[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013065083A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2013065083A1
WO2013065083A1 PCT/JP2011/006103 JP2011006103W WO2013065083A1 WO 2013065083 A1 WO2013065083 A1 WO 2013065083A1 JP 2011006103 W JP2011006103 W JP 2011006103W WO 2013065083 A1 WO2013065083 A1 WO 2013065083A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
fuel
fuel cell
unit
heat transfer
Prior art date
Application number
PCT/JP2011/006103
Other languages
French (fr)
Japanese (ja)
Inventor
博晶 鈴木
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to PCT/JP2011/006103 priority Critical patent/WO2013065083A1/en
Publication of WO2013065083A1 publication Critical patent/WO2013065083A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04708Temperature of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04768Pressure; Flow of the coolant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • a fuel cell is a device that generates electrical energy from hydrogen and oxygen, and can achieve high power generation efficiency.
  • the main features of the fuel cell are direct power generation that does not go through the process of thermal energy or kinetic energy as in the conventional power generation method, so high power generation efficiency can be expected even on a small scale, and emissions of nitrogen compounds, etc. There are few, and noise and vibration are also small, and environmental properties are good.
  • fuel cells can be used effectively for the chemical energy of fuel and have environmentally friendly characteristics, so they are expected as energy supply systems for the 21st century, and are widely used in space, automobiles and portable devices. It is attracting attention as a promising new power generation system that can be used for various applications from scale power generation to small-scale power generation, and technological development is in full swing toward practical use.
  • Patent Document 1 a fuel cell system including a fuel tank in which a hydrogen storage alloy capable of storing and releasing hydrogen is accommodated is known (see Patent Document 1).
  • hydrogen is stored in the fuel tank by storing hydrogen with the hydrogen storage alloy, and hydrogen is supplied from the fuel tank to the fuel cell by releasing hydrogen from the hydrogen storage alloy. .
  • a fuel cell includes an electrolyte membrane and a membrane electrode assembly composed of an anode and a cathode facing each other with the electrolyte membrane interposed therebetween, and hydrogen is passed through the anode side and air is passed through the cathode side through the electrolyte membrane.
  • DC power is generated by causing an electrochemical reaction.
  • This electrochemical reaction is an exothermic reaction. Therefore, if the heat generated by the electrochemical reaction in the fuel cell can be used as the heat necessary for releasing the hydrogen of the hydrogen storage alloy, the heat supply efficiency to the hydrogen storage alloy is improved, and the hydrogen supply to the fuel cell is stabilized. be able to.
  • the fuel tank is brought into contact with the bottom surface of the fuel cell stack in which a plurality of fuel cells are stacked, and the heat pipe incorporated in the stack fastening component is brought into contact with the fuel tank. Yes. Thereby, the heat generated by the electrochemical reaction in the fuel cell is transmitted to the fuel tank and used as the heat necessary for the hydrogen release of the hydrogen storage alloy.
  • the fuel storage portion can be filled with hydrogen while the fuel storage portion is mounted on the fuel cell system.
  • the heat generated by the hydrogen storage alloy is transferred to the fuel cell side. Therefore, it has been necessary to protect the fuel cell from the heat generated in the hydrogen storage alloy during hydrogen filling.
  • the present invention has been made in view of these problems, and its purpose is to use the heat generated in the fuel cell as the heat necessary for releasing the hydrogen of the hydrogen storage alloy, and to generate the heat in the hydrogen storage alloy during hydrogen filling.
  • An object of the present invention is to provide a technology capable of protecting a fuel cell from the above.
  • An aspect of the present invention is a fuel cell system.
  • the fuel cell system is a fuel cell having a membrane electrode assembly composed of an electrolyte membrane, a cathode provided on one surface of the electrolyte membrane, and an anode provided on the other surface of the electrolyte membrane, and a fuel.
  • a fuel storage unit that stores a hydrogen storage alloy for storing hydrogen, a heat transfer unit that thermally connects the fuel cell and the fuel storage unit, and a heat transfer unit heat dissipation unit that radiates heat from the heat transfer unit. At least a part of the fuel cell and the fuel storage unit are spaced apart. Heat transfer between the fuel cell and the fuel storage unit is substantially performed via the heat transfer unit.
  • the heat generated in the fuel cell can be used as the heat necessary for releasing the hydrogen of the hydrogen storage alloy, and the fuel cell can be protected from the heat generated in the hydrogen storage alloy when hydrogen is charged.
  • FIG. 1 is a perspective view schematically showing a fuel cell system according to Embodiments 1 and 2.
  • FIG. 1 is a perspective view schematically showing a structure inside a housing of a fuel cell system according to Embodiment 1.
  • FIG. 2 is a plan view schematically showing a structure inside a housing of the fuel cell system according to Embodiment 1.
  • FIG. 3 is a schematic view of a cross section taken along line AA in FIG. 2.
  • FIG. 5A is a schematic view of a cross section taken along line BB in FIG.
  • FIG. 5B is a schematic diagram of a cross section taken along the line CC of FIG.
  • FIG. 3 is a schematic diagram of a cross section taken along line DD in FIG. 2.
  • FIG. 4 is a control flowchart of the fuel cell system according to Embodiment 1.
  • 6 is a perspective view schematically showing a structure inside a housing of a fuel cell system according to Embodiment 2.
  • FIG. 9A is a schematic diagram of a cross section taken along line EE of FIG.
  • FIG. 9B is a cross-sectional view schematically showing the structure of the heat radiating portion for the fuel storage portion according to the modification.
  • 6 is a control flowchart of the fuel cell system according to Embodiment 2.
  • FIG. 1 is a perspective view schematically showing a fuel cell system according to Embodiment 1.
  • FIG. 2 is a perspective view schematically showing the internal structure of the fuel cell system according to the first embodiment.
  • FIG. 3 is a plan view schematically showing the structure inside the housing of the fuel cell system according to Embodiment 1.
  • the fuel cell system 1 includes a housing 2, a fuel cell 100 housed in the housing 2, a fuel housing portion 200, a heat transfer portion 300, a heat transfer portion heat dissipation portion 400, a fuel A supply unit 500, a changeover switch 600, and a control unit 700 are provided.
  • the housing 2 is provided with a plurality of openings 4. Air as an oxidant supplied to the fuel cell 100 is taken into the housing 2 through the opening 4.
  • the fan 404 included in the heat transfer unit heat radiation unit 400 is driven, intake into the housing 2 and exhaust to the outside of the housing 2 are performed through the opening 4.
  • a changeover switch 600 is provided on the side surface of the housing 2.
  • the changeover switch 600 includes a normal operation mode button 602, an operation stop button 604, and a hydrogen filling mode button 606.
  • the changeover switch 600 transmits a signal corresponding to the pressed button to the control unit 700. Each mode will be described in detail later.
  • the fuel cell 100 and the fuel storage unit 200 are disposed apart from each other in the housing 2, and hydrogen is supplied from the fuel storage unit 200 to the fuel cell 100 via the fuel supply unit 500.
  • the fuel supply unit 500 includes a hydrogen supply path 502 that connects the fuel cell 100 and the fuel storage unit 200, and a pressure adjustment unit 504 that is provided in the middle of the hydrogen supply path 502. Hydrogen is supplied from the fuel storage unit 200 to the fuel cell 100 via 502.
  • the pressure adjusting unit 504 includes a regulator and adjusts the hydrogen pressure in the hydrogen supply path 502.
  • the pressure adjusting unit 504 reduces the pressure of hydrogen supplied from the hydrogen storage alloy 206 to the fuel cell 100 and protects the anode 110.
  • a check valve 512 is provided between the pressure adjustment unit 504 and the fuel storage unit 200 in the hydrogen supply path 502. The check valve 512 prevents hydrogen from flowing back from the fuel cell 100 side to the fuel storage unit 200 side.
  • a hydrogen filling path 508 is connected to the hydrogen supply path 502 via a check valve 506.
  • the hydrogen filling path 508 passes through the casing 2, and a hydrogen filling port 508 a provided at the tip of the hydrogen filling path 508 and a hydrogen filling valve 510 provided in the middle of the hydrogen filling path 508 are the casing. 2 is arranged outside.
  • the check valve 506 suppresses the outflow of hydrogen from the hydrogen supply path 502 side to the hydrogen filling path 508 side.
  • the fuel cell 100 and the fuel storage unit 200 are thermally connected by the heat transfer unit 300, and heat is transmitted between the fuel cell 100 and the fuel storage unit 200 via the heat transfer unit 300.
  • the heat transfer unit 300 includes a heat pipe 302 that extends linearly. One end of the heat pipe 302 is thermally connected to the fuel cell 100 via the heat transfer plate 10 made of a material having thermal conductivity such as a metal, and the other end is thermally connected to the fuel storage unit 200.
  • the central part is thermally connected to the heat transfer part heat radiating part 400 through the heat transfer plate 10.
  • the heat transfer unit heat radiation unit 400 includes a plurality of heat radiation fins 402 and a fan 404. The arrangement of each part will be described later in detail.
  • FIG. 4 is a schematic diagram of a cross section taken along the line AA of FIG.
  • the fuel cell 100 includes a battery housing 102 and a membrane electrode assembly 104 housed in the battery housing 102 as main components.
  • the membrane electrode assembly (cell) 104 includes an electrolyte membrane 106, a cathode 108 provided on one surface of the electrolyte membrane 106, and an anode 110 provided on the other surface of the electrolyte membrane 106. That is, the electrolyte membrane 106 is sandwiched between the pair of cathodes 108 and the anode 110 to form a cell, and the cell generates power by an electrochemical reaction between hydrogen and oxygen in the air.
  • the electrolyte membrane 106 preferably exhibits good ion conductivity in a wet state, and functions as an ion exchange membrane that moves protons between the cathode 108 and the anode 110.
  • the electrolyte membrane 106 is formed of a solid polymer material such as a fluorine-containing polymer or a non-fluorine polymer. Etc. can be used.
  • examples of the sulfonic acid type perfluorocarbon polymer include Nafion (manufactured by DuPont: registered trademark) 112.
  • non-fluorine polymers include sulfonated aromatic polyetheretherketone and polysulfone.
  • the thickness of the electrolyte membrane 106 is, for example, 10 to 200 ⁇ m.
  • a plurality of air intakes 112 are provided on the main surface of the battery casing 102 on the cathode 108 side.
  • An air chamber 114 is formed between the cathode 108 and the main surface on which the air intake 112 is provided. Air as an oxidant is supplied to the cathode 108 from the outside through the air inlet 112 and the air chamber 114.
  • the battery casing 102 is provided with a hydrogen flow path 118 along the inner peripheral side surface on the anode 110 side.
  • a fuel gas chamber 116 is formed between the anode 110 and the main surface of the battery casing 102 on the anode 110 side.
  • the hydrogen channel 118 has an upstream end connected to the hydrogen supply path 502 (see FIGS. 2 and 3) of the fuel supply unit 500, and a hydrogen supply port 118a provided at the downstream end includes a fuel gas chamber. 116.
  • Hydrogen which is a fuel, is supplied from the fuel storage unit 200 to the anode 110 through the hydrogen supply path 502, the hydrogen flow path 118, and the fuel gas chamber 116.
  • the cathode 108 and the anode 110 have ion exchange resin and catalyst particles, and possibly carbon particles, respectively.
  • the ion exchange resin that the cathode 108 and the anode 110 have has a role of connecting the catalyst particles and the electrolyte membrane 106 and transmitting protons therebetween.
  • This ion exchange resin may be formed of the same polymer material as the electrolyte membrane 106.
  • catalyst metals include Sc, Y, Ti, Zr, V, Nb, Fe, Co, Ni, Ru, Rh, Pd, Pt, Os, Ir, alloys selected from lanthanoid series elements and actinoid series elements, A simple substance is mentioned.
  • acetylene black, ketjen black, carbon nanotubes or the like may be used as the carbon particles.
  • the thicknesses of the cathode 108 and the anode 110 are each 10 to 40 ⁇ m, for example.
  • a cathode side fixing member 120 is provided on the inner peripheral side surface of the battery casing 102 on the cathode 108 side.
  • a gasket 122 is provided between the electrolyte membrane 106 located around the cathode 108 (the outer peripheral portion of the electrolyte membrane 106 on the cathode 108 side) and the cathode-side fixing member 120. The gasket 122 suppresses fuel leakage from the fuel gas chamber 116 to the air chamber 114.
  • An anode side fixing member 124 is provided on the inner peripheral side surface of the battery casing 102 on the anode 110 side.
  • a gasket 126 is provided between the electrolyte membrane 106 (the outer periphery of the electrolyte membrane 106 on the anode 110 side) located around the anode 110 and the anode-side fixing member 124. The gasket 126 enhances the sealing performance of the fuel gas chamber 116 and suppresses fuel leakage.
  • the heat transfer plate 10 is in contact with the outer surface of the battery casing 102 on the anode 110 side, and one end side of the heat pipe 302 is embedded in the heat transfer plate 10.
  • the heat pipe 302 includes a cylindrical container 302a having thermal conductivity, and a working fluid 302b that moves heat transferred from the outside into the container 302a by circulating in the container 302a.
  • the container 302a is made of a metal such as copper, stainless steel, or aluminum.
  • the working fluid 302b is, for example, water, ammonia, alcohols, or the like.
  • a temperature sensor 800 is provided on the outer surface of the fuel cell 100 on the cathode 108 side (see FIGS. 2 and 3). The temperature of the fuel cell 100 is measured by the temperature sensor 800. The temperature sensor 800 transmits a signal indicating the measured temperature information of the fuel cell 100 to the control unit 700.
  • FIG. 5A is a schematic view of a cross section taken along line BB in FIG.
  • FIG. 5B is a schematic diagram of a cross section taken along the line CC of FIG.
  • the fuel storage unit 200 mainly includes a storage unit housing 202 and a fuel cartridge 204 that is detachably stored in the storage unit housing 202. Prepare.
  • the housing section housing 202 has a housing space 202a in which the fuel cartridge 204 is housed, and an opening 202b provided on one side surface.
  • the accommodation space 202a is opened to the outside through the opening 202b.
  • the fuel cartridge 204 is inserted into the accommodation space 202a via the opening 202b or pulled out of the accommodation space 202a via the opening 202b.
  • a hydrogen flow path 208 is provided on the inner side surface of the housing housing 202 opposite to the side surface provided with the opening 202b.
  • the hydrogen flow path 208 is connected to the accommodation space 202a through the opening 208a.
  • the hydrogen flow path 208 is connected to the hydrogen supply path 502.
  • the fuel storage unit 200 can store a plurality of fuel cartridges 204.
  • four fuel cartridges 204 can be accommodated.
  • the housing casing 202 is provided with four openings 208 a corresponding to the four fuel cartridges 204.
  • One end side of the hydrogen flow path 208 branches into four and is connected to each opening 208 a, and the other end side is combined into one and connected to the hydrogen supply path 502. That is, each fuel cartridge 204 is connected in parallel to the fuel cell 100.
  • the fuel cartridge 204 has a storage space 204a and an opening 204b provided on one side surface.
  • a hydrogen storage alloy 206 for storing hydrogen of the fuel cell 100 is accommodated in the accommodating space 204a.
  • the hydrogen storage alloy 206 can store and release hydrogen, for example, rare earth-based MmNi 4.32 Mn 0.18 Al 0.1 Fe 0.1 Co 0.3 (Mm is Misch metal).
  • the hydrogen storage alloy 206 can be formed into a compression molded body (pellet) obtained by mixing a binder such as polytetrafluoroethylene (PTFE) dispersion into the above-mentioned hydrogen storage alloy powder and compression molding with a press. . If necessary, a sintering process may be performed after the compression molding. Further, the hydrogen storage alloy 206 may not be in the form of a pellet, but may be one in which the storage space 204a of the fuel cartridge 204 is filled with powder of the hydrogen storage alloy.
  • the shape of the hydrogen storage alloy 206 is not particularly limited.
  • a sealing mechanism (not shown) is provided at the opening 204 b of the fuel cartridge 204 and the opening 208 a of the hydrogen flow path 208.
  • This sealing mechanism releases the blocking of the hydrogen flow path only when the fuel cartridge 204 is inserted into the accommodation space 202a and the opening 204b of the fuel cartridge 204 and the opening 208a of the hydrogen flow path 208 are connected. It is configured as follows. Hydrogen released from the hydrogen storage alloy 206 in the fuel cartridge 204 is sent to the hydrogen supply path 502 of the fuel supply unit 500 via the hydrogen flow path 208.
  • each fuel cartridge 204 can supply hydrogen to the fuel cell 100 independently. While the fuel cell 100 is operating, any part of the fuel cartridge 204 is stored in the fuel storage unit 200. The remaining fuel cartridge 204 can be removed. That is, the fuel cell system 1 according to the present embodiment supports hot swapping of the fuel cartridge 204.
  • casing 202 is provided with the notch part 202c in the edge part by the side in which the opening part 202b was provided in one main surface (upper surface). Further, a groove portion 204c is provided in a region on the outer surface of the fuel cartridge 204 opposite to the opening portion 204b. In a state where the fuel cartridge 204 is inserted into the housing portion housing 202, the cutout portion 202c of the housing portion housing 202 and the groove portion 204c of the fuel cartridge 204 overlap, and the groove portion 204c is exposed to the outside. As shown in FIG. 2, the user can pull the fuel cartridge 204 in the direction of the arrow X from the housing casing 202 by hooking a fingertip on the groove 204 c.
  • the other end side of the heat pipe 302 is embedded in the housing casing 202.
  • the housing portion 202 is embedded in the wall surface of the casing that constitutes the other main surface (lower surface).
  • the housing 202 is made of a material having thermal conductivity such as metal, and the wall of the housing in which the heat pipe 302 is embedded serves as a heat transfer plate that mediates heat transfer between the fuel cartridge 204 and the heat pipe 302. Function.
  • a temperature sensor 802 is provided on the outer surface of the fuel storage unit 200 (see FIGS. 2 and 3). A temperature sensor 802 measures the temperature of the fuel cartridge 204. The temperature sensor 802 transmits a signal indicating the measured temperature information of the fuel cartridge 204 to the control unit 700.
  • FIG. 6 is a schematic diagram of a cross section taken along the line DD of FIG.
  • the heat transfer unit heat dissipation unit 400 is a mechanism for radiating heat from the heat transfer unit 300, and includes a plurality of heat dissipation fins 402 and a fan 404.
  • a heat pipe 302 extending between the fuel cell 100 and the fuel storage unit 200 is embedded in the heat transfer plate 10, and the heat transfer unit heat dissipating unit 400 is disposed on the heat transfer plate 10.
  • Each of the plurality of heat dissipating fins 402 is in contact with the main surface of the heat transfer plate 10, and a fan 404 is disposed on one side surface substantially orthogonal to the side surface.
  • the heat transmitted from the fuel cell 100 side or the fuel storage unit 200 side by the heat pipe 302 is transmitted to the heat radiating fins 402 through the heat transfer plate 10 and radiated.
  • the fan 404 takes in air from the opening 4 of the housing 2 and blows it in a direction parallel to the heat transfer plate 10 (arrow W direction), thereby cooling each heat radiation fin 402. Since the heat transfer unit heat dissipating unit 400 includes the fan 404, the heat dissipation amount is variable. That is, by driving the fan 404, the heat dissipation amount of the heat transfer unit heat dissipation unit 400 can be increased, and by stopping the fan 404, the heat dissipation amount of the heat transfer unit heat dissipating unit 400 can be reduced. In addition, you may increase / decrease the heat radiation amount of the thermal radiation part 400 for heat-transfer parts by adjusting the air volume of the fan 404.
  • the fuel cell 100 and the fuel storage unit 200 are arranged apart from each other. Therefore, the fuel cell system 1 is provided with a region (space) R sandwiched between the fuel cell 100 and the fuel storage unit 200. Therefore, the fuel cell 100 and the fuel storage unit 200 are substantially insulated from each other by the region R that is an air layer, and the heat transfer between both is performed only through the heat transfer unit 300.
  • the heat transfer part heat radiating part 400 performs heat transfer of the entire cross section of the heat transfer part 300 cut between the fuel cell 100 and the fuel storage part 200, in other words, the entire cross section of the heat pipe 302 (see FIG. 6). Suppress. That is, substantially all the heat that moves between the fuel storage unit 200 and the fuel cell 100 is subjected to suppression of heat transfer by the heat transfer unit radiating unit 400, and the heat transfer amount of the heat transfer unit 300 is reduced.
  • heat transfer between the fuel storage unit 200 and the fuel cell 100 is performed via the heat transfer unit 300 and the heat transfer unit heat dissipation unit 400.
  • the heat transfer part heat dissipating part 400 is arranged in the region R. That is, a heat pipe 302 having one end thermally connected to the fuel cell 100 and the other end thermally connected to the fuel storage unit 200 extends to the region R and is transmitted to the heat pipe 302 located in the region R.
  • the heat-dissipating part 400 is thermally connected. Therefore, the space between the fuel cell 100 and the fuel storage unit 200 can be used effectively, and the design that minimizes the length of the heat pipe 302 is possible, and the increase in size of the fuel cell system 1 can be suppressed. .
  • the heat radiating unit 400 for the heat transfer unit is provided in the region R from the viewpoint of effective use of space
  • the heat transfer unit 400 is provided outside the region R depending on the shape of the housing 2 and the like. Also good.
  • the heat pipe 302 is disposed so as to bypass the region R, and the heat transfer unit heat radiating unit 400 is thermally connected to the heat pipe 302 outside the region R.
  • the heat generated by the power generation of the fuel cell 100 is transmitted to the heat pipe 302 via the heat transfer plate 10, moves in the heat pipe 302, and moves to the fuel storage unit 200 side through the region R. To do.
  • the heat transferred to the fuel storage unit 200 side is transmitted from the heat pipe 302 to the hydrogen storage alloy 206 through the storage unit housing 202 and the fuel cartridge 204.
  • the heat generated by the power generation of the fuel cell 100 can be used as the heat necessary for releasing the hydrogen of the hydrogen storage alloy 206.
  • the fuel cell system 1 can fill the fuel cartridge 204 with hydrogen in a state where the fuel cartridge 204 is mounted in the housing housing 202.
  • the hydrogen filling valve 510 that is closed during normal operation of the fuel storage unit 200 is opened.
  • filling hydrogen is supplied from the hydrogen filling port 508 a to the hydrogen storage alloy 206 of each fuel cartridge 204 via the hydrogen filling path 508 and the hydrogen flow path 208 of the housing housing 202.
  • part of the hydrogen taken in from the hydrogen filling port 508a is also supplied to the fuel cell 100 side via the pressure adjustment unit 504, and the fuel cell 100 generates electric power for driving the fan 404 when filling with hydrogen. To do.
  • the heat generated in the hydrogen storage alloy 206 by the hydrogen filling is transmitted to the heat pipe 302 through the fuel cartridge 204 and the housing housing 202, and moves in the heat pipe 302 to the region R side.
  • the heat that has moved to the region R side is radiated by the heat transfer portion heat radiating portion 400.
  • the regulator of the pressure adjustment unit 504 When the hydrogen is charged, the regulator of the pressure adjustment unit 504 is closed, the hydrogen taken in from the hydrogen filling port 508a is sent only to the fuel storage unit 200 side, and the electric power for driving the fan at the time of hydrogen filling is mounted in the fuel cell system 1. It may be configured to be supplied by a secondary battery (not shown) or the like.
  • the heat transmitted from the fuel storage unit 200 to the fuel cell 100 can be reduced, and as a result, the fuel cell 100 can be protected from the heat generated in the fuel storage unit 200 during hydrogen filling.
  • the hydrogen storage alloy 206 can be cooled by the heat radiation by the heat transfer unit heat radiation unit 400, the hydrogen filling of the hydrogen storage alloy 206 can be promoted. As a result, the time required for filling the hydrogen storage alloy 206 with hydrogen can be shortened.
  • the heat transferred from the fuel cell 100 to the fuel storage unit 200 is also reduced by the heat transfer unit heat dissipation unit 400.
  • the amount of heat required for the hydrogen storage alloy 206 to release hydrogen is about a fraction of the amount of heat generated in the fuel cell 100. Therefore, even if a part of the heat generated in the fuel cell 100 is radiated by the heat transfer part heat radiating part 400, a sufficient amount of heat can be supplied to the fuel storage part 200.
  • the entire fuel cell 100 and the fuel storage unit 200 are spaced apart from each other, but at least a part of both may be spaced apart.
  • the fuel cell 100 and a part of the fuel storage unit 200 can be brought into contact with each other within a range in which an effect of reducing damage to the fuel cell 100 due to heat transmitted from the fuel storage unit 200 to the fuel cell 100 can be obtained. it can.
  • the fuel cell 100 and the fuel storage unit 200 can be partially brought into contact with each other within a range where 50% or more of heat generated in the fuel storage unit 200 is transferred to the heat pipe 302. In this range, heat may be transmitted from the fuel storage unit 200 to the fuel cell 100 via the air in the region R.
  • the region R is a space (air layer), but a heat insulating material may be provided in the region R, for example.
  • control unit 700 is realized by elements and circuits such as a CPU and a memory of a computer as a hardware configuration, and realized by a computer program as a software configuration, but in FIG. 2 and FIG. It is drawn as a functional block realized by. Therefore, those skilled in the art will understand that these functional blocks can be realized in various forms by a combination of hardware and software.
  • the control unit 700 includes a heat transfer unit adjustment unit 702 that adjusts the heat radiation amount of the heat transfer unit heat dissipation unit 400.
  • the heat transfer unit adjustment unit 702 switches the fan 404 on and off based on signals received from the changeover switch 600 and the temperature sensors 800 and 802. For example, when the hydrogen filling mode button 606 is pressed to fill the fuel storage unit 200 with hydrogen, the heat transfer unit adjustment unit 702 turns on the fan 404 to release the heat transfer unit heat dissipation unit 400. Increase the amount of heat. Thereby, the fuel cell 100 can be more reliably protected from the heat generated in the fuel storage unit 200 during hydrogen filling. In addition, the hydrogen storage alloy 206 can be rapidly filled with hydrogen.
  • the heat transfer unit adjustment unit 702 turns on the fan 404 and turns on the heat transfer unit when the fuel cell 100 exceeds a predetermined temperature.
  • the heat radiation amount of the heat radiation part 400 is increased.
  • the heat transfer unit adjustment unit 702 turns off the fan 404 when the fuel cell 100 or the fuel storage unit 200 is in a predetermined low temperature state. Thereby, the temperature of the fuel cell 100 and the fuel accommodating part 200 can be maintained in an appropriate range.
  • the heat transfer unit adjustment unit 702 turns on the fan 404 when the measured value of the temperature sensor 800 or the measured value of the temperature sensor 802 is 50 ° C. or higher. Further, the heat transfer unit adjusting unit 702 turns off the fan 404 when the measured value of the temperature sensor 800 becomes 40 ° C. or lower, or when the measured value of the temperature sensor 802 becomes 20 ° C. or lower.
  • the “predetermined temperature” and the “predetermined low temperature state” can be appropriately set based on experiments and simulations by the designer.
  • FIG. 7 is a control flowchart of the fuel cell system according to the first embodiment.
  • the processing procedure of each unit is displayed by a combination of S (acronym for Step) meaning a step and a number.
  • This flow is repeatedly executed at a predetermined timing by the control unit 700 including the heat transfer unit adjusting unit 702 after the fuel cell system 1 is powered on.
  • the control unit 700 determines whether the hydrogen filling mode is selected (S101). When the hydrogen filling mode is selected (Y in S101), the control unit 700 turns on the fan 404 (S102) and ends this routine. When the hydrogen filling mode is not selected (N in S101), the control unit 700 determines whether the normal operation mode is selected (S103).
  • the control unit 700 determines whether the temperature of the fuel cell 100 is, for example, 50 ° C. or more (S104). When the temperature of the fuel cell 100 is lower than 50 ° C. (N in S104), the control unit 700 ends this routine. When the temperature of the fuel cell 100 is 50 ° C. or higher (Y in S104), the control unit 700 turns on the fan 404 (S105).
  • the control unit 700 determines whether a predetermined time has elapsed (S106).
  • the “predetermined time” is, for example, 1 second.
  • the “predetermined time” can be appropriately set according to the heat dissipation performance of the heat transfer unit heat dissipation unit 400, the output level of the fuel cell 100, and the like.
  • the control unit 700 repeats the determination of whether or not the predetermined time has elapsed.
  • the control unit 700 determines whether the temperature of the fuel cell 100 is, for example, 40 ° C. or less, or the temperature of the fuel cartridge 204, for example, is 20 ° C. or less (S107). .
  • the control unit 700 determines again that a predetermined time has elapsed (S106). When the temperature of the fuel cell 100 is 40 ° C. or lower, or the temperature of the fuel cartridge 204 is 20 ° C. or lower (Y in S107), the control unit 700 turns off the fan 404 (S108) and ends this routine. To do.
  • control unit 700 determines whether the operation stop is selected (S109). When the operation stop is not selected (N in S109), the control unit 700 ends this routine. When the operation stop is selected (Y in S109), the control unit 700 controls the pressure adjustment unit 504 to stop the hydrogen supply from the fuel storage unit 200 to the fuel cell 100 (S110). In addition, the control unit 700 turns off the fan 404 (S111), and ends this routine.
  • the fuel cell 100 and the fuel storage unit 200 are spaced apart.
  • Heat transfer between the fuel cell 100 and the fuel storage unit 200 is substantially performed via the heat transfer unit 300, and the heat transfer unit 300 radiates heat by the heat transfer unit heat dissipation unit 400. Therefore, when the fuel cartridge 204 is filled with hydrogen while the fuel cartridge 204 is inserted into the housing housing 202, the heat generated in the hydrogen storage alloy 206 due to the hydrogen filling passes through the heat pipe 302. Although it is transmitted to the fuel cell 100 side, the heat is dissipated by the heat transfer part heat dissipating part 400 before reaching the fuel cell 100. Therefore, the heat transmitted from the fuel storage unit 200 to the fuel cell 100 when the fuel cartridge 204 is filled with hydrogen can be reduced. As a result, the fuel cell 100 is protected from the heat generated in the fuel storage unit 200 during the hydrogen filling. be able to.
  • FIG. 2 is a perspective view schematically showing a structure inside the housing of the fuel cell system according to Embodiment 2.
  • FIG. 9A is a schematic diagram of a cross section taken along line EE of FIG.
  • FIG. 9B is a cross-sectional view schematically showing the structure of the heat radiating portion for the fuel storage portion according to the modification.
  • the fuel cell system 1 includes a heat radiating portion 900 for the fuel accommodating portion that radiates heat from the fuel accommodating portion 200.
  • the fuel housing portion heat radiating section 900 has a plurality of heat radiating fins 902 and a fan 904, and is placed on the main surface of the housing section housing 202.
  • Each radiating fin 902 is in contact with the main surface of the housing housing 202 at one side surface, and a fan 904 is disposed on one side surface substantially orthogonal to the side surface.
  • the heat generated in the hydrogen storage alloy 206 is transmitted to the heat transfer part heat dissipating part 400 side by a heat pipe 302 partly embedded in the lower main surface of the housing part housing 202, and the other part is accommodated.
  • the heat is transmitted to the heat radiating section 900 for the fuel storage section that is thermally connected to the main surface on the upper side of the part housing 202 and is radiated.
  • the heat radiating section 900 for the fuel storage section By providing the heat radiating section 900 for the fuel storage section, the heat transferred from the fuel storage section 200 to the fuel cell 100 can be more reliably reduced, and as a result, the fuel is generated from the heat generated in the fuel storage section 200 during hydrogen filling.
  • the battery 100 can be more reliably protected.
  • the hydrogen storage alloy 206 can be further cooled, hydrogen filling of the hydrogen storage alloy 206 can be further promoted. As a result, the time required for filling the hydrogen storage alloy 206 with hydrogen can be shortened.
  • the fan 904 cools each radiating fin 902 by taking in air from the opening 4 of the housing 2 and blowing air toward the radiating fin 902. Since the heat radiating section 900 for the fuel storage section includes the fan 904, the heat radiation amount is variable. That is, by driving the fan 904, the heat radiation amount of the fuel housing portion heat radiation portion 900 can be increased, and by stopping the fan 904, the heat radiation amount of the fuel housing portion heat radiation portion 900 can be reduced. Note that the amount of heat released from the heat radiating unit 900 for the fuel storage unit may be increased or decreased by adjusting the air volume of the fan 904.
  • the heat pipe 302 is embedded in the wall surface (upper main surface) of the fuel storage unit 200 sandwiched between the fuel cartridge 204 and the fuel storage unit heat dissipation unit 900. Also good.
  • the control unit 700 includes a fuel storage unit adjustment unit 704 that adjusts the heat release amount of the fuel storage unit heat dissipation unit 900.
  • the fuel storage unit adjustment unit 704 switches the fan 904 on / off based on signals received from the changeover switch 600 and the temperature sensors 800 and 802.
  • the fuel storage unit adjustment unit 704 turns on the fan 904 to release the fuel storage unit heat dissipation unit 900. Increase the amount of heat. Thereby, the fuel cell 100 can be more reliably protected from the heat generated in the fuel storage unit 200 during hydrogen filling.
  • the hydrogen storage alloy 206 can be rapidly filled with hydrogen.
  • the fuel storage unit adjustment unit 704 causes the heat transfer unit adjustment unit 702 to use the heat transfer unit adjustment unit 702 when the fuel cell 100 exceeds a predetermined temperature. Even after a predetermined time after the heat radiation amount of the heat radiation unit 400 is increased, when the fuel cell 100 exceeds the predetermined temperature, the fan 904 is turned on to increase the heat radiation amount of the heat radiation unit 900 for the fuel storage unit. Further, the fuel storage unit adjustment unit 704 turns off the fan 904 when the fuel cell 100 or the fuel storage unit 200 is in a predetermined low temperature state. Thereby, the temperature of the fuel cell 100 and the fuel accommodating part 200 can be maintained in an appropriate range.
  • the fuel storage unit adjustment unit 704 turns on the fan 904 when the measured value of the temperature sensor 800 is 50 ° C. or more after a predetermined time after the heat transfer unit adjustment unit 702 turns on the fan 404. . Further, the fuel storage unit adjustment unit 704 turns off the fan 904 when the measured value of the temperature sensor 800 is 40 ° C. or lower, or when the measured value of the temperature sensor 802 is 20 ° C. or lower.
  • the “predetermined temperature” can be appropriately set based on an experiment or simulation by a designer.
  • FIG. 10 is a control flowchart of the fuel cell system according to the second embodiment. This flow is repeatedly executed at a predetermined timing by the control unit 700 including the heat transfer unit adjustment unit 702 and the fuel storage unit adjustment unit 704 after the power of the fuel cell system 1 is turned on.
  • the control unit 700 determines whether the hydrogen filling mode is selected (S201). When the hydrogen filling mode is selected (Y in S201), the control unit 700 turns on the fan 904 of the fuel storage unit heat dissipation unit 900 and the fan 404 of the heat transfer unit heat dissipation unit 400 (S202). Exit. When the hydrogen filling mode is not selected (N in S201), the control unit 700 determines whether the normal operation mode is selected (S203).
  • the control unit 700 determines whether the temperature of the fuel cell 100 is, for example, 50 ° C. or higher (S204). When the temperature of the fuel cell 100 is lower than 50 ° C. (N in S204), the control unit 700 ends this routine. When the temperature of the fuel cell 100 is 50 ° C. or higher (Y in S204), the control unit 700 turns on the fan 404 of the heat transfer unit heat dissipation unit 400 (S205).
  • the control unit 700 determines whether a predetermined time has elapsed (S206).
  • the “predetermined time” is, for example, 1 second, and can be appropriately set according to the heat dissipation performance of the heat transfer unit heat dissipating unit 400, the output level of the fuel cell 100, and the like.
  • the control unit 700 repeats the determination of whether or not the predetermined time has elapsed.
  • the control unit 700 determines whether the temperature of the fuel cell 100 is 50 ° C. or higher (S207).
  • the control unit 700 turns on the fan 904 of the heat radiating unit 900 for the fuel storage unit (S208).
  • the control unit 700 determines whether a predetermined time has elapsed (S209).
  • the “predetermined time” is, for example, 1 second, and can be appropriately set according to the heat dissipation performance of the heat transfer unit heat dissipation unit 400 and the fuel storage unit heat dissipation unit 900, the output size of the fuel cell 100, and the like. .
  • the control unit 700 repeats the determination of whether or not the predetermined time has elapsed.
  • the control unit 700 determines whether the temperature of the fuel cell 100 is, for example, 40 ° C. or less (S210).
  • the control unit 700 turns off the fan 404 of the heat transfer unit heat dissipation unit 400 and the fan 904 of the fuel storage unit heat dissipation unit 900 (S213). This routine is terminated.
  • the control unit 700 determines whether the temperature of the fuel cartridge 204 is, for example, 20 ° C. or less (S211). When the temperature of the fuel storage unit 200 exceeds 20 ° C. (N in S211), the control unit 700 returns to Step 209. When the temperature of the fuel storage unit 200 is 20 ° C. or lower (Y in S211), the control unit 700 turns off the fan 904 of the fuel storage unit heat dissipation unit 900 (S212), and ends this routine.
  • step 207 when the temperature of the fuel cell 100 is less than 50 ° C. (N in S207), the controller 700 determines that the temperature of the fuel cell 100 is, for example, 40 ° C. or less, or the temperature of the fuel cartridge 204 is, for example, 20 It is determined whether the temperature is equal to or lower than C (S214). When the temperature of the fuel cell 100 exceeds 40 ° C. and the temperature of the fuel cartridge 204 exceeds 20 ° C. (N in S214), the control unit 700 repeats the determination in step 214. When the temperature of the fuel cell 100 is, for example, 40 ° C. or lower, or the temperature of the fuel cartridge 204 is, for example, 20 ° C. or lower (Y in S214), the control unit 700 turns on the fan 404 of the heat transfer unit radiating unit 400. It is turned off (S215), and this routine is terminated.
  • the control unit 700 determines whether the operation stop is selected (S216). When the operation stop is not selected (N in S216), the control unit 700 ends this routine. When the operation stop is selected (Y in S216), the control unit 700 controls the pressure adjustment unit 504 to stop the hydrogen supply from the fuel storage unit 200 to the fuel cell 100 (S217). Further, the control unit 700 turns off the fan 904 of the heat radiating unit 900 for the fuel storage unit and the fan 404 of the radiating unit 400 for the heat transfer unit (S218), and ends this routine.
  • the fuel cell 100 in addition to the effects obtained in the first embodiment, the fuel cell 100 can be more reliably protected from the heat generated in the fuel storage unit 200 when hydrogen is charged, and hydrogen storage is also possible.
  • the effect that hydrogen filling to the alloy 206 can be further promoted is obtained.
  • the fan 404 of the heat transfer unit heat dissipating unit 400 when the fan 404 of the heat transfer unit heat dissipating unit 400 is preferentially turned on and the heat radiation of the fuel cell 100 is not sufficient only by turning on the fan 404, the fuel storage unit heat dissipating unit 900 The fan 904 is turned on. As a result, the temperature of the fuel storage unit 200 can be lowered by the temperature control of the fuel cell 100, and the release of hydrogen from the hydrogen storage alloy 206 can be reduced.
  • the fuel cell 100 is a single cell, but for example, the fuel cell 100 may have a module structure having a plurality of cells.
  • a module structure a plurality of membrane electrode assemblies 104 are arranged in a planar shape, and a plurality of membrane electrode assemblies 104 are connected in series by an electrical connection member such as an interconnector, a current collector, or a wiring.
  • An example is a stack structure in which a plurality of membrane electrode assemblies 104 are stacked.
  • the present invention can be used for a fuel cell system.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel cell system (1) is provided with: a fuel cell (100) having a membrane electrode assembly formed from an electrolyte membrane, a cathode provided on one face of the electrolyte membrane, and an anode provided on the other face of the electrolyte membrane; a fuel-housing part (200) for housing a hydrogen storage alloy used for storing hydrogen which is the fuel; a heat-transfer part (300) for thermally connecting the fuel cell (100) and the fuel housing part (200); and a heat-transfer part radiation part (400) for radiating heat to the heat-transfer part (300). The fuel cell (100) and the fuel-housing part (200) are positioned such that at least one part thereof is distanced, and the heat conduction between the fuel cell (100) and the fuel-housing part (200) takes place substantially via the heat-transfer part (300).

Description

燃料電池システムFuel cell system
 本発明は燃料電池システムに関する。 The present invention relates to a fuel cell system.
 燃料電池は、水素と酸素とから電気エネルギーを発生させる装置であり、高い発電効率を得ることができる。燃料電池の主な特徴としては、従来の発電方式のように熱エネルギーや運動エネルギーの過程を経ることがない直接発電であるので、小規模でも高い発電効率が期待できること、窒素化合物等の排出が少なく、騒音や振動も小さいので環境性が良いことなどが挙げられる。このように、燃料電池は燃料のもつ化学エネルギーを有効に利用でき、環境にやさしい特性を備えるため、21世紀を担うエネルギー供給システムとして期待され、宇宙用から自動車用、携帯機器用まで、また大規模発電から小規模発電まで、種々の用途に使用できる将来有望な新しい発電システムとして注目され、実用化に向けて技術開発が本格化している。 A fuel cell is a device that generates electrical energy from hydrogen and oxygen, and can achieve high power generation efficiency. The main features of the fuel cell are direct power generation that does not go through the process of thermal energy or kinetic energy as in the conventional power generation method, so high power generation efficiency can be expected even on a small scale, and emissions of nitrogen compounds, etc. There are few, and noise and vibration are also small, and environmental properties are good. In this way, fuel cells can be used effectively for the chemical energy of fuel and have environmentally friendly characteristics, so they are expected as energy supply systems for the 21st century, and are widely used in space, automobiles and portable devices. It is attracting attention as a promising new power generation system that can be used for various applications from scale power generation to small-scale power generation, and technological development is in full swing toward practical use.
 このような燃料電池に関し、従来、水素を吸蔵・放出可能な水素吸蔵合金が収容された燃料タンクを備える燃料電池システムが知られている(特許文献1参照)。特許文献1の燃料電池システムでは、水素吸蔵合金によって水素を吸蔵することで燃料タンク内に水素を収容し、水素吸蔵合金から水素を放出することで燃料タンクから燃料電池に水素を供給している。 Conventionally, a fuel cell system including a fuel tank in which a hydrogen storage alloy capable of storing and releasing hydrogen is accommodated is known (see Patent Document 1). In the fuel cell system of Patent Document 1, hydrogen is stored in the fuel tank by storing hydrogen with the hydrogen storage alloy, and hydrogen is supplied from the fuel tank to the fuel cell by releasing hydrogen from the hydrogen storage alloy. .
特開2008-10158号公報JP 2008-10158 A
 上述した水素吸蔵合金は、水素吸蔵時に発熱し、水素放出時に吸熱する。そのため、燃料収容部から燃料電池に安定的に水素を供給するためには、水素放出に必要な熱を水素吸蔵合金に効率よく供給できることが望ましい。一方、燃料電池は、電解質膜と、電解質膜を挟んで対向するアノードおよびカソードで構成される膜電極接合体を備え、アノード側に水素を、カソード側に空気をそれぞれ流通させて電解質膜を介して電気化学反応を起こさせることにより直流電力を生成する。この電気化学反応は発熱反応である。したがって、燃料電池における電気化学反応で発生した熱を水素吸蔵合金の水素放出に必要な熱として利用できれば、水素吸蔵合金への熱供給効率が向上し、燃料電池への水素供給の安定化を図ることができる。 The hydrogen storage alloy described above generates heat when storing hydrogen and absorbs heat when releasing hydrogen. Therefore, in order to stably supply hydrogen from the fuel storage portion to the fuel cell, it is desirable that heat necessary for hydrogen release can be efficiently supplied to the hydrogen storage alloy. On the other hand, a fuel cell includes an electrolyte membrane and a membrane electrode assembly composed of an anode and a cathode facing each other with the electrolyte membrane interposed therebetween, and hydrogen is passed through the anode side and air is passed through the cathode side through the electrolyte membrane. DC power is generated by causing an electrochemical reaction. This electrochemical reaction is an exothermic reaction. Therefore, if the heat generated by the electrochemical reaction in the fuel cell can be used as the heat necessary for releasing the hydrogen of the hydrogen storage alloy, the heat supply efficiency to the hydrogen storage alloy is improved, and the hydrogen supply to the fuel cell is stabilized. be able to.
 これに対し、上述した従来の燃料電池システムでは、複数の燃料電池が積層された燃料電池スタックの底面に燃料タンクを接触させ、さらにスタック締結部品に内蔵されたヒートパイプを燃料タンクに接触させている。これにより、燃料電池における電気化学反応で発生した熱を燃料タンクに伝達して、水素吸蔵合金の水素放出に必要な熱として利用している。 On the other hand, in the conventional fuel cell system described above, the fuel tank is brought into contact with the bottom surface of the fuel cell stack in which a plurality of fuel cells are stacked, and the heat pipe incorporated in the stack fastening component is brought into contact with the fuel tank. Yes. Thereby, the heat generated by the electrochemical reaction in the fuel cell is transmitted to the fuel tank and used as the heat necessary for the hydrogen release of the hydrogen storage alloy.
 ところで、このような燃料電池システムについて、ユーザーの使い勝手を向上させる方法としては、燃料収容部が燃料電池システムに装着されたままの状態で燃料収容部に水素を充填可能とすることが考えられる。この場合、燃料電池スタックに燃料収容部を接触させていた従来の燃料電池システムでは、水素吸蔵合金で発生する熱が燃料電池側に伝達されてしまう。そのため、水素充填時に水素吸蔵合金で発生する熱から燃料電池を保護する必要があった。 By the way, as a method for improving the user-friendliness of such a fuel cell system, it is conceivable that the fuel storage portion can be filled with hydrogen while the fuel storage portion is mounted on the fuel cell system. In this case, in the conventional fuel cell system in which the fuel storage portion is in contact with the fuel cell stack, the heat generated by the hydrogen storage alloy is transferred to the fuel cell side. Therefore, it has been necessary to protect the fuel cell from the heat generated in the hydrogen storage alloy during hydrogen filling.
 本発明はこうした課題に鑑みてなされたものであり、その目的は、燃料電池で発生する熱を水素吸蔵合金の水素放出に必要な熱として利用するとともに、水素充填時に水素吸蔵合金で発生する熱から燃料電池を保護することができる技術を提供することにある。 The present invention has been made in view of these problems, and its purpose is to use the heat generated in the fuel cell as the heat necessary for releasing the hydrogen of the hydrogen storage alloy, and to generate the heat in the hydrogen storage alloy during hydrogen filling. An object of the present invention is to provide a technology capable of protecting a fuel cell from the above.
 本発明のある態様は、燃料電池システムである。当該燃料電池システムは、電解質膜、電解質膜の一方の面に設けられたカソード、及び電解質膜の他方の面に設けられたアノードで構成される膜電極接合体を有する燃料電池と、燃料である水素を貯蔵するための水素吸蔵合金を収容する燃料収容部と、燃料電池及び燃料収容部を熱的に接続する伝熱部と、伝熱部を放熱させる伝熱部用放熱部とを備える。燃料電池と燃料収容部とは、少なくとも一部が離間して配置される。燃料電池と燃料収容部との間の熱伝達は、実質的に伝熱部を介して行われる。 An aspect of the present invention is a fuel cell system. The fuel cell system is a fuel cell having a membrane electrode assembly composed of an electrolyte membrane, a cathode provided on one surface of the electrolyte membrane, and an anode provided on the other surface of the electrolyte membrane, and a fuel. A fuel storage unit that stores a hydrogen storage alloy for storing hydrogen, a heat transfer unit that thermally connects the fuel cell and the fuel storage unit, and a heat transfer unit heat dissipation unit that radiates heat from the heat transfer unit. At least a part of the fuel cell and the fuel storage unit are spaced apart. Heat transfer between the fuel cell and the fuel storage unit is substantially performed via the heat transfer unit.
 本発明によれば、燃料電池で発生する熱を水素吸蔵合金の水素放出に必要な熱として利用するとともに、水素充填時に水素吸蔵合金で発生する熱から燃料電池を保護することができる。 According to the present invention, the heat generated in the fuel cell can be used as the heat necessary for releasing the hydrogen of the hydrogen storage alloy, and the fuel cell can be protected from the heat generated in the hydrogen storage alloy when hydrogen is charged.
実施形態1及び実施形態2に係る燃料電池システムを模式的に示す斜視図である。1 is a perspective view schematically showing a fuel cell system according to Embodiments 1 and 2. FIG. 実施形態1に係る燃料電池システムの筐体内部の構造を模式的に示す斜視図である。1 is a perspective view schematically showing a structure inside a housing of a fuel cell system according to Embodiment 1. FIG. 実施形態1に係る燃料電池システムの筐体内部の構造を模式的に示す平面図である。2 is a plan view schematically showing a structure inside a housing of the fuel cell system according to Embodiment 1. FIG. 図2のA-A線に沿った断面の模式図である。FIG. 3 is a schematic view of a cross section taken along line AA in FIG. 2. 図5(A)は、図2のB-B線に沿った断面の模式図である。図5(B)は、図2のC-C線に沿った断面の模式図である。FIG. 5A is a schematic view of a cross section taken along line BB in FIG. FIG. 5B is a schematic diagram of a cross section taken along the line CC of FIG. 図2のD-D線に沿った断面の模式図である。FIG. 3 is a schematic diagram of a cross section taken along line DD in FIG. 2. 実施形態1に係る燃料電池システムの制御フローチャートである。4 is a control flowchart of the fuel cell system according to Embodiment 1. 実施形態2に係る燃料電池システムの筐体内部の構造を模式的に示す斜視図である。6 is a perspective view schematically showing a structure inside a housing of a fuel cell system according to Embodiment 2. FIG. 図9(A)は、図8のE-E線に沿った断面の模式図である。図9(B)は、変形例に係る燃料収容部用放熱部の構造を模式的に示す断面図である。FIG. 9A is a schematic diagram of a cross section taken along line EE of FIG. FIG. 9B is a cross-sectional view schematically showing the structure of the heat radiating portion for the fuel storage portion according to the modification. 実施形態2に係る燃料電池システムの制御フローチャートである。6 is a control flowchart of the fuel cell system according to Embodiment 2.
 以下、本発明の実施の形態を図面を参照して説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 (実施形態1)
 図1は、実施形態1に係る燃料電池システムを模式的に示す斜視図である。図2は、実施形態1に係る燃料電池システムの筐体内部の構造を模式的に示す斜視図である。図3は、実施形態1に係る燃料電池システムの筐体内部の構造を模式的に示す平面図である。
(Embodiment 1)
FIG. 1 is a perspective view schematically showing a fuel cell system according to Embodiment 1. FIG. FIG. 2 is a perspective view schematically showing the internal structure of the fuel cell system according to the first embodiment. FIG. 3 is a plan view schematically showing the structure inside the housing of the fuel cell system according to Embodiment 1. FIG.
 本実施形態に係る燃料電池システム1は、筐体2と、筐体2に収容された燃料電池100と、燃料収容部200と、伝熱部300と、伝熱部用放熱部400と、燃料供給部500と、切替スイッチ600と、制御部700とを備える。筐体2には、複数の開口部4が設けられている。燃料電池100へ供給される酸化剤としての空気は、開口部4を介して筐体2内に取り込まれる。また、伝熱部用放熱部400が有するファン404の駆動時に、開口部4を介して筐体2内への吸気及び筐体2外への排気が行われる。 The fuel cell system 1 according to this embodiment includes a housing 2, a fuel cell 100 housed in the housing 2, a fuel housing portion 200, a heat transfer portion 300, a heat transfer portion heat dissipation portion 400, a fuel A supply unit 500, a changeover switch 600, and a control unit 700 are provided. The housing 2 is provided with a plurality of openings 4. Air as an oxidant supplied to the fuel cell 100 is taken into the housing 2 through the opening 4. In addition, when the fan 404 included in the heat transfer unit heat radiation unit 400 is driven, intake into the housing 2 and exhaust to the outside of the housing 2 are performed through the opening 4.
 また、筐体2の側面には、切替スイッチ600が設けられている。切替スイッチ600は、通常運転モード用ボタン602、運転停止用ボタン604及び水素充填モード用ボタン606を備える。切替スイッチ600は、押下されたボタンに応じた信号を制御部700に送信する。各モードについては後に詳細に説明する。 Further, a changeover switch 600 is provided on the side surface of the housing 2. The changeover switch 600 includes a normal operation mode button 602, an operation stop button 604, and a hydrogen filling mode button 606. The changeover switch 600 transmits a signal corresponding to the pressed button to the control unit 700. Each mode will be described in detail later.
 燃料電池100及び燃料収容部200は、筐体2内で互いに離間して配置されており、燃料収容部200から燃料電池100への水素の供給は、燃料供給部500を介して行われる。具体的には、燃料供給部500は、燃料電池100と燃料収容部200とをつなぐ水素供給経路502と、水素供給経路502の途中に設けられた圧力調整部504とを有し、水素供給経路502を介して燃料収容部200から燃料電池100へ水素が供給される。 The fuel cell 100 and the fuel storage unit 200 are disposed apart from each other in the housing 2, and hydrogen is supplied from the fuel storage unit 200 to the fuel cell 100 via the fuel supply unit 500. Specifically, the fuel supply unit 500 includes a hydrogen supply path 502 that connects the fuel cell 100 and the fuel storage unit 200, and a pressure adjustment unit 504 that is provided in the middle of the hydrogen supply path 502. Hydrogen is supplied from the fuel storage unit 200 to the fuel cell 100 via 502.
 圧力調整部504は、レギュレータ等を有し、水素供給経路502内の水素の圧力を調整する。圧力調整部504によって、水素吸蔵合金206から燃料電池100に供給される水素の圧力が低減され、アノード110が保護される。水素供給経路502における圧力調整部504と燃料収容部200との間には、逆止弁512が設けられている。逆止弁512により、燃料電池100側から燃料収容部200側への水素の逆流が防止される。 The pressure adjusting unit 504 includes a regulator and adjusts the hydrogen pressure in the hydrogen supply path 502. The pressure adjusting unit 504 reduces the pressure of hydrogen supplied from the hydrogen storage alloy 206 to the fuel cell 100 and protects the anode 110. A check valve 512 is provided between the pressure adjustment unit 504 and the fuel storage unit 200 in the hydrogen supply path 502. The check valve 512 prevents hydrogen from flowing back from the fuel cell 100 side to the fuel storage unit 200 side.
 また、水素供給経路502には、逆止弁506を介して水素充填経路508が接続されている。水素充填経路508は、筐体2を貫通しており、水素充填経路508の先端に設けられた水素充填口508aと、水素充填経路508の途中に設けられた水素充填用バルブ510とが筐体2外に配置されている。逆止弁506によって、水素供給経路502側から水素充填経路508側への水素の流出が抑制される。 Further, a hydrogen filling path 508 is connected to the hydrogen supply path 502 via a check valve 506. The hydrogen filling path 508 passes through the casing 2, and a hydrogen filling port 508 a provided at the tip of the hydrogen filling path 508 and a hydrogen filling valve 510 provided in the middle of the hydrogen filling path 508 are the casing. 2 is arranged outside. The check valve 506 suppresses the outflow of hydrogen from the hydrogen supply path 502 side to the hydrogen filling path 508 side.
 燃料電池100と燃料収容部200とは、伝熱部300によって熱的に接続されており、伝熱部300を介して燃料電池100と燃料収容部200との間で熱が伝達される。伝熱部300は、直線的に延びるヒートパイプ302を備える。ヒートパイプ302は、その一端が、金属等の熱伝導性を有する材料からなる伝熱板10を介して燃料電池100に熱的に接続され、その他端が燃料収容部200に熱的に接続され、その中央部が伝熱板10を介して伝熱部用放熱部400に熱的に接続されている。伝熱部用放熱部400は、複数の放熱フィン402と、ファン404とを有する。各部の配置については、後に詳細に説明する。 The fuel cell 100 and the fuel storage unit 200 are thermally connected by the heat transfer unit 300, and heat is transmitted between the fuel cell 100 and the fuel storage unit 200 via the heat transfer unit 300. The heat transfer unit 300 includes a heat pipe 302 that extends linearly. One end of the heat pipe 302 is thermally connected to the fuel cell 100 via the heat transfer plate 10 made of a material having thermal conductivity such as a metal, and the other end is thermally connected to the fuel storage unit 200. The central part is thermally connected to the heat transfer part heat radiating part 400 through the heat transfer plate 10. The heat transfer unit heat radiation unit 400 includes a plurality of heat radiation fins 402 and a fan 404. The arrangement of each part will be described later in detail.
 次に、各部の構成について詳細に説明する。図4は、図2のA-A線に沿った断面の模式図である。図4に示すように、燃料電池100は、電池筐体102と、電池筐体102に収容された膜電極接合体104とを主な構成として備える。 Next, the configuration of each part will be described in detail. FIG. 4 is a schematic diagram of a cross section taken along the line AA of FIG. As shown in FIG. 4, the fuel cell 100 includes a battery housing 102 and a membrane electrode assembly 104 housed in the battery housing 102 as main components.
 膜電極接合体(セル)104は、電解質膜106、電解質膜106の一方の面に設けられたカソード108、及び電解質膜106の他方の面に設けられたアノード110で構成される。すなわち、一対のカソード108とアノード110との間に電解質膜106が挟持されてセルが構成され、セルは水素と空気中の酸素との電気化学反応により発電する。 The membrane electrode assembly (cell) 104 includes an electrolyte membrane 106, a cathode 108 provided on one surface of the electrolyte membrane 106, and an anode 110 provided on the other surface of the electrolyte membrane 106. That is, the electrolyte membrane 106 is sandwiched between the pair of cathodes 108 and the anode 110 to form a cell, and the cell generates power by an electrochemical reaction between hydrogen and oxygen in the air.
 電解質膜106は、湿潤状態において良好なイオン伝導性を示すことが好ましく、カソード108とアノード110との間でプロトンを移動させるイオン交換膜として機能する。電解質膜106は、含フッ素重合体や非フッ素重合体等の固体高分子材料によって形成され、例えば、スルホン酸型パーフルオロカーボン重合体、ポリサルホン樹脂、ホスホン酸基又はカルボン酸基を有するパーフルオロカーボン重合体等を用いることができる。スルホン酸型パーフルオロカーボン重合体の例として、ナフィオン(デュポン社製:登録商標)112などが挙げられる。また、非フッ素重合体の例として、スルホン化された、芳香族ポリエーテルエーテルケトン、ポリスルホンなどが挙げられる。電解質膜106の厚さは、たとえば10~200μmである。 The electrolyte membrane 106 preferably exhibits good ion conductivity in a wet state, and functions as an ion exchange membrane that moves protons between the cathode 108 and the anode 110. The electrolyte membrane 106 is formed of a solid polymer material such as a fluorine-containing polymer or a non-fluorine polymer. Etc. can be used. Examples of the sulfonic acid type perfluorocarbon polymer include Nafion (manufactured by DuPont: registered trademark) 112. Examples of non-fluorine polymers include sulfonated aromatic polyetheretherketone and polysulfone. The thickness of the electrolyte membrane 106 is, for example, 10 to 200 μm.
 カソード108側の電池筐体102の主表面には、複数の空気取入口112が設けられている。また、カソード108と、空気取入口112が設けられた主表面との間には、空気室114が形成されている。酸化剤としての空気は、外部から空気取入口112及び空気室114を経て、カソード108に供給される。 A plurality of air intakes 112 are provided on the main surface of the battery casing 102 on the cathode 108 side. An air chamber 114 is formed between the cathode 108 and the main surface on which the air intake 112 is provided. Air as an oxidant is supplied to the cathode 108 from the outside through the air inlet 112 and the air chamber 114.
 電池筐体102には、アノード110側の内周側面に沿って、水素流路118が設けられている。また、アノード110と、アノード110側の電池筐体102の主表面との間には、燃料ガス室116が形成されている。水素流路118は、上流側の端部が燃料供給部500の水素供給経路502(図2及び図3参照)に接続され、下流側の端部に設けられた水素供給口118aが燃料ガス室116に接続されている。燃料である水素は、燃料収容部200から水素供給経路502、水素流路118及び燃料ガス室116を経て、アノード110に供給される。 The battery casing 102 is provided with a hydrogen flow path 118 along the inner peripheral side surface on the anode 110 side. A fuel gas chamber 116 is formed between the anode 110 and the main surface of the battery casing 102 on the anode 110 side. The hydrogen channel 118 has an upstream end connected to the hydrogen supply path 502 (see FIGS. 2 and 3) of the fuel supply unit 500, and a hydrogen supply port 118a provided at the downstream end includes a fuel gas chamber. 116. Hydrogen, which is a fuel, is supplied from the fuel storage unit 200 to the anode 110 through the hydrogen supply path 502, the hydrogen flow path 118, and the fuel gas chamber 116.
 カソード108及びアノード110は、それぞれイオン交換樹脂及び触媒粒子、場合によって炭素粒子を有する。カソード108及びアノード110が有するイオン交換樹脂は、触媒粒子と電解質膜106を接続し、両者間においてプロトンを伝達する役割を持つ。このイオン交換樹脂は、電解質膜106と同様の高分子材料から形成されてよい。触媒金属としては、Sc、Y、Ti、Zr、V、Nb、Fe、Co、Ni、Ru、Rh、Pd、Pt、Os、Ir、ランタノイド系列元素やアクチノイド系列の元素の中から選ばれる合金や単体が挙げられる。また触媒を担持する場合には炭素粒子として、アセチレンブラック、ケッチェンブラック、カーボンナノチューブなどを用いてもよい。なお、カソード108およびアノード110の厚さは、それぞれ、たとえば10~40μmである。 The cathode 108 and the anode 110 have ion exchange resin and catalyst particles, and possibly carbon particles, respectively. The ion exchange resin that the cathode 108 and the anode 110 have has a role of connecting the catalyst particles and the electrolyte membrane 106 and transmitting protons therebetween. This ion exchange resin may be formed of the same polymer material as the electrolyte membrane 106. Examples of catalyst metals include Sc, Y, Ti, Zr, V, Nb, Fe, Co, Ni, Ru, Rh, Pd, Pt, Os, Ir, alloys selected from lanthanoid series elements and actinoid series elements, A simple substance is mentioned. When the catalyst is supported, acetylene black, ketjen black, carbon nanotubes or the like may be used as the carbon particles. The thicknesses of the cathode 108 and the anode 110 are each 10 to 40 μm, for example.
 電池筐体102のカソード108側の内周側面には、カソード側固定部材120が設けられている。カソード108の周囲に位置する電解質膜106と(電解質膜106のカソード108側の外周部)とカソード側固定部材120との間には、ガスケット122が設けられている。ガスケット122により、燃料ガス室116から空気室114への燃料漏洩が抑制される。 A cathode side fixing member 120 is provided on the inner peripheral side surface of the battery casing 102 on the cathode 108 side. A gasket 122 is provided between the electrolyte membrane 106 located around the cathode 108 (the outer peripheral portion of the electrolyte membrane 106 on the cathode 108 side) and the cathode-side fixing member 120. The gasket 122 suppresses fuel leakage from the fuel gas chamber 116 to the air chamber 114.
 電池筐体102のアノード110側の内周側面には、アノード側固定部材124が設けられている。アノード110の周囲に位置する電解質膜106(電解質膜106のアノード110側の外周部)とアノード側固定部材124との間には、ガスケット126が設けられている。ガスケット126により、燃料ガス室116の密封性が高められ、燃料漏洩が抑制される。 An anode side fixing member 124 is provided on the inner peripheral side surface of the battery casing 102 on the anode 110 side. A gasket 126 is provided between the electrolyte membrane 106 (the outer periphery of the electrolyte membrane 106 on the anode 110 side) located around the anode 110 and the anode-side fixing member 124. The gasket 126 enhances the sealing performance of the fuel gas chamber 116 and suppresses fuel leakage.
 電池筐体102のアノード110側の外表面には伝熱板10が接し、伝熱板10にはヒートパイプ302の一端側が埋め込まれている。ヒートパイプ302は、熱伝導性を有する筒状の容器302aと、当該容器302a内で循環することで外部から容器302a内に伝達された熱を移動させる作動液302bとを有する。容器302aは、例えば銅、ステンレス、アルミニウム等の金属からなる。作動液302bは、例えば水、アンモニア、アルコール類等である。ヒートパイプ302と電池筐体102とを伝熱板10を介して接続することで、ヒートパイプ302と電池筐体102とを直に接続する場合に比べて、燃料電池100全体を均一に放熱させることができる。また、ヒートパイプ302を伝熱板10に埋め込むことにより、両者の接触面積が増大するため、伝熱板10からヒートパイプ302への熱伝導性を向上させることができる。 The heat transfer plate 10 is in contact with the outer surface of the battery casing 102 on the anode 110 side, and one end side of the heat pipe 302 is embedded in the heat transfer plate 10. The heat pipe 302 includes a cylindrical container 302a having thermal conductivity, and a working fluid 302b that moves heat transferred from the outside into the container 302a by circulating in the container 302a. The container 302a is made of a metal such as copper, stainless steel, or aluminum. The working fluid 302b is, for example, water, ammonia, alcohols, or the like. By connecting the heat pipe 302 and the battery casing 102 via the heat transfer plate 10, the entire fuel cell 100 can dissipate heat more uniformly than when the heat pipe 302 and the battery casing 102 are directly connected. be able to. Moreover, since the contact area of both increases by embedding the heat pipe 302 in the heat exchanger plate 10, the thermal conductivity from the heat exchanger plate 10 to the heat pipe 302 can be improved.
 燃料電池100のカソード108側の外表面には、温度センサ800が設けられている(図2及び図3参照)。温度センサ800により燃料電池100の温度が測定される。温度センサ800は、測定した燃料電池100の温度情報を示す信号を制御部700に送信する。 A temperature sensor 800 is provided on the outer surface of the fuel cell 100 on the cathode 108 side (see FIGS. 2 and 3). The temperature of the fuel cell 100 is measured by the temperature sensor 800. The temperature sensor 800 transmits a signal indicating the measured temperature information of the fuel cell 100 to the control unit 700.
 図5(A)は、図2のB-B線に沿った断面の模式図である。図5(B)は、図2のC-C線に沿った断面の模式図である。図5(A)及び図5(B)に示すように、燃料収容部200は、収容部筐体202と、収容部筐体202に着脱可能に収容される燃料カートリッジ204とを主な構成として備える。 FIG. 5A is a schematic view of a cross section taken along line BB in FIG. FIG. 5B is a schematic diagram of a cross section taken along the line CC of FIG. As shown in FIGS. 5A and 5B, the fuel storage unit 200 mainly includes a storage unit housing 202 and a fuel cartridge 204 that is detachably stored in the storage unit housing 202. Prepare.
 収容部筐体202は、燃料カートリッジ204が収容される収容空間202aと、一側面に設けられた開口部202bとを有する。収容空間202aは、開口部202bを介して外部に開放されている。燃料カートリッジ204は、開口部202bを介して収容空間202a内に挿入され、若しくは開口部202bを介して収容空間202a外に引き出される。収容部筐体202の開口部202bが設けられた側面と対向する内側面には、水素流路208が設けられている。水素流路208は、開口部208aを介して収容空間202aに接続されている。また、水素流路208は、水素供給経路502に接続されている。 The housing section housing 202 has a housing space 202a in which the fuel cartridge 204 is housed, and an opening 202b provided on one side surface. The accommodation space 202a is opened to the outside through the opening 202b. The fuel cartridge 204 is inserted into the accommodation space 202a via the opening 202b or pulled out of the accommodation space 202a via the opening 202b. A hydrogen flow path 208 is provided on the inner side surface of the housing housing 202 opposite to the side surface provided with the opening 202b. The hydrogen flow path 208 is connected to the accommodation space 202a through the opening 208a. The hydrogen flow path 208 is connected to the hydrogen supply path 502.
 燃料収容部200は、複数の燃料カートリッジ204を収容可能である。本実施形態では4つの燃料カートリッジ204を収容可能である。そのため、収容部筐体202には、4つの燃料カートリッジ204に対応して4つの開口部208aが設けられている。水素流路208は、一端側が4つに分岐して各開口部208aに接続され、他端側が1つにまとまって水素供給経路502に接続されている。すなわち、各燃料カートリッジ204は、燃料電池100に対して並列に接続されている。 The fuel storage unit 200 can store a plurality of fuel cartridges 204. In the present embodiment, four fuel cartridges 204 can be accommodated. For this reason, the housing casing 202 is provided with four openings 208 a corresponding to the four fuel cartridges 204. One end side of the hydrogen flow path 208 branches into four and is connected to each opening 208 a, and the other end side is combined into one and connected to the hydrogen supply path 502. That is, each fuel cartridge 204 is connected in parallel to the fuel cell 100.
 燃料カートリッジ204は、収容空間204aと、一側面に設けられた開口部204bとを有する。収容空間204aには、燃料電池100の水素を貯蔵するための水素吸蔵合金206が収容されている。 The fuel cartridge 204 has a storage space 204a and an opening 204b provided on one side surface. A hydrogen storage alloy 206 for storing hydrogen of the fuel cell 100 is accommodated in the accommodating space 204a.
 水素吸蔵合金206は、水素の吸蔵と、吸蔵した水素の放出とが可能であり、たとえば、希土類系のMmNi4.32Mn0.18Al0.1Fe0.1Co0.3(Mmはミッシュメタル)である。なお、水素吸蔵合金206は、希土類系の合金に限られず、たとえばTi-Mn系合金、Ti-Fe系合金、Ti-Zr系合金、Mg-Ni系合金、Zr-Mn系合金等であってもよい。具体的には、水素吸蔵合金206としてLaNi合金、MgNi合金、Ti1+XCr2-yMn(x=0.1~0.3、y=0~1.0)合金などを挙げることができる。水素吸蔵合金206は、上述した水素吸蔵合金の粉末にポリテトラフルオロエチレン(PTFE)デイスパージョンなどの結着剤を混合し、プレス機で圧縮成形した圧縮成形体(ペレット)とすることができる。必要に応じて、圧縮成形後に焼結処理がなされていてもよい。また、水素吸蔵合金206は、ペレット形状ではなく、水素吸蔵合金の粉末が燃料カートリッジ204の収容空間204aに充填されたものであってもよい。水素吸蔵合金206の形状は、特に限定されない。 The hydrogen storage alloy 206 can store and release hydrogen, for example, rare earth-based MmNi 4.32 Mn 0.18 Al 0.1 Fe 0.1 Co 0.3 (Mm is Misch metal). The hydrogen storage alloy 206 is not limited to a rare earth alloy, such as a Ti—Mn alloy, a Ti—Fe alloy, a Ti—Zr alloy, a Mg—Ni alloy, a Zr—Mn alloy, and the like. Also good. Specifically, mention LaNi 5 alloy, Mg 2 Ni alloy, Ti 1 + X Cr 2- y Mn y (x = 0.1 ~ 0.3, y = 0 ~ 1.0) and an alloy as a hydrogen absorbing alloy 206 be able to. The hydrogen storage alloy 206 can be formed into a compression molded body (pellet) obtained by mixing a binder such as polytetrafluoroethylene (PTFE) dispersion into the above-mentioned hydrogen storage alloy powder and compression molding with a press. . If necessary, a sintering process may be performed after the compression molding. Further, the hydrogen storage alloy 206 may not be in the form of a pellet, but may be one in which the storage space 204a of the fuel cartridge 204 is filled with powder of the hydrogen storage alloy. The shape of the hydrogen storage alloy 206 is not particularly limited.
 燃料カートリッジ204の開口部204b、及び水素流路208の開口部208aには、封止機構(図示せず)が設けられている。この封止機構は、燃料カートリッジ204が収容空間202aに差し込まれ、燃料カートリッジ204の開口部204bと水素流路208の開口部208aとが接続された状態でのみ、水素流路の遮断を解除するように構成されている。燃料カートリッジ204中の水素吸蔵合金206から放出された水素は、水素流路208を経由して燃料供給部500の水素供給経路502に送出される。 A sealing mechanism (not shown) is provided at the opening 204 b of the fuel cartridge 204 and the opening 208 a of the hydrogen flow path 208. This sealing mechanism releases the blocking of the hydrogen flow path only when the fuel cartridge 204 is inserted into the accommodation space 202a and the opening 204b of the fuel cartridge 204 and the opening 208a of the hydrogen flow path 208 are connected. It is configured as follows. Hydrogen released from the hydrogen storage alloy 206 in the fuel cartridge 204 is sent to the hydrogen supply path 502 of the fuel supply unit 500 via the hydrogen flow path 208.
 上述のように、複数の燃料カートリッジ204は、並列に接続されている。そのため、各燃料カートリッジ204は、燃料電池100に対して独立に水素を供給可能であり、燃料電池100の作動中に、任意の一部の燃料カートリッジ204が燃料収容部200に収容された状態で、残りの燃料カートリッジ204を取り外し可能である。すなわち、本実施形態に係る燃料電池システム1は、燃料カートリッジ204のホットスワップに対応している。 As described above, the plurality of fuel cartridges 204 are connected in parallel. Therefore, each fuel cartridge 204 can supply hydrogen to the fuel cell 100 independently. While the fuel cell 100 is operating, any part of the fuel cartridge 204 is stored in the fuel storage unit 200. The remaining fuel cartridge 204 can be removed. That is, the fuel cell system 1 according to the present embodiment supports hot swapping of the fuel cartridge 204.
 収容部筐体202は、一方の主表面(上面)における開口部202bが設けられた側の端部に切欠部202cが設けられている。また、燃料カートリッジ204の外表面における開口部204bと反対側の領域には溝部204cが設けられている。燃料カートリッジ204が収容部筐体202に挿入された状態で、収容部筐体202の切欠部202cと燃料カートリッジ204の溝部204cとが重なり、溝部204cが外部に露出する。ユーザーは、図2に示すように、溝部204cに指先を引っ掛けて、燃料カートリッジ204を収容部筐体202から矢印X方向に引き抜くことができる。 The accommodating part housing | casing 202 is provided with the notch part 202c in the edge part by the side in which the opening part 202b was provided in one main surface (upper surface). Further, a groove portion 204c is provided in a region on the outer surface of the fuel cartridge 204 opposite to the opening portion 204b. In a state where the fuel cartridge 204 is inserted into the housing portion housing 202, the cutout portion 202c of the housing portion housing 202 and the groove portion 204c of the fuel cartridge 204 overlap, and the groove portion 204c is exposed to the outside. As shown in FIG. 2, the user can pull the fuel cartridge 204 in the direction of the arrow X from the housing casing 202 by hooking a fingertip on the groove 204 c.
 収容部筐体202には、ヒートパイプ302の他端側が埋め込まれている。本実施形態では、収容部筐体202の他方の主表面(下面)を構成する筐体壁面に埋め込まれている。収容部筐体202は金属等の熱伝導性を有する材料からなり、ヒートパイプ302が埋め込まれた筐体壁面は、燃料カートリッジ204とヒートパイプ302との間の熱伝達を仲介する伝熱板として機能する。 The other end side of the heat pipe 302 is embedded in the housing casing 202. In the present embodiment, the housing portion 202 is embedded in the wall surface of the casing that constitutes the other main surface (lower surface). The housing 202 is made of a material having thermal conductivity such as metal, and the wall of the housing in which the heat pipe 302 is embedded serves as a heat transfer plate that mediates heat transfer between the fuel cartridge 204 and the heat pipe 302. Function.
 燃料収容部200の外表面には、温度センサ802が設けられている(図2及び図3参照)。温度センサ802により燃料カートリッジ204の温度が測定される。温度センサ802は、測定した燃料カートリッジ204の温度情報を示す信号を制御部700に送信する。 A temperature sensor 802 is provided on the outer surface of the fuel storage unit 200 (see FIGS. 2 and 3). A temperature sensor 802 measures the temperature of the fuel cartridge 204. The temperature sensor 802 transmits a signal indicating the measured temperature information of the fuel cartridge 204 to the control unit 700.
 図6は、図2のD-D線に沿った断面の模式図である。図6に示すように、伝熱部用放熱部400は、伝熱部300を放熱させるための機構であり、複数の放熱フィン402とファン404とを有する。燃料電池100と燃料収容部200との間に延在するヒートパイプ302は、伝熱板10に埋め込まれており、当該伝熱板10上に伝熱部用放熱部400が配置されている。複数の放熱フィン402は、それぞれの一側面が伝熱板10の主表面に接し、この側面と略直交する一側面側にファン404が配置されている。 FIG. 6 is a schematic diagram of a cross section taken along the line DD of FIG. As shown in FIG. 6, the heat transfer unit heat dissipation unit 400 is a mechanism for radiating heat from the heat transfer unit 300, and includes a plurality of heat dissipation fins 402 and a fan 404. A heat pipe 302 extending between the fuel cell 100 and the fuel storage unit 200 is embedded in the heat transfer plate 10, and the heat transfer unit heat dissipating unit 400 is disposed on the heat transfer plate 10. Each of the plurality of heat dissipating fins 402 is in contact with the main surface of the heat transfer plate 10, and a fan 404 is disposed on one side surface substantially orthogonal to the side surface.
 ヒートパイプ302により燃料電池100側、若しくは燃料収容部200側から伝達された熱は、伝熱板10を介して放熱フィン402に伝達されて放熱される。ファン404は、筐体2の開口部4から空気を取り込んで伝熱板10と平行な方向(矢印W方向)に送風することで、各放熱フィン402を冷却する。伝熱部用放熱部400は、ファン404を有するため、放熱量が可変である。すなわち、ファン404を駆動させることで伝熱部用放熱部400の放熱量を増大させることができ、ファン404を停止させることで伝熱部用放熱部400の放熱量を低減させることができる。なお、伝熱部用放熱部400の放熱量は、ファン404の風量を調節することで増減させてもよい。 The heat transmitted from the fuel cell 100 side or the fuel storage unit 200 side by the heat pipe 302 is transmitted to the heat radiating fins 402 through the heat transfer plate 10 and radiated. The fan 404 takes in air from the opening 4 of the housing 2 and blows it in a direction parallel to the heat transfer plate 10 (arrow W direction), thereby cooling each heat radiation fin 402. Since the heat transfer unit heat dissipating unit 400 includes the fan 404, the heat dissipation amount is variable. That is, by driving the fan 404, the heat dissipation amount of the heat transfer unit heat dissipation unit 400 can be increased, and by stopping the fan 404, the heat dissipation amount of the heat transfer unit heat dissipating unit 400 can be reduced. In addition, you may increase / decrease the heat radiation amount of the thermal radiation part 400 for heat-transfer parts by adjusting the air volume of the fan 404. FIG.
 ここで、燃料電池システム1における各部の配置と熱伝達について説明する。図2及び図3に示すように、本実施形態に係る燃料電池システム1では、燃料電池100と燃料収容部200とが離間して配置されている。したがって、燃料電池システム1には、燃料電池100と燃料収容部200とで挟まれた領域(空間)Rが設けられている。したがって、燃料電池100と燃料収容部200との間は、空気層である領域Rによって実質的に断熱されており、両者間の熱伝達は実質的に伝熱部300のみを介して行われる。そして、伝熱部用放熱部400は、燃料電池100と燃料収容部200との間で切った伝熱部300の断面全体、言い換えればヒートパイプ302の断面全体(図6参照)の熱伝達を抑制する。すなわち、燃料収容部200と燃料電池100との間で移動する実質的に全ての熱が、伝熱部用放熱部400による熱伝達の抑制を受け、伝熱部300の熱伝達量が低減される。本実施形態では、燃料収容部200と燃料電池100との間の伝熱は、伝熱部300及び伝熱部用放熱部400を介して行われる。 Here, the arrangement and heat transfer of each part in the fuel cell system 1 will be described. As shown in FIGS. 2 and 3, in the fuel cell system 1 according to the present embodiment, the fuel cell 100 and the fuel storage unit 200 are arranged apart from each other. Therefore, the fuel cell system 1 is provided with a region (space) R sandwiched between the fuel cell 100 and the fuel storage unit 200. Therefore, the fuel cell 100 and the fuel storage unit 200 are substantially insulated from each other by the region R that is an air layer, and the heat transfer between both is performed only through the heat transfer unit 300. Then, the heat transfer part heat radiating part 400 performs heat transfer of the entire cross section of the heat transfer part 300 cut between the fuel cell 100 and the fuel storage part 200, in other words, the entire cross section of the heat pipe 302 (see FIG. 6). Suppress. That is, substantially all the heat that moves between the fuel storage unit 200 and the fuel cell 100 is subjected to suppression of heat transfer by the heat transfer unit radiating unit 400, and the heat transfer amount of the heat transfer unit 300 is reduced. The In the present embodiment, heat transfer between the fuel storage unit 200 and the fuel cell 100 is performed via the heat transfer unit 300 and the heat transfer unit heat dissipation unit 400.
 また、本実施形態では、領域Rに伝熱部用放熱部400が配置されている。すなわち、一端が燃料電池100に熱的に接続され、他端が燃料収容部200に熱的に接続されたヒートパイプ302が領域Rに延在し、領域R内に位置するヒートパイプ302に伝熱部用放熱部400が熱的に接続されている。そのため、燃料電池100と燃料収容部200との間の空間を有効利用でき、また、ヒートパイプ302の長さを最短とする設計が可能となり、燃料電池システム1の大型化を抑制することができる。なお、伝熱部用放熱部400は、空間の有効利用等の点から領域R内に設けられていることが好ましいが、筐体2の形状等に応じて領域Rの外に設けられていてもよい。この場合、ヒートパイプ302が領域Rを迂回するように配置され、領域Rの外側で伝熱部用放熱部400がヒートパイプ302に熱的に接続される。 Further, in the present embodiment, the heat transfer part heat dissipating part 400 is arranged in the region R. That is, a heat pipe 302 having one end thermally connected to the fuel cell 100 and the other end thermally connected to the fuel storage unit 200 extends to the region R and is transmitted to the heat pipe 302 located in the region R. The heat-dissipating part 400 is thermally connected. Therefore, the space between the fuel cell 100 and the fuel storage unit 200 can be used effectively, and the design that minimizes the length of the heat pipe 302 is possible, and the increase in size of the fuel cell system 1 can be suppressed. . In addition, although it is preferable that the heat radiating unit 400 for the heat transfer unit is provided in the region R from the viewpoint of effective use of space, the heat transfer unit 400 is provided outside the region R depending on the shape of the housing 2 and the like. Also good. In this case, the heat pipe 302 is disposed so as to bypass the region R, and the heat transfer unit heat radiating unit 400 is thermally connected to the heat pipe 302 outside the region R.
 具体的には、燃料電池100の発電によって発生する熱は、伝熱板10を介してヒートパイプ302に伝達され、ヒートパイプ302内を移動して、領域Rを経て燃料収容部200側に移動する。燃料収容部200側に伝達された熱は、ヒートパイプ302から収容部筐体202および燃料カートリッジ204を介して水素吸蔵合金206に伝達される。これにより、燃料電池100の発電によって発生する熱を、水素吸蔵合金206の水素放出に必要な熱として利用することができる。 Specifically, the heat generated by the power generation of the fuel cell 100 is transmitted to the heat pipe 302 via the heat transfer plate 10, moves in the heat pipe 302, and moves to the fuel storage unit 200 side through the region R. To do. The heat transferred to the fuel storage unit 200 side is transmitted from the heat pipe 302 to the hydrogen storage alloy 206 through the storage unit housing 202 and the fuel cartridge 204. Thereby, the heat generated by the power generation of the fuel cell 100 can be used as the heat necessary for releasing the hydrogen of the hydrogen storage alloy 206.
 また、本実施形態に係る燃料電池システム1は、燃料カートリッジ204が収容部筐体202に装着された状態で、燃料カートリッジ204への水素の充填が可能である。燃料カートリッジ204へ水素を充填する際は、燃料収容部200の通常運転時に閉状態である水素充填用バルブ510が開状態とされる。そして、充填用の水素が、水素充填口508aから水素充填経路508及び収容部筐体202の水素流路208を経由して、各燃料カートリッジ204の水素吸蔵合金206に供給される。また、水素充填口508aから取り込まれた水素の一部は、圧力調整部504を経由して燃料電池100側にも供給され、燃料電池100が水素充填時にファン404を駆動させるための電力を生成する。水素充填によって水素吸蔵合金206で発生する熱は、燃料カートリッジ204及び収容部筐体202を介してヒートパイプ302に伝達され、ヒートパイプ302内を領域R側に移動する。領域R側に移動した熱は、伝熱部用放熱部400によって放熱される。 Further, the fuel cell system 1 according to the present embodiment can fill the fuel cartridge 204 with hydrogen in a state where the fuel cartridge 204 is mounted in the housing housing 202. When filling the fuel cartridge 204 with hydrogen, the hydrogen filling valve 510 that is closed during normal operation of the fuel storage unit 200 is opened. Then, filling hydrogen is supplied from the hydrogen filling port 508 a to the hydrogen storage alloy 206 of each fuel cartridge 204 via the hydrogen filling path 508 and the hydrogen flow path 208 of the housing housing 202. Further, part of the hydrogen taken in from the hydrogen filling port 508a is also supplied to the fuel cell 100 side via the pressure adjustment unit 504, and the fuel cell 100 generates electric power for driving the fan 404 when filling with hydrogen. To do. The heat generated in the hydrogen storage alloy 206 by the hydrogen filling is transmitted to the heat pipe 302 through the fuel cartridge 204 and the housing housing 202, and moves in the heat pipe 302 to the region R side. The heat that has moved to the region R side is radiated by the heat transfer portion heat radiating portion 400.
 なお、水素充填時に圧力調整部504のレギュレータを閉じて、水素充填口508aから取り込まれた水素を燃料収容部200側のみに送り、水素充填時のファン駆動用電力を燃料電池システム1に搭載した2次電池(図示せず)等により供給する構成であってもよい。 When the hydrogen is charged, the regulator of the pressure adjustment unit 504 is closed, the hydrogen taken in from the hydrogen filling port 508a is sent only to the fuel storage unit 200 side, and the electric power for driving the fan at the time of hydrogen filling is mounted in the fuel cell system 1. It may be configured to be supplied by a secondary battery (not shown) or the like.
 これにより、燃料収容部200から燃料電池100に伝達される熱を低減することができ、その結果、水素充填時に燃料収容部200で生じる熱から燃料電池100を保護することができる。また、伝熱部用放熱部400による放熱によって水素吸蔵合金206を冷却することができるため、水素吸蔵合金206への水素充填を促進させることができる。その結果、水素吸蔵合金206への水素充填に要する時間を短縮することができる。 Thereby, the heat transmitted from the fuel storage unit 200 to the fuel cell 100 can be reduced, and as a result, the fuel cell 100 can be protected from the heat generated in the fuel storage unit 200 during hydrogen filling. Moreover, since the hydrogen storage alloy 206 can be cooled by the heat radiation by the heat transfer unit heat radiation unit 400, the hydrogen filling of the hydrogen storage alloy 206 can be promoted. As a result, the time required for filling the hydrogen storage alloy 206 with hydrogen can be shortened.
 なお、燃料電池100から燃料収容部200に伝達される熱も、伝熱部用放熱部400によって低減される。しかしながら、水素吸蔵合金206が水素放出に必要とする熱量は、燃料電池100で発生する熱量の数分の一程度である。そのため、伝熱部用放熱部400によって燃料電池100で発生した熱の一部が放熱されても、十分な量の熱を燃料収容部200に供給することができる。 Note that the heat transferred from the fuel cell 100 to the fuel storage unit 200 is also reduced by the heat transfer unit heat dissipation unit 400. However, the amount of heat required for the hydrogen storage alloy 206 to release hydrogen is about a fraction of the amount of heat generated in the fuel cell 100. Therefore, even if a part of the heat generated in the fuel cell 100 is radiated by the heat transfer part heat radiating part 400, a sufficient amount of heat can be supplied to the fuel storage part 200.
 本実施形態では、燃料電池100及び燃料収容部200の全体が互いに離間して配置されているが、両者は少なくとも一部が離間していればよい。この場合、燃料収容部200から燃料電池100へ伝達される熱により燃料電池100が受けるダメージを低減する効果が得られる範囲で、燃料電池100及び燃料収容部200の一部を当接させることができる。例えば、燃料収容部200で発生した熱の熱量換算で50%以上がヒートパイプ302に伝達される範囲で、燃料電池100及び燃料収容部200を部分的に当接させることができる。また、この範囲で、領域Rの空気を介して燃料収容部200から燃料電池100に熱が伝達されてもよい。また、本実施形態では、領域Rを空間(空気層)としているが、領域Rには例えば断熱材が設けられていてもよい。 In the present embodiment, the entire fuel cell 100 and the fuel storage unit 200 are spaced apart from each other, but at least a part of both may be spaced apart. In this case, the fuel cell 100 and a part of the fuel storage unit 200 can be brought into contact with each other within a range in which an effect of reducing damage to the fuel cell 100 due to heat transmitted from the fuel storage unit 200 to the fuel cell 100 can be obtained. it can. For example, the fuel cell 100 and the fuel storage unit 200 can be partially brought into contact with each other within a range where 50% or more of heat generated in the fuel storage unit 200 is transferred to the heat pipe 302. In this range, heat may be transmitted from the fuel storage unit 200 to the fuel cell 100 via the air in the region R. In the present embodiment, the region R is a space (air layer), but a heat insulating material may be provided in the region R, for example.
 続いて、上述の構成を備える燃料電池システム1における、燃料電池100及び燃料収容部200の温度制御について説明する。当該温度制御は、制御部700によって実行される。なお、制御部700は、ハードウェア構成としてはコンピュータのCPUやメモリをはじめとする素子や回路で実現され、ソフトウェア構成としてはコンピュータプログラム等によって実現されるが、図2及び図3ではそれらの連携によって実現される機能ブロックとして描いている。したがって、これらの機能ブロックはハードウェア、ソフトウェアの組合せによっていろいろなかたちで実現できることは、当業者には理解されるところである。 Subsequently, temperature control of the fuel cell 100 and the fuel storage unit 200 in the fuel cell system 1 having the above-described configuration will be described. The temperature control is executed by the control unit 700. Note that the control unit 700 is realized by elements and circuits such as a CPU and a memory of a computer as a hardware configuration, and realized by a computer program as a software configuration, but in FIG. 2 and FIG. It is drawn as a functional block realized by. Therefore, those skilled in the art will understand that these functional blocks can be realized in various forms by a combination of hardware and software.
 制御部700は、伝熱部用放熱部400の放熱量を調節する伝熱部用調節部702を備える。伝熱部用調節部702は、切替スイッチ600及び温度センサ800,802から受信した信号に基づいて、ファン404のオン/オフを切り替える。例えば、水素充填モード用ボタン606が押下されて燃料収容部200への水素充填が実施される際、伝熱部用調節部702は、ファン404をオンにして伝熱部用放熱部400の放熱量を高める。これにより、水素充填時に燃料収容部200で生じる熱から燃料電池100をより確実に保護することができる。また、水素吸蔵合金206への水素の急速充填が可能となる。 The control unit 700 includes a heat transfer unit adjustment unit 702 that adjusts the heat radiation amount of the heat transfer unit heat dissipation unit 400. The heat transfer unit adjustment unit 702 switches the fan 404 on and off based on signals received from the changeover switch 600 and the temperature sensors 800 and 802. For example, when the hydrogen filling mode button 606 is pressed to fill the fuel storage unit 200 with hydrogen, the heat transfer unit adjustment unit 702 turns on the fan 404 to release the heat transfer unit heat dissipation unit 400. Increase the amount of heat. Thereby, the fuel cell 100 can be more reliably protected from the heat generated in the fuel storage unit 200 during hydrogen filling. In addition, the hydrogen storage alloy 206 can be rapidly filled with hydrogen.
 また、通常運転モード用ボタン602が押下されて燃料電池100が作動する際、伝熱部用調節部702は、燃料電池100が所定温度を上回る場合に、ファン404をオンにして伝熱部用放熱部400の放熱量を高める。また、伝熱部用調節部702は、燃料電池100又は燃料収容部200が所定の低温状態となった場合に、ファン404をオフにする。これにより、燃料電池100および燃料収容部200の温度を適切な範囲に維持することができる。 In addition, when the fuel cell 100 is activated by pressing the normal operation mode button 602, the heat transfer unit adjustment unit 702 turns on the fan 404 and turns on the heat transfer unit when the fuel cell 100 exceeds a predetermined temperature. The heat radiation amount of the heat radiation part 400 is increased. Further, the heat transfer unit adjustment unit 702 turns off the fan 404 when the fuel cell 100 or the fuel storage unit 200 is in a predetermined low temperature state. Thereby, the temperature of the fuel cell 100 and the fuel accommodating part 200 can be maintained in an appropriate range.
 例えば、伝熱部用調節部702は、温度センサ800の測定値又は温度センサ802の測定値が50℃以上である場合に、ファン404をオンにする。また、伝熱部用調節部702は、温度センサ800の測定値が40℃以下となった場合、又は温度センサ802の測定値が20℃以下となった場合に、ファン404をオフにする。前記「所定温度」及び「所定の低温状態」は、設計者による実験やシミュレーションに基づき適宜設定することができる。 For example, the heat transfer unit adjustment unit 702 turns on the fan 404 when the measured value of the temperature sensor 800 or the measured value of the temperature sensor 802 is 50 ° C. or higher. Further, the heat transfer unit adjusting unit 702 turns off the fan 404 when the measured value of the temperature sensor 800 becomes 40 ° C. or lower, or when the measured value of the temperature sensor 802 becomes 20 ° C. or lower. The “predetermined temperature” and the “predetermined low temperature state” can be appropriately set based on experiments and simulations by the designer.
 図7は、実施形態1に係る燃料電池システムの制御フローチャートである。図7のフローチャートではステップを意味するS(Stepの頭文字)と数字との組み合わせによって各部の処理手順を表示する。このフローは、燃料電池システム1の電源がオンとなった後、伝熱部用調節部702を含む制御部700が所定のタイミングで繰り返し実行する。 FIG. 7 is a control flowchart of the fuel cell system according to the first embodiment. In the flowchart of FIG. 7, the processing procedure of each unit is displayed by a combination of S (acronym for Step) meaning a step and a number. This flow is repeatedly executed at a predetermined timing by the control unit 700 including the heat transfer unit adjusting unit 702 after the fuel cell system 1 is powered on.
 まず、制御部700は、水素充填モードが選択されているか判断する(S101)。水素充填モードが選択されている場合(S101のY)、制御部700は、ファン404をオンにし(S102)、本ルーチンを終了する。水素充填モードが選択されていない場合(S101のN)、制御部700は、通常運転モードが選択されているか判断する(S103)。 First, the control unit 700 determines whether the hydrogen filling mode is selected (S101). When the hydrogen filling mode is selected (Y in S101), the control unit 700 turns on the fan 404 (S102) and ends this routine. When the hydrogen filling mode is not selected (N in S101), the control unit 700 determines whether the normal operation mode is selected (S103).
 通常運転モードが選択されている場合(S103のY)、制御部700は、燃料電池100の温度が、例えば50℃以上であるか判断する(S104)。燃料電池100の温度が50℃未満である場合(S104のN)、制御部700は、本ルーチンを終了する。燃料電池100の温度が50℃以上である場合(S104のY)、制御部700は、ファン404をオンにする(S105)。 When the normal operation mode is selected (Y in S103), the control unit 700 determines whether the temperature of the fuel cell 100 is, for example, 50 ° C. or more (S104). When the temperature of the fuel cell 100 is lower than 50 ° C. (N in S104), the control unit 700 ends this routine. When the temperature of the fuel cell 100 is 50 ° C. or higher (Y in S104), the control unit 700 turns on the fan 404 (S105).
 続いて、制御部700は、所定時間が経過したか判断する(S106)。当該「所定時間」は、例えば1秒間である。なお、「所定時間」は、伝熱部用放熱部400の放熱性能や燃料電池100の出力の大きさ等に応じて適宜設定することができる。所定時間を経過していない場合(S106のN)、制御部700は、所定時間を経過したか否かの判断を繰り返す。所定時間を経過した場合(S106のY)、制御部700は、燃料電池100の温度が例えば40℃以下であるか、又は燃料カートリッジ204の温度が例えば20℃以下であるか判断する(S107)。 Subsequently, the control unit 700 determines whether a predetermined time has elapsed (S106). The “predetermined time” is, for example, 1 second. The “predetermined time” can be appropriately set according to the heat dissipation performance of the heat transfer unit heat dissipation unit 400, the output level of the fuel cell 100, and the like. When the predetermined time has not elapsed (N in S106), the control unit 700 repeats the determination of whether or not the predetermined time has elapsed. When the predetermined time has elapsed (Y in S106), the control unit 700 determines whether the temperature of the fuel cell 100 is, for example, 40 ° C. or less, or the temperature of the fuel cartridge 204, for example, is 20 ° C. or less (S107). .
 燃料電池100の温度が40℃を上回り、且つ燃料カートリッジ204の温度が20℃を上回る場合(S107のN)、制御部700は、再度、所定時間の経過を判断する(S106)。燃料電池100の温度が40℃以下であるか、又は燃料カートリッジ204の温度が20℃以下である場合(S107のY)、制御部700は、ファン404をオフにし(S108)、本ルーチンを終了する。 When the temperature of the fuel cell 100 exceeds 40 ° C. and the temperature of the fuel cartridge 204 exceeds 20 ° C. (N in S107), the control unit 700 determines again that a predetermined time has elapsed (S106). When the temperature of the fuel cell 100 is 40 ° C. or lower, or the temperature of the fuel cartridge 204 is 20 ° C. or lower (Y in S107), the control unit 700 turns off the fan 404 (S108) and ends this routine. To do.
 通常運転モードが選択されていない場合(S103のN)、制御部700は、運転停止が選択されているか判断する(S109)。運転停止が選択されていない場合(S109のN)、制御部700は、本ルーチンを終了する。運転停止が選択されている場合(S109のY)、制御部700は、圧力調整部504を制御して、燃料収容部200から燃料電池100への水素供給を停止する(S110)。また、制御部700は、ファン404をオフにし(S111)、本ルーチンを終了する。 When the normal operation mode is not selected (N in S103), the control unit 700 determines whether the operation stop is selected (S109). When the operation stop is not selected (N in S109), the control unit 700 ends this routine. When the operation stop is selected (Y in S109), the control unit 700 controls the pressure adjustment unit 504 to stop the hydrogen supply from the fuel storage unit 200 to the fuel cell 100 (S110). In addition, the control unit 700 turns off the fan 404 (S111), and ends this routine.
 以上説明したように、本実施形態に係る燃料電池システム1では、燃料電池100と燃料収容部200とは、少なくとも一部が離間して配置されている。そして、燃料電池100と燃料収容部200との間の熱伝達は、実質的に伝熱部300を介して行われ、伝熱部用放熱部400により伝熱部300が放熱される。したがって、燃料カートリッジ204が収容部筐体202に差し込まれたままの状態で燃料カートリッジ204への水素充填を実施した場合、水素充填により水素吸蔵合金206で発生する熱は、ヒートパイプ302を介して燃料電池100側に伝達されるが、燃料電池100に至る手前で伝熱部用放熱部400により放熱される。そのため、燃料カートリッジ204への水素充填時に燃料収容部200から燃料電池100に伝達される熱を低減することができ、その結果、水素充填時に燃料収容部200で生じる熱から燃料電池100を保護することができる。 As described above, in the fuel cell system 1 according to the present embodiment, at least a part of the fuel cell 100 and the fuel storage unit 200 are spaced apart. Heat transfer between the fuel cell 100 and the fuel storage unit 200 is substantially performed via the heat transfer unit 300, and the heat transfer unit 300 radiates heat by the heat transfer unit heat dissipation unit 400. Therefore, when the fuel cartridge 204 is filled with hydrogen while the fuel cartridge 204 is inserted into the housing housing 202, the heat generated in the hydrogen storage alloy 206 due to the hydrogen filling passes through the heat pipe 302. Although it is transmitted to the fuel cell 100 side, the heat is dissipated by the heat transfer part heat dissipating part 400 before reaching the fuel cell 100. Therefore, the heat transmitted from the fuel storage unit 200 to the fuel cell 100 when the fuel cartridge 204 is filled with hydrogen can be reduced. As a result, the fuel cell 100 is protected from the heat generated in the fuel storage unit 200 during the hydrogen filling. be able to.
 (実施形態2)
 実施形態2に係る燃料電池システム1は、燃料収容部200に燃料収容部用放熱部が設けられた点と、当該燃料収容部用放熱部の制御が追加された点を除き、実施形態1に係る燃料電池システム1の構成と共通する。以下、実施形態2に係る燃料電池システム1について実施形態1と異なる構成を中心に説明する。図8は、実施形態2に係る燃料電池システムの筐体内部の構造を模式的に示す斜視図である。図9(A)は、図8のE-E線に沿った断面の模式図である。図9(B)は、変形例に係る燃料収容部用放熱部の構造を模式的に示す断面図である。
(Embodiment 2)
The fuel cell system 1 according to Embodiment 2 is the same as that of Embodiment 1 except that the fuel housing portion 200 is provided with a fuel housing portion heat radiating portion and that the fuel housing portion heat radiating portion is additionally controlled. This is the same as the configuration of the fuel cell system 1. Hereinafter, the fuel cell system 1 according to the second embodiment will be described focusing on the configuration different from the first embodiment. FIG. 8 is a perspective view schematically showing a structure inside the housing of the fuel cell system according to Embodiment 2. FIG. FIG. 9A is a schematic diagram of a cross section taken along line EE of FIG. FIG. 9B is a cross-sectional view schematically showing the structure of the heat radiating portion for the fuel storage portion according to the modification.
 図8及び図9(A)に示すように、本実施形態に係る燃料電池システム1は、燃料収容部200を放熱する燃料収容部用放熱部900を備える。燃料収容部用放熱部900は、複数の放熱フィン902とファン904とを有し、収容部筐体202の主表面上に載置されている。各放熱フィン902は、一側面が収容部筐体202の主表面に当接し、この側面と略直交する一側面側にファン904が配置されている。水素吸蔵合金206で発生した熱は、一部が収容部筐体202の下側の主表面に埋め込まれたヒートパイプ302によって伝熱部用放熱部400側に伝達され、他の一部が収容部筐体202の上側の主表面に熱的に接続された燃料収容部用放熱部900に伝達されて放熱される。 As shown in FIGS. 8 and 9A, the fuel cell system 1 according to the present embodiment includes a heat radiating portion 900 for the fuel accommodating portion that radiates heat from the fuel accommodating portion 200. The fuel housing portion heat radiating section 900 has a plurality of heat radiating fins 902 and a fan 904, and is placed on the main surface of the housing section housing 202. Each radiating fin 902 is in contact with the main surface of the housing housing 202 at one side surface, and a fan 904 is disposed on one side surface substantially orthogonal to the side surface. The heat generated in the hydrogen storage alloy 206 is transmitted to the heat transfer part heat dissipating part 400 side by a heat pipe 302 partly embedded in the lower main surface of the housing part housing 202, and the other part is accommodated. The heat is transmitted to the heat radiating section 900 for the fuel storage section that is thermally connected to the main surface on the upper side of the part housing 202 and is radiated.
 燃料収容部用放熱部900を設けることにより、燃料収容部200から燃料電池100に伝達される熱をより確実に低減することができ、その結果、水素充填時に燃料収容部200で生じる熱から燃料電池100をより確実に保護することができる。また、水素吸蔵合金206のさらなる冷却が可能となるため、水素吸蔵合金206への水素充填をより促進させることができる。また、その結果、水素吸蔵合金206への水素充填に要する時間を短縮することができる。 By providing the heat radiating section 900 for the fuel storage section, the heat transferred from the fuel storage section 200 to the fuel cell 100 can be more reliably reduced, and as a result, the fuel is generated from the heat generated in the fuel storage section 200 during hydrogen filling. The battery 100 can be more reliably protected. Further, since the hydrogen storage alloy 206 can be further cooled, hydrogen filling of the hydrogen storage alloy 206 can be further promoted. As a result, the time required for filling the hydrogen storage alloy 206 with hydrogen can be shortened.
 ファン904は、筐体2の開口部4から空気を取り込んで放熱フィン902に向けて送風することで、各放熱フィン902を冷却する。燃料収容部用放熱部900は、ファン904を有するため、放熱量が可変である。すなわち、ファン904を駆動させることで燃料収容部用放熱部900の放熱量を増大させることができ、ファン904を停止させることで燃料収容部用放熱部900の放熱量を低減させることができる。なお、燃料収容部用放熱部900の放熱量は、ファン904の風量を調節することで増減させてもよい。 The fan 904 cools each radiating fin 902 by taking in air from the opening 4 of the housing 2 and blowing air toward the radiating fin 902. Since the heat radiating section 900 for the fuel storage section includes the fan 904, the heat radiation amount is variable. That is, by driving the fan 904, the heat radiation amount of the fuel housing portion heat radiation portion 900 can be increased, and by stopping the fan 904, the heat radiation amount of the fuel housing portion heat radiation portion 900 can be reduced. Note that the amount of heat released from the heat radiating unit 900 for the fuel storage unit may be increased or decreased by adjusting the air volume of the fan 904.
 なお、図9(B)に示すように、ヒートパイプ302は、燃料カートリッジ204と燃料収容部用放熱部900とで挟まれた燃料収容部200の壁面(上側の主表面)に埋め込まれていてもよい。 As shown in FIG. 9B, the heat pipe 302 is embedded in the wall surface (upper main surface) of the fuel storage unit 200 sandwiched between the fuel cartridge 204 and the fuel storage unit heat dissipation unit 900. Also good.
 続いて、上述の構成を備える燃料電池システム1における、燃料電池100及び燃料収容部200の温度制御について説明する。制御部700は、伝熱部用放熱部400の放熱量を調節する伝熱部用調節部702に加えて、燃料収容部用放熱部900の放熱量を調節する燃料収容部用調節部704を備える。燃料収容部用調節部704は、切替スイッチ600及び温度センサ800,802から受信した信号に基づいて、ファン904のオン/オフを切り替える。例えば、水素充填モード用ボタン606が押下されて燃料収容部200への水素充填が実施される際、燃料収容部用調節部704は、ファン904をオンにして燃料収容部用放熱部900の放熱量を高める。これにより、水素充填時に燃料収容部200で生じる熱から燃料電池100をより確実に保護することができる。また、水素吸蔵合金206への水素の急速充填が可能となる。 Subsequently, temperature control of the fuel cell 100 and the fuel storage unit 200 in the fuel cell system 1 having the above-described configuration will be described. In addition to the heat transfer unit adjustment unit 702 that adjusts the heat release amount of the heat transfer unit heat dissipation unit 400, the control unit 700 includes a fuel storage unit adjustment unit 704 that adjusts the heat release amount of the fuel storage unit heat dissipation unit 900. Prepare. The fuel storage unit adjustment unit 704 switches the fan 904 on / off based on signals received from the changeover switch 600 and the temperature sensors 800 and 802. For example, when the hydrogen filling mode button 606 is pressed to fill the fuel storage unit 200 with hydrogen, the fuel storage unit adjustment unit 704 turns on the fan 904 to release the fuel storage unit heat dissipation unit 900. Increase the amount of heat. Thereby, the fuel cell 100 can be more reliably protected from the heat generated in the fuel storage unit 200 during hydrogen filling. In addition, the hydrogen storage alloy 206 can be rapidly filled with hydrogen.
 また、通常運転モード用ボタン602が押下されて燃料電池100が作動する際、燃料収容部用調節部704は、燃料電池100が所定温度を上回って伝熱部用調節部702により伝熱部用放熱部400の放熱量が高められた所定時間後であっても、燃料電池100が当該所定温度を上回る場合に、ファン904をオンにして燃料収容部用放熱部900の放熱量を高める。また、燃料収容部用調節部704は、燃料電池100又は燃料収容部200が所定の低温状態となった場合に、ファン904をオフにする。これにより、燃料電池100および燃料収容部200の温度を適切な範囲に維持することができる。 Further, when the fuel cell 100 is operated by pressing the normal operation mode button 602, the fuel storage unit adjustment unit 704 causes the heat transfer unit adjustment unit 702 to use the heat transfer unit adjustment unit 702 when the fuel cell 100 exceeds a predetermined temperature. Even after a predetermined time after the heat radiation amount of the heat radiation unit 400 is increased, when the fuel cell 100 exceeds the predetermined temperature, the fan 904 is turned on to increase the heat radiation amount of the heat radiation unit 900 for the fuel storage unit. Further, the fuel storage unit adjustment unit 704 turns off the fan 904 when the fuel cell 100 or the fuel storage unit 200 is in a predetermined low temperature state. Thereby, the temperature of the fuel cell 100 and the fuel accommodating part 200 can be maintained in an appropriate range.
 例えば、燃料収容部用調節部704は、伝熱部用調節部702がファン404をオンにした所定時間後、温度センサ800の測定値が50℃以上である場合に、ファン904をオンにする。また、燃料収容部用調節部704は、温度センサ800の測定値が40℃以下となった場合、又は温度センサ802の測定値が20℃以下となった場合に、ファン904をオフにする。前記「所定温度」は、設計者による実験やシミュレーションに基づき適宜設定することができる。 For example, the fuel storage unit adjustment unit 704 turns on the fan 904 when the measured value of the temperature sensor 800 is 50 ° C. or more after a predetermined time after the heat transfer unit adjustment unit 702 turns on the fan 404. . Further, the fuel storage unit adjustment unit 704 turns off the fan 904 when the measured value of the temperature sensor 800 is 40 ° C. or lower, or when the measured value of the temperature sensor 802 is 20 ° C. or lower. The “predetermined temperature” can be appropriately set based on an experiment or simulation by a designer.
 図10は、実施形態2に係る燃料電池システムの制御フローチャートである。このフローは、燃料電池システム1の電源がオンとなった後、伝熱部用調節部702及び燃料収容部用調節部704を含む制御部700が所定のタイミングで繰り返し実行する。まず、制御部700は、水素充填モードが選択されているか判断する(S201)。水素充填モードが選択されている場合(S201のY)、制御部700は、燃料収容部用放熱部900のファン904及び伝熱部用放熱部400のファン404をオンにし(S202)、本ルーチンを終了する。水素充填モードが選択されていない場合(S201のN)、制御部700は、通常運転モードが選択されているか判断する(S203)。 FIG. 10 is a control flowchart of the fuel cell system according to the second embodiment. This flow is repeatedly executed at a predetermined timing by the control unit 700 including the heat transfer unit adjustment unit 702 and the fuel storage unit adjustment unit 704 after the power of the fuel cell system 1 is turned on. First, the control unit 700 determines whether the hydrogen filling mode is selected (S201). When the hydrogen filling mode is selected (Y in S201), the control unit 700 turns on the fan 904 of the fuel storage unit heat dissipation unit 900 and the fan 404 of the heat transfer unit heat dissipation unit 400 (S202). Exit. When the hydrogen filling mode is not selected (N in S201), the control unit 700 determines whether the normal operation mode is selected (S203).
 通常運転モードが選択されている場合(S203のY)、制御部700は、燃料電池100の温度が、例えば50℃以上であるか判断する(S204)。燃料電池100の温度が50℃未満である場合(S204のN)、制御部700は、本ルーチンを終了する。燃料電池100の温度が50℃以上である場合(S204のY)、制御部700は、伝熱部用放熱部400のファン404をオンにする(S205)。 When the normal operation mode is selected (Y in S203), the control unit 700 determines whether the temperature of the fuel cell 100 is, for example, 50 ° C. or higher (S204). When the temperature of the fuel cell 100 is lower than 50 ° C. (N in S204), the control unit 700 ends this routine. When the temperature of the fuel cell 100 is 50 ° C. or higher (Y in S204), the control unit 700 turns on the fan 404 of the heat transfer unit heat dissipation unit 400 (S205).
 続いて、制御部700は、所定時間が経過したか判断する(S206)。当該「所定時間」は、例えば1秒間であり、伝熱部用放熱部400の放熱性能や燃料電池100の出力の大きさ等に応じて適宜設定することができる。所定時間を経過していない場合(S206のN)、制御部700は、所定時間を経過したか否かの判断を繰り返す。所定時間を経過した場合(S206のY)、制御部700は、燃料電池100の温度が、50℃以上であるか判断する(S207)。燃料電池100の温度が50℃以上である場合(S207のY)、制御部700は、燃料収容部用放熱部900のファン904をオンにする(S208)。 Subsequently, the control unit 700 determines whether a predetermined time has elapsed (S206). The “predetermined time” is, for example, 1 second, and can be appropriately set according to the heat dissipation performance of the heat transfer unit heat dissipating unit 400, the output level of the fuel cell 100, and the like. When the predetermined time has not elapsed (N in S206), the control unit 700 repeats the determination of whether or not the predetermined time has elapsed. When the predetermined time has elapsed (Y in S206), the control unit 700 determines whether the temperature of the fuel cell 100 is 50 ° C. or higher (S207). When the temperature of the fuel cell 100 is 50 ° C. or higher (Y in S207), the control unit 700 turns on the fan 904 of the heat radiating unit 900 for the fuel storage unit (S208).
 続いて、制御部700は、所定時間が経過したか判断する(S209)。当該「所定時間」は、例えば1秒間であり、伝熱部用放熱部400及び燃料収容部用放熱部900の放熱性能や燃料電池100の出力の大きさ等に応じて適宜設定することができる。所定時間を経過していない場合(S209のN)、制御部700は、所定時間を経過したか否かの判断を繰り返す。所定時間を経過した場合(S209のY)、制御部700は、燃料電池100の温度が例えば40℃以下であるか判断する(S210)。燃料電池100の温度が40℃以下である場合(S210のY)、制御部700は、伝熱部用放熱部400のファン404及び燃料収容部用放熱部900のファン904をオフにし(S213)、本ルーチンを終了する。 Subsequently, the control unit 700 determines whether a predetermined time has elapsed (S209). The “predetermined time” is, for example, 1 second, and can be appropriately set according to the heat dissipation performance of the heat transfer unit heat dissipation unit 400 and the fuel storage unit heat dissipation unit 900, the output size of the fuel cell 100, and the like. . When the predetermined time has not elapsed (N in S209), the control unit 700 repeats the determination of whether or not the predetermined time has elapsed. When the predetermined time has elapsed (Y in S209), the control unit 700 determines whether the temperature of the fuel cell 100 is, for example, 40 ° C. or less (S210). When the temperature of the fuel cell 100 is 40 ° C. or lower (Y in S210), the control unit 700 turns off the fan 404 of the heat transfer unit heat dissipation unit 400 and the fan 904 of the fuel storage unit heat dissipation unit 900 (S213). This routine is terminated.
 燃料電池100の温度が40℃を上回る場合(S210のN)、制御部700は、燃料カートリッジ204の温度が例えば20℃以下であるか判断する(S211)。燃料収容部200の温度が20℃を上回る場合(S211のN)、制御部700は、ステップ209に戻る。燃料収容部200の温度が20℃以下である場合(S211のY)、制御部700は、燃料収容部用放熱部900のファン904をオフにし(S212)、本ルーチンを終了する。 When the temperature of the fuel cell 100 exceeds 40 ° C. (N in S210), the control unit 700 determines whether the temperature of the fuel cartridge 204 is, for example, 20 ° C. or less (S211). When the temperature of the fuel storage unit 200 exceeds 20 ° C. (N in S211), the control unit 700 returns to Step 209. When the temperature of the fuel storage unit 200 is 20 ° C. or lower (Y in S211), the control unit 700 turns off the fan 904 of the fuel storage unit heat dissipation unit 900 (S212), and ends this routine.
 ステップ207において、燃料電池100の温度が50℃未満である場合(S207のN)、制御部700は、燃料電池100の温度が例えば40℃以下であるか、又は燃料カートリッジ204の温度が例えば20℃以下であるか判断する(S214)。燃料電池100の温度が40℃を上回り、且つ燃料カートリッジ204の温度が20℃を上回る場合(S214のN)、制御部700は、ステップ214の判断を繰り返す。燃料電池100の温度が例えば40℃以下であるか、又は燃料カートリッジ204の温度が例えば20℃以下である場合(S214のY)、制御部700は、伝熱部用放熱部400のファン404をオフにし(S215)、本ルーチンを終了する。 In step 207, when the temperature of the fuel cell 100 is less than 50 ° C. (N in S207), the controller 700 determines that the temperature of the fuel cell 100 is, for example, 40 ° C. or less, or the temperature of the fuel cartridge 204 is, for example, 20 It is determined whether the temperature is equal to or lower than C (S214). When the temperature of the fuel cell 100 exceeds 40 ° C. and the temperature of the fuel cartridge 204 exceeds 20 ° C. (N in S214), the control unit 700 repeats the determination in step 214. When the temperature of the fuel cell 100 is, for example, 40 ° C. or lower, or the temperature of the fuel cartridge 204 is, for example, 20 ° C. or lower (Y in S214), the control unit 700 turns on the fan 404 of the heat transfer unit radiating unit 400. It is turned off (S215), and this routine is terminated.
 通常運転モードが選択されていない場合(S203のN)、制御部700は、運転停止が選択されているか判断する(S216)。運転停止が選択されていない場合(S216のN)、制御部700は、本ルーチンを終了する。運転停止が選択されている場合(S216のY)、制御部700は、圧力調整部504を制御して、燃料収容部200から燃料電池100への水素供給を停止する(S217)。また、制御部700は、燃料収容部用放熱部900のファン904及び伝熱部用放熱部400のファン404をオフにし(S218)、本ルーチンを終了する。 When the normal operation mode is not selected (N in S203), the control unit 700 determines whether the operation stop is selected (S216). When the operation stop is not selected (N in S216), the control unit 700 ends this routine. When the operation stop is selected (Y in S216), the control unit 700 controls the pressure adjustment unit 504 to stop the hydrogen supply from the fuel storage unit 200 to the fuel cell 100 (S217). Further, the control unit 700 turns off the fan 904 of the heat radiating unit 900 for the fuel storage unit and the fan 404 of the radiating unit 400 for the heat transfer unit (S218), and ends this routine.
 本実施形態の燃料電池システムによれば、実施形態1で得られる効果に加えて、水素充填時に燃料収容部200で生じる熱から燃料電池100をより確実に保護することができ、また、水素吸蔵合金206への水素充填をより促進させることができるという効果が得られる。また、本実施形態では、伝熱部用放熱部400のファン404を優先的にオンにし、ファン404のオンのみで燃料電池100の放熱が十分ではない場合に、燃料収容部用放熱部900のファン904をオンにしている。これにより、燃料電池100の温度制御によって燃料収容部200が低温になり、水素吸蔵合金206からの水素放出が抑制されることを低減することができる。 According to the fuel cell system of the present embodiment, in addition to the effects obtained in the first embodiment, the fuel cell 100 can be more reliably protected from the heat generated in the fuel storage unit 200 when hydrogen is charged, and hydrogen storage is also possible. The effect that hydrogen filling to the alloy 206 can be further promoted is obtained. Further, in the present embodiment, when the fan 404 of the heat transfer unit heat dissipating unit 400 is preferentially turned on and the heat radiation of the fuel cell 100 is not sufficient only by turning on the fan 404, the fuel storage unit heat dissipating unit 900 The fan 904 is turned on. As a result, the temperature of the fuel storage unit 200 can be lowered by the temperature control of the fuel cell 100, and the release of hydrogen from the hydrogen storage alloy 206 can be reduced.
 本発明は、上述の各実施形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれうるものである。 The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art, and the embodiments to which such modifications are added are also possible. It can be included in the scope of the present invention.
 上述の各実施形態の燃料電池システム1において、燃料電池100は単セルとなっているが、例えば、燃料電池100は、複数のセルを有するモジュール構造であってもよい。モジュール構造としては、複数の膜電極接合体104が平面状に複数配設され、インターコネクタ、集電体、配線などの電気接続部材により複数の膜電極接合体104が直列に接続された構造や、複数の膜電極接合体104が積層されたスタック構造等を例として挙げることができる。 In the fuel cell system 1 of each embodiment described above, the fuel cell 100 is a single cell, but for example, the fuel cell 100 may have a module structure having a plurality of cells. As a module structure, a plurality of membrane electrode assemblies 104 are arranged in a planar shape, and a plurality of membrane electrode assemblies 104 are connected in series by an electrical connection member such as an interconnector, a current collector, or a wiring. An example is a stack structure in which a plurality of membrane electrode assemblies 104 are stacked.
 1 燃料電池システム、 100 燃料電池、 104 膜電極接合体、 106 電解質膜、 108 カソード、 110 アノード、 200 燃料収容部、 204 燃料カートリッジ、 206 水素吸蔵合金、 300 伝熱部、 302 ヒートパイプ、 302a 容器、 302b 作動液、 400 伝熱部用放熱部、 500 燃料供給部、 700 制御部、 702 伝熱部用調節部、 704 燃料収容部用調節部、 900 燃料収容部用放熱部、 R 領域。 1 fuel cell system, 100 fuel cell, 104 membrane electrode assembly, 106 electrolyte membrane, 108 cathode, 110 anode, 200 fuel storage part, 204 fuel cartridge, 206 hydrogen storage alloy, 300 heat transfer part, 302 heat pipe, 302a container , 302b hydraulic fluid, 400 heat transfer section heat dissipation section, 500 fuel supply section, 700 control section, 702 heat transfer section adjustment section, 704 fuel storage section adjustment section, 900 fuel storage section heat dissipation section, R region.
 本発明は、燃料電池システムに利用することができる。 The present invention can be used for a fuel cell system.

Claims (9)

  1.  電解質膜、前記電解質膜の一方の面に設けられたカソード、及び前記電解質膜の他方の面に設けられたアノードで構成される膜電極接合体を有する燃料電池と、
     燃料である水素を貯蔵するための水素吸蔵合金を収容する燃料収容部と、
     前記燃料電池及び前記燃料収容部を熱的に接続する伝熱部と、
     前記伝熱部を放熱させる伝熱部用放熱部と、を備え、
     前記燃料電池と前記燃料収容部とは、少なくとも一部が離間して配置され、
     前記燃料電池と前記燃料収容部との間の熱伝達は、実質的に前記伝熱部を介して行われることを特徴とする燃料電池システム。
    A fuel cell having a membrane electrode assembly composed of an electrolyte membrane, a cathode provided on one surface of the electrolyte membrane, and an anode provided on the other surface of the electrolyte membrane;
    A fuel storage section for storing a hydrogen storage alloy for storing hydrogen as a fuel;
    A heat transfer section that thermally connects the fuel cell and the fuel storage section;
    A heat transfer part heat radiating part for radiating the heat transfer part,
    The fuel cell and the fuel storage portion are at least partially spaced apart,
    The fuel cell system, wherein heat transfer between the fuel cell and the fuel storage unit is substantially performed through the heat transfer unit.
  2.  前記伝熱部用放熱部は、前記燃料電池と前記燃料収容部とで挟まれた領域に配置される請求項1に記載の燃料電池システム。 2. The fuel cell system according to claim 1, wherein the heat transfer portion for the heat transfer portion is disposed in a region sandwiched between the fuel cell and the fuel storage portion.
  3.  前記伝熱部用放熱部は、放熱量が可変であり、
     前記伝熱部用放熱部の放熱量を調節する伝熱部用調節部を備え、
     前記伝熱部用調節部は、前記燃料収容部への水素充填時に前記伝熱部用放熱部の放熱量を高める請求項1又は2に記載の燃料電池システム。
    The heat-dissipating part for the heat transfer part has a variable heat dissipation amount,
    A heat transfer portion adjusting portion for adjusting the heat radiation amount of the heat transfer portion heat dissipation portion;
    3. The fuel cell system according to claim 1, wherein the heat transfer unit adjustment unit increases a heat radiation amount of the heat transfer unit heat dissipation unit when hydrogen is charged into the fuel storage unit.
  4.  前記伝熱部用放熱部は、放熱量が可変であり、
     前記伝熱部用放熱部の放熱量を調節する伝熱部用調節部を備え、
     前記伝熱部用調節部は、前記燃料電池の作動時に、前記燃料電池が所定温度を上回る場合に、前記伝熱部用放熱部の放熱量を高める請求項1乃至3のいずれか1項に記載の燃料電池システム。
    The heat-dissipating part for the heat transfer part has a variable heat dissipation amount,
    A heat transfer portion adjusting portion for adjusting the heat radiation amount of the heat transfer portion heat dissipation portion;
    4. The heat transfer unit adjusting unit according to claim 1, wherein the heat transfer unit adjusting unit increases the heat radiation amount of the heat transfer unit heat dissipation unit when the fuel cell exceeds a predetermined temperature during operation of the fuel cell. 5. The fuel cell system described.
  5.  前記燃料収容部を放熱する燃料収容部用放熱部を備える請求項1乃至4のいずれか1項に記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 4, further comprising a heat radiating part for a fuel containing part that radiates heat from the fuel containing part.
  6.  前記燃料収容部用放熱部は、放熱量が可変であり、
     前記燃料収容部用放熱部の放熱量を調節する燃料収容部用調節部を備え、
     前記燃料収容部用調節部は、前記燃料収容部への水素充填時に前記燃料収容部用放熱部の放熱量を高める請求項5に記載の燃料電池システム。
    The heat radiating portion for the fuel accommodating portion has a variable heat radiation amount,
    A fuel storage portion adjusting portion for adjusting a heat release amount of the fuel storage portion heat dissipation portion;
    The fuel cell system according to claim 5, wherein the fuel storage unit adjustment unit increases a heat radiation amount of the fuel storage unit heat radiation unit when hydrogen is charged into the fuel storage unit.
  7.  前記伝熱部用放熱部及び前記燃料収容部用放熱部は、放熱量が可変であり、
     前記伝熱部用放熱部の放熱量を調節する伝熱部用調節部と、前記燃料収容部用放熱部の放熱量を調節する燃料収容部用調節部と、を備え、
     前記燃料電池の作動時、前記伝熱部用調節部は、前記燃料電池が所定温度を上回る場合に前記伝熱部用放熱部の放熱量を高め、前記燃料収容部用調節部は、前記伝熱部用放熱部の放熱量が高められた所定時間後であっても前記燃料電池が前記所定温度を上回る場合に、前記燃料収容部用放熱部の放熱量を高める請求項5又は6に記載の燃料電池システム。
    The heat radiating part for the heat transfer part and the heat radiating part for the fuel storage part have a variable heat radiation amount,
    A heat transfer unit adjustment unit that adjusts the heat release amount of the heat transfer unit heat dissipation unit, and a fuel storage unit adjustment unit that adjusts the heat release amount of the fuel storage unit heat dissipation unit,
    During the operation of the fuel cell, the heat transfer unit adjustment unit increases the heat radiation amount of the heat transfer unit heat dissipation unit when the fuel cell exceeds a predetermined temperature, and the fuel storage unit adjustment unit The heat dissipation amount of the heat radiating portion for the fuel storage portion is increased when the fuel cell exceeds the predetermined temperature even after a predetermined time after the heat radiation amount of the heat radiating portion is increased. Fuel cell system.
  8.  前記燃料収容部は、複数の燃料カートリッジを収容し、
     各燃料カートリッジは、前記燃料電池に対して独立に水素を供給可能であり、前記燃料電池の作動中に、任意の一部の燃料カートリッジが前記燃料収容部に収容された状態で、残りの燃料カートリッジを取り外し可能である請求項1乃至7のいずれか1項に記載の燃料電池システム。
    The fuel storage unit stores a plurality of fuel cartridges,
    Each fuel cartridge can supply hydrogen to the fuel cell independently. During operation of the fuel cell, any part of the fuel cartridge is accommodated in the fuel accommodating portion, and the remaining fuel is supplied. The fuel cell system according to any one of claims 1 to 7, wherein the cartridge is removable.
  9.  前記伝熱部は、熱伝導性を有する容器と、当該容器内で循環することで外部から前記容器内に伝達された熱を移動させる作動液とを有するヒートパイプを備える請求項1乃至8のいずれか1項に記載の燃料電池システム。 The heat transfer section includes a heat pipe having a container having thermal conductivity and a working fluid that circulates in the container and moves heat transferred from the outside into the container. The fuel cell system according to any one of claims.
PCT/JP2011/006103 2011-10-31 2011-10-31 Fuel cell system WO2013065083A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/006103 WO2013065083A1 (en) 2011-10-31 2011-10-31 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/006103 WO2013065083A1 (en) 2011-10-31 2011-10-31 Fuel cell system

Publications (1)

Publication Number Publication Date
WO2013065083A1 true WO2013065083A1 (en) 2013-05-10

Family

ID=48191483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006103 WO2013065083A1 (en) 2011-10-31 2011-10-31 Fuel cell system

Country Status (1)

Country Link
WO (1) WO2013065083A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035856A (en) * 2014-08-04 2016-03-17 株式会社フジクラ Fuel cell cooling system
JP2016035857A (en) * 2014-08-04 2016-03-17 株式会社フジクラ Fuel cell cooling system
WO2018174054A1 (en) 2017-03-22 2018-09-27 ブラザー工業株式会社 Fuel cell and temperature adjusting method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260202A (en) * 1993-03-04 1994-09-16 Mitsubishi Heavy Ind Ltd Solid polyelectrolyte fuel cell power generating system
JPH1064567A (en) * 1996-06-14 1998-03-06 Matsushita Electric Ind Co Ltd Fuel cell hydrogen supply system and portable electrical machinery and apparatus
JP2001239847A (en) * 2000-03-01 2001-09-04 Nippon Soken Inc Fuel feed system for vehicle
JP2002221297A (en) * 2001-01-26 2002-08-09 Honda Motor Co Ltd Mh tank
JP2007327625A (en) * 2006-06-09 2007-12-20 Yamaha Motor Co Ltd Gas supply device, and moving body equipped therewith
JP2008010158A (en) * 2006-06-27 2008-01-17 Canon Inc Fuel cell and electronic apparatus equipped with it
JP2008134043A (en) * 2006-10-27 2008-06-12 Canon Inc Heat transfer control mechanism, and fuel cell system installed with heat transfer mechanism

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260202A (en) * 1993-03-04 1994-09-16 Mitsubishi Heavy Ind Ltd Solid polyelectrolyte fuel cell power generating system
JPH1064567A (en) * 1996-06-14 1998-03-06 Matsushita Electric Ind Co Ltd Fuel cell hydrogen supply system and portable electrical machinery and apparatus
JP2001239847A (en) * 2000-03-01 2001-09-04 Nippon Soken Inc Fuel feed system for vehicle
JP2002221297A (en) * 2001-01-26 2002-08-09 Honda Motor Co Ltd Mh tank
JP2007327625A (en) * 2006-06-09 2007-12-20 Yamaha Motor Co Ltd Gas supply device, and moving body equipped therewith
JP2008010158A (en) * 2006-06-27 2008-01-17 Canon Inc Fuel cell and electronic apparatus equipped with it
JP2008134043A (en) * 2006-10-27 2008-06-12 Canon Inc Heat transfer control mechanism, and fuel cell system installed with heat transfer mechanism

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035856A (en) * 2014-08-04 2016-03-17 株式会社フジクラ Fuel cell cooling system
JP2016035857A (en) * 2014-08-04 2016-03-17 株式会社フジクラ Fuel cell cooling system
WO2018174054A1 (en) 2017-03-22 2018-09-27 ブラザー工業株式会社 Fuel cell and temperature adjusting method
US11258082B2 (en) 2017-03-22 2022-02-22 Brother Kogyo Kabushiki Kaisha Fuel cell and temperature control method

Similar Documents

Publication Publication Date Title
US11843141B2 (en) Thermal management system for fuel cell vehicle and control method thereof
JP4950505B2 (en) Fuel cell stack
US7722973B2 (en) Fuel cell
WO2013065083A1 (en) Fuel cell system
JP6477681B2 (en) Fuel cell module and fuel cell stack
US20100248058A1 (en) Fuel cell module
US20130078486A1 (en) Power supply device
JP2012009412A (en) Fuel cell system and control method for the same
JP2004281072A (en) Fuel cell power generation device
JP2008010158A (en) Fuel cell and electronic apparatus equipped with it
KR101903803B1 (en) Fuel cell system
JP2014013733A (en) Fuel cell system
WO2012132428A1 (en) Fuel cell module
KR101107081B1 (en) Stack for fuel cell and fuel cell system with the same
JP2014049345A (en) Fuel cell system
JP2015079562A (en) Fuel cell and fuel cell system
WO2013080429A1 (en) Fuel cell system
JP4752172B2 (en) Fuel cell
JP2013214484A (en) Fuel cell system
JP2014072057A (en) Fuel cell system
JP2006202611A (en) Fuel cell system, and vehicle and electronic apparatus mounting it
WO2013145776A1 (en) Fuel cell system comprising a detachable fuel cartridge including a hydrogen storage alloy
WO2013018124A1 (en) Fuel cell system
JP2011133085A (en) Fuel storage unit and fuel cell module
WO2013065082A1 (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP