[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013062054A1 - 組成物およびその製造方法 - Google Patents

組成物およびその製造方法 Download PDF

Info

Publication number
WO2013062054A1
WO2013062054A1 PCT/JP2012/077627 JP2012077627W WO2013062054A1 WO 2013062054 A1 WO2013062054 A1 WO 2013062054A1 JP 2012077627 W JP2012077627 W JP 2012077627W WO 2013062054 A1 WO2013062054 A1 WO 2013062054A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
water
composition
ultrafine bubbles
enzyme
Prior art date
Application number
PCT/JP2012/077627
Other languages
English (en)
French (fr)
Inventor
悠 宮尾
譲 安島
岡 徹
デニー リャオ,
Original Assignee
サンスター技研株式会社
サンスター・エンジニアリング・プライベート・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンスター技研株式会社, サンスター・エンジニアリング・プライベート・リミテッド filed Critical サンスター技研株式会社
Priority to DK12842918.0T priority Critical patent/DK2772536T3/en
Priority to SG11201400909WA priority patent/SG11201400909WA/en
Priority to CN201280049370.3A priority patent/CN103857792A/zh
Priority to JP2013540828A priority patent/JP6099569B2/ja
Priority to US14/353,426 priority patent/US20140273155A1/en
Priority to EP12842918.0A priority patent/EP2772536B1/en
Publication of WO2013062054A1 publication Critical patent/WO2013062054A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates

Definitions

  • the present invention relates to a composition containing water and protein containing ultrafine bubbles (also referred to as nanobubbles, NB) having a mode particle diameter of 500 nm or less, and water and protein containing ultrafine bubbles having a mode particle diameter of 500 nm or less. It is related with the stabilization method of a protein composition including mixing.
  • Proteins such as enzymes, antibodies and peptides are widely used in detergents, industry, cosmetics, food processing, pharmaceuticals, diagnosis / testing, and biosensors.
  • Water-soluble preparations / forms of proteins are widely used in the industry that uses a large amount of enzymes because they are easier to handle than powders.
  • an enzyme in an aqueous solution has a problem that it is remarkably unstable and poorly stored as compared with a powder, and cannot maintain physiological activity for a long time.
  • a method of supplying a protein without reducing its physiological activity a method of supplying a preparation by purifying and stabilizing the protein without applying heat using a freeze-drying method or the like has been known.
  • uricase As a method for stabilizing proteins in an aqueous solution, uricase, a method of containing a polyhydric alcohol such as glycerin as a stabilizer for peroxidase (Patent Document 1: JP-A-6-70798), an aqueous solution containing cholesterol oxidase.
  • a polyhydric alcohol such as glycerin as a stabilizer for peroxidase
  • an aqueous solution containing cholesterol oxidase an aqueous solution containing cholesterol oxidase.
  • saccharides such as bovine serum albumin and glucose, or amino acids such as lysine
  • Patent Document 2 JP-A-8-187095
  • proteins are not limited, but guanidine hydrochloride, urea, pyridine as a stabilizer in an aqueous solution
  • a technique of adding an organic compound such as JP-A-2011-67202 has been known.
  • freeze-drying method cannot be used for proteins that are denatured by dehydration, and there are problems such as the possibility of alteration due to moisture absorption or oxidation during the drying process, and it is necessary to adjust the enzyme aqueous solution each time. there were.
  • a method for stabilizing a specific protein and lacks versatility There is a problem that it is a method for stabilizing a specific protein and lacks versatility.
  • an organic compound such as guanidine hydrochloride for stabilization of protein aqueous solution
  • an organic compound such as guanidine hydrochloride
  • the method of using an organic compound such as guanidine hydrochloride for stabilization of protein aqueous solution is versatile, but when it is used as an enzyme and other mixed preparations, it cannot be used if a substance that reacts with the organic compound is included. There were problems, and the addition concentration had to be adjusted to an appropriate concentration, which was complicated.
  • An object of the present invention is to provide a novel stable protein composition and a protein stabilization method that do not have the above-described problems.
  • the present invention provides a composition comprising water and protein containing ultrafine bubbles having a mode particle diameter of 500 nm or less.
  • the present invention also provides the above composition comprising water and protein containing the above ultrafine bubbles, wherein the mode particle concentration of the ultrafine bubbles is 1 million or more per ml.
  • the present invention provides the above composition comprising water and protein containing ultrafine bubbles having a particle diameter of 50 nm or more per ml with a particle diameter of 1000 nm or less.
  • the present invention provides a method for stabilizing a protein composition, which comprises mixing water and protein containing ultrafine bubbles having a mode particle diameter of 500 nm or less.
  • the present invention also provides a protein composition comprising mixing a protein containing water containing ultrafine bubbles having a mode particle diameter of 500 nm or less and a modest particle concentration of ultrafine bubbles of 1 million or more per ml.
  • the mode particle size is 500 nm or less
  • the particle concentration of bubbles having a particle size of 1000 nm or less is 50 million or more per ml
  • the mode particle concentration of ultrafine bubbles is arbitrarily 1 million per ml.
  • a method for stabilizing a protein composition comprising mixing a protein with water containing ultrafine bubbles, which can be one or more.
  • the inside of the ultrafine bubbles is not limited to these, but is selected from air, oxygen, hydrogen, nitrogen, carbon dioxide, argon, neon, xenon, fluorinated gas and inert gas 1 It can be a seed or two or more gases.
  • the protein that can be used in the protein composition of the present invention is not particularly limited, and examples thereof include enzymes, animal-derived proteins, fish-derived proteins, plant-derived proteins, recombinant proteins, enzymes, antibodies, peptides, and the like. Things can be used.
  • Enzymes include oxidoreductases (cholesterol oxidase, glucose oxidase, ascorbate oxidase, polyphenol oxidase, peroxidase, etc.); transferases (acyltransferase, sulfotransferase, transglucosidase, etc.); hydrolases (proteases, serines) Protease, amylase, lipase, cellulase, glucoamylase, lysozyme, etc.); addition / elimination enzyme (pectin lyase, etc.); isomerase (glucose isomerase, etc.); synthase (fatty acid synthase, phosphate synthase, citrate synthase, hyaluron) Acid lyase, carbonic acid dehydrase, etc.) can be used.
  • oxidoreductases cholesterol oxidase, glucose oxidase, ascorbat
  • Recombinant protein As a recombinant protein, protein preparations (interferon ⁇ , growth hormone, insulin, serum albumin), vaccines and the like can be used.
  • Antibody As an antibody, a monoclonal antibody and a polyclonal antibody can be used.
  • Peptide Peptides are not particularly limited to amino acids, and dipeptides, tripeptides, polypeptides and the like can be used.
  • the protein is a water-soluble protein, more preferably the protein is an enzyme, more preferably the protein is a water-soluble enzyme, most preferably selected from peroxidase, protease, cellulase, amylase, and lipase. Can be at least one.
  • the amount of protein used varies depending on the type and use of the protein.
  • the preferred amount can be appropriately determined by experiment, but is generally used in the range of 1 ng / ml to 300 mg / ml, preferably 10 ng / ml to 100 mg / ml, more preferably 30 ng / ml to 50 mg / ml. be able to.
  • the water used in the present invention is not limited to these, but tap water, purified water, ion exchange water, pure water, ultrapure water, deionized water, distilled water, buffer solution, clean water, natural water It can be selected from water, filtered water, high purity water, drinking water and electrolyzed water.
  • a water-soluble solvent such as alcohol, glycol, glycerin, ether, ketone, ester or the like can also be added.
  • composition containing the protein of the present invention has excellent stability, in particular, pH stability that is stable against changes in pH, temperature stability that reduces the influence of temperature, and light stability that reduces the influence of light. The effect is excellent.
  • the ultrafine bubbles used in the present invention have a mode particle size of 500 nm or less, preferably a mode particle size of 300 nm or less, more preferably a mode particle size of 150 nm or less, and most preferably a mode particle size.
  • the particle concentration of bubbles having a mode particle diameter of 100 nm or less is preferably 1 million or more per ml, more preferably 3 million or more, more preferably 5 million or more, more preferably 7 million or more, and further preferably Is 10 million or more, more preferably 50 million or more, more preferably 90 million or more, more preferably 100 million or more, more preferably 500 million or more, and most preferably 900 million or more.
  • the total particle concentration is preferably 50 million or more per ml, more preferably 70 million or more, more preferably 80 million or more, more preferably 100 million or more, more preferably 600 million or more, More preferably 1 billion or more, more preferably 3 billion or more, more preferably 5 billion or more, more preferably 7 billion or more, more preferably 10 billion or more, more preferably 20 billion or more, more preferably Can be 50 billion or more, most preferably 70 billion or more. In a further preferred embodiment, there are almost no bubbles of 1000 nm or more.
  • the particle size of the ultrafine bubbles used in the present invention is very small, it cannot be accurately measured with a normal particle size distribution measuring apparatus. Therefore, in this specification, the numerical value measured by the nanoparticle analysis system nanosite series (made by NanoSight) is used. Nanoparticle analysis system Nanosite series (manufactured by NanoSight) measures the speed of Brownian motion of nanoparticles and calculates the particle diameter from the speed. The mode particle diameter can be confirmed from the particle diameter distribution of the existing particles, and means the particle diameter when the number reaches the maximum value. In addition, the particle diameter and number of ultrafine bubbles in the present invention are values measured at 24 hours after blending the composition.
  • composition of the present invention can contain additives such as, but not limited to, preservatives and stabilizers.
