylinder chamber, is notched for discharge. It becomes easy to flow smoothly to 29, and the amount of overcompression during high-speed rotation can be greatly reduced.
  • FIG. 9 is a longitudinal sectional view of the first cylinder 17A used in the two-cylinder type compressor 1 according to the third embodiment.
  • FIG. 10 is a partial perspective view of the first cylinder 17A. Since the structure other than the first cylinder 17A is the same as that of the first embodiment, the description thereof is omitted.
  • the discharge notch 29A provided at the same position in the first cylinder chamber D1 is inclined from the end surface of the first cylinder 17A by the angle ⁇ to the depth dimension h1 while being inclined with respect to the end surface of the first cylinder 17A. Furthermore, it is provided from the end surface of the first cylinder 17A to the depth dimension h2 in a state inclined by an angle ⁇ with respect to the end surface of the first cylinder 17A.
  • the discharge notches 29A are formed in multiple stages and the entire depth dimension h2 is in a relationship of H / 2 ⁇ h2 ⁇ H so as to satisfy the expression (3).
  • the gas refrigerant in the discharge notch 29A is not compressed even in the compression step, and becomes a so-called dead volume. Again, the gas refrigerant remaining in the discharge notch 29A is re-expanded in a state where the gas refrigerant is sucked into the first cylinder chamber D1 through the suction hole 32, and the corresponding amount of gas refrigerant is restricted from being sucked and lost. Become.
  • the discharge notch 29A is provided in the main bearing 18 while keeping the dead volume of the discharge notch 29A small by forming the discharge notch 29A in a multi-stage relationship with the relationship of H / 2 ⁇ h2 ⁇ H in the formula (3).
  • the gas refrigerant can be smoothly guided to the first discharge holes 25a. Therefore, re-expansion loss is suppressed and the amount of overcompression is greatly reduced.
  • a first muffler according to the fourth embodiment will be described with reference to FIG.
  • configurations having the same functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
  • the shape of the discharge part 28 in the sealed case is different from that of the first embodiment.
  • Other structures are the same as those in the first embodiment.
  • FIG. 12 is a plan view showing the first muffler 19 of the present embodiment.
  • a plurality of in-sealed case discharge sections 28 are provided, and four are provided as an example.
  • the shape of the discharge part 28 in each sealed case is a circle, as in the first embodiment.
  • the total area of the discharge part 28 in the sealed case is the sum of the areas of the discharge parts 28 in the plurality of sealed cases.
  • the first muffler 19 of the present embodiment may be used in the second and third embodiments.
  • a first muffler according to the fifth embodiment will be described with reference to FIG.
  • configurations having the same functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
  • the discharge part 28 in the sealed case is different from the first embodiment.
  • Other structures are the same as those in the first embodiment.
  • FIG. 13 is a plan view showing the first muffler 19 of the present embodiment. As shown in FIG. 13, in this embodiment, the gap formed between the main bearing 18 and the first muffler 19 functions as the sealed case discharge part 28 in the sealed case discharge part 28. This point will be specifically described.
  • the inner diameter of the first muffler 19 is larger than the outer diameter of the main bearing 18. For this reason, when the main bearing 18 is inserted into the first muffler 19, a gap is provided between the first muffler 19 and the main bearing 18. This gap functions as the discharge part 28 in the sealed case.
  • the gap provided between the first muffler 19 and the main bearing 18 is connected in a circle. That is, in this embodiment, the discharge part 28 in the sealed case has a shape that is connected in a circular manner. In the present embodiment, the same effect as in the first embodiment can be obtained.
  • the first muffler 19 of the present embodiment may be used in the second and third embodiments.
  • one or a plurality of the discharge parts 28 in the sealed case are provided in a part away from the main bearing 18 as in the first and fourth embodiments, and as in the fifth embodiment.
  • a gap between the first muffler 19 and the main bearing 18 may be combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

With a sealed rotary compressor of an embodiment of the present invention, when the total cross-sectional area of connecting passages that are provided from an auxiliary bearing to a main bearing and that enable high-pressure gas within a second muffler to converge with high-pressure gas within a first muffler is S1 [mm2], and the total surface area of a sealed-case-internal discharge part which is provided on the first muffler is S2 [mm2], S2 is set so as to be greater than S1 (S1 < S2), and when the distance from one end surface of the stator in an electric motor unit to one end surface of the sealed case is A and the distance from the other end of the stator to the other end of a member (for example, a first cylinder) which fastens a compression mechanism unit to the sealed case is B, then 0.5 < B/A < 1 . . . (1).

Description

密閉型回転式圧縮機と冷凍サイクル装置Hermetic rotary compressor and refrigeration cycle equipment
 本発明の実施態様は、1シリンダもしくは2シリンダを有する密閉型回転式圧縮機と、この密閉型回転式圧縮機を備えて冷凍サイクルを構成する冷凍サイクル装置に関する。 Embodiments of the present invention relate to a hermetic rotary compressor having one or two cylinders, and a refrigeration cycle apparatus that includes this hermetic rotary compressor and constitutes a refrigeration cycle.
 1シリンダもしくは2シリンダを有する密閉型回転式圧縮機は、密閉ケース内下部に圧縮機構部を収容し、この圧縮機構部の上部に回転軸を介して圧縮機構部に連結される電動機部を収容してなる。 A hermetic rotary compressor having one or two cylinders accommodates a compression mechanism part in the lower part of the hermetic case, and accommodates an electric motor part connected to the compression mechanism part via a rotating shaft at the upper part of the compression mechanism part. Do it.
 圧縮機構部において、シリンダ室でガス冷媒が圧縮されて高圧化される。高圧化されたガス冷媒は、主軸受に設けられる第1の吐出弁機構を介して第1のマフラに吐出されてから、密閉ケース内に放出される。また、高圧化したガス冷媒は上記シリンダ室から副軸受に設けられる第2の吐出弁機構を介して第2のマフラに一旦、吐出される。 In the compression mechanism section, the gas refrigerant is compressed in the cylinder chamber to increase the pressure. The high-pressure gas refrigerant is discharged to the first muffler via the first discharge valve mechanism provided in the main bearing and then discharged into the sealed case. The high-pressure gas refrigerant is temporarily discharged from the cylinder chamber to the second muffler via a second discharge valve mechanism provided in the sub bearing.
 上記第2のマフラは、副軸受とシリンダおよび主軸受に設けられる連通路を介して第1のマフラ内に連通しているので、ガス冷媒は第1のマフラで混合してから密閉ケース内に放出される。 Since the second muffler communicates with the first muffler via a communication path provided in the sub-bearing, the cylinder and the main bearing, the gas refrigerant is mixed in the first muffler and then placed in the sealed case. Released.
特許第3200322号公報Japanese Patent No. 3300322
 この密閉型回転式圧縮機において、第1のマフラにおける開口部である密閉ケース内吐出部の開口面積は、消音効果を得るために可能な限り小さくしている。これに対して連通路の総断面積は、円滑にガス冷媒が導かれるよう可能な限り大きく形成される。 In this hermetic rotary compressor, the opening area of the discharge part in the hermetic case, which is the opening in the first muffler, is made as small as possible to obtain a silencing effect. On the other hand, the total cross-sectional area of the communication path is formed as large as possible so that the gas refrigerant can be guided smoothly.
 圧縮機の運転周波数が低い領域の場合は問題がないが、運転周波数が高い領域では、第1のマフラから密閉ケース内に放出される際の通路抵抗(流路損失)が大となり、シリンダ室では過圧縮状態になる。したがって、圧縮機を高速回転して大能力を発揮する場合は、ガス冷媒の流速が上がるので通路抵抗が大幅に増大する。 There is no problem in the region where the operating frequency of the compressor is low, but in the region where the operating frequency is high, the passage resistance (flow path loss) when discharged from the first muffler into the sealed case becomes large, and the cylinder chamber Then it becomes overcompressed. Therefore, when the compressor is rotated at a high speed and exhibits a high capacity, the flow rate of the gas refrigerant is increased, so that the passage resistance is greatly increased.
 このような事情から、主軸受に設けられる第1マフラの密閉ケース内吐出部から吐出されるガス冷媒を、騒音を増大させることなしに、かつ、通路抵抗を増大させることなく密閉ケース内に吐出できる密閉型回転式圧縮機と、この密閉式回転型圧縮機を備えた冷凍サイクル装置が望まれている。 For this reason, the gas refrigerant discharged from the discharge part in the sealed case of the first muffler provided in the main bearing is discharged into the sealed case without increasing the noise and without increasing the passage resistance. There is a demand for a hermetic rotary compressor that can be used, and a refrigeration cycle apparatus including the hermetic rotary compressor.
 本実施形態は、密閉ケース内の下部に圧縮機構部が収容されるとともに上部に電動機部が収容され、回転軸を介して上記電動機部が上記圧縮機構部に連結される密閉型回転式圧縮機であり、上記圧縮機構部は、内径部をシリンダ室として形成される1つのシリンダもしくは2つのシリンダと、上記回転軸を軸支する主軸受および副軸受と、上記主軸受と副軸受のそれぞれに設けられシリンダ室で圧縮された高圧ガスを吐出案内する第1の吐出弁機構および第2の吐出弁機構と、上記第1の吐出弁機構を覆い、一旦シリンダ室で圧縮された高圧ガスを受け入れて消音し、しかる後、密閉ケース内吐出部を介して密閉ケース内に放出する第1のマフラと、上記第2の吐出弁機構を覆い、一旦シリンダ室で圧縮されたガス冷媒を受け入れて消音する第2のマフラと、上記副軸受から上記主軸受に亘って設けられ第2のマフラ内のガス冷媒を導き第1のマフラ内のガス冷媒に合流させる連通路とを具備し、上記連通路の総断面積をS1[mm]、上記第1のマフラに設けられる密閉ケース内吐出部の総面積をS2[mm]としたとき、S1よりS2を大(S1<S2)とし、上記電動機部は、密閉ケース内に挿嵌される固定子と、回転軸に嵌着され外周壁が固定子内周壁とは狭小の間隙を存して設けられる回転子とを具備し、上記固定子の鉄心の上端面から密閉ケースの一端面までの寸法をA、上記固定子の鉄心の下端面から圧縮機構部を密閉ケースに固着する部材の端面までの距離をBとしたとき、つぎの(1)式を満足するように設定される。 
          0.5 < B/A < 1   …… (1) 
 さらに、本実施形態の冷凍サイクル装置は、上記密閉型回転式圧縮機および、凝縮器と、膨張装置と、蒸発器とを、冷媒管を介して連通し、冷凍サイクルを構成する。
In this embodiment, a hermetic rotary compressor in which a compression mechanism portion is housed in a lower portion in a hermetically sealed case, an electric motor portion is housed in an upper portion, and the motor portion is connected to the compression mechanism portion via a rotating shaft. The compression mechanism section includes one cylinder or two cylinders having an inner diameter portion as a cylinder chamber, a main bearing and a sub-bearing that pivotally support the rotating shaft, and a main bearing and a sub-bearing, respectively. A first discharge valve mechanism and a second discharge valve mechanism that are provided and discharge and guide the high-pressure gas compressed in the cylinder chamber, and cover the first discharge valve mechanism and receive the high-pressure gas once compressed in the cylinder chamber Then, the first muffler discharged into the sealed case through the discharge part in the sealed case and the second discharge valve mechanism are covered, and the gas refrigerant once compressed in the cylinder chamber is received and silenced. Do 2 mufflers and a communication passage provided from the sub bearing to the main bearing for guiding the gas refrigerant in the second muffler and joining the gas refrigerant in the first muffler. When the sectional area is S1 [mm 2 ] and the total area of the discharge part in the sealed case provided in the first muffler is S2 [mm 2 ], S2 is larger than S1 (S1 <S2), and the electric motor part Comprises a stator that is inserted into a sealed case, and a rotor that is fitted to a rotating shaft and has an outer peripheral wall provided with a narrow gap from the inner peripheral wall of the stator. (1) where A is the dimension from the upper end surface to the one end surface of the sealed case and B is the distance from the lower end surface of the stator core to the end surface of the member that fixes the compression mechanism to the sealed case. It is set to satisfy the formula.
0.5 <B / A <1 (1)
Further, the refrigeration cycle apparatus of the present embodiment configures a refrigeration cycle by communicating the hermetic rotary compressor, the condenser, the expansion device, and the evaporator via a refrigerant pipe.
図1は、第1の実施形態に係る、2シリンダ型の密閉型回転式圧縮機の縦断面図と、冷凍サイクル構成図である。FIG. 1 is a longitudinal sectional view and a refrigeration cycle configuration diagram of a two-cylinder hermetic rotary compressor according to a first embodiment. 図2は、同実施形態に係る、1シリンダ型の密閉型回転式圧縮機の縦断面図と、冷凍サイクル構成図である。FIG. 2 is a longitudinal sectional view and a refrigeration cycle configuration diagram of the one-cylinder hermetic rotary compressor according to the embodiment. 図3は、同実施形態に係る、主軸受の平面図である。FIG. 3 is a plan view of the main bearing according to the embodiment. 図4は、同実施形態に係る、シリンダの平面図である。FIG. 4 is a plan view of the cylinder according to the embodiment. 図5は、同実施形態に係る、異なる条件下での騒音の大きさを表す図である。FIG. 5 is a diagram illustrating the magnitude of noise under different conditions according to the embodiment. 図6は、同実施形態に係る、シリンダ室の排除容積V2と、第1のマフラおける密閉ケース内吐出部の総面積S2の割合を変化させたときの圧力損失の変化図である。FIG. 6 is a change diagram of the pressure loss when the ratio of the excluded volume V2 of the cylinder chamber and the total area S2 of the discharge part in the sealed case in the first muffler is changed according to the embodiment. 図7Aは、第2の実施形態に係る、吐出用切欠きを示すシリンダの平面図である。FIG. 7A is a plan view of a cylinder showing a discharge notch according to the second embodiment. 図7Bは、同実施形態に係る、吐出用切欠きを示すシリンダの縦断面図である。FIG. 7B is a longitudinal sectional view of a cylinder showing a discharge notch according to the embodiment. 図8は、同実施形態に係る、吐出用切欠きを示すシリンダの一部斜視図である。FIG. 8 is a partial perspective view of a cylinder showing a discharge notch according to the embodiment. 図9は、第3の実施形態に係る、吐出用切欠きを示すシリンダの縦断面図である。FIG. 9 is a longitudinal sectional view of a cylinder showing a discharge notch according to the third embodiment. 図10は、同実施形態に係る、吐出用切欠きを示すシリンダの一部斜視図である。FIG. 10 is a partial perspective view of a cylinder showing a discharge notch according to the embodiment. 図11は、第1の実施形態に係る第1のマフラを示す平面図である。FIG. 11 is a plan view showing the first muffler according to the first embodiment. 図12は、第4の実施形態に係る第1のマフラを示す平面図である。FIG. 12 is a plan view showing a first muffler according to the fourth embodiment. 図13は、第5の実施形態に係る第1のマフラを示す平面図である。FIG. 13 is a plan view showing a first muffler according to the fifth embodiment.
 以下、本実施形態を図面にもとづいて説明する。 
 図1は、冷凍サイクル装置Rに用いられる密閉型回転式圧縮機1およびアキュームレータ5の縦断面図および冷凍サイクル構成図である。
Hereinafter, the present embodiment will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view and a refrigeration cycle configuration diagram of a hermetic rotary compressor 1 and an accumulator 5 used in the refrigeration cycle apparatus R.
 図中1は、後述する密閉型回転式圧縮機1である。密閉型回転式圧縮機1は、以下、圧縮機1と記載する。この圧縮機1の上端部には冷媒管Pが接続される。冷媒管Pには、凝縮器2と、膨張弁(膨張装置)3と、蒸発器4およびアキュームレータ5が順次設けられる。さらに冷媒管Pは、アキュームレータ5から先が2本の冷媒管Pa,Pbに分岐され、上記圧縮機1の側部に接続される。これらで、たとえば空気調和機等の冷凍サイクル装置Rが構成される。 1 in the figure is a hermetic rotary compressor 1 described later. The hermetic rotary compressor 1 is hereinafter referred to as a compressor 1. A refrigerant pipe P is connected to the upper end portion of the compressor 1. In the refrigerant pipe P, a condenser 2, an expansion valve (expansion device) 3, an evaporator 4 and an accumulator 5 are sequentially provided. Further, the refrigerant pipe P branches from the accumulator 5 into two refrigerant pipes Pa and Pb, and is connected to the side portion of the compressor 1. These constitute a refrigeration cycle apparatus R such as an air conditioner.
 つぎに、上記圧縮機1について説明する。 
 上記圧縮機1は密閉ケース10を備えている。この密閉ケース10内部の上部側に電動機部11が収容され、下部側に圧縮機構部12が収容される。これら電動機部11と圧縮機構部12は、回転軸13を介して一体に連結される。
Next, the compressor 1 will be described.
The compressor 1 includes a sealed case 10. The electric motor part 11 is accommodated in the upper part inside the sealed case 10 and the compression mechanism part 12 is accommodated in the lower part. The electric motor unit 11 and the compression mechanism unit 12 are integrally connected via a rotating shaft 13.
 上記密閉ケース10の内底部には潤滑油を集溜する油溜り部14が形成される。下部側に配置される圧縮機構部12のほとんど大部分が潤滑油中に浸漬される。 An oil reservoir 14 for collecting lubricating oil is formed at the inner bottom of the sealed case 10. Almost most of the compression mechanism 12 disposed on the lower side is immersed in the lubricating oil.
 上記電動機部11は、回転軸13に嵌着固定される回転子(ロータ)15と、固定子(ステータ)16とから構成される。固定子16は、回転子15の外周壁と狭小の間隙を存して内周壁が対向され、外周壁が密閉ケース10内周壁に嵌着固定される。 The electric motor unit 11 includes a rotor (rotor) 15 fitted and fixed to the rotary shaft 13 and a stator (stator) 16. The stator 16 is opposed to the inner peripheral wall of the outer peripheral wall of the rotor 15 with a narrow gap, and the outer peripheral wall is fitted and fixed to the inner peripheral wall of the sealed case 10.
 上記圧縮機構部12は、ここでは2シリンダタイプのものである。 
 第1のシリンダ17Aは、中心軸に沿って内径部を有する。第1のシリンダ17Aは、外周壁が密閉ケース10の内周壁に挿嵌され、たとえば部分溶接などの手段で取付け固定される。第1のシリンダ17Aの上面部に主軸受18が載る。主軸受18は、第1のシリンダ17Aの内径部上面側を閉塞する。
Here, the compression mechanism section 12 is of a two-cylinder type.
The first cylinder 17A has an inner diameter portion along the central axis. The first cylinder 17 </ b> A has an outer peripheral wall inserted into the inner peripheral wall of the sealed case 10, and is attached and fixed by means such as partial welding. The main bearing 18 is placed on the upper surface portion of the first cylinder 17A. The main bearing 18 closes the upper surface side of the inner diameter portion of the first cylinder 17A.
 この主軸受18には第1のマフラ19が載る。取付け具を介して主軸受18と第1のマフラ19が第1のシリンダ17Aに取付け固定される。第1のシリンダ17Aの下面部には、中間仕切り板20と、第2のシリンダ17Bと、副軸受21および第2のマフラ22が、取付け具を介して第1のシリンダ17Aに取付け固定される。 The first muffler 19 is mounted on the main bearing 18. The main bearing 18 and the first muffler 19 are attached and fixed to the first cylinder 17A via an attachment. On the lower surface portion of the first cylinder 17A, an intermediate partition plate 20, a second cylinder 17B, a sub bearing 21 and a second muffler 22 are attached and fixed to the first cylinder 17A via attachments. .
 中間仕切り板20は、第1のシリンダ17Aの内径部下面側を閉塞する。これら中間仕切り板20と主軸受18で閉塞される第1のシリンダ17Aの内径部を、第1のシリンダ室D1と呼ぶ。 The intermediate partition plate 20 closes the lower surface side of the inner diameter portion of the first cylinder 17A. The inner diameter portion of the first cylinder 17A closed by the intermediate partition plate 20 and the main bearing 18 is referred to as a first cylinder chamber D1.
 第2のシリンダ17Bは、第1のシリンダ17Aの内径部と同一寸法形状の内径部を備えていて、この内径部上面側が中間仕切り板20によって閉塞される。上記副軸受21は、第2のシリンダ17Bの内径部下面側を閉塞する。これら中間仕切り板20と副軸受21で閉塞される第2のシリンダ17Bの内径部を、第2のシリンダ室D2と呼ぶ。 The second cylinder 17B has an inner diameter part having the same size and shape as the inner diameter part of the first cylinder 17A, and the upper surface side of the inner diameter part is closed by the intermediate partition plate 20. The sub bearing 21 closes the lower surface side of the inner diameter portion of the second cylinder 17B. The inner diameter portion of the second cylinder 17B closed by the intermediate partition plate 20 and the auxiliary bearing 21 is referred to as a second cylinder chamber D2.
 上記回転軸13は、上記電動機部11を構成する回転子15の下端面から下方へ突出する。回転軸13は、圧縮機構部12を構成する主軸受18、第1のシリンダ室D1、中間仕切り板20、第2のシリンダ室D2、副軸受21を貫通する。特に、回転軸13の第1のシリンダ室D1から突出する上方部位が主軸受18に回転自在に枢支され、回転軸13の第2のシリンダ室D2から突出する下方部位が副軸受21に回転自在に枢支される。 The rotating shaft 13 protrudes downward from the lower end surface of the rotor 15 constituting the electric motor unit 11. The rotary shaft 13 passes through the main bearing 18, the first cylinder chamber D 1, the intermediate partition plate 20, the second cylinder chamber D 2, and the auxiliary bearing 21 that constitute the compression mechanism portion 12. In particular, the upper part of the rotating shaft 13 protruding from the first cylinder chamber D1 is pivotally supported by the main bearing 18, and the lower part of the rotating shaft 13 protruding from the second cylinder chamber D2 rotates to the auxiliary bearing 21. It is supported freely.
 さらに、回転軸13は、第1のシリンダ室D1と第2のシリンダ室D2において、略180°の位相差をもって形成される第1の偏心部13aと第2の偏心部13bを一体に備えている。各偏心部13a、13bは互いに同一直径をなし、互いに中心軸が所定量だけ偏心する。 Further, the rotating shaft 13 is integrally provided with a first eccentric portion 13a and a second eccentric portion 13b formed with a phase difference of about 180 ° in the first cylinder chamber D1 and the second cylinder chamber D2. Yes. The eccentric parts 13a and 13b have the same diameter, and their central axes are eccentric by a predetermined amount.
 第1の偏心部13aの周面には第1のローラ23aが嵌合され、第2の偏心部13bの周面には第2のローラ23bが嵌合される。回転軸13が回転したとき、第1、第2のローラ23a,23bは、それぞれ第1、第2のシリンダ室D1,D2の内周壁一部に線接触しながら回転できるように組立てられる。 The first roller 23a is fitted to the circumferential surface of the first eccentric portion 13a, and the second roller 23b is fitted to the circumferential surface of the second eccentric portion 13b. When the rotary shaft 13 rotates, the first and second rollers 23a and 23b are assembled so as to be able to rotate while making line contact with a part of the inner peripheral walls of the first and second cylinder chambers D1 and D2, respectively.
 第1のシリンダ17Aの第1のシリンダ室D1にブレード溝を介して第1のブレード背室が連通する。ブレード溝は、ここでは図示しない。以下、同じ。上記ブレード溝には第1のブレードが移動自在に収容される。第2のシリンダ17Bの第2のシリンダ室D2にブレード溝を介して第2のブレード背室が連通する。上記ブレード溝には第2のブレードが移動自在に収容される。 The first blade back chamber communicates with the first cylinder chamber D1 of the first cylinder 17A through the blade groove. The blade groove is not shown here. same as below. A first blade is movably accommodated in the blade groove. A second blade back chamber communicates with the second cylinder chamber D2 of the second cylinder 17B via a blade groove. A second blade is movably accommodated in the blade groove.
 第1、第2のブレードの先端部は平面視で略円弧状に形成されており、対向するシリンダ室D1,D2に突出できる。この状態でブレードの先端部は、平面視で円形状の上記第1、第2のローラ23a,23b周壁に、回転角度にかかわらず線接触する。 The tip portions of the first and second blades are formed in a substantially arc shape in plan view and can protrude into the opposing cylinder chambers D1 and D2. In this state, the tip of the blade makes line contact with the peripheral walls of the first and second rollers 23a and 23b that are circular in plan view regardless of the rotation angle.
 上記第1のブレード後端部と第1のブレード背室周壁との間に、第1のブレードに背圧として作用する弾性力を付与するばね部材が収容される。上記第2のブレード後端部と第2のブレード背室周壁との間に、第2のブレードに背圧として作用する弾性力を付与するばね部材が収容される。 A spring member for applying an elastic force acting as a back pressure on the first blade is accommodated between the rear end portion of the first blade and the peripheral wall of the first blade back chamber. A spring member for applying an elastic force acting as a back pressure on the second blade is accommodated between the second blade rear end portion and the second blade back chamber peripheral wall.
 また、上記第1のシリンダ17Aにおいて、ブレード溝の一側部近傍に、後述する第1の吐出用切欠きが設けられる。第1の吐出用切欠きは、図7、図8で説明する。そして、ブレード溝に対して第1の吐出用切欠きとは反対側の部位に、第1の吸込み孔が設けられる。 Further, in the first cylinder 17A, a first discharge notch described later is provided in the vicinity of one side of the blade groove. The first discharge notch will be described with reference to FIGS. And the 1st suction hole is provided in the site | part on the opposite side to the 1st notch for discharge with respect to a blade groove | channel.
 この第1の吸込み孔は、第1のシリンダ17Aの外周面一部から第1のシリンダ室D1に亘って貫通して設けられていて、上記アキュームレータ5の下端面から突出する一方の冷媒管Paが密閉ケース10を貫通して接続される。 The first suction hole is provided so as to penetrate from the part of the outer peripheral surface of the first cylinder 17 </ b> A to the first cylinder chamber D <b> 1 and protrudes from the lower end surface of the accumulator 5. Is connected through the sealed case 10.
 上記第2のシリンダ17Bにおいて、ブレード溝の一側部側近傍に、第2の吐出用切欠きが設けられる。そして、ブレード溝に対して第2の吐出用切欠とは反対側の部位に、第2の吸込み孔が設けられる。 In the second cylinder 17B, a second discharge notch is provided near one side of the blade groove. And the 2nd suction hole is provided in the site | part on the opposite side to the 2nd notch for discharge with respect to a blade groove | channel.
 この第2の吸込み孔は、第2のシリンダ17Bの外周面一部から第2のシリンダ室D2に亘って貫通して設けられていて、上記アキュームレータ5の下端面から突出する他方の冷媒管Pbが密閉ケース10を貫通して接続される。 The second suction hole is provided so as to penetrate from the part of the outer peripheral surface of the second cylinder 17B to the second cylinder chamber D2, and the other refrigerant pipe Pb protruding from the lower end surface of the accumulator 5 is provided. Is connected through the sealed case 10.
 主軸受18において上記第1の吐出用切欠きと対向する部位に第1の吐出孔25aが設けられる。この第1の吐出孔25aは主軸受18に取付けられる第1の吐出弁機構26aにより開閉される。すなわち、第1の吐出用切欠きと第1の吐出孔25aから第1の吐出弁機構26aに所定圧以上の圧力がかかったときだけ、第1の吐出弁機構26aは第1の吐出孔25aを開放し、それ以外は閉塞する。 A first discharge hole 25a is provided in a portion of the main bearing 18 facing the first discharge notch. The first discharge hole 25a is opened and closed by a first discharge valve mechanism 26a attached to the main bearing 18. That is, the first discharge valve mechanism 26a is only in the first discharge hole 25a only when a pressure equal to or higher than a predetermined pressure is applied to the first discharge valve mechanism 26a from the first discharge notch and the first discharge hole 25a. Is opened and the others are closed.
 第1の吐出弁機構26aは、主軸受18に取付けられる第1のマフラ19によって覆われる。第1のマフラ19は、密閉ケース10内に開口する密閉ケース内吐出部28を備えている。図11は、第1のマフラ19を示す平面図である。図11に示すように、この密閉ケース内吐出部28は、第1のマフラ19の周面一部に開口されたものでよい。密閉ケース内吐出部28の平面形状は、本実施形態では、一例として、丸孔である。 The first discharge valve mechanism 26 a is covered with a first muffler 19 attached to the main bearing 18. The first muffler 19 includes a sealed case discharge portion 28 that opens into the sealed case 10. FIG. 11 is a plan view showing the first muffler 19. As shown in FIG. 11, the in-sealed case discharge portion 28 may be opened at a part of the peripheral surface of the first muffler 19. In the present embodiment, the planar shape of the discharge part 28 in the sealed case is a round hole as an example.
 副軸受21において上記第2の吐出用切欠きと対向する部位に第2の吐出孔25bが設けられている。この第2の吐出孔25bは、副軸受21に設けられる第2の吐出弁機構26bにより開閉される。 In the sub-bearing 21, a second discharge hole 25b is provided at a portion facing the second discharge notch. The second discharge hole 25b is opened and closed by a second discharge valve mechanism 26b provided in the auxiliary bearing 21.
 すなわち、第2の吐出用切欠きと第2の吐出孔25bから第2の吐出弁機構26bに所定圧以上の圧力がかかったときだけ、第2の吐出弁機構26bは第2の吐出孔25bを開放し、それ以外は閉塞する。第2の吐出弁機構26bは、副軸受21に取付けられる上記第2のマフラ22によって覆われる。 In other words, the second discharge valve mechanism 26b is connected to the second discharge hole 25b only when a pressure equal to or higher than a predetermined pressure is applied to the second discharge valve mechanism 26b from the second discharge notch and the second discharge hole 25b. Is opened and the others are closed. The second discharge valve mechanism 26 b is covered with the second muffler 22 attached to the sub bearing 21.
 上記第2のマフラ22は、上記第1のマフラ19のような密閉ケース10内に開口する密閉ケース内吐出部28を備えておらず、密閉構造をなす。ただし、第2のマフラ22は後述する連通路30に対して開口する。連通路30は、見易くするため幅寸法を大にした。 The second muffler 22 does not include the discharge part 28 in the sealed case that opens into the sealed case 10 like the first muffler 19 and has a sealed structure. However, the second muffler 22 opens with respect to the communication path 30 described later. The communication passage 30 has a large width for easy viewing.
 上記連通路30は、副軸受21のフランジ部から第2のシリンダ17Bと、中間仕切り板20と、第1のシリンダ17Aおよび主軸受18のフランジ部に亘って設けられる孔状のものである。 The communication passage 30 has a hole shape provided from the flange portion of the auxiliary bearing 21 to the second cylinder 17B, the intermediate partition plate 20, the flange portions of the first cylinder 17A and the main bearing 18.
 副軸受21のフランジ部に連通路30の一端部が開口することで、連通路30は第2のマフラ22内部と連通する。また、主軸受18のフランジ部に連通路30の他端部が開口することで、連通路30は第1のマフラ19内部と連通する。 The one end part of the communication path 30 opens in the flange part of the sub bearing 21, so that the communication path 30 communicates with the inside of the second muffler 22. Further, the other end portion of the communication passage 30 opens in the flange portion of the main bearing 18, so that the communication passage 30 communicates with the inside of the first muffler 19.
 つぎに、密閉型回転式圧縮機1の圧縮作用および冷凍サイクル装置Rの冷凍作用について説明する。 
 圧縮機1に通電すると電動機部11の固定子16に回転磁界が発生し、これによって回転子15が回転し、回転軸13が回転駆動される。回転軸13を介して圧縮機構部12に駆動トルクが作用し、回転軸13の第1の偏心部aおよび第2の偏心部bと、第1のローラ23aおよび第2のローラ23bが一体に、第1のシリンダ室D1と第2のシリンダ室D2にて偏心運動を行う。
Next, the compression action of the hermetic rotary compressor 1 and the refrigeration action of the refrigeration cycle apparatus R will be described.
When the compressor 1 is energized, a rotating magnetic field is generated in the stator 16 of the electric motor unit 11, thereby rotating the rotor 15 and rotating the rotating shaft 13. A driving torque acts on the compression mechanism portion 12 via the rotation shaft 13, and the first eccentric portion a and the second eccentric portion b of the rotation shaft 13, and the first roller 23a and the second roller 23b are integrated. The eccentric motion is performed in the first cylinder chamber D1 and the second cylinder chamber D2.
 上記第1、第2のブレードは、ばね部材の背圧を受け、先端部がシリンダ室D1,D2に突出し、かつ後退して没入する。第1、第2のブレードの先端縁が常に第1、第2のローラ23a,23b外周面に当接することで、各ブレードは第1、第2のシリンダ室D1,D2を、それぞれ吸込み室と圧縮室との、二室に区画する。 The first and second blades receive the back pressure of the spring member, and the tip portions protrude into the cylinder chambers D1 and D2 and retract and immerse. The leading edges of the first and second blades are always in contact with the outer peripheral surfaces of the first and second rollers 23a and 23b, so that each blade has a suction chamber and a first and second cylinder chambers D1 and D2, respectively. It is divided into two chambers, the compression chamber.
 各ローラ23a,23bが180°の位相差を持って駆動されるにともない、吸込み室の容積が徐々に拡大する一方で、圧縮室の容積が徐々に縮小し、圧縮室にあるガス冷媒が圧縮され、ガス冷媒は所定の高圧状態になるとともに高温化する。 As each roller 23a, 23b is driven with a phase difference of 180 °, the volume of the suction chamber gradually increases, while the volume of the compression chamber gradually decreases, and the gas refrigerant in the compression chamber is compressed. As a result, the gas refrigerant becomes a predetermined high pressure state and becomes high temperature.
 高温高圧化したガス冷媒は、吐出用切欠きと第1、第2の吐出孔25a,25bを介して第1、第2の吐出弁機構26a,26bに所定圧をかけて開放させる。第1のシリンダ室D1のガス冷媒は第1のマフラ19内に吐出され、一旦、内部に溜められる。そのあと、第1のマフラ19に設けられる密閉ケース内吐出部28を介して密閉ケース10内部に放出され、ここに充満する。 The high-temperature and high-pressure gas refrigerant is opened by applying a predetermined pressure to the first and second discharge valve mechanisms 26a and 26b through the discharge notches and the first and second discharge holes 25a and 25b. The gas refrigerant in the first cylinder chamber D1 is discharged into the first muffler 19 and is temporarily stored inside. After that, it is discharged into the sealed case 10 through the discharge part 28 in the sealed case provided in the first muffler 19 and fills here.
 一方、第2のシリンダ室D2においてガス冷媒は第2のマフラ22内に吐出され、一旦、内部に溜められる。そのあと、ガス冷媒は、副軸受21のフランジ部に設けられる連通路30に導かれ、第2のシリンダ17Bと、中間仕切り板20と、第1のシリンダ17Aおよび主軸受18のフランジ部を介して第1のマフラ19内に導かれる。 On the other hand, the gas refrigerant is discharged into the second muffler 22 in the second cylinder chamber D2, and is temporarily stored inside. After that, the gas refrigerant is guided to the communication passage 30 provided in the flange portion of the sub-bearing 21 and passes through the second cylinder 17B, the intermediate partition plate 20, the first cylinder 17A and the flange portion of the main bearing 18. Then, it is guided into the first muffler 19.
 既に、第1のシリンダ室D1から第1のマフラ19内に吐出される高温高圧のガス冷媒に、第2のシリンダ室D2から第2のマフラ22内に吐出される高温高圧のガス冷媒が連通路30を介して導かれ、第1のマフラ19内で合流する。合流したガス冷媒は第1のマフラ19に設けられる密閉ケース内吐出部28から密閉ケース10内に放出される。 The high-temperature and high-pressure gas refrigerant discharged from the first cylinder chamber D1 into the first muffler 19 is already linked to the high-temperature and high-pressure gas refrigerant discharged from the second cylinder chamber D2 into the second muffler 22. It is guided through the passage 30 and joins in the first muffler 19. The merged gas refrigerant is discharged into the sealed case 10 from a sealed case discharge portion 28 provided in the first muffler 19.
 密閉ケース10内に充満する高温高圧のガス冷媒は、電動機部11の軸方向に沿って設けられるガス案内路を介して密閉ケース10内上部に導かれ、さらに冷媒管Pへ吐出される。ガス冷媒は凝縮器2に導かれて外気もしくは水等と熱交換し、凝縮液化して液冷媒に変る。液冷媒は膨張弁3で断熱膨張し、蒸発器4で周辺の空気と熱交換して蒸発する。 The high-temperature and high-pressure gas refrigerant that fills the sealed case 10 is guided to the upper part of the sealed case 10 via a gas guide path provided along the axial direction of the electric motor unit 11, and is further discharged to the refrigerant pipe P. The gas refrigerant is guided to the condenser 2 to exchange heat with the outside air or water, and is condensed and liquefied to be converted into a liquid refrigerant. The liquid refrigerant is adiabatically expanded by the expansion valve 3 and is evaporated by exchanging heat with the surrounding air by the evaporator 4.
 このとき、冷媒の蒸発にともなって周辺部位から蒸発潜熱を奪い冷気に変え、周辺部位に対する冷凍作用をなす。蒸発器4で蒸発した冷媒は、アキュームレータ5に導かれ気液分離される。そして、圧縮機1の第1のシリンダ室D1と第2のシリンダ室D2に吸込まれ、再び圧縮されて高温高圧のガス冷媒に変り、上述の冷凍サイクルを繰り返す。 At this time, as the refrigerant evaporates, it takes away latent heat of vaporization from the surrounding area and converts it into cold air, thereby performing a freezing action on the surrounding area. The refrigerant evaporated in the evaporator 4 is guided to the accumulator 5 and separated into gas and liquid. Then, the refrigerant is sucked into the first cylinder chamber D1 and the second cylinder chamber D2 of the compressor 1, and is compressed again to be converted into a high-temperature and high-pressure gas refrigerant, and the above-described refrigeration cycle is repeated.
 図2は、1シリンダタイプの密閉型回転式圧縮機1Aの縦断面図と、冷凍サイクル装置Rの冷凍サイクル構成図である。図1に示す2シリンダタイプの密閉型回転式圧縮機1と冷凍サイクル装置Rの同一構成部品ついては、同番号を付して新たな説明を省略する。 FIG. 2 is a longitudinal sectional view of a single cylinder type hermetic rotary compressor 1A and a refrigeration cycle configuration diagram of the refrigeration cycle apparatus R. The same components of the two-cylinder sealed rotary compressor 1 and the refrigeration cycle apparatus R shown in FIG.
 2シリンダタイプの密閉型回転式圧縮機1との相違点は、シリンダ17が単一であり、この内径部を上面から主軸受18が閉塞し、下面から副軸受21が閉塞して、シリンダ室Dが形成される点である。このシリンダ室Dの上面部と下面部の同位置に、吐出用切欠きが設けられる。 The difference from the two-cylinder type hermetic rotary compressor 1 is that the cylinder 17 is single, the inner bearing is closed from the upper surface by the main bearing 18, and the auxiliary bearing 21 is closed from the lower surface. This is the point where D is formed. A discharge notch is provided at the same position on the upper and lower surfaces of the cylinder chamber D.
 すなわち、シリンダ室Dの上部に吐出用切欠きが設けられ、主軸受18に設けられる第1の吐出孔25aがこの吐出用切欠きに対向し、この第1の吐出孔25aを第1の吐出弁機構26aが開閉する。シリンダ室Dの下部に吐出用切欠きが設けられ、副軸受21に設けられる第2の吐出孔25bがこの吐出用切欠きに対向し、この第2の吐出孔25bを第2の吐出弁機構26bが開閉する。 That is, a discharge notch is provided in the upper part of the cylinder chamber D, the first discharge hole 25a provided in the main bearing 18 faces the discharge notch, and the first discharge hole 25a is used as the first discharge hole. The valve mechanism 26a opens and closes. A discharge notch is provided in the lower part of the cylinder chamber D, a second discharge hole 25b provided in the sub-bearing 21 is opposed to the discharge notch, and the second discharge hole 25b is used as a second discharge valve mechanism. 26b opens and closes.
 上記第1のマフラ19に密閉ケース内吐出部28が設けられる。第2のマフラ22は閉塞されて、連通路30に連通する。連通路30は、副軸受21と、シリンダ17および主軸受18に亘って設けられ、第1のマフラ19内に開口する。 The first muffler 19 is provided with a discharge part 28 in a sealed case. The second muffler 22 is closed and communicates with the communication path 30. The communication path 30 is provided across the auxiliary bearing 21, the cylinder 17, and the main bearing 18, and opens into the first muffler 19.
 したがって、シリンダ室Dで圧縮されたガス冷媒は、吐出用切欠きと第1の吐出孔25aを介して第1の吐出弁機構26aに高圧をかけて第1の吐出弁機構26aを開放する。ガス冷媒は第1のマフラ19内に吐出されたあと、第1のマフラ19に設けられる密閉ケース内吐出部28から密閉ケース10内部に導かれ、密閉ケース10内部に充満する。 Therefore, the gas refrigerant compressed in the cylinder chamber D opens the first discharge valve mechanism 26a by applying a high pressure to the first discharge valve mechanism 26a through the discharge notch and the first discharge hole 25a. After the gas refrigerant is discharged into the first muffler 19, the gas refrigerant is guided into the sealed case 10 from a discharge part 28 in the sealed case provided in the first muffler 19, and fills the sealed case 10.
 一方、上記シリンダ室Dで圧縮されたガス冷媒が、吐出用切欠きと第2の吐出孔25bを介して第2の吐出弁機構26bに高圧をかけて、第2の吐出弁機構26bを開放する。ガス冷媒は、第2のマフラ22内に吐出されたあと、連通路30に導かれて、副軸受21とシリンダ17および主軸受18を介して第1のマフラ19内に導かれる。 On the other hand, the gas refrigerant compressed in the cylinder chamber D applies a high pressure to the second discharge valve mechanism 26b through the discharge notch and the second discharge hole 25b to open the second discharge valve mechanism 26b. To do. After the gas refrigerant is discharged into the second muffler 22, the gas refrigerant is guided to the communication path 30, and is guided to the first muffler 19 through the auxiliary bearing 21, the cylinder 17, and the main bearing 18.
 既に、シリンダ室Dから第1のマフラ19内に吐出される高温高圧のガス冷媒に、シリンダ室Dから第2のマフラ22内に吐出される高温高圧のガス冷媒が、連通路30を介して合流する。 The high-temperature and high-pressure gas refrigerant discharged from the cylinder chamber D into the first muffler 19 and the high-temperature and high-pressure gas refrigerant discharged from the cylinder chamber D into the second muffler 22 have already passed through the communication path 30. Join.
 合流したガス冷媒は、第1のマフラ19に設けられる密閉ケース内吐出部28から密閉ケース10内に導かれることと、冷凍サイクル構成機器を上述したように循環することは変りがない。 The joined gas refrigerant is guided into the sealed case 10 from the discharge part 28 in the sealed case provided in the first muffler 19 and circulates through the refrigeration cycle components as described above.
 図3は、主軸受18の平面図である。図4は2シリンダタイプの圧縮機1における第1のシリンダ17Aの平面図である。なお、1シリンダタイプの圧縮機1Aにおけるシリンダ17も同様の形状であり、以下、説明は省略する。 FIG. 3 is a plan view of the main bearing 18. FIG. 4 is a plan view of the first cylinder 17A in the two-cylinder type compressor 1. FIG. Note that the cylinder 17 in the one-cylinder type compressor 1A has the same shape, and a description thereof will be omitted below.
 図に示すように、副軸受21から第2のマフラ22内に吐出された高温高圧のガス冷媒を第1のマフラ19内に導くための連通路30は、ここでは2つの孔部からなるが、孔部の数は限定されない。これら連通路30の総断面積を、S1[mm]とする。総断面積は、合計断面積のことである。 As shown in the figure, the communication path 30 for guiding the high-temperature and high-pressure gas refrigerant discharged from the auxiliary bearing 21 into the second muffler 22 into the first muffler 19 is composed of two holes here. The number of holes is not limited. The total cross-sectional area of these communication passages 30 is S1 [mm 2 ]. The total cross-sectional area is the total cross-sectional area.
 また、図1および図2に示す主軸受18に取付けられる第1のマフラ19において、内部に溜めた高温高圧のガス冷媒を密閉ケース10内に放出するために設けられる密閉ケース内吐出部28の面積を、S2[mm]とする。 Further, in the first muffler 19 attached to the main bearing 18 shown in FIG. 1 and FIG. 2, the discharge case 28 in the sealed case provided for discharging the high-temperature and high-pressure gas refrigerant stored inside into the sealed case 10. The area is S2 [mm 2 ].
 ここで、上記連通路30の総断面積S1より、上記第1のマフラ19に設けられる密閉ケース内吐出部28の面積S2を、大に設定する、つまり、S1<S2に設定する。 Here, from the total cross-sectional area S1 of the communication passage 30, the area S2 of the discharge part 28 in the sealed case 28 provided in the first muffler 19 is set large, that is, S1 <S2.
 したがって、第1のマフラ19に設けられる密閉ケース内吐出部28から密閉ケース10内に放出される高温高圧のガス冷媒量が、第2のマフラ22から連通路30を介して第1のマフラ19に導かれるガス冷媒量を上回る。 Therefore, the amount of the high-temperature and high-pressure gas refrigerant released from the discharge part 28 in the sealed case 10 provided in the first muffler 19 into the sealed case 10 is changed from the second muffler 22 through the communication path 30 to the first muffler 19. The amount of gas refrigerant led to
 密閉ケース内吐出部28においてガス冷媒の通路抵抗を増やすことなく密閉ケース10内に放出でき、シリンダ室17における過圧縮状態を回避して、効率の向上化を図ることができる。特に、コンパクトサイズの圧縮機を高速回転させ、大能力を発揮する場合に有効である。 The discharge part 28 in the sealed case can be discharged into the sealed case 10 without increasing the passage resistance of the gas refrigerant, avoiding an overcompressed state in the cylinder chamber 17 and improving efficiency. This is particularly effective when a compact compressor is rotated at a high speed and exhibits high performance.
 さらに、図1および図2に示すように、2シリンダタイプと1シリンダタイプのいずれの圧縮機1,1Aにおいても、電動機部11における固定子16の固定子鉄心16aの軸方向長さHに対して、固定子鉄心16aの一端面である上端面から密閉ケース10の一端面までの寸法をA、固定子鉄心16aの他端面である下端面から圧縮機構部12を密閉ケース10に固着する部材、すなわち2シリンダタイプで第1のシリンダ17A、1シリンダタイプでシリンダ17の、端面までの距離をBとしたとき、つぎの(1)式を満足するように設定する。 
        0.5 < B/A < 1   …… (1)
 以下、上記(1)式について、2シリンダタイプの圧縮機1に適用して説明するが、説明を省略する1シリンダタイプの圧縮機1Aについても、全く同様の条件となる。 
 すなわち、上述のように第1のマフラ19に設けられる密閉ケース内吐出部28の面積S2を連通路30の総断面積S1よりも大と設定することにより、つまり、S1<S2と設定することにより、通路抵抗の減少を図り、効率向上が得られる。しかしながら、その反面、第1のマフラ19におけるガス冷媒の騒音低減効果が少なくなり、騒音の悪化が懸念される。
Further, as shown in FIG. 1 and FIG. 2, in both the 2-cylinder type and 1-cylinder type compressors 1 and 1A, the axial length H of the stator core 16a of the stator 16 in the motor unit 11 is determined. The dimension from the upper end surface, which is one end surface of the stator core 16a, to the one end surface of the sealed case 10, and the member for fixing the compression mechanism 12 to the sealed case 10 from the lower end surface, which is the other end surface of the stator core 16a. That is, when the distance to the end surface of the first cylinder 17A for the 2-cylinder type and the cylinder 17 for the 1-cylinder type is B, the following equation (1) is set to be satisfied.
0.5 <B / A <1 (1)
Hereinafter, the expression (1) is applied to the two-cylinder type compressor 1, but the same conditions apply to the one-cylinder type compressor 1 </ b> A that is not described.
That is, by setting the area S2 of the discharge part 28 in the sealed case 28 provided in the first muffler 19 as described above to be larger than the total cross-sectional area S1 of the communication passage 30, that is, S1 <S2. As a result, the passage resistance can be reduced and the efficiency can be improved. However, on the other hand, the noise reduction effect of the gas refrigerant in the first muffler 19 is reduced, and there is a concern about noise deterioration.
 そこで、第1のシリンダ17Aから固定子鉄心16aの下端面までの距離Bを大きくして、第1のマフラ19に設けられる密閉ケース内吐出部28から高温高圧のガス冷媒が放出される下部空間ボリュームを大きくする。なお、密閉ケース10は、略円筒形であり、密閉ケース10の内面によって規定される空間も略円筒形である。そして、密閉ケース10の内面において第1のシリンダ17Aから固定子鉄心16aまでの範囲の部分よって規定される空間は、円筒形である。 Therefore, the lower space where the distance B from the first cylinder 17A to the lower end surface of the stator core 16a is increased and the high-temperature and high-pressure gas refrigerant is discharged from the discharge part 28 in the sealed case provided in the first muffler 19. Increase the volume. The sealed case 10 is substantially cylindrical, and the space defined by the inner surface of the sealed case 10 is also substantially cylindrical. And the space prescribed | regulated by the part of the range from the 1st cylinder 17A to the stator core 16a in the inner surface of the airtight case 10 is cylindrical.
 このことで、第1のマフラ19における密閉ケース内吐出部28から放出されるガス冷媒の脈動を減少させることができて、騒音の悪化が抑制される。 This makes it possible to reduce the pulsation of the gas refrigerant discharged from the discharge part 28 in the sealed case in the first muffler 19 and suppress noise deterioration.
 しかしながら、ただ単純に、第1のシリンダ17Aから固定子鉄心16aまでの距離Bを大きくして下部空間ボリュームを大きくすると、第1のシリンダ17Aから固定子16と回転子15までの距離を、より大きくすることになる。運転したときの回転子15の触れ回りが大きくなり、騒音と振動が大きくなることに繋がる。 However, simply increasing the distance B from the first cylinder 17A to the stator core 16a to increase the lower space volume further increases the distance from the first cylinder 17A to the stator 16 and the rotor 15. Will be bigger. Touching of the rotor 15 during operation increases, leading to increased noise and vibration.
 そのため、騒音の悪化が抑制できる B/A < 1 を上限の条件に採用した。 Therefore, B / A <1, which can suppress the deterioration of noise, was adopted as the upper limit condition.
 B/Aの条件(0.5 < B/A< 1)は、以下の[表1]と、図5から求められる。 
Figure JPOXMLDOC01-appb-T000001
The condition of B / A (0.5 <B / A <1) is obtained from [Table 1] below and FIG.
Figure JPOXMLDOC01-appb-T000001
 騒音値の単位は、db(デシベル)である。はじめに、[表1]から説明すると、No.1の従来例は、S1がS2よりも大きく、つまり、本実施形態とは逆であり、B/Aは0.4である。 
 これに対して、[表1]のNo.2~No.5の本実施形態では上述の通り、S1よりS2を大きくしたうえで、B/Aのみを0.6~0.9の範囲で、0.1ずつの変化させたものである。
The unit of the noise value is db (decibel). First, from [Table 1], No. 1 will be described. In the conventional example of S1, S1 is larger than S2, that is, opposite to the present embodiment, and B / A is 0.4.
On the other hand, No. in [Table 1]. 2 to No. In this embodiment of FIG. 5, as described above, S2 is made larger than S1, and only B / A is changed by 0.1 in the range of 0.6 to 0.9.
 また、主軸受18に設けられる第1の吐出孔25aの面積をS3[mm]としたとき、第1のマフラ19に設けられる密閉ケース内吐出部28の面積S2[mm]は、連通路30の総断面積S1[mm]と第1の吐出孔25aの面積S3[mm]との総和を越えないようにされている。つまり、S2<S1+S3に設定されている。 Further, when the area of the first discharge hole 25a provided in the main bearing 18 is S3 [mm 2 ], the area S2 [mm 2 ] of the discharge part 28 in the sealed case provided in the first muffler 19 is The total cross-sectional area S1 [mm 2 ] of the passage 30 and the area S3 [mm 2 ] of the first discharge hole 25a are not exceeded. That is, S2 <S1 + S3 is set.
 表1から、従来例と本実施形態とは、騒音値の相違が1db(デシベル)以下となり、ほとんど同一の結果が得られた。したがって、[表1]のNo.2~No.5の本実施形態は、騒音を増大することなしに通路抵抗を減少して、効率の高い圧縮をなすことができる。 From Table 1, the difference in noise value between the conventional example and the present embodiment was 1 db (decibel) or less, and almost the same result was obtained. Therefore, No. of [Table 1]. 2 to No. This embodiment of 5 can reduce the passage resistance without increasing the noise, and can perform highly efficient compression.
 一方、[表1]のNo.6~No.10の比較例は、上記本実施形態のものに対して、B/Aのみを変化させたものである。その結果、B/Aが、本実施形態よりも小さいNo.6の0.4およびNo.7の0.5のものと、本実施形態よりも大きいNo.8の1.0およびNo.9の1.2のものは、いずれも騒音値が、No.1の従来例およびNo.2~No.5の本実施形態のものよりも大きくなっている。 On the other hand, No. in [Table 1]. 6-No. Ten comparative examples are obtained by changing only B / A with respect to those of the present embodiment. As a result, No. B / A is smaller than that of the present embodiment. 6 of 0.4 and No. 6 No. 7 of 0.5 and No. larger than this embodiment. 8 of 1.0 and No. 8 No. 9 of 1.2 has a noise level of no. No. 1 prior art and No. 1 2 to No. 5 is larger than that of the present embodiment.
 また、[表1]のNo.10の比較例は、S1<S2であり、B/AがNo.2の本実施形態のものと同じ0.6であるが、S2>S1+S3とした場合の騒音測定値である。この結果、No.10の比較例は、No.1の従来例およびNo.2の本実施形態のものよりも大きくなっている。 In addition, No. in [Table 1]. The comparative example of 10 is S1 <S2, and B / A is No.10. The noise measurement value is 0.6 when S2> S1 + S3. As a result, no. The comparative example of No. 10 No. 1 prior art and No. 1 2 is larger than that of the present embodiment.
 これは、第1のマフラに設けられる密閉ケース内吐出部の面積S2が大き過ぎると、通路抵抗の低減効果は増大するものの、第1のマフラ内での騒音低減効果がほとんど得られず、固定子鉄心の下部の下部空間ボリュームのみでは騒音を低減しきれないため、と考えられる。 This is because if the area S2 of the discharge part in the sealed case provided in the first muffler is too large, the effect of reducing the passage resistance is increased, but the effect of reducing the noise in the first muffler is hardly obtained and fixed. This is thought to be because noise cannot be reduced only by the lower space volume below the core.
 また、図5では、本実施形態と比較例の数例における騒音試験の結果を示す。 
 条件として、2シリンダタイプの密閉型回転式圧縮機であり、冷凍サイクルに用いる冷媒はR410Aである。各シリンダの合計の排除容積は17.5cm/revであり、比較的小型の圧縮機である。
Moreover, in FIG. 5, the result of the noise test in several examples of this embodiment and a comparative example is shown.
The condition is a two-cylinder type hermetic rotary compressor, and the refrigerant used in the refrigeration cycle is R410A. The total displacement volume of each cylinder is 17.5 cm 3 / rev, which is a relatively small compressor.
 運転回転数は90回転/秒、圧力条件として、吐出圧力が3.2MPa、吸込み圧力が0.9MPaである。上述した連通路30の総断面積S1は85mmで、第1のマフラ19に設けられる密閉ケース内吐出部28の面積S2は100mmである。なお、密閉ケース10の内径は110mmである。 The operating rotational speed is 90 rpm, and the pressure conditions are a discharge pressure of 3.2 MPa and a suction pressure of 0.9 MPa. The total cross-sectional area S1 of the communication path 30 described above is 85 mm 2 , and the area S2 of the discharge part 28 in the sealed case provided in the first muffler 19 is 100 mm 2 . The inner diameter of the sealed case 10 is 110 mm.
 図において、黒塗り棒グラフは、B/Aが0.4であり、先に説明した比較例に相当する。白抜き棒グラフは、B/Aが0.6であり、本実施形態に相当する。ハッチング棒グラフは、B/Aが1,2であり、先に説明した比較例に相当する。 
 その結果、B/Aを黒塗り棒グラフで示す0.4に設定して、シリンダ17Aから固定子鉄心16aの下端面に至る空間ボリームの値を小さくすると、特に4KHz以上の高い周波数において、白抜き棒グラフに示す本実施形態よりも騒音が大となる。
In the figure, the black bar graph has B / A of 0.4, which corresponds to the comparative example described above. The white bar graph has a B / A of 0.6 and corresponds to this embodiment. The hatched bar graph has B / A of 1 and 2, and corresponds to the comparative example described above.
As a result, when B / A is set to 0.4 indicated by a black bar graph and the value of the space volume from the cylinder 17A to the lower end surface of the stator core 16a is reduced, the white area is particularly clear at a high frequency of 4 KHz or higher. Noise is larger than in the present embodiment shown in the bar graph.
 これは、空間ボリュームBの値が小さいために、第1のマフラ19に設けられる密閉ケース内吐出部28を介して密閉ケース10内に放出されるガス冷媒による騒音に対する、この空間での騒音低減効果が小さいためと考えられる。 This is because the value of the space volume B is small, so that the noise in this space is reduced with respect to the noise caused by the gas refrigerant discharged into the sealed case 10 through the sealed case discharge portion 28 provided in the first muffler 19. This is probably because the effect is small.
 また、B/Aをハッチング棒グラフに示す1.2にして、必要以上に第1のシリンダ17Aから固定子16に至る空間ボリュームBの値を大きくすると、500Hzとそれ以下の低周波数の騒音が、本実施形態よりも大となる。 Further, when B / A is set to 1.2 shown in the hatching bar graph and the value of the spatial volume B from the first cylinder 17A to the stator 16 is increased more than necessary, low frequency noise of 500 Hz or less is obtained. It becomes larger than this embodiment.
 これは、第1のシリンダ17Aから固定子鉄心16aの端面までの空間ボリュームBを大きくすることで、固定子16とともに回転子15が、より上方に位置してしまう。したがって、電動機部11を駆動するときの回転子15の振れ回りが大きくなり、圧縮機騒音が増大するものと考えられる。 This is because the rotor 15 is positioned more together with the stator 16 by increasing the space volume B from the first cylinder 17A to the end face of the stator core 16a. Therefore, it is considered that the swing of the rotor 15 when driving the motor unit 11 is increased, and the compressor noise is increased.
 以上の結果から、S1よりS2を大としたうえで、つまりS1<S2としたうえで、(1)式である 0.5<B/A<1 の条件を満足することで、第1のマフラに設けられる密閉ケース内吐出部の流路面積を拡大して通路抵抗の減少を図り、騒音の悪化を抑制しながら効率の良い密閉型回転式圧縮機を提供できる。 From the above results, when S2 is made larger than S1, that is, S1 <S2, and satisfying the condition of 0.5 <B / A <1 that is the expression (1), the first By enlarging the flow path area of the discharge part in the sealed case provided in the muffler, the passage resistance can be reduced, and an efficient hermetic rotary compressor can be provided while suppressing the deterioration of noise.
 なお、寸法Bの設定にあたって、圧縮機構部12を密閉ケース10に固着する部材として第1のシリンダ17Aを適用し、この上端面から固定子16下端面までの距離としたが、これに限定されない。 
 たとえば、主軸受のフランジ部を拡大して密閉ケースの内周壁に固着する圧縮機もある。このとき第1のシリンダは、必要最小径に形成され、密閉ケース内周壁よりもはるかに小さい。すなわち、このような圧縮機においては、圧縮機構部を密閉ケースに固着する部材として、「主軸受」が適用されることになる。
In setting the dimension B, the first cylinder 17A is applied as a member for fixing the compression mechanism portion 12 to the sealed case 10, and the distance from the upper end surface to the lower end surface of the stator 16 is set, but the present invention is not limited to this. .
For example, there is a compressor in which the flange portion of the main bearing is enlarged and fixed to the inner peripheral wall of the sealed case. At this time, the first cylinder is formed to have a required minimum diameter and is much smaller than the inner peripheral wall of the sealed case. That is, in such a compressor, a “main bearing” is applied as a member for fixing the compression mechanism portion to the sealed case.
 さらに、以下の条件も満足しなければならない。 
 2シリンダタイプの圧縮機1では第1、第2のシリンダ室D1,D2のそれぞれの排除容積を、1シリンダタイプの圧縮機1Aではシリンダ室Dの排除容積を、V2[mm]としたとき、第1のマフラ19に設けられる密閉ケース内吐出部28の面積S2[mm]との関係は、以下の(2)式を満足するように設定する。 
    V2[mm] / S2[mm] < 100[mm] ……(2)
 これは、図6に示すように、V2[mm]/S2[mm]を横軸にとり、圧力損失を縦軸にとって変化を見ると、V2[mm]/S2[mm]が100[mm]の直前から圧力損失が急激に大になることが分った。そこで、V2[mm]/S2[mm]が100[mm]を越えないように設定する。つまり、V2[mm]/S2[mm]<100[mm]に設定する。
In addition, the following conditions must be satisfied:
When the displacement volume of each of the first and second cylinder chambers D1 and D2 in the 2-cylinder type compressor 1 is V2 [mm 3 ] in the 1-cylinder compressor 1A, the displacement volume of the cylinder chamber D is V2 [mm 3 ]. The relationship with the area S2 [mm 2 ] of the discharge part 28 in the sealed case provided in the first muffler 19 is set so as to satisfy the following expression (2).
V2 [mm 3 ] / S2 [mm 2 ] <100 [mm] (2)
As shown in FIG. 6, when V2 [mm 3 ] / S2 [mm 2 ] is taken on the horizontal axis and the pressure loss is taken on the vertical axis, the change in V2 [mm 3 ] / S2 [mm 2 ] is 100. It was found that pressure loss suddenly increased immediately before [mm]. Therefore, V2 [mm 3 ] / S2 [mm 2 ] is set so as not to exceed 100 [mm]. That is, V2 [mm 3 ] / S2 [mm 2 ] <100 [mm] is set.
 図7(A)は、第2の実施形態に係る、2シリンダタイプの圧縮機1に用いられる第1のシリンダ17Aの平面図。図7(B)は、図7(A)のA1-O-A2線に沿う縦断面図。図8は、第1のシリンダ17Aの一部斜視図である。なお、シリンダ17A以外に構造は、第1の実施形態と同じであるので、第1の実施形態と同じ符号を付して説明を省略する。特に、2シリンダタイプの圧縮機1に限って、以下のように設定される。 
 第1のシリンダ17Aにおける第1のシリンダ室D1には、吐出用切欠き29が設けられる。第2のシリンダ室D2も同様であるが、説明は省略。すなわち、第1のシリンダ室D1の半径をR1とする第1のシリンダ17Aにブレード溝31が設けられる。
FIG. 7A is a plan view of the first cylinder 17A used in the two-cylinder type compressor 1 according to the second embodiment. FIG. 7B is a longitudinal sectional view taken along the line A1-O-A2 of FIG. FIG. 8 is a partial perspective view of the first cylinder 17A. Since the structure other than the cylinder 17A is the same as that of the first embodiment, the same reference numerals as those of the first embodiment are used and description thereof is omitted. In particular, only the 2-cylinder type compressor 1 is set as follows.
A discharge notch 29 is provided in the first cylinder chamber D1 of the first cylinder 17A. The same applies to the second cylinder chamber D2, but the description is omitted. That is, the blade groove 31 is provided in the first cylinder 17A in which the radius of the first cylinder chamber D1 is R1.
 上記ブレード溝31の一側部に、上記アキュームレータ5から延出される一方の冷媒管Paが接続する吸込み孔32が設けられる。この吸込み孔32とはブレード溝31を介した反対側の部位で、ブレード溝31に対して中心軸から所定角度θ1離間した位置に、吐出用切欠き29が設けられる。 A suction hole 32 to which one refrigerant pipe Pa extending from the accumulator 5 is connected is provided on one side of the blade groove 31. A discharge notch 29 is provided at a position opposite to the suction hole 32 via the blade groove 31 and at a predetermined angle θ1 from the center axis with respect to the blade groove 31.
 上記吐出用切欠き29は、第1のシリンダ17Aの端面に対して角度αだけ傾いた状態で、第1のシリンダの端面から深さ寸法hつまり高さ寸法hに設けられる。ここでは図示していないが、主軸受において吐出用切欠き29に対向する部位に第1の吐出孔が設けられ、第1の吐出孔を第1の吐出弁機構が開閉することは、上述のとおりである。 The discharge notch 29 is provided at a depth dimension h, that is, a height dimension h from the end face of the first cylinder in a state inclined by an angle α with respect to the end face of the first cylinder 17A. Although not shown here, the first discharge hole is provided in a portion of the main bearing that faces the discharge notch 29, and the first discharge valve mechanism opens and closes the first discharge hole as described above. It is as follows.
 上記吐出用切欠き29における第1のシリンダ17Aの一端面からの深さ寸法hつまり高さ寸法hは、第1のシリンダ17Aの全高Hに対して、つぎの(3)式を満足するように設定する。 
        H/2 ≦ h ≦ H   ……(3)
 すなわち、第1のシリンダ室D1で圧縮されたガス冷媒が、第1のシリンダ室D1の内周壁一部に設けられる吐出用切欠き29と、主軸受18に設けられる第1の吐出孔25aを介して第1の吐出弁機構26aから第1のマフラ19に吐出される。 
 特に、ガス冷媒が第1の吐出孔25aを通過するときに、第1の吐出孔25aおよび近傍の通路抵抗により過圧縮状態が発生するが、第1のシリンダ室D1に設けた吐出用切欠き29の形状と大きさによって過圧縮量は大きく変化する。
The depth dimension h from the one end face of the first cylinder 17A in the discharge notch 29, that is, the height dimension h, satisfies the following expression (3) with respect to the total height H of the first cylinder 17A. Set to.
H / 2 ≦ h ≦ H (3)
That is, the gas refrigerant compressed in the first cylinder chamber D1 passes through the discharge notch 29 provided in a part of the inner peripheral wall of the first cylinder chamber D1 and the first discharge hole 25a provided in the main bearing 18. And is discharged from the first discharge valve mechanism 26 a to the first muffler 19.
In particular, when the gas refrigerant passes through the first discharge hole 25a, an overcompressed state occurs due to the first discharge hole 25a and the nearby passage resistance, but the discharge notch provided in the first cylinder chamber D1. The amount of overcompression varies greatly depending on the shape and size of 29.
 従来、吐出用切欠きの深さ寸法hは、第1のシリンダの全高Hつまり厚さ寸法Hの半分よりも小に形成されていて、つまり、h<H/2に形成されていて、特に第1のシリンダ室においてブレード溝31を挟んで吐出用切欠きに対して反対側のガスが吐出用切欠き側に円滑に流れない。このことから、第1のシリンダ室のガス冷媒が必要以上に圧縮され、過圧縮状態となっている。 Conventionally, the depth dimension h of the discharge notch is formed to be smaller than the total height H of the first cylinder, that is, half of the thickness dimension H, that is, it is formed to be h <H / 2. In the first cylinder chamber, the gas on the opposite side of the discharge notch across the blade groove 31 does not flow smoothly to the discharge notch. For this reason, the gas refrigerant in the first cylinder chamber is compressed more than necessary and is in an overcompressed state.
 そこで、本実施形態では、吐出用切欠き29の深さ寸法hつまり高さ寸法hを、第1のシリンダ17Aの全高Hに対して(3)式である H/2≦h≦H の関係とすることで、第1のシリンダ室D1で圧縮されたガス冷媒の、特に第1のシリンダ室においてブレード溝31を挟んで吐出用切欠きに対して反対側にあるガス冷媒が吐出用切欠き29へスムーズに流れ易くなり、高速回転時の過圧縮量を大幅に低減できる。 Therefore, in the present embodiment, the depth dimension h, that is, the height dimension h of the discharge notch 29 is expressed by the following expression (3) with respect to the total height H of the first cylinder 17A: H / 2 ≦ h ≦ H As a result, the gas refrigerant compressed in the first cylinder chamber D1, particularly the gas refrigerant on the opposite side to the discharge notch across the blade groove 31 in the first cylinder chamber, is notched for discharge. It becomes easy to flow smoothly to 29, and the amount of overcompression during high-speed rotation can be greatly reduced.
 図9は、第3の実施形態に係る、2シリンダタイプの圧縮機1に用いられる第1のシリンダ17Aの縦断面図。図10は、第1のシリンダ17Aの一部斜視図である。第1のシリンダ17A以外の構造は、第1の実施形態と同じであるので、説明を省略する。 FIG. 9 is a longitudinal sectional view of the first cylinder 17A used in the two-cylinder type compressor 1 according to the third embodiment. FIG. 10 is a partial perspective view of the first cylinder 17A. Since the structure other than the first cylinder 17A is the same as that of the first embodiment, the description thereof is omitted.
 特に、2シリンダタイプの圧縮機1に限って、以下のように設定される。 
 第1のシリンダ室D1の同位置に設けられる吐出用切欠き29Aは、第1のシリンダ17Aの端面に対して角度αだけ傾いた状態で、第1のシリンダ17Aの端面から深さ寸法h1まで設けられ、さらに、第1のシリンダ17Aの端面に対して角度βだけ傾いた状態で、第1のシリンダ17Aの端面から深さ寸法h2まで設けられる。第2のシリンダ室D2も同様であるが、説明は省略。
In particular, only the 2-cylinder type compressor 1 is set as follows.
The discharge notch 29A provided at the same position in the first cylinder chamber D1 is inclined from the end surface of the first cylinder 17A by the angle α to the depth dimension h1 while being inclined with respect to the end surface of the first cylinder 17A. Furthermore, it is provided from the end surface of the first cylinder 17A to the depth dimension h2 in a state inclined by an angle β with respect to the end surface of the first cylinder 17A. The same applies to the second cylinder chamber D2, but the description is omitted.
 このように、吐出用切欠き29Aを多段階に形成し、かつ全体の深さ寸法h2を、(3)式を満足するよう H/2≦h2≦H の関係とすることは、言うまでもない。 Thus, it goes without saying that the discharge notches 29A are formed in multiple stages and the entire depth dimension h2 is in a relationship of H / 2 ≦ h2 ≦ H so as to satisfy the expression (3).
 第1のシリンダ室D1において、吐出用切欠き29Aにあるガス冷媒は圧縮工程においても圧縮されず、いわゆる死容積となる。再び、ガス冷媒が吸込み孔32を介して第1のシリンダ室D1に吸込まれた状態で吐出用切欠き29Aに残るガス冷媒が再膨張し、その分のガス冷媒が吸込みを制限されて損失となる。 In the first cylinder chamber D1, the gas refrigerant in the discharge notch 29A is not compressed even in the compression step, and becomes a so-called dead volume. Again, the gas refrigerant remaining in the discharge notch 29A is re-expanded in a state where the gas refrigerant is sucked into the first cylinder chamber D1 through the suction hole 32, and the corresponding amount of gas refrigerant is restricted from being sucked and lost. Become.
 吐出用切欠き29Aを、(3)式である H/2≦h2≦H の関係とし、多段階に形成することで、吐出用切欠き29Aの死容積を小さく抑えながら、主軸受18に設けられる第1の吐出孔25aにスムーズにガス冷媒を案内できる。したがって、再膨張損失を抑えて、過圧縮量が大幅に低減する。 The discharge notch 29A is provided in the main bearing 18 while keeping the dead volume of the discharge notch 29A small by forming the discharge notch 29A in a multi-stage relationship with the relationship of H / 2 ≦ h2 ≦ H in the formula (3). The gas refrigerant can be smoothly guided to the first discharge holes 25a. Therefore, re-expansion loss is suppressed and the amount of overcompression is greatly reduced.
 次に、第4の実施形態に係る第1のマフラを、図12を用いて説明する。本実施形態において第1の実施形態と同様の機能を有する構成は、第1の実施形態と同一の符号を付して説明を省略する。本実施形態では、密閉ケース内吐出部28の形状が第1の実施形態と異なる。他の構造は、第1の実施形態と同じである。 Next, a first muffler according to the fourth embodiment will be described with reference to FIG. In this embodiment, configurations having the same functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted. In the present embodiment, the shape of the discharge part 28 in the sealed case is different from that of the first embodiment. Other structures are the same as those in the first embodiment.
 図12は、本実施形態の第1のマフラ19を示す平面図である。図12に示すように、本実施形態では、密閉ケース内吐出部28は、複数設けられており、複数の一例として、4つ設けられている。また、各密閉ケース内吐出部28の形状は、第1の実施形態と同様に、円である。密閉ケース内吐出部28の総面積は、これら複数の密閉ケース内吐出部28の面積の合計となる。本実施形態では、第1の実施形態と同様の効果が得られる。なお、本実施形態の第1のマフラ19は、第2,3の実施形態に用いられてもよい。 FIG. 12 is a plan view showing the first muffler 19 of the present embodiment. As shown in FIG. 12, in the present embodiment, a plurality of in-sealed case discharge sections 28 are provided, and four are provided as an example. Moreover, the shape of the discharge part 28 in each sealed case is a circle, as in the first embodiment. The total area of the discharge part 28 in the sealed case is the sum of the areas of the discharge parts 28 in the plurality of sealed cases. In the present embodiment, the same effect as in the first embodiment can be obtained. Note that the first muffler 19 of the present embodiment may be used in the second and third embodiments.
 次に、第5の実施形態に係る第1のマフラを、図13を用いて説明する。本実施形態において第1の実施形態と同様の機能を有する構成は、第1の実施形態と同一の符号を付して説明を省略する。本実施形態では、密閉ケース内吐出部28が第1の実施形態と異なる。他の構造は、第1の実施形態と同じである。 Next, a first muffler according to the fifth embodiment will be described with reference to FIG. In this embodiment, configurations having the same functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted. In the present embodiment, the discharge part 28 in the sealed case is different from the first embodiment. Other structures are the same as those in the first embodiment.
 図13は、本実施形態の第1のマフラ19を示す平面図である。図13に示すように、本実施形態では、密閉ケース内吐出部28は、主軸受18と第1のマフラ19との間に形成される隙間が密閉ケース内吐出部28として機能する。この点について、具体的に説明する。 FIG. 13 is a plan view showing the first muffler 19 of the present embodiment. As shown in FIG. 13, in this embodiment, the gap formed between the main bearing 18 and the first muffler 19 functions as the sealed case discharge part 28 in the sealed case discharge part 28. This point will be specifically described.
 本実施形態では、第1のマフラ19の内径は、主軸受18の外径よりも大きい。このため、第1のマフラ19内に主軸受18が挿入されると、第1のマフラ19と主軸受18との間に隙間が設けられる。この隙間が密閉ケース内吐出部28として機能する。本実施形態では、第1のマフラ19と主軸受18との間に設けられる隙間は、環状に一周つながっている。つまり、本実施形態では、密閉ケース内吐出部28は、環状に一周つながる形状である。本実施形態では、第1の実施形態と同様の効果が得られる。なお、本実施形態の第1のマフラ19は、第2,3の実施形態に用いられてもよい。 In the present embodiment, the inner diameter of the first muffler 19 is larger than the outer diameter of the main bearing 18. For this reason, when the main bearing 18 is inserted into the first muffler 19, a gap is provided between the first muffler 19 and the main bearing 18. This gap functions as the discharge part 28 in the sealed case. In the present embodiment, the gap provided between the first muffler 19 and the main bearing 18 is connected in a circle. That is, in this embodiment, the discharge part 28 in the sealed case has a shape that is connected in a circular manner. In the present embodiment, the same effect as in the first embodiment can be obtained. Note that the first muffler 19 of the present embodiment may be used in the second and third embodiments.
 また、上記のように密閉ケース内吐出部28は、第1,4の実施形態のように、主軸受18から離れた部分に1つまたは複数設けられるものと、第5の実施形態のように第1のマフラ19と主軸受18との間の隙間とが組み合わされてもよい。 Further, as described above, one or a plurality of the discharge parts 28 in the sealed case are provided in a part away from the main bearing 18 as in the first and fourth embodiments, and as in the fifth embodiment. A gap between the first muffler 19 and the main bearing 18 may be combined.
 以上、本実施形態を説明したが、上述の実施形態は、例として提示したものであり、実施形態の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、要旨を逸脱しない範囲で、種々の省略、置換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As mentioned above, although this embodiment was described, the above-mentioned embodiment is shown as an example and does not intend limiting the range of embodiment. The novel embodiment can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 10…密閉ケース、12…圧縮機構部、13…回転軸、11…電動機部、1…密閉型回転式圧縮機(2シリンダタイプ)、18…主軸受、22…副軸受、D1…第1のシリンダ室、D2…第2のシリンダ室、17A…第1のシリンダ、17B…第2のシリンダ、D…シリンダ室、26a…第1の吐出弁機構、26b…第2の吐出弁機構、19…第1のマフラ、22…第2のマフラ、30…連通路、16…固定子、15…回転子、25a…第1の吐出孔、29…吐出用切欠き、1A…密閉型回転式圧縮機(1シリンダタイプ)、2…凝縮器、3…膨張装置、4…蒸発器、P…冷媒管。 DESCRIPTION OF SYMBOLS 10 ... Sealed case, 12 ... Compression mechanism part, 13 ... Rotating shaft, 11 ... Electric motor part, 1 ... Sealed rotary compressor (2 cylinder type), 18 ... Main bearing, 22 ... Sub bearing, D1 ... 1st Cylinder chamber, D2 ... second cylinder chamber, 17A ... first cylinder, 17B ... second cylinder, D ... cylinder chamber, 26a ... first discharge valve mechanism, 26b ... second discharge valve mechanism, 19 ... 1st muffler, 22 ... 2nd muffler, 30 ... Communication path, 16 ... Stator, 15 ... Rotor, 25a ... 1st discharge hole, 29 ... Notch for discharge, 1A ... Hermetic rotary compressor (1 cylinder type), 2 ... condenser, 3 ... expansion device, 4 ... evaporator, P ... refrigerant pipe.

Claims (9)

  1.  密閉ケース内の下部に圧縮機構部が収容されるとともに上部に電動機部が収容され、回転軸を介して上記電動機部が上記圧縮機構部に連結される密閉型回転式圧縮機であり、
     上記圧縮機構部は、
     内径部をシリンダ室として形成される1つのシリンダもしくは、2つのシリンダと、
     上記回転軸を軸支する主軸受および副軸受と、上記主軸受と副軸受のそれぞれに設けられ、上記シリンダ室で圧縮されたガス冷媒を吐出案内する第1の吐出弁機構および第2の吐出弁機構と、
     上記第1の吐出弁機構を覆い、一旦、上記シリンダ室で圧縮されたガス冷媒を受け入れて消音し、しかる後、密閉ケース内吐出部を介して上記密閉ケース内に放出する第1のマフラと、
     上記第2の吐出弁機構を覆い、一旦、上記シリンダ室で圧縮されたガス冷媒を受け入れて消音する第2のマフラと、
     上記副軸受から上記主軸受に亘って設けられ、上記第2のマフラ内のガス冷媒を導き、上記第1のマフラ内のガス冷媒に合流させる連通路とを具備し、
     上記連通路の総断面積をS1[mm]、上記第1のマフラに設けられる上記密閉ケース内吐出部の総面積をS2[mm]としたとき、S1よりS2を大(S1<S2)とし、
     上記電動機部は、上記密閉ケース内に挿嵌される固定子と、上記回転軸に嵌着され外周壁が上記固定子内周壁とは狭小の間隙を存して設けられる回転子とを具備し、
     上記固定子の固定子鉄心の上端面から上記密閉ケースの一端面までの寸法をA、上記固定子鉄心の下端面から上記圧縮機構部を上記密閉ケースに固着する部材の端面までの距離をBとしたとき、
    つぎの(1)式を満足するように設定されることを特徴とする密閉型回転式圧縮機。
              0.5 < B/A < 1   …… (1)
    A hermetic rotary compressor in which a compression mechanism portion is housed in a lower portion in a sealed case and an electric motor portion is housed in an upper portion, and the electric motor portion is connected to the compression mechanism portion via a rotating shaft;
    The compression mechanism is
    One cylinder or two cylinders formed with an inner diameter portion as a cylinder chamber;
    A first discharge valve mechanism and a second discharge valve provided on each of the main bearing and the sub-bearing for supporting the rotating shaft, and for discharging and guiding the gas refrigerant compressed in the cylinder chamber; A valve mechanism;
    A first muffler that covers the first discharge valve mechanism, temporarily receives the gas refrigerant compressed in the cylinder chamber and silences it, and then discharges it into the sealed case through the discharge part in the sealed case; ,
    A second muffler that covers the second discharge valve mechanism and temporarily receives and silences the gas refrigerant compressed in the cylinder chamber;
    A communication path provided from the auxiliary bearing to the main bearing, for guiding the gas refrigerant in the second muffler and merging with the gas refrigerant in the first muffler,
    When the total cross-sectional area of the communication path is S1 [mm 2 ] and the total area of the discharge part in the sealed case provided in the first muffler is S2 [mm 2 ], S2 is larger than S1 (S1 <S2 )age,
    The motor section includes a stator that is inserted into the sealed case, and a rotor that is fitted to the rotating shaft and has an outer peripheral wall provided with a narrow gap from the stator inner peripheral wall. ,
    A dimension from the upper end surface of the stator core of the stator to one end surface of the sealing case is A, and a distance from the lower end surface of the stator core to the end surface of the member that fixes the compression mechanism portion to the sealing case is B. When
    A hermetic rotary compressor characterized by being set to satisfy the following equation (1).
    0.5 <B / A <1 (1)
  2.  上記主軸受に設けられ、上記第1の吐出弁機構によって開閉される第1の吐出孔の面積をS3[mm]としたとき、
     上記第1のマフラの上記密閉ケース内吐出部の総面積S2は、
     上記連通路の総断面積S1と、上記主軸受に設けられる上記第1の吐出孔の面積S3との総和を越えない( S2< S1 + S3 )
    ことを特徴とする請求項1記載の密閉型回転式圧縮機。
    When the area of the first discharge hole provided in the main bearing and opened and closed by the first discharge valve mechanism is S3 [mm 2 ],
    The total area S2 of the discharge part in the sealed case of the first muffler is:
    The sum total of the total cross-sectional area S1 of the communication path and the area S3 of the first discharge hole provided in the main bearing does not exceed (S2 <S1 + S3).
    The hermetic rotary compressor according to claim 1.
  3.  1つの上記シリンダ室の排除容積をV2[mm]としたとき、上記第1のマフラの密閉ケース内吐出部の総面積S2[mm]との関係は、つぎの(2)式を満足するように設定されることを特徴とする請求項1に記載の密閉型回転式圧縮機。
              V2[mm] / S2[mm] < 100[mm]   ……(2)
    When the excluded volume of one cylinder chamber is V2 [mm 3 ], the relationship with the total area S2 [mm 2 ] of the discharge part in the sealed case of the first muffler satisfies the following equation (2): 2. The hermetic rotary compressor according to claim 1, wherein the hermetic rotary compressor is set as described above.
    V2 [mm 3 ] / S2 [mm 2 ] <100 [mm] (2)
  4.  1つの上記シリンダ室の排除容積をV2[mm]としたとき、上記第1のマフラの密閉ケース内吐出部の総面積S2[mm]との関係は、つぎの(2)式を満足するように設定されることを特徴とする請求項2に記載の密閉型回転式圧縮機。
              V2[mm] / S2[mm] < 100[mm]   ……(2)
    When the excluded volume of one cylinder chamber is V2 [mm 3 ], the relationship with the total area S2 [mm 2 ] of the discharge part in the sealed case of the first muffler satisfies the following equation (2): The hermetic rotary compressor according to claim 2, wherein the hermetic rotary compressor is set to be.
    V2 [mm 3 ] / S2 [mm 2 ] <100 [mm] (2)
  5.  上記圧縮機構部が2つのシリンダを備え、
     上記主軸受の第1の吐出孔および副軸受の第2の吐出孔にそれぞれ連通するよう、シリンダ室周壁一部に吐出用切欠きが設けられ、
     上記吐出用切欠きの上記シリンダの一端面からの深さ(高さ)寸法hは、上記シリンダの全高(厚さ寸法)Hに対して、つぎの(3)式を満足するように設定される
    ことを特徴とする請求項1に記載の密閉型回転式圧縮機。
              H/2 ≦ h ≦ H    ……(3)
    The compression mechanism section includes two cylinders,
    A discharge notch is provided in a part of the peripheral wall of the cylinder chamber so as to communicate with the first discharge hole of the main bearing and the second discharge hole of the sub bearing, respectively.
    The depth (height) dimension h of the discharge notch from the one end surface of the cylinder is set so as to satisfy the following expression (3) with respect to the total height (thickness dimension) H of the cylinder. The hermetic rotary compressor according to claim 1.
    H / 2 ≦ h ≦ H (3)
  6.  上記圧縮機構部が2つのシリンダを備え、
     上記主軸受の第1の吐出孔および副軸受の第2の吐出孔にそれぞれ連通するよう、シリンダ室周壁一部に吐出用切欠きが設けられ、
     上記吐出用切欠きの上記シリンダの一端面からの深さ(高さ)寸法hは、上記シリンダの全高(厚さ寸法)Hに対して、つぎの(3)式を満足するように設定される
    ことを特徴とする請求項2に記載の密閉型回転式圧縮機。
              H/2 ≦ h ≦ H    ……(3)
    The compression mechanism section includes two cylinders,
    A discharge notch is provided in a part of the peripheral wall of the cylinder chamber so as to communicate with the first discharge hole of the main bearing and the second discharge hole of the sub bearing, respectively.
    The depth (height) dimension h of the discharge notch from the one end surface of the cylinder is set so as to satisfy the following expression (3) with respect to the total height (thickness dimension) H of the cylinder. The hermetic rotary compressor according to claim 2.
    H / 2 ≦ h ≦ H (3)
  7.  上記圧縮機構部が2つのシリンダを備え、
     上記主軸受の第1の吐出孔および副軸受の第2の吐出孔にそれぞれ連通するよう、シリンダ室周壁一部に吐出用切欠きが設けられ、
     上記吐出用切欠きの上記シリンダの一端面からの深さ(高さ)寸法hは、上記シリンダの全高(厚さ寸法)Hに対して、つぎの(3)式を満足するように設定される
    ことを特徴とする請求項3に記載の密閉型回転式圧縮機。
              H/2 ≦ h ≦ H    ……(3)
    The compression mechanism section includes two cylinders,
    A discharge notch is provided in a part of the peripheral wall of the cylinder chamber so as to communicate with the first discharge hole of the main bearing and the second discharge hole of the sub bearing, respectively.
    The depth (height) dimension h of the discharge notch from the one end surface of the cylinder is set so as to satisfy the following expression (3) with respect to the total height (thickness dimension) H of the cylinder. The hermetic rotary compressor according to claim 3.
    H / 2 ≦ h ≦ H (3)
  8.  上記圧縮機構部が2つのシリンダを備え、
     上記主軸受の第1の吐出孔および副軸受の第2の吐出孔にそれぞれ連通するよう、シリンダ室周壁一部に吐出用切欠きが設けられ、
     上記吐出用切欠きの上記シリンダの一端面からの深さ(高さ)寸法hは、上記シリンダの全高(厚さ寸法)Hに対して、つぎの(3)式を満足するように設定される
    ことを特徴とする請求項4に記載の密閉型回転式圧縮機。
              H/2 ≦ h ≦ H    ……(3)
    The compression mechanism section includes two cylinders,
    A discharge notch is provided in a part of the peripheral wall of the cylinder chamber so as to communicate with the first discharge hole of the main bearing and the second discharge hole of the sub bearing, respectively.
    The depth (height) dimension h of the discharge notch from the one end surface of the cylinder is set so as to satisfy the following expression (3) with respect to the total height (thickness dimension) H of the cylinder. The hermetic rotary compressor according to claim 4.
    H / 2 ≦ h ≦ H (3)
  9.  上記請求項1~8のうちのいずれか1項に記載の密閉型回転式圧縮機および、凝縮器と、膨張装置と、蒸発器とを、冷媒管を介して連通し、冷凍サイクルを構成することを特徴とする冷凍サイクル装置。 The hermetic rotary compressor according to any one of claims 1 to 8, the condenser, the expansion device, and the evaporator are connected via a refrigerant pipe to constitute a refrigeration cycle. A refrigeration cycle apparatus characterized by that.
PCT/JP2012/078100 2011-10-31 2012-10-31 Sealed rotary compressor and refrigeration cycle device WO2013065706A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280052229.9A CN103906928B (en) 2011-10-31 2012-10-31 Closed rotary compressor and refrigerating circulatory device
JP2013541798A JP5786030B2 (en) 2011-10-31 2012-10-31 Hermetic rotary compressor and refrigeration cycle equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-238854 2011-10-31
JP2011238854 2011-10-31

Publications (1)

Publication Number Publication Date
WO2013065706A1 true WO2013065706A1 (en) 2013-05-10

Family

ID=48192051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078100 WO2013065706A1 (en) 2011-10-31 2012-10-31 Sealed rotary compressor and refrigeration cycle device

Country Status (3)

Country Link
JP (1) JP5786030B2 (en)
CN (1) CN103906928B (en)
WO (1) WO2013065706A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053316A (en) * 2015-09-11 2017-03-16 株式会社富士通ゼネラル Rotary Compressor
CN107255077A (en) * 2017-07-31 2017-10-17 广东美芝制冷设备有限公司 Rotary compressor
CN107255078A (en) * 2017-07-31 2017-10-17 广东美芝制冷设备有限公司 Rotary compressor
JP2017531755A (en) * 2015-09-24 2017-10-26 クワントン メイヂー コンプレッサー カンパニー リミテッド Rotary compressor
JP2018009488A (en) * 2016-07-12 2018-01-18 株式会社富士通ゼネラル Rotary Compressor
WO2018051567A1 (en) * 2016-09-14 2018-03-22 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device
EP3324051A1 (en) * 2016-11-17 2018-05-23 Fujitsu General Limited Rotary compressor
JP2020153293A (en) * 2019-03-20 2020-09-24 東芝キヤリア株式会社 Rotation-type compressor and refrigeration cycle device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104165140A (en) * 2014-08-01 2014-11-26 广东美芝制冷设备有限公司 Rotary compressor
CN105351196A (en) * 2014-08-21 2016-02-24 洛阳中方实业有限公司 Miniature refrigeration compressor
CN104533796B (en) * 2014-12-22 2016-06-29 广东美芝制冷设备有限公司 Rotary compressor
AU2016225795B2 (en) * 2015-09-11 2020-03-05 Fujitsu General Limited Rotary compressor
CN105114317B (en) * 2015-09-24 2017-05-31 广东美芝制冷设备有限公司 Rotary compressor
WO2018094571A1 (en) * 2016-11-22 2018-05-31 广东美芝制冷设备有限公司 Rotary compressor and cooling circulation device
CN107387414B (en) * 2017-07-31 2021-01-26 广东美芝制冷设备有限公司 Compression assembly and multi-cylinder rotary compressor
CN111271281B (en) * 2018-12-05 2022-03-15 广东美芝精密制造有限公司 Compressor shell, compressor and air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069382U (en) * 1983-10-18 1985-05-16 三菱重工業株式会社 rotary compressor
JPH03242495A (en) * 1990-02-15 1991-10-29 Sanyo Electric Co Ltd Muffling device for compressor
JP3200322B2 (en) * 1995-03-14 2001-08-20 東芝キヤリア株式会社 Rotary compressor
JP2002221156A (en) * 2001-01-25 2002-08-09 Mitsubishi Electric Corp Hermetically enclosed compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005189627A (en) * 2003-12-26 2005-07-14 Daikin Ind Ltd Silencer and compressor
CN102046981A (en) * 2008-05-28 2011-05-04 东芝开利株式会社 Enclosed compressor and refrigeration cycle device
CN201827076U (en) * 2010-09-14 2011-05-11 东芝开利株式会社 Airtight compressor and refrigeration cycle device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069382U (en) * 1983-10-18 1985-05-16 三菱重工業株式会社 rotary compressor
JPH03242495A (en) * 1990-02-15 1991-10-29 Sanyo Electric Co Ltd Muffling device for compressor
JP3200322B2 (en) * 1995-03-14 2001-08-20 東芝キヤリア株式会社 Rotary compressor
JP2002221156A (en) * 2001-01-25 2002-08-09 Mitsubishi Electric Corp Hermetically enclosed compressor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053316A (en) * 2015-09-11 2017-03-16 株式会社富士通ゼネラル Rotary Compressor
JP2017531755A (en) * 2015-09-24 2017-10-26 クワントン メイヂー コンプレッサー カンパニー リミテッド Rotary compressor
JP2018009488A (en) * 2016-07-12 2018-01-18 株式会社富士通ゼネラル Rotary Compressor
JP2018044489A (en) * 2016-09-14 2018-03-22 東芝キヤリア株式会社 Rotation type compressor and refrigeration cycle device
WO2018051567A1 (en) * 2016-09-14 2018-03-22 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device
CN109072917A (en) * 2016-09-14 2018-12-21 东芝开利株式会社 Rotary compressor and refrigerating circulatory device
EP3514391A4 (en) * 2016-09-14 2020-01-22 Toshiba Carrier Corporation Rotary compressor and refrigeration cycle device
EP3324051A1 (en) * 2016-11-17 2018-05-23 Fujitsu General Limited Rotary compressor
JP2018080659A (en) * 2016-11-17 2018-05-24 株式会社富士通ゼネラル Rotary Compressor
US10612548B2 (en) 2016-11-17 2020-04-07 Fujitsu General Limited Refrigerant path holes in a rotary compressor
CN107255078A (en) * 2017-07-31 2017-10-17 广东美芝制冷设备有限公司 Rotary compressor
CN107255077A (en) * 2017-07-31 2017-10-17 广东美芝制冷设备有限公司 Rotary compressor
JP2020153293A (en) * 2019-03-20 2020-09-24 東芝キヤリア株式会社 Rotation-type compressor and refrigeration cycle device
JP7257831B2 (en) 2019-03-20 2023-04-14 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle equipment

Also Published As

Publication number Publication date
JPWO2013065706A1 (en) 2015-04-02
CN103906928B (en) 2016-08-24
CN103906928A (en) 2014-07-02
JP5786030B2 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
JP5786030B2 (en) Hermetic rotary compressor and refrigeration cycle equipment
US9745980B2 (en) Hermetic-type compressor and refrigeration cycle apparatus
JP4875484B2 (en) Multistage compressor
KR101375979B1 (en) Rotary compressor
EP2634432B1 (en) Screw compressor
WO2013168194A1 (en) Airtight compressor and heat pump device
US9145890B2 (en) Rotary compressor with dual eccentric portion
JP6678811B2 (en) Scroll compressor and refrigeration cycle device
US7704059B2 (en) Compressor having a helmholtz type resonance chamber with a lowermost end connected to a gas passage
JP5449999B2 (en) Hermetic compressor and refrigeration cycle equipment
JP5481298B2 (en) Multi-cylinder rotary compressor and refrigeration cycle equipment
JP5338314B2 (en) Compressor and refrigeration equipment
JP2012215158A (en) Compressor, refrigeration cycle apparatus having the compressor thereon
WO2016139873A1 (en) Compressor
JP6057535B2 (en) Refrigerant compressor
JP2005307764A (en) Rotary compressor
JP4065654B2 (en) Multi-cylinder rotary compressor
WO2013140912A1 (en) Rotating compressor and freeze-cycle apparatus
JP5286010B2 (en) 2-cylinder rotary compressor and refrigeration cycle equipment
JP5355361B2 (en) Hermetic rotary compressor
EP1808602B1 (en) Muffler installation structure for compressor
WO2024204663A1 (en) Rotary compressor and refrigeration device having same
WO2018066125A1 (en) Enclosed compressor
JP2015055237A (en) Rotary compressor and refrigeration cycle device
WO2018142536A1 (en) Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541798

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12845277

Country of ref document: EP

Kind code of ref document: A1