  • preservatives include, but are not limited to, polyhexamethylene biguanide and paraben.
  • the stabilizer is not limited to these, and for example, saccharides, antibiotics, aminoglycosides, organic acids, coenzymes, and amino acids can be used.
  • the composition of this invention can contain surfactant.
  • the surfactant can be added as appropriate depending on the conditions of use, not only when it contains an additive of a water-insoluble substance or a poorly water-soluble substance, but also when a water-soluble additive is used.
  • the zeta potential on the surface of the ultrafine bubbles affects the stability of the bubbles.
  • the surface of the ultrafine bubbles used in the present invention is charged, and the absolute value of the zeta potential thereof is 5 mV or more, preferably 7 mV or more, more preferably 10 mV or more, more preferably 20 mV or more, further preferably 25 mV or more, most preferably. 30 mV or more.
  • the absolute value of the zeta potential is proportional to the viscosity of the solution / the dielectric constant of the solution, it is considered that the stability increases as the water and protein containing ultrafine bubbles are mixed under low temperature conditions.
  • the ultrafine bubbles used in the present invention are generated by any known means, for example, a static mixer type, a venturi type, a cavitation type, a vapor agglomeration type, an ultrasonic type, a swirl type, a pressure dissolution type, or a fine hole type. Can be made.
  • a preferred method for generating bubbles is a gas-liquid mixed shearing method.
  • An apparatus useful for generating ultrafine bubbles by the gas-liquid mixed shearing method is, for example, an apparatus disclosed in Japanese Patent No. 4118939.
  • this device most of the gas-liquid mixed fluid introduced into the fluid swirl chamber is temporarily directed in the direction opposite to the direction in which the discharge port is located, unlike the conventional device described above. Proceed as a swirl flow. Then, the swirl flow is reversed by the first end wall member and proceeds from the first end wall member toward the second end wall member. At this time, the swirl rotation radius is changed to the first end wall member. Since the flow velocity is smaller than when traveling, the flow velocity becomes high. Therefore, the shearing force to the gas contained in the liquid is increased, and the miniaturization is promoted.
  • composition of the present invention in which protein is dissolved in water can be produced by treating an aqueous protein solution with an ultrafine bubble generator to generate ultrafine bubbles in the aqueous solution.
  • the composition of the present invention can also be produced by dissolving protein in water containing ultrafine bubbles.
  • the water containing ultrafine bubbles can have the mode particle size and number as described above.
  • the mode particle diameter of the water containing the generated ultrafine bubbles was 86 nm
  • the particle concentration at the mode particle diameter was 7.57 ⁇ 10 6 particles / ml
  • the total particle concentration was 6.86 ⁇ 10 8 particles / ml.
  • the particle concentration was very low and no normal distribution was seen, so the measurement result was judged to be noise.
  • water containing ultrafine bubbles in the atmosphere was prepared in the same manner as described above, and as a comparative example of the blank, Japanese Pharmacopoeia purified water was used instead of water containing ultrafine bubbles in the atmosphere. A thing was used.
  • o-Phenylenediamine tablet manufactured by SIGMA-ALDRICH: 1 unit 70 mM citrate buffer (citric acid-sodium phosphate; pH 5.0): 12.5 ml Hydrogen peroxide solution: 5 ⁇ l (Calculation method of enzyme concentration and enzyme activity remaining rate) After adding 50 ⁇ l of 4N H 2 SO 4 solution to the sample to stop the color reaction, the absorbance (A492) at 492 nm was measured with a microplate reader (Thermo Fisher Scientific Co., Ltd.). The enzyme concentration was determined from a calibration curve prepared using streptavidin peroxidase.
  • the initial enzyme activity of the sample was A, and the enzyme activity after storage was B, and the “enzyme activity remaining rate” was calculated from the following equation.
  • Enzyme activity remaining rate (%) (1 ⁇ (AB) / A) ⁇ 100
  • the concentration at the mode particle size was calculated as the concentration measurement value at the mode particle size (10 6 particles / ml) ⁇ dilution ratio at the time of measurement.
  • the total particle concentration was calculated as a concentration measurement value (10 8 particles / ml) ⁇ total dilution concentration at the time of measurement. The results are shown in Table 1 and Table 2 below.
  • Example 1-3 shows the results when stored at 20 ° C. for 1, 3 and 10 days
  • Example 4-6 shows the results when stored at 50 ° C. for 1, 3 and 10 days.
  • the comparison at 20 ° C. shows that the enzyme residual rate is remarkably improved.
  • the result at 50 ° C. was also very excellent.
  • o-Phenylenediamine tablet manufactured by SIGMA-ALDRICH: 1 pc 70 mM citrate buffer (citric acid-sodium phosphate pH 5.0): 12.5 ml Hydrogen peroxide solution: 5 ⁇ l (Calculation method of enzyme concentration and enzyme activity remaining rate) After adding 50 ⁇ l of 4N H 2 SO 4 solution to the sample to stop the color reaction, the absorbance at 492 nm was measured with a microplate reader (Thermo Fisher Scientific Co., Ltd.). The enzyme concentration was determined from a calibration curve prepared using streptavidin peroxidase.
  • the initial enzyme activity of the sample was A, and the enzyme activity after storage was B, and the “enzyme activity remaining rate” was calculated from the following equation.
  • Enzyme activity remaining rate (%) (1 ⁇ (AB) / A) ⁇ 100
  • Table 3 The results are shown in Table 3 below. It has been shown that increasing the total particle concentration provides better results. In Example 8, the residual enzyme rate was 0.0%, and in Example 10, the residual enzyme rate was 15.2%. Although the result is improved as compared with the comparative example, under the condition of 80 ° C. and 80 minutes, the mode particle size concentration of several hundred million and the total particle concentration of several hundred billion are desirable as in Example 12. Conceivable.
  • o-Phenylenediamine tablet manufactured by SIGMA-ALDRICH: 1 pc 70 mM citrate buffer (citric acid-sodium phosphate pH 5.0): 12.5 ml Hydrogen peroxide solution: 5 ⁇ l (Calculation of enzyme concentration and enzyme activity remaining rate) After adding 50 ⁇ l of 4N H 2 SO 4 solution to the sample to stop the color reaction, the absorbance at 492 nm was measured with a microplate reader (Thermo Fisher Scientific Co., Ltd.). The enzyme concentration was determined from a calibration curve prepared using streptavidin peroxidase.
  • Enzyme activity remaining rate (%) (1 ⁇ (AB) / A) ⁇ 100
  • Table 4 The results are shown in Table 4 below. It has been shown that the present invention provides excellent stability over a wide pH range.
  • the mixture was centrifuged at 13000 ⁇ g for 10 minutes, and 1 ml of the supernatant was developed in a tube containing 1 ml of another 1M NaOH. (Calculation method of enzyme activity and residual rate of enzyme activity)
  • absorbance (A450) at 450 nm was measured with a microplate reader (manufactured by Thermo Fisher Scientific Co., Ltd.).
  • the absorbance at 450 nm (A450b) was measured in the same manner as described above, and calculated as “enzyme activity” using the following formula.
  • Enzyme activity (U / ml) (A450 ⁇ A450b) / (0.001 ⁇ 30) * Protein activity of 1 unit (U) is defined as “absorbance at 450 nm increases by 0.001 per minute”.
  • Enzyme activity remaining ratio was calculated from the following formula.
  • Enzyme activity remaining rate (%) (1 ⁇ (AB) / A) ⁇ 100 The results are shown in Table 5 below. It has been shown that the present invention provides excellent thermal stability for proteases.
  • Catalase stability (test method) (1) Water containing purified catalase or water containing ultrafine bubbles (mode particle size: 100 nm, mode particle concentration: 8.77 ⁇ 10 6 / ml, total particle concentration of particle size 1000 nm or less; 6.18 ⁇ 10 8 / ml) To 1 mg / ml (3809 Unit / ml) aqueous solution. (2) 1 ml of the catalase aqueous solution dispensed to the microtube was incubated at 62.5 ° C. for a predetermined time (20, 30, 40, 50 minutes) on a thermoshaker (500 rpm). Thereafter, precipitation was performed in a centrifuge (14000 rpm ⁇ 5 minutes).
  • Lipase stability (Test method) (1) Purified water or water containing ultrafine bubbles (mode particle size: 113 nm, mode particle concentration: 36.4 ⁇ 10 6 / ml, total particle concentration of particle size 1000 nm or less; 20.9 ⁇ 10 8 / ml) To 0.02 mg / ml (23.52 Unit / ml) aqueous solution. (2) The prepared aqueous lipase solution was incubated at 70 ° C. for 5 minutes. (3) 50 ⁇ L of the treated lipase aqueous solution, 100 ⁇ L of the substrate solution prepared by the method described below, and 50 ⁇ L of Tris-HCl buffer (pH 8.2) were reacted at a predetermined time ⁇ room temperature.
  • the reaction solution was collected and the absorbance at 410 nm was measured. The results are shown in FIG. (Adjustment of substrate solution)
  • 0.0135 g of p-nitrophenyl laurate, 0.017 g of sodium dodecyl sulfate, and 1.0 g of Triton X-100 were mixed, dissolved in water at 65 ° C., and then cooled.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

【課題】 新規な安定したタンパク質の組成物、およびタンパク質組成物の安定化方法を提供すること。 【解決手段】 最頻粒子径が500nm以下である超微細気泡を含む水とタンパク質を含む組成物、および最頻粒子径が500nm以下である超微細気泡を含む水とタンパク質を混合することを含む、タンパク質組成物の安定化方法。

Description

組成物およびその製造方法
 本発明は、最頻粒子径が500nm以下である超微細気泡(ナノバブル、NBとも呼ぶ)を含む水とタンパク質を含む組成物および最頻粒子径が500nm以下である超微細気泡を含む水とタンパク質を混合することを含む、タンパク質組成物の安定化方法に関する。
 酵素、抗体、ペプチド等のタンパク質は、洗剤、工業、化粧品、食品加工、医薬品、診断・検査、バイオセンサーへ広く利用されている。タンパク質の水溶性製剤/形態は、粉末に比べ取り扱いに優れる等の点から酵素を大量に利用する業界で汎用されている。しかし、一般に水溶液中の酵素は粉末体と比べ著しく不安定で保存性が悪く、長期間生理活性を維持できないという問題がある。従来よりタンパク質の生理活性を低下させずに供給する方法として、凍結乾燥法などを利用して熱をかけずにタンパク質を精製、安定化させ製剤を供給する方法が知られていた。またタンパク質を水溶液中で安定化させる方法としては、ウリカーゼ、パーオキシダーゼの安定化剤としてグリセリン等の多価アルコールを含有させる方法(特許文献1:特開平6-70798)、コレステロールオキシダーゼを含む水溶液に、牛血清アルブミンやグルコース等の糖類あるいはリジン等のアミノ酸を添加する技術(特許文献2:特開平8-187095)、タンパク質は限定されないが、水溶液中に安定化剤としてグアニジン塩酸塩、尿素、ピリジン等の有機化合物を添加する技術(特許文献3:特開2011-67202)等が知られていた。
 しかしながら、これらの公知技術にはいくつか課題があった。例えば、凍結乾燥法では脱水により変性するタンパク質には使用できないこと、および乾燥工程中に吸湿や酸化による変質が起こり易い等の課題があり、さらに酵素水溶液をその都度調整する必要があるため煩雑であった。タンパク質の水溶液中での安定化技術では、ウリカーゼ、パーオキシダーゼの安定化に多価アルコールを用いる方法、およびコレステロールオキシダーゼ水溶液の安定化に牛血清アルブミンや糖類やアミノ酸を用いる方法があるが、いずれも特定のタンパク質を安定化させる方法であり汎用性に欠けるという課題があった。また、タンパク質水溶液の安定化にグアニジン塩酸塩などの有機化合物を用いる方法は、汎用性はあるが、酵素と他の混合製剤とした場合、有機化合物と反応するものが含まれると利用できないとの課題があり、また添加濃度も適正な濃度に調整しなければならず煩雑であった。
特開平6-70798 特開平8-187095 特開2011-67202
 本発明は上記の課題を有しない、新規な安定したタンパク質の組成物、およびタンパク質の安定化方法を提供することを目的とする。
 上記課題に応えるべく、鋭意研究を重ねた結果、超微細気泡を含有する水とタンパク質を混合することにより、安定なタンパク質組成物が得られることを見いだし、本発明をなすに至った。
 本発明は、最頻粒子径が500nm以下である超微細気泡を含む水とタンパク質を含む組成物を提供する。また本発明は、超微細気泡の最頻粒子濃度が1mlあたり100万個以上である上記の超微細気泡を含む水とタンパク質を含む上記の組成物を提供する。さらには、本発明は粒子径1000nm以下の気泡の粒子濃度が1mlあたり5000万個以上である超微細気泡を含む水とタンパク質を含む上記の組成物を提供する。
 さらに本発明は、最頻粒子径が500nm以下である超微細気泡を含む水とタンパク質を混合することを含む、タンパク質組成物の安定化方法を提供する。また本発明は、最頻粒子径が500nm以下であり、超微細気泡の最頻粒子濃度が1mlあたり100万個以上である超微細気泡を含む水とタンパク質を混合することを含む、タンパク質組成物の安定化方法を提供する。さらには、本発明は最頻粒子径が500nm以下であり、粒子径1000nm以下の気泡の粒子濃度が1mlあたり5000万個以上であり、任意に超微細気泡の最頻粒子濃度が1mlあたり100万個以上であることができる超微細気泡を含む水とタンパク質を混合することを含む、タンパク質組成物の安定化方法を提供する。
 本発明において前記超微細気泡内部は、これらに限定されるものではないが、空気、酸素、水素、窒素、炭酸ガス、アルゴン、ネオン、キセノン、フッ素化気体および不活性化ガスから選択される1種または2種以上の気体であることができる。
 本発明のタンパク質組成物において使用できるタンパク質としては、特に限定されないが、酵素、動物由来タンパク質、魚由来タンパク質、植物由来タンパク質、組み換えタンパク質、酵素、抗体、ペプチド等が挙げられ、たとえば以下のようなものが使用できる。
酵素類:酵素類としては、酸化還元酵素(コレステロールオキシダーゼ、グルコースオキシダーゼ、アスコルビン酸オキシダーゼ、ポリフェノールオキシダーゼ、ペルオキシダーゼ等);転移酵素(アシルトランスフェラーゼ、スルホトランスフェラーゼ、トランスグルコシダーゼ等);加水分解酵素(プロテアーゼ、セリンプロテアーゼ、アミラーゼ、リパーゼ、セルラーゼ、グルコアミラーゼ、リゾチーム、等);付加脱離酵素(ペクチンリアーゼ等);異性化酵素(グルコースイソメラーゼ等);合成酵素(脂肪酸シンターゼ、リン酸シンターゼ、クエン酸シンターゼ、ヒアルロン酸リアーゼ、炭酸デヒドラーゼ等);が使用できる。
組み換えタンパク質:組み換えタンパク質としては、タンパク製剤(インターフェロンα、成長ホルモン、インスリン、血清アルブミン)、ワクチン等が使用できる。
抗体:抗体としては、モノクローナル抗体及びポリクローナル抗体が使用できる。
ペプチド:ペプチドとしては、特にアミノ酸を限定するものではなく、ジペプチド、トリペプチド、ポリペプチド等が使用できる。
 好ましい態様においては、タンパク質は水溶性タンパク質であり、より好ましくはタンパク質は酵素であり、さらに好ましくはタンパク質は水溶性の酵素であり、最も好ましくはペルオキシダーゼ、プロテアーゼ、セルラーゼ、アミラーゼ、およびリパーゼから選択される少なくとも1つであることができる。
 使用されるタンパク質の量は、タンパク質の種類、用途などにより変化する。好ましい量は実験により適宜決定することができるが、一般的には1ng/mlから300mg/ml、好ましくは10ng/mlから100mg/ml、さらに好ましくは30ng/mlから50mg/mlの範囲で使用することができる。
 本発明において使用される水は、これらに限定されるものではないが、水道水、精製水、イオン交換水、純水、超純水、脱イオン水、蒸留水、緩衝液、上水、天然水、ろ過水、高純水、飲料水および電解水から選択されることができる。
 また水溶性溶媒、たとえばアルコール、グリコール、グリセリン、エーテル、ケトン、エステルなどを加えることもできる。
 本発明のタンパク質を含む組成物は安定性に優れ、特にはpHの変化に対して安定であるpH安定性、温度の影響を低減する温度安定性、および光による影響を低減する光安定性に優れるという効果を奏する。
超微細気泡を含む水中の気泡の粒径分布の測定結果を示す図である。 日本薬局方精製水中の気泡の粒径分布の測定結果を示す図である。 カタラーゼ安定性測定試験の結果を示す図である。 リパーゼ安定性測定試験の結果を示す図である。
 本発明において使用される超微細気泡は、最頻粒子径が500nm以下、好ましくは最頻粒子径が300nm以下、さらに好ましくは最頻粒子径が150nm以下であり、最も好ましくは最頻粒子径が100nm以下であり、最頻粒子径の気泡の粒子濃度は1ml当たり好ましくは100万個以上、さらに好ましくは300万個以上、さらに好ましくは500万個以上、さらに好ましくは700万個以上、さらに好ましくは1000万個以上、さらに好ましくは5000万個以上、さらに好ましくは9000万個以上、さらに好ましくは1億個以上、さらに好ましくは5億個以上、最も好ましくは9億個以上である。
 本発明においては、総粒子濃度は1mlあたり好ましくは5000万個以上、さらに好ましくは7000万個以上、さらに好ましくは8000万個以上、さらに好ましくは1億個以上、さらに好ましくは6億個以上、さらに好ましくは10億個以上、さらに好ましくは30億個以上、さらに好ましくは50億個以上、さらに好ましくは70億個以上、さらに好ましくは100億個以上、さらに好ましくは200億個以上、さらに好ましくは500億個以上、最も好ましくは700億個以上であることができる。さらに好ましい態様では、1000nm以上の気泡はほとんど存在しない。
 本発明で使用される超微細気泡の粒径は非常に小さいために通常の粒度分布測定装置では正確に測定することができない。そのため本明細書中では、ナノ粒子解析システム ナノサイトシリーズ(NanoSight社製)により測定した数値を利用している。ナノ粒子解析システム ナノサイトシリーズ(NanoSight社製)は、ナノ粒子のブラウン運動の速度を計測し、その速度から粒子径を算出する。最頻粒子径は、存在する粒子の粒子径分布から確認でき、個数が極大値となる時の粒子径をいう。
 なお、本発明における超微細気泡の粒子径および個数は、組成物配合後、24時間の時点で測定した数値をいう。
 なお、本願発明の組成物は、これらに限定されるものではないが、防腐剤および安定剤などの添加剤を含むことができる。防腐剤としては、これらに限定されるものではないが、たとえばポリヘキサメチレンビグアニドおよびパラベンなどが使用できる。また安定剤としては、これらに限定されるものではないが、たとえば糖類、抗生物質、アミノ配糖体、有機酸、補酵素、およびアミノ酸などが使用できる。また本願発明の組成物は界面活性剤を含むことができる。界面活性剤は水不溶性物質または水難溶性物質の添加剤を含む場合のみならず、水溶性の添加物を使用する場合でも、使用条件などに応じて適宜添加することができる。
 超微細気泡表面のゼータ電位は、気泡の安定性に影響を与える。本発明で使用される超微細気泡表面は帯電し、そのゼータ電位の絶対値は5mV以上、好ましくは7mV以上、より好ましくは10mV以上、さらに好ましくは20mV以上、さらに好ましくは25mV以上、最も好ましくは30mV以上である。また、ゼータ電位の絶対値は、溶液の粘性率/溶液の誘電率に比例するため、低温条件下で超微細気泡を含む水とタンパク質を混合するほど安定性は高くなると考えられている。
 本発明で使用される超微細気泡は、任意の公知の手段、たとえばスタティックミキサー式、ベンチュリ式、キャビテーション式、蒸気凝集式、超音波方式、旋回流方式、加圧溶解方式、微細孔方式で発生させることができる。好ましい気泡の発生方法は気液混合せん断方式である。
 気液混合せん断方式による超微細気泡の発生に有用な装置としては、たとえば特許第4118939号に開示されている装置があげられる。この装置においては、流体旋回室内に導入された気液混合流体の多くは、前述の従来装置におけるように単純に吐出口に向うのとは異なり、一旦、吐出口のある方向とは反対方向に旋回流として進む。そして、その旋回流は、第1端壁部材によって反転させられ該第1端壁部材から第2端壁部材に向けて進むことになるが、このときの旋回回転半径は第1端壁部材に向かうときに比べて小さくなるので、その流速は高速となり、従って、該液体内に含まれる気体への剪断力が大きくなり、その微細化が促進される。
 タンパク質の水溶液を超微細気泡発生装置により処理し、水溶液中に超微細気泡を発生させることにより、タンパク質が水中に溶解している本発明の組成物を製造することができる。また、超微細気泡を含む水に、タンパク質を溶解することによっても本発明の組成物を製造することができる。前記の超微細気泡を含む水は、先に述べた通りの最頻粒子径および個数を有することができる。
 本明細書における本発明の説明および実施例の記述は本発明の様々な例示的な実施態様の詳細な説明のためにのみあり、当業者は本発明の範囲から逸脱することなく、本明細書に開示された実施態様に様々な改良および変更を行うことができる。したがって、本明細書の記載は本発明の範囲を何ら制限するものではなく、本発明の範囲は特許請求の範囲の記載によってのみ決定される。
 大気の超微細気泡を含む水の調整
 気液混合せん断方式による超微細気泡発生装置である株式会社協和機設製の「BUVITAS」により、日本薬局方精製水を使用して、超微細気泡を発生させた。生成した超微細気泡の粒径をナノ粒子解析システム ナノサイトシリーズ(NanoSight社製)により測定した。測定結果を図1に示す。図の横軸はnm単位での粒子径を、縦軸は1ml当たりのNB粒子数(ナノバブル粒子数)(10個/ml)を示す。また図2に、日本薬局方精製水についての微細気泡の測定結果を示す。
 生成した超微細気泡を含む水の最頻粒子径は86nm、最頻粒子径における粒子濃度は7.57×10個/ml、総粒子濃度は6.86×10個/mlであった。
 日本薬局方精製水については、粒子濃度が非常に少なく、正規分布が見られないことから測定結果はノイズであると判断された。
 以下の実施例においては、大気の超微細気泡を含む水は上記と同様に調整され、ブランクの比較例としては、大気の超微細気泡を含む水の代わりに、日本薬局方精製水を使用したものを用いた。
1. ペルオキシターゼの20℃、50℃における10日間の安定性
 ストレプトアビジン ペルオキシダーゼを大気の超微細気泡を含む水に50ng/mlになるように加え、チューブに1.0mlずつ分注し、20、50℃の条件で1、3および10日間密栓保存した。次に、保存したストレプトアビジン ペルオキシダーゼ水溶液100μlに、下記の通り調整した基質液を100μl加え発色させた。
(基質液の調整方法)
下記組成からなる試薬を混合して基質液を得た。
 o-フェニレンジアミン タブレット(SIGMA-ALDRICH社製):1個
 70mMクエン酸緩衝液(クエン酸-リン酸ナトリウム;pH5.0):12.5ml
 過酸化水素液:5μl
(酵素濃度および酵素活性残存率の算出方法)
 サンプルに4N HSO溶液を50μl加え、発色反応を停止させた後、マイクロプレートリーダー(サーモフィッシャーサイエンティフィック株式会社製)で492nmにおける吸光度(A492)を測定した。酵素濃度は、ストレプトアビジン ペルオキシダーゼを用いて作成した検量線から求めた。また、サンプルの初期酵素活性をA、保存後の酵素活性をBとし、次式から「酵素活性残存率」を算出した。
 酵素活性残存率(%)=(1-(A-B)/A)×100
 なお最頻粒子径における濃度は、最頻粒子径における濃度測定値(10個/ml)×測定時の希釈倍率として計算された。また総粒子濃度は、総粒子濃度における濃度測定値(10個/ml)×測定時の希釈倍率として計算された。
 結果を下記の表1および表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1-3は20℃で1日、3日および10日保存した時の結果を示し、実施例4-6は50℃で1日、3日および10日保存した時の結果を示す。20℃における比較では酵素残存率が著しく向上したことが示されている。また50℃における結果も非常に優れたものであった。
2. 酵素の熱(80℃)に対する安定性
(酵素液の調整)
ストレプトアビジン ペルオキシダーゼを大気の超微細気泡を含む水に50ng/mlになるように加え、チューブに1.0mlずつ分注し、80℃の条件で30分間密栓保存した。このとき、超微細気泡を含む水の最頻粒子濃度を、それぞれ1mlあたり10個(実施例7および8)、10個(実施例9および10)、10個(実施例11および12)になるように調整した。
 次に、保存したストレプトアビジン ペルオキシダーゼ水溶液100μlに、調整した下記試薬(基質液)を100μl加え発色させた。
(基質液の調整)
下記組成からなる試薬を混合して基質液を得た。
 o-フェニレンジアミン タブレット(SIGMA-ALDRICH社製):1個
 70mMクエン酸緩衝液(クエン酸‐リン酸ナトリウム pH5.0):12.5ml
 過酸化水素液:5μl
(酵素濃度および酵素活性残存率の算出方法)
サンプルに4N HSO溶液を50μl加え、発色反応を停止させた後、マイクロプレートリーダー(サーモフィッシャーサイエンティフィック株式会社製)で492nmにおける吸光度を測定した。酵素濃度は、ストレプトアビジン ペルオキシダーゼを用いて作成した検量線から求めた。また、サンプルの初期酵素活性をA、保存後の酵素活性をBとし、次式から「酵素活性残存率」を算出した。
 酵素活性残存率(%)=(1-(A-B)/A)×100
 結果を下記の表3に示す。
 総粒子濃度の増大がより優れた結果を提供することが示されている。
 なお、実施例8において酵素残存率は0.0%であり、実施例10においては酵素残存率は15.2%となっている。比較例と比較して結果は向上しているものの、80℃で80分という条件下では実施例12におけるように数億個の最頻粒子径濃度と数百億個の総粒子濃度が望ましいと考えられる。
Figure JPOXMLDOC01-appb-T000003
3. 酵素のpHに対する安定性
 大気の超微細気泡を含む水を用いて、クエン酸緩衝液(pH4.6)、酢酸緩衝液(pH5.7)、リン酸緩衝液(pH7.0)、ホウ酸緩衝液(pH8.9)を調整し、それぞれに、ストレプトアビジン ペルオキシダーゼを50ng/mlになるように加えた。これをチューブに1.0mlずつ分注し、80℃の条件で20分間密栓保存した。ストレプトアビジン ペルオキシダーゼ水溶液100μlに、調整した下記試薬(基質液)を100μl加え発色させた。
(基質液の調整)
下記組成からなる試薬を混合して基質液を得た。
 o-フェニレンジアミン タブレット(SIGMA-ALDRICH社製):1個
 70mMクエン酸緩衝液(クエン酸‐リン酸ナトリウム pH5.0):12.5ml
 過酸化水素液:5μl
(酵素濃度および酵素活性残存率の算出)
サンプルに4N HSO溶液を50μl加え、発色反応を停止させた後、マイクロプレートリーダー(サーモフィッシャーサイエンティフィック株式会社製)で492nmにおける吸光度を測定した。酵素濃度は、ストレプトアビジン ペルオキシダーゼを用いて作成した検量線から求めた。また、サンプルの初期酵素活性をA、保存後の酵素活性をBとし、次式から「酵素活性残存率」を算出した。
 酵素活性残存率(%)=(1-(A-B)/A)×100
 結果を下記の表4に示す。
 
 本発明により広範なpH範囲において優れた安定性が提供されることが示されている。
Figure JPOXMLDOC01-appb-T000004
4. プロテアーゼの熱(80℃)安定性
(酵素液の調整)
プロテアーゼを大気の超微細気泡を含む水に10mg/mlになるように加え、80℃で30分間放置した後、チューブに990μlずつ分注した。アゾカゼイン トリス-Cl(Azocasein Tris-Cl)(1.3M)、CaCl(20mM)溶液を0.05(w/v)%になるように10μl加え、60℃に設定したヒーティングブロック(ヤマト科学株式会社製)で30分間密栓保存した。
 次に10%(w/v)トリクロロ酢酸を1.1ml添加し25~27℃の室温下で30分間待ち、反応を停止させた。沈殿したタンパク質を分離するため、13000×gで10分間遠心し、上清1mlを別の1M NaOHが1ml入ったチューブに発色させた。
(酵素活性および酵素活性残存率の算出方法)
調整した酵素液を用いて、マイクロプレートリーダー(サーモフィッシャーサイエンティフィック株式会社製)で450nmにおける吸光度(A450)を測定した。また、ブランクにおいても上記と同様に450nmにおける吸光度(A450b)を測定し、次式を用いて「酵素活性」として算出した。
 酵素活性(U/ml)=(A450-A450b)/(0.001×30)
 *1unit(U)のプロテアーゼ活性は、「450nmにおける吸光度が1分あたり0.001増加すること」と定義する。
 次に、サンプルの初期酵素活性をA、30分保存したサンプルの酵素活性をBとし、次式から「酵素活性残存率」を算出した。
 酵素活性残存率(%)=(1-(A-B)/A)×100
 結果を下記の表5に示す。
 本発明によりプロテアーゼについても優れた熱安定性が得られることが示されている。
Figure JPOXMLDOC01-appb-T000005
5.カタラーゼの安定性
(試験方法)
(1)カタラーゼを精製水または超微細気泡を含む水(最頻粒子径;100nm、最頻粒子濃度;8.77×10/ml、粒子径1000nm以下の総粒子濃度;6.18×10/ml)にて1mg/ml(3809Unit/ml)水溶液に調整した。
(2)マイクロチューブに分注したカタラーゼ水溶液1mlをサーモシェイカー(500rpm)にて62.5℃×所定の時間(20、30、40、50分)インキュベートした。その後、遠心分離器(14000rpm×5分間)にて沈殿処理した。
(3)処理したカタラーゼ水溶液の上清100μL、3%過酸化水素水200μL、リン酸緩衝液 (500Mm・pH5.8)200μLと精製水100μLをチューブに取り室温×15分間反応させた。
(4)反応させた後、酵素を完全に失活するために100℃×5分間熱処理した。
(5)反応液を100μL分取し、290nmにおける吸光度を測定した。測定した吸光度より検量線を用い過酸化水素分解率を算出した。
結果を図3に示す。
6.リパーゼの安定性
 (試験方法)
(1)リパーゼを精製水または超微細気泡を含む水(最頻粒子径;113nm、最頻粒子濃度;36.4×10/ml、粒子径1000nm以下の総粒子濃度;20.9×10/ml)にて0.02mg/ml(23.52Unit/ml)水溶液に調整した。
(2)調整したリパーゼ水溶液を70℃にて5分間インキュベートした。
(3)処理したリパーゼ水溶液50μL、以下に記載された方法で調整された基質液100μL、トリス塩酸緩衝液(pH8.2)50μLを所定の時間×室温で反応させた。
   反応液を分取し、410nmにおける吸光度を測定した。
   結果を図4に示す。
(基質液の調整)
    精製水100mlに0.0135gのp-ニトロフェニルラウレート、0.017gのドデシル硫酸ナトリウム、1.0gのTriton X-100を混合し、65℃にて水溶させた後、冷却した。

Claims (12)

  1.  最頻粒子径が500nm以下の超微細気泡を含む水とタンパク質を含む組成物。
  2.  超微細気泡の最頻粒子濃度が1mlあたり100万個以上である、請求項1に記載の超微細気泡を含む水とタンパク質を含む組成物。
  3.  粒子径1000nm以下の気泡の粒子濃度が1mlあたり5000万個以上である、請求項1ないし2に記載の超微細気泡を含む水とタンパク質を含む組成物。
  4.  前記超微細気泡が空気、酸素、水素、窒素、炭酸ガス、アルゴン、ネオン、キセノン、フッ素化気体および不活性化ガスから選択される1種または2種以上の気体でなる、請求項1ないし3のいずれかに記載の組成物。
  5.  前記タンパク質が酵素である、請求項1ないし4のいずれかに記載の組成物。
  6.  前記酵素が、ペルオキシダーゼ、プロテアーゼ、セルラーゼ、アミラーゼ、またはリパーゼである請求項5に記載の組成物。
  7.  最頻粒子径が500nm以下である超微細気泡を含む水とタンパク質を混合することを含む、タンパク質組成物の安定化方法。
  8.  最頻粒子径が500nm以下であり、最頻粒子濃度が1mlあたり100万個以上である超微細気泡を含む水とタンパク質を混合することを含む、タンパク質組成物の安定化方法。
  9.  請求項7または8に記載のタンパク質組成物の安定化方法であって、超微細気泡を含む水の粒子径1000nm以下の気泡の粒子濃度が1mlあたり5000万個以上である、タンパク質組成物の安定化方法。                                               
  10.  前記超微細気泡が空気、酸素、水素、窒素、炭酸ガス、アルゴン、ネオン、キセノン、フッ素化気体および不活性化ガスから選択される1種または2種以上の気体を内包する、請求項7ないし9のいずれかに記載のタンパク質組成物の安定化方法。
  11.  前記タンパク質が酵素である、請求項7ないし10のいずれかに記載のタンパク質組成物の安定化方法。
  12.  前記酵素が、ペルオキシダーゼ、プロテアーゼ、セルラーゼ、アミラーゼ、またはリパーゼである、請求項11記載のタンパク質組成物の安定化方法。
     
PCT/JP2012/077627 2011-10-28 2012-10-25 組成物およびその製造方法 WO2013062054A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DK12842918.0T DK2772536T3 (en) 2011-10-28 2012-10-25 COMPOSITION AND PROCEDURE FOR PREPARING SAME
SG11201400909WA SG11201400909WA (en) 2011-10-28 2012-10-25 Composition and method for producing same
CN201280049370.3A CN103857792A (zh) 2011-10-28 2012-10-25 组合物及其制造方法
JP2013540828A JP6099569B2 (ja) 2011-10-28 2012-10-25 組成物およびその製造方法
US14/353,426 US20140273155A1 (en) 2011-10-28 2012-10-25 Composition and method for producing same
EP12842918.0A EP2772536B1 (en) 2011-10-28 2012-10-25 Composition and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-238013 2011-10-28
JP2011238013 2011-10-28

Publications (1)

Publication Number Publication Date
WO2013062054A1 true WO2013062054A1 (ja) 2013-05-02

Family

ID=48167880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077627 WO2013062054A1 (ja) 2011-10-28 2012-10-25 組成物およびその製造方法

Country Status (8)

Country Link
US (1) US20140273155A1 (ja)
EP (1) EP2772536B1 (ja)
JP (1) JP6099569B2 (ja)
CN (1) CN103857792A (ja)
DK (1) DK2772536T3 (ja)
SG (1) SG11201400909WA (ja)
TW (1) TW201333203A (ja)
WO (1) WO2013062054A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002302A1 (ja) * 2013-07-05 2015-01-08 株式会社タカハタ電子 酸素添加酵素含有組成物の活性化方法並びにこれに基づく汚染物質の無害化方法及び装置
WO2015068764A1 (ja) * 2013-11-06 2015-05-14 株式会社明治 フラクトオリゴ糖の製造方法
WO2019044913A1 (en) * 2017-08-31 2019-03-07 Canon Kabushiki Kaisha METHOD FOR GENERATING ULTRAFINE BUBBLES, MANUFACTURING APPARATUS AND METHOD FOR MANUFACTURING LIQUID CONTAINING ULTRAFINE BUBBLES, AND LIQUID CONTAINING ULTRA FINE BUBBLES
WO2019044631A1 (en) * 2017-08-31 2019-03-07 Canon Kabushiki Kaisha APPARATUS FOR MANUFACTURING LIQUID CONTAINING EXTRAFINE BUBBLES AND METHOD OF MANUFACTURING
JP2022031841A (ja) * 2017-04-13 2022-02-22 東芝ライフスタイル株式会社 洗浄方法、洗濯機、食器洗浄機、及び便器
US11766685B2 (en) 2017-08-31 2023-09-26 Canon Kabushiki Kaisha Ultrafine bubble generating method, ultrafine bubble-containing liquid manufacturing apparatus and manufacturing method, and ultrafine bubble-containing liquid

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102162400B1 (ko) * 2016-05-13 2020-10-06 시그마 테크놀로지 유겐가이샤 생체 투여 가능한 수용액 및 그 제조 방법
JP7551235B2 (ja) 2020-08-26 2024-09-17 アール・ビー・コントロールズ株式会社 電子装置の製造方法とその方法に用いられるプリント配線基板
CN116035195A (zh) * 2022-12-26 2023-05-02 桑泽健康科技(上海)有限公司 一种食品酶制剂复配酶及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670798A (ja) 1990-05-09 1994-03-15 F Hoffmann La Roche Ag 尿酸測定用試薬組成物
JPH08187095A (ja) 1995-01-10 1996-07-23 Toyobo Co Ltd コレステロールオキシダーゼの安定化法
JP2003071472A (ja) * 2001-09-05 2003-03-11 Mineral Soken Kk 液体処理システム
JP2007105677A (ja) * 2005-10-14 2007-04-26 Mikasa:Kk 活性水の製造方法、動物の生育方法、および活性水
JP2008049243A (ja) * 2006-08-23 2008-03-06 Mitsubishi Gas Chem Co Inc 疎水性化合物の起泡による分離法
WO2008081948A1 (ja) * 2006-12-28 2008-07-10 Takai Tofu & Soymilk Equipment Co. 豆乳製造方法及び豆乳製造装置
JP4118939B1 (ja) 2006-05-23 2008-07-16 秀泰 辻 微細気泡発生装置
JP2009225748A (ja) * 2008-03-25 2009-10-08 Mikasa:Kk 動物の育成方法
JP2011067202A (ja) 2009-08-31 2011-04-07 Sanyo Chem Ind Ltd タンパク質水溶液の安定化剤、この安定化剤を含有するタンパク質水溶液及びタンパク質の安定化方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100283848B1 (ko) * 1999-03-19 2001-02-15 서경배 안정화된 효소 또는 단백질을 제조하는 방법 및 이에 의해 제공되는 안정화 효소 또는 단백질을 함유하는 외용제 조성물
MY177649A (en) * 2009-08-06 2020-09-23 Kyowakisetsu Co Ltd Composition and process for production thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670798A (ja) 1990-05-09 1994-03-15 F Hoffmann La Roche Ag 尿酸測定用試薬組成物
JPH08187095A (ja) 1995-01-10 1996-07-23 Toyobo Co Ltd コレステロールオキシダーゼの安定化法
JP2003071472A (ja) * 2001-09-05 2003-03-11 Mineral Soken Kk 液体処理システム
JP2007105677A (ja) * 2005-10-14 2007-04-26 Mikasa:Kk 活性水の製造方法、動物の生育方法、および活性水
JP4118939B1 (ja) 2006-05-23 2008-07-16 秀泰 辻 微細気泡発生装置
JP2008049243A (ja) * 2006-08-23 2008-03-06 Mitsubishi Gas Chem Co Inc 疎水性化合物の起泡による分離法
WO2008081948A1 (ja) * 2006-12-28 2008-07-10 Takai Tofu & Soymilk Equipment Co. 豆乳製造方法及び豆乳製造装置
JP2009225748A (ja) * 2008-03-25 2009-10-08 Mikasa:Kk 動物の育成方法
JP2011067202A (ja) 2009-08-31 2011-04-07 Sanyo Chem Ind Ltd タンパク質水溶液の安定化剤、この安定化剤を含有するタンパク質水溶液及びタンパク質の安定化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHUICHI YAMAMOTO: "Enzyme inactivation in drying : relation between enzyme heat stability and water content", NEW FOOD INDUSTRY, vol. 36, no. 8, 1994, pages 71 - 87, XP008172661 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002302A1 (ja) * 2013-07-05 2015-01-08 株式会社タカハタ電子 酸素添加酵素含有組成物の活性化方法並びにこれに基づく汚染物質の無害化方法及び装置
JP2015012830A (ja) * 2013-07-05 2015-01-22 株式会社タカハタ電子 酸素添加酵素含有組成物の活性化方法並びにこれに基づく汚染物質の無害化方法及び装置
WO2015068764A1 (ja) * 2013-11-06 2015-05-14 株式会社明治 フラクトオリゴ糖の製造方法
JPWO2015068764A1 (ja) * 2013-11-06 2017-03-09 株式会社明治 フラクトオリゴ糖の製造方法
JP2022031841A (ja) * 2017-04-13 2022-02-22 東芝ライフスタイル株式会社 洗浄方法、洗濯機、食器洗浄機、及び便器
JP7309826B2 (ja) 2017-04-13 2023-07-18 東芝ライフスタイル株式会社 洗浄方法、洗濯機、食器洗浄機、及び便器
WO2019044913A1 (en) * 2017-08-31 2019-03-07 Canon Kabushiki Kaisha METHOD FOR GENERATING ULTRAFINE BUBBLES, MANUFACTURING APPARATUS AND METHOD FOR MANUFACTURING LIQUID CONTAINING ULTRAFINE BUBBLES, AND LIQUID CONTAINING ULTRA FINE BUBBLES
WO2019044631A1 (en) * 2017-08-31 2019-03-07 Canon Kabushiki Kaisha APPARATUS FOR MANUFACTURING LIQUID CONTAINING EXTRAFINE BUBBLES AND METHOD OF MANUFACTURING
US11766685B2 (en) 2017-08-31 2023-09-26 Canon Kabushiki Kaisha Ultrafine bubble generating method, ultrafine bubble-containing liquid manufacturing apparatus and manufacturing method, and ultrafine bubble-containing liquid
US11938503B2 (en) 2017-08-31 2024-03-26 Canon Kabushiki Kaisha Ultrafine bubble-containing liquid manufacturing apparatus and manufacturing method

Also Published As

Publication number Publication date
SG11201400909WA (en) 2014-09-26
EP2772536A1 (en) 2014-09-03
CN103857792A (zh) 2014-06-11
EP2772536B1 (en) 2017-05-03
EP2772536A4 (en) 2015-07-01
DK2772536T3 (en) 2017-06-12
JP6099569B2 (ja) 2017-03-22
JPWO2013062054A1 (ja) 2015-04-02
TW201333203A (zh) 2013-08-16
US20140273155A1 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
JP6099569B2 (ja) 組成物およびその製造方法
Yu et al. Biphasic biocatalysis using a CO 2-switchable Pickering emulsion
Bommarius et al. Deactivation of formate dehydrogenase (FDH) in solution and at gas‐liquid interfaces
Leser et al. Application of reverse micelles for the extraction of proteins
Colombié et al. Lysozyme inactivation under mechanical stirring: effect of physical and molecular interfaces
Leser et al. Reverse micelles in protein separation: the use of silica for the back‐transfer process
JP4811620B2 (ja) タンパク質の迅速な脱水
Moradi et al. Phase equilibrium and partitioning of cephalosporins (cephalexin, cefazolin, cefixime) in aqueous two-phase systems based on carbohydrates (glucose, fructose, sucrose, maltose)/acetonitrile
US5670332A (en) Enzymatic reactions and apparatus for carrying them out
Shiomori et al. Extraction characteristic of bovine serum albumin using sodium bis (2-ethylhexyl) sulfosuccinate reverse micelles
Leonhardt et al. The potential use of silicon compounds as oxygen carriers for free and immobilized cells containing L-amino acid oxidase: a model study using the bacteria Providencia sp. PCM 1298
Gupta et al. Aqueous two-phase systems: an attractive technology for downstream processing of biomolecules
Liu et al. On the denaturation of enzymes in the process of foam fractionation
Haroun et al. Functionalized multi-walled carbon nanotubes as emerging carrier for biological applications
JPH01171466A (ja) 酸素掃去剤および方法
Chen et al. Effects of mixed reverse micellar structure on stability and activity of yeast alcohol dehydrogenase
JP5274795B2 (ja) タンパク質のリフォールディング方法
CN109588713B (zh) 一种岩藻黄醇-蛋白微粒及其制备方法和应用
Wallin et al. Stabilisation of glucose oxidase by entrapment in a cubic liquid crystalline phase
Tonova et al. Influence of enzyme aqueous source on RME-based purification of α-amylase
Burapatana et al. Enhancing cellulase foam fractionation with addition of surfactant
O'Connell et al. Immobilization of Candida rugosa lipase on colloidal gas aphrons (CGAs)
Li et al. W/O Pickering emulsion catalytic system stabilised by acetylated arachin/chitosan nanoparticles as an efficient platform for the preparation of diacylglycerol‐rich soybean oil
Santos et al. Comparison of theoretical and experimental data to evaluate substrate diffusional limitations for crown ether‐and methyl‐β‐cyclodextrin‐activated serine protease subtilisin Carlsberg in tetrahydrofuran
JPH0466087A (ja) 安定化されたアスコルビン酸酸化酵素組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842918

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012842918

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012842918

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013540828

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14353426

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